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Abstract. Software defined network (SDN) decouples the control plane from
packet processing device and introduces the controller placement problem. The
previous methods only focus on propagation latency between controllers and
switches but ignore either the latency from controllers to controllers or the
capacities of controllers, both of which are critical factors in real networks.
In this paper, we define a global latency controller placement problem with
capacitated controllers, taking into consideration both the latency between
controllers and the capacities of controllers. And this paper proposes a particle
swarm optimization algorithm to solve the problem for the first time. Simulation
results show that the algorithm has better performance in propagation latency,
computation time, and convergence.
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1 Introduction

Unlike traditional networks, where both control and forwarding planes are highly
integrated on the same boxes, the Software Defined Network (SDN) architecture
decouples control and forwarding planes. Such separation is realized by moving
the network intelligence onto one or more external servers, called controllers, which
make up a network-wide logically centralized control plane that oversees a set of dumb,
and simply forwarding elements [1].

A particularly important task in SDN architectures is controller placement, i.e., the
positioning of a limited number of controllers within a network to meet various
requirements [2]. It is called the controller placement problem which is known to be
NP-hard. These requirements range from latency constraints to failure tolerance and
load balancing. We narrow our focus to latency constraints, because it places funda-
mental limits on availability and convergence time. Our goal is to find optimal
minimum-latency placements, when the number of controllers is given. It has practical
implications for software design, affecting whether controllers can respond to events in
real-time, or whether they must push forwarding actions to forwarding elements in
advance [3].
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Previously, the solution only focused on propagation latency between controllers
and switches but ignored the latency between controllers, which is a critical factor in
real networks. If there is more than a single controller in a network, synchronization is
necessary to maintain a consistent global state. Depending on the frequency of the
inter-controller synchronization, the latency between the individual controllers plays an
important role and thus should be considered during the controller placement [4].
Besides the propagation latency between controllers, the load of controllers is a critical
factor in real networks too. Because of the constraints of possessor, memory, access
bandwidth and other resources, a commodity server only has the capacity to manage a
limited number of routers [6]. Whenever the load of a controller reaches a threshold,
the message processing latency on the controller will increase substantially. In sum-
mary, we make the following contributions:

• To our best knowledge, this is the first work that proposes the Particle Swarm
Optimization algorithm to solve the controller placement problem which is known
to be NP-hard in SDN. By simulations, we show that the algorithm achieves better
solutions than close-to-optimal ones obtained by the Integer Linear Program (ILP).

• We define the Global Latency Control Placement Problem with Capacitated Con-
trollers (CGLCPP) which takes into consideration both the latency from controllers
to controllers and the capabilities of controllers for the first time.

The rest of this paper is organized as follows. The related work is reported in
Sect. 2. The Mathematical Model is depicted in Sect. 3. Section 4 briefs the particle
warm optimization algorithm to solve the CGLCPP. The results of simulations and
discussion of the performance are reported in Sect. 5. Finally, we conclude our work in
Sect. 6.

2 Related Work

The controller placement problem in SDN was first proposed in [3]. The authors
motivate the controller placement problem and present initial analysis of a fundamental
design. This paper examines the impacts of placements on average and worst-case
propagation latencies on real topologies. But its goal is not to find optimal
minimum-latency placements and don’t take into consideration the latency between
controllers which is necessary in SDN with multiple controllers. This paper doesn’t
propose a useful algorithm to find the solution, and each optimal placement shown in
this paper comes from directly measuring the metrics on all possible combinations of
controllers. This method ensures accurate results, but at the cost of weeks of CPU time;
the complexity is exponential for k, since brute force must enumerate every combi-
nation of controllers. The paper [4] discusses several aspects of the controller place-
ment problem from the view of resilience and failure tolerance. The delay between
controllers is only a small part of its multi-objective optimization considering and has
not been studied in depth.

The paper [5] addresses the problem of placing controllers in SDN, so as to
maximize the reliability of control networks. It presents a metric to characterize the
reliability of SDN control networks, and further quantify the impact of controller
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number on the reliability of control networks. It proposes two heuristic algorithms to
solve the problem, which are the greedy algorithm and Simulated Annealing algorithm
respectively. In this letter [6], it focuses on the load of controllers and defined a
capacitated controller placement problem, taking into account the capabilities of con-
trollers. But it hasn’t dealt with the latency between controllers.

The papers [4, 7] address the controller placement problem according to multiple
objective functions. They argue a controller placement should also fulfill certain
resilience constraints especially for the control plane. The model simultaneously
determines the optimal number, location, and type of controller as well as the inter-
connections between all the network elements. The goal of the model is to minimize the
cost of the network while considering different constraints.

3 Mathematical Model of the Global Latency Control
Placement Problem

In SDNs, switches communicate with their controller via standard TLS or TCP con-
nections. When multiple controllers are deployed, the latency between the individual
controllers plays an important role, because communications between these controllers
are also required to achieve global consistency of network state [8]. For example, the
Google’s B4 network provides connectivity among a modest number of data centers,
e.g., for asynchronous data copies, index pushes for interactive serving systems, and
end user data replication [9]. Thousands of internal application traffic runs across this
network. And user data is the most latency sensitive, and is of the highest priority.

Besides the propagation latency between controllers, the load of controllers is a
critical factor in real networks too. Because of the constraints of possessor, memory,
access bandwidth and other resources, a commodity server only has the capacity to
manage a limited number of routers [6]. Whenever the load of a controller reaches a
threshold, the message processing latency on the controller will increase substantially.
Heavy-load controllers always have higher failure probability, because they have little
resources to handle various errors and are more likely to be attacked.

The latency between the individual controllers plays an important role, and the load
of controllers is a critical factor in real networks too. Thus both them should be
considered during the controller placement. We define the Global Latency Control
Placement Problem with Capacitated Controllers (CGLCPP), which consists of both
the latency from controllers to switches and the latency from controllers to controllers,
and takes into consideration the capabilities of controllers.

For a network graph V ;Eð Þ, where V is the set of nodes, E the set of links. Let n be
the number of nodes. Let k denotes the number of controllers to be placed in the
network, and nc denotes the number of controller-to-controller paths. The edge weights
represent propagation latencies, where dðv; cÞ is the shortest path from node v to
controller c, and dðci; cjÞ is the shortest path from controller ci to controller cj. Let FðcÞ
denote the forwarding switches controlled by the controller c. Each controller c has a
capacity LðcÞ. The load of control attributed to switch v is denoted by lðvÞ.
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In order to be applicable and universal, we compute the average delay. And the
global average propagation latency for a placement of controllers S0 is:

GðS0Þ ¼ 1
n

X
v2V

min
c2S0

dðv; cÞþ 1
nc

X
ci;cj2S0

dðci; cjÞ ð1Þ

Definition:
Global Latency Control Placement Problem with Capacitated Controllers

Min GðS0Þ ð2Þ

Subject to: X
v2FðcÞ

lðvÞ� LðcÞ 8 c 2 S0 ð3Þ

Given the number k of controllers to be deployed in SDN, our goal is to find the
placement S0 from the set of all possible controller placements S, such that GðS0Þ is
minimum and S0j j ¼ k.

4 Particle Swarm Optimization for GLCPP Algorithm

With the given input k, the number of controllers to place, the global latency control
placement problem is an application example of the famous minimum k-median
problem [10], which is proved to be NP-hard. To solve this problem, we propose
particle swarm optimization algorithm that automate the controller placement decision
for the first time, which has good performance in NP-hard problem optimization.
Section 4.1 describes the PSO algorithm, and Sect. 4.2 explains PSO-CGLCPP
algorithm.

4.1 PSO Algorithm

Particle swarm optimization algorithm (PSO) was proposed in 1995 by Eberhart and
Kennedy [11]. It is a population-based stochastic optimization algorithm that originates
from nature. PSO searches the optimum within a population called a swarm and
benefits from two types of learning: cognitive learning based on an individual’s history
and social learning based on a swarm’s history accumulated by sharing information
among all particles in the swarm [12]. Successful applications of PSO have demon-
strated that it is a promising and efficient optimization method.

The mathematical analysis of PSO is described as the following. There are n par-
ticles which represent potential solutions of the problem. The particle is defined as a
d-dimensional vector. The current position of the particle in search space is Xi ¼
½xi1; xi1; . . .; xid�, i ¼ 1; 2; . . .; n, and its current velocity vector is Vi ¼ ½vi1; vi2; . . .; vid�.
We use Pi to stand for individual best position of the particle, Pi ¼ ½pi1; pi2; . . .; pid�.
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And Pg is regarded as global best position vector which particle swarm have found,
Pg ¼ ½pg1; pg2; . . .; pgd �. So, the position and velocity vector of the particles should
adjust according to the following equations:

Vtþ 1
id ¼ xVt

id þ c1r1ðPid � Xt
idÞþ c2r2ðPgd � Xt

idÞ ð4Þ

Xtþ 1
id ¼ Xt

id þVtþ 1
id ð5Þ

where ω expresses the inertia weight, r1 and r2 are elements from random sequences in
the range of (0, 1), which are mutually independent. The parameter c1 controls the
influence degree of a cognitive part of an individual, and c2 determines the effect of a
social part of the swarm.

The inertia weight x lets the algorithm improve its performance in a series of
applications. Paper [13] found that large inertia weight can help the global search, small
inertia weight can improve local search ability. Therefore, adaptive adjustment of
inertia weight is proposed. The inertia weight is not fixed value, but a function of linear
reduction over time. The inertia weight function is shown as the following:

x ¼ xmax � xmax � xmin

tmax
� t ð6Þ

xmax is set as the initial weight, xmin is set as the final weight. Variable tmax represents
the maximum number of iteration, t is the number of current iteration. Usually xmax is
set as 0.9 and xmin is set as 0.1.

The individual best position vector of each particle is computed using the following
expression:

Piðtþ 1Þ ¼ PiðtÞ if f ðXiðtþ 1ÞÞ� f ðPiðtÞÞ
Xiðtþ 1Þ if f ðXiðtþ 1ÞÞ� f ðPiðtÞÞ

(
ð7Þ

where f represents the fitness function.
Then, the global best position vector is found by

Pgðtþ 1Þ ¼ arg min
Piðtþ 1Þ

f ðPiðtþ 1ÞÞ: ð8Þ

4.2 PSO-CGLCPP Algorithm

In PSO, the position vector represents a solution to the optimized problem. For the global
latency control placement problem, each particle represents one kind of placement for
controllers to be deployed. With the given input k, the number of controllers to place, the
particle is defined as a k-dimensional vector, and each dimension represents one of the
controllers. So the position permutation of a particle i is defined as Xi ¼ ½xi1; xi1; . . .; xik�.
For we deploy each controller on one of the existing vertexes of the network, each
dimension of position is a integer between 1 and n, i.e., xik 2 ½1; n�, where n is equal to
the number of total vertexes in the network. Velocity works on the position sequence and
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it is rather crucial. A good velocity gives the particle a guidance and determines whether
the particle can reach its destination and by how fast it could [14].

When the position of the particle is established, namely the controllers are in place,
we compute the adaptive value of particle according to formula (1). Because the node is
assigned to its nearest controller, the delay from node to corresponding controller is
generally measured in that link length value. Then we compute load of controller
according to formula (3). If it exceeds the load limitation of controller, assign the
switch to the next nearest switch controller. And the delay between controllers and
controllers is defined as the shortest link between them in the same way.

In this section, we propose Particle Swarm Optimization for CGLCPP Algorithm
(PSO-CGLCPP). The basic idea is, by iteration, multiple particles search the optimal
solution in parallel, and minimum total delay controller placement is located. And the
overall procedure is about: initialize n particles randomly, with each particle repre-
senting a kind of placement of k controllers. Then set the particle with the highest
fitness to be the current best solution whose latency value is smallest. According to the
PSO algorithm, use the PSO velocity formulas (4) and (5) to merge the controller
placement and determine the new particle position until this swarm obtains its longest
lifetime or it converges. If PSO-CGLCPP converges, then the best solution can be
obtained. The PSO-CGLCPP algorithm for global latency controller placement prob-
lem is described as follows.

Algorithm 1. Overall procedure of proposed PSO-CGLCPP

Input:  1) Network topology graph ( , );
2) Objective function according to formula (1);
3) The number of controllers k; 
4) The maximal generation T; 

Output: The minimum global latency controller placement S’
Initialization : 

1. Randomly generate each particle’s velocity and position;
2. Evaluate the fitness value of each particle;
3. Fill the  of each particle with its current position;
4. Fill the with the optimal  ;

Optimization : 
1. repeat
2. for each particle
3. Update particle’s velocity according to (4);
4. Update particle’s position according to (5);
5. Evaluate the fitness value of the particle;
6. Update the  Pi according to (7);  
7. Update the  Pg according to (8);  
8. end for
9. until stopping criterion is satisfied
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5 Simulation and Results Analysis

In this section, we generate network topologies randomly according to [15], which is
almost closed to the real network. Controller’s capability is a complex concept,
including bandwidth, memory and computing resources and so on. In order to simplify
the problem, we use a digital to denote it. The load of controller attributed to switch is
processed in the same way. Our PSO-CGLCPP is written with C++ in VS2010, and
runs on the machine equipped with Intel Core i5 4-Core processors and 4 GB RAM.
We obtain the average solution by running the algorithm 100 times on every testing
topology.

To evaluate the performance of our algorithm, we run the other two algorithms,
along with the random placement algorithm (Random) for comparison purpose. The
two algorithms are greedy algorithm (GL) proposed in [5] and integer linear pro-
gramming algorithm (ILP) in [6] respectively. CPLEX is used to solve integer pro-
gramming. For a NP-hard problem, it will be hard to find the solution based on the
enumeration algorithm which ensures accurate results, but at the cost of weeks of CPU
time. Linear programming algorithms are always used to solve the problems, and the
solution is regarded as the optimal solution for a reference. So we mainly regard the
ILP algorithm as a reference and compare with it. Since the random algorithm returns
different results based on the locations selected, we execute random placements over
100 times, and select the placement that yields the best performance.

We evaluate the algorithms in two aspects, the first is the optimal latency solution,
and the second aspect is computing time for algorithm to find the optimal solution.

Algorithm 2. Procedure of evaluating the fitness of the particle

1. for each particle

2.  for each node

3.  Find the shortest path to the each controller;

4. Evaluate the longitude of the path;

5. Assign the node to the controller nearest to it;

6.  Compute load of controller according to (3);

7.  while exceed load limitation of the controller do

8.  Assign the switch to the next nearest controller;

9.  end for
10.  for each controller

11.   Find the shortest path to other controllers;

12. Evaluate the length of the path as controller-to-controller latency;

13.  end for
14. Evaluate the global latency according to (1);

15.  end for
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And we further characterize both latency and computing time performance against the
size of controllers. The results of the simulation are depicted in the following figures.
PSO is abbreviated words of PSO-CGLCPP.

Figure 1 evaluates the optimal latency of four algorithms with increasing network
nodes, given the same number of controllers. It shows that PSO and ILP get a better
average delay. PSO’s performance is slightly better than the ILP algorithms. Greedy
algorithm and Random algorithm perform relatively poor, and the worst is random
algorithm. Furthermore the Random and GL increase quickly along with increasing
nodes while PSO and ILP provide an optimal solution more reliably. The greedy
algorithm picks the next vertex that best minimizes latency, which always produces the
best location currently, but local optimum does not represent a global optimum.
Because of diversity of particles, PSO can search the entire space and jump out of local
optimum through exchanging information with each other. Finally the particle will
flight to a better global optimum after several iterations.

Figure 2 analyzes number of the controllers’ impact on average latency under the
same network topology. In the experiments, we gradually increase the number of
controllers for each placement strategy. With the increase of controllers placed in, the
average latency decreases. The average delay gained by PSO algorithm is always
relatively stable, less volatile, compared with the greedy algorithm. This is because the
particle swarm optimization through mutual learning and iteration between the particles
can always find a better controllers’ position to achieve better results. Furthermore, the
diminishing returns that level off around 4–8 controllers, suggested by the literature [3],
have been verified.

As can be seen from the Fig. 3, greedy algorithm consumes the shortest time, but
the solution is far away from the optimal one, which is unacceptable in most envi-
ronments. Processing time of both PSO and ILP are much more than GL algorithm,

Fig. 1. Optimal latency solution of the algorithms
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but produce a better solution. The time taken by the PSO and ILP algorithm are in
almost close level. When network size is larger, PSO algorithm converges to the
optimal solution slightly faster than ILP. PSO convergence must take advantages of the
swarm intelligence, and achieve a more satisfactory solution within an acceptable
timeframe, which can match with commercially available strategies. Although PSO
takes much more time in the procedure of exploring the optimal placement than GL, the
time is acceptable in lots real application scenarios in which the task has no real-time
demand. Figure 4 evaluates calculation time with increasing controller nodes to be
deployed, when the network size is the same. As can be seen, when the number of
controllers deployed becomes bigger, the convergence of time becomes larger and

Fig. 2. Controller number’s impact on average latency

Fig. 3. Computing time of the algorithms
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larger. And the growth rate of computation time becomes bigger, because faster growth
of number of links between controllers.

6 Conclusion

In this paper we investigate the controller placement problem in software defined
network, and define the Global Latency Control Placement Problem with Capacitated
Controllers (CGLCPP), taking into consideration both the latency between controllers
and the capabilities of controllers. We then propose a PSO-CGLCPP algorithm based
on particle swarm optimization to solve the problem for the first time. Our method
could find an optimized solution for the given controllers while conforming to the
constraints of controllers. Experimental results show that the algorithm performs
rapidly and effectively.
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