Parallel Computing Method for HRV
Time-Domain Based on GPU

Jie Wang, Weihao Chen, and Gang Hou™

School of Software Technology, Dalian University of Technology,
Economic and Technological Development Zone, Dalian 116600, China
{WangjielO03, Endeavour3db, hg. dut}@163. com

Abstract. HRV (Heart rate variability, which has a function of prediction for
cardiovascular disease) contains a wealth of medical information, rapid extraction
and procession of these signals will bring an important meaning for the prevention
of heart diseases. Physionet open source project provides a good platform for the
research and development of HRV, which also provides demonstration tools for
the calculation of HRV. The characteristics of medical signal are real-time and
have large volume of data. Conventional serial methods are difficult to meet the
requirements of biomedicine, and the parallel method based on multi-core CPU is
larger communication overhead. In this paper, we designed some parallel algo-
rithms for the calculation of HRV in time-domain based on the strategy of parallel
reduction, compared and analyzed the various optimization methods, and received
the highest 38 times speedup compared with serial method.

Keywords: GPU - HRV - Parallel - Reduction + Time-domain

1 Introduction

Cardiovascular disease is one of the major diseases that threaten human life [1], which
has features of high incidence, high morbidity, and high mortality. World Health
Organization statistics shows that about 17 million people worldwide died of all types
of cardiovascular disease each year. For the diagnosis of heart diseases, treatment and
prevention is still the huge challenge of medical profession.

ECG (Electrocardiogram) [2] diagnosis is a very important way for cardiovascular
disease diagnosis, which has a high value [3, 4] for the identification of all types of
arrhythmias, suggesting atrial, ventricular hypertrophy, the diagnosis of myocardial
infarction, myocarditis and other diseases. With the deepening of HRV study, physi-
ological and pathological information that it contains will be further revealed, which
will make HRV contains more space and value of application. Currently, heart rate
variability analysis method [5, 6] contains time-domain analysis, frequency-domain
analysis, time-frequency analysis and nonlinear analysis. Time-domain analysis is the
easiest way of measuring heart rate variability signal, which is a method of statistical
analysis. Researchers discrete RR interval changes based on the method of trend
analysis by statistics. Analysis in time-domain is simple, intuitive and easy for the
acceptance of the clinicians, and has accumulated a lot of experience.

© Springer International Publishing Switzerland 2015
G. Wang et al. (Eds.): ICA3PP 2015, Part II, LNCS 9529, pp. 434-443, 2015.
DOI: 10.1007/978-3-319-27122-4_30

Parallel Computing Method for HRV Time-Domain Based on GPU 435

Medicine signal characteristics: informative, randomness and noise background are
strong, which makes it require long time for the measurement of biomedical signal.
HRYV time-domain analysis in general should be a long-term of at least 24 h, especially
for acute myocardial infarction (AMI) prognosis, so it is extremely important for the
rapid processing of mass of HRV data. GPU is widely used in biomedicine [7-9], and
the calculation methods used for HRV and optimization are very necessary.

2 The Current Status of Research

2.1 Open Source Project of PhysioNet

In order to promote the exchange and cooperation in medical field, the US National
Institutes of Health (NIH) funded, Massachusetts Institute of Technology (MIT) jointly
Bethlsrael Deaconess Medical Center in Boston, etc. established a web-based complex
physiological and biomedical signal resources website PhysioNet (www.physionet.org)
since 1999, to facilitate the exchange of research data and analysis software, and
encourage extensive collaboration between researchers. Physionet medical researchers
can apply them to their own research, to validate and assess the range of practical
algorithms.

A signal data of PhysioBank database consists of multiple files, a major component
consists of three parts: the header file, data file and comment file, while the header file
(-hea) is essential document among them. As shown in Fig. 1, website also provides
analytical tools that can be used to calculate various HRV parameters. The open-source
project provides a good platform for the cooperation and exchange of biomedical
science development.

2.2 Prospects of GPU in Biomedicine

Speed and accuracy [10] are the key index of signal evaluation, which is more and
more important. With the increasing amount of data to be processed, especially for
situation that requires 24-hour monitoring and real-time processing, the execution time
will increase as the amount of data gradually extend.

Applications of GPU in biomedicine are widespread. Saha and Desai [11] made a
real-time analysis of huge amount of data generated by multichannel body sensor

data
head file data file annotation file
.hea .dat .atr

Fig. 1. The data structure of signals

http://www.physionet.org

436 J. Wang et al.

networks such as Electroencephalogram (EEG), Electrocardiogram (ECG), Elec-
tromyography (EMG) and Functional-MRI (fMRI), which is critical for the deployment
of these technologies. Processing these multichannel data sets using complex signal
processing algorithms such as Grassberger and Procaccia (GP) algorithm to compute
Correlation Dimension (D2) is resource intensive. Using massively parallel computing
infrastructure comprising of Graphical Processing Units (GPU) and Multicore Pro-
cessing nodes for parallelizing such huge data dependent problems is an apt use of the
resource (Tables 1 and 2).

Table 1. The result comparison A

ECG Computing No. of Time taken for all Speedup for
sample infrastructure samples samples complete data
MIT BIH | Sequential C Code 5120 60.4998 1
101 10240 283.752 1
MPI/Thread Hybrid 5120 3.32361 18.20303826
10240 17.8462 15.89985543
GPU 5120 14.837 4.077630249
Implementation#1 | 10240 91.12 3.11404741
GPU 5120 6.28 9.633726115
Implementation#2 | 10240 96.25 2.948072727
Table 2. The result comparison B
ECG sample Computing infrastructure | No. of Time taken for | Speedup for
samples one iteration one iteration
of “r”
MIT BIH 101 Sequential C Code 5120 0.43 1
10240 1.59 1
MPI/Thread Hybrid 5120 0.42 1.023809524
10240 1.49 1.067114094
GPU Implementation#1 5120 0.0086 50
10240 0.045 35.3333333
GPU Implementation#2 5120 0.0086 50
10240 0.045 35.3333333

The authors took two different databases for this experiment, and tested the algo-
rithms of Sequential C Code, MPI/Thread Hybrid, GPU implementation#1, GPU
implementation#2. The two algorithms of GPU can get ideal speedup in one iteration,
and have an obvious speedup when compared with algorithm of sequential C code.

The implementation results of traditional serial method is slow, which is hard to
deal with HRV parameters for the calculation of large amounts of data, and is difficult

Parallel Computing Method for HRV Time-Domain Based on GPU 437

Table 3. Time-domain parameters formula

AVNN = —;vilﬁ
N ()
SDNN = w)
SDANN = j&-:m—m
N 3)
SDNNIDX = 22NN
~ Num (4)
rsspe . |EEaR = R)?
- N
5)
_ NN;5 o
pNNSO = mx 100& 6)

to meet the medical requirements for real-time detection. Aiming at the characteristics
of HRV parameters in time-domain, a parallel strategy of reduction will be applied. The
experiment showed that it could achieve good acceleration when compared with tra-
ditional serial algorithm (Table 3).

3 Serial Analysis of Time-Domain of HRV

Parameters in time-domain of HRV are calculated above, the calculation processes
based on the above formula is shown as follows:

Step 1: Get files of PhysioBank database of corresponding disease;
Step 2: Call QRS detection program [12];

Step 3: Generate document of RR interval sequence;

Step 4: Read file and compute time-domain parameters;

Step 5: Output the results.

According to the calculation process, it is easy to write the appropriate serial
computing program. But there are lots of plus operations in the calculation of
time-domain, and it is difficult to meet the requirements of real time ECG analysis
when operating a large amount of data. So optimization of this part is crucial.

438 J. Wang et al.

4 Parallel Calculation of Time-Domain HRV

4.1 Parallel Optimization Principle

In the calculation of time-domain HRV, a number of data encryption and storage will
be performed. Speed and accuracy are the key indicators to evaluate signal processing
algorithm, especially in the field of biomedical.

Parallel reduction [13] is a common and important optimization method, which can
be applied to more than one thread blocks and guarantee GPU processors in a busy
state. By dividing calculations into multiple kernels, global synchronization operation
will be avoided, communication overhead will be reduced too (Fig. 2).

'?;. - :\ : : ,2 : ’: _ ‘;j Level O:
- s | £ /,’ el sl 8 blocks

~ =~ ~. P— AT T
*‘.\\\\:\\ L

B Level 1:
1 block

Fig. 2. Parallel reduction method

-

4.2 Strategy of Reduction

These are applets of the calculation of HRV in time-domain. THREAD_NUM is 512,
which is the block Dimension. At first, the data is stored in an array vecl in global
memory. When the applet starts, data will be copied to the array vec, which is allotted
by every block. At the end of every applets, the data in the first thread of each block
will be copied to nnCounter that is allotted in global memory.

Sequential Addressing.

_ _shared__ int vec[THREAD_NUM] ; //call for the shared momory for 512
vec[index] = vecl[id]; / /threads, and copy the data form global
__syncthreads () ; // memory to shared memory
for (int i=blockDim.x/2;i>0;i/=2){
if(index < 1)
vec [index]+= vec[index+i];
__syncthreads () ;
}
if (threadIdx.x == 0) / /add the sum of blocks to the first thread
nnCounter [blockIdx.x] = vec[0];

Shared memory is second only to register, and has a faster execution. In this part of
optimization, every vector will be stored in shared memory of the block. By the

Parallel Computing Method for HRV Time-Domain Based on GPU 439

judgment of (index < i) for each thread, bank conflict will be avoided by the thread
discontinuously.

First Add During Global Load.

_ _shared__ float vec[THREAD_NUM] ;

int id = blockIdx.x * (blockDim.x*2) + threadIdx.x;
int index = threadIdx.x;

vec[index] = vecl[id]+vecl[id+blockDim.x] ;//two blocks
__syncthreads () ; //add together
for (int i=blockDim.x/2;i>0;1i/=2) {

if (index < i)
vec [index]+= vec[index+i];

__syncthreads () ;
}
if (threadIdx.x == 0)
vecO[blockIdx.x] = (int)vec[0];

Drawbacks of the above optimization algorithm are that half threads will be idle

during each cycle. In order to reduce idle threads as much as possible, addition
operations will be done when accessing global memory, so each block can use the same
threads to complete twice operations of statue summing elements.

Unroll The Last Warp. The execution unit of GPU thread is warp, each warp thread
within no synchronization. So when there are only 32 threads of a warp need to added,
other warps will execute null branch. Warp synchronized will not be needed because of
the sequential consistency, and when blockDim.x = 32, operations will be operated
based on reduce?2.

{

device_ void warpReducel (volatile int* vec,int index)

index+3217; //unroll the warp

index+161;

index+8];

index+4] ;

index+21];
1

index
index

vec
vec

+=vec
+=vec
+=vec
vec [index] +=vec
index

index

vec
vec

+=vecC
+=vecC

7

[
[
vec [index
[
[
[index+1

e e e e
— o/ /e

Complete Unrolling. CPU execution cycle is an inefficient recycling portion, which
can be fully extended. When the number of threads in each block is n-th power of 2, the
efficiency of the code will be higher.

440 J. Wang et al.

vec[index] = vecl[id]+vecl[id+blockDim.x];
_ _syncthreads () ;
if (blockDim.x>=512) {
if (index<256) {
vec[index]+=vec[index+256];}
__syncthreads () ;}
if (blockDim.x>=256) {
if (index<128) {
vec [index]+=vec[index+128];}
__syncthreads () ;}
if (blockDim.x>=128) {
if (index<64) {
vec [index]+=vec[index+64];}
_ _syncthreads () ;}
if (index<32)
warpReducel (vec, index) ;
if (threadIdx.x == 0)
vecO [blockIdx.x] = vec[0];

Multiple Adds/Threads.

_ _shared int vec[THREAD NUM];
int id = blockIdx.x * (blockDim.x*2) + threadIdx.x;

int index = threadIdx.x;
int gridSize = blockDim.x*2*gridDim.x;
vec[index] = 0;

while (id < MAX PEAK) //MAX_ PEAK is all threads number
{
vec[index] = vecl[id]+vecl[id+blockDim.x];
id += gridSize;
}
~_syncthreads () ;

Loop reading of the global memory and copying data to shared memory. In this
cycle, vast majority of warps are able to maintain full load and is possible to improve
efficiency.

5 Implementation of the Results and Analysis of HRV

5.1 Introduction of the Platform

The testing environment of parallel reduction was run in Linux, GPU is GeForce
GTX460 of NVIDIA. GTX460 computing power of 2.1, memory 1G, memory interface

Parallel Computing Method for HRV Time-Domain Based on GPU 441

40

35 &

30

25 / —¢—reducel
20 X ——reduce2
/ / reduce3

reduced

fe=reduce5

ARG AR AL At

z v v *
N N N o " v
7] 7] o) N N N o

Fig. 3. According to the table to draw the appropriate line chart is as above.

256-bit, memory frequency 1848.00 MHz, a total of 336 CUDA [14, 15] Cores, GPU
clocked at 1.40 GHz. Because GTX460 uses the latest Fermi architecture, so the number
of threads is 1024. In order to make the code more portable, we allocate the maximum
512 threads per block (Fig. 3).

5.2 Analysis of the Results

Analysis of different sizes for each algorithm speedup situation Tables 4 and 5.

When the data size is less than 512 * 4, the result of GPU parallel optimization
acceleration is not ideal, and the difference of the acceleration effect between various
optimization methods is not great. So the acceleration effect of various optimization
strategies is not ideal when the data set is small, and the difference between them is
small too.

When the data size increases to 512 * 64, the acceleration effect gap between them
is able to reflect. The strategy of first add of reduce2 has greatly improved when

Table 4. Points table with speedup A

512%2 | 512%4 | 512%8 | 512*16 | 512%32
reducel [0.79 |1.58 |2.87 |5.38 8.92
reduce2 | 0.62 |1.22 [2.42 |[4.55 8.78
reduce3 [0.62 |1.22 247 |4.78 9.03
reduced |0.64 | 1.28 |25 5.03 9.74
reduce5 |0.64 | 1.27 |25 4.94 10.02

442 J. Wang et al.

Table 5. Points table with speedup B

512%64 | 512%128 | 512%256 | 512*512
reducel | 12.56 | 16.15 18.06 19.2
reduce? | 14.1 19.77 24.08 27.35
reduce3 | 15.42 |21.88 26.97 30.81
reduce4 | 16.77 |22.75 31.22 36.23
reduce5 | 17.2 23.11 32.14 3791

compared with strategy that used shared memory only, and the accelerating effect will
be improved further when unrolling the last warp or unroll them completely.

From the above figure, we can also analyze that with the node-by-fold increasing in
the size, speed node ratio does not increase exponentially, but is gradually leveled off.
From the trend of reducel, we can see that each acceleration policies have the
appropriate stability threshold. To make the algorithm accelerate further, we can use the
new architectures such as Kepler hardware, or optimize the transmission bandwidth.

5.3 The Complexity of the Parallel Reduction

Parallel reduction will perform Log(N) steps, each step S does N/2* independent ops,
step complexity is O(logN); For N = 2P perform qulle 2P=5 = N — 1 operations,
work complexity is O(N). It is work-efficient, and it does not perform more operations
than a sequential algorithm; With P threads physically in parallel (P processors), time
complexity is O(N/P + logN), in a thread block, N = P, so O(logN).

6 Conclusion and Future Work

HRYV as an important index for cardiovascular and cerebrovascular disease, quick and
accurate are crucial. This article designed and implemented the calculation of
time-domain of HRV parameters, which received nearly 35 times speedup. For dif-
ferent ECG database, according to the characteristics of each parameter calculation,
using the appropriate strategy of parallelization can bring great improvement for the
calculation of the various parameters.

GPU distributed computing model promotes the development of the top super-
computers. MPI enables CUDA extend to compute thousands of nodes. At the same
time, commercial-grade GPU clusters and cloud computing platform provides a full
range of resources for users and organizations. We designed some HRV parallel
computing methods based on GPU, and analysis the speedup of each algorithm. With
the rapid increase of medical data, combining with GPU and distributed computing,
taking advantage of GPU cluster analysis process will greatly improve the calculation
of HRV and other mass medical data.

Parallel Computing Method for HRV Time-Domain Based on GPU 443

Acknowledgments. This paper was supported by National Nature Science Foundation of China
(No. 61472100) and Fundamental Research Funds for the Central Universities, China
(No. DUT14QY32).

References

10.

11.

12.

13.

14.
15.

Thayer, J.F., Yamamoto, S.S., Brosschot, J.F.: The relationship of autonomic imbalance,
heart rate variability and cardiovascular disease risk factors. Int. J. Cardiol. 141, 122-131
(2010). Elseiver

Bansal, D., Singh, V.R.: Algorithm for online detection of HRV from coherent ECG and
carotid pulse wave. Int. J. Biomed. Eng. Technol. (IJBET) 14, 333-343 (2014). Inderscience
Publishers Ltd

Ferrari, E., Imbert, A., Chevalier, T., et al.: The ECG in pulmonary embolism: predictive
value of negative T waves in precordial leads—80 case reports. CHEST J. 113, 537-543
(1997). American College of Chest Physicians

Zhou, Q.: ECG heart beat modeling and analysis to identify. PhD thesis of Zhejiang
University, Biomedical Engineering and Instrument Science, Zhejiang University, Zhejiang,
pp. 5-10 (2004)

Mohan, A., et al.: Design and development of a heart rate variability analyzer. J. Med. Syst.
36, 1365-1371 (2012). Springer

Jeppesen, J., Fuglsang-Frederiksen, A., Brugada, R., et al.: Heart rate variability analysis
indicates preictal parasympathetic overdrive preceding seizure-induced cardiac dysrhythmias
leading to sudden unexpected death in a patient with epilepsy. Epilepsia 55, e67—e71 (2014).
Wiley Online Library

Konstantinidis, E.L., et al.: Accelerating biomedical signal processing algorithms with
parallel programming on graphic processor units. In: ITAB2009. IEEE, pp. 1-4 (2009)
Freiberger, M., et al.: The agile library for biomedical image reconstruction using GPU
acceleration. Comput. Sci. Eng. 15, 34-44 (2013). AIP Publishing

Costa, C.M., Haase, G., Liebmann, M., Neic, A., Plank, G.: Stepping into fully GPU
accelerated biomedical applications. In: Lirkov, 1., Margenov, S., Wasniewski, J. (eds.)
LSSC 2013. LNCS, vol. 8353, pp. 3-14. Springer, Heidelberg (2014)

Konstantinidis, E.I., et al.: Accelerating biomedical signal processing algorithms with
parallel programming on graphic processor units. In: Information Technology and
Application in Biomedicine, ITAB. IEEE, pp. 1-4 (2009)

Saha, D.P., Desai, A.R.: Performance analysis of computing multichannel correlation
dimension (D2) on multicore system and GPU. Researchgate.net

Tarvainen, M.P., et al.: Kubios HRV — heart rate variability analysis software. Comput.
Methods Programs Biomed. 113, 210-220 (2014). Elseiver

Harris, M.: Optimizing parallel reduction in CUDA. Presentation packaged with CUDA
Toolkit, NVIDIA Corporation (2007)

NVIDIA Corporation, NVIDIA CUDA Programming Guide (2009)
http://developer.download.nvidia.com/compute/cuda/2_3/toolkit/docs/NVIDIA_CUDA _
Programming_Guide_2.3.pdf

http://developer.download.nvidia.com/compute/cuda/2_3/toolkit/docs/NVIDIA_CUDA_Programming_Guide_2.3.pdf
http://developer.download.nvidia.com/compute/cuda/2_3/toolkit/docs/NVIDIA_CUDA_Programming_Guide_2.3.pdf

	Parallel Computing Method for HRV Time-Domain Based on GPU
	Abstract
	1 Introduction
	2 The Current Status of Research
	2.1 Open Source Project of PhysioNet
	2.2 Prospects of GPU in Biomedicine

	3 Serial Analysis of Time-Domain of HRV
	4 Parallel Calculation of Time-Domain HRV
	4.1 Parallel Optimization Principle
	4.2 Strategy of Reduction

	5 Implementation of the Results and Analysis of HRV
	5.1 Introduction of the Platform
	5.2 Analysis of the Results
	5.3 The Complexity of the Parallel Reduction

	6 Conclusion and Future Work
	Acknowledgments
	References

