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Abstract. Relying on the knowledge of the pricing benefit of long-term
reserved resource and multiplexing gains, cloud broker strives to mini-
mize its cost by utilizing infrastructure resources from public cloud ser-
vice provider. Different reserved instance terms accompanied by different
prices are provisioned by the provider. How to choose the appropriate
ones from various terms to meet the dynamic user demands at the least
cost is a great challenge. This paper addresses the challenge by two algo-
rithms. Extensive real world traces driven evaluations show that the
heuristic algorithm runs about twice as fast as the approximation one,
while both algorithms can save almost the same resource cost up to 27 %.

Keywords: Cloud broker · Dynamic resource provision · Reserved
instance terms · Cost minimization · IaaS

1 Introduction

Many public cloud service providers (CSPs) deliver infrastructure as a service
(IaaS) to users. Each provider differentiates itself in terms of service area, vir-
tual machine (VM) instance types (each instance with a fixed CPU, memory and
storage etc.), prices of different sources and performance guaranteed. Especially,
there are various pricing mechanisms for VM instances. The instance can be
provisioned on-demand and billed at a cycle of hour (Amazon EC2 [3]), minute
(Microsoft Azure [16]) or 15 min (Elasthosts [6]). Optionally, the instance can be
reserved at any time in advance and then launched at any time as required [21].
The reserved instance is charged a total cost whenever it is active. For exam-
ple, Amazon EC2 provides a choice of two reserved instance terms, 1 year and
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3 years [3] and the terms are charged differently. VMware vCloud Air permits
a more flexible subscription term from 1 month to 36 months [21]. Normally,
the average price for reservation at each billing cycle is far lower than that of
the on-demand one. Furthermore, the longer the term, the lower the price. For
instance, the saving over on-demand price of Amazon m3.media instance can be
up to 29 % and 60 %, for 1-year and 3-year terms, respectively [3].

Users can rent instances from the provider directly. But limited by their
knowledge of the cloud IaaS market, it is a great pain for users to make a selection
from various instances with various prices to cut their cost. Even sometimes,
they have to bargain with more than one provider to meet the different services
or service area requirements, thus incurring more overhead. Subjectively, these
requirements drive users to seek the help of the third party and lead to the
emergence of cloud broker in recent years [11].

A cloud broker can provide on-demand instance to users with lower price.
On one hand, the broker can choose infrastructures among providers for their
“expertise and experience” offering the service. On the other hand, based on
multiplexing of relatively small requirements of individual users, the broker can
make a bulk reservation in advance at a much lower reservation price. Then offer
users on-demand instances at an intermediate price. Huge profit space exists and
entices the broker to render brokerage services objectively.

Fig. 1. Broker multiplexes the time-varying dynamic requests of four users. Then deliv-
ers on-demand services to users at a lower intermediate price by leveraging proper
reserved and on-demand instances. The left user request bar is served by the instance
bar with the same setting on the right CSP side.

Figure 1 depicts the service delivery scheme. Different users apply for on-
demand instances from time 1 to 6 (step 1). The broker tries to rent instances
from CSP to meet the requests at the least cost (step 2). CSP provides on-
demand and reserved instances with different prices and terms τ . The price for
on-demand instance is charged at each hour (billing cycle). For the reserved
scenario, the price is the total cost of τ billing cycles. Based on the number and
the lifetime of the aggregated request, the broker can exploit the pricing benefit
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of long-term resource reservation and multiplexing gains (step 3). This enables
the broker to offer users with a price of only 0.9$ which is lower than the on-
demand prices of CSP (step 4). In reality, the broker can earn 1.9$, because he
can charge 9.9$ and only need to pay 8$.

The challenge for the broker is how to exploit the price differences of on-
demand and reserved resources from a cloud, so as to reduce his cost. Because
every user dynamically submits his request, the aggregated request fluctu-
ates with time. Policies for broker to rent instances from providers should be
adapted accordingly. It is necessary to make the following decisions about rent-
ing instances, such as, on-demand launching or selecting an appropriate instance
to reserve? How many instances and at what time to launch?

This paper aims to answer these questions. The main contributions are as
follows:

1. We formulate the dynamic resource provision problem where the broker rents
resources from a cloud service provider with multiple reserved instance terms.

2. A heuristic and an approximation algorithms are presented for the problem.
3. Extensive real world traces driven simulations demonstrate the effectiveness

of both the algorithms. Significant resource cost saving can be achieved by
using the algorithms.

The remainder of the paper is organized as follows. In Sect. 2 related work
is reviewed. Section 3 formulates the problem. Section 4 and Sect. 5 present a
heuristic and an approximation algorithms, respectively. They are evaluated in
Sect. 6 and concluded in Sect. 7.

2 Related Work

Cloud Brokering has been proposed as a service and attracted plenty of atten-
tion in recent years [1,15]. Cost minimization and profit maximization are two
main topics being explored. To minimize cost, the authors of [18] explore the pos-
sibility to optimally place VMs across multiple clouds. The capacity of each cloud
and the load balance are considered. Eight heuristic algorithms which differ in
diverse criteria for assigning priorities to VMs requests are presented in [17]. The
authors try to maximize the profit of a broker who sublets on demand resources
to customers. It is extended in [10] and a distributed simulated annealing algo-
rithm is recommended. Different from the granularity of VMs, data center based
graph clustering algorithm is presented to minimize the cost of the broker, includ-
ing nodes (data centers), intra-cloud bandwidth and inter-cloud bandwidth [4].
Broker mechanism is also recommended to make cooperation decisions so as to
maximize the cooperated CSPs [19].

In addition to cost and profit, quality of service is another main concern.
Aiming to meet the requirements of users, a multi-objective decision strategy [2]
sorts CSPs by scoring all kinds of constraints, especially on the technology het-
erogeneity, and then chooses the CSP with the maximum score. Reaction time
minimizing and profit maximizing are explored in [13]. Based on Pareto optimum
theory, the author formalizes the broker scheduling problem as a multi-objective
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programming and solves it by a simplified multi-objective genetic algorithm. The
placement of latency sensitive application in multiple CSPs environment is also
studied [5]. The problem is formulated as a mixed-integer programming subject
to the resource capacity, load balance and latency. Furthermore, two policies are
given to address the faulty scenario of CSP. Based on different criteria, such as
performance optimization, cost minimization and energy efficiency, the schedul-
ing function of the broker is equipped with 0-1 integer programming based algo-
rithm to select the optimal cloud to deploy a service. Modern portfolio theory is
leveraged to choose an efficient broker policy so that the tradeoff between satisfy-
ing uncertain demand and risk of not delivering satisfied services is balanced [8].
A framework is proposed to select CSPs so that the quality of service is achieved
by combining their trustworthiness and competence [9]. Trustworthiness is esti-
mated by the historical record of quality or reputation. While competence is
the claimed service level. However, the aforementioned works do not take into
account the price difference between on-demand and reserved resources. The
dynamic property of the request is also not captured.

Reserved resources provide a great opportunity for the broker to reduce his
cost. A dynamic resource reservation strategy is recommended for broker to
minimize cost [22,23]. A dynamic programming is used to characterize the opti-
mal solution. The original combinatorial problem is decomposed into a num-
ber of subproblems by using a set of recursive bellman equations and each is
solved more efficiently. Two approximation algorithms are proposed for off-line
and online scenarios, respectively. Especially, the off-line algorithm is proved as
2-approximate. Broker federation is explored in [14]. But all of them deem that
there is only one reserved instance term. It is inconsistent with the practice of
the cloud computing industry. This work explores dynamic resource provision
with multiple reserved instance terms and just fills the gap.

3 Formulation

3.1 User Demand and CSP Pricing

User demand. Suppose a broker has an estimation of aggregated request up to
a rather long period T . For any t ∈ [1, T ], the aggregated request at t is dt.
It is reasonable for each user should have a plan for the future request. The
aggregation can be estimated based on the users’ plans [14,23], or based on the
historical requests. Let L = maxt(dt) is the peak request. We divide the demand
dt into L levels. Define indicator dl

t to represent whether there is a demand at
level l at billing cycle t, i.e., dl

t = 1 if dt ≥ l, and 0 otherwise. For example, a
demand curve is depicted in Fig. 2. d43 = 0 because there is no demand at billing
cycle 3 at level 4. This billing cycle is called as a vacant billing cycle. d55 = 1,
because there is a demand at billing cycle 5 at level 5. Obviously,

∑dt

l=1 dl
t = dt.

A demand curve is called convex if for any t0 ∈ [1, T ], there is no other t1 ∈
[1, T ], t2 ∈ [1, T ], such that t1 < t0 < t2,

∑L
l=1 dl

t1 >
∑L

l=1 dl
t0 and

∑L
l=1 dl

t2 >
∑L

l=1 dl
t0 . For example, in Fig. 2, the curve between time 1, 3 is convex.
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Fig. 2. Demand curve and level by level reservation with three reserved instance terms,
where {τ0, τ1, τ2 τ3} = {1, 3, 6, 10}, {c0, c1, c2, c3} = {1, 2.5, 3.8, 6}. T = 9. At level 1,
τ1 and τ2 will be replaced by τ3 at last because c1 + c2 > c3.

CSP pricing. Suppose a CSP provides J increasing reserved instance terms
τ1, τ2, ..., τJ (an instance with term τj is also called instance τj or term τj when
there is no ambiguity, j = 1, ..., J), and all terms are longer than one billing
cycle. The corresponding costs are c1, c2, ..., cJ , respectively. Specifically, let c0
denotes the on-demand price, hence τ0 is 1 which means one billing cycle. Then
we have

(1) c0 < c1 < ... < cJ . Namely, the longer the term, the bigger the cost.
Otherwise, the short term with bigger cost can be replaced by the long term
with smaller cost. It is unnecessary to set the shorter one.

(2) c0/τ0 > c1/τ1 > ... > cJ/τJ . Namely, the longer the term, the cheaper the
average price at each billing cycle. Otherwise, suppose for i, j, (i < j), ci/τi <
cj/τj . Then users can reserve τi by �τj/τi� times to achieve the same resource
with less cost and more capital flexibility.

3.2 Problem Formulation

Let yljt is a boolean variable which indicates whether to allocate an instance τj

at time t to serve the demand at this time at level l. It equals 1 if this demand is
served by an instance τj rather than τ0, and 0 otherwise. For example, at level
2 in Fig. 2, y223 = 1 because τ2 is reserved at time 3. All other y2jt = 0. This
problem can be formulated from the point view of levels.

min
L∑

l=1

T∑

t=1

J∑

j=0

yljtcj (0-1ILP)

s.t.
dt∑

l=1

(
J∑

j=1

t∑

i=t−τj+1

ylji + yl0t) ≥ dt t = 1, 2, · · · , T (1)

yljt ∈ {0, 1} l = 0, 1, · · · , L, j = 0, 1, · · · , J,t = 1, 2, · · · , T. (2)
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The objective is the total cost because whenever τj is reserved at any level, it
should be charged cj . In constraint (1),

∑J
j=1

∑t
i=t−τj+1 ylji is the number of

instances which remain effective until time t at level l. yl0t is the number of
on-demand instances allocated at time t at level l. After calculating the sum of
all levels, the left part of the constraint represents the number of all instances
which can be used at time t. It should not be smaller than the demand dt.

Programming 0-1ILP is a 0-1 integer programming and it belongs to one of
the Karp’s 21 NP-complete problems [12]. Hence it is also NP-hard.

Now, for each level l (l = 1, 2, ..., L), considering the following single level
programming:

min
T∑

t=1

J∑

j=0

yljtcj (0-1ILPForLevel)

s.t.
J∑

j=1

t∑

i=t−τj+1

ylji + yl0t ≥ dl
t t = 1, 2, · · · , T (3)

yljt ∈ {0, 1} j = 0, 1, · · · , J,t = 1, 2, · · · , T. (4)

It is easy to check the feasible set of programming 0-1ILP and the intersection of
the feasible set of all programming 0-1ILPForLevel are just the same. Let f(y)
denotes

∑T
t=1

∑J
j=0yljtcj . Suppose y∗ is the optimal solution for all programming

0-1ILPForLevel. That means, for any feasible solution of all 0-1ILPForLevel
y, which is also feasible for 0-1ILP, we have f(y) ≥ f(y∗). So

∑L
l=1 f(y) ≥

∑L
l=1 f(y∗). Thus

min
∑L

l=1
f(y) ≥ min

∑L

l=1
f(y∗) =

∑L

l=1
f(y∗). (5)

The left part is just the optimal value of programming 0-1ILP. This motivates
us to find the optimal solution of programming 0-1ILP level by level.

4 Heuristic Algorithm

4.1 Reservation Heuristic

With One Reserved Instance Term. We define ul =
∑T

t=1 dl
t, is the number

of non-vacant billing cycles during period T at level l. In Fig. 2 u1 = 8 because
there is no demand at time 4. u5 =1.

When there is only one reserved instance term τ1 with cost c1, the periodic
reservation mechanism is recommended [23]. Considering the simplest scenario
where T ≤ τ1, because any reservation remains effective in T , the problem
becomes trying to reserve instances as many as possible at time 1. At level 1, if
u1c0 ≥ c1, that means compared to reserved instance with lower cost c1, more
expense is necessary if to launch u1 on-demand instances. So we should reserve
an instance τ1. Suppose l−1 instances have been reserved at bottom l−1 levels,
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then the l-th instance should be reserved only if ulc0 ≥ c1, i.e., ul ≥ c1/c0. Note
that ul is non-increasing in l, we obtain a useful heuristic: reserve l instance at
time 1 only if ul ≥ cl/c0 > ul+1, if insufficient, launch other instances on demand.
Because this heuristic finds the maximum l, for any level which is bigger than l,
it is not economical any longer if adopting reservation policy.

In Fig. 3, considering the first scenario, where T = 3 < τ , d33 = 0 because
there is no demand at billing cycle 3 at level 3, so even there is a reservation,
it will not be used. d52 = 1, because there is a demand at billing cycle 2 at level
5. u2 = 3, u3 = 2, c1/c0 = 2.5, u2 > c1/c0 > u3, so we reserve 2 instances at
time 1.

Fig. 3. Periodic reservation mechanism.

If T > τ1, T is divided into intervals and each with a length of τ1. The upper
heuristic is used in each intervals. In the upper figure, the demand curve where
T = 7 is divided into 3 intervals.

With Multiple Reserved Instance Terms. When there are multiple
reserved instance terms, it is impossible to find an appropriate term in advance to
facilitate the periodic reservation. A new mechanism is necessary to address the
problem. First, we give some notions to facilitate the mechanism presentation.

Length of each level. Note that the length of each level may be different. For
level l, the length of this level is the number of billing cycles between the first
demand time and the last demand time at level l, i.e.,

T l = bl − el + 1, (6)

where bl = min{t|dl
t = 1}, el = max{t|dl

t = 1} are the first demand time and
the last demand time, respectively. In Fig. 2, [b1, e1] = [1, 9], T 1 = 9, [b2, e2] =
[3, 9], T 2 = 7.
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Residue length of each level. For level l, let b′ denotes the current non-vacant
beginning time, then the residue length of this level is

TRl = el − b′ + 1. (7)

If beginning from bl, TRl = T l.
Note that given a level l, it is still economical to reserve a τj instance if

ul
Ic0 ≥ cj , (8)

where ul
I =

∑
t∈I dl

t, I = [b, b + τj ]. b is any given beginning time in the residue
interval at this level and its initial value equals 1.

Feasible term. Given a level l with residue length TRl, a term τj (j ≥ 1) is
called feasible if τj ≤ TRl and inequation (8) holds.

Beginning time update. At each level, we try to find the longest feasible term
from the beginning of the level, i.e., bl. Let b′ denotes the current beginning.
Suppose the longest feasible term is τh (h ≥ 1) if it is found, or even τ1 is still
not feasible, then the beginning time is moved backward to find the next longest
feasible term. The next beginning time can be determined as follows:

b = min{t|dl
t = 1, t ≥ b′ + τh}, (9)

where h = 1 if there is no feasible term or τ1 is the longest feasible term. Namely,
the first demand time after the current interval. For example, in Fig. 2, at level
1, the first beginning time is 1 and the second beginning time is 7.

4.2 Level by Level Reservation Algorithm

We adopt a level by level reservation mechanism. Of course, every time the term
with the lowest average price (i.e., the longest term) is preferred to others which
also meet (8). If this longest term is shorter than the length of this level T l,
then the upper mechanism is repeated in the residue interval. It is detailed in
Algorithm 1.

The first For loop (Lines 1–31) checks the demand level by level. At each
level, If the residue length of the level is bigger than τ1, the While loop (Lines
3–15) tries to reserve the longest term. The second For loop checks all the terms
which are shorter than the residue length in a decreasing order (Lines 5–14).
If a longer term is feasible, then we reserve such an instance and the related
parameters are updated. Otherwise, we try the shorter instance, until we find
one (Lines 7–10) or all the reservations are not economical (Lines 11–13). The
beginning time is moved backward to begin a new interval try. For example, in
Fig. 2, a τ2 and then a τ1 instance are reserved at level 1. The process is repeated
until TRl is shorter than the shortest term τ1. Then we decide whether to reserve
τ1 or serve the residue demands by on-demand instances (Lines 16–23). In Fig. 2,
the demand at time 9 can only be served by an on-demand instance since there
is no feasible term.
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Algorithm 1. Level by level longest term preference decision (3LTPD)
Input: dt: number of required instances at time t, t = 1, 2, .., T . τ1, τ2, ..., τJ : increasing

reserved instance terms with increasing cost c1, c2, ..., cJ . c0: on-demand price. L:
number of levels

Output: A T ∗ J matrix A = (At,j): At,j is the number of reserved τj instances at
time t

1: for l = 1, · · · , L do
2: A ← 0, calculate length of this level T l (6), TRl ← T l, interval beginning time

b ← min{t : dl
t �= 0}, b′ ← b, this level cost: lc ← 0

3: while TRl ≥ τ1 do
4: Find maximum j ← {j : τj ≤ TRl}
5: for h = j, · · · , 1 do
6: I ← [b, b + τh], reservation indicator: resvInd ← 0, level reservation indica-

tor: ind ← 0
7: if ul

Ic0 ≥ ch then
8: Reserve a τh instance at time b, Ab,h ← Ab,h + 1, update b (9) and TRl

(7), resvInd ← 1, ind ← ind + 1, lc ← lc + ch
9: break

10: end if
11: if h = 1 and resvInd = 0 then
12: Update b (9) and TRl (7), lc ← lc + c0
13: end if
14: end for
15: end while
16: if TRl > 0 then
17: I ← [b, el]
18: if ul

Ic0 ≥ c1 then
19: Reserve a τ1 instance at time b, Ab,1 ← Ab,1 + 1, lc ← lc + c1
20: else
21: lc ← lc + ul

TRlc0
22: end if
23: end if
24: if lc > cj+1 then
25: Cancel all reservations at this level and A ← 0
26: Reserve a τj+1 instance at time b′, Ab′,j+1 ← 1
27: end if
28: if ind = 0 then
29: return
30: end if
31: end for

Suppose at level l, τj is the shortest term which is bigger than T l. Then it
is possible that the cost of τj is smaller than the current total cost at this level.
Since it can meet the demand at this level, we will check it so as find a lower
cost (Lines 24–27). As in Fig. 2, τ1 and τ2 at level 1 are replaced by τ3 finally.

Because ul
I is non-increasing of l, if no term is feasible in interval I at level

l, then there is no feasible term in interval I at upper levels. It is necessary to
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check so that the program terminates in time (Lines 28–30), or after all levels
are traversed. Any demand which cannot be served by reserved instance should
be served by the on-demand instance.

It is easy to show the time complexity of 3LTPD is O(LTJ). If bisearch is
used to seek the longest feasible term, then O(LTlogJ) time is required.

The next theorem demonstrates that for the convex demand, this algorithm
can find a 2-approximation solution.

Lemma 1. For each level, algorithm 3LTPD finds a 2-approximation solution
when the demand is convex.

Proof. Suppose there are J reserved instances with increasing terms τ1, τ2, ..., τJ

and increasing cost c1, c2, ..., cJ , where c1/τ1 > c2/τ2 > ... > cJ/τJ . c0 is the
on-demand price. T l is the length of this level. Let j is the biggest one for which
τj ≤ T l. CAl is the cost of level l incurred by algorithm 3LTPD and optl is the
optimal cost of level l. When the demand is convex, then the algorithm tries to fill
the level by τj because it is the cheapest. Suppose ol is the number of on-demand
instances to be launched. We have CAl = �T l/τj�cj + min{olc0, cj}, optl ≥
�T l/τj�cj . So CAl

optl
≤ min{�T l/τj�cj+min{olc0,cj},cj+1}

�T l/τj�cj
≤ min{(�T l/τj�+1)∗cj ,cj+1}

�T l/τj�∗cj
≤

(�T l/τj�+1)∗cj
�T l/τj�∗cj

≤ 2�T l/τj�∗cj
�T l/τj�∗cj

= 2. The fourth inequality is due to T l/τj ≥ 1.

Theorem 1. For the brokering problem, algorithm 3LTPD finds a
2-approximation solution when the demand is convex.

Proof. Let CA is the cost of 0-1ILP incurred by 3LTPD, opt is the optimal cost
of 0-1ILP and optl is the optimal cost of level l. Based on inequality (5), for any
feasible solution y for 0-1ILP,

∑L
l=1 f(y) ≥ ∑L

l=1 f(y∗). So opt ≥ ∑L
l=1 optl. We

have CA

opt =
∑L

l=1 CAl

opt ≤ 2
∑L

l=1 optl
∑L

l=1 optl
= 2where the inequality is due to Lemma 1.

5 Set Cover Based Approximation Algorithm

Given a level l, denote all non-vacant billing cycles at this level as set Sl whose
element is the single non-vacant billing cycle. Taking all reserved and on-demand
instances as a subset family τ = {τ0, ..., τJ}, where each subset τj is attached
with a cost cj , then the cost minimization resource provision can be viewed as
a cost minimization set cover problem. In this set cover problem, subset from τ
can be repeatedly selected to cover Sl. Define the cost effectiveness for each τj

at interval I as ej = cj/ul
I (I and ul

I are as in inequation (8)). Then a simple
algorithm based on set cover greedy algorithm (Chap. 1 of [20]) is adapted as
follows. Each time it selects the feasible term (Sect. 4.1) with the lowest ej from
τ until Sl is covered. We call such term as the cheapest feasible term.

Suppose that the optimal cost of level l is optl. Obviously, if the optimal
term is longer than T l then cost found by Algorithm2 is the same as optl. Thus
Lemma 3 is established. So we only consider the case where the optimal terms
are all smaller than T l. Similar to the corresponding proof in Chap. 1 of [20], it
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Algorithm 2. Set cover based algorithm (SCBA)
Input: A demand curve with L levels
Output: A resource provision solution
1: for l = 1, · · · , L do
2: Select the cheapest feasible term from b = bl. Update b (9). Update residue

length TRl (7). Repeated this process until Sl is covered. Calculate the current
overall reservation cost C.

3: if Exists τj ≥ T l and cj is smaller than C then
4: Cancel all reservations at this level and reserve a τj instance at time bl

5: end if
6: end for

is easy to prove the following theorems. Number the billing cycles at level l in
the sequence of covering as 1l, ..., ul, we have

Lemma 2. Given level l, for any k ∈ 1l, ..., ul, ek ≤ optl/(ul − k + 1) if the
solution is not a term which is longer than T l.

Proof. Note that the optimal term must be feasible term, otherwise it can be
replaced by any feasible ones and thus lead to a smaller cost.

Suppose optl is the optimal cost of level l. Because Sl can be covered by
the optimal terms, during any iteration of Algorithm2, the residue subset must
can be covered by some terms with cost at most optl. Suppose the number
of residue non-vacant billing cycles is r, then the average cost effective of the
optimal terms is optl/r. So there must exists terms with cost effectiveness at
most optl/r, during the iteration when k is covered, and the number of residue
non-vacant billing cycles must be at most ul −k +1 elements, i.e. r ≥ ul −k +1.
Because in this iteration, the smallest cost effectiveness is selected, we have
ek ≤ optl/r ≤ optl/(ul − k + 1).

Lemma 3. Algorithm SCBA gets a H(ul)− approximation for each level, where
H(ul) = 1 + 1/2 + ... + 1/ul.

Proof. If the solutions are some feasible terms, the cost incurred by Algorithm 2
is

∑ul

k=1 ek. Based on Lemma 2, we know the cost is at most (1 + 1/2 + ... +
1/ul)optl. If the solution is a term which is longer than T l, the cost is smaller
than that of feasible terms found by the algorithm, and we get it.

Based on Lemma 3, similar to the proof of Theorem1, it is easy to get

Theorem 2. Algorithm SCBA finds a H(m)− approximation for problem 0-
1ILP, where m = maxlH(ul).

Note that the only difference between 3LTPD and SCBA is the criterion
to select the feasible term every time. The former selects the longest feasible
term and the latter need to calculate the cost effectiveness for all feasible terms
and then choose the smallest one. So SCBA will not run faster than 3LTPD
as shown in experiments. For a general cost minimization set cover problem, it
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is proved that the greedy algorithm is tight. But maybe it is not true for the
brokering problem where the set has a special structure. The next experiment
demonstrates that 3LTPD can perform as well as SCBA.

6 Experimental Evaluation

6.1 Experiments Setup

Since public cloud workloads are often confidential, no real IaaS data trace is
released so far. So we use Parallel Workloads Archive [7], a repository of job-
level usage data from large scale parallel supercomputers, clusters and grids, to
evaluate the performance of our algorithms. Four traces logs corresponding to
four Intel Netbatch grid clusters, three on the west coast in the US and one
in Israel, are used. Each log file contains one month’s (i.e., November 2012)
accounting records. The original logs are available as Intel-NetbatchX-2012-0
(where “X” is A, B, C, or D for the four different clusters). In experiments, we
use A, B, C and D to represent the four data sources, respectively.

User demand and data preprocessing. Since the billing cycle is an hour, the
demand at each billing cycle is rounded up, i.e., only when the lifetime of
the request falling within the billing cycle is longer than 30 min, the request
is counted as one demand.

Fig. 4. Demand curves of four data sources.

The four data sources have different demand volumes and fluctuations. The
corresponding demand curves are depicted in Fig. 4. The peak hourly demands
are more than 13k, 23k, 16k and 25k for the four data, respectively. Figure 5
demonstrates the mean values and standard deviations. Generally speaking, data
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Fig. 5. Demand volume and fluctuation.

A has the smallest demand and D has the biggest demand. B and C have modest
demand and B requests more than C. The fluctuation has almost the same
tendency.

Parameter setting. The duration of the data trace is a month. Because there
are no data at the beginning and end time of the month, we set T as the duration
in which data are available, i.e., T = 712 h.

Table 1. Two groups of resources

CSP 1 Term Cost ($) Discount CSP 2 Term Cost ($) Discount

τ0 1 h 0.059 N/A τ0 1 h 0.059 N/A

τ1 1 day 1.340 5 % τ1 5 days 6.018 15 %

τ2 2 days 2.549 10 % τ2 10 days 10.62 25 %

τ3 1 week 7.930 20 % τ3 20 days 16.992 40 %

τ4 2 weeks 13.877 30 %

Suppose there are two groups of resources represented by CSP 1 and CSP 2,
each with the following terms and prices as demonstrated in Table 1. The on-
demand price is borrowed from that of Amazon E2C m3.media with Windows
operation system. Limited by the duration of data source, the reserved instance
term is shortened accordingly. The cost discount is within the range of business
CSP (about 60 % discount for 3-year term for Amazon). For convenience of
comparison of the saving cost, the same on-demand price is adopted for the two
groups. Note that the terms of CSP 2 are relatively longer than that of CSP 1.
This setting can reveal the factors affecting the resource cost1.

The simulation environment is set up in a Java platform. The platform is
running on a PC (Lenovo Think Centre M4350t-N020Intel(R) Core(TM) i5-3470
CPU @ 3.20GHz8G RAM).

1 The result under different setting demonstrates a tendency similar to the following
results under this setting and hence omitted.
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6.2 Experimental Results

To evaluate the cost saving of the broker and the proposed algorithms, five dif-
ferent schemes, including the proposed two algorithms are compared. For the
scenario without broker, (1) longest preference for each user’s request (abbre-
viated as N/B LP): select the longest reserved instance term for a continuous
demand every time and traversing vacant demand is prohibited. The feasible
longest term is used because obviously that the shorter term will incur more
cost; (2) all demand is served by on-demand instances (abbreviated as N/B
OnD). In the scenario with a broker, (1) similar as N/B LP except that it oper-
ates on the aggregated demand curve (abbreviated as W/B LP); (2) 3LTPD; (3)
SCBA.

Performance Evaluation. We exploit resources from CSP 1 or CSP 2 to serve
the requests from data source A, B, C and D. The resource cost is depicted in
Fig. 6. In Fig. 6(b) and (d), the cost of on-demand is used as the baseline to
calculate the saving percentage.

Fig. 6. Cost efficiency when exploiting resources from different CSP.

Since the demand volumes of four data differ, the total costs are also different.
From Fig. 6(a) and (c) we can find whichever group of resources is exploited, the
total costs demonstrate the similar tendency as that of the demand volume in
Fig. 5. Overall, more demand incurs more cost for all five schemes.

Even when there is no broker and the demands are not multiplexed, it is
still efficient to use the reserved instances as more as possible. As illustrated in
Fig. 6(b) and (d), the scheme that tries the longest term (N/B LP) saves more
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cost. For CSP 1, it leads to an average saving up to 3.81 %. While 2.30 % for
CSP 2. The reason lies in that the terms of CSP 1 are relatively shorter than
that of CSP 2. When the demands are not multiplexed, the lifetime of single
user’s request is shorter, so the relatively longer terms of CSP 2 cannot be fully
used. It reveals the effect of terms on resource cost.

However, after multiplexing by a broker, it demonstrates a contrary situation
when the proposed 3LTPD is leveraged. On average, 27.23 % and 24.26 % cost
are saved for CSP 2 and CSP 1, respectively. This is because that the aggregated
request becomes longer and 3LTPD prefers the feasible longest term every time.
Thus the relatively longer terms of CSP 2 can do better. Although W/B LP
scheme also prefers the longest term, it does not use the heuristic. So, though
it saves more than N/B LP, it is still not more efficient than 3LTPD. This
also shows that 3LTPD can enable economical utilization of longer terms across
vacant billing cycles.

The fluctuation of demand has an effect on the cost as well. Because the more
volatile the demand is, the more demand valleys exist, fluctuation hinders the
utilization of longer terms. It is detailed in Table 2. Note that the cost saving
has the same tendency as that of the standard deviation curve in Fig. 5 when
the W/B LP scheme is used: the more fluctuant, the more cost is saved. But
3LTPD can mitigate the negative effect of fluctuation. In total, the gap between
cost saving for different data is reduced, though most cost is saved for data D.

Table 2. Saving percentage with broker relevant to fluctuation

Data W/B LP (%) 3LTPD (%) W/B LP (%) 3LTPD (%)

A CSP 1 19.02 23.84 CSP 2 16.20 27.21

B 21.97 23.07 21.87 25.63

C 20.94 23.84 19.45 26.50

D 22.81 26.29 24.73 29.59

Figure 7 further justifies the benefit of exploiting multiple terms for 3LTPD.
Herein all the terms of CSP 1 and CSP 2 are viewed as available for the algorithm
and hence more candidate terms can be chosen. Figure 7(a) and (b) plot the
cost and saving percentage when all terms are used. Comparing with Fig. 6, it
is shown that more terms lead to more cost saving. Especially, we compare the
resource cost efficiency for 3LTPD in Fig. 7(c) and (s). When all terms of both
CSPs are used, up to 46 thousand dollars (5 %) are saved compared with that
when only the terms of CSP 1 are used, and 19 thousand dollars (2 %) are saved
compared with CSP 2. This is due to that more terms lead to higher applicability
to dynamic demands.

It is noteworthy that for all data sources, although we can only prove
3LDPP is 2-approximation for the convex demand curve, 3LDPP performs
almost exactly the same as SCBA for all data sources.
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Fig. 7. Cost efficiency when more reserved instance terms are exploited.
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Fig. 8. Time efficiency when exploiting resources from different CSP.

Running Time Efficiency Evaluation. Running time of the algorithms is
compared in Fig. 8. The running time of algorithms which exploit terms from
CSP 1, CSP 2 and both of them are depicted in Fig. 8(a), (b) and (c), respec-
tively. All the three figures show a common pattern. The on-demand algorithm
takes the least time. N/B LP takes more time because it seeks the longest term
each time for each user. But after multiplexing the demand of each user by the
broker, the longest preference scheme (W/B LP) runs faster than N/B LP. This
lies in that the broker aggregates users’ request and thus reduces the number
of times to find the longest term. SCBA and 3LTPD run slower than the for-
mer three schemes. Since SCBA computes the cost effectiveness for each feasible
term and then selects the smallest one, 3LTPD only selects the longest feasible
term, 3LTPD runs almost twice as fast as SCBA. Recall that 3LTPD and SCBA
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exhibit almost the same performance (Figs. 6 and 7), the superiority of 3LTPD
is demonstrated.

7 Conclusion

Considering the multiple reserved instance terms, two algorithms are presented
to facilitate broker to utilize infrastructure resources from public CSP at the
least cost. One is heuristic and another is an approximation algorithm. Exten-
sive traces driven evaluation demonstrates the effectiveness of both the algo-
rithms. Our future work aims to exploit resources from multiple CSPs. In this
scenario, though there are more candidate terms, there is also interoperabil-
ity which impedes the multiplexing effect. How to balance the contradiction to
achieve an efficient scheme is a great challenge.
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