
Chapter 7

Photo-Cross-Linking Reaction in Nucleic

Acids: Chemistry and Applications

Takashi Sakamoto and Kenzo Fujimoto

Abstract DNA/RNA photo-cross-linking reactions have great potential for regu-

lating the functions, structures, and characters of nucleic acids. The photo-

responsive manner of the reactions are expected to enable spatiotemporal control

of the behavior of nucleic acids, and the thermal irreversibility of the photo-cross-

linked product is expected to enable construction of thermally stable

nanostructured DNA.

Therefore, various artificial nucleic acids that can photo-cross-link to comple-

mentary DNA or RNA have been developed. This chapter focuses on the chemistry

of these artificial nucleic acids and their application for molecular, cellular, and

chemical biology, and also DNA nanotechnology, which is an interesting field for

the construction of nanomaterials in a bottom-up manner, such as DNA origami.

7.1 Introduction

The photoreaction in DNA is one of the most important phenomena in the basic

study of photodamage in genomic DNA. Since the first report about photo-induced

pyrimidine dimer formation in double-stranded DNA by Setlow [1], many

researchers have made huge efforts to understand the mechanism of the phenom-

enon [2–6] and the mechanism of DNA damage repair [7–11]. In this phenomenon,

the cyclobutane ring formation through [2 + 2] photocycloaddition between C5 and

C6 carbons on adjacent pyrimidine bases in a DNA strand is induced by UVB

irradiation, and the photoproduct causes genomic damage and cell death.

Psoralen derivatives, which can photo-cross-link with C5–C6 carbons on a

pyrimidine base in a DNA strand in the same manner of pyrimidine dimer forma-

tion by UVA irradiation; contrary to the case of pyrimidine dimer formation caused

by UVB irradiation [12], are key compounds in the history of the development of

photo-functionalized nucleic acids. Based on the findings of psoralen derivatives,
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until now, various artificial nucleic acids that can photo-cross-link with DNA or

RNA with a sequence specific manner have been developed.

In this chapter, the mechanism of the photo-cross-linking reaction in nucleic

acids including psoralen and other artificial DNA photo-cross-linkers is described.

The application of the photo-cross-linking reaction on gene regulation, genome

analysis, and DNA-based nanotechnology is also described.

7.2 Psoralen: A Natural DNA Photo-Cross-Linker

Naturally occurring plant furocoumarins, e.g., psoralen, methoxsalen, and

trioxsalen (Fig. 7.1a), that can photoreact with a DNA double strand, have been

used for the treatment of various skin disorders such as Atopic dermatitis, vitiligo,

eczema, and cutaneous T-cell lymphoma. Psoralen derivatives effectively interca-

late to the AT region of genomic DNA, and the fran ring and pyrone ring of

psoralen derivative form cyclobutane ring with C5–C6 carbon on the thymine

bases possessed at different two DNA strands with UVA irradiation (Fig. 7.1b).

Thus, the two DNA strands can be bound covalently via a photo-cross-linked

product consisting of a psoralen derivative and two thymine bases [12]. This

induces cytotoxicity only at the photoirradiated area. Since the psoralen derivatives

can be activated with UVA irradiation, treatment of skin disorders can be

performed without significant photodamage of genomic DNA caused by

UVB-induced pyrimidine dimer formation.

The photoreaction including psoralen derivative also occurs in AU regions in

double-stranded RNA. Using this reaction, the secondary structures of RNAs were

successfully explored [13–16].

Psoralen Methoxsalen Trioxsalen

hv hv

Photo-cross-linked product

a)

b)

Fig. 7.1 Structure of naturally occurring plant furocoumarins (a) and the interstrand photo-cross-

linking reaction of methoxsalen in double-stranded DNA (b)
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7.3 Psoralen-Modified Artificial Nucleic Acids

With the development of the methodology for organic synthesis and modification of

nucleic acids, psoralen derivatives have been conjugated with various synthetic

oligonucleotides to give sequence specificity for the photo-cross-linking reaction of

psoralen derivatives. Miller and co-workers conducted one of the most pioneering

studies in this field. They introduced trioxsalen at the 50 end of synthetic oligodeox-
yribonucleotide (ODN(s)) (Fig. 7.2, Compound 1) and clearly demonstrated that the

trioxsalen-modified ODN photo-cross-linked to complementary single-stranded

DNA [17–19] and double-stranded DNA [20] with UVA (365 nm) irradiation.

Furthermore, they also demonstrated that the trioxsalen-modified ODN having an

antisense sequence for rabbit globin mRNA effectively inhibits the translation of

rabbit globin mRNA in a photo-responsive manner [21]. Their findings opened the

door for the development of photo-functionalized synthetic oligonucleotides.

Indeed, in the early 1990s, various groups reported antisense ODN [22, 23] and

triplex-forming ODN (TFO) modified with psolaren derivative [24–30]. In partic-

ular, oligonucleotide having 20-trioxsalen-modified adenosine (Fig. 7.2, Compound

2) has the highest photoreactivity toward thymine or uracil base in a complemen-

tary DNA or RNA strand [31, 32]. Recently, coumarin-modified nucleic acid

having photo-cross-linking ability to complementary DNA was reported (Fig.7.2,

Compound 4 [33]). They successfully modified thymidine with coumarin using a

Cu(I)-catalyzed click reaction. This is the first example of interstrand photo-cross-

linking reaction by a modified pyrimidine nucleoside.

Trioxsalen modified ODNs

1 2 3

Coumarin modified ODNs

4

Fig. 7.2 Trioxsalen- or coumarin-modified artificial nucleic acids for DNA/RNA interstrand

photo-cross-linking
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7.4 3-Cyanovinylcarbazole-Modified Artificial Nucleic

Acids

Owing to its photoreactivity and the ease with which it is obtained from natural

plants, psoralen derivative is widely used for photo-functionalization of synthetic

ODNs; however, the UVA irradiation required for the photoreaction itself some-

times causes unexpected cytotoxicity to cells. Therefore, a more highly reactive

photo-cross-linker that can photo-cross-link to nucleic acids with shorter irradiation

time than psoralen derivatives was required. In 2008, as a DNA photo-cross-linker

having higher photoreactivity compared to psoralen derivatives, 3-cyanovinyl-

carbazole-modified nucleoside (CNVK) was reported by Fujimoto and co-workers

([34, 35]; Fig. 7.3, Compound 1). Similar to the case of psoralen derivatives, the

photo-cross-linking reaction of CNVK occurs through a [2 + 2] photocycloaddition

reaction between the vinyl moiety of CNVK and C5–C6 double bond of the pyrim-

idine base with 365 nm irradiation. As the photoreactivity of ODN having CNVK is

at least tenfold greater than that of psoralen-modified ODNs, CNVK is the most

reactive DNA photo-cross-linker at that time. Since ODN having CNVK photo-

cross-link with complementary DNA or RNA [36–38], and also double-stranded

DNA [39], the same as the case of psoralen derivatives, they are expected to be a

powerful tool for regulating the functions of nucleic acids, the same as psoralen-

modified ODNs. Most recently, a novel DNA photo-cross-linker consisting of

3-cyanovinylcarbazole and D-threoninol (CNVD) has been reported ([40]; Fig. 7.3,

Compound 2). As the photoreactivity of CNVD is 1.8–8-fold higher than that of
CNVK, this is the most highly reactive DNA photo-cross-linker reported. Further-

more, recent research by Fujimoto’s group of JAIST revealed that the complemen-

tary base of the pyrimidine base that will be cross-linked with CNVK greatly affects

the photoreactivity of CNVK in double-stranded DNA [41]. Particularly, in the case

of cytosine as the target of CNVK, the decrease of the hydrogen bonds between the

cytosine and its complementary base by the substitution of canonical guanine with a

noncanonical complementary base, such as inosine and 2-aminopurine, drastically

accelerates the photoreactivity 3.6–7.7-fold. These findings suggest that the local

stability and/or flexibility of the photo-cross-linking site is an important factor for

CNVK CNVD

1 2 3

Fig. 7.3 3-Cyanovinylcarbazole-modified artificial nucleic acids for DNA/RNA interstrand

photo-cross-linking
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governing the photoreaction. In general, the reaction rate of the photo-cross-linking

toward the cytosine base through [2 + 2] photocycloaddition is lower than that

toward thymine or uracil [12, 34]. There is huge potential for improving

photoreactivity toward cytosine by regulating the local stability and/or flexibility

of the photo-cross-linking site with the substitution of a complementary base of

cytosine.

7.5 Other Artificial Nucleic Acids

He and co-workers reported another class of DNA photo-cross-linker having a

different mechanism from that of psoralen and 3-cyanovinylcarbazole derivatives:

diazirine-modified nucleic acid analogue ([42]; Fig. 7.4, Compound 1). The

diazirine group forms a carbene intermediate upon UVA-induced N2 elimination

and cross-links to multiple nearby bases in the complementary strand. Contrary to

the case of photo-cross-linking via [2 + 2] photocycloaddition, this type of photo-

cross-linker can react with four kinds of nucleobases in the complementary DNA

and RNA strand ([43]; Fig. 7.4, Compound 2 and 3).

As another class of the DNA photo-cross-linking reaction, recently, Asanuma’s
group of Nagoya University reported stilbene-modified artificial nucleic acids

(Fig. 7.5 [44]). They successfully demonstrated that two complementary synthetic

ODNs having stilbene moiety can photo-cross-link each other with the 340 nm

irradiation through [2 + 2] photodimerization of two stilbene moieties in the double-

1 2 3

Fig. 7.4 Diazirine-modified artificial nucleic acids for DNA/RNA interstrand photo-cross-linking

340 nm
DNA

DNA 5’

5’ 3’

3’

5’

5’
3’

3’

Fig. 7.5 Stilbene-modified artificial nucleic acids for DNA interstrand photo-cross-linking
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stranded DNA. Contrary to the case of psoralen or 3-cyanovinylcarbazole-modified

nucleic acids, it is unclear whether the reaction occurs toward native nucleic acid

bases; however, the combination of the photodimerization pair can be selected

freely, in their case. Therefore, the strategy has far-reaching potential for improving

the photoreactivity and for regulating the irradiation wavelength required for

activating the photoreaction.

7.6 Applications of Photo-Cross-Linking Reaction

in Nucleic Acids

The sequence specific photo-cross-linking reaction using various photo-cross-

linkers mentioned above is applicable for regulating biological events including

nucleic acid, such as replication, transcription, translation, and DNA damage repair,

and also DNA nanostructures (Fig. 7.6). As the timing and area of photoirradiation

can be regulated completely, the spatiotemporal regulation of the biological events

or nanostructures mentioned above is expected to be regulated freely with

photoirradiation.

7.6.1 Photoregulation of Gene Expression

The photodynamic antisense strategy (Fig. 7.7a) is a successful example of regu-

lating gene expression in cells. In this strategy, photo-responsive ODNs having

complementary sequence of target mRNA specifically cross-link and form irrevers-

ible photoadduct with target mRNA. Therefore, the translation of target mRNA is

mRNA

Genomic DNA

Antisense regulation of gene expression

Artificial photo-cross-
linkable nucleic acids

Antigene regulation of gene expression

miRNA

Regulation of miRNA functions

DNA nanostructure

Heat-resistant nanostructure

Fig. 7.6 Possible applications of sequence-specific photo-cross-linking reactions using photo-

functionalized ODNs
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selectively inhibited by steric hindrance. The main concept of the photodynamic

antisense strategy was advocated by Millar and co-workers as mentioned above

[21]. They successfully demonstrated that trioxsalen-modified antisense ODN

effectively downregulates rabbit globin gene expression in an in vitro translation

system in a photo-responsive manner. In an early report of the cellular application

of trioxsalen-modified antisense ODN, Chang et al. and Lin et al. successfully

photo-regulated the translation of point-mutated ras protein in 453 cells [22] and

collagenase I in dermal fibroblast [23], respectively. Murakami’s group of KIT

energetically worked in this area [45, 46], and they successfully demonstrated that

trioxsalen-modified antisense ODN effectively regulates the gene expression of

HPV E6 and E7 mRNA and suppresses the proliferation of HPV positive SiHa cells

with nanomolar treatment of trioxsalen-modified antisense ODN and UVA irradi-

ation. Recently, the temporal regulation of constitutive GFP gene expression has

been demonstrated by the use of CNVK-modified antisense ODNs [47]. The high

photoreactivity of CNVK enables quick regulation of gene expression in cells with

10 s of UVA irradiation.

As another strategy for regulating gene expression in a photo-responsive man-

ner, the photodynamic antigene strategy (Fig. 7.7b) has been reported by several

researchers. Psoralen-modified triplex forming ODNs is one of the successful

examples of this strategy. The ODNs are effective for regulating gene expression

with sequence specific photo-cross-linking reaction between the psoralen moiety

tethered with ODN and double-stranded genomic DNA. Based on this strategy, the

5’3’

3’5’ T

U

Target mRNA

5’ 3’

5’3’

U

Photoadduct

5’ 3’

5’3’

Steric hindrance

Ribosome

Peptide

Photoirradiation

Inhibition of translation

Photoresponsive
antisense ODN

Genomic DNA

Photoadduct

Steric hindrance

Transcription factor

mRNA

Photoirradiation

Inhibition of transcription

Photoresponsive
antigene ODN

5’ 3’

5’ 3’

5’3’

3’5’ T

a) b)

Fig. 7.7 Schematic drawings of photoregulation of gene expression based on (a) antisense or (b)

antigene strategy
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downregulation of interleukin 2 receptor [27], human rhodopsin [48], and β-globin
[49] genes in cells has been reported.

7.6.2 Photo-Cross-Linking Reaction for Nucleic Acids
Analysis

Because of the highly thermal stability of the photo-cross-linked duplexes,

photoreactive synthetic ODNs are applicable for highly sensitive detection of

nucleic acids or as a nucleic acid capture probe.

The reactivity of the photo-cross-linking reaction through [2 + 2]

photocycloaddition is quite different among pyrimidine bases. Using this character,

5-methyl modification of cytosine in the DNA strand was clearly discriminated

with unmodified cytosine by the use of psoralen- or CNVK-modified ODN probes

(Fig. 7.8 [50, 51]). Based on this selective photo-cross-linking reaction, the meth-

odology for analyzing epigenetic modification of DNA can be further developed.

7.6.3 Photo-Cross-Linking Reaction for Nanotechnology

DNA-based nanotechnologies, such as DNA nanocrystal and DNA origami, are

cutting-edge areas in nanotechnology and supramolecular science. The bottom-up

manner of this technology, which relies on the simple hybridization property of

DNA strands, is expected to lead to the construction of various nanostructures and

functions induced by finely designed nanostructures. DNA photo-cross-linking is

applicable also in this area. The thermally stable double-stranded DNA caused by

the interstrand photo-cross-linking reaction of psoralen gives thermally stable

Photo-cross-linker

Slow reaction

Fast reaction

+ hv

+ hv

3’

3’

5’

5’

Fig. 7.8 Selective photo-

cross-linking of psoralen or
CNVK-modified ODN with

5-methylcytosine
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nanostructured DNA (Fig. 7.9a), such as DNA origami tiles [52], DNA origami

branches [53], and branched oligonucleotide networks [54]. The ability to use these

nanostructures at higher temperature enables various applications such as the

creation of nanoscale electronic devices and higher-temperature assembly of func-

tional molecules on nanostructured DNA. CNVK-modified ODNs are also applica-

ble for constructing thermally stable DNA nanostructures. Tagawa et al. and

Nakamura et al. reported that the DNA double-crossover AB-staggered tiles having
CNVK and DNA 2D array including CNVK, respectively, could be stabilized by UVA

irradiation (Fig. 7.9b [55, 56]). Furthermore, Gerrard et al. successfully developed a

method of integrating nanostructured DNA using thermally stable nanostructured

DNA modules and orthogonal copper-free click chemistry (Fig. 7.9c [57]). Since

the thermal stability of nanostructured DNA is an important issue for constructing

higher-ordered DNA nanostructures, the photo-cross-linking strategies mentioned

above are expected to contribute to the further development of DNA-based

nanotechnology.

Most recently, Kanaras’s group of the University of Southampton successfully

demonstrated that the assembly of nanoparticles is finely and reversibly regulated

・
・
・
・

Annealing

CNVK

CNVK-modified ODNs Tile allay

hv

Photo-cross-link

Heat-resistant tile array

・
・
・
・

Staple ODNs

+

Single-stranded
circular DNA

Annealing DNA orgami
branch

DNA orgami tile

Psoralen
+
hv

Thermally stable
DNA origamis

a) Thermally stable DNA origamis

b) Thermally stable ODN tile array

c) DNA nanostructure assembly

CNVK

Annealing
+
hv

N3

N3

Click reaction

Stable DNA nanostructure assembly

Fig. 7.9 Schematic drawings of thermally stable nanostructure with DNA photo-cross-linking

reaction. (a) Thermally stable DNA origamis. (b) Thermally stable ODN tile array. (c) DNA

nanostructure assembly
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by the irradiation of UV light [58]. They used 15 nm two gold particles modified

with only one DNA strand, one has CNVK and one has a thymine base as the photo-

cross-linking site, and clearly demonstrated that the dimer assembly and

dis-assembly were completely regulated by 365 and 312 nm irradiation, respec-

tively. Since the triangle and tetrahedron structure, which has gold nanoparticles at

its vertexes and photo-cross-linked duplexes at its sides, is also assembled by using

a similar strategy, this new technique will be of particular applicability in several

research fields using nanoparticle assemblies such as catalysis, photonics, and

biosensors.

7.7 Conclusion and Prospects

Functionalized ODNs having photo-cross-linking ability possess great potential for

regulating functions and structures of nucleic acids because of their sequence

selectivity, thermally irreversibleness, and photo-responsive manner.

However, problems still remain with the clinical application of photo-cross-

linking ODNs, e.g., the cytotoxicity of photoreactive moieties, unexpected

photodamage caused by UVA [59], and low transparency of UVA in bio-organs.

Further development of photoreactive groups having photo-cross-linking ability

with longer wavelengths and low cytotoxicity is required and also a combination

with advanced light sources such as femtosecond pulse lasers that can activate

molecules by two or three photons with longer wavelengths.
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