
Massively Parallel Cellular Matrix Model
for Superpixel Adaptive Segmentation Map

Hongjian Wang(B), Abdelkhalek Mansouri, Jean-Charles Créput,
and Yassine Ruichek

IRTES-SeT, Université de Technologie de Belfort-Montbéliard, 90010 Belfort, France
hongjian.wang@utbm.fr

Abstract. We propose the concept of superpixel adaptive segmentation
map, to produce a perceptually meaningful representation of rigid pixel
image, with higher resolution of more superpixels on interesting regions
according to the density distribution of desired attributes. The solution
is based on the self-organizing map (SOM) algorithm, for the benefits of
SOM’s ability to generate a topological map according to a probability
distribution and its potential to be a natural massive parallel algorithm.
We also propose the concept of parallel cellular matrix which partitions
the Euclidean plane defined by input image into an appropriate number
of uniform cell units. Each cell is responsible of a certain part of the data
and the cluster center network, and carries out massively parallel spi-
ral searches based on the cellular matrix topology. Experimental results
from our GPU implementation show that the proposed algorithm can
generate adaptive segmentation map where the distribution of superpix-
els reflects the gradient distribution or the disparity distribution of input
image, with respect to scene topology. When the input size augments,
the running time increases in a linear way with a very weak increasing
coefficient.

Keywords: Superpixel · Image segmentation · Self-organizing map ·
Cellular matrix model · Graphics processing unit

1 Introduction

Superpixels have become an essential tool to the vision community. As building
blocks of many vision algorithms, superpixels divide raw image into perceptu-
ally meaningful atomic regions which can be employed to substitute the rigid
structure of the pixel grid [1–3]. Therefore, these atomic regions should represent
or reflect some local properties with respect to some attribute distributions of
the raw image. However, most of the existing algorithms produce uniformly dis-
tributed superpixels. In this paper, we aim to generate adaptive segmentation,
called superpixel adaptive segmentation map (SPASM), where the distribution
(density) of superpixels coincides with the distribution of some desired attribute
of input image, such as edges, textures, and depths. In order to implement the
parallel level, on which parallel SPASM algorithm will take place, we also design
c© Springer International Publishing Switzerland 2015
O. Pichardo Lagunas et al. (Eds.): MICAI 2015, Part II, LNAI 9414, pp. 325–336, 2015.
DOI: 10.1007/978-3-319-27101-9 24



326 H. Wang et al.

a massively parallel computation model. Unlike most work of the general-purpose
computing on graphics processing units (GPGPU) for image processing applica-
tions, where usually one thread deals with one pixel, we propose the concept of
cellular matrix decomposition at different levels for (1) massive parallelism imple-
mentation under different topologies of the plane and (2) optimized load balanc-
ing computing with size-configurable cells. Each cell, assigned to one thread in
our GPU implementation, is a basic parallel operation unit and performs spi-
ral search [4] for closest point finding, e.g. from pixel to cluster center and vice
versa. Then one important feature of the model is that it proceeds from a cellu-
lar decomposition of the input data in 2D space, such that each processing unit
represents a constant and small part of data. Since the cellular matrix division is
proportional to input data, and the processing units correspond one-to-one with
the cells respectively, then, both the memory and the processing units needed
are in linear correspondence of O(N) to the input image size N . Hence, as more
and more multi-cores will be available in a single chip in the future, the approach
should be more and more competitive, especially when dealing with very large
size inputs. This property is what we call “massive parallelism”.

Numerous superpixel algorithms have been proposed in the literature and
they could be roughly classified into graph-based methods and gradient ascent
methods. Algorithms in the first category usually treat each pixel as a node in a
graph where edge weights between two nodes are proportional to the similarity
between neighboring pixels. Superpixels are then created by minimizing a cost
function defined over the graph [5–8]. Gradient ascent approaches, on the other
hand, usually start from a rough initial clustering of pixels and then iteratively
refine the clusters until some convergence criterion is met to form superpix-
els. Examples in this category include mean shift [9], quick shift [10], water-
shed approach [11], and Turbopixel method [12]. Also, there exist some methods
[13,14] that use depth as an additional feature to perform segmentation on
RGB-D images. A comprehensive survey and comparison study of superpixel
algorithms can be found in [1], where a fast algorithm called simple linear
iterative clustering (SLIC) is proposed to adapt k-means clustering to generate
superpixels with good adherence to image boundaries. Our proposed algorithm
extends the state-of-the-art SLIC algorithm, using our adaptive meshing tool
to add compression abilities, with respect to the density distribution of image
attributes and the topological relationship of cluster centers. Different from SLIC
which performs a restricted nearest point search within a square region, through
our cellular matrix model, we can conduct the true closest point finding in a
massively parallel way, using the efficient spiral search algorithm under different
topologies.

2 SPASM Algorithm

The superpixel adaptive segmentation map (SPASM) algorithm is a superpixel
segmentation algorithm. By the word “adaptive” we mean in the final segmenta-
tion map of input image, (1) the distribution (density) of superpixels is adaptive



Massively Parallel Cellular Matrix Model for Superpixel 327

Fig. 1. Flowchart of the SPASM algorithm.

and (2) the size of superpixel is adaptive. As illustrated in Fig. 1, at the begin-
ning of the SPASM algorithm, we initialize a regular (uniformly distributed)
2-dimensional grid of nodes, in the Euclidean plane defined by input image.
Each node is the cluster center of a superpixel. Then we apply the online ver-
sion of the Kohonen’s self-organizing map [15] (SOM) algorithm on the grid of
nodes, in order to deploy the nodes according to the distribution of some desired
attribute of input image, such as edges, textures, and depths. Once the online
SOM learning is finished, a projection procedure is carried out where each node
searches its closest non-edge point (pixel) with spiral search under special con-
ditions, and then all attributes (coordinates, color, density value, etc.) of nodes
are copied from their closest points. After that, the batch version of SOM algo-
rithm, using a new designed distance measure which considers the specific input
image attribute, is applied to the deformed/adapted grid of nodes, for the final
segmentation map. Meanwhile, a Voronoi color image is generated by filling the
color of each point with the color of its cluster center node.

Now we give detailed explanations about how the online SOM and the batch
SOM work in the SPASM algorithm. SOM deals with visual patterns that move
and adapt themselves to brute distributed data in space. It is often presented
as a non supervised learning procedure performing a non parametric regression
that reflects topological information of the input data. The standard SOM works
on a non directed graph G = (V,E) of topological grid, where each vertex (node)
v ∈ V has a synaptic weight vector wv = (x, y) ∈ �2. Here a node corresponds
to a superpixel cluster center.

When the online SOM is applied to the SPASM algorithm, the training pro-
cedure consists of a fixed amount of tmax iterations that are applied to the grid,
with the node coordinates being initialized according to a regular topology. At
each iteration t, firstly, a point (pixel) p(t) ∈ �2 is randomly extracted from the
image (extraction step) according to a roulette wheel mechanism depending
on different density values of different pixels. Then, a competition between nodes
against the input point p(t) is performed to select the winner node n∗ (com-
petition step). Usually, it is the closest node to p(t) in the Euclidean plane.
Finally, the learning law (triggering step)

wn(t + 1) = wn(t) + α(t) × ht(n∗, n) × (p(t) − wn(t)) (1)



328 H. Wang et al.

is applied to n∗ and to the nodes within a finite neighborhood of n∗ with radius
σt, in the sense of the topological distance dG, using learning rate α(t) and
function profile ht. The function profile is given by a Gaussian form of

ht(n∗, n) = exp(−d2G(n∗, n)
σ2
t

) (2)

Here, the learning rate α(t) and radius σt are geometric decreasing functions
of time. To perform a decreasing run within tmax iterations, at each iteration
t, the coefficients α(t) and σt are multiplied by exp(ln(χfinal/χinit)/tmax) with
respectively χ = α and χ = σ, χinit and χfinal being respectively the values at
the starting and the final iteration.

The incremental-learning online SOM is a stochastic algorithm which updates
the values of weight vectors sequentially iteration by iteration. Its deterministic
batch equivalent, the batch SOM, uses all the data at each step. Instead of only
one point being randomly extracted, at each iteration t of batch SOM, all points
of the input image are taken into account, each of them being associated to its
closest node according to a combined distance measure. The distance measure
consists of spatial proximity, color, and density value, as

D(i, j) = τs‖xspa(i) − xspa(j)‖ + τc‖xrgb(i) − xrgb(j)‖ + τd‖xden(i) − xden(j)‖ (3)

where xspa, xrgb, and xden respectively correspond to 2D coordinate, 3D RGB
color, and 1D density value, while τs, τc, and τd are their corresponding normal-
ized coefficients. Note that this distance measure is an extension to the SLIC
distance measure [1] with a third component of density. Therefore our superpixel
segmentation algorithm should have the same ability of boundary adherence as
the SLIC algorithm [1], meanwhile considering the peculiar density attribute for
distance computation between points and cluster centers. At the triggering step
of the batch SOM, nodes update the three attributes according to the learning
law of

wn(t + 1) = wn(t) + α(t) × ht(n∗, n) × (
∑k

i=1 pn(i)(t)
k

− wn(t)) (4)

where k is the number of points pn(i) which are associated to node wn. Note that
the batch SOM is a generalization of the k-means algorithm with topological
relationship among cluster centers. If we set αinit = αfinal = 1 and σinit =
σfinal = 0, then the batch SOM degenerates into the k-means algorithm.

3 Parallel Cellular Matrix Model

In order to implement the parallel level, on which parallel SPASM algorithm will
take place, we design a massively parallel cellular matrix model which partitions
data. The input image (low level), along with the two-dimensional grid (base level)



Massively Parallel Cellular Matrix Model for Superpixel 329

of superpixel cluster centers, which is deployed in the Euclidean plane defined by
the input image, are partitioned into uniformly sized cells with rigid topologies.
The topology of the cellular matrix (dual level) and the grid could be quad, rhom-
bus, and hexagonal, as shown in Fig. 2. The role of the cellular matrix is to mem-
orize data in a distributed fashion and authorize massively parallel operations.
Suppose the input image is with size W × H, and suppose both the grid of clus-
ter centers and the cellular matrix are with quad topology. Then the initial grid
of cluster centers is with size W/Rg × H/Rg, where the parameter Rg is the dis-
tance (measured by pixel) between two neighboring nodes on the base level. The
cellular matrix is with size W/2Rc×H/2Rc, where the parameter Rc is the radius
(measured by pixel) of cell on the dual level. Hence, Rc controls the degree of par-
allelism, and we assume a linear association from input data to memory as the
problem size increases. Each uniformly sized cell in the cellular matrix is a basic
training unit and will be handled by one parallel processing unit, here a thread
in our GPU implementation, during the iterations of the SOM processing. This is
the level on which massive parallelism takes place. Since the cellular matrix divi-
sion is proportional to the input image size, and the processing units correspond
one-to-one with the cells respectively, then, the processing units are also in linear
relationship to the input image size.

(a) (b) (c) (d)

Fig. 2. Parallel cellular matrix model with different topologies. Rows: (upper) quad;
(middle) rhombus; (lower) hexagonal. Columns: (a) traversal sequence - the black nodes
denote the anticlockwise spiral traversal sequence on the low level or the base level while
the red nodes denote the clockwise spiral traversal sequence on the dual level; (b) base
level grid; (c) dual level cellular matrix; (d) zoom in of the dual level cellular matrix
(Color figure online).



330 H. Wang et al.

Under the cellular matrix model, each cell, which is assigned to one parallel
processing unit, performs in parallel the iterative online SOM training. At the
beginning of every iteration, a particular cell activation formula

prai =
Si

max{S1, S2, . . . , Snum} × δ (5)

is employed to decide if the cell will execute or not at the considered iteration.
Here prai is the probability that the cell i will be activated, Si is the sum of
density values of all the pixels in the cell i, and num is the number of cells. The
empirical preset parameter δ is used to adjust the degree of activity of cells, in
order to avoid too many memory access conflicts. Equation 5 allows many data
points, extracted at the first step of the online SOM at a given parallel iteration,
to reflect the input data density distribution. As a result, the higher density value
a cell contains, the higher is the probability this cell to be activated to carry out
the SOM execution at each parallel iteration. In this way, the cell activation
depends on a random choice based on the input data density distribution. In the
parallel extraction step of the online SOM, each activated cell performs a local
roulette wheel mechanism in the cell itself, in order to get the extracted pixel.

In the closet node/point finding procedure of the SPASM algorithm, each
parallel processing unit carries out the spiral search as stated in [16], based on
the cellular matrix model. In Fig. 2(a) are illustrated the traversal sequences
of spiral searches at different levels based on cellular matrices with different
topologies. Note that a single spiral search process takes O(1) computation time
on the average for a bounded distribution according to the instance size [4].
Then, one of the main interests of the cellular matrix model is to allow the
execution of approximately N spiral searches in parallel, where N (= W ×H) is
the input size, and thus transforming an O(N) sequential search algorithm into
a parallel algorithm with theoretical constant time O(1) in the average case for
bounded distributions. This is what we call “massive parallelism”, the theoretical
possibility to reduce computation time by factor N , when solving a Euclidean
NP-hard optimization problem.

4 Experimental Results

We use GPU to implement the cellular matrix model for parallel SPASM algo-
rithm. With the compute unified device architecture (CUDA) programming inter-
face, we employ GPU threads as processing units, to handle cells in parallel, and
use CPU (host code) for flow control and the entire thread synchronization.
The main CUDA algorithm is shown in Algorithm 1, where underscored lines
are implemented with CUDA kernel functions that will be executed by GPU
threads in parallel.

In line 4, of Algorithm 1, cells’ activation probabilities are computed accord-
ing to the activation formula of Eq. 5. The three steps (extraction step, competi-
tion step, and triggering step) of the online SOM are implemented in the kernel
function of line 9. In this kernel function, after the cell locates its position in



Massively Parallel Cellular Matrix Model for Superpixel 331

Algorithm 1. CUDA SPASM algorithm
1: Initialize input density map, node grid, and cellular matrix;
2: Calculate cells’ density values;
3: Find the max cell density value;
4: Calculate cells’ activated probabilities;
5: for ite ← 0 to tmaxCons do
6: if ite == 0 ‖ ite % CellRefreshRate == 0 then
7: Refresh cells;
8: end if
9: Parallel online SOM process;

10: Modify online SOM parameters;
11: end for
12: Cluster center projection;
13: for ite ← 0 to tmaxImpr do
14: Refresh cells;
15: Parallel batch SOM process;
16: Modify batch SOM parameters;
17: end for
18: Voronoi superpixel image generation;
19: Save results;

the cellular matrix by threadId and blockId [17], it will firstly check if itself being
activated or not. Only if being activated will the cell continue to perform local
roulette wheel point extraction. Otherwise the cell finishes at this iteration. In
the parallel batch SOM kernel function of line 15, there is no activation check
and random extraction procedures. All cells perform spiral searches for all the
points lie in them.

After the segmentation process is finished, a Voronoi color image is generated
by filling the color of each pixel with the color of its cluster center node, through
the kernel function of line 18.

Each cell has data structures where are deposited information of the number
and indexes of the nodes this cell contains. This information may change during
each iteration, but it appears that, during the online SOM learning phase, it
can be sufficient to make the refreshing based on a refresh rate coefficient called
CellRefreshRate. All the nodes’ locations are stored in GPU global memory which
is accessible to all the threads. Like other multi-threaded applications, different
threads may try to modify a same node’s location at the same time, which
causes race conditions. In order to guarantee a coherent memory update in this
situation, we use the CUDA atomic function which performs a read-modify-write
atomic operation without interference from any other threads [17,18].

In our experiments, the online SOM parameters are fixed as (αinit, αfinal,
σinit, σfinal, tmax) = (1, 0.01, 20, 0.5, 100), while the batch SOM parameters are
fixed as (αinit, αfinal, σinit, σfinal, tmax) = (1, 0.1, 1.5, 0.5, 5).



332 H. Wang et al.

(a) (b) (c) (d)

Fig. 3. Results obtained with image gradient (upper row) and disparity (lower row):
upper (a) image gradient, lower (a) disparity map, (b) online SOM training result, (c)
superpixel segments, (d) Voronoi image. The Teddy image from [19] is used.

We utilize two kinds of image attributes, as the density distributions which
the online SOM is trained with. The first attribute is image gradient. In this
case, at the beginning of the algorithm, we initialize input density map with color
gradient values. Here we compute gradient through Sobel operator, which gives
us a fast approximation of the edge distribution of input image, as shown in Fig. 3
upper (a). The activation possibility of each cell is then computed according to
Eq. 5, where Si is now the sum of gradient values of all the pixels inside the cell
i. However in the point extraction step, we transfer the gradient g of each pixel
into 1/(1 + g2) for the local roulette wheel extraction. The reason is to make
edge points (with high gradient values) less likely to be extracted. Therefore,
the image gradient distribution is preserved on the cell level, meanwhile inside
activated cells, situations of nodes being moved onto edge points are reduced.
In Fig. 3 upper (b) of the adapted grid after the online SOM learning phase,
areas with high image gradient present high density of nodes, with respect to
the topology of the scene. Then these areas generate more superpixels after
the batch SOM phase, as shown in Fig. 3 upper (c), and hence in the Voronoi
superpixel image they have higher resolution and their details are more finely
represented, as the example in the red box of Fig. 3 upper (d).

The second image attribute we have tested as the density distribution is the
disparity map. Figure 3 lower (a) gives an example of the disparity map for input
image, where brighter regions are nearer to the camera view point and they have
higher disparity values. As expected, these regions demonstrate higher density
of superpixels in the segmentation result of Fig. 3 lower (c) and accordingly their
details are better represented in the Voronoi image, such as the example in the
yellow box of Fig. 3 lower (d). Our algorithm’s ability of generating adaptive
superpixels with respect to user-specified density distribution can be proved
through these two tests and the comparison of their results.



Massively Parallel Cellular Matrix Model for Superpixel 333

(a) (b1) (b2) (b3)

Fig. 4. Comparison between SPASM (upper row) and SLIC (lower row). Upper (a) is
input image and lower (a) is image gradient. The image size is 584× 388. From (b1) to
(b3), for both algorithms, the number of initial cluster centers is 2266, 566, 252. The
Hydrangea image from [20] is used.

5 Comparison with SLIC Superpixel Algorithm

We compare the SPASM algorithm with the state-of-the-art SLIC superpixel
algorithm [1] using publicly available source code1. The image gradient, as shown
in Fig. 4 lower (a), is used as density map. For SPASM, we respectively set Rg

to 10, 20, 30, which makes the initial superpixel size (with quad topology) is
100, 400, 900 and the number of initial cluster centers is N/100, N/400, N/900
(N being the input image size). For SLIC we set the initial superpixel size
accordingly, in order to make the two algorithms work with same number of
initial cluster centers. As shown in the upper row of Fig. 4, in all cases the
SPASM algorithm produces a high density of fine superpixels in the edge-dense
area (the flower clump) while the background is covered with relatively coarse
superpixels sparsely. On the other hand as illustrated in the lower row of Fig. 4,
no matter how the initial superpixel size is set, the SLIC algorithm will always
generate uniformly distributed segments. This is because the SLIC algorithm
is a tailored k-means approach with no function of distribution learning like
the SPASM algorithm. Therefore, the superpixel resolution of SLIC correlates
with the number of initial cluster centers, while SPASM has the tendency of
better matching the finer-resolution regions that are selected by the density
map attribute, meanwhile obtaining finer segmentation results in such regions,
regardless of the number of initial cluster centers. This property of the SPASM
algorithm could be employed for many computer vision tasks, which usually need
to treat different areas of input image differently according to some underlying
attribute distribution, such as edges or textures.

To provide a quantification of segmentation quality, we evaluate the results
of these two algorithms according to the standard mean color distortion (MCD)

1 http://ivrl.epfl.ch/research/superpixels.

http://ivrl.epfl.ch/research/superpixels


334 H. Wang et al.

)b()a(

Fig. 5. (a) Comparison between SPASM and SLIC with different input sizes and dif-
ferent initial superpixel sizes. (b) Running time results of CPU SLIC (cSLIC), GPU
SLIC (gSLIC), CPU SPASM (cSPASM), and GPU SPASM (gSPASM), with different
input sizes. The Cones image from [19] is used. Experiment platform consists of an
Intel Core 2 Duo CPU E8400 processor (only one core used) and a Nvidia GeForce
GTX 570 Fermi graphics card endowed with 480 CUDA cores.

as defined in

MCD =
1
N

N∑

i=1

(‖xrgb(i) − x̄rgb(center(i))‖) (6)

where N is the input image size, xrgb(i) is the ground truth 3D RGB color of the
ith pixel, and x̄rgb(center(i)) is the color of the ith pixel’s cluster center. We test
input images of seven different sizes (360 × 300, 450 × 375, 640 × 480, 720 × 600,
1080 × 900, 1440 × 1200, 1800 × 1500) and set different initial superpixel sizes
(20×20, 30×30, 40×40). For a good adherence to image boundaries, the distance
parameters of SPASM are fixed as (τspa, τrgb, τden) = (1/2Rg2, 1/3, 1/100) and
the distance parameter (m parameter in [1]) of SLIC is set to 20. The iteration
number of SLIC is set to the default of 10. Experimental results are depicted
in Fig. 5(a). Note that all results are the mean values of 10 runs. Results from
SPASM have smaller MCD values in all the tested cases when compared with
results from SLIC. Also the MCD of SPASM results is steadier either with respect
to different input image sizes, or with respect to different initial superpixel sizes.
This shows the “adaptive” ability of our proposed SPASM which produces simi-
lar results regardless of the number of initial cluster centers and the input image
size.

In order to make a running time comparison, we test four versions, the SLIC
CPU implementation (cSLIC) with the raw public source code, the SLIC GPU
implementation (gSLIC) in [21] with the raw public source code2, the SPASM
CPU implementation (cSPASM) which is a sequential simulation of parallel
SPASM algorithm, and the SPASM GPU implementation (gSPASM). The initial
superpixel size is set to 20×20 for the four versions. The running time results are
2 https://github.com/carlren/gSLICr.

https://github.com/carlren/gSLICr


Massively Parallel Cellular Matrix Model for Superpixel 335

reported in Fig. 5(b). For small size images (360 × 300 and 450 × 375), the run-
ning time of cSLIC, gSLIC, and gSPASM is similar. For other larger size images,
gSPASM runs faster than all the other three versions, especially for the largest
image. cSPASM runs much slower than others for all images. This is because the
sequential simulation of the iterative online SOM learning is time consuming.
gSLIC runs slower than cSLIC for all images. This is because the gSLIC library
we use is specifically optimized for high-end GPU cards, with a lot of shared
memory employment, while the platform we use is a relatively out-dated GPU
card. In spite of the absolute running time results of different implementations
on different platforms (CPU and GPU), we think what is more important is that
the running time of our GPU implementation of the parallel SPASM algorithm
increases in a linear way with a very weak increasing coefficient. The results
verify the “massive parallelism” characteristic of our proposed cellular matrix
model, in a practical way by GPU implementation. We consider that such results
are encouraging when solving very large scale problems.

6 Conclusion

The proposed SPASM algorithm extends the state-of-the-art SLIC superpixel
algorithm, using our adaptive meshing tool to add compression abilities, with
respect to the density distribution of image attributes while preserving the topo-
logical relationship of cluster centers. Experimental results support these merits,
and they have better quality in the light of mean color distortion, when com-
pared with the results of SLIC. This is attributed to (1) the “adaptive” ability
of SPASM and (2) the true k-means clustering it employs by the efficient par-
allel spiral search under the cellular matrix model, rather than the restrained
k-means that SLIC uses. The running time of our GPU implementation increases
in a linear way with a very weak increasing coefficient according to the input
size, which is encouraging to solve very large scale problems, under the proposed
parallel cellular matrix model.

Future work should include comparisons with other state-of-the-art super-
pixel methods, by general benchmarks and standard quality evaluation criteri-
ons. Another important following work is to use the parallel SPASM algorithm
based on the cellular matrix model, as a preprocessing tool and make possible
fast and accurate visual correspondence applications such as stereo matching,
optical flow, and scene flow.

References

1. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Susstrunk, S.: Slic superpix-
els compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal.
Mach. Intell. 34, 2274–2282 (2012)

2. Ren, X., Malik, J.: Learning a classification model for segmentation. In: 2003 Pro-
ceedings of the Ninth IEEE International Conference on Computer Vision, pp.
10–17. IEEE (2003)



336 H. Wang et al.

3. Malisiewicz, T., Efros, A.A.: Improving spatial support for objects via multiple
segmentations. In: BVMC (2007)

4. Bentley, J.L., Weide, B.W., Yao, A.C.: Optimal expected-time algorithms for clos-
est point problems. ACM Trans. Math. Softw. (TOMS) 6, 563–580 (1980)

5. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern
Anal. Mach. Intell. 22, 888–905 (2000)

6. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation.
Int. J. Comput. Vision 59, 167–181 (2004)

7. Moore, A.P., Prince, S., Warrell, J., Mohammed, U., Jones, G.: Superpixel lattices.
In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2008, pp. 1–8. IEEE (2008)

8. Veksler, O., Boykov, Y., Mehrani, P.: Superpixels and supervoxels in an energy
optimization framework. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV
2010, Part V. LNCS, vol. 6315, pp. 211–224. Springer, Heidelberg (2010)

9. Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analy-
sis. IEEE Trans. Pattern Anal. Mach. Intell. 24, 603–619 (2002)

10. Vedaldi, A., Soatto, S.: Quick shift and kernel methods for mode seeking. In:
Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305,
pp. 705–718. Springer, Heidelberg (2008)

11. Vincent, L., Soille, P.: Watersheds in digital spaces: an efficient algorithm based
on immersion simulations. IEEE Trans. Pattern Anal. Mach. Intell. 13, 583–598
(1991)

12. Levinshtein, A., Stere, A., Kutulakos, K.N., Fleet, D.J., Dickinson, S.J., Siddiqi,
K.: Turbopixels: fast superpixels using geometric flows. IEEE Trans. Pattern Anal.
Mach. Intell. 31, 2290–2297 (2009)

13. Weikersdorfer, D., Gossow, D., Beetz, M.: Depth-adaptive superpixels. In: 2012
21st International Conference on Pattern Recognition (ICPR), pp. 2087–2090.
IEEE (2012)

14. Hasnat, M.A., Alata, O., Trmeau, A.: Unsupervised RGB-D image segmentation
using joint clustering and region merging. In: Proceedings of the British Machine
Vision Conference. BMVA Press (2014)

15. Kohonen, T.: Self-Organizing Maps, vol. 30. Springer Science & Business Media,
The Netherlands (2001)

16. Wang, H., Zhang, N., Creput, J.C., Moreau, J., Ruichek, Y.: Parallel structured
mesh generation with disparity maps by GPU implementation. IEEE Trans. Visual
Comput. Graphics 21, 1045–1057 (2015)

17. NVIDIA: CUDA C Programming Guide 4.2, CURAND Library, Profiler User’s
Guide (2012). http://docs.nvidia.com/cuda

18. Sanders, J., Kandrot, E.: CUDA by Example: An Introduction to General-Purpose
GPU Programming. Addison-Wesley Professional, Upper Saddle River (2010)

19. Scharstein, D., Szeliski, R.: High-accuracy stereo depth maps using structured light.
In: 2003 Proceedings IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, vol. 1, pp. I-195. IEEE (2003)

20. Baker, S., Scharstein, D., Lewis, J., Roth, S., Black, M.J., Szeliski, R.: A database
and evaluation methodology for optical flow. Int. J. Comput. Vision 92, 1–31 (2011)

21. Ren, C.Y., Reid, I.: gSLIC: a real-time implementation of SLIC superpixel segmen-
tation. Technical report, Department of Engineering, University of Oxford (2011)

http://docs.nvidia.com/cuda

	Massively Parallel Cellular Matrix Model for Superpixel Adaptive Segmentation Map
	1 Introduction
	2 SPASM Algorithm
	3 Parallel Cellular Matrix Model
	4 Experimental Results
	5 Comparison with SLIC Superpixel Algorithm
	6 Conclusion
	References


