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Molecular Cytogenetic Approaches
in Exploration of Important Chromosomal
Landmarks in Plants
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Abstract Multicolored fluorescence-based chromosome biology or ‘molecular
cytogenetics’ in common continue to flourish and make essential contributions to
elucidate the plant gene regulation, genome architecture, and organization by
revealing essential chromosomal landmarks. Fluorescence in situ hybridization
(FISH) and its modifications, such as extended DNA fiber-FISH, bacterial artificial
chromosome (BAC)-FISH, multicolor-FISH (McFISH), and super-stretched
pachytene-FISH, allow the study of minute details of chromosome structure and
subsequently permit sophisticated analyses of chromosomal behavior. Similarly,
genomic in situ hybridization (GISH) facilitates genome-specific chromosome
painting in hybrids and polyploids, analysis of recombination of partially homol-
ogous chromosomes in interspecific/generic natural hybrids, and detection of
transgene and/or alien chromatin in synthetic hybrids. The global patterns of
chromatin modification (e.g., DNA methylation and histone tail modifications)
along with nuclear size and shape, relative content and distribution of
hetero/euchromatin, and organization as well as structure of chromosomes (e.g.,
position and orientation) provide new insights into epigenomic evolution of the
particular plant species. Molecular cytogenetics also provide information on gene
pool diversity and relatedness of the plant to its wild relative that ultimately
may serve as a baseline data for plant breeding programs. As more genomes
become sequenced, such cytogenetic tools will play a greater role in investigating
the function of those genomes. Attempts have been made to summarize the utility
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of molecular cytogenetic tools in exploration of important chromosomal landmarks
in plants. The evolution of plant cytogenetic research from classical to molecular
level and modern to next-generation era has been discussed.

Keywords FISH � GISH � Chromosome painting � Chromatin dynamics

6.1 Introduction

6.1.1 Classical Cytogenetics

The term cytogenetics is referred to the study of genetic consequences in terms of
chromosome number, structure, and behavior vis-à-vis speciation and evolution.
Cytogenetics has been proved to be an integral part of genome mapping projects
owing to magnificent chromosomal dynamics during mitosis and meiosis. The field
of plant cytogenetics was heavily induced by Barbara McClintock’s pioneering
work on maize (Zea mays) (McClintock 1929, 1932, 1938, 1941a, b, 1984).
McClintock used carmine for staining and uniquely identified all of the individual
chromosomes from a single meiotic nucleus with a combination of two metrics, i.e.,
the relative lengths and arm ratios of the chromosomes. Her studies on unequivocal
identification of individual chromosomes established a milestone in the scientific
community, which allowed neo-discoveries regarding the dynamic structure and
behavior of the maize genome (McClintock 1929, 1932, 1938, 1941a, b, 1984).
Further, development of chromosome-banding techniques greatly improved the
usefulness of chromosome biology to understand the basic genome architecture. In
this context, Caspersson et al. (1968) proposed Q-banding pattern using the
fluorescent dye quinacrine on plant chromosomes. Vosa and Marchi (1972) com-
pared Giemsa C-banding to Q-banding on the chromosomes of bean (Vicia faba),
keeled garlic (Allium carinatum), and maize. Further, Giemsa staining technique
also showed its utility to identify individual rice prometaphase chromosomes
(Kurata and Omura 1978), karyotype development for diploid rye (Secale cereale)
(Gill and Kimber 1974), and barley (Hordeum vulgare) (Linde-Laursen 1975).
With the advent of information on DNA and its characteristics, modifications of
DNA staining dyes and banding techniques were adapted and optimized for
cytogenetic characterization of different plant species. These classical approaches
have proven invaluable for chromosome characterization, but the development of
in situ hybridization, which allows for direct visualization of specific DNA
sequences on chromosomes, forms a quantum leap forward for cytogenetics by
combining cytology with molecular biology (Gill and Friebe 1998; Harper and
Cande 2000).
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6.1.2 Molecular Cytogenetics

A combination of ‘classical cytogenetics’ and ‘recombinant DNA technology’ gave
birth to a versatile multicolored fluorescence engineering-based chromosome
biology called ‘molecular cytogenetics.’ During initial development, such technique
had been performed by using radioactive nucleic acid probes for the detection of
specific DNA or RNA sequences in metaphase chromosomes or interphase.
Subsequently, in the late nineties, methods for labeling nucleic acids with
non-radioactive haptens such as biotin became available and adopted widely (Jiang
and Gill 1994). The advantages of non-radioactive probes over radioactive probes
include increased stability, safe handling, rapid, precise spatial localization, less
back ground, and most importantly the ability to use multiple colors on a single
chromosome preparation.

The development of in situ hybridization (ISH) techniques opened up oppor-
tunities for cytogenetic analysis of any species, regardless of its inherent chromo-
some morphology (Gall and Pardue 1969; Pardue and Gall 1975; John et al. 1969).
In plants, the use of radioactive tagged or modified nucleotides (labeled with biotin,
digoxigenin, or fluorescent haptens) and FISH probes also permits microscopic
visualization and localization of complementary sequences in cells/nuclei and on
individual chromosomes (Mukai et al. 1991; Fransz et al. 1996a; Mukai and
Yamamoto 1998). Basic FISH makes use of green and red fluorochromes for probe
detection and DAPI (4,6-diamidino-2-phenylindole) for counterstaining the chro-
mosomal DNA. Although FISH is commonly used to map unique or
low-copy-number sequences, however it also showed its potential to localize
repetitive sequence in order to produce chromosome-specific landmarks or explore
genome relations in polyploidy/closely related plant species (Lysak et al. 2001,
2003; Kato et al. 2004; Lamb and Birchler 2006). FISH has been found most
successful in mapping the repetitive and single-copy DNA sequences on prome-
taphase chromosomes, interphase nuclei, pachytene complements, chromatin fibers,
and naked DNA molecules. Accurate localization of repetitive and tandem arrays
plays a major role in chromosome identification and karyotype analysis in plants
(Mukai and Yamamoto 1998). The broad applications of FISH in structural,
comparative, and functional genomics place plant cytogenetics in an important
place to complement, accelerate, or guide plant genome research (Lamb et al. 2007;
Danilova and Birchler 2008; Nagaki et al. 2012b). On the other hand, genomic
in situ hybridization (GISH) (Le et al. 1989; Mukai and Gill 1991), a special type of
FISH that uses genomic DNA of a donor species as a probe in combination with an
excess amount of unlabeled blocking DNA, provides a powerful technique to
monitor chromatin introgression during interspecific hybridization. In addition, the
GISH technique allows the study of genome affinity between polyploid species and
their progenitors (Mukai et al. 1993b; Raina et al. 1998; Raina and Mukai 1999).
GISH is thus a valuable supplemental technique to traditional genome analysis such
as conventional meiotic pairing analysis.
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Molecular cytogenetics has now become an indispensible tool and a conceptual
foundation for modern genome projects by providing significant information
on individual chromosome portfolio of the organism under investigation.

6.2 Advances in Molecular Cytogenetic Techniques

Rapid developments in genetics, molecular genetics, molecular biology, and
genomics, together with molecular cytogenetics, have driven major conceptual
advances in mitotic, meiotic analysis, chromosome structure, and chromosome
manipulation. Along such development although the principal steps of the FISH
technique have remained same, various technical developments have been adapted
in plant molecular cytogenetics. The basic development was the use of several
colors for labeling the probes which provide holistic view of genome structure at a
single glance, i.e., McFISH and McGISH (Mukai et al. 1993b; Mukai 1996). Some
of the recent developments in the field of plant molecular cytogenetics in order to
understand genome architecture and organization at ultra-resolution are described
below.

6.2.1 Tyr-FISH

Tyr-FISH was developed to improve the detection sensitivity of FISH experiments.
This method allows signal amplification by using a peroxidase-conjugated antibody
as the first layer of signal detection. Fluorochrome-labeled tyramides as peroxidase
substrate are used to generate and deposit many fluorochromes close to the in situ
bound peroxidase (Raap et al. 1995). The sensitivity of the basic FISH technique
can be increased by 10–100 times using such modification. DNA probes smaller
than 1 kb were successfully visualized on plant chromosomes using Tyr-FISH
(Khrustaleva and Kik 2001; Stephens et al. 2004).

6.2.2 DNA Fiber-FISH

The DNA fiber-FISH technology is applied to characterize complex genomic
arrangements in plant nuclei by using decondensed chromatin and highly extended
intact DNA fibers on microscopic slides (Fransz et al. 1996a). The method involves
the release of DNA molecules from lysed nuclei followed by spreading them on the
surface of a microscope slide and the hybridization of probes using a standard FISH
method. Applying FISH probes to the stretched DNA molecules provides the higher
spatial resolution with increased detection sensitivity. DNA prepared from BAC
clones or plant tissues extends approximately 2.5–3.5 kb/μm on slides and provides
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fine-mapping resolution of up to a few kilobases. The drawback of the technique is
that chromosome identification requires control DNA sequences, since there is no
chromosome structure. In plants, Fransz et al. (1996b) demonstrated the utility of
the extended DNA fiber-FISH (EDF-FISH) technology to characterize Arabidopsis
thaliana and tomato genome. Later, this method was applied on other plants (e.g.,
rye, rice, and maize) in order to characterize complex genomic arrangements
(Nagaki et al. 2004; Jin et al. 2004; Nakano et al. 2005; Yamamoto and Mukai
2007). Fiber-FISH is particularly informative when the exact position and ordering
of DNA clones are needed. It can also evaluate the distances and overlaps between
neighboring sequences (Ersfeld 2004; Suzuki et al. 2004; Yamamoto and Mukai
2007). The minimum target DNA size that can be distinguished unambiguously in
plants is 10 kb (representing a *3 μm fluorescent signal, de Jong et al. 1999);
however, good flanking markers are crucial in order to differentiate and identify
shorter DNA stretches.

6.2.3 Three-Dimensional (3D) FISH

The 3D-FISH technique had developed by Bass et al. (1997). Meiotic cells of maize
were fixed in a buffer to preserve chromosome structure. Pollen mother cells were
also gently extruded out of the fixed anthers and embedded in optically clear
polyacrylamide for staining and imaging. Stacks of FISH images were taken and
composed into a single 3D image. Individual chromosomes bearing the FISH
signals were traced out and computationally straightened (Harper and Cande 2000).
Since the chromosome structure can be preserved using this technique, it is
advantageous for the identification of precise location of DNA probes on the
chromosomes as well as within the nucleus.

6.2.4 FISH on Super-Stretched Chromosomes

Interphase nuclei, super-stretched mitotic metaphase chromosomes, and meiotic
pachytene chromosome provide intermediate resolving power for FISH mapping.
The relative positions of clone separated by <100 kb can be resolved on these
cytological targets (Jiang et al. 1996; Wang et al. 2006). Pachytene chromosomes
are particularly versatile targets for FISH mapping. Late pachytene chromosomes
can be used to orient the telomere–centromere positions of the adjacent clones,
whereas early pachytene chromosomes can be used to resolve even partially
overlapped BAC clones. Nevertheless, pachytene chromosomes are not amenable
for cytological analysis in many plant species.

On the other hand, flow-sorted plant chromosome at meiotic metaphase can be
stretched to more than 100 times of their original size (Valarik et al. 2004). FISH on
stretched chromosomes showed brighter signals than on the untreated control
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presumably as a result of better probe accessibility to the stretched chromatin. FISH
on super-stretched metaphase chromosomes provides a mapping resolution of up to
70 kb (Valarik et al. 2004), similar to the resolution on meiotic pachytene chro-
mosomes (Cheng et al. 2002). Thus, this modification of FISH provides an alter-
native mapping target for those plant species where meiotic pachytene
chromosomes are not suitable for cytological analysis.

6.2.5 BAC-FISH

For the genome-wide sequencing project, a genomic library-holding large DNA
fragments is an important tool for physical mapping or positional cloning of
important chromosome landmarks. BAC-FISH, a unique tool of molecular cyto-
genetics, uses genomic DNA cloned in large-insert vectors such as bacterial arti-
ficial chromosomes (BACs) (Shizuya et al. 1992) in combination with FISH. This
technique has shown its tremendous potential for physically mapping of specific
DNA sequences and identifying individual chromosomes in plants (Suzuki and
Mukai 2004). The BAC clones provide efficient resources for chromosome-specific
FISH markers especially for plant species having small genomes such as rice,
cotton, and sorghum. BAC-FISH favors the large clone as a probe for better res-
olution. The conventional FISH analysis on plant chromosomes employing probes
containing over 10-kb insert DNA provides stable and distinct signals (Mukai and
Yamamoto 1998; Suzuki et al. 2010). It is quite difficult to detect a single locus by
using a plasmid clone of several kbs as the FISH probe. In this regard, the BAC
clones containing around 50–100 kb fragments are suitable for probe of the FISH
analysis.

6.3 Molecular Cytogenetics in Plant Genome Research

6.3.1 Physical Mapping and In Situ PCR

Plant genome are known for abundance of repeat sequences and cytogenetic or
physical mapping of such repetitive DNA sequences decipher their genomic dis-
tribution and precisely identify the typical chromosome or set of chromosomes.
These repeated rDNA gene clusters are being widely used and a common starting
point for FISH-based mapping (Mukai et al. 1991; Yamamoto and Mukai 1991;
Fransz et al. 1996a; Mukai and Yamamoto 1998; Sharma et al. 2012). The two
types of ribosomal RNA genes (rDNA), 18S-5.8S-26S rDNA and 5S rDNA, have
been extensively used as probes for physical mapping in higher plants due to their
arrangement in tandem arrays (Mukai 1999). FISH mapping of rDNA clusters has
provided a number of chromosomal markers that proved their efficacy in explo-
ration of chromosome evolution and species interrelationships.

132 S.K. Sharma et al.



In hexaploid wheat, the six loci of 5S rRNA genes were identified on the short
arm of the chromosomes of homoeologous group 1 and 5 (1A, 1B, 1D, 5A, 5B, and
5D) (Mukai et al. 1990), whereas 18S-5.8S-26S rDNA loci were mapped on the
short arm of 1A, 1B, 6B, and 5D chromosomes and the long arm of 7D chromo-
some (Mukai et al. 1991) (Fig. 6.1). The rRNA genes are associated with the
nucleolar organizing region (NOR), and the visualization of such repeat clusters at
interphase represents the number of active rDNA loci. Multicolor FISH (McFISH)
approach targeting repetitive DNA and rDNA probes also serves as chromosome
identification markers in many plant species, for example, common wheat
(Fig. 6.2). Similarly, Xu and Earle (1996) mapped the 45S rRNA DNA loci on to
the tomato pachytene chromosomes, and Pedrosa et al. (2002) demonstrated the
rDNA FISH for creating a karyotype of the model legume lotus. In addition, rDNA
FISH in combination with other tandem repeats aids the generation of core cyto-
genetic maps, as demonstrated for maize, wheat (Jaing and Gill 1994), cotton
(Hanson et al. 1996), tomato (Xu and Earle 1996), Pinus (Hizume et al. 2002), and
Arabidopsis (Koornneef et al. 2003). The rDNA sequences are conserved across
most plant species, but other tandem repeats exhibit variable degree of
conservation.

Further, the chromosomal localization of rDNA has been widely used for
comparative characterization of polyploid plant species. A comparison of FISH
patterns of polyploid species with those of diploid progenitors of Aegilops revealed
natural amphiplasty, in which the active rDNA sites either transformed to inactive
or silent (deleted) during polyplodization event (Yamamoto 1994). Similarly, the U
genome mostly suppresses the NOR activity of other genomes in tetraploids. On the
other hand, the NOR activity of the D-genome chromosomes is completely sup-
pressed by other genomes. In hexaploid species, all rDNA sites on the third genome
remain active, reflecting time lapse after polyploid formation.

Fig. 6.1 Multicolor FISH
mapping of 5S rRNA and
18S-5.8S-26S rRNA genes on
the chromosomes of bread
wheat (Triticum aestivum,
2n = 6x = 42, AABBDD
genome), and fluorescence
signals can be seen for 5S
(red) and 18S-5.8S-26S
(green) rRNA genes,
respectively (Mukai 2004)
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Simultaneously, Mukai and Apples (1996) invented the in situ polymerase chain
reaction (in situ PCR)-FISH for mapping plant genes. This method uses the extreme
temperature gradient sensitivity of PCR along with the cytological location of DNA
sequences by means of in situ hybridization. The in situ locations of the rye-specific
spacer region were determined on metaphase chromosomes. In such experiment,
two pairs of primers for rye, i.e., Nor-R1 and rye 5S-Rrna-R1, were amplified
in situ, which resulted in 386- and 107-bp amplified products, respectively.
Rye NOR primers (45S) were localized on chromosome 1R and 4R, while 5S
primers showed signals on the chromosome 1R and 3R. Interestingly, a previously
described locus chromosome 5R did not show any signal in this experiment. It was
concluded that the absence of a 5S site could be due to the sequence differences
between the different 5S rDNA lineages. Several chromosome-specific sequences
were also identified through primers specific to the chromosome. Thus, in situ PCR
proved its utility in amplification of DNA sequences of specific plant chromosomes
and for mapping low-copy genes of interest (Mukai and Yamamoto 1998).

Centromeric and telomeric sequences are also widely used in FISH mapping
studies. Telomere repeats are highly conserved in plant species and occur in at least
two major variants, i.e., (TTAGGG)n and (TTTAGGG)n (Lapitan et al. 1989;
Adams et al. 1998; Fajkus et al. 2005). Similarly, the centromere associated 156-bp
tandem repeat of maize, Cent C, was first discovered by Ananiev et al. (1998) and
has become an invaluable cytogenetic milestone for maize and many related grass
species. Cent O, a 155-bp centromere-specific satellite repeat sequence, the 180-bp
satellite repeat, and CEN38, a 140-bp repeat sequence, have proven useful for
labeling the primary constriction in rice, Arabidopsis, and sorghum, respectively

Fig. 6.2 Seven-color FISH on a metaphase cell of common wheat. Seven DNA
sequences-pSc119.2, pSc74, pAs1, telomere, 18S-26S rDNA, 5S rDNA, and gliadin were
detected by red, bluish green, green, orange, pink, blue, and white fluorescence, respectively, and
the photographs were taken by triple exposures (Mukai 1996)
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(Heslop-Harrison et al. 1999; Cheng et al. 2002; Nagaki et al. 2003; Kim et al.
2005).

Further, employing BAC clones as a probes in FISH experiments become rev-
olutionizing inventory in the field of molecular cytogenetic and extensively used in
many plant species including cotton (Hanson et al. 1995), rice (Jiang et al. 1995),
tomato (Zhong et al. 1996), Arabidopsis (Fransz et al. 1996b), onion (Suzuki et al.
2001), and sorghum (Kim et al. 2005). This approach can also be used to acquire
insight for ongoing genome-sequencing projects worldwide.

King et al. (2002) demonstrated a GISH-based approach for physical mapping to
distinguish recombination events between chromosomes of Festuca pratensis and
Lolium perenne. A similar approach has also been used for the integration of
genetic and physical maps of two Allium chromosomes (Khrustaleva et al. 2005).
This GISH-based mapping strategy is similar to physical mapping using deletion
and translocation stocks. This approach overcomes the major drawback of the
tedious and time-consuming process of developing a large number of deletion and
translocation stocks.

On the other hand, DNA clones were also used as probes for comparative FISH
mapping in relative species. Several cytogenetics researchers reported FISH map-
ping of A. thaliana BACs on chromosomes of Brassica species. Comparative FISH
mapping between Arabidopsis and Brassica provided a direct visualization of the
genome duplication within Brassica species (Howell et al. 2005; Lysak et al. 2005).
In addition, comparative chromosome painting with pooled BAC probes was used
to investigate ancestral relationships among species that diverged within the
Brassicaceae (Lysak et al. 2001, 2003, 2005). Recently, Koo and Jiang (2009)
developed a technique by stretching maize pachytene chromosomes mechanically
more than 20 times longer than their original size. Such super-stretched pachytene
chromosomes can be directly used in conventional as well as molecular cytogenetic
experiments. Super-stretching of the chromosomes coupled with immunofluores-
cence in situ detection of DNA methylation can lead to a new dimension and higher
resolving power to modern molecular cytogenetics research. Collectively, these
studies revealed that such FISH-based plant cytogenetical tools are uniquely
informative and beneficial for genome analysis.

6.3.2 Chromosome Identification Subject to Parentage,
Hybridity, and Ploidy

Fluorescence signal allows the identification of chromosomes, specific sequences,
segments, or whole set of chromosome to gain a genome-wide view at a single
glance in order to understand the plant genome organization and behavior.
Fluorescence signals of either a single repetitive DNA probe or a mixture of several
probes can be utilized for hybridization independently to identify individual
chromosomes within a species. Chromosome identification through FISH method
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has advantage over the traditional chromosome-banding techniques due to avail-
ability of several probes for a particular species. Many repetitive DNA elements can
also generate specific FISH signal pattern on individual chromosome within a
single species (Mukai et al. 1991; Mukai and Yamamoto 1998; Koo et al. 2005). In
this context, Pedersen and Langridge (1997) demonstrated the identification of all
21 chromosomes of hexaploid wheat through fluorescence signals derived from two
different repetitive DNA probes. Later, similar approach has been adopted in sev-
eral plant species for chromosome identification (Franz et al. 1998; Hizume et al.
2002; Kato et al. 2004; Koo et al. 2004).

On the other hand, GISH provides a direct visual method for distinguishing
parental genomes and analyzing genome organization in intra-/interspecific hybrids,
allopolyploid species, and introgression lines. This technique has an incredible
prospective to identify application in identifying alien chromatin introgression and
to study chromosomal pairing and recombination between divergent genomes.
GISH has validated its utility in recognizing synthetic Hordeum chilense × Secale
africanum (Schwarzacher et al. 1989) and Triticum aestivum (wheat) × S. cereale
(rye) (Le et al. 1989). Mukai and Gill (1991) showed that GISH optimally detects
barley chromosomes in a wheat background and further identified A-, B-, and
D-genomes of the common wheat (Mukai et al. 1993b) using the same approach
(Fig. 6.3). Similarly, Raina et al. (1998) and Raina and Mukai (1999) conclusively
revealed that Coffea congensis and C. eugenioides, and Arachis villosa and A.
ipaensis are the diploid wild progenitors of allotetraploid C. arabica (2n = 4x = 44)
and A. hypogaea (2n = 4x = 40), respectively, using GISH as a tool. GISH has also
been widely used to characterize the genome constitution of natural hybrids and to
identify the parental origin of specific loci. By following the same approach,
Takahashi et al. (1999) categorized the ancestral genome donors in maize and

Fig. 6.3 Chromosome identification of Triticum aestivum (2n = 6x = 42). The AABBDD genome
was simultaneously discriminated using GISH technique in which the diploid A genome
progenitor Triticum urartu (yellow), diploid B genome progenitor Aegilops speltoides (brown),
and diploid D genome progenitor Aegilops squarrosa (orange) have been identified precisely
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examined inter-genomic translocations and homeologous chromosome pairing
(Zwierzykowski et al. 2008), as well as chromosomal areas with large
species-specific sequences (alien chromatin introgression) or translocation break
points (Qi et al. 2008). Such versatile approach of molecular cytogenetics also
provides insight into somaclonal variation, the origin of B chromosomes, control of
chromosome pairing, and other aspects of chromosome evolution (Kato et al.
2005).

6.3.3 Karyotype and Phylogenetic Analysis

FISH-based chromosome identification systems could lead to precise karyotyping
and to understand the evolution of particular plant taxa by means of speciation from
wild to cultivated ones. For example, several repetitive DNA probes generate
specific hybridization pattern on chromosomes of wheat and related species (Mukai
et al. 1993a; Pederson and Langridge 1997). The FISH karyotypes from some
repetitive DNA probes are similar to karyotypes based on C- or N-banding analysis
(Cuadrado et al. 1995; Pederson and Langridge 1997). FISH-based karyotyping
also specifies the phylogenetic view of related plant species (Lim et al. 2000).
A number of repetitive DNA probes had utilized to develop FISH karyotypes of
several diploid and polyploid Triticum and Aegilops species by Badaeva et al.
(1996a, b). Similarly, comparative FISH mapping using several repetitive DNA
probes in Nicotiana species found N. tomentosiformis to be the T-genome donor
(Lim et al. 2000). Comparison of such karyotypes evidently revealed chromosomal
landmarks to understand the evolutionary relationship between these species.
Karyotyping using repetitive DNA probes can also visualize inter-genomic chro-
mosome translocations in polyploid species. Since molecular cytogenetic tech-
niques are often used to compare the ability of different genomes to hybridize
(homology of genomes), together with the use of interspecific hybrids and
allopolyploids, there by can serve as a powerful tool to understand phylogenetic
relationships between species that is independent of nucleotide sequence-based
approaches.

6.3.4 Chromosome Painting

The basic principle of FISH was further exploited to ‘paint’ individual plant
chromosomes. The ‘chromosome painting’ is one of the most powerful molecular
cytogenetic techniques to analyze nuclear organization and genome structure
through visualization of specific cytogenetic target regions or entire chromosomes
using this technique (Pinkel et al. 1986). Such technique involves the hybridization
of fluorescence-tagged chromosome-specific composite probe pools (generally
BAC clones) to various cytological preparations. Lysak et al. (2001) painted the
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chromosome of dicotyledonous model organism A. thaliana for the first time by
employing selected BACs as differential labeled probes. However, in plants, mainly
due to the presence of large amounts of repetitive DNA sequences such technique is
remained limited (Jiang and Gill 2006). Such technique was found to be useful to
identify individual chromosome in the interphase nuclei and could reveal the spatial
arrangement and functional properties of individual chromatin domains. Further,
Han et al. (2003, 2004) modified the McGISH to identify closely related
wheat-Thinopyrum intermediates. Such chromosome painting provides insight into
genome duplication/multiplication and karyotype evolution in closely related taxa.
Arabidopsis chromosome and/or segment-specific probes were hybridized to ‘paint’
the chromosomes from species related to A. thaliana (Lysak et al. 2005). In later
studies, the chromosome painting technique was applied successfully in related
Brassica species (Lysak et al. 2010). These experiments proved that the technique
is feasible for the detailed investigation of the pairing behavior of homologous
chromosomes during early prophase I. Painting by this method is found to be
feasible on small B chromosomes as well as alien chromosomes that possess
chromosome-specific repeats (Houben et al. 1996). Comparative chromosome
painting is an efficient and powerful approach to study the partial genome dupli-
cations and karyotype evolution. This advantage of the technique has been used to
investigate the mechanisms of chromosome number reduction in A. thaliana and
related Brassicaceae species.

Successful interspecific chromosome painting experiments were carried out
between sorghum and maize (Koumbaris and Bass 2003). Ma et al. (2010) used
Brachypodium distachyon BAC-clone to map the barley genome. Recently, the
evolution and taxonomic split of the model grass B. distachyon were analyzed, and
substantial phenotypic, cytogenetic, and molecular differences were detected
between three cytotypes with the help of chromosome painting (Catalán et al.
2012). The development of comparative chromosome painting paves the way
toward comparative chromosome mapping in several crop taxa including Triticeae
hexaploid wheat, thereby facilitating the formulation of meaningful breeding pro-
gram in light of the gene pool diversity.

6.3.5 Alien Chromatin and Transgene Detection

Schwarzacher et al. (1992) ascertained the alien chromatin incorporated from
Leymus, Thinopyrum, Hordeum, or Secale in five bread wheat lines by GISH
analysis. Friebe et al. (1991) also used GISH to locate the translocation chromo-
somes in different leaf rust-resistant wheat using GISH technology. Mukai et al.
(1993a) also noticed the rye chromatin transfer in wheat. This technique has been
effectively applied to detect genome donors in Brassica allopolyploids (Snowdon
et al. 1997).

FISH has also analyzed the structure of the transgene loci on interphase nuclei,
metaphase chromosomes, and on extended DNA fibers (Forsbach et al. 2003;
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Chen et al. 2003). Particle bombardment often generates very large,
high-copy-number transgenic arrays that can extend for megabases. Interestingly,
earlier studies showed that dispersed metaphase FISH signals come together at
interphase. By contrast, Agrobacterium transformation gives rise to lower transgene
copy numbers and is usually characterized by single discrete FISH signals.
Employing molecular cytogenetic approaches, transgenes have been identified in
Arabidopsis, barley, and rice, respectively (Forsbach et al. 2003; Chen et al. 2003).

6.4 Modern Molecular Cytogenetics

A biological question may not be solved by a simple localization of DNA
sequences in interphase nuclei or on chromosomes. However, physical localization
of a DNA sequence together with its associated protein may dramatically enhance
the power of FISH. The global patterns of chromatin modification (e.g., DNA
methylation and histone tail modifications) along with nuclear size and shape,
relative content and distribution of heterochromatin/euchromatin, and organization
and structure of chromosomes (e.g., position and orientation) provides new insight
into evolution of the particular plant species at chromosomal level. Therefore, it has
acquired am important share in this newly developing research field of studying
chromatin dynamics through localization of epigenetic signatures of histone/DNA
modifications and methylation. It has also been emphasized that amino-terminal
tails of histone proteins are targets for a series of posttranslational modifications
(PTMs), including acetylation, phosphorylation, and methylation. These modifi-
cations regulate chromatin structure and gene expression (Jenuwein and Allis
2001).

6.4.1 Immuno-FISH

Several plant laboratories have developed techniques that combine FISH with
immunoassay methods (Jasencakova et al. 2001; Zhong et al. 2002; Nagaki et al.
2005, 2012a, b; Lavania et al. 2012). Such modernization of cytogenetic technique
involves an immunoassay of specific antibodies and cytological preparations fol-
lowed by standard FISH procedure. Immuno-FISH has been used to reveal DNA
methylation and histone modifications with specific genomic region. A number of
antibodies are available for studying 5mC and histone modifications vis-à-vis
chromatin status. Recently, several studies have been conducted on plants using
immunohistochemical staining to elucidate chromosomal distribution pattern of the
epigenetic marks including Arabidopsis (Zhang et al. 2008), Allium (Suzuki et al.
2010; Nagaki et al. 2012b), maize (Jin et al. 2008; Koo and Jiang 2009; Koo et al.
2011), rice (Yan et al. 2010), brassica (Wang et al. 2011), Barley (Sanei et al.
2011), tobacco (Nagaki et al. 2009), sugarcane (Nagaki et al. 2005), and other taxa
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(Lavania et al. 2012). Most of the studies suggest that H3K4me1,2,3 mostly mark
euchromatin, while H3K9me1 and H3K27me1 mostly target heterochromatin
(Fuchs et al. 2006). While H3K9me2 and H3K27me2,3 showed diverse distribution
pattern among angiosperms (Fuchs et al. 2006). On the other hand,
centromere-specific histone H3 (CENH3) is one of the most fundamental cen-
tromeric proteins known to be involved in recruiting other centromeric proteins.
CENH3 was first identified as CENP-A in humans (Earnshaw and Rothfield 1985)
and subsequently found in a large number of plant species including Brassicaceae,
Solanaceae, Leguminosae, Poaceae, and Juncaceae species (Zhong et al. 2002;
Telbert et al. 2002; Nagaki et al. 2004, 2005, 2009, 2012a; Sanei et al. 2011; Tek
et al. 2011; Wang et al. 2011; Neumann et al. 2012). Since CENH3 comprises part
of the core histone that binds directly to DNA at centromeres, centromeric DNA has
been isolated from several plant species using antibodies against CENH3 (Nagaki
et al. 2003, 2004, 2009, 2011, 2012b; Nagaki and Murata 2005; Tek et al. 2011;
Zhong et al. 2002; Neumann et al. 2012; Houben et al. 2007). Immunostaining of
chromosomes of Allium species using anti-AfiCENH3 antibody has been shown in
Fig. 6.4. Such studies suggest that these histone variants have immense potential to
generate extensive information about chromosomal distribution pattern of the epi-
genetic marks in a wide range of plant species (Sharma et al. 2015).

Fig. 6.4 Immunostaining of
chromosomes of Allium
species using anti-AfiCENH3
antibody: DAPIstained
chromosomes (blue) and
visualization of
immunosignals of
anti-AfiCENH3 antibody
(red)
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6.5 Future Prospects

Exciting advances in plant molecular cytogenetic tools and array-based techniques
are changing the nature of chromosome biology, in both basic research and at
molecular diagnostic levels. Cytogenetic analysis now extends beyond the simple
description of the chromosomal status of a genome and allows the study of fun-
damental biological questions of chromosomal evolution underlying speciation and
adaptation. One of the major challenges in plant cytogenetics includes the incre-
ment of the resolution power of in situ hybridization and immunostaining tech-
niques to detect shorter nucleotide stretches or single antigen molecules reliably on
metaphase chromosomes, extended chromatin fibers and/or in interphase nuclei.
Further, improvement of efficient and effective fluorescent chromatin tags for
in vivo studies is also needed. FISH may play a powerful role to delineate the
structure and DNA composition of long track of highly repeated regions, for
example, centromere as well as telomeric ends that are difficult to clone.

As discussed earlier in this article, DNA methylation, nucleosome remodeling
(including histone modification and histone variants), and noncoding RNAs can
organize chromatin into accessible (euchromatic) and inaccessible (heterochro-
matic) sub-domains. This extends the information potential of the genetic code, and
one genome can generate many ‘epigenomes’ in time and space, during the life
span of an organism. The implications of epigenetic research seek attention and
efforts that should be targeted to epigenome in a variety of plant systems especially
at chromosome inheritance level. In a recent study, it was shown that these epi-
genetic modifications are not as conserved as was once thought. Further, very little
is known about histone/DNA methylation/modification in large genome plants
(Houben et al. 2003), which make up the bulk of the angiosperms (Arumuganthan
and Earle 1991). Immuno-FISH should be practiced worldwide that has potential to
significantly increase the resolving power to reveal fine interaction between DNA
and proteins.

6.6 Next-Generation FISH

Next-generation sequencing (NGS) technologies continue to develop at a fast pace,
and whole genome sequence of several plants have either been released or to be
released soon. NGS technologies of third-generation platforms could produce reads
reaching up to a few kilobases, whereas read lengths presently range from 30 to
400 bp depending on the platform. NGS may also facilitate probe development for
studies of chromosome using FISH. These genomic regions can be mapped on the
chromosome for precise location information with reference to chromosome rear-
rangements and translocation events and to identify chromosome with/without
physical gaps, if any. Further, transcriptome sequencing has also been engaged in
construction of large datasets of nuclear genes. NGS is also making the rapid
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sequencing of complete nuclear genomes routine, thus transforming the genomics
research field and opening up new avenues of systematic endeavor in comparative
genomics. Further, research should be aimed at understanding the distribution,
location, and copy number of the epigenetically inherited gene/genic regions
identified through NGS data in several crop/plant species/families in order to shed
light on the role of chromatin dynamics in speciation and evolution.
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