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Preface

The advent of modern tools and techniques in genetics, cytogenetics, and molecular
biology has revolutionized the plant breeding approaches to help overcome the
limitations associated with the conventional plant breeding. The recent integration
of advances in biotechnology, genomic research, and molecular marker applications
with conventional plant breeding practices has created the foundation for molecular
plant breeding, an interdisciplinary science that is revolutionizing twenty-first-
century crop improvement. Molecular breeding offers opportunities to apply marker
assisted selection (MAS) as compared to phenotypic selection in conventional
breeding and is moving ahead at an unprecedented pace in all major crops and has
become the standard practice in many.

Molecular breeding involves alien gene introgression to mobilize useful genetic
variation to breeding programs to widen the genetic base of crop cultivars and relies
on the use of molecular markers, and linkage, QTL, and association mapping of
agronomic traits to identify candidate genes and to design functional markers for
MAS. MAS coupled with marker assisted backcross breeding (MABB) that helps in
gene pyramiding, next-generation sequencing (NGS) that generates genome-wide
markers and screening of new alleles, and targeting induced local lesions in gen-
omes (TILLING) or ecotype TILLING (EcoTILLING) for the screening of either
mutant or natural germplasm collections are used to integrate genomic information
into directional and selective breeding in crops to maximize genetic gains.

This book encompasses articles on the application of above-mentioned genomic
approaches, tools, and resources in a precision breeding approach. Each chapter
elucidates an authoritative account on the topic. We are sincerely grateful to all the
authors for their valuable contributions. We would like to acknowledge coopera-
tion, patience, and support of our contributors who have put in their serious efforts
to ensure a high scientific quality of this book with up-to-date information. We
sincerely thank Dr. K.G. Ramawat for motivating us to take up this assignment.
Sincere thanks are due to Khushboo Arora for her help during the editing process.
One of the editors, Vijay Rani Rajpal, is sincerely grateful to her daughter Navya
and husband Susheel for their help, patience, and understanding. Without their
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unconditional support and encouragement, this journey would have been even more
difficult. This work could not be completed without the active support of Springer
team who took pains in streamlining the production process. We particularly
appreciate Dr. Valeria for her continued support.

Plant breeders, taxonomists, geneticists, cytogeneticists, molecular biologists,
and biotechnologists will greatly benefit from this book. We sincerely hope that this
book will serve as a milestone in the precision breeding of crops to achieve
meaningful plant genetic improvement.

Vijay Rani Rajpal
S. Rama Rao
S.N. Raina
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Chapter 1
Use of Alien Genetic Variation for Wheat
Improvement

P.K. Gupta

Abstract Wheat production and productivity at the global level has witnessed a
remarkable improvement during the last five decades, thus helping in providing
food security. However, the annual growth rate in wheat production has declined
from *3 % in earlier decades to 0.5–0.7 % in recent years causing concern.
Therefore, major worldwide efforts are being made to improve the yield potential of
bread wheat. In this connection, alien genetic variation has been found to be an
important source of genetic variation both for qualitative and quantitative traits of
agronomic importance. A number of alien species belonging to the tribe Triticeae of
the family Poaceae have been utilized for this purpose. These alien species have
been utilized through the production of amphiploids, whole chromosome alien
addition and substitution lines, whole-arm Robertsonian translocations, and the
translocations involving small segments of alien chromosomes. The transfer of
small segments carrying desirable alien genes was achieved through several
approaches including irradiation, use of mutants, and suppression of diploidizing
gene (Ph1). These alien resources along with the details of their successful uti-
lization for wheat improvement have been described in this chapter.

Keywords Breadwheat�Alien species/genes/additions/substitutions �Amphiploids

1.1 Introduction

Wheat yield and production, worldwide and in India, have shown dramatic
improvement during the last five decades. According to recent estimates, the mean
global wheat yield has increased from 1.2 tonnes per hectare (t/ha) in the year 1961

The erratum of this chapter can be found under DOI 10.1007/978-3-319-27090-6_17

P.K. Gupta (&)
Department of Genetics and Plant Breeding, Chaudhary Charan Singh University,
Meerut, UP, India
e-mail: pkgupta36@gmail.com

© Springer International Publishing Switzerland 2016
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Crop Improvement, Sustainable Development and Biodiversity 11,
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to *3 t/ha in the year 2014 (in UK, the yield increased from 2.8 t/ha in 1948 to
8 t/ha in 2014). The world wheat production during the same period improved from
*225 million tones (mt) to *715 mt. However, the annual growth rate in pro-
duction has gone down from *3 % during the 1970s and 1980s to 0.5–0.7 % in
recent years, which has been a matter of concern. It has also been observed that
major advances in wheat yield and production have been due to better management
and improved agricultural practices rather than by an improvement in the genetic
potential (however, in UK, according to some estimates, the increase has been
mainly due to improved genetic potential). A flow of newer varieties that are
resistant to emerging new races of pathogens, particularly the three rusts, has also
contributed to an improvement in yield and production, although it has been dif-
ficult for wheat breeders to sustain this activity. These aspects are being discussed at
the global level through a Wheat Initiative launched in the year 2011 and have been
more recently discussed during a meeting held as a part of Norman Borlaug
Centenary Celebrations. The meeting was appropriately called ‘Wheat for Food
Security’ and was held at the International Institute for Wheat and Maize
Improvement (CIMMYT) in Mexico. The new ‘International Wheat Yield
Partnership’ (IWYP) program, as a part of Wheat Initiative, was also launched
during this meeting.

The major limitations in wheat yield and production have been due to biotic and
abiotic stresses, which have been regularly addressed in recent years with limited
success. It has also been recognized that the genetic variability, being limited within
the wheat germplasm (primary gene pool), secondary, and tertiary gene pools can
be exploited for additional genetic variability. This useful variability has been
described as alien genetic variation, since it is available in taxa, which though lie
outside the species delimitations of cultivated wheat, but can be crossed with wheat,
even though sometimes using embryo rescue. Considerable information on the use
of alien genetic variation for wheat improvement is available in several reviews
published in the past (Sears 1981; Sharma and Gill 1983; Knott 1987; Islam and
Shepherd 1991, Jiang et al. 1994a, b; Gill et al. 1996; Mujeeb-Kazi and Rajaram
2002). In this chapter, we briefly describe these alien genetic resources and discuss
their utility in wheat improvement, with emphasis on relatively recent work, since
earlier work has been adequately covered in several reviews published in the past.

1.2 Alien Genetic Resources

The major sources of alien genetic variation for wheat improvement are the taxa
belonging to the sub-tribe Triticinae of the tribe Triticeae. These taxa include
species from the following old and classical genera: Triticum, Secale, Aegilops,
Agropyron, and Haynaldia (now called Dasypyrum). The old classical genus
Agropyron is now known to include several newly described genera including
Thinopyrum, Lophopyrum, Elymus, and Leymus. These and other alien genera have
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been classified in primary, secondary, and tertiary gene pools. The primary gene
pool includes species of genera Triticum and Aegilops, which represent the pro-
genitors of hexaploid wheat; the chromosomes of these species can pair with wheat
chromosomes and genes can be transferred by normal recombination process
without any aid of induced recombination or irradiation. In other words, the species
carrying genomes A, B, or D constitute the primary gene pool. This gene pool
contains hexaploid wheat landraces, cultivated tetraploid wheats, the wild tetraploid
wheats (T. turgidum; syn. Triticum dicoccoides), and diploid progenitors of the A,
B, and D sub-genomes to durum and bread wheats. Some cross-combinations
require embryo rescue, but no cytogenetic manipulation is needed in exploiting this
primary gene pool. The secondary gene pool consists of species belonging to the
genera Triticum and Aegilops, which share only one sub-genome with the three
sub-genomes of wheat, the other one or more genomes being not shared. Several
diploid species of the Sitopsis section are included in this pool, and the F1 hybrids
within this gene pool exhibit reduced chromosome pairing. In such cases, gene
transfers have been achieved through direct crosses, breeding protocols, homolo-
gous exchange of chromosome segments between the related genomes and through
the use of special manipulation strategies. Embryo rescue is a complementary aid
for obtaining hybrids. The tertiary gene pool includes diploid and polyploid species
of the genera belonging to the tribe Triticeae, which carry genomes other than those
present in hexaploid wheat. Homoeologous relationship between the chromosomes
of these species and wheat allow alien gene transfers through more complex
chromosome manipulations. Special techniques involving irradiation, use of ph1
mutants or callus culture-mediated induction of translocations are also used. The
wild hexaploid wheat landraces and distant relatives of wheat [e.g., Secale cereale
(rye), Thinopyrum bessarabicum] also provide a vast and largely untapped reservoir
of genetic variation that is used for improvement of target traits in wheat. Some of
the alien species listed in Table 1.1 have been successfully utilized for the devel-
opment of whole chromosome alien addition/substitution lines and/or translocations
carrying each a complete alien chromosome arm or a small alien chromosome
segment.

In UK, a major program in the form of WISP (Wheat Improvement Strategic
Program) consortium has recently been launched to utilize alien genetic variation
for wheat improvement. It is a BBSRC-funded collaborative program, which brings
together experts from the following five UK institutions, and will run from 2011 to
2017: (i) John Innes Centre, (ii) National Institute for Agricultural Botany (NIAB),
(iii) University of Nottingham, (iv) University of Bristol, and (v) Rothamsted
Research Institute. The program will collect and generate new and novel wheat
germplasm characterized for traits relevant to academics and breeders. It will also
identify gene-based or DNA-based molecular markers for selecting these traits. The
program is structured around three complementary ‘pillars’ (landraces, synthetics,
and ancestral gene introgression), each of which will broaden the pool of genetic
variation in wheat by a different route. Among the three pillars, the last one will
deal with new and useful alien genetic variation from related species.

1 Use of Alien Genetic Variation for Wheat Improvement 3



1.3 Strategies for Using Alien Genetic Variation

The process for the transfer of target genes from alien species into wheat often
involves prior development of amphiploids and the alien addition/substitution lines.
This is followed either by irradiation or by induced recombination (facilitated by
absence of chromosome 5B or presence of ph1 mutant) to produce translocations.
Different strategies for using alien genetic variation will be briefly discussed in this
section.

1.3.1 Amphiploids for Transfer of Alien Chromosome
Segments

During the 1950s and 1960s, production of amphiploids used to be the first step for
utilization of alien genetic variation for wheat improvement. The production and
utilization of amphiploids generally involved the following steps: (i) crossing tet-
raploid wheat (AABB) or hexaploid wheat (AABBDD) with a diploid or tetraploid
alien species to produce F1 hybrids (sometimes using embryo rescue); (ii) doubling
the chromosome number in the F1 hybrids through colchicine treatment to produce
amphiploids; (iii) crossing and backcrossing the amphiploid (some times after
irradiation treatment; see next paragraph) with hexaploid wheat to facilitate transfer
of either an alien segment or the whole alien chromosome or only one arm of a
chromosome to wheat [for details about transfer of a whole chromosome leading to

Table 1.1 Some examples of alien species, which have been used for the production of alien–
wheat chromosome additions, substitutions, and translocations

Species and genome Reference

Aegilops tauschii (D) Joppa (1987), Friebe et al. (1992a)

Aegilops speltoides (S) Friebe et al. (2000)

Aegilops longissima (Sl) Friebe et al. (1993)

Aegilops searsii (Ss) Friebe et al. (1995a)

Aegilops umbellulata (U) Friebe et al. (1995b)

Aegilops caudata (C) Friebe et al. (1992b)

Aegilops biuncialis (Mb) Farkas et al. (2014)

Aegilops peregrina (UUSU) Friebe et al. (1996b)

Secale cereale (R) Gill and Kimber (1974), Mukai et al. (1992)

Thinopyrum intermedium (E1E2X) Friebe et al. (1992c)

Leymus racemosus (JN) Qi et al. (1997)

Elymus trachycaulus (SH) Jiang et al. (1994a)

Hordeum chilense (Hch) Cabrera et al. (1995)

4 P.K. Gupta



production of alien addition and alien substitution lines, and an arm leading to
Robertsonian translocations, see later in this chapter].

As an example of the above procedure, in a recent study, a 10x amphiploid
(AABBDDUbUbMbMb) was produced by combining hexaploid wheat (AABBDD)
and tetraploid Ae. biuncialis (UbUbMbMb). This amphiploid was used for irradia-
tion leading to transfer of alien segments, which could be identified using multi-
color FISH (McFISH) (Molnar et al. 2009).

In another study conducted in Pakistan, Mujeeb-Kazi and his coworkers utilized
Ae. variabilis (2n = 4x = 28; UUSS) as an alien species for imparting resistance
against Cochliobolus sativus (spot blotch) and Tilletia indica (Karnal bunt). The
amphiploids with 2n = 8x = 56 (AABBUUSS) and 2n = 10x = 70 (AABBDDUUSS)
were obtained using this alien species. The morphology and cytogenetics of these
amphiploids were examined with a view to transfer alien chromosome segments
carrying genes for resistance against spot blotch and Karnal bunt into the recipient
durum and bread wheat germplasm.

Direct use of amphiploids for wheat improvement through the transfer of an
alien segment from crested wheatgrass (Agropyron cristatum = PP) carrying genes
for resistance against leaf rust was also reported recently (Ochoa et al. 2015). The
transfer of the alien segment involved crossing and backcrossing of the amphiploid
AABBDDPP with hexaploid wheat (AABBDD). The amphiploid (AABBDDPP)
itself was earlier obtained by crossing tetraploid wheat (Triticum turgidum L. conv.
Durum Desf. 2n = 4x = 28; AABB) with a self-fertile allotetraploid (2n = 4x = 28;
DDPP) obtained through a cross between diploid wheat (Aegilops tauschii Coss.)
and crested wheatgrass (A. cristatum). After three backcrosses, a fertile stable line
(named TH4) was obtained with 42 chromosomes. Fluorescence in situ
hybridization (FISH), genomic in situ hybridization (GISH), and use of
genome-specific molecular markers confirmed that TH4 carried a compensating
Robertsonian translocation involving the long arm of wheat chromosome 1B and
the short arm of an unidentified A. cristatum chromosome. This TH4 line and
similar other lines produced using this approach will certainly be used in future
wheat breeding programs, as sources of resistance against a number of biotic and
abiotic stresses (see later for details).

1.3.2 Use of Synthetic Hexaploid Wheats (SHWs)

One of the most successful programs for utilization of alien genetic variation for
wheat improvement has been the development of a large number of SHWs by
combining the genomes of tetraploid wheat (AABB) and Aegilops tauschii
(DD) (Fig. 1.1). Since late 1980s, these SHWs have been produced in thousands at
CIMMYT and are being utilized all over the world for the introgression of alien
genetic material from Ae. tauschii into modern bread wheat cultivars (Lage et al.
2004; Talbot 2011). It has been shown that the hybrids produced from a cross
between SHW and an improved variety exhibit double the genetic diversity relative
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to its parents (Kazi and Van Ginkel 2004). Once created, a SHW (like any other
amphiploid, as mentioned above) can be crossed with one or more bread wheat
cultivars, followed by repeated backcrosses (Lange and Jochemsen 1992;
Trethowan and Mujeeb-Kazi 2008) to produce synthetic backcross-derived lines
(SBLs; Fig. 1.1). In actual practice, these SBLs have been subjected to selection,
and the selected SBLs exhibited significant yield increases across a diverse range of
environments, demonstrating their potential for improving wheat productivity
worldwide.

The desirable traits, which could be improved using SHWs include the fol-
lowing: (i) resistance or tolerance to a number of biotic stresses including resistance
to leaf blotch, glume blotch, crown rot, yellow leaf spot, leaf blight, powdery
mildew, and karnal bunt; they also exhibited resistance to certain insect pests such
as Green bugs and Hessian fly (Van Ginkel and Ogbonnaya 2007); (ii) tolerance to
a number of abiotic stresses including drought, heat, and salinity; in some cases, the
SBLs were shown to have deeper or thicker roots assisting wheat plant in water
uptake, which helped the plant to survive under water stress (Schachtman et al.
1991, 1992); (iii) tolerance to preharvest sprouting; (iv) large kernels and heavy
spikes; and (v) a higher concentration of both micro- and macronutrients (Fe, Mn,
K, and P), relative to that in T. aestivum (Calderini and Ortiz-Monasterio 2003).
A brief account of activities involving use of SHWs in different countries will be
presented in this section.

Fig. 1.1 Different steps involved in the transfer of desirable traits from synthetic hexaploid wheat
(SHW) into elite cultivars in the form of synthetic backcross-derived lines (SBLs)
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1.3.2.1 SHWs in Europe, Asia, and Australia

In several countries including Australia, Argentina, Equador, China, India, and
Pakistan, the SBLs have shown 5–40 % increase in yield over local modern check
varieties (Ogbonnaya et al. 2007). In Australia (DPI, Victoria), under their
‘Synthetic-Enriched Resources for Genetic Enhancement’ (synERGE) program,
30 % increase was achieved through the use of SHWs. In China also, use of
synthetic wheats started in 1995, and four varieties (Chuanmai 38, Chuanmai 42,
Chuanmai 43 and Chuanmai 47) were released in Sichuan since 2003; Chuanmai
42—out-yielded commercial check variety by 23 %—and has been grown on
>100,000 ha since 2006 (Yang et al. 2009). In Norway also, 448 synthetic wheats
from CIMMYT were tested for powdery mildew, and synthetic wheats with partial
resistance were crossed with local cultivars (unpublished results).

At the National Institute of Agricultural Botany (NIAB) of Cambridge
University, SHWs were used for developing a ‘super wheat’, which had 30 %
higher yield than existing wheat cultivars (in 2012) and also carried tolerance
against a number of biotic and abiotic stresses. This will be the first commercialized
form of synthetic wheat, which is likely to be released by 2019–2022 (http://www.
niab.com/ news_and_events/article/281).

In Pakistan, during the two years of yield trials, two varieties derived from
SHWs had 20 and 35 % higher yields than the commercial check variety (Kazi and
Van Ginkel 2004). In 2003, a CIMMYT synthetic wheat derivative was also reg-
istered in Spain under the name Carmona. This is an early maturing variety that
provides seed in a shorter period relative to most commercial cultivars and is
valuable for those wheat growers, who often plant late in the year in southern Spain.
Carmona also has a better grain quality and is suited to zero-tillage systems, where
it resists foliar diseases and produces higher yields (Kazi and Van Ginkel 2004).

1.3.2.2 SHW-Derived ‘VOROBEY’ at CIMMYT

The biggest breakthrough in wheat breeding after ‘Veery,’ which carried the
1BL.1RS translocation, was the development of ‘Vorobey’ involving synthetic
hexaploid wheats (SHW). Under the CIMMYT’s program of Semiarid Wheat Yield
Trial (SAWYT) that was started in 1991 for the development of wheats for the
drought-prone areas, as many as 8 % of the lines in 5th SAWYT (1996) represented
SHW-derived lines; this proportion increased to 46 % in 15th SAWYT (2006).
However, the average coefficient of parentage of SHW in all synthetically derived
crosses decreased from 75 to 19 %. Using yield across locations as an index, the
average rank of the SHW-derived lines improved during the 5th to 12th SAWYT,
so that in SAWYT 11 and 12, SHW-derived line Vorobey was a top-performing
line. Vorobey performed well across all environments, giving yields up to 8 t/ha.
The use of SHW in wheat breeding for rainfed environments at CIMMYT has
increased significantly over the past 10–20 years and the performance and effect of
SBLs improved with time. High grain yield also had a positive correlation with
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improved harvest index, improved grain weight and increased above ground bio-
mass (Rattey et al. 2009, 2011; Shearman et al. 2005). The primary synthetic
superior progenies also had larger seed size/weight, improved number of
seeds/spike and number of spikes/plant (Cooper 2013; Cooper et al. 2012).

1.3.2.3 SHWs for QTL Mapping

SHWs have also been utilized for developing mapping populations that have been
used for QTL interval mapping. A list of these mapping populations has been
compiled by Ogbonnaya et al. (2013). SHWs have also been utilized for developing
a number of AB-QTL populations, which have been utilized for QTL mapping
(Huang et al. 2003, 2004; Moorthy et al. 2006; Naz et al. 2008). Different steps
involved in the production of AB-QTL populations in the form of synthetic
backcross-derived lines (SBLs) are depicted in Fig. 1.2.

1.3.3 Use of F1 Hybrids (Wheat × Alien Species) for Alien
Gene Transfer

An alternative to the above approach of using amphiploids (including SHWs)
involved production and utilization of tetraploid/pentaploid F1 hybrids (2n = 28 or

Fig. 1.2 Development of an advanced backcross population for AB-QTL analysis from the cross,
wheat (6x) × Ae. tauschii (2x)
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2n = 35) from the cross, wheat (6x) × alien species (2x or 4x). Following steps are
involved in this alternative approach: (i) hybridization of wheat with an alien
species (Figs. 1.2 and 1.3); (ii) selfing or backcrossing the F1 hybrids to hexaploid
wheat to obtain stable hexaploids (6x = 42 = 21II); alternatively, the seed of F1
hybrids may be irradiated or allowed to undergo induced recombination between
the chromosomes of wheat and those of the alien species via suppression of the
pairing control gene Ph1 (see later), and (iii) production and identification of wheat
progeny, which contains a small alien chromosome segment carrying the tar-
get alien gene, but avoiding the simultaneous transfer of associated deleterious
genes.

1.3.4 Alien Addition and Substitution Lines in Hexaploid
Wheat

Starting in the 1950s and 1960s, additions and substitutions of whole individual alien
chromosomes from a number of alien species to hexaploid wheat genome were
successfully achieved (Evans and Jenkins 1960; Riley 1960; Islam et al. 1981; Friebe
et al. 1998). Generally, disomic alien chromosome substitutions could be obtained
only for the corresponding homoeologous wheat chromosomes. For instance, 1R rye
chromosome could be substituted only for 1A, 1B, and 1D chromosomes, so that for
any diploid alien species with 2n = 14, only 21 disomic compensating substitutions
were possible. This production of disomic alien additions/substitutions was initially
attempted with the hope that these alien additions and substitutions may give birth to
new cultivated species that may prove to be superior to cultivated hexaploid wheat
(T. aestivum); this hope was never materialized, partly due to an instability of these
lines and partly due to lack of their superiority over best wheat cultivars. Some of the
alien species used for this purpose include the following (Gupta 1995): Secale cer-
eale, Aegilops comosa, Ae. geniculata, Ae. longissima, Ae. bicornis, Ae. biuncialis,

Fig. 1.3 Direct cross for transfer of one or more genes from tetraploid wheat into hexaploid wheat
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Agropyron junceum, Ag. intermedium, Ag. elongatum, Dasypyrum villosum, and
Hordeum vulgare (note that some of the Agropyron species listed here are now
known to belong to new genera like Thinopyrum).

Alien addition lines have largely been produced and utilized for gene transfer
using the following steps (Fig. 1.4): (i) hybridization between wheat and the alien
species followed by colchicine doubling of chromosome number to produce an
amphiploid (e.g., 8x = AABBDDUU in case of alien species Aegilops umbellulata);
(ii) crossing of the amphiploid with hexaploid wheat to get a heptaploid hybrid
(7x = AABBDDU), which will form 21IIW + 7IU at meiosis; (iii) selfing this hybrid
followed by selection of monosomic/disomic addition lines (21IIW + 1IU;
21IIW + 1IIU); (iv) crossing of these addition lines with wheat monosomics to get
alien substitution lines (20IIW + 1IIU); (v) use of the alien addition/substitution
lines for irradiation or induced recombination to produce translocations including
those involving whole-arm substitutions (centric fusion).

The alien addition and substitution lines carried a large number of desirable traits
including resistance against a variety of diseases. Therefore, these
addition/substitution lines have been used for systematic transfer of these traits to
elite and high yielding wheat cultivars. In a recent study, Aegilops biuncialis
chromosome 3Mb addition and substitution [3Mb(4B)] or translocation (3Mb.4BS
centric fusion) have been obtained with a view to improve the grain micronutrient
(Fe, Zn, Mn, K) contents in the grain (Farkas et al. 2014).

Fig. 1.4 Different steps
involved in the production of
whole chromosome alien
addition and alien substitution
lines in hexaploid wheat
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1.3.5 Alien Substitution/Translocation Lines in Tetraploid
Wheat

At USDA-ARS Cereal Crops Research Unit, Fargo, ND (USA), alien
substitution/translocation stocks were also produced in tetraploid wheat cultivar
‘Langdon.’ As listed by Joppa (1993), these stocks included the following: (i) 39
Langdon-T. dicoccoides substitution lines; (ii) 14 Langdon D-genome substitution
lines; (iii) 4 translocation lines representing 1AS-1AL.1DL translocations. The
details of these stocks are also available at GrainGenes.

More recently, at the same station at Fargo (USA), the alien species Thinopyrum
bessarbicun (2n = 14) was utilized to produce at least 14 alien addition lines in
tetraploid wheat. These addition lines were studied using mcFISH and molecular
markers (Jauhar and Peterson 2013).

1.3.6 Reconstitution of New Genomes Involving Alien
Species

Efforts were also made to reconstitute entirely new genomes, by combining variable
number of chromosomes from two different genomes (Evans 1964). In this study,
an amphiploid (AABBEE), derived by combining tetraploid wheat and a diploid
alien species (Agropyron elongatum = EE), was crossed with bread wheat. The F1
hybrid plants (AABBDE) exhibiting 14II + 14I at meiosis were selfed, and in the
progeny, plants exhibiting 21II at meiosis were selected. The hexaploids were
backcrossed again with wheat to identify the number of D and E chromosomes in
the reconstituted genome, through a study of meiosis in the F1 hybrids (Fig. 1.5).

1.3.7 Whole Alien Chromosome Arm Translocations

One of the most promising approach for alien gene transfer for wheat improvement
has been to produce Robertsonian translocations, each involving a whole chro-
mosome arm from an alien species (Fig. 1.6). The most important of these
translocations is the 1BL.1RS translocation found in the ‘Veery’ series of wheat
cultivars. The 1RS arm from rye (Secale cereale) carries a battery of resistance
genes specifying resistance to leaf rust (Lr26), stem rust (Sr31), stripe rust (Yr9),
and powdery mildew (Pm8) (Friebe et al. 1996a, b), and genes for adaptation to
abiotic stresses, including a robust drought-tolerant root system (Sharma et al.
2011). Because of tight linkage of these genes on the chromosome arm 1RS, the
genes are inherited as a single linkage block.
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The second example of the transfer of a whole arm of an alien chromosome is
T6AL.6VS, where the 6AS arm of wheat was replaced by the 6VS arm from
Dasypyrum villosum (syn. Haynalidia villosa). The alien chromosome arm 6VS
carries genes for resistance against (i) all known races of powdery mildew;
(ii) wheat curl mite, (ii) stripe rust, (iv) Fusarium head scab, and (v) soilborne
mosaic virus. In the plants heterozygous for Pm21, the chromosome T6AL·6VS
does not pair with the normal 6AL·6AS in their short chromosome arms during
meiosis. Thus, all of the genes on the 6VS arm are inherited as a single linkage
block. In another recent study, Ae. biuncialis chromosome 3Mb addition and sub-
stitution [3Mb(4B)] and translocation (3MbL.4BS, a centric fusion) were obtained
with a view to improve the grain micronutrient (Fe, Zan, Mn, K) contents in the
grain. Some examples of whole-arm substitutions (including the above two
examples) are listed in Table 1.2.

Fig. 1.5 Steps involved in the reconstitution of a new genome utilizing chromosomes from the
D-genome of wheat and E genome of Agropyron elongatum

Fig. 1.6 Different steps
involved in the production of
alien introgression lines in
wheat, where a complete arm
of alien chromosome is
substituted for a
homoeologous wheat
chromosome arm
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Many of the above whole-arm translocations could be easily identified with the
help of FISH. For instance, 1BL/1RS translocation in Indian wheat cultivars were
identified by Kumar et al. (2003), and those in Pakistani wheats were identified by
Tahir et al. (2014).

1.3.8 Transfer of Alien Segments: Translocation Lines

Transfer of alien chromosome segments (each representing part of a chromosome
arm) was achieved using either of the following two major approaches: (i) seed of
an alien addition/substitution line carrying the gene of interest on the alien chro-
mosome was irradiated, plants raised from irradiated seed backcrossed to a wheat
cultivar, and selection exercised in segregating backcross population for desirable
translocations; (ii) mutants for Ph1 locus (ph1 mutants) were used to facilitate
meiotic pairing between the alien chromosome and its wheat homoeologue.
Spontaneous translocations, following crosses made between wheat and an alien
species, have also been reported.

1.3.8.1 Translocations Due to Irradiation

A large number of lines with translocations between wheat and alien chromosomes
were produced through irradiation of seed for alien addition/substitution lines.
These translocation lines carried each a small chromosome segment from an alien
species and are largely listed in earlier reviews on the subject (for list of reviews,
see above). Some of the examples of these translocations produced during the
1950s and 1960s included the following: (i) a translocation (called ‘Transfer’) with
an Aegilops umbellulata chromosome segment carrying a gene for leaf rust resis-
tance (Sears 1956); this was the first example of useful transfer of an alien chro-
mosome segment for improvement of wheat; (ii) a translocation (called
‘Translocation-4’) with an Agropyron elongatum chromosome segment carrying a

Table 1.2 Some examples of the transfer of alien chromosome arms for wheat improvement

Donor species Target gene Translocation Method of transfer

Ae. umbellulata Lr9 T6BS.6BL-6UL Irradiation

Ae. biuncialis Genes for K, Zn, Mn T4B.3Mb Induced recombination

Secale cereale Pm8, Sr31, Lr26 T1BL.1RS Spontaneous

Yr9, Pm17, Gb2 T1AL.1RS Irradiation

Ag. elongatum Lr24, Sr24 T3DS.3DL-3Ae#1L Spontaneous

Lr24, Sr24 T3DS.3DL-3Ae#1L Induced recombination

Sr26 T6AS.6AL-6Ae#1L Irradiation

Lr19, Sr25 T7DS.7DL-7Ae#1L Irradiation
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gene for leaf rust resistance (Sharma and Knot 1966); (iii) a 6A-6E translocation
with a segment from Ag. elongatum chromosome 6E carrying stem rust resistance
gene Sr26; this stock carrying alien segment was used extensively for the devel-
opment of several Australian wheat cultivars (see Knott 1971, for a review); (iv) a
4A-2R translocation (called ‘Transec’) carrying resistance against leaf rust and
powdery mildew (Driscoll and Jensen 1964); this stock had low yields perhaps due
to non-homoeologous nature of the translocation and due to loss of some essential
genes from wheat.

One of the recent examples of translocations involving alien chromosome seg-
ments involved the use of an amphiploid, which combined the genomes of hex-
aploid wheat (AABBDD) and tetraploid alien species, Ae. biuncialis (UbUbMbMb).
The 10x amphiploid (AABBDDUbUbMbMb) was irradiated, and translocations
were identified in M0 and M1 generations using multicolor FISH (McFISH)
(Molnar et al. 2009). Translocations obtained in this and similar other studies will
prove useful for wheat improvement.

Majority of the above translocations, however, were long terminal or long
proximal in nature, except ‘Transfer,’ which carried an intercalary translocation.
Such long translocations would carry substantial linkage drag, if the gene of interest
(GOI) in the alien chromosome is located farther away from the
telomere/centromere, at an interstitial position. Sears (1981) suggested that inter-
stitial transfers can be obtained by intercrossing either the two translocations each
carrying the GOI (one carrying a proximal translocation and the other carrying a
distal translocation), or between the translocation line (carrying the GOI in a ter-
minal alien chromosome segment) and the recipient wheat cultivar. This would
allow recombination to produce a translocation line carrying a small interstitial
segment (for details, see Islam and Shepherd 1991).

1.3.8.2 Translocations Due to Induced Meiotic Recombination

In addition to the above translocations, which were introduced following irradia-
tion, strategies were also developed for utilizing induced homoeologous pairing
between one or more wheat chromosomes and their corresponding alien homoeo-
logues available within an alien addition or an alien substitution line. (i) use of
nullisomy for chromosome 5B carrying Ph1; (ii) use of 5B/5D
nullisomic-tetrasomic line devoid of 5B chromosome; (iii) use of a ph1 mutant,
which does not suppress, but instead allows homoeologous pairing; (iv) suppression
of the diploidizing effect of Ph1 locus by the genome of a specific strain of Ae.
speltoides/Ae. mutica.

(i) Use of 5B nullisomy. Nullisomy for 5B can be achieved through different
strategies, involving either the use of nullisomic/monosomic for 5B, mono-5B
wheat (carrying a disomic alien substitution of choice) or by using
‘nullisomic-5B tetrasomic-5D.’ Each of these cytogenetic stocks could be used
as a female parent in a cross with either an alien species or with an alien
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addition/substitution line. Monosmics for 5B were used by Riley (1966) for
transfer of alien genetic variation from Ae. bicornis, and by Joshi and Singh
for transfer of alien genetic variation from rye (Secale cereale). Later, Sears
(1972, 1973) utilized nulli-5B tetra-5D for crosses with alien substitution
lines, each carrying an alien chromosome from Ag. elongatum, and success-
fully transferred two leaf rust resistance genes (Lr 19, Lr24) from this alien
species. These lines carrying alien chromosome segments were later shown to
be 3D-3Ag and 7D-7Ag translocations.

(ii) Use of ph1 mutants. In the second approach, one may use a homozygous ph1
mutant line and cross it to either an alien species (Fig. 1.7) or to a mono-5B,
alien substitution line (Fig. 1.8), so that in the F1 hybrid, mutant ph1 allele will
be in hemizygous condition and will induce recombination between alien
chromosomes and their wheat homoeologues to allow transfer of alien seg-
ments (Figs. 1.7 and 1.8). Once alien transfer is achieved in disomic condition,
one may use this stock in the normal backcrossing program to transfer the
alien segment to a high yielding elite genotype.

Fig. 1.7 Steps involved in the transfer of an alien segment through a cross between a homozygous
ph1/ph1 mutant and a diploid alien species

Fig. 1.8 Steps involved in the use of ph1 mutant/deletion for transfer of alien segment to wheat
genome through recombination
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In a recent study, crossing of wheat—Ae. biuncialis disomic addition lines
with CSph1b (Chinese Spring wheat mutant for ph1b) led to an increased
frequency of pairing between wheat and Aegilops chromosomes in the F1
hybrids (Schneider et al. 2005; Molnár and Molnár-Láng (2010).

(iii) Suppression of Ph1 activity. It is known that certain strains of Ae. speltoides or
Ae. mutica suppress the effect of Ph1 locus in F1 hybrids obtained through a
cross between wheat and one such strain. Although this feature can be directly
utilized for transfer of desirable alien genes from these two alien species, the
system can also be utilized for transfer of alien genes from other alien species.
For instance, Riley et al. (1968) successfully utilized this system for transfer of
stripe rust resistance (Yr8) associated with an alien segment from Ae. comosa.
In this study, an alien addition line carrying relevant chromosome from Ae.
comosa was crossed to an Ae. speltoides strain that was known for suppression
of Ph1 effect. The F1 hybrids were crossed and backcrossed to a specific elite
wheat cultivar, and desirable recombinants were selected in each segregating
backcross generation.

1.3.8.3 Use of DNA-Based Molecular Markers for Alien Gene
Transfer

Protein and DNA-based molecular markers have also been used for the detection of
alien segments transferred to wheat using the approaches described above. These
markers also facilitated selection of plants carrying small interstitial segments
derived through recombination between two translocations that each carried a long
terminal or proximal segment. For instance, Koebner and Shepherd (1986) and
Sears (1981) induced recombination (using ph1b mutant, or nulli 5B-tetra 5D line)
between wheat and rye chromosome segments involving the translocations
1DL.1RS and 1BL.1RS. Following markers were utilized for identification of
recombinants, each carrying a desirable small alien segment: (i) protein markers,
Tri-1 and Gli-D1 encoded by genes located on 1DS, and (ii) the gene encoding
protein Sec-1 (a storage protein), and the gene Sr31 for stem rust resistance, both
located on rye chromosome arm 1RS. In another study, a number of isozymes
(Aco-1, Est-2, Got-2, and Acph-3) encoded by genes carried by one or more
Agropyron chromosomes were also used for tracking the presence of a small
desirable alien chromosome segment in a translocation line (Nichols 1983; Jenkin
et al. 1984).

DNA-based molecular markers were also utilized for following the transfer of
alien chromosome segments in the translocation lines. These molecular markers
included SCAR, PLUG, SSR, and SNP markers. FISH, mcFISH, and GISH were
also used for ascertaining the identity of the transferred alien chromosome segments
in improved wheat cultivars. A summary of some of the studies involving transfer
of alien chromosome segments using DNA-based molecular markers and
FISH/mcFISH/GISH is presented in Table 1.4. Some details of the studies
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involving improved wheat cultivars for ascertaining the presence/absence of alien
chromosome segments are briefly described in the next section.

1.4 Molecular Dissection of Alien Segments in Improved
Wheat Cultivars

The alien segments that are present in a large number of improved wheat cultivars
have been identified following several approaches including physical mapping
through FISH, McFISH, GISH, and genetic mapping using DNA-based molecular
markers. These are briefly described.

1.4.1 Use of FISH and GISH for Detection and Physical
Mapping of Alien Segments

Fluorescence in situ hybridization (FISH) and genomic in situ hybridization (GISH)
have been extensively used to identify alien chromosome segments in wheat gen-
ome. The first such attempts were made during the 1990s, when segments of rye
and Aegilops tauschii chromosomes could be identified using FISH, GISH (Friebe
et al. 1995a, b, c), and multicolor FISH (McFISH; Mukai and Yamamoto 1998). As
early as 1992, GISH was also used to identify alien chromatin from several alien
species (Leymus multicaulis, Thinopyrum bessarabicum, Hordeum chilense, H.
vulgare L., and Secale cereale) in wheat chromosomes (Schwarzacher et al. 1992).
Research work on detection of Thinopyrum alien segments in wheat using GISH
were also reviewed by Chen (2005). Recently, a wheat-Ae. biuncialis 3Mb(4B)
disomic substitution and a 3Mb.4BS centric fusion in the F3 progenies were iden-
tified using in situ hybridization with genomic DNA probes (FISH and GISH) and
SSR markers (Farkas et al. 2014).

1.4.2 Use of Molecular Markers for Detection of Alien
Segments

Molecular markers have also been utilized to locate and map alien segments on
wheat chromosomes. In a recent study, Olson et al. (2013) transferred an Ae.
tauschii alien segment carrying resistance against African stem rust fungus race
TTKSK (Ug99) to an elite hard winter wheat line, KS05HW14. In BC2 mapping
populations, bulked segregant analysis (BSA) allowed identification of marker loci
on 6DS and 7DS linked to stem rust resistance genes transferred from Ae. tauschii
accessions TA10187 and TA10171, respectively. Linkage maps were developed for
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both genes and closely linked markers were identified, which can be used for
selection and pyramiding with other Ug99-effective stem rust resistance genes. The
Ae. tauschii-derived resistance genes were temporarily designated SrTA10187
(associated with SSR loci Xcfd49 and Xbarc173) and SrTA10171 (associated with
SSR loci Xgdm88 and Xwmc827). These genes will serve as valuable resources for
stem rust resistance breeding. In another recent study, alien segments carrying
genes Lr57, Yr40, and Sr53 earlier transferred from chromosome 5Mg of Ae.
geniculata to chromosome 5D of wheat (Kuraparthy et al. 2007a, b, c; Liu et al.
2011) were recently mapped using SNPs (Tiwari et al. 2014). These examples
illustrate that molecular markers can be effectively used for mapping and transfer of
alien segments across wheat genotypes.

1.4.3 Radiation Hybrids for Identification of Alien Genes

Efforts have also been made to decipher the genetic architecture of alien segments
available in wheat cultivars. Such an analysis was often difficult due to lack of
pairing between the alien segment with the corresponding wheat segment, thus
eliminating the possibility of obtaining recombinants for genetic analysis. An
alternative approach was followed in a recent study, where Cao et al. (2011)
localized the Pm21 gene to a segment using radiation hybrid mapping and also used
microarray analysis to identify candidate genes induced on infection of this cultivar
with powdery mildew pathogen, Bipolaris graminis f. sp. tritici (Bgt).

1.5 Limitations in Alien Gene Transfer

In the past, there have been two major factors that have reduced the effectiveness of
wheat/alien gene transfer. These are briefly discussed in this section.

1.5.1 Insufficient Number of Markers

The first limitation of alien gene transfer has been the availability of insufficient
number of markers to screen large populations of wheat for the presence of alien
chromosome segments. However, by combining comparative mapping with next
generation sequencing (NGS) technology, it is now possible to develop an
unlimited number of markers for any part of the genome. These markers are now
being used to screen large populations for specific introgressions in monocot spe-
cies (Tiwari et al. 2014).
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1.5.2 Linkage Drag in Alien Gene Transfer

The second limitation in alien gene transfer is that an alien segment introgressed
into wheat is often associated with some deleterious genes resulting in reduction in
yield and/or fitness. Unfortunately, it is often very difficult to reduce the chromo-
some segment further, even by additional suppression of pairing control genes like
Ph1. An alternative approach to reduce the size of a chromosome segment involved
intercrossing of two lines with different but overlapping alien chromosome seg-
ments that carry the same target gene. As a result of recombination between the two
overlapping alien segments, in the presence of pairing control genes, some of the
progeny produced will carry a reduced alien chromosome segment that would carry
the target gene but not the deleterious genes. However, this approach described by
Sears for two Aegilops umbellulata chromosome segments carrying a gene for stem
rust resistance (Sr genes) required identification of lines possessing overlapping
alien chromosome segments in the first place (see Islam and Shepherd for a review).
This strategy has rarely been followed due to lack of markers available to identify
individuals carrying overlapping alien chromosome segments. However, the
sequencing of the model genomes and the development of NGS technology provide
means by which markers would be available for the whole genome of an alien
species to allow selection of individuals with overlapping alien segments carrying
the target gene(s).

1.6 Taxonomy of Alien Species and Wheat

The taxonomy of the grasses belonging to the tribe Triticeae has also been a subject
of discussion for the last more than five decades. Two important and unfortunate
revisions involved the following: (i) During the late 1950s and early 1960s, all
species of the genus Aegilops were merged within the genus Triticum on the ground
that two of the three sub-genomes of hexaploid wheat (A, B, and D sub-genomes),
namely B and D sub-genomes are derived from the genus Aegilops (Ae. speltoides
and Ae. tauschii). It was argued that progenitors of two of the three sub-genomes of
bread wheat belonging to the genus Triticum cannot come from another genus,
Aegilops. The revised classification with new names for all species of Aegilops
within the genus Triticum proposed by Bowden (1959) was used by scientists in the
North America and elsewhere for almost two decades (1965–1985), till Gupta and
Baum (1986) questioned this classification. Later, van Slageren (1994) also rec-
ognized Triticum and Aegilops as two independent valid genera, with the result that
during the last more than two decades now, once again Aegilops has been recog-
nized as valid genus and the use of new names of Aegilops species within the genus
Triticum was discontinued. This old classification has been followed in listing alien
species in Tables 1.3 and 1.4). One major disagreement is the treatment of
Amblyopyrum (formerly Ae. mutica) as a separate genus (van Slageren 1994); in
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Table 1.3 Some examples of alien species and the genes that were successfully utilized for wheat
improvement

Alien species Wheat cultivar Gene/chromosome Reference

Th. ponticum Sr43 (7el/7DL) Kim et al. (1993)

Th. intermedium L693 KSUD27,
MWG684 SFR1

YrL693 (–/1B)

T4 (TA5504) Lr38, 7a [7Ai#2L (7D)] Friebe et al. (1993,
1996a, b)

Th. elongatum Agatha Lr19, 7D
(T7DS_7DL-7Ae#1L)

Agent, Sears’
translocations
P83-171.1-12
(TA3475);
P84-171.5-7
(TA3476);
P73-231.1b-2,
P75-231-1 (TA3506)

Lr24, 3D, PSR1203 McIntosh et al.
(1977), Jiang et al.
(1994a, b)

Sears’ translocation
P75-271.3-2
(TA3494)

Lr29, 7D
(T7DL-7Ae#1L_7Ae#1S)

Friebe et al. (1996a,
b)

E. trachycaulus
(TA12052)

WGRC45 Undesignated, 1B
(T1B_1HtS)

Friebe et al. (2005)

Ae. umbellulata Transfer Lr9, 6BL
(T6BS_6BL-6U#1L)

Sears (1956, 1961),
Schachermayr et al.
(1994), Autrique et al.
(1995), Friebe et al.
(1996a, b)

Ae. ventricosa VPM1 Lr37, 2AS Bariana and McIntosh
(1993)

Ae. kotschyi Line S14 Lr54/Yr37, 2D Marais et al. (2005)

Ae. sharonensis Line 0352-4 Lr56/Yr38, 6A Marais et al. (2006)

Ae. geniculata
PAU-T756
(TA10437)

TA5602 [DS WL711
5Mg(5D)]

Lr57, 5DS
(T5DL_5DS-5MgS)

Kuraparthy et al.
(2007a)

Ae. triuncialis
(TA10438)

TA5605
(WL711*4/TA10438)

Lr58, 2BL
(T2BS_2BL-2tL)

Kuraparthy et al.
(2007b)

Ae. peregrina Line 0306 Lr59 G. F. Marais,
unpublished

Ae. speltoides CS 2A/2M#4/2,
RL6079

Lr28, 4A
(T4AS_4AL-7S#2S),
OPJ-02378

McIntosh et al.
(1982), Friebe et al.
(1996a, b), Naik et al.
(1998)

Ae. speltoides/T.
monococcum
amphiploid

RL5711 Lr35, 2B (T2B/2S#2) Kerber and Dyck
(1990), Friebe et al.
(1996a, b)

(continued)
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Table 1.3 (continued)

Alien species Wheat cultivar Gene/chromosome Reference

Pop. No. 2’ Line 2-9-2 Lr36, 6BS
(T6BL_6BS-6BS#2S)

Dvorak and Knott
(1990)

CI17882, CI17884,
CI17885, KS90H450

Lr47, 7A
(Ti7AS-7S#1S-7AS_7AL)

Friebe et al. (1991)

TA1836 WGRC47 Unknown Brown-Guedira et al.
(2003)

Ae. tauschii Uruguay Lr1, 5DL, PSR567
GLK621

McIntosh et al.
(1965), Ling et al.
(2004)

Festiguay, Kenya
W1483

Lr2, Lr15, 2DS Luig and McIntosh
(1968)

RL5289 (TA1599),
TA1649, TA1670,
TA1691, TA2378,
TA2468, TA2470,
TA2472, TA2527,
TA2528, TA2529,
TA2530

RL5406, WGRC7,
WGRC16

Lr21, 1DS, KSUD14
(Lr40 is identical to Lr21)

Kerber and Dyck
(1969), Huang and
Gill (2001)

RL5271 RL5404 Lr22a, 2DS Dyck and Kerber
(1970)

RL5497-1 RL5713 Lr32, 3DS, BCD1278
CDO395

Kerber (1987),
Autrique et al. (1995)

Not found in Ae.
Tauschii

RL6058, PI58548 Lr34/Yr18/Bdv1, 7DS,
SWM10

Dyck (1977),
Bossolini et al.
(2006), Lagudah et al.
(2006)

TA1675, TA2460,
TA2470, TTCC295
(Ae. cyĺındrica)

WGRC2, WGRC10,
WGRC16,
WX930249-4-1

Lr39, 2DS, GDM35 (Lr41
is identical to Lr39)

Raupp et al. (2001),
Singh et al. (2003)

WGRC11 Lr42, 1DS Cox et al. (1994a, b)

WGRC16 Lr43, Lr21, Lr39 G.L. Brown-Guedira,
unpublished

RL5683, RL5686,
RL5688, RL5689,
RL5778, RL5688;
RL5662, RL5764,
RL5766, RL5767,
RL5781-1,RL5782-1
RL5766, RL5767
RL5662

RL5865
(TC/RL5766),
RL5866
(TC/RL5767),
RL5867
(TC/RL5662),
RL5869, RL5868

LrA, 2DS (not allelic to
Lr39) LrB, 5D; LrC (not
allelic to Lr39, suppressed
at the hexaploid level);
LrD (not allelic to Lr39,
suppressed at the
hexaploid level); ALrA
ALrB ALrC

Innes and Kerber
(1994)

TA2541, TA1661,
TA1683, TA1585,
TA1583, TA1672,
TA1665, TA1667,
TA1677, TA2482

WGRC12 ALrD ALrE ALrF ALrG
ALrH ALrI ALrJ ALrK
ALrL

Miller (1991)

(continued)
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Table 1.4, it is retained within the genus Aegilops as Ae. mutica. (ii) Another
important and unfortunate proposal made by Dewey (1984) and Love (1984) was
the genomic system of classification, where no two taxa with the same genomic
constitution could belong to the same genus. As a consequence, a large number of
new genera were created, where Aegilops–Triticum group was split into as many as

Table 1.3 (continued)

Alien species Wheat cultivar Gene/chromosome Reference

Triticum timopheevii FTF, Sabikei 12,
Timvera W1308,
PI170925 (Red
Egyptian type)

Lr18, T5BS_5BL-5G#1L McIntosh (1983),
Yamamori (1994),
Friebe et al.
(1996a, b)

TA145, TA870,
TA874, TA895,
TA1520

WGRC36 Lr50, 2BL, GWM382 Brown-Guedira et al.
(1999, 2003)

TA28, TA913,
TA1538

WGRC35 Unknown Brown-Guedira et al.
(1999)

TA30 Unknown Brown-Guedira et al.
(1999)

Table 1.4 Examples of using FISH, GISH, and DNA-based molecular markers for mapping alien
segments in derived lines of wheat

Alien
species/genome

Wheat
cultivar

Alien
gene/chromosome

FISH/GISH/marker
type used

Reference

Ae. tauschii
(KB) Ae. tauschii
(Lr21)

PBW343 1D, 2D, 4D, 6D,
1D

SSR SNP Chhuneja et al.
(2008), Neelam
et al. (2013)

Th. ponticum Jinan177 FISH pSc119.2,
pAs1, GISH

Wang et al.
(2005)

Th. intermedium Z-148;
MY11

1St-1D PLUG; SCAR Hu et al. (2012)

Ag. elongatum
(Lr19 + Yp); Ae.
longissima (Pm13)

4x wheat 7Ag-7A 3S-3B FISH, GISH Ceoloni et al.
(2000)

Ag. elongatum
(Lr29)

RL6080 7Ag-7D SCAR Procunier et al.
(1995)

Secale cereale
(Lr25)

RL6084 2R-4A SCAR Procunier et al.
(1995)

Ae. speltoides
(Sr39)

2S-2B Niu et al. (2011)

Th. intermedium

Ae. geniculata
(Lr57, Yr40)

TA5601
TA5602

5MgS-5DL SNP Tiwari et al.
(2014)

Ae. caudata
(LrAC = Lr57)

T291-2
(PBW343)

5C-5D SSR Riar et al.
(2012)
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16 genera (5 genera from Triticum and 11 genera from Aegilops). Consequently,
diploid, tetraploid, and hexaploid wheats were assigned to different and indepen-
dent genera based on their genomic constitutions. This classification was also
criticized by us (Baum et al. 1987) and was never put to usage by geneticists and
plant breeders.

1.7 Summary and Future Perspectives

Cytogenetic manipulation in polyploid wheats has been relatively easier due to the
presence of homoeologous chromosomes carrying duplicate or triplicate genes, so
that loss of one copy is tolerated due to compensating effect of the other inserted
chromosomes, segments, or genes. It is also for this reason that the genetic variation
from the primary, secondary, and tertiary gene pools has been extensively utilized
for wheat improvement with remarkable success. The work involving this activity
has been adequately covered in several earlier reviews, so that most of this earlier
work has not been included in this chapter. Readers may like to consult these earlier
reviews for details about the earlier work. However, a summary of this earlier work
and some of the recent work on this subject has been covered in this chapter. In
recent years, some of the limitations in the transfer of alien chromosome segments
carrying desirable segments have now been overcome with the availability of gene
targeting approaches and the DNA-based molecular markers; these have been
briefly described.

With the availability of the newer approaches including those of gene targeting
(not covered in this chapter) and the use of DNA-based molecular markers, a
renewed interest in the transfer of alien genetic variation for wheat improvement
and in the study of wheat cultivars or genetic stocks carrying alien genetic variation
has been witnessed in recent years. More such studies will be conducted in future.
For instance, the BBSRC-funded WISP (Wheat Improvement Strategic Program)
consortium has been launched in UK with major emphasis on the use of alien
genetic variation for wheat improvement. It has been recognized that the alien
species carry wealth of genetic resource, which has only been marginally utilized so
far. Major part of this genetic resource remains still unexploited and will be the
subject of future research in the field of molecular cytogenetics and molecular-/
genomics-based plant breeding.
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Chapter 2
Quantitative Trait Loci Mapping
in Plants: Concepts and Approaches

Deepmala Sehgal, Richa Singh and Vijay Rani Rajpal

Abstract The narrow genetic base of modern crop cultivars is a serious obstacle to
sustain and improve crop productivity due to rapidly occurring vulnerability of
genetically uniform cultivars to potentially new biotic and abiotic stresses. Plant
germplasm resources, originated from a number of historical genetic events as a
response to environmental stresses and selection, are the important reservoirs of
natural genetic variations that can be exploited to increase the genetic base of the
cultivars. However, many agriculturally important traits such as productivity and
quality, tolerance to environmental stresses, and some of forms of disease resistance
are quantitative (also called polygenic, continuous, multifactorial, or complex traits)
in nature. The genetic variation of a quantitative trait is controlled by the collective
effects of numerous genes, known as quantitative trait loci (QTLs). Identification of
QTLs of agronomic importance and its utilization in a crop improvement requires
mapping of these QTLs in the genome of crop species using molecular markers. This
review will focus on the basic concepts and a brief description of existing
methodologies for QTL mapping and their merits and demerits including traditional
biparental mapping and the advanced linkage disequilibrium (LD)-based association
mapping. Examples of some of the recent studies on association mapping in various
crop species are provided to demonstrate the merits of high-resolution association
mapping approach over traditional mapping methods. This review thus will provide
non-expert readers of crop breeding community an opportunity to develop a basic
understanding of dissecting and exploiting natural variations for crop improvement.
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2.1 Introduction

As most of the modern genotypes cultivated today have descended from a relatively
small number of landraces, the genes controlling important traits have reduced
diversity compared to the gene pool of landraces and wild relatives. In view of such
threats of constant genetic erosion, gene banks have been established and main-
tained in order to mainly preserve wild plant accessions as well as landraces. Gene
bank collections are the important reservoirs of natural genetic variations origi-
nating from a number of historical genetic events as a response to environmental
stresses (Hoisington et al. 1999). Unlocking biodiversity held in gene banks and
mobilizing useful variation to breeding programs are required for the genetic
improvement of crops and to meet the overarching goal of diversification of the
adapted gene pools. However, many agriculturally important variations such as
productivity and quality, tolerance to environmental stresses, and some of forms of
disease resistance are controlled by polygenes which complicate the breeding
process since phenotypic performances only partially reflects the genetic values of
individuals. These complex traits are referred to as quantitative traits (also called as
polygenic or multifactorial traits) and the regions within genomes that contain genes
associated with a particular quantitative trait are known as quantitative trait loci
(QTLs).

It is challenging to identify QTLs based on only traditional phenotypic evalu-
ation. Identification of QTLs of agronomic importance and its utilization in a crop
improvement requires mapping of these QTLs in a genome of crop species using
molecular markers. Identification of QTLs with genetically linked DNA-markers is
useful for incorporating genes into improved cultivars via marker-assisted selection
(MAS), map-based cloning of the tagged genes, and for a better understanding of
the genetics of complex traits (Asins 2002). Linkage analysis and association
mapping are the two most commonly used methods for QTL mapping. This review
provides an overview of the two QTL mapping methods with special focus on
mapping population types, linkage map construction, and marker–trait association
analysis using different statistical methods and software programs. The contents of
the review will provide non-expert readers of crop breeding community an
opportunity to develop a basic understanding of dissecting and exploiting natural
variations for crop improvement.
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2.2 Principle of QTL Analysis

Identifying a QTL or a gene within a plant genome is like finding the proverbial
needle in a haystack. However, QTL analysis can be used to divide the haystack in
manageable piles and systematically search them. In simple terms, QTL analysis is
based on the principle of detecting an association between phenotype and the
genotype of markers. Markers are used to partition the mapping population into
different genotypic groups based on the presence or absence of a particular marker
locus and to determine whether significant differences exist between groups with
respect to the trait being measured (Tanksley 1993; Young 1996). A significant
difference between phenotypic means of the groups (either 2 or 3), depending on
the marker system and type of population, indicates that the marker locus being
used to partition the mapping population is linked to a QTL controlling the trait.

2.3 Traditional QTL Mapping (Linkage Mapping)

The general steps involved in a traditional QTL mapping experiment are as follows:
(1) select two parental strains that have differences between them in the alleles that
affect variation in a trait. The parents need not be different in the mean phenotypic
value of the trait as different allelic combinations can yield the same phenotypic
mean; (2) develop an appropriate mapping population by crossing the selected
parents; (3) phenotype the mapping population for the trait(s) of interest (mor-
phological characters, agronomic traits, disease and pest scores, drought resistance,
etc.) under greenhouse, screen-house, and/or field conditions; (4) generate the
molecular data on the population with adequate number of uniformly spaced
polymorphic markers; (5) construct a genetic map; and (6) identify molecular
markers linked to the trait(s) of interest using statistical programs.

2.3.1 Mapping Populations Used in QTL Mapping
Experiments

Various types of mapping population may be produced from the heterozygous F1
hybrids:

1. Double haploid lines (DHLs): plants are regenerated from pollen (which is
haploid) of the F1 plants and treated to restore diploid condition in which every
locus is homozygous. Since the pollen population has been generated by
meiosis, the DHLs represent a direct sample of the segregating gametes.

2. Backcross (BC) population: the F1 plants are backcrossed to one of the parents.
3. F2 population: F1 plants are selfed.
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4. F2:3/F2:4 lines: F3/4 plants tracing back to the same F2 plant, also called F2
families.

5. Recombinant inbred lines (RILs): inbred generation derived by selfing indi-
vidual F2 plants and further single seed descent. A population of RILs represents
an ‘immortal’ or permanent mapping population.

Each of the above mapping populations possesses advantages and disadvan-
tages. Hence, the choice of the type of mapping population depends on many
factors such as the plant species, type of marker system used, and the trait to be
mapped later on. F2 populations, derived from F1 hybrids, and BC populations,
derived by crossing the F1 hybrid to one of the parents, are the simplest types of
mapping populations developed for self-pollinating species. Their main advantages
are that they are easy to construct and require only a short time to produce.
However, such populations are not fixable due to their inherent heterozygous
genetic constitution. This restricts their wide utility in QTL analysis. The length of
time needed for producing RIL population is the major disadvantage, because
usually six to eight generations are required. Development of a DH population takes
much less time than RIL; however, the production of DH populations is only
possible in species that are amenable to tissue culture (e.g., cereal species such as
rice, barley, and wheat). The major advantages of RIL and DH populations are that
they produce homozygous or ‘true-breeding’ lines that can be multiplied and
reproduced without genetic change occurring. This allows for the conduct of
replicated trials across different locations and years. Furthermore, seed from indi-
vidual RIL or DH lines may be transferred between different laboratories for further
linkage analysis and the addition of markers to existing maps. Information provided
by co-dominant markers is best exploited by an F2 population, while information
obtained by dominant marker systems can be maximized by using RILs or DHLs.
Double haploids, F2 or F3 families, or RILs are advantageous if the trait to be
mapped cannot be accurately measured on a single-plant basis but must be assessed
in replicated field experiments.

2.3.2 Construction of Genetic/Linkage Maps

A linkage map may be thought of as a ‘road map’ of the chromosomes derived from
two different parents. Linkage maps indicate the position and relative genetic dis-
tances between markers along chromosomes. Construction of a linkage map, using
genotyping data generated on any of the above-mentioned mapping populations, is
an important step before initiating any QTL analysis. In a segregating mapping
population, there is a mixture of parental and recombinant genotypes. The fre-
quency of recombinant genotypes is used to calculate recombination fractions,
which is then used to infer the genetic distance between markers. By analyzing the
segregation of markers, the relative order and distances between markers can be
determined; the lower the frequency of recombination between two markers, the
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closer they are situated on a chromosome (conversely, the higher the frequency of
recombination between two markers, the further away they are situated on a
chromosome). Two commonly used mapping functions that convert recombination
frequency into centimorgan (cM) distance are the Kosambi mapping function,
which assumes that recombination events influence the occurrence of adjacent
recombination events, and the Haldane mapping function, which assumes no
interference between crossover events. Linkage between markers is usually calcu-
lated with an odds ratio (i.e., the ratio of linkage versus no linkage). This ratio is
more conveniently expressed as the logarithm of the ratio and is called a logarithm
of odds (LOD) value or LOD score (Risch 1992). LOD values of >3 are typically
used to construct linkage maps. LOD values may be lowered in order to detect
linkage over a greater distance or to place additional markers within maps con-
structed at higher LOD values (Collard et al. 2005). Linked markers are grouped
together into linkage groups, which represent chromosomal segments or entire
chromosomes.

It is important to note that distance on a linkage map is not directly related to the
physical distance of DNA between genetic markers, but depends on the genome
size of the plant species (Paterson 1996). Furthermore, the relationship between
genetic and physical distance varies along a chromosome (Tanksley et al. 1992;
Young 1994; Künzel et al. 2000). For example, there are recombination ‘hot spots’
and ‘cold spots,’ which are chromosomal regions in which recombination occurs
more frequently or less frequently, respectively (Faris et al. 2000; Ma et al. 2001;
Yao et al. 2002). Commonly used software programs for constructing linkage maps
include Mapmaker/EXP (Lander et al. 1987; Lincoln et al. 1993),
MapManager QTX (Manly et al. 2001), and THREaD Mapper Studio (Cheema
et al. 2010) which are freely available from the Internet. JoinMap is another
commonly used program for constructing linkage maps (Stam 1993).

2.3.3 Detection of QTLs

Four widely used methods for detecting QTLs are single-marker analysis, interval
mapping by maximum likelihood, interval mapping by regression, and composite
interval mapping.

2.3.3.1 Single-Marker Analysis (Point Analysis)

The traditional method to detect a QTL in the vicinity of a marker is studying
single-genetic markers one at a time. The phenotypic means for progeny of each
marker class are compared (e.g., means of the marker classes AA, Aa, aa). The
difference between two means provides an estimate of the phenotypic effect of
substituting an A allele by an a allele at the QTL. To test whether the inferred
phenotypic effect is significantly different from zero, a simple statistical test, such as
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t-test or F-test, is used. A significant value indicates that a QTL is located in the
vicinity of the marker. Single-point analysis does not require a complete molecular
linkage map. The farther a QTL is from the marker, the less likely it is to be
detected statistically due to crossover events between the marker and the gene.

2.3.3.2 Interval Mapping by Maximum Likelihood

QTL interval mapping is the most common method of QTL analysis. The principle
behind interval mapping is to test a model for the presence of a QTL at many
positions between two mapped marker loci. This model is a fit, and its goodness is
tested using the method of maximum likelihood. For example, if it is assumed that a
QTL is located between two markers, the 2-loci marker genotypes (i.e., AABB,
AAbb, aaBB, aabb for DH progeny) each contain mixtures of QTL genotypes.
Maximum likelihood involves searching for QTL parameters that give the best
approximation for quantitative trait distributions that are observed for each marker
class. Models are evaluated by computing the likelihood of the observed distri-
butions with and without fitting a QTL effect. The map position of a QTL is
determined as the maximum likelihood from the distribution of likelihood values
(LOD scores: ratio of likelihood that the effect occurs by linkage to likelihood that
the effect occurs by chance), calculated for each locus.

2.3.3.3 Interval Mapping by Regression

Interval mapping by regression (Haley and Knott 1992) was developed primarily as a
simplification of the maximum likelihood method. It is essentially the same as the
method of basic QTL analysis (regression on coded marker genotypes) except that
phenotypes are regressed on QTL genotypes. Since the QTL genotypes are unknown,
they are replaced by probabilities estimated from the nearest flanking markers.

2.3.3.4 Composite Interval Mapping

One of the factors that weakens interval mapping is fitting the model for a QTL at
only one location. There are two problems with this approach: (a) the effects of
additional QTL will contribute to sampling variance and (b) if two QTLs are linked,
their combined effects will cause biased estimates. The method of composite
interval mapping (CIM) was proposed as solution (Jansen and Stam 1994; Utz and
Melchinger 1996; Zeng 1994). CIM will perform the analysis in the usual way,
except that the variance from other QTLs is accounted for by including partial
regression coefficients from markers (‘cofactors’) in other regions of the genome.
CIM gives more power and precision than simple interval mapping (SIM) because
the effects of other QTLs are not present as residual variance. CIM can remove the
bias that can be caused by QTLs that are linked to the position being tested.
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2.4 QTL Mapping Softwares

There are over 100 genetic analysis software packages (linkage analysis and QTL
mapping). Here, we list some features of the most commonly used software
packages.

2.4.1 MapMaker/QTL (ftp://genome.wi.mit.edu/pub/
mapmaker3/)

A user-friendly, freely distributed software program runs on almost all platforms. It
analyzes F2 or backcross data using standard interval mapping.

2.4.2 MQTL

MQTL is a computer program for CIM in multiple environments. It can also
perform SIM. Currently, MQTL is restricted to the analysis of data from
homozygous progeny (double haploids, or RILs). Progeny types with more than
two marker classes (e.g., F2) are not handled.

2.4.3 PLABQTL (http://www.uni-hohenheim.de/~ipspwww/
soft.html)

PLABQTL is a freely distributed computer program for CIM and SIM of QTL. Its
main purpose is to localize and characterize QTL in mapping populations derived
from a biparental cross by selfing or production of double haploids. Currently, this
program is the easiest software for composite interval mapping.

2.4.4 QTL Cartographer (http://statgen.mcsu.edu/qtlcart/
cartographer.html)

QTL Cartographer is a QTL software written for either UNIX, Macintosh, or
Windows. It performs single-marker regression, interval mapping, and composite
interval mapping. It permits analysis from F2 or backcross populations. It displays
map positions of QTLs using the GNUPLOT software.
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2.4.5 MapQTL (http://www.cpro.dlo.nl/cbw/)

MapQTL is a licensed software program. It performs Kruskal–Wallis test
(single-marker analysis), CIM, and multiple interval mapping on almost all kinds of
mapping populations.

2.4.6 Qgene

Qgene is a QTL mapping and marker-aided breeding package written for
Macintosh. It has a user-friendly graphical interface and produces graphical outputs.
QTL mapping is conducted by either single-marker regression or interval
regression.

2.4.7 SAS

SAS is a general statistical analysis software. It can detect QTL by identifying
associations between marker genotype and quantitative trait phenotype by
single-marker analysis approach such as ANOVA, t-test, GLM, or REG.

Table 2.1 summarizes QTL mapping studies in three most important staple
crops, viz. wheat, maize, and rice, for various traits using different marker systems,
analysis procedure, and software programs.

2.5 Why Association Mapping?

The precision of QTL mapping largely depends on the genetic variation (or genetic
background) covered by a mapping population, the size of a mapping population,
and number of marker loci used. Once QTLs affecting a trait of interest are accu-
rately tagged using above-outlined approach, marker tags are the most effective
tools in a crop improvement that allows the mobilization of the genes of interest
from donor lines to the breeding material through MAS. Although traditional QTL
mapping will continue being an important tool in gene tagging of crops, it is a ‘now
classical approach’ and suffers from a number of limitations. First, allelic variation
in each cross is usually restricted because typically only two parents are used to
create a QTL mapping population. Second, since early generation crosses are used,
the number of recombination events per chromosome is usually small. Third, a
typical QTL identified from a cross consisting of a few hundred offspring can span
anywhere between a few to tens of centimorgans encompassing several megabases.
Such large genome regions contain, typically, hundreds if not thousands of genes,
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making the process of identifying the causal gene in a QTL region a tedious and
quite time-consuming task through map-based cloning (Price 2006). In addition, for
many organisms the generation of mapping populations is either not possible or at
least very time-consuming. For instance, the long generation time of most forest
trees have completely prevented any progress in elucidating the genetic basis of
complex traits using QTL mapping experiments (Neale and Savolainen 2004).

These limitations, however, can be reduced with the use of ‘association map-
ping’ (Zhu et al. 2008). Turning the gene-tagging efforts from biparental crosses to
natural populations (or germplasm collections) and from traditional QTL mapping
to linkage disequilibrium (LD)-based association mapping can lead to the most
effective utilization of ex situ conserved natural genetic diversity of worldwide crop
germplasm resources. This approach has many major advantages over conventional
QTL mapping. First, a much larger and more representative gene pool can be
surveyed. Second, it bypasses the expense and time of mapping studies and enables
the mapping of many traits in one set of genotypes. Third, a much finer mapping
resolution can be achieved, resulting in small confidence intervals of the detected
loci compared to classical mapping, where the identified loci need to be
fine-mapped. Finally, it has the potential not only to identify and map QTLs but
also to identify the causal polymorphism within a gene that is responsible for the
difference in two alternative phenotypes.

2.5.1 General Steps in Association Mapping

The performance of association mapping includes the following general steps:
(1) selection of a group of individuals from a natural population or germplasm
collection with wide coverage of genetic diversity; (2) measuring the phenotypic
characteristics (yield, quality, tolerance, resistance, etc.) in the population, prefer-
ably, in different environments and multiple replication/trial design; (3) genotyping
the mapping population individuals with molecular markers; (4) quantification of
the extent of LD of a chosen population genome using molecular marker data;
(5) assessment of the population structure (the level of genetic differentiation
among groups within a sampled population individuals) and kinship (coefficient of
relatedness between pairs of each individuals within a sample); and (6) based on
information gained through quantification of LD and population structure, corre-
lation of phenotypic and genotypic data with the application of an appropriate
statistical approach that reveals ‘marker tags’ positioned within close proximity of
targeted trait of interest.
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2.5.2 Selection of Association Mapping Panels

Various kinds of populations can be used for association mapping; gene bank
collections, elite breeding materials and/or specialized populations (e.g., NAM or
MAGIC). In the case of gene bank materials, core collections are expected to
represent most of the genetic variability with a manageable number of accessions
and thus are suitable for association studies. In addition, the process of selecting a
minimum sample size with maximum variation has a normalizing effect that is
expected to reduce population structure and decrease LD, thus creating a situation
favorable for association mapping. Core collections are useful for mapping quali-
tative traits, such as disease resistance or quality characteristics. Their broad genetic
variability makes them often unsuitable for analysis of quantitative traits because
accessions are usually unadapted to growing conditions, resulting in poor precision
of trait measurement.

In plant breeding programs, a large body of phenotypic data is accumulated for
elite lines from replicated field experiments over locations and years, thereby saving
time to develop a panel. The use of those data for association mapping requires
statistical models accounting for covariances introduced both by experimental
design (years, locations, replicates) and polygenic effects. Moreover, those data are
often unbalanced because new lines are included in field trials each year, while
other lines are discarded. Population structure and higher LD can be prominent in
elite material because it is common for closely related lines to be admitted to
advanced trials. However, if pedigrees are known, the relationships among the lines
can be determined and used to control for polygenic effects. Although association
mapping in elite lines may not offer much improved resolution compared with QTL
analysis in biparental mapping populations, there are at least two important
advantages: a substantially higher level of polymorphism and detection of favorable
alleles directly in the target population. Elite lines might be more desirable materials
for mapping low-heritability traits such as grain yield, as the material is genetically
more stable and are well adapted to normal growing conditions.

To increase the power and mapping resolution of marker–trait associations,
some specialized populations have been constructed utilizing a joint strength of
QTL mapping and AM. For example, nested association mapping
(NAM) populations and multiparent advanced generation intercross (MAGIC)
populations have been developed in many crops (Kover et al. 2009; McMullen et al.
2009; Huang et al. 2012). NAM populations are developed by crossing a set of
diverse lines (up to 25) to one reference line. F1s of each cross are then selfed to
develop RILs for each population. MAGIC populations are created by several
generation of intercrossing among multiple founder lines, for example, four or eight
lines. Multiple founders similar to a NAM population capture more allelic diversity
than biparental mapping populations, whereas the multiple cycles of intercrossing
give greater opportunity of recombination and hence greater precision of QTL
mapping. However, it should be kept in mind that generating such specialized
populations requires and a lot of effort, time, and investment.
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2.5.3 Concept and Calculation of Linkage Disequilibrium
(LD)

The terms linkage and LD are also often confused. Linkage refers to the correlated
inheritance of loci through the physical connection on a chromosome, whereas LD
refers to the correlation between alleles in a population (Flint-Garcia et al. 2003) but
not necessarily on the same chromosome. As a starting point for association
mapping, it is important to gain knowledge of the patterns of LD for genomic
regions of the ‘target’ organisms and the specificity of the extent of LD among
different populations or groups to design and conduct unbiased association map-
ping. The two most commonly used statistics to measure LD are r2 (square of the
correlation coefficient) and D′ (disequilibrium coefficient). The statistics r2 and D′
reflect different aspects of LD and perform differently under various conditions. The
r2 is affected by both mutation and recombination, while D′ is affected by more
mutational histories.

There are freely available softwares such as GOLD (Abecasis and Cookson
2000), TASSEL (www.maizegenetics.net), and Powermarker (Liu and Muse 2005)
to depict the structure and pattern of LD. One can estimate an average genome-wide
decay of LD by plotting LD values (r2 values) obtained from a data set covering an
entire genome (i.e., with more or less evenly spaced markers across all chromo-
somes in a genome) against distance. When such a LD decay plot generated, the
usual practice is to look for distance point where LD value (r2) decreases below 0.1
or half strength of D′ (D′ = 0.5) based on the curve of nonlinear logarithmic trend
line. This gives the rough estimates of the extent of LD for association study, but
for more accurate estimates, highly significant threshold LD values (r2 ≥ 0.2) are
also used as a cutoff point. The decrease of the LD within the genetic distance
indicates that the portion of LD is conserved with linkage and proportional to
recombination (Gupta et al. 2005).

2.5.4 Types of Association Mapping

Association mapping generally falls into two broad categories: (1) candidate-
gene-based association mapping, which relates polymorphisms in selected candi-
date genes that have purported roles in controlling phenotypic variation for specific
traits and (2) genome-wide association mapping (GWAM), which surveys genetic
variation in the whole genome to find signals of association for various complex
traits (Risch and Merikangas 1996; Zhu et al. 2008). The absolutely most important
aspect when deciding between a candidate gene approach and a whole-genome
study is the extent of LD (see section on LD below) in the organism of interest,
because the extent of LD determines not only the mapping resolution that can be
achieved, but also the numbers of markers that are needed for an adequate coverage
of the genome in a genome-wide study (Whitt and Buckler 2003). In species where
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LD extends over long physical distances, relatively few markers are needed to
ensure adequate genome coverage. For example, in species like Arabidopsis
thaliana or in inbred lines of barley, LD can extend for tens or even hundreds of
kilo base pairs, thus allowing GWAM with a relatively low number of evenly
spaced markers (Aranzana et al. 2005; Rostoks et al. 2006). However, in many
predominantly or obligately outcrossing organisms, such as maize (Remington et al.
2001) and many forest trees (Neale and Ingvarsson 2008), LD only extends a few
hundred base pairs. For these species, several million markers would have to be
genotyped to ensure adequate genome-wide coverage. Hence, in such species
before several million markers (mainly single nucleotide polymorphisms) are
generated, candidate-gene-based association mapping can be equally useful.

A candidate-gene-based association study is more hypothesis-driven than a
genome-wide study because mapping is restricted to genes thought to be good
candidates for controlling the trait of interest (Neale and Savolainen 2004; Hall
et al. 2010). Although the selection of candidate genes is not always straightfor-
ward, genes are usually selected based on information obtained from, for instance,
genetic, biochemical, mutation, physiology, or expression studies in both model
and non-model plant species. The construction of molecular linkage maps based on
the genes [e.g., expressed sequence tags (ESTs), EST-SSRs)] is another way of
identifying the candidate genes underlying QTL, instead of time-consuming fine
mapping (Sehgal and Yadav 2009). Standard neutrality tests applied to DNA
sequence variation data can also be used to select candidate genes or amino acid
sites that are putatively under selection for association mapping. This is one of the
effective alternative strategies in association mapping that allow reducing the total
amount of marker genotyping in less number of individuals. This increases the
power and precision of the trait–marker correlations. However, it is important to
remember that a candidate gene approach is limited by the choice of candidate
genes that are identified and hence always runs the risk of missing out on identi-
fying causal mutations located in non-identified candidate genes.

2.5.5 Candidate-Gene-based Association Studies in Plants

The candidate gene strategy has shown promise for bridging the gap between
quantitative genetic and molecular genetic approaches to study complex traits
(Cattivelli et al. 2008; Ingvarsson and Street 2011). Along this line, important
studies on association mapping with the candidate gene approach are summarized
as follows. Vernalization requirement in wheat is controlled by four major genes,
viz. VRN1, VRN2, VRN3, and VRN4, with VRN1 gene copies VRN-A1, VRN-B1,
and VRN-D1 located on the long arms of chromosomes 5A, 5B, and 5D, respec-
tively (Yoshida et al. 2010). An association mapping study conducted by Rousset
et al. (2011) on 235 hexaploid wheat collections revealed the effects of the flow-
ering time candidate genes in modulating flowering time in wheat. In that study,
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genetic variation in VRN-A1, VRN-B1, and VRN-D1 genes explained a large part of
phenotypic variation in growth habit. Huang and Brûlé-Babel (2012) studied
genetic diversity, haplotype structure, and association of genes involved in starch
biosynthesis in wheat. Genes encoding granule-bound starch synthase (GBSSI, also
known as waxy or Wx genes) and soluble starch synthase (SSIIa) were selected for
nucleotide diversity and SNP density study. None of the SNPs within the three
SSIIa genes and Wx-D1 gene was associated with yield-related traits. However,
both SNPs and haplotypes within the Wx-A1 gene were associated with seed
number per spike, seed weight per spike and thousand kernel weight. Another study
on grain size of wheat also demonstrated the association of haplotype of a grain size
gene (TaGW2) with larger grain size, earlier heading date and maturity in hexaploid
wheat (Su et al. 2011). Similarly, transcription factors such as the
gibberellin-regulated Myb factor (GAMYB), the barley leucine zippers 1 and 2
(BLZ1, BLZ2), and the barley prolamin box binding factor (BPBF) were evaluated
for their association with agronomic traits in barley (Haseneyer et al. 2010). SNPs
within BLZ1 were associated with days to flowering, and its haplotype was also
associated with both days to flowering and plant height. The haplotype of BLZ2 was
associated with thousand kernel weight, while the haplotype of the BPBF gene was
associated with both crude protein and starch in barley endosperm (Haseneyer et al.
2010). However, the candidate genes explained only a small portion of the total
genetic variation. Similarly for sorghum and rice, candidate genes involved in
starch biosynthesis were associated with the expected traits and the results were in
agreement with QTL studies (Bao et al. 2006; Figueiredo et al. 2010).

More than 20 studies of candidate gene association analysis in maize have been
published to date. These studies used candidate genes from well characterized and
relatively simple metabolic pathways (Wilson et al. 2004; Harjes et al. 2008; Yan
et al. 2010) or those with extensive prior evidence for the role of the candidate gene
(s) in the control of the phenotype of interest such as map-based cloning studies
(Salvi et al. 2007; Ducrocq et al. 2008; Zheng et al. 2008; Buckler et al. 2009). The
candidate genes were also selected based on information in closely related species
(Li et al. 2010a, b), and information from QTL mapping studies and/or expression
results (Krill et al. 2010). The most comprehensive candidate gene association
results have been recently reported in maize for SNPs identified from 540 genes
putatively involved in accumulation of carbohydrate and ABA metabolites during
drought stress (Setter et al. 2010). In this study, the SNP from a homologue of an
Arabidopsis MADS-box gene was significantly associated with phaseic acid in ears
of irrigated plants, while a SNP in pyruvate dehydrogenase kinase was significantly
associated with silk sugar concentrations. Similarly, a SNP from an aldehyde
oxidase gene was associated with ABA levels in silk under non-irrigated
conditions.

The candidate gene association mapping approach has been widely applied in
forest tree genetics studies as developing a biparental population is practically
unfeasible for most conifers. González-Martínez et al. (2006) studied the pattern of
polymorphisms of 18 drought-responsive candidate genes in 32 Pinus taeda L.
individuals. LD within the sequenced gene regions varied from low to high
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depending on the candidate gene locus. A total of 196 SNPs and 82 LD blocks were
obtained in 18 candidate gene loci. By constructing LD blocks, 94 haplotype SNPs
were identified to improve the LD values and were successfully used in detecting
significant r2 values for LD blocks study. The same authors evaluated the associ-
ation of four candidate genes belonging to different functional classes with carbon
isotope discrimination (CID) at two locations. The genes were general protection
factor (dhn-1), antioxidants (sod-chl), transcription factor (wrky-like), and putative
cell wall protein (lp5-like). Antioxidant (sod-ch1) and Cu/Zn superoxide dismutase
genes showed significant association with CID at both locations. However, none of
the significant associations explained a substantial amount of phenotypic variance
in CID.

2.5.6 Confounding Effects of Population Structure
in Association Mapping

One of the main hurdles for using association mapping to dissect the genetic
architecture of complex traits in plants is the risk of incurring false positives due to
population structure (Pritchard et al. 2000). The problem of population structure
arises because any phenotypic trait that is also correlated with the underlying
population structure at neutral loci will show an inflated number of positive asso-
ciations resulting in Type I errors. Among many methods developed to deal with
this problem, ‘genomic control’ (GC) method (Devlin and Roeder 1999) estimates
association using a large number of putative neutral markers or markers not thought
to be involved in controlling the trait of interest. The distribution of the test statistic
of interest is then calculated from these associations and a critical value corre-
sponding to the desired Type I error rate is chosen from this distribution. Another
method that is commonly used to control for population structure is structured
associations (SA) (Pritchard et al. 2000). SA first searches a population for closely
related clusters/subdivisions using Bayesian approach and then uses the clustering
matrices (Q) in association mapping (by a logistic regression) to correct the false
associations. Population structure and shared co-ancestry coefficients between
individuals of subdivisions of a population can be effectively estimated with
STRUCTURE program (Pritchard et al. 2000) using several models for linked and
unlinked markers.

Principal component analysis (PCA) was recently suggested as a fast and
effective way to diagnose population structure (Zhu and Yu 2009). The PCA
method summarizes variation observed across all markers into a number of
underlying component variables and these components, typically the first few, can
then be used to replace Q to adjust for population structure. The PCA method
makes it computationally feasible to handle a large number of markers (tens of
thousands) and correct for subtle population stratification. There are many programs
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that can be used to calculate PCA such as DARwin (Perrier and Jacquemoud-Collet
2006) and EIGENSTRAT (Price et al. 2006).

However, incorporating only population structure information in the analysis is
not good enough itself when highly structured population with some degree of
related individuals are used in the association mapping. A mixed linear model
(MLM) that combines both population structure information (Q-matrix or PCA) and
level of pairwise relatedness coefficients (kinship-matrix) should be used in the
analysis. Although computationally intensive, MLM approach is very effective in
removing the confounding effects of the population in association mapping (Yu
et al. 2005).

2.5.7 Association with Raw Data or BLUPs or Residuals

In general, raw data can be used directly in association analysis provided it is
available for all entries and for all replicates in different locations/years. For cases
where phenotypes are not evaluated for all individuals and replicates due to large
sample size, best linear unbiased predictors (BLUPs ) from a mixed model may be
substituted as the dependent variable. In such cases, the association analysis using
BLUPs can be performed with many fewer observations and require much less
time.

More recently, researchers have also used residuals instead of raw data. The
rationale is that after removing all the effects except the marker, including the
polygenic genetic variance captured by the BLUPs, the signal due to marker
association is still contained in the residuals. Signal from the marker will be
removed only to the extent that it is correlated with the other effects. The residual
approach performs as well as the approach using raw phenotype directly for
low-heritability traits (Aulchenko et al. 2007). Because the association test using
residuals is performed without including the polygenic random effect, tests of
individual markers run quickly. The mixed model equations with thousands of
individuals only need to be solved once for any particular phenotype. After that, the
millions of association tests for individual markers can then be performed using
simple t-tests or F-tests of the marker classes.

2.5.8 Association Analysis Programs

Public, freely available software suitable for association analysis using mixed
models in plants includes TASSEL and EMMA/R. Both analyze moderately large
data sets in a reasonable amount of time but only allow a single effect (samples or
taxa) to be fit as a random effect. All other effects are treated as fixed. EMMA relies
on the R for data management and visualization, whereas TASSEL handles those
functions itself. Several commercial software packages available for association
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studies include ASREML, JMP Genomics, SAS, and GenStat. ASREML and JMP
Genomics are specifically engineered for genetic analysis and can handle more
complex models, whereas general purpose packages such as SAS Proc Mixed and
GenStat can perform association analysis but require more expertise and pro-
gramming on the part of the user.

From the user’s perspective, clearly freely available software such as TASSEL
plays an important role in scientific investigation. Another advantage of using
TASSEL is that both graphical user interface (GUI) and command line interface
(CLI) versions exist. In the GUI, the plug-ins are invoked by clicking buttons on the
interface. With the CLI, the plug-ins are used in a predetermined pipeline that
passes the output from one step to the input of another. Hence, scientists can use
these versions depending on their expertise and consistent results are achieved
independent of the interface. In the latest version of TASSEL (TASSEL 5.0),
compressed MLM method is available for computing large data sets with up to
500,000 markers.

2.5.9 Significance Threshold

A threshold is set to declare significant associations. Any of the two statistical
methods can be used to correct for multiple comparisons: false discovery rate
(FDR) and Bonferroni correction. The correction is needed whenever one would
like to test multiple hypotheses simultaneously. FDR controls the expected pro-
portion of false positives among significant results by determining a threshold from
the observed p value distribution in the data, whereas Bonferroni corrections control
the chance of any false positives (Benjamini and Hochberg 1995). Given the aims
of the study, one may consider a high FDR for some projects (e.g., investigating the
genetic architecture of a trait) and a low FDR for others (e.g., identifying candidate
loci for follow-up studies).

2.5.10 Validation of Association Results

Table 2.2 summarizes genome-wide association studies conducted in three major
crops. It clearly shows the increase in association studies in wheat, maize, and rice
for dissecting various complex traits. As the number of studies documenting alleles
showing significant associations with quantitative trait variation, there is an
increasing need to replicate findings before marker information is incorporated in
selection decisions, or before large sums are invested into identification of causal
factors and gene cloning. The most straightforward way is to compare the associ-
ation mapping results with previous results published for the trait, for example,
using biparental populations. If markers in close proximity (within 10 cM) to
previously reported QTLs/genes are identified, the result will not only be validated
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but also increase the confidence to pursue the new genomic target identified for the
trait. Secondly, results can be validated in different populations. This is more
reliable as the probability of observing false positives becomes small if significant
associations are confirmed in two or more validation populations. Third, if asso-
ciation studies point to alleles with opposite effects on a trait of interest, one can
generate multiple F2 populations from parents that harbor contrasting alleles and
determine whether differences in phenotype co-segregate with the locus in question.
Once markers tightly linked to the target trait are validated, they provide several
magnitudes of return on investment through increased speed and cost efficiency of
breeding programs.

However, failure to replicate a previously documented association can occur
because of a large number of issues, both in the initial and the replication study,
including factors such as difficulties in replicating the environment, small sample
size, poor study design, or lack of rigorous phenotype scoring (Manolio et al. 2009).
Another concern is that allelic effects of previously documented associations usu-
ally decline in replication studies. This phenomenon is known as the ‘Beavis effect’
(Beavis 1994) in the QTL mapping literature and occurs because significant
associations are reported only when test statistics exceed a predetermined critical
threshold. The estimated effects of the detected associations are therefore sampled
from a truncated distribution, and the weaker the initial effect the more serious this
overestimation is (Rockman 2008). The Beavis effect has also been shown to occur
in association mapping studies (Ingvarsson et al. 2008). Hence, careful consider-
ation of the power of the prospective association study should be taken early on in
the experiment, so that things like the Beavis effect can be minimized or eliminated.

2.6 Conclusions

Comparison of linkage analysis and association mapping for QTL detection
revealed that linkage mapping is more useful for genome-wide scan for QTLs,
while association mapping gives more precise location of an individual QTL.
Therefore, linkage analysis may be preferred for preliminary location of QTLs and
then use association mapping for more precise location. Association mapping is
prone to the identification of false positives, especially if the experimental design is
not rigorously controlled. For example, population structure has long been known
to induce many false positives and accounting for population structure has become
one of the main issues when implementing association mapping in plants. Also,
with increasing numbers of genetic markers used, the problem becomes separating
true from false positive and this highlights the need for independent validation of
identified association. The examples of association mapping studies performed in
three most important crops’ germplasm largely demonstrate the flourish of crop
genomics era with the utilization of powerful LD-based association mapping tool.
Currently, a number of such studies are in progress for various other crops in many
laboratories worldwide. The near-future completion of genome sequencing projects
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of crop species, powered with more cost-effective sequencing technologies, will
certainly create a basis for application of whole-genome-association studies. This
will provide with more powerful association mapping tool(s) for crop breeding and
genomics programs in tagging true functional associations conditioning genetic
diversities, and consequently, its effective utilization.
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Chapter 3
Developing and Deploying Abiotic
Stress-Tolerant Maize Varieties
in the Tropics: Challenges
and Opportunities

B.M. Prasanna

Abstract Maize (Zea mays L.) is a preferred staple for 900 million consumers in
the developing world, including 120–140 million poor farm families. The demand
for maize is growing sharply due to its multifaceted uses (food, feed, fodder,
specialty corn, and industrial uses). However, maize yields in the tropical rainfed
environments, especially in sub-Saharan Africa (SSA) and South Asia, are affected
by an array of abiotic and biotic stresses, thereby limiting national maize yields to
1–3 tons per hectare (t/ha), while the global average is around 5 t/ha. Therefore,
developing and deploying high-yielding, climate-resilient maize (with tolerance to
drought, heat, waterlogging, and biotic stresses), coupled with climate-smart agri-
cultural practices, are critical for improving maize yields and reducing the high risk
and vulnerability of the maize-growing smallholder farmers in the tropics to the
climate variability. International Maize and Wheat Improvement Center
(CIMMYT) has been intensively engaged since 1970s in breeding elite tropical
maize germplasm with tolerance to important abiotic stresses, especially drought,
using managed-stress screening and selection for key secondary traits. This formed
the base for successful development, testing, and deployment of CIMMYT-derived
abiotic stress-tolerant maize varieties in SSA, Latin America, and Asia, in part-
nership with an array of public and private sector institutions. Notable among the
projects with strong focus on development and delivery of abiotic stress-tolerant
tropical maize germplasm are the following: Drought Tolerant Maize for Africa
(DTMA), Water Efficient Maize for Africa (WEMA), Improved Maize for African
Soils (IMAS), and Heat Tolerant Maize for Asia (HTMA). Increasing genetic gains
and breeding efficiency, especially in developing high-value abiotic stress-tolerant
maize germplasm, requires: (a) carefully undertaken field-based phenotyping at
several relevant sites as well as under technically demanding managed-stress
screens; (b) better understanding of the genetic architecture of traits; and (c) uti-
lization of modern breeding tools/strategies, including genome-wide association
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studies (GWAS), genomic selection, and doubled haploid (DH) technology for
rapid development of improved products. Multi-institutional efforts, especially
public–private alliances, are also key to ensure that the improved varieties effec-
tively reach the farming communities vulnerable to climate change.

Keywords Maize � Climate resilience � Phenotyping � Genetic gains � Seed
delivery

3.1 Introduction

Maize is the key crop for food and feed security and income generation for millions
of smallholder farmers in sub-Saharan Africa (SSA), Asia, and Latin America. It is
a major source of calories in the diets of nearly 230 million inhabitants of devel-
oping countries—81 million in SSA, 141 million in South Asia, and 8 million in
Latin America. Annual per capita maize consumption averages 36, 10, and 23 kg,
respectively, in these regions, but this masks significant variation and per capita
food consumption of maize. In Mesoamerica, annual maize consumption exceeds
80 kg per capita in Guatemala, Honduras, and El Salvador, rising to 125 kg in
Mexico (Shiferaw et al. 2011).

Maize accounts for almost half of calories and protein consumed in eastern and
southern Africa (ESA) and one-fifth of calories and protein consumed in West
Africa. Maize consumption levels exceed 130 kg per capita per year in Lesotho,
Malawi, and Zambia. The highest amounts of maize consumed are found in
southern Africa, at 85 kg/capita/year, as compared to 27 kg/capita/year in East
Africa and 25 kg/capita/year in West and Central Africa (Shiferaw et al. 2011). In
South and South-east Asia, where direct maize consumption on an annual average
is estimated to be only 6 and 16 kg per capita, respectively, there are several areas
(especially in the highlands and tribal regions) where maize is consumed directly at
much higher rates (Babu et al. 2013).

In Asia, countries such as China, India, and Indonesia have recorded impressive
growth rates in maize production (in the range of 5–6 % per year). Maize is now the
crop with the largest cultivated area in China, with nearly 33.5 million hectares (Hu
and Zimmer 2013); globally, China’s maize acreage and production are next only to
the USA. Maize yields have registered impressive increases in China, from 4.5 to
5.75 t/ha (+0.9 % per annum). The Corn Belt of China, stretching from the
northeast to south-west of the country, cuts across 11 provinces (Heilongjiang, Jilin,
Hebei, Henan, Shandong, Inner Mongolia, Liaoning, Shanxi, Yunnan, Sichuan, and
Shaanxi) accounts for 81 % of area under maize and nearly 83 % of total maize
produced (Hu and Zimmer 2013).
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Although developed countries, particularly the USA, contribute predominantly
to maize production, demand for maize in developing countries is expected to
surpass the demands for both wheat and rice by the year 2020 (Pingali and Pandey
2001). The growth in demand for human consumption of maize in the developing
world is predicted to be 1.3 % per annum until 2020. Moreover, rising incomes are
expected to result in a doubling of consumption of meat across the developing
world (Naylor et al. 2005), leading to a predicted growth in demand for feed maize
of 2.9 % per annum. Hence, there is need for at least a 2 % per annum increase in
maize production to meet this growth in global human population and shift in
dietary preferences (Ortiz et al. 2010). Maize demand is projected to see 87 % rise
by 2020 as compared to its demand in 1995 (IFPRI 2003). An array of factors are
contributing to this sharp increase in maize demand, including increase in per capita
income, changing diets, and a rapidly growing poultry sector (Shiferaw et al. 2011).
For instance, India’s maize demand has been forecast to grow by 36 per cent in the
next four years touching 30 million tons in 2017 and double within the next nine
years to touch about 44 million tons by 2022.

3.2 The Challenge of Improving Maize Productivity
in the Tropics

Both production and productivity have to be significantly improved if the devel-
oping world has to successfully meet the rapidly growing demand for maize. The
average maize yields in several of the African countries are still below 1 t/ha, while
many countries have only 1–2 t/ha, due mainly to poor soils and farmers’ limited
access to fertilizer or improved maize seed. Similarly, maize yields in many of
Asian countries remain low, with India, Nepal, and the Philippines achieving
≈2 t/ha, Indonesia and Vietnam ≈3.5 t/ha, Thailand almost 4 t/ha, and China 5 t/ha,
compared to the world average of 4.7 t/ha in 2005 and current USA average of
9.4 t/ha (Prasanna et al. 2010).

Several factors, including overdependence on rainfall, frequent droughts, yield
losses due to pre- and post-harvest pathogens and insect–pests, weeds, poor agro-
nomic management, and lack of access to quality seed, continue to affect maize
production and productivity in the developing world, particularly in SSA, Asia, and
Latin America. It is notable that eight major maize-producing countries—China,
India, Indonesia, Nepal, Pakistan, Philippines, Thailand, and Vietnam—taken
together, produce 98 % of Asia’s maize and 28 % of global maize. In most of these
countries, maize is predominantly grown under rainfed conditions by the small-
holder, resource-poor farmers. Increasing maize yield by even 1 t/ha in the
low-yielding countries in Africa and Asia could deliver a much higher relative
impact than does the same increase in the high-yielding environments.
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3.2.1 Drought Stress

With most maize production dependent on rainfall, especially in the developing
world, maize is particularly vulnerable to drought and its yields fluctuate more
widely from year to year than is the case for rice and wheat, which are more
commonly irrigated. Thus, drought is recognized as the most important constraint
across the rainfed lowland and upland environments in the developing world. For
instance, over 80 % of maize grown in South and South-east Asia is rainfed, with an
average yield that is less than half of the irrigated maize. There is further increase in
rainfed maize area at 1.8 % per year, which is six times more than the irrigated area
(Edmeades 2007). The decline in the irrigated area is mostly due to the diminishing
groundwater table that puts the irrigated area under threat. This situation is likely to
exacerbate in the coming decades due to climate change, often leading to inadequate
and/or uneven incidence of rainfall in the crop season alongside temperature changes
(IPCC 2007; ADB 2009). Alleviating the effects of drought alone could increase
average maize yields by 35 % across Asia-7 (excluding China) and by 28 % in
south-west China (Gerpacio and Pingali 2007).

3.2.2 Waterlogging Stress

Waterlogging is a major problem for maize production in several maize
agro-ecologies where rainfall is erratic and intense, and the soil drainage capacity is
poor. Over 18 % of the total maize production area in South and South-east Asia is
frequently affected by floods and waterlogging problems, causing production losses
of 25–30 % annually (Cairns et al. 2012). The problem of waterlogging during the
crop cycle is exacerbated due to climate change in some maize-growing regions in
the developing world; for example, the distribution patterns of rainfall rather than
total annual rainfall are predicted to change in South Asia and in many areas in SSA
(IPCC 2007). Flood and waterlogging frequently affect more than 18 % of the total
maize production area in South and South-east Asia causing production losses of
25–30 % annually (Zaidi et al. 2010; Cairns et al. 2012).

Climate change effects are expected to further complicate the already difficult
situation of uneven/poor rainfall distribution pattern. Countries in the Greater
Himalayan region—Bangladesh, Bhutan, northern India, and Nepal—are facing
increased frequency and magnitude of extreme weather events, resulting in flood-
ing, landslides, and devastation of agricultural crops, besides negative impacts on
ecological health. The coastal areas of Bangladesh, India, the Maldives, and Sri
Lanka are at high risk from projected sea level rise that may cause displacement of
human settlements, saltwater intrusion, loss of agricultural land and wetlands, and a
negative impact on tourism and fisheries (Ahmad and Suphachalasai 2014). Flash
floods occur not only during the seedling stage but also at the flowering and grain
filling stages, often forcing the farmers (especially in Bangladesh and Eastern India)
to harvest maize ears before physiological maturity.
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3.2.3 Heat Stress

Maize is particularly vulnerable to the reproductive stage heat stress. Climate
projections also suggest that elevated temperatures, especially in the drought-prone
areas of SSA and rainfed areas in South Asia, are likely to result in significant crop
yield losses (Cairns et al. 2013a). From analysis of over 20,000 historical maize trial
yields in Africa, Lobell et al. (2011) reported a yield reduction of 1 and 1.7 % for
every degree-day above 30 °C under optimal rainfed and drought conditions,
respectively. Temperatures are expected to increase in SSA by an average of 2.1 °C
by 2050 (Cairns et al. 2012). The most important effects of elevated temperatures
on maize yield reduction include shortened life cycle, reduced light interception,
and increased sterility (Cairns et al. 2012).

3.2.4 Poor Soil Fertility

Declining soil fertility and expanding soil acidity, low phosphorus availability, and
aluminium toxicity affect maize yields on about 4 million hectares of land world-
wide (Shiferaw et al. 2011). The problem of poor soil fertility is particularly severe
in SSA where all the maize mega environments are affected (Pingali and Pandey
2001). Use of fertilizer and restorative crop management practices remains rela-
tively low and inefficient in many developing countries, particularly in SSA (Smale
et al. 2011).

3.3 Developing Climate-Resilient Maize Varieties: Some
Major Initiatives

The future of maize production and, consequently, the livelihoods of several million
smallholder farmers worldwide are based to a great extent on breeding for
high-yielding and stress-resilient varieties. The technological opportunities for
maize improvement have increased tremendously in recent years. Significant strides
have been made particularly with regard to understanding the phenotypic and
molecular diversity in the maize germplasm, identification of genes/QTLs
influencing diverse traits, especially tolerance to important biotic and abiotic
stresses, developing precision phenotyping protocols, and utilizing marker-assisted
or genomics-assisted breeding strategies for improving stress resilience in maize.
Some of the major initiatives on developing climate-resilient maize for the tropics
are highlighted below.
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3.3.1 Drought Tolerance

Understanding the environmental conditions that contribute to drought and effec-
tively unravelling genetic variability for drought tolerance in appropriate environ-
ments are two critical factors for the success of breeding for drought tolerance.
CIMMYT’s work since 1970s on characterization of drought-prone environments
in the tropics, identification of suitable secondary traits and trait donors in breeding
for drought tolerance, optimizing procedures for undertaking managed drought
stress phenotyping trials, developing drought-tolerant (DT) maize germplasm
through extensive multi-location and multi-year experiments, and disseminating the
stress-tolerant cultivars in partnerships with various public and private organiza-
tions, holds considerable significance for improving the livelihoods of the
resource-poor farmers in the developing world.

CIMMYT is presently implementing an array of projects in SSA, Asia, and Latin
America for developing and deploying climate-resilient varieties. Under the
Drought Tolerant Maize for Africa (DTMA) project, jointly implemented by
CIMMYT and IITA, in close collaboration with NARS and private sector institu-
tions in 13 countries in Africa, nearly 180 drought-tolerant maize varieties have
been released during 2007–2014, with close to 60 % of these being hybrids. These
varieties perform as well as or better than the commercial varieties currently
available on the market under optimum (no water deficit stress) conditions and
outperform the best commercial checks by at least 25–30 % under drought stress
and low-input conditions. DTMA has also facilitated production and delivery of
about 52,000 tons of DT maize seed in 2014 in partnerships with about 90 seed
companies, benefiting an estimated 5 million African households.

The DT varieties developed by CIMMYT typically have a combination of traits
that confer them tolerance to drought conditions; these include reduced barrenness
under drought stress, short anthesis-silking interval, reduced leaf senescence (as
compared to susceptible germplasm), and longer leaf area duration during grain
filling (Edmeades 2008; Bruce et al. 2002). Some of the DT varieties developed by
CIMMYT and released in SSA have wide adaptation. For example, one of the most
popular DT varieties (ZM521), developed at CIMMYT-Zimbabwe, is currently
grown in several countries in eastern and southern Africa, including Angola,
Burundi, Ethiopia, Kenya, Malawi, Mozambique, South Africa, Tanzania, Zambia,
and Zimbabwe.

The Water Efficient Maize for Africa (WEMA) Project is another important
public–private partnership, that is intensively engaged in developing and deploying
drought-tolerant and insect-resistant white maize varieties in five target countries in
SSA (Kenya, Tanzania, Uganda, Mozambique, and South Africa), through a
combination of conventional breeding, marker-assisted breeding, and transgenes.
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3.3.2 Heat Stress Tolerance

Compared to other abiotic stresses associated with climate change, especially drought
stress, work on developing and deploying heat stress-tolerant tropical/subtropical
maize is still in its infancy. Studies undertaken by the CIMMYT team to identify heat
stress-tolerant tropical maize lines among the elite, DT maize germplasm developed
in Mexico, Asia, and Africa revealed high vulnerability of most of the tropical maize
germplasm, including commercial cultivars in South Asia, SSA, and Latin America,
to reproductive stage heat stress. Several of the DT parents developed by CIMMYT
and widely used in hybrid maize breeding in eastern and southern Africa were found
to be highly susceptible to drought stress under elevated temperatures; a notable
example is CML442 × CML444 that is used as the female parent in several com-
mercial hybrids. Therefore, intensive efforts are required to ensure that the most
widely used DT inbred lines and hybrids also possess tolerance to combined drought
and heat stresses, especially for deployment in drought-prone areas where tempera-
tures are predicted to increase.

Despite the above-mentioned limitation, a few CIMMYT inbred lines with high
levels of tolerance to drought as well as combined drought and heat stress, most
notably La Posta Sequia C7-F64-2-6-2-2 and DTPYC9-F46-1-2-1-2, have been
identified. Such lines are presently being utilized in developing elite germplasm with
tolerance to combined drought and heat stress (Cairns et al. 2012, 2013b). CIMMYT
is presently implementing two major research projects, supported by USAID under
the Feed the Future initiative, for developing and deploying heat-resilient maize for
SSA and Asia. The Heat-Tolerant Maize for Asia (HTMA) Project, initiated in 2012,
brings together public and private institutions based in South Asia (Bangladesh,
India, Nepal, and Pakistan), besides Purdue University, USA, for accelerated
development and deployment of heat stress-resilient maize germplasm.

3.3.3 Waterlogging Tolerance

Considerable variation was observed among maize inbreds in tolerance to water-
logging/flooding of older seedlings (Mano et al. 2006; Zaidi et al. 2010). At
EMBRAPA-Brazil, recurrent selection over 12 cycles resulted in the development
and subsequent release of the waterlogging-tolerant BRS4154 maize line, with
20 % yield advantage under waterlogging compared to the original source (Ferreira
et al. 2007). Both additive and non-additive gene actions contribute to the
expression of waterlogging tolerance (Zaidi et al. 2010). QTL mapping undertaken
by CIMMYT-Asia team, using single-nucleotide polymorphisms (SNPs), revealed
five QTLs on chromosomes 1, 3, 5, 7, and 10 conferring waterlogging tolerance;
these QTLs together explained approximately 30 % of phenotypic variance for
grain yield under waterlogging stress, with effects ranging from 520 to 640 kg/ha
for individual genomic regions (Zaidi et al. 2015).
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3.4 Improved Germplasm with Package(s) of Adaptive
Traits

For developing climate-resilient maize germplasm, breeding programmes also need
to incorporate, more efficiently, packages of traits such as abiotic and biotic stress
tolerance. Climate change projections suggest more frequent weather extremes, and
occasionally, more than one within one crop season (e.g. drought and waterlogging)
could also happen, thereby increasing on the short-run the likelihood of crop fail-
ures and on the long-run major production declines (Zaidi and Cairns 2011).

In southern Africa and South Asia, maize farmers are likely to require varieties
with tolerance to drought stress at elevated temperatures. Similarly, tolerance to
both drought and waterlogging is becoming increasingly important for some areas
in South and South-east Asia and may be required by farmers in small areas in SSA
(Cairns et al. 2013a). Under the BMZ-funded Abiotic stress-Tolerant Maize for
Asia (ATMA) project led by CIMMYT, and with partners in India, Bangladesh, the
Philippines, Indonesia, and Vietnam, significant progress was made towards
development of improved maize germplasm adapted to South and South-east Asia,
and with enhanced levels of tolerance to drought, waterlogging, or combined stress
tolerance. New hybrid combinations were developed by crossing promising
stress-tolerant lines (DT and/or waterlogging tolerance) and evaluated across
moisture regimes, including managed drought and waterlogging stresses, and
optimal conditions. A set of approximately 50 promising hybrids are at advanced
stage and ready for large-scale adaptive trials.

For effectively developing climate-resilient maize varieties with packages of
adaptive traits, breeding programmes need to be reoriented for simultaneous
selection under combinations of stresses. This requires establishment of a strong
network of managed-stress phenotyping/screening sites and use of standardized
protocols for specific combinations of stresses predicted in the target environments.
Future maize genotypes should also be equipped with a more efficient rooting
system to improve water-use efficiency. From the breeding perspective, this will
require developing high-throughput root screening systems (rhizotronics) under
both field and controlled conditions and identifying key root traits associated with
improved water and nutrient capture in the field. Such efforts could lead to iden-
tification of suitable trait donors for improving water and nutrient use efficiency of
maize varieties.

3.5 Approaches for Enhancing Genetic Gains
in Stress-Prone Environments

The ability to develop, in a cost- and time-efficient manner, elite maize hybrids with
high yield potential and necessary adaptive traits (abiotic and biotic stress resi-
lience) will be critical for the improved productivity and diversification of cropping
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systems. While conventional breeding has been successful in developing an array of
elite maize hybrids, rapid advances in breeding tools and techniques, especially
doubled haploidy (DH), high-throughput phenotyping for traits of interest, mech-
anization of breeding operations (to the extent possible), molecular marker-assisted
breeding, and decision support tools/systems (Fig. 3.1) offer excellent opportunities
for improving genetic gains and enhancing breeding efficiency. A few of these
important components will be briefly discussed here.

3.5.1 Doubled Haploid (DH) Technology
in Maize Breeding

Greater access to low-cost hybrid seed and more rapid development of improved
hybrids are vital to increase maize productivity and enhance income opportunities
to maize growers, while meeting the demands of food, feed, and nutrition security.
Development of stable and productive inbred lines to produce hybrid seed is the
cornerstone of successful and affordable hybrid maize technology. The DH tech-
nology is now a powerful tool to accelerate development, identification, and use of
elite breeding lines. DH not only significantly reduces the time and resources
required for generating homozygous lines, but also enhances “forward breeding”
(Geiger and Gordillo 2009; Prasanna et al. 2012).

The in vivo haploid induction using temperate haploid inducers (genetic stocks
with high haploid induction capacity) has been adapted by an array of commercial
maize breeding programmes in Europe, North America, and more recently in Asia

Fig. 3.1 Components for enhancing genetic gains in maize
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(especially China), but the lack of tropically adapted haploid inducer lines impeded
the application of DH technology in the tropical maize breeding programmes
(Prigge et al. 2012). Tropically, adapted haploid inducers with a haploid induction
rate (HIR) of up to 10 % have been recently developed through collaboration
between CIMMYT and the University of Hohenheim (Prigge et al. 2011; Prasanna
et al. 2012). These tropicalized haploid inducers have already been shared with a
large number of interested institutions in Africa, Latin America, and Asia, for
research or commercial use under specific terms and conditions. The availability of
tropicalized haploid inducers is expected to significantly enhance the efficiency of
DH line production, increase seed set and rates of induction, and reduce the costs
of inducer line maintenance and seed production. CIMMYT is also in the process of
further optimizing the DH protocol and developing second-generation haploid
inducer lines adapted to specific tropical environments, especially SSA, Asia, and
Latin America, to further widen the application of DH technology in maize
breeding programmes.

While DH technology is the primary mode of deriving new inbred lines by
several large private sector breeding programmes, National Agricultural Research
Systems (NARS) and small and medium enterprise (SME) seed companies in
several Asian countries have so far not derived benefits out of maize DH technology
for various reasons. CIMMYT, in partnership with Kenya Agricultural and
Livestock Research Organization (KALRO), has also established a centralized
maize DH facility at Kiboko (Kenya) for strengthening maize breeding pro-
grammes, including those of NARS and SME seed companies in SSA. A similar
facility is being planned for Asia, in partnership with Asian institutions.

3.5.2 High-Throughput and Reasonably Precise
Phenotyping

Field-based phenotyping still remains a major bottleneck for future breeding pro-
gress. Phenotyping capacity of several institutions in Asia is lagging far behind the
capacity to generate genomic information. Phenotyping capacity is constrained in
many countries, limiting our ability to breed better cultivars with higher grain yield
and stress resilience (Prasanna et al. 2013b; Araus and Cairns 2014). Field-based
phenotyping of appropriately selected traits, using low-cost, easy-to-handle tools, is
now possible and should become an integral and key component in the maize
breeding programmes. There is also a distinct need for the public and private
institutions to come together and establish “phenotyping networks” for compre-
hensive and efficient characterization of genetic resources and breeding materials
for important target traits.

Molecular breeding strategies, such as genome-wide association studies
(GWAS), marker-assisted recurrent selection (MARS), and genome-wide selection
(GS), are being implemented by several institutions worldwide. However,
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genotypic predictions for both MARS- and GS-based strategies depend heavily on a
single phenotyping cycle, thus increasing the need for reliable phenotyping
methodologies (Cobb et al. 2013).

Combining advances in aeronautics and high-performance computing is paving
the way for the development of field-based phenotyping platforms (Araus and
Cairns 2014); such platforms could range from ground-based to the aerial.
Recently, under the MAIZE CGIAR Research Program, the Crop Breeding Institute
(Zimbabwe), University of Barcelona (Spain), AirElectronics (Spain), Consejo
Superior de Investigaciones Científicas (Spain), and CIMMYT developed an UAV
(unmanned aerial vehicle), called “Skywalker”. The “Skywalker” is able to carry a
payload of up to 1 kg and can carry several sensors including thermal, multispectral,
and digital cameras. This UAV is currently being used to identify genotypic vari-
ability in plant water status under drought stress and biomass production and
senescence under drought, heat, and low N stresses (Cairns et al. 2012b) at
CIMMYT-Harare, with promising results.

Beyond such technological advances, there is also an immense need for mea-
suring and reducing the effects of field variability, thereby increasing the genetic
signal-to-noise ratio to detect real differences between genotypes. CIMMYT is
making intensive efforts for characterizing field variability at the key phenotyping
sites worldwide and for improving field-based phenotyping through various
approaches, such as monitoring soil moisture using neutron probes/time-domain
reflectometer (TDR), non-destructive estimation of biomass (using NDVI or
Normalized Differential Vegetation Index), and analysing canopy behaviour using
Infrared thermography and functional aspects of roots using Rhizotronics (Prasanna
et al. 2013b).

Breeding programmes of majority of the NARS and SME seed companies in the
developing countries have limited capacity for undertaking precision phenotyping,
particularly under repeatable and representative levels of abiotic stresses in the field.
Intensive efforts are therefore required to build the capacity of the institutions on
methods to characterize and control field site variation (for improving repeatability),
adopting appropriate experimental designs, selection of “right” traits for pheno-
typing, proper integration, analysis, and application of heterogeneous data sets, in
addition to generating better awareness of technological advances with regard to
phenotyping.

3.5.3 Genomics-Assisted Breeding

Molecular marker-assisted or genomics-assisted breeding is the way forward in
effectively meeting the greater challenge of developing cultivars with combinations
of relevant adaptive traits, including biotic and abiotic stress tolerance, besides
nutritional quality. With the rapid reduction in genotyping costs, new genomic
selection technologies (Bernardo and Yu 2007, Heffner et al. 2009) have become
available that allow the maize breeding cycle to be greatly reduced, facilitating
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inclusion of information on genetic effects for multiple stresses in selection
decisions.

High-density genotyping using platforms such as genotyping by sequencing
(GBS) is now an integral part of CIMMYT’s maize molecular breeding strategies.
GWAS is being implemented by CIMMYT-GMP for identification of genomic
regions associated with an array of important traits, especially abiotic stress toler-
ance and disease resistance, coupled with validation of the significant genomic
leads in an array of tropical/subtropical biparental populations (Prasanna et al.
2014). MARS and GS are being implemented by CIMMYT and partners through
several projects in the tropics, especially for the improvement of complex traits.
A recent comparative study of pedigree selection, MARS, and GS undertaken
across 8–10 biparental populations demonstrated the superior performance of
hybrids derived from Cycle 3 of both MARS and GS schemes over pedigree
selection in most populations compared with the Cycle 0. The overall gain per year
for MARS and GS under managed drought and well-watered environments was
two-to threefold higher than the gain achieved via pedigree selection (Beyene et al.
2014).

CIMMYT is also employing joint GWAS and linkage mapping approach for
identifying breeder-ready markers for resistance to major diseases affecting tropical
maize such as Turcicum leaf blight (TLB), grey leaf spot (GLS), maize lethal
necrosis (MLN), common rust, ear rots, and corn stunt complex. A recent example
is with regard to the maize streak virus (MSV), a major disease that affects maize
productivity in several countries in SSA. CIMMYT Maize Program has
fine-mapped and identified SNP markers for a major QTL for MSV resistance
(msv1) and validated these markers on a set of DH lines that have been phenotyped
for responses to MSV in different locations in SSA (Sudha Nair et al., manuscript in
preparation). Forward breeding and MABC are ongoing using a three-marker
haplotype for msv1 selection. Simultaneous with the marker discovery and vali-
dation, strategies for incorporating validated markers in breeding pipelines, through
both conventional and DH-based breeding schemes, are also being developed and
implemented (Prasanna et al. 2014).

3.5.4 Breeding Informatics and Decision Support Tools

A careful balance of many diverse elements is required to design and implement an
appropriate decision support system that provides an optimal combination of time,
cost, and genetic gain (Xu et al. 2012). Such a system would need to include the
following: (a) managing and analysing large amounts of genotype, pedigree, phe-
notype, and environment data; (b) selecting desirable recombinants through an
optimum combination (in time and space) of phenotypic and genotypic information;
and (c) developing breeding systems that minimize population sizes, number of
generations, and overall costs while maximizing genetic gain for traditional and
novel target traits (Prasanna et al. 2014).
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Effective management of product and trait pipelines in breeding programmes
requires effective management of pedigree, phenotypic, and genotypic databases,
accurate forecasting of genotyping and phenotyping services, as well as optimized
decision-making tools/system. Standardized software tools for forecasting, project
management, and conventional and molecular breeding data review can streamline
the process from initial discovery to final deployment of products through coor-
dinated workflows.

3.5.5 Tapping the Vast Genetic Diversity in Maize

Although maize hybrids represent the most economically important portion of the
species, breeding populations, open pollinated varieties (OPVs), and landraces
contain the majority of the allelic diversity, much of which has never been incor-
porated into improved maize cultivars. The CIMMYT Gene Bank holds *27,000
maize entries, of which *24,000 are landraces/OPVs collected from diverse
regions in Latin America, Africa, and Asia, and held in trust since several decades
(Ortiz et al. 2010; Prasanna 2012). Many favourable alleles for an array of useful
traits, including tolerance to biotic and abiotic stresses and nutritional quality, are
available in these invaluable genetic resources, following natural and farmer’s
selections over the decades/centuries.

Maize has enormous genetic diversity that offers incredible opportunities for
genetic enhancement. There is no lack of favourable alleles in the global maize
germplasm that contribute to higher yield, abiotic stress tolerance, disease resis-
tance, or nutritional quality improvement. However, these desirable alleles are often
scattered over a wide array of landraces or populations. Our ability to broaden the
genetic base of maize and to breed climate-resilient and high-yielding cultivars
adaptable to diverse agro-ecologies where maize is grown will undoubtedly depend
on the efficient and rapid discovery and introgression of novel/favourable alleles
and haplotypes (Prasanna 2012).

A well-characterized and well-evaluated germplasm collection would have
greater chances of contributing to the development of novel and improved varieties
and, consequently, greater realization of benefits for the resource-poor farmers.
Simultaneously with the wider adoption of high-throughput molecular tools, there is
a distinct need to establish global phenotyping network for comprehensive and
efficient characterization of genetic resources and breeding materials for an array of
target traits, particularly for biotic and abiotic stress tolerance and nutritional
quality. This would significantly accelerate genomics-assisted breeding, diversifi-
cation of the genetic base of elite breeding materials, creation of novel varieties, and
countering the effects of global climate changes.

Seeds of Discovery (SeeD) is a novel project, funded by the Mexican
Government, which aims to discover the extent of allelic variation in the genetic
resources of maize and wheat, through high-density genotyping/resequencing,
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multi-location phenotyping for prioritized traits, and novel bioinformatics tools for
discovery and use of favourable alleles and haplotypes associated with important
traits (Kevin Pixley, personal communication).

3.6 Delivering Climate-Resilient Maize Varieties
to the Smallholder Farmers

Developing and releasing climate-resilient varieties is by itself not adequate to lift
communities from climate vulnerability. Affordability and access of smallholder
farmers to quality seed of stress-resilient maize varieties in the vulnerable
agro-ecologies is highly important. This certainly warrants innovative approaches
and partnerships to reach the unreached and to make a difference to their
livelihoods.

In recognition that a common constraint for SME seed companies and of rapid
scale-up of new varieties is parental line maintenance and foundation (basic) seed
production, CIMMYT has been providing appropriate technical support for these
activities, at least in the initial phases of variety commercialization, on a
case-by-case basis in SSA, Latin America, and Asia. The basis for determining this
support is the “seed road maps” that are developed with partner institutions for
effective scale-up, promotion, and delivery of improved varieties to the small-
holders in the target geographies.

Experiences of CIMMYT strongly indicate that besides strengthening the seed
sector (especially the SME seed companies), appropriate government policies and
adoption of progressive seed laws and regulations are vital for improving small-
holder farmers’ access to improved seed and for overcoming key bottlenecks
affecting maize seed value chain. This is particularly important in the areas of
policy, credit availability, seed production, germplasm, and marketing. A proactive
approach that combines promising technological, institutional, and policy solutions
to manage the risks within vulnerable communities implemented by institutions
operating at different levels (community, subnational, and national) is considered to
be the way forward for managing climate variability and extremes (Shiferaw et al.
2014). Geographic information system (GIS) could play an integral role in targeting
breeding programmes by predicting regions of vulnerability, targeting germplasm
movement, and identifying future climates for agricultural production environments
(Cairns et al. 2013a).

CIMMYT’s recent initiative of establishing the International Maize
Improvement Consortium (IMIC) in Asia and in Latin America, in partnership with
nearly 80 SME seed companies, is a huge step forward. The underlying principles
of this partnership include research prioritization that is client-determined, a more
focused, demand-driven approach for product development, while drawing syn-
ergies through a collaborative testing network for targeted impacts.
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3.7 Conclusions

Intensive multidisciplinary and multi-institutional efforts are required to develop
and deliver climate-resilient tropical/subtropical maize germplasm for the benefit of
smallholder farmers. Genetics and breeding alone cannot solve the complex chal-
lenge of enhancing maize productivity at the smallholder farm level, especially in
the face of depleting/degrading natural resources and changing climates. There is a
distinct need for effective complementation of improved maize cultivars by suitable
conservation agriculture practices as well as institutional and policy innovations
that support maize growth and development. This includes understanding the
smallholder farmers’ affordability and access to quality seed, measures to overcome
constraints in adoption of high-yielding, stress-resilient, and nutritionally enriched
maize varieties, and partnerships and policies to significantly enhance maize pro-
duction and utilization.

The use of higher spatial resolution modelling is essential for the identification of
high-priority geographic areas for development and deployment of improved
germplasm suited to the future climates. Temperature thresholds for current cereal
varieties and the interaction of heat stress with other components of climate change
(especially drought and biotic stresses) must also be considered. The application of
biophysical and economic models in maize improvement, decision support, and
foresight requires implementing harmonized procedures for data acquisition,
incorporating diverse and actual data sets (cultivar-specific data, climatic data, soil
data, important macro- and micro- nutrients, pests/pathogens data, crop manage-
ment practices, and socio-economic data) in a meaningful way for reliable pre-
dictions and practical utility (Prasanna et al. 2013a).

Recent research has led to the development of a suite of soil and crop man-
agement practices for increasing resource-use efficiency while maintaining soil
health, and mitigating greenhouse gas emissions (Govaerts et al. 2009). Increased
use of natural resource management is required to reduce agricultural impacts and
to increase efficient water use. However, one must recognize the fact that, in
general, most of the modern high-yielding varieties were developed using con-
ventional tillage and crop establishment practices in high-input environments.
There could be significant variety x management interaction, with variability in the
response of current maize germplasm to resource conservation technologies. A new
generation of maize cultivars, suitable for conservation agriculture-based practices,
need to be bred. In addition, achieving increased adaptation action will necessitate
integration of climate change-related issues with other risk factors, such as climate
variability and market risk, and with other policy domains, such as sustainable
development (Howden et al. 2007).
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Chapter 4
Harnessing Apomixis for Heterosis
Breeding in Crop Improvement

Sazda Abdi, Shashi, Anuj Dwivedi and Vishnu Bhat

Abstract Apomixis is an asexual mode of reproduction through seeds where
embryo develops without undergoing meiosis and fertilization of gametes. Majority
of natural apomicts are polyploids and thought to have evolved through
hybridization and polyploidization. Apomixis is highly desirable for agriculture as
it fixes hybridity or heterosis. Apomicts form huge polyploid complexes in nature
which are the results of their facultative nature. They harbor enormous amount of
variability resulting in cytotypes. Majority of the crop plants do not reproduce
through apomixis although few wild relatives of crop plants such as Pennisetum
glaucum and Zea mays reproduce asexually. Harnessing apomixis for heterosis
breeding of crop plants through introgression of this trait from tertiary to primary
gene pool was not possible due to imprinting barriers. Deviation in endosperm
balance number from the male and female parents during introgression caused poor
seed set in Pennisetum and Zea mays hybrids. Apomicts exhibit three major
developmental variations from normal sexual reproduction, viz. apomeiosis,
parthenogenesis, and autonomous endosperm development. Initial studies indicated
that all the three components are governed by a single or a few genes which was
later refuted owing to recombinants showing independent events. Thus, genetics of
apomixis is very complex and is often riddled with large-scale segregation distor-
tions. In many apomictic grasses, transmission of apomixis is through a physically
large, hemizygous, non-recombining genomic region. One of the genes from an
apospory-specific genomic region (ASGR) of Pennisetum squamulatum, namely
BABY BOOM LIKE, elicited parthenogenetic development of embryo in the sexual
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pearl millet. Unraveling of genetic and molecular mechanisms controlling apomixis
could revolutionize the way agriculture is practiced.

Keywords Apospory � Diplospory � Agamic complex � Apomeiosis �
Parthenogenesis

4.1 Introduction

Deployment of novel technologies in agriculture leads to increased food production
which is needed to cater to the requirement of ever increasing population. Recent
crop improvement programs thus include generation of hybrids in many crops to
exploit heterosis or hybrid vigor. In spite of their popularity, poor and marginal
farmers can not afford buying hybrid seeds due to their higher cost. The process of
development of hybrids is very laborious, especially in the absence of availability of
male sterile lines. Apomixis, an asexual mode of reproduction through seeds, can
help fix the hybridity as it can fix the genotype of an individual plant.

Apomixis is a reproductive process where embryos develop without the
occurrence of meiosis and fertilization (Bhat et al. 2005). The endosperm devel-
opment could be either autonomous or pseudogamous when the unreduced central
cell undergoes division without fertilization or when the unreduced central cell
fuses with a sperm cell to form primary endosperm nucleus that undergoes normal
mitotic cell division to form endosperm, respectively. The term ‘apomixis’ was
coined by Winkler in 1908 where ‘apo’ means ‘away from’ while ‘mixis’ means the
act of mixing. Nogler (1984) later termed it as agamospermy. The first report of
occurrence of apomixis in higher plants was in 1841 by Smith who observed that a
female plant of Alchornia ilicifolia belonging to family Euphorbiaceae formed
seeds in the absence of a male parent.

Apomixis is classified into two types, viz. gametophytic and sporophytic. In
gametophytic apomixis, either a nucellar cell (apospory) or the megaspore mother
cell (MMC) (diplospory) forms the unreduced embryo sac bypassing meiosis or the
unreduced egg cell develops into embryo parthenogenetically. In sporophytic
apomixis, the nucellar or integumentary cells form adventive embryos directly
without meiosis. The later is also termed as adventive embryony, and when multiple
embryos develop from both nucellar cells and MMC-derived reduced egg cell from
a sexual embryo sac, it is termed as polyembryony.

Apomixis involves a kind of somatic manipulation (Bicknell and Catanach
2015) which is a potentially invaluable tool for plant breeders to exploit heterosis. It
also helps in maintaining uniformity among F1 hybrid seeds and when autonomous
endosperm development happens, even difficulties associated with
cross-compatibility and pollen availability could be overcome. Since apomixis
helps in fixing an individual’s genotype, potentially even one elite individual could
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be released as a variety. This has immense use in agriculture as seeds are the major
propagules used for multiplication as well as for human consumption.

Mainly, there are three components of apomixis which include ‘apomeiosis,’ i.e.,
bypassing or undertaking incomplete or modified meiosis, ‘parthenogenesis’ where
an unreduced (2n) egg cell develops into an embryo without fertilization and
‘autonomous or pseudogamous endosperm development,’ where the central cell
develops into endosperm without fertilization or after fertilization with a sperm cell,
respectively. Although these three events occur in a coordinated manner, it has been
found out that they can also be uncoupled where either of these events along with a
sexual reproductive event can occur. Such instances are less frequent in a
population.

Several attempts were made toward introgression of apomixis from secondary
and tertiary gene pools to primary gene pool (Dujardin and Hanna 1989; Hanna
et al. 1998; Petrov et al. 1984; Kindiger et al. 1996). None of the crop plants exhibit
this phenomenon, while some of their wild relatives reproduce asexually. Although
apomixis is transferable from one gene pool to another, problems related to its
penetrance and expressivity caused seed sterility. Due to ploidy barriers, endosperm
development was either absent or incomplete leading to abnormal seeds or lower
seed set. But, several studies on the genetics of inheritance of apomixis were
conducted in many taxa which initially indicated monogenic, dominant inheritance
pattern which was later refuted as components of apomixis could be uncoupled.
During segregation analysis, three developmental events segregated among the
progeny implicating independent segregation. Hence, genetics of apomixis is very
complex and in some taxa such as Pennisetum and Cenchrus which reproduce
through apospory, an apospory-specific genomic region (ASGR) which is a phys-
ically large, hemizygous, non-recombining chromosomal region is known to con-
trol apomixis (Ozias-Akins et al. 1998).

Many apomictic taxa form agamic complexes in nature due to hybridization
between diploid parental species and polyploid derivatives (Hojsgaard and Hörandl
2015a). Since majority of the apomicts are polyploids, they are the reservoirs of
variation due to many cytological aberrations associated with hybridization.
Majority of the apomictic taxa are facultative in nature inhabiting residual sexuality.
Thus, formation of agamic complexes is mainly due to polyploidy, apomixis, and
hybridization which could eventually form microspecies (Hojsgaard and Hörandl
2015a).

4.2 Distribution of Apomicts Among Angiosperms

Apomixis is widespread among angiosperms as nearly 32 orders, 78 families, and
293 genera were reported to contain apomictic species. Among various types of
apomixis, adventitious embryony occurs in majority of the genera (148) followed
by apospory (110) and diplospory (68). Adventive embryony is mostly observed in
fabids, malvids, and lamiids. More than 75 % of apomicts-containing genera are
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reported from three large families, Poaceae, Asteraceae, and Rosaceae (Hojsgaard
et al. 2014a). But the orders containing these three families also contain multiple
families in which apomixis is not reported. Diversity among apomicts is similar to
general biodiversity pattern as the majority of apomicts-containing genera occur in
the tropical region. There has been a tendency for apomicts to colonize larger areas
as many apomictic species are found in multiple ecological zones covering wider
geographical areas. Most of the apomicts also showed invasiveness (Peters 2001;
Chapman et al. 2003; Brock 2004; Hao et al. 2011).

Whether apomixis causes genetic diversity among taxa is still not clear.
Generally, apomixis is considered as an evolutionary dead end as there would be
loss of genotype heterogeneity due to fixation of alleles (Darlington 1939; Stebbins
1950; Grant 1981) in the population. Due to the loss of genotypic plasticity, apo-
micts may have reduced potential to adapt to environmental variations. According
to this view, majority of the agamic complexes should have become extinct, which
is not the case as per recent evidence (Hojsgaard and Hörandl 2015a, b; Hörandl
and Pan 2007). Instead, it is widely believed that apomixis is a facilitator of
diversification due to polyploidy, facultative apomixis, and reversions to sexuality.
The details about various circumstances leading to diversification within an agamic
complex will be discussed later in this chapter.

The phylogenetic distributions of apomictic taxa in angiosperms revealed a
broadly scattered taxonomic distribution (Hörandl and Hojsgaard 2012). Apomixis
occurs in ancestors of some of the major clades of angiosperms indicating its
possible ancient descent, while its absence in Amborella contradicts this conclusion.

4.3 Evolution of Apomixis

Understanding evolution of asexual reproduction in plants may help in elucidating
its mechanism. Three major developmental events during apomixis, namely
apomeiosis, parthenogenesis, and autonomous endosperm development may have
evolved independently or together. Similarly, the presence of various types of
apomixis which are widely scattered along many angiosperm families also implied
multiple independent evolution of apomixis (Carman 1997; Van Dijk and
Vijverberg 2005). While in most of the apomictic taxa, apomeiosis and partheno-
genesis were reported to be controlled separately by two unlinked loci, inheritance
studies in apomictic grasses have indicated single dominant locus for both the
events (Ozias-Akins and van Dijk 2007). One locus controlling both the events
could be an evolutionarily advanced phenomenon for obvious advantage of
non-segregation of the locus from generation to generation.

A characteristic feature of majority of apomicts is that they are polyploids which
could have happened after hybridization between genetically divergent individuals.
Added to this, many apomicts are also allopolyploids containing more than one
genome. Carman (1997) used this observation to propose a theory that asyn-
chronous expression of duplicate genes coming from different genomes during
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hybridization caused apomixis. According to this theory, there is no specific gene
for apomixis, instead the duplicate genes controlling various developmental events
such as megasporogenesis, megagametogenesis, double fertilization, embryo, and
endosperm formation express asynchronously to cause unreduced embryo sac
formation and parthenogenesis. Asynchrony in gene expression was reported in
Bothriochloa holboellii where heterochrony, gene duplication, and parent of origin
effects were observed in transcriptome (Bicknell and Catanach 2015).

The major components of apomixis might have originated by mutation (Nogler
1984). It is generally believed that deregulation of developmental events in the
sexual reproductive pathway results in apomixis as both are closely related path-
ways (Tuckers et al. 2003). There is also a strong correlation between occurrence of
apomixis and polyploidy. Exceptions such as Boechera (Kantama et al. 2007) exist,
although diploid apomicts are generally weaker individuals. But, polyploidy
increases the tolerance level of deleterious mutations which are accumulated in
apomicts. It can buffer negative effects of the mutational load (Muller’s ratchet)
(Otto and Whitton 2000).

Apomixis also leads to allelic sequence divergence, called Meselson effect
(Mark Welch and Meselson 2000) which is due to the gain of neutral allelic
differences. Recent study of transcriptomes of Ranunculus auricomus complex,
consisting of diploid sexuals and hexaploid apomicts, indicated Meselson-like
sequence divergence. But there was no mutation accumulation (Pellino et al. 2013).
This could be ascribed to relatively younger population of apomicts in Ranunculus
(approx. 70,000 years) or it may have facultative sexuality because of which
deleterious mutations are purged-out (Hojsgaard and Hörandl 2015a).

In many apomictic taxa, a specific genomic region called ASGR is known to
control apomixis (Ozias-Akins and van Dijk 2007). A single chromosome carrying
this region is responsible for transmitting apomixis (Akiyama et al. 2011). At least
between Pennisetum squamulatum and Cenchrus ciliaris, ASGR is known to be
highly conserved based on syntenic relationships between chromosomal sequences
identified by BAC probes, shared cytological features such as hemizygosity and
their heterochromatic nature (Ozias-Akins et al. 1998). The origin and evolution of
ASGR was studied using fluorescence in situ hybridization (FISH) and ndhF gene
and trnL-F sequence analysis in Pennisetum and Cenchrus. Low rates of sequence
variation at the ASGR suggested a recent origin of ASGR (Akiyama et al. 2011).

Another recent study on Ranunculus species complex based on crosses between
sexual diploid and tetraploid Ranunculus auricomus species also strengthened the
earlier view that hybridization, rather than polyploidy, is responsible for the ovule
developmental alterations observed in their hybrids (Hojsgaard et al. 2014b).
Emergence of apospory bypassing meiosis was evident after sexual hybridization
and polyploidization. In this study, polyploidy was a key factor for functional
apomixis as it stabilized deviations in paternal to maternal genome contributions in
the endosperm for successful seed formation.

It is interesting to know that asexuality is rare in higher organisms when com-
pared to sexuality. Asexual females could transmit their genes twice as compared to
sexual females as they produce half of their progeny as males. This gives asexual
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females an advantage because of which they should be able to invade the popu-
lation replacing sexual individuals which is generally observed in case of natural
apomicts (de Meeu ̌s et al. 2007).

4.4 Genetics of Apomixis

Apomixis is a heritable trait and inheritance of apomixis in grasses indicated it to be
controlled by a single dominant locus (Savidan 2000). In grasses such as Panicum
maximum (Savidan 1982), Brachiaria hybrids (Valle and Glenke 1993), Cenchrus
ciliaris L. (Sherwood et al. 1994; Jessup et al. 2002), and Poa pratensis (Barcaccia
et al. 1998), segregation pattern indicated one or a few Mendelian factors (Aguilera
et al. 2015). Whereas in Taraxacum (Van Dijk and Bakx-Schotman 2004),
Hypericum (Schallau et al. 2010), Erigeron (Noyes and Rieseberg 2000), and
Hieracium (Catanach et al. 2006), apomeiosis and parthenogenesis are controlled
by two different loci as evident from independent segregation of each component.
On the contrary, Asker (1980) reported apospory under polygenic control. In Citrus,
a single locus of approx. 300 kb is reported to be responsible for polyembryony
(Nakano et al. 2012). Studies of inheritance of apomixis in many taxa indicated
simplex genotypes in both monocots and dicots (Table 4.1).

In Pennisetum squamulatum and Cenchrus ciliaris, an ASGR has been reported
as exclusively associated with apomixis (Akiyama et al. 2004). This region is
highly heterochromatic and hemizygous residing in a single chromosome covering
50-Mb genomic region. It is recombinationally suppressed and contains high copy
reterotransposons. Recent reports of recombination within ASGR of C. ciliaris
(Conner et al. 2013; Yadav et al. 2012) could help in dissecting out this region to
identify genes associated with apomeiosis and parthenogenesis. One of the genes
from ASGR, BABY BOOM LIKE from apomictic P. squamulatum, has been
characterized which elicits parthenogenetic embryo formation from unfertilized
eggs in a sexual pearl millet plant (Conner et al. 2015). This has categorically
demonstrated the role of ASGR in apomictic development. Similarly, in Paspalum
species, linkage mapping studies revealed segregation distortion and lack of re-
combination, synteny between apomixis-associated markers and rice map, and
narrowing of the chromosomal apomixis controlling region (ACR) through com-
parative mapping (Ortiz et al. 2013). Several markers such as RAPD, AFLP, and
RFLPs linked to apospory locus were detected in P. simplex (Labombarda et al.
2002) and P. notatum (Martinez et al. 2003; Pupilli et al. 2004). Based on mapping
results, one of the apomixis-linked BAC clones from P. simplex was sequenced
which revealed 10 % noncoding sequences, 13 sequences pertained to transposons
and retrotransposons and four putative genes (Ortiz et al. 2013). Out of these genes,
two genes co-segregated with apomixis in several Paspalum species which have
shown similarity to protein kinase and protein of the ERD1/XPR1/SYG1 family.

In Hieracium, a series of deletion mutants were generated which showed two
distinct loci, first, LOSS OF APOMEIOSIS (LOA) and, the second, LOSS OF
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Table 4.1 The genotypic constitution of various apomictic taxa along with the number of loci
controlling apomixis (modified from Ozias-Akins and van Dijk 2007)

Species Family Apomixis type Loci Genotype References

Monocots

Brachiaria
brizantha

Poaceae Apospory,
pseudogamous
endosperm

1 Aaaa Miles and
Escandon
(1997),
Pessino et al.
(1997, 1998)

Cenchrus
ciliaris

Poaceae Apospory,
pseudogamous
endosperm

1 Aaaa Roche et al.
(1999), Jessup
et al. (2002)

Panicum
maximum

Poaceae Apospory 1 Aaaa Ebina et al.
(2005),
Savidan (1980)

Paspalum
notatum

Poaceae Apospory,
pseudogamous
endosperm

1 Aaaa Martinez et al.
(2001, 2003),
Stein et al.
(2004)

Paspalum
simplex

Poaceae Apospory,
pseudogamous
endosperm

1 Aaaa Caceres et al.
(2001),
Calderini et al.
(2006),
Labombarda
et al. (2002),
Pupilli et al.
(2001, 2004)

Pennisetum
squamulatum

Poaceae Apospory,
pseudogamous
endosperm

1 Aaaa Roche et al.
(2001),
Ozias-Akins
et al. (1993)

Poa
pratensis

Poaceae Apospory 2 Aaaa
Pppp

Albertini et al.
(2001a,
2001b),
Barcaccia et al.
(1998),
Porceddu et al.
(2002)

Tripascum
dactyloides

Poaceae Diplospory,
mitotic,
pseudogamous
endosperm

1? Dddd Grimanelli
et al. (1998),
Leblanc et al.
(1995)

Eudicots

Ranunculus
auricomus

Ranunculaceae Apospory,
pseudogamous
endosperm

1 Aaaa Nogler (1984)

(continued)
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PARTHENOGENESIS (LOP) (Hand and Koltunow 2014). Using these mutants,
Catanach et al. (2006) identified mutations in apomixis loci through mapping using
AFLP markers. LOA and LOP could be distinctly mapped. Similarly, the third
component of autonomous endosperm development could be separated from
parthenogenesis in Hieracium (Ogawa et al. 2013).

While the forward genetic approaches are slowly elucidating the complexity of
apomixis, several reverse genetic approaches using functional genomic tools have
also generated interesting results. In Arabidopsis, mutants reflecting apomeiosis
during diplospory could be obtained by inducing mutations in DYAD allele of
SWITCH1. The dyad mutants produced unreduced gametes which fertilized to pro-
duce triploid seeds (Ravi et al. 2008). Later, high-frequency unreduced gametes were
produced by mutating three meiotic genes, viz. osd1, rec8, and spo11 in Arabidopsis
and these mutants were named asMiMe (mitosis instead of meiosis) (d’Erfurth et al.
2009). In another independent study, deletion of centromeric histone protein (CenH3)
in either male or female gamete eliminated the haploid set of chromosomes during
fertilization resulting in haploids (Ravi and Chan 2010). This clearly demonstrated
uniparental transmission through egg. When dyad mutant was crossed with cenh3
mutant, majority of the progenywere ofmaternal origin (Marimuthu et al. 2011). This
study indicated that apomixis could be synthesized using mutants.

The third component of apomixis, namely autonomous endosperm development,
could be induced in Arabidopsis by manipulating a gene belonging to Polycomb
group of genes. The fertilization-independent seed development (FIS) complex
consists of four genes, namely MEDEA (MEA) (Grossniklaus et al. 1998),
fertilization-independent seed2 (FIS2) (Chaudhury et al. 1997), fertilization-
independent endosperm (FIE) (Ohad et al. 1999), and multicopy suppressor of
IRA1 (MSI1). Mutation in MEA or FIS2 or FIE induces autonomous endospermy,
while mutation inMSI1 induces parthenogenetic embryos from egg cell (Guitton and
Berger 2005). This complex has repressive function and represses downstream genes
responsible for fertilization-independent seed development when they are

Table 4.1 (continued)

Species Family Apomixis type Loci Genotype References

Taraxacum
officinale

Asteraceae Diplospory,
meiotic,
autonomous
endosperm

3 Ddd
Ppp

van Dijk
(2003),
Vijverberg
et al. (2004)

Erigeron
annuus

Asteraceae Diplospory,
mitotic,
autonomous
endosperm

2 D/dd*)
Fff

Noyes et al.
(2007), Noyes
and Rieseberg
(2000)

Hieracium
caespitosum

Asteraceae Apospory,
autonomous
endosperm

2 Aaaa
Pppp

Bicknell et al.
(2000),
Catanach et al.
(2006)

* The only genomic region for which a disomic inheritance model gives a better fit than trisomic
models
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transcriptionally active. The above studies have independently established the genetic
mechanisms controlling three components of apomixis, viz apomeiosis, partheno-
genesis, and autonomous endosperm development.

4.5 Agamic Complexes

The fact that majority of apomicts occur naturally in facultative form, they tend to
form larger agamic complexes (Babcock and Stebbins 1938) which originate
through continuous extension of an apomictic species via hybridization. Even in
clonally propagated species, variation is created by the process of gene conversion,
mitotic recombination, and epigenetic drift (Hojsgaard and Hörandl 2015b). The
presence of diploids and polyploids within agamic complex results in various
polyploid derivatives through backcrossing (Koch et al. 2003; Guo et al. 2004;
Hörandl 2009; Sochor et al. 2015). In agamic polyploid complexes, newly formed
polyploids reproduce asexually (Babcock and Stebbins 1938; Grant 1981).
Evolution of agamic complexes is hastened due to polyploidy, hybridization, and
apomixis which result in ‘microspecies.’ These microspecies exhibit distinct mor-
phological, cytological, and genetic variations (Hojsgaard and Hörandl 2015b).

Following Carman’s hypothesis (Carman 1997), variation within the agamic
complexes could be caused due to duplicate genes governing developmental events
during the evolution of asexual neo-polyploids. There is also a possibility of
reversal to sexuality, and eventually, cycles of agamospermous polyploids and
sexually reproducing species facilitate diversification (Hojsgaard and Hörandl
2015b). Moreover, polyploidy helps apomicts to adapt to diverse ecological niches
by preserving genetic variability even when meiotic recombination and genetic
segregation due to fertilization are lacking.

In addition to ploidy variation, asexuals are also helped by epigenetic variation
(Hardesty et al. 2012; Roiloa et al. 2014) which increases their ability to acclimatize
newer environments. In general, agamic complexes exhibit two types of repro-
ductive series in Panicoid grasses, viz. first, the diploid–tetraploid–(di) haploid
cycle and, second, the diploid–tetraploid–diploid cycle. The first type is observed in
Bothriochloa–Dichanthium agamic complex (de Wet 1968; de Wet and Harlan
1970a, b) and in Panicum (Savidan and Pernès 1982). The second type is reported
in Paspalum (Hanna and Burton1986; Quarin 1992). They are mostly consisting of
diploids, facultative apomictic tetraploids, triploids, and aneuploids (Naumova et al.
1999).

The best-known examples of agamic complexes are Amelanchier (Campbell
et al. 1999), Boechera (Schranz et al. 2005), Antennaria (Bayer 1987), Crataegus
(Talent and Dickinson, 2005), Crepis (Babcock and Stebbins 1938, Whitton et al.
2008), Taraxacum (Richards 1973; van Oostrum et al. 1985, den Nijs and Menken
1996), Capillipedium–Dichanthium–Bothriochloa (de Wet and Harlan 1970a, b),
Panicum maximum (Pernès 1975), Tripsacum (Moreno-Perez et al. 2009),
Ranunculus auricomus (Hörandl et al. 1997; Hörandl and Greilhuber 2002;
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Cosendai and Hörandl 2010), and Paspalum (Norrmann et al. 1989; Urbani et al.
2002; Daurelio et al. 2004). Few agamic complexes are described in this chapter.

4.5.1 Taraxacum Agamic Complex (Asteraceae)

The genus Taraxacum (Dandelions) belongs to the family Asteraceae and the tribe
Cichorieae, consisting of some 2000 species, assembled in 30 sections of which 90
percentage are agamospermous (Ford and Richards 1985; Mogie and Ford 1988).
The taxa have been distinguished as macrospecies and microspecies by Dudman and
Richards (1997). Due to the presence of various breeding systems and ploidy levels,
the taxonomy of Taraxacum is complicated (Richards 1986). It reproduces mainly
by diplosporous type of gametophytic apomixis with autonomous endosperm
development (Asker and Jerling 1992). In this complex, both facultative apomicts
and sexually reproducing plants coexist, sexual diploids cover approximately 13 %
of the species and are generally self-incompatible (Richards 1973). On the contrary,
polyploids reproduce through diplospory and their chromosome number ranges from
3x to 10x (Battaglia 1948; Richards1973). Strains of sexual diploids are generally
widespread in central Europe where they coexist with diverse ploidy range of
apomictic accessions, mostly triploids (3x = 24) (Ozias-Akins and van Dijk 2007).
Section Erythrosperma covers two Taraxacum species which shares parallel habitat
and closely related taxonomic features, i.e., Taraxacum lacistophyllum (Dahlst.) and
T. brachyglossum (Dahlst) Dahlst. (Ford and Richards 1985). Different sections
contain diverse Taraxacum accessions such as Taraxacum officinale (Section
Ruderalia, agamospermous triploid species), Taraxacum laevigatum (Section
Erythrosperma, agamospermous triploid species), Taraxacum subnaevosum and
Taraxacum nordstedtii (Section Spectabilia, agamospermous species), and
Taraxacum platycarpum and Taraxacum japonicum (Section Mongolica, sexual
diploid species), (Ford and Richards 1985; Mitsuyuki et al. 2014).

4.5.2 Capillipedium–Dichanthium–Bothriochloa Agamic
Complex (Poaceae)

Among all the agamic complexes, Capillipedium–Dichanthium–Bothriochloa aga-
mic complex is always fascinating. Harlan and de Wet (1963) studied in detail about
the genera of Capillipedium, Dichanthium, and Bothriochloa. The genera is broadly
scattered over Europe, the Mediterranean region, Asia, Australia, and the NewWorld
(Harlan and de Wet (1963); de Wet and Harlan 1966). De Wet (1968) described a
possible evolution in the genus Dichanthium based on ploidy cycles involving
diploids, tetraploids, and haploids. Mehra (1961) reported the basic chromosome
number of Dichanthium as 10 and mentioned about the existence of diverse ploidy
levels ranging from diploid to hexaploid. Dichanthium annulatum, Dichanthium
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caricosum, and Dichanthium aristatum occur in southern Asia (Celarier et al. 1958).
In the genus Capillipedium, C. assimile generally are tetraploids broadly scattered
over southern Asia, India and adjoining islands. Another hexaploid species, C. par-
viflorum, is distributed in Southeast Asia, India, Africa, and Australia. However,
diploid strainswere only found inHongKong and in tropical India (deWet andHarlan
1970a). The Eurasian B. ischaemum is classified as a tetraploid, pentaploid, and
hexaploid strains mainly occur as apomictic tetraploid in Europe, Near East, and
central Asia (Celarier and Harlan 1958) and as auto-hexaploids in Turkey (deWet and
Harlan 1970b). Generally, in this agamic complex, gene flow takes place in numerous
directions with aminor occurrence of incompatibility barriers. Hybridization between
Capillipedium and Dichanthium takes place in the presence of Bothriochloa which
acts as a bridge species (Fig. 4.1) (de Wet and Harlan 1970b). Bothriochloa inter-
media (R.Br.) A. Camus [equivalent to B. bladhii (Retz.) S.T. Blake (Quattrocchi

Fig. 4.1 Diagrammatic representation showing relationship among the members of
Capillipedium–Dichanthium–Bothriochloa agamic complex (adopted from Berthoud 2001)
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2008)] mainly acts as a bridge species between Dichanthium and Capillipedium
species (de Wet and Harlan 1970b; Berthaud 2001).

In this agamic complex, B. intermedia (R.Br.) A. Camus hybridizes with B.
ewartiana (Domin) C.E. Hubbard, B. ischaemum (Linn.) Keng, Capillipedium
parvifolium (R.Br.) Stapf, and D. annulatum (Forssk.) Stapf. Based on this, it was
concluded that B. intermedia is a compilospecies, one which carries genes from
several other species of Bothriochloa O. Kuntze, Capillipedium Stapf., and
DichanthiumWillemet (Harlan and deWet 1963; deWet and Harlan 1966, 1970a, b).
Because of this, de Wet and Harlan (1968) suggested that all the three taxa could be
grouped under Dichanthium genera.

4.5.3 Tripsacum Agamic Complex (Poaceae)

The genus Tripsacum is a member of Poaceae family, subtribe Maydeae and
broadly distributed in the American continents, extremely variable including 16
species consisting of an agamic complex with different chromosome numbers
ranging from diploids (2n = 2x = 36) to hexaploids (2n = 6x = 108) (Mangelsdorf
and Reeves 1931; Petrov et al. 1979; Randolph 1970; de Wet et al. 1981). It is a
wild relative of maize belonging to secondary gene pool and widely spread in
Mexico (Berthaud and Savidan 1989). Farquharson (1955) reported for the first
time the phenomena of apomixis in polyploid strains of T. dactyloides (L.) and
observed both facultative apomixis and polyembryony. Brown and Emery (1958)
reported the occurrence of diplosporous megasporogenesis in T. dactyloides clone,
while de Wet et al. (1973) described aposporous type in maize × T. dactyloides
hybrids. Later on, diplospory in Tripsacum was clearly demonstrated by Burson
et al. (1990) based on embryological investigations using sectioned and stained
ovaries from two triploid and one tetraploid T. dactyloides accessions collected
from the USA. Leblanc et al. (1995) also analyzed Tripsacum germplasm and
revealed that all diploid accessions were sexual, while all polyploid races were
diplosporous of the Antennaria type.

4.5.4 Hieracium and Pilosella Agamic Complex
(Asteraceae)

Hieracium and Pilosella genera, earlier treated as Hieracium subgenus Pilosella,
contain closely related species which have evolved through hybridization and
polyploidization (Hand et al. 2015). They contain mostly polyploid species and few
diploid species (Fehrer et al. 2007a, b). While Hieracium reproduces through
diplospory, Pilosella reproduces through apospory. In both these genera, embryo
and endosperm develop independently. Apomixis is reported in 13 species of
Hieracium (Bergman 1941; Skawinska 1963). Due to the problems associated with
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male sterility in the hybrids resulting in poor seed set, Hieracium species have not
been used in apomixis research. On the other hand, Pilosella has been used as a
model system extensively due to the occurrence of apospory combined with
autonomous endosperm development. Various mutants and accessions were used
for studying the mechanisms of apomixis (Koltunow et al. 2013). The mode of
apomixis in Pilosella is facultative which results in three non-apomictic types of
progeny, viz. 2n + 0, n + 0, and 2n + n types which represent female and male
gamete ploidy (Hand et al. 2015). In an agamic complex when more than two
species or cytotypes occur within a population, there will be enormous number of
hybrid forms with different ploidy levels (Krahulcová et al. 2009).

According to taxonomic classification of Hieracium and Pilosella, there are basic
and intermediate species where basic species reproduce through either sexual or
apomictic modes, while the intermediate species are derived from hybridizations
between basic species and they are polyploids. Pilosella contains two loci, namely
LOSS OF APOMEIOSIS (LOA) and LOSS OF PARTHENOGENESIS (LOP), where
LOA is required for apospory including differentiation of AI cells, while LOP is
required for autonomous embryo and endosperm development (Hand et al. 2015).
Apomixis coexists with sexuality in Pilosella, while in 16 species of Hieracium
surveyed, 1–7 % of ovules showed residual sexuality. The LOA and LOP markers
were not conserved between Pilosella and Hieracium supporting independent evo-
lution of both the loci (Fig. 4.2). The origins of intermediate species and the most
recent hybrids derived from basic species of Pilosella plants are explained in Fig. 4.2.

Fig. 4.2 Pilosella species forming agamic complex after putative hybridization between basic
species resulting in intermediate species, marked by arrows. Green (Pilosella I) and orange
(Pilosella II) colors represent major chloroplast haplotype group. The number of individuals
sampled, reproductive modes, the occurrence of hemizygous elongated chromosome (EC) and the
conservation of LOA- and LOP-associated markers are mentioned for each taxon (adopted from
Hand et al. 2015)
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4.6 Conclusions

Asexual reproduction in plants is a potential tool to fix heterosis which will reduce
the cost of hybrid seeds. Although natural occurrence of apomixis is reported in
many families of angiosperm taxa, its transfer to cultivated crops has been
unsuccessful. Based on the observation that majority of gametophytic apomicts are
polypoids, apomixis is thought to have evolved through hybridization and poly-
ploidization. The genetics of apomixis is very complex as evident from segregation
distortions and the major developmental events such as apomeiosis, parthenogen-
esis, and autonomous endosperm development seem to segregate independently
within a population. Three different mechanisms have been identified so far regu-
lating those developmental events. While mutations in a meiotic gene such as
DYAD could produce unreduced gametes within an embryo sac, an egg cell-specific
gene of apomictic origin such as BABY BOOM LIKE could cause parthenogenetic
embryo formation when it is expressed in a sexual plant. Autonomous endosperm
development could be induced by silencing any member of Polycomb group genes
such as MEDEA. Although these three groups of genes control three different
developmental events of apomictic pathway, they seem to be independently gov-
erning the components, thus the master regulator of apomixis as a whole is still
unknown. Synthesizing an apomictic plant was still possible by hybridization
between dyad and cenh mutants which could be adopted in other crops as well.
Many apomicts form polyploid complexes in nature called agamic complexes
which harbor enormous amount of variability due to the presence of residual
sexuality. When apomixis technology becomes a tool for plant breeders, it may
eventually result in greater diversification and speciation in plants. This could also
result in more hazardous plant types such as weeds which become invasive. With
the development of more robust techniques of genomics and transcriptomics,
apomixis may become a reality for crop improvement in the near future.
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Chapter 5
Status and Opportunities of Molecular
Breeding Approaches for Genetic
Improvement of Tea

Rahul Kumar, Kuldip, Paramvir Singh Ahuja
and Ram Kumar Sharma

Abstract Tea is the most popular perennial plantation crop in the Southeast Asian
countries because of its attractive aroma, taste, and health benefits. Tea planta-
tions provides an important agro-based, eco-friendly employment generating and
export oriented industries in all the tea-growing countries. However, the future of
tea industry depends on the availability of high-yielding and high-quality tea clones
with greater tolerance to pest, diseases, and environmental stresses. Genetic
improvement of tea involves identification, characterization, evaluation, domesti-
cation, maintenance, and utilization of germplasm for the development of superior
plant material. Conventional breeding program in tea is, however, limited by long
gestation period, outbreeding nature, and self-incompatibility. This chapter sum-
marizes the status of emerging molecular genomic information that can expedite the
genetic improvement in tea and hence the productivity too. This will also provide a
background for possibilities of modern tea breeding together with some current
efforts for the development of sequence-based markers such as microsatellites,
single-nucleotide polymorphisms (SNPs) and links genetic diversity of existing
gene pools for the identification of diverse parental groups and efficient pheno-
typing to support operational breeding. Preliminary attempts on quantitative trait
locus (QTL) mapping in tea were also reviewed, and prospectives are also provided
on power of association genetics to dissect quantitative traits. Challenges and
opportunities to integrate advancement and advent of next-generation sequencing
(NGS) technologies to generate genome-wide makers and to integrate genomic
information into directional selective breeding are also discussed.
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5.1 Introduction

Tea, Camellia sinensis (L.) O. Kuntze, is one of the most popular non-alcoholic and
low-cost beverages prepared by adding processed leaves of the tea plant in hot
water and is consumed by a two-third of the world population. It is believed that tea
has been discovered accidentally in 2700 BC. During the same time, the Han
emperor defined Ti as buds taken from the plant t’u which is now known as tea or
ch’a. It can be, therefore, assumed that tea was being used as a “drink” for nearly
5000 years. Presently, tea is well known for its heritable brew, flavor, taste, and
refreshing values worldwide. It provides different types of beverages that include
the most popular non-alcoholic black, green, and oolong tea and contribute about
78, 20, and 2 %, respectively (Wu and Wei 2002; Basu 2002–2003). Tea contains
catechins, vitamins, amino acids, caffeine, and antioxidant properties which com-
plement it with medicinal values and makes it beneficial for health. Growing wild, a
tea plant can reach heights of 15 m (50 feet); however, under cultivation, shrubs are
maintained at 60–100 cm for harvesting. Plantations start to flower after three to
eight years, and commercial production is mainly through the selection of superior
plant materials followed by clone cultivations. Once planted, these plantations can
be harvested for more than a 100 years (Fang et al. 2006; Kwong-Robbins 2005;
Chen et al. 2008).

5.2 Classification

The tea plant (Camellia sinensis) belongs to the family Theaceae in the section
Thea (Prince and Parks 2001). Sealy (1958) gave the complete designation as
Camellia sinensis (L.) O. Kuntze. He further classified the genus into 12 subgeneric
sections and reported 82 species in the genus Camellia. Chang and Bartholomew
(1984), however, recognized over 200 species after revising earlier classifications.
Some other taxonomic classification systems have also been proposed in the recent
past by Chang (1981, 1998) who recognized 284 species and Ming (2000) who
identified 119 species. All the proposed classifications so far are summarized in
Table 5.1.

Table 5.1 Existing classifications of Camellia complex

Classification systems Species proposed

Sealy (1958)* 12 sub-subgenera; 82 species

Wight (1962)* 82 species

Chang and Bartholomow (1984) 200 species

Chang (1981, 1998) 200 species

Ming (2000) 119 species

*Sealy (1958) and White (1962) have not designated several intergrades as separate species, which
is the most acceptable
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5.3 Tea Cytogenetics

Tea, generally a diploid plant species has clumpy chromosomes with 2n = 2x = 30
(Longley and Tourje 1959; Bezbaruah 1971) and the estimated haploid genome size
is 4.0 Gb (Tanaka and Taniguchi 2007). However, few polyploids, such as triploids
[TV-29, HS-10 A, UPASI-3, UPASI-20 (2n = 3x = 45)], tetraploids (2n = 4x = 60),
pentaploids (2n = 5x = 75), and aneuploids (2n ± 1 to 29), have also been reported
(Devarumath et al. 2002; Singh 1980; Zhan et al. 1987). C. sasanqua has been
shown to form stable polyploidy series of tetraploid (2n = 4x = 60) and hexaploid
(2n = 6x = 90) plants, whereas triploids (2n = 3x = 45) are also identified in
C. rosiflora (Bezbaruah 1971). Additionally, some natural polyploids have also been
reported in tea (Simura 1935; Bezbaruah 1971; Wachira and Kiplang’at 1991).
Although these polyploids have desirable characters like high vigor and resistance to
various environmental stresses, particularly winter hardiness, they do not always
contribute to high yield (Bezbaruah 1968). Karyotypic studies revealed that the tea
accessions/clones belonging to the three main races (Assam, China, and Cambod) of
tea are diploid and did not show any major differences in their gross morphology and
karyotype, although minor differences existed (Bezbaruah 1971). The meiotic divi-
sions in Assam and hybrid teas were regular with 15 bivalents and regular segrega-
tion. However, hybrids showed several abnormalities in the pachytene chromosome,
suggesting differences in the gene content. Banding techniques and differential
staining of chromosomes to study the karyotypic differences within and between the
species are of immense importance in the future cytological studies in tea.

5.4 Tea Gene Bank in India

For the maintenance of a heterogeneous gene pool at the national level, regional
germplasm collection centers have been established in predominant tea-growing
areas. Tea germplasm is now maintained at the national level at three different
geographical locations, which include Tea Research Association, Tocklai
Experimental Station (TRA, TES), Jorhat, Assam, northeastern India; United
Planters’ Association of Southern India (UPASI), Valparai, Coimbatore, South
India, and CSIR Institute of Himalayan Bioresource Technology (IHBT), Palampur,
which is known for collections from northwestern India. It is estimated that pre-
sently more than 2532 accessions are held at TRA, TES, Jorhat, Assam (Singh
1999). Large numbers of commercially important accessions are also available at
germplasm repositories at UPASI and CSIR-IHBT. The number apparently is quite
impressive, but when one critically considers the number of collections for a species
like tea, which is self-incompatible, outcrossing, and the rate at which the germ-
plasm is being lost, one can realize that the representation is far from adequate.
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Considering the facts, a selection scheme was started during 1971–1972 to collect
and conserve the valuable and diverse tea genotypes from old seed–grown sections
in commercial tea plantation, which may be considered as “gold mine” for future
genetic improvement of tea.

Considering the cross-compatibility across the Camellia species, cultivated
species of tea plants bred with wild Camellia species, namely C. flava, C. petelotii,
and C. lutescens (Wight 1962; Sharma and Venkataramani 1971). Additionally, C.
irrawadiensis and C. taliensis, having morphological proximity with cultivated tea,
have also contributed to the existing gene pool of tea (Banerjee 1992). Therefore,
tea cultivated at the national level is highly heterogeneous, having several inter-
grades, introgressants, and putative hybrids. Tea quality and yield largely remain
the major global breeding objectives; however, depending on the local needs, type
of manufactured tea, and climatic zone, the breeding objectives vary significantly in
different tea-producing countries (Mondal 2009). While the breeding objectives of
black tea-producing countries, namely India, Kenya, Sri Lanka, Bangladesh, and
Indonesia, are biased toward the development of high-yielding and high-quality
clones, countries away from the equator, such as Japan and China, are focused on
the development of cold- and frost-resistant varieties. Horizontal increase of pro-
duction by extension planting is a prime focus of tea breeding worldwide.
Additionally, significant efforts have also been made to combat abiotic and biotic
stresses in tea. Among the abiotic stresses, drought has significantly affected the tea
productivity in all tea-growing regions of the world. In India, few drought-tolerant
clones/accessions (TV-1, TV-17, TV-19, TV-20, UPASI-2, UAPSI-9, UPASI-20,
ATK-1, BSS2) have been recommended for drought-prone area. Another important
trait is water logging, which limits and reduces productivity during rainy season
mainly in northeastern India. Winter dormancy is another abiotic stress causing no
leaf production during winter months. Winter dormancy also causes significant
annual production loss in Japan and China. In India, tea accessions/clones, namely
C-1, CR-6017, UPASI-15, UPASI-16, and UPASI-19 and some new collections
from the abandoned tea gardens of North-East India are recommended for
frost-prone areas.

Among the biotic stresses, blister blight caused by the pathogen Exobasidium
vexans Wasee is one of the most serious diseases of tea (Arulpragasam 1992),
which inflicted severe crop loss in countries like Sri Lanka, Indonesia, and India.
Yield loss and quality are significantly affected by disease incidence (Gulati et al.
1993). Even though the nature and basis of resistance of the disease are not known,
certain South Indian tea clones are known to manifest resistance to blister blight.
Debnath and Paul (1994) observed no correlation between anatomical and mor-
phological characters of 17 susceptible tea clones with various levels of disease
severity. However, pre- and postinflectional biochemical and physical changes in
the host plants play a vital role in triggering mechanism that imparts resistance to
the disease. Jayaramraja et al. (2006) reported that a popular South Indian tea clone
SA-6 is found to be highly resistant to blister blight infection, while the TES-34 was
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reported to be highly susceptible. Higher amount of epicuticular wax, thickened
epidermis, upper and lower cuticles, stomatal frequency on both the surfaces, and
compactness of the palisade cells might have cumulative effects in providing
resistance against blister blight infection in SA-6. Further, chitinase assay as well as
Western blotting studies confirmed that the constitutive level of chitinase expres-
sion was higher in the resistant clones when compared with the susceptible tea
clone. Increased content of epicatechin and lower concentration of epigallocatechin
were also observed in tea cultivars resistant to blister blight leaf disease in com-
parison with susceptible cultivars. The resistance of TRI 2043, the purple
green-leafed cultivar, is attributed to the additional catechin source provided by the
presence of high levels of anthocyanins.

5.5 Commercial Tea Production

Botanically, only Camellia sinensis var sinensis—“China type,” C. sinensis var
assamica as C. assamica (Masters) Kitamura—“Assam type,” and Camellia
assamica ssp. lasiocalyx (Masters) Wight—“Cambod type,” have contributed sig-
nificantly to the entire genetic pool of cultivated tea worldwide. However, apart
from these, several other Camellia species are being used as beverages in parts of
China and Indo-China, including C. taliensis, C. irrawadiensis, C. gradibractiata,
C. kwangsiensis, C. gymnogyna, C. crassicolumna, C. tachangensis, and
C. ptilophylia (Chang and Bartholomew 1984; Banerjee 1992). Some others like C.
fraternal are exploited for seed oil, which are used for cooking and also in phar-
maceutical and cosmetic industries. Additionally, many Camellia species like
C. japonica, C. rosiflora, and C. irrawadiensis are of great ornamental value with
beautiful leaves and flower structures, besides some desirable traits combined with
commercially important camellia species through hybrid breeding.

Morphologically, C. sinensis var. sinensis, the China-type tea is dwarf and
slow-growing shrub, tolerant to a cold climate. The relatively small, thick, and
leathery leaves have stomata that appear to be sunken in the lamina. Petioles are
short and stout, 3–7 in numbers, and provide the leaf an erect stature. The flowers
can be born singly or in pairs in the axils having 6–10 mm long pedicels with 2–3
subopposite scars. The flowers can be further characterized by 7–8 cup-shaped,
1.5–2.0 cm long broad oval to suborbicular petals with about 3–5 styles that are
generally free for greater part of their length but occasionally free up to the base of
the ovary. The capsules have 1, 2, or 3 locules, each containing 1–3 nearly spherical
seeds of about 10–15 mm diameter. Assam type (C. assamica) is a large, tall, and
quick-growing tree which prefers a semitropical climate, indigenous to the Assam
region in India (Kaundun and Matsumoto 2003). These varieties have a higher
caffeine and catechin content than the China varieties. The Assam tea varieties are
having large, thin, and glossy leaf with more or less acuminate apex, very distinct
marginal veins, and broadly elliptic leaf blades that are usually 8–20 cm long and
3.5–7.5 cm wide. The Cambod or Indo-China (Camellia assamica ssp lasiocalyx) is
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thought to be an intermediate between the China- and Assam-type tea. This is an
upright tree (6–10 m tall), with several, almost equally developed branches and
more or less erect, glossy, light green to coppery-yellow or pinkish red leaves, the
size of which is intermediate between C. sinensis and C. assamica. Although the
flowers are more or less similar to the Assam type yet, they have 4 or more
bracteoles, 3–4 ovules with 5 locules, and 3–5 styles that are free up to half the
length.

5.6 Conventional Breeding Efforts

Tea is a cross-pollinated plant; hence, the progenies obtained are highly hetero-
geneous in nature. Selfing either does not set seeds or results into a very low
germination ability. Development of pure lines in perennial crop like tea is
time-consuming and attributed to practical difficulties. Self- and cross-pollination
experiments carried out in 40 years at Tocklai give a clear picture of the extent of
pollination behavior in all three commercial tea plants and their progenies.
Background knowledge of improved seed stocks, selection of parental groups, and
their genetic constituents is among the major requirement of successful breeding in
tea. In contrast, clonal selection and multiplication are comparatively easy which
does not require any knowledge of plant genetic makeup. Better understanding of
the factors involved in flowering and fruit set in tea will be helpful in tea-breeding
program.

Conventional tea breeding through seeds, cuttings, and grafting is although well
established and has contributed significantly to tea improvement over the past
several decades, but proved to be time-consuming and labor-intensive. Further,
perennial nature, long gestation periods, high inbreeding depression,
self-incompatibility, unavailability of distinct mutant of different biotic and abiotic
stresses, low success rate of hand pollination, short flowering time (2–3 months),
long duration for seed maturation (12–18 months), and clonal difference of flow-
ering time and fruit-bearing capability are among the major bottlenecks for the
implementation of conventional breeding in tea.

5.7 DNA Markers and Their Utilization for Tea Genetic
Diversity Characterization

Three types of genetic markers, namely morphological markers, protein-based
markers, and DNA-based markers, have been used in genomic diversity analysis
and plant breeding. Variations among genotypes within a species are the raw
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materials for genomic analysis. To get a genetic marker, the marker locus has to
show experimentally detectable variation (polymorphism) among individuals in the
test population. The variations can be considered at different biological levels, from
the simple heritable phenotype to the detection of variation at the single nucleotide.
Once the variation is identified and the genotypes of all individuals are known, the
frequency of recombination events between loci is used to estimate linkage dis-
tances between markers (Liu 1998). According to Liu (1998), genomic analysis
using genetic markers should be based on well-established genetic models. If the
underlying genetics of a marker is not clear, then the analysis may be misleading.
More importantly, the marker assay should be repeatable at different times in the
same or different laboratories.

The application of DNA markers in crop breeding includes the DNA poly-
morphic assays for genetic mapping, marker-assisted plant breeding, genomic
analysis, parasite diagnosis, and genotyping (Mignouna et al. 1996). These
molecular technologies include restriction fragment length polymorphism (RFLP),
randomly amplified polymorphic DNA (RAPD), amplified fragment length
polymorphism (AFLP), simple sequence repeat polymorphism (SSRP), sequence
characterized amplified regions (SCARs), sequence tagged sites (STSs), cleaved
amplified polymorphic regions (CAPs), single-strand conformational polymor-
phism (SSCP), double-strand conformational polymorphism (DCSP), and
single-nucleotide polymorphism (SNP). Since different DNA marker technologies
detect different types of variations, the choice of marker(s) is crucial. The poly-
merase chain reaction (PCR)-based DNA amplification techniques are in general
more advantageous than classical RFLP markers, but have limitations. The two
most important characteristics of good markers include the multiplex ratio (the
number of markers that can be generated in a single reaction) and the polymor-
phism information content (the effective number of alleles that can be detected per
marker in a set of individuals) (Gysel et al. 1996).

5.7.1 Randomly Amplified Polymorphic DNA (RAPD)

The RAPD technique is based on the amplification of random DNA sequences by
the PCR with arbitrary primers. The assay is technically simple and fast and
requires only small quantities of DNA preparations (Williams et al. 1990).
The RAPD markers have been widely used in tea for the construction of linkage
maps (Hackett et al. 2000) and estimation of genetic diversity and population
differentiation (Chalmers et al. 1992; Sharma et al. 1995; Wachira et al. 1995, 2001;
Wachira 2002). The advantage of RAPD over RFLP is of comparatively high
multiplex ratio and can yield up to 20 informative markers per primer (Powell et al.
1996). However, considering sensitivity of in repeated experiments, RAPD markers
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require optimization amplification conditions to avoid inconsistencies (Williams
et al. 1993). Moreover, Mendelian dominant genetic inheritance and homoplasy
(indistinguishable fragments size may not represent homologous loci, Weising et al.
2005) limits the utility of RAPD markers in comparative mapping projects.

5.7.2 Amplified Fragment Length Polymorphism (AFLP)

The AFLP technique combines the robustness of RFLP analysis with the reliability
of stringent PCRs and allows the simultaneous amplification of a very large number
of fragments of which 10–50 may be polymorphic, depending on the genome size
and target species. The total number of fragments amplified can be adjusted by
altering the total number of arbitrary nucleotides used in the primers. Additionally,
AFLP allows dominant as well as codominant markers to be analyzed. However,
scoring different alleles of a particular locus is not obvious, implying that infor-
mation content is rather low, but this problem is overcome by other molecular
marker systems, such as the simple sequence repeat (SSR). AFLP has been used to
establish the extent of genetic variation and population differentiation in different
plant species including tea (Vos et al. 1995; Paul et al. 1997; Loh et al. 2000;
Hackett et al. 2000; Wachira et al. 2001; Sharma et al. 2010; Raina et al. 2012).
AFLP is particularly useful owing to their high multiplex ratio (Wachira et al.
2001). AFLP fingerprinting of commercially important Indian tea accessions (123
accessions/clones) revealed that most of the diversity is restricted in among tea
populations [85 % genetic variations (Fig. 5.1)]. Cluster analysis, principal com-
ponent analysis, and analysis of molecular variance (AMOVA) detected only a
limited genetic variation (15 %) among the populations, suggesting their origin
from a similar genetic pool (Sharma et al. 2010).

Further, as a largest diversity characterization efforts, for the first time, AFLP
analysis of 1644 accessions and clones of Indian tea with known 15 morphotypes
revealed that tea cultivated at the Indian subcontinent is highly heterogeneous and
at least six gene pools can be predicted based on PCoA and NJ analyses (Fig. 5.2),
with one group in each, constituted mostly by China hybrid, Assam–China hybrid,
and Assam hybrid morphotypes, of distinct genetic identity (Raina et al. 2012).

5.7.3 Simple Sequence Repeat (SSR) Marker Resource
in Tea

The ubiquity of microsatellite or SSRs in eukaryotic genomes (Hamada et al. 1982;
Tautz and Renz 1984) and their usefulness as genetic markers have been well
established over the last decade. Microsatellites are motifs of 2–6 bp in length
(Jacob et al. 1991) and mainly characterized by high frequency, codominance,
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multiallelic nature, reproducibility, extensive genome coverage, and ease of
detection by PCR with unique primer pairs that flank the repeat motif (Gupta and
Varshney 2000). As a result of these characteristics, microsatellites have become
the most favored genetic markers for plant breeding and genetic applications such
as assessment of genetic diversity, constructing framework genetic maps,

Fig. 5.1 AFLP-based genetic relationships of 123 tea accessions. Bootstrap values greater than
60 % are indicated (Sharma et al. 2010)
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marker-aided selection, and comparative mapping studies (Wu and Tanksley 1993;
Powell et al. 1996). Owing to their codominant nature, SSRs are particularly useful
in determining parentage.

In general, SSRs are identified from either genomic DNA or cDNA sequences.
The standard method for developing microsatellite markers involves the creation of
small-insert genomic library, subsequent hybridization with tandem repeated
oligonucleotides, sequencing of candidate clones, and designing of primers flanking
the SSRs (Kijas et al. 1994; Edward et al. 1996). Different enrichment strategies have
been used by different workers to develop SSR markers. Freeman et al. (2004)
identified 4 marker, but later on, a set of 11 SSR markers were developed through
PCR-based isolation of microsatellite array (PIMA)-based method (Hung et al. 2008).
However, comparatively larger repertoire of 150 novel genomic microsatellite
markers was identified from (GA)n-enriched genomic libraries of Assam tea
(Bhardwaj et al. 2013). Availability and continuous enrichment of expressed
sequence tags (ESTs) database in tea can serve as the alternative strategy for the
identification and development of microsatellite markers. There are about 212 SSR
markers, including genomic and EST-based SSRs, reported in tea (Zhao et al. 2008;
Ma et al. 2010; Sharma et al. 2009, 2011a, b; Yang et al. 2009). SSR markers
developed in the recent past reported high level of heterozygosity in tea and these
marker loci recorded very high transferability rate in related Camellia spp; therefore,
they have wider utility for genotyping studies in tea complex (Sharma et al. 2009,
2011a, b). In the recent past, with the help of different next-generation sequencing

Fig. 5.2 Principal coordinate analysis of 1644 tea accessions based on AFLP analysis (Raina et al.
2012)
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technologies, efforts have been made for the development of sequence-based maker
resources in tea (Wu et al. 2013). Multiple transcriptome sequencing by our labo-
ratory has generated large array of different sequence-based marker resources in tea
(unpublished data). SSR markers identified in tea by different groups are summarized
in Table 5.2.

5.8 Molecular Breeding Approaches

Marker-assisted selection (MAS) is the selection and development of superior
plants using DNA markers. This approach relies on the concept that a particular
allele of a gene or multiple alleles are responsible for explaining superior pheno-
typical diversity. Therefore, the phenotypic characteristic can be predicted very
early in the breeding program by the presence of the desired major alleles. An
additional advantage of MAS is that the evaluation of the phenotype is based on the
genotype and environmental interactions. The regions on the genome where these
alleles are located are referred to as quantitative trait loci (QTLs). Agronomical
important traits, for example yield and quality, can usually be linked to more than
such one gene/QTL and can be identified through genetic analysis. During genetic
analysis, a particular size band of a marker can sometimes be associated with
morphological traits by coincidence. Because of the long juvenile period and
generation interval, it is arguable that MAS has more to offer for the genetic
improvement of perennial tree species including tea than for short-lived annuals
(Bradshaw 1998). For example, if MAS proves useful not just in identifying clones
for propagation in the current generation, but also in choosing superior parents with

Table 5.2 Status of microsatellite marker development in tea

Approach No. of SSR markers Reference

Enriched genomic libraries 15 Freeman et al. (2004)

158 Bhardwaj et al. (2013)

Public EST database 112 Sharma et al. (2011a, b)

74 Ma et al. (2010)

61 Sharma et al. (2009)

24 Zhao et al. (2008)

10 Ueno and Tsumura (2009).

PCR amplification of
microsatellite array

11 Hung et al. (2008)

Transcriptome data 3767 EST-SSRs (36 validated
SSR markers)

Wu et al. (2013)
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complementary multilocus genotypes for the next generation, 10 years or more
might be saved in each breeding cycle (Bradshaw 1998).

Bulked segregant analysis (Michelmore et al. 1991; Giovanonni et al. 1992) is
one of the best mapping approaches for rapidly identifying markers linked to any
specific gene or genomic region. Two bulked DNA samples can be generated from
a segregating population derived from a single cross. Each pool, or bulk, contains
individuals that are identical for a particular trait or genomic region but arbitrary at
all unlinked regions. Two bulks are therefore genetically dissimilar in the selected
region but seemingly heterozygous at all other regions. Thus, the bulks are
homogeneous for a particular trait (e.g., resistant or susceptible to a specific
pathogen, respectively), but heterogeneous at all unlinked regions. These bulks are
screened for differences using DNA marker approach to identify DNA markers in
linked to trait of interest. Any differences between these bulks (e.g., presence vs.
absence of a band on a gel) represent a candidate for a marker linked closely to the
trait of interest. Since the bulks are supposed to contrast for alleles contributing
positive and negative effects, any marker polymorphism between the two bulks
indicates the linkage between the marker and trait of interest, which then has
ultimately to be verified in a segregating population. BSA is dependent on accurate
phenotyping and has been proved popular method in marker-assisted breeding in
different plant species, which include lettuce, Rhycosporium secalis (Michelmore
et al. 1991; Barua et al. 1993; Ardiel et al. 2002). However, this method has been
applied mostly to crop plant species and is yet to be widely applied for those crops
wherein classical mapping procedures are complicated by large genomes, out-
breeding, and long gestation period, such as forest trees. In the first for a tree
species, a study by Yang et al. (1997) found a PCR marker, RAPD-OPK/1300,
linked to scab resistance gene Vf in apples. The marker was further cloned and
sequenced leading to the development of a SCAR, which has been used to identify
individuals resistant to the disease. Not only in higher eukaryotes like angiosperms
but also in other lower eukaryotes like Saccharomyces cerevisiae, bulk segregant
analysis by high-throughput sequencing has revealed a novel xylose utilization gene
(Wenger et al. 2010).

In tea, Kamunya et al. (2010) constructed two bulked DNA samples for yield
obtained by using equal amounts of DNA from ten top- and low-performing pro-
geny. Screening of 252 random 10-mer primers, 96 AFLP primer combinations,
and 15 SSR primer pairs on the two parents and respective bulks rapidly identify
site-specific QTL markers. However, following exploratory genotyping of the
individual progeny with informative primers, it was discovered that although some
marker loci could discriminate the bulks and their respective parents during the
screening process, tea being a outbreeding crop, in most cases the pattern was not
reproducible upon genotyping. The patterns were mostly confounded by the
appearance of recombinants in either of the two classes. Similar kinds of limitations
and problems were also confounded in our study using two bulks for dissecting
blister blight disease resistance and susceptible progenies utilizing SSR, RAPD, and
AFLP markers.

112 R. Kumar et al.



5.8.1 Genome Mapping and QTL Analysis

In full-sib families of outcrossing species, the construction of genetic maps is far
more complicated than that of progenies derived from the intercross of pure lines.
The main difference is the number of marker alleles and the segregation pattern of
marker genotypes which may vary from locus to locus in outcrossing species
(Jansen 2005; Lu et al. 2004; Maliepaard et al. 1997; Van Ooijen 2011). To
overcome these problems of linkage analysis in outcrossing species, “two-way
pseudo-testcross” strategy as proposed by Grattapaglia and Sederoff (1994) in two
parents of an interspecific full-sib cross of E. grandis and E. urophylla using
dominant RAPD markers has been well adopted and is being utilized for linkage
mapping in outbred crops like tea. A population of type CP (cross-pollinated) in
two-way pseudo-testcross is the product of two independent and distinct meioses,
i.e., the meiosis of the two parents. The meioses are distinct in the fact that some
loci are segregated in the first parent, some in the second, and the others in both. For
the construction of genome map in a pseudo-testcross population, marker loci
segregated in 1:1 ratio should be differentiated from those of 3:1. For the population
which has been constructed by a cross between two heterozygous parents and
subsequently used for genome mapping, it is desirable to screen markers with
backcross configurations when we are dealing with dominant markers. By doing
this, the well-known problem associated with dominant markers in the repulsion
linkage phase in F2 configuration can be avoided. The relative linkage information
content for different markers’ system was reviewed as early as in 1956 by Allard.
The use of dominant (single-dose) markers that are segregated in “testcross” con-
figuration in heterozygous individuals (Gebhardt et al. 1989; Ritter et al. 1990;
Carlson et al. 1991) gave rise to the use of “pseudo-testcross” mapping strategy in
several outbred plant species (Sobral and Honeycutt 1993; Hemmat et al. 1994).

The use of dominant RAPD markers in this full-sib family resulted in three types
of segregating markers: (a) markers heterozygous in male and homozygous null in
female and subsequently segregating in testcross pattern (1:1 segregation ratio) and
hence inherited from the male parent, (b) markers heterozygous in female and
homozygous null in male and further segregating again in testcross pattern (1:1
segregation ratio), but this time inherited from the female parent, and (c) markers
segregating in intercross pattern (3:1 segregation ratio) inherited from both parents.
It is obvious from the above classification that based on the parental source of the
testcross markers, the first two testcross marker sets are used to construct two
different single-tree genetic maps of the two parental trees. The name “two-way
pseudo-testcross” was given to the approach because the testcross configuration of
individual markers cannot be inferred a priori as in true testcrosses and because the
posterior inference has to be extended to both parents (Grattapaglia and Sederoff
1994). In the last two decades, the “two-way pseudo-testcross” mapping approach
has been applied in a wide range of forest tree species, initially in conjunction with
RAPD or AFLP marker analysis (Verhaegen and Plomion 1996; Marques et al.
1998; Arcade et al. 2000; Lerceteau et al. 2000; Wu et al. 2000; Cervera et al. 2001;
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Chagne et al. 2002; Chen et al. 2010) and gradually with codominant SSRs
(Brondani et al. 2002, 2006; Shepherd et al. 2003; Freeman et al. 2006; Bundock
et al. 2008; Plomion et al. 2011; Alves et al. 2012) as well as by DArT markers
(Kullan et al. 2012). In some of such pseudo-testcross studies, it has been possible
to use the intercross markers to establish homology or large-scale synteny of the
two testcross parental maps (Verhaegen and Plomion 1996; Barreneche et al. 1998;
Marques et al. 1998; Wu et al. 2000). However, the size of the informative pro-
genies gets reduced in such cases, and a maximum of only 25 % of mapping
progeny could be found informative when dominantly scored intercross markers
were used and mapped and resulted in very low power to map such markers in both
parental maps (Liu 1998). This problem becomes even more trivial by the relatively
low proportion of intercross markers commonly observed in full-sib progenies of
forest trees. This problem can now be addressed by the use of codominant markers
such as SSRs and gene-based markers (Barreneche et al. 1998; Brondani et al.
1998; Chagne et al. 2002; Yin et al. 2004).

5.8.2 Molecular Marker Analysis

Genome map construction is based on genome variation at locations which can be
identified bymolecular assays or traditional trait observations. Screening polymorphic
markers is the first step of an efficient genome map construction. If a marker does not
show the polymorphism for the set of progeny, then the marker is found to be
non-informative monomorphic marker and hence cannot be included in downstream
data analysis. Additionally, some non-parental bands reported in few studies (Hunt
and Page 1992; Reineke and Karlovsky 2000; Riedy et al. 1992; Scott et al. 1992)
probably represent artifactual heteroduplex molecules (Ayliffe 1994; Novy and Vorsa
1996). Such heteroduplex formation can occur when two allelic DNA segments
differing by one or more base substitutions, insertions, and/or deletions are amplified
during the PCR. Alternatively, some parental bands may also be observed to be
completely absent from the progeny (Halldén et al. 1996; Heun and Helentjaris 1993).
These observations are probably a consequence of competition for target sequences.

5.8.3 Segregation Distortion

High rate of segregation distortion in paternal markers in “two-way pseudo-testcross
mapping” is attributed to the multiple-pollen hypothesis. Segregation distortion is a
common phenomenon wherein the genotypic frequency of a locus does not follow a
typicalMendelian ratio (Xu andHu2009). Segregation distortion (between 25 and 35)
has been found comparable in many studies of tea (26.5–32.9 % at P < 0.01) (Hackett
et al. 2000; Huang et al. 2005, 2006). The percentage of loci showing significant
segregation distortion varies greatly, depending on the plant species, population type,
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and specific cross (Cloutier et al. 1997). Higher segregation distortion is usually found
in distantly related species or subspecies (Jenczewski et al. 1997; Virk et al. 1998).
Possible explanations of segregation distortion include chromosomal rearrangements,
gametic or zygotic selection (Perfectti and Pascual 1996), and inbreeding depression
(Husband and Schemske 1996). However, causes of the higher distorted segregation
for tea are still unknown. Segregation distortion is known to have a bias estimation of
recombination fractions, either overestimation (Lashermes et al. 2001) or underesti-
mation (Cloutier et al. 1997), and it may affect distance estimation and the order of
markers in linkage groups (Van Os 2005). As a result, markers showing obvious
segregation distortion can be excluded from the map.

5.8.4 Linkage Mapping and Marker Trait Association
in Tea

Linkage map may be thought of as a “road map” of the chromosomes derived from
two different parents. Linkage maps indicate the position and relative genetic dis-
tances between markers along chromosomes, which are analogous to signs or
landmarks along a highway. The most important use of linkage maps is to identify
chromosomal locations containing genes and QTLs associated with traits of interest
(Collard et al. 2005).

As in other plant species, the future of tea industry depends on the availability of
high-yielding and quality tea genotypes tolerant to biotic and abiotic stresses. Highly
heterogeneous gene pool due to outbreeding nature coupled with long gestation
period (Sharma et al. 2009, 2010; Raina et al. 2012; Karthigeyan et al. 2008;
Bhardwaj et al. 2014), genetic improvement of tea in India is largely attributed to
development and selection of high-yielding better quality tea clones. However, such
selections are largely offset due to gradual replacement of most of the pioneer
plantations, therefore leading to narrow genetic base. Further, considering har-
vestable yield of tea which is confined to the terminal two top leaves and a bud, leaf
characteristics are therefore considered as the basis for the selection of the two most
important agronomic genotypes with higher yield and quality. However, these traits
require several years to develop stable traits, irrespective of the environment and
climate changes. Thus, the selection based on one or more molecular markers linked
to QTLs could be potentially important to expedite the breeding efforts.

Most of the agronomic traits of tea are quantitative in nature and therefore not
amenable to easy manipulations in breeding programs without elaborate and
long-term field testing in at least more than one environment in order to determine
their inheritance, adaptability, and stability. Only a few efforts have been made for
QTL mapping in tea. In early 1990s, first linkage map and putative RAPD makers
associated with theanine content, date of bud sprouting, resistance to anthracnose,
and tolerance to cold were detected (Tanaka 1996). Molecular markers are better
utilized in QTL analysis if they are already placed in linkage maps, which enable
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precise positioning of QTLs. Hackett et al. (2000) using RAPD and AFLP mapped
126 markers (1349.7 cM) spanning an average distance of 11.7 cM between loci on
the map. A few linkage maps have been constructed in the recent past in tea by
Taniguchi et al. (2012) and Hu et al. (2013). In a RAPD study by Mishra and
Sen-Mandi (2004), a band associated with drought tolerance in tea was identified (at
1400 bp with OPAH02 primer). QTL mapping for mulberry scale, MSR-1 (a single
dominate gene), has been developed into a MAS marker (Tanaka and Taniguchi
2007). Mulberry scale is a polyphagous scale insect that causes major damage to tea
trees in Japan. The development of MAS markers to detect resistance against
mulberry scale insects can play a crucial role in tea breeding (Kaneko et al. 2006;
Takeda 2004; Tanaka and Taniguchi 2007). Kamunya et al. (2010) developed a map
containing 30 (19 maternal and 11 paternal) linkage groups that spanned 1411.5 cM
with a mean interval of 14.1 cM between loci. Based on the map, QTL analysis was
performed on five-year yield data across the two sites. Twenty-three putative QTLs
were detected, 16 in five different linkage groups for Timbilil, two in two groups for
Kangaita, and the rest associated with unassigned markers. At least two unassigned
markers associated with yield at Kangaita over the whole study period, suggesting
potential candidate markers for site-specific MASs (Fig. 5.3).

Fig. 5.3 Linkage group 1
depicting the position of
multiple-yield QTLs at 2 cM
each from marker
OPG-70-2800 and
OPO-70-90. The LRS line
(L1) obtained in composite
interval sent the mapping. Bar
represents the estimated
confidence interval by
bootstrap resampling in Map
Manager QTX (Kamunya
et al. 2010)
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Recently, QTL analysis using a moderately saturated genetic map of 406 SSR
markers in a pseudo-testcross population of 183 individuals identified 25 QTLs
associated with catechin content. Nine of them remained stable. QTLs over two
measurement years were mapped on LG03, LG11, LG12, and LG15 (Ma et al.
2014). In tea, similar to other out-crossing plant species, a population derived from
two known non-inbred parents is scored for any molecular markers like RAPD,
AFLP and SSR markers, in order to develop a linkage map. However, a very high
proportion of the markers exhibiting unexpected segregation ratios in light of their
configurations in the parents have been found, which can most easily be explained
by the hypothesis of three male parents contributing pollen to this cross as revealed
and discussed by Hackett et al. (2000) wherein linkage genome map with 15
maternal linkage groups with at least three or more markers was constructed.
However, paternal map could not be constructed because mix of half-sib popula-
tions confirmed multiple-pollen theory.

Parent-wise segregation pattern in the study by Kamunya et al. (2010) was found
to be a bit less deviated. The markers from the paternal parent have the highest
proportion of distortions, and those from the maternal parent have the least. Hackett
et al. (2000) and Kamunya et al. (2010) used 90 and 42 offspring, respectively, for
their maternal linkage map. While Hackett et al. (2000) constructed the female map
with the help of 112 markers, Kamunya et al. (2010) constructed the map with 100
markers. Other linkage maps in tea have also been created by some workers like
Taniguchi et al. (2012) where they used 54 F1 clones following a three-line ref-
erence map approach with the help of AntMap (Iwata and Ninomiya 2006). All the
genome and QTL mapping efforts are summarized in Table 5.3.

Table 5.3 Genome and QTL mapping status in tea

QTL/genetic mapping Marker type Description Reference

Theanine content, date of
bud sprouting, and
tolerance to cold

RAPD Tanaka
(1996)

Genetic map RAPD and
AFLP

126 markers covering
1349.7 cM

Hackett
et al. (2000)

Genetic map/yield trait RAPD, AFLP,
SSR, ISSR

Genetic map with spanned
1411.5 cM with a mean
interval of 14.7 cM

Kamunya
et al. (2010)

Twenty-three putative yield
QTLs for site species mapping

Genetic map RAPD, SSR,
CAPS, STS

1124 markers with a core map
length of 1218 cM

Taniguchi
et al. (2012)

Genetic map RAPD, AFLP,
ISSR, STS,
SSR, CAPS

367 linked markers covering
4482.9 cM (map density
12.2 cM/marker)

Hu et al.
(2013)

Genetic map/catechin SSR 25 QTLs associated with
catechins. 9 are stable
throughout the year

Ma et al.
(2014)
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5.9 Current Opportunities and Future Prospects

Modern high throughput genotyping technologies based on cost effective next gen-
eration sequencing, development of genomewidemarkers and saturated linkagemaps
will enable us to understand the genetic structures, establishing marker-trait associ-
ation of agronomic traits and improve crops rapidly and precisely. However, con-
sidering genome complexity (*4Gb), availability of genetic resources forC. sinensis
is relatively scarce. Till January 2014, only 159034 nucleotide sequences and 49759
ESTs of C. sinensis were available in GenBank. In the past decade, hundreds of SSR
markers for C. sinensis have been reported and some of these have been genetically
mapped (Sharma et al. 2009, 2011a, b; Taniguchi et al. 2012). Still, therefore, there is
an urgent need of developing various sequence-based genome-wide coverage makers
preferably mapped to tea genome for the effective application of genetic mapping and
molecular breeding programs for C. sinensis and related species.

NGS platforms (Illumina and 454) are revolutionary techniques that can produce
millions of sequences at a relatively low cost compared with traditional methods.
Recently, few efforts have been made for tissue- and trait-specific transcriptome
sequencing in tea (Shi et al. 2011). These NGS-derived public databases can also be
explored for the development and utilization of sequence-basedmolecular markers like
SSRs and SNPs and can fasten the genome mapping and molecular breeding in tea.

5.9.1 Association Genetics and Linkage Disequilibrium
Mapping

Quantitative trait marker association based on population-wide linkage disequilib-
rium has significant potential as a method to identify genetic linkage at higher
resolution than traditional mapping allows. Linkage (or gametic phase) disequilib-
rium (LD) is the non-random association between alleles, usually at linked loci.
Association genetics identifies DNA marker alleles that are differentially abundant in
the individuals carrying alternative QTL alleles. The principle of association genetics
is similar to linkage mapping in a segregating family and to the concept of using
markers linked to QTLs to select superior individuals. However, complex genotypic
patterns due to mixture of more allelic genotypes than in a typical controlled cross
greatly affact resolution and applicability. The resolution of a QTL on a linkage map
depends on the size of the segregating population and marker density.

The biology of woody perennials can provide us with indications about
nucleotide diversity and LD structure relative to other plant groups. Most tree
species are outbreed in nature therefore require large number of loci for the eval-
uation of LD structure. Tea being a tree crop which is typically outcrossing where
pollen and seeds are normally dispersed over long distances influenced by
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anthropogenic activities is expected to retain high genetic variation and disperse
new alleles, reducing the possibility of allele loss by genetic drift. With the
availability of NGS technologies, large-scale linkage disequilibrium studies could
be initiated to find genome-wide and large-scale marker and trait association in tea.

5.9.2 Genomic Selection

Genomic selection is a form of MAS in which genetic markers covering the whole
genome are used so that all QTLs in linkage disequilibrium with at least one marker
can be predicted. Simulation results and limited experimental results suggest that
breeding values can be predicted with high accuracy using genetic markers alone.
Implementation of genomic selection is likely to have major implications for
genetic evaluation systems and for genetic improvement programs in tea.

5.10 Conclusions

In conclusion, current genetic improvement programs in tea, needs to fastened,
includes saturation of genetic linkage maps using sequence-based SSR and SNP
markers and dissection of important traits using well-defined, accurate, and refined
populations. Marker and trait association can be achieved through either traditional
QTL mapping approach or modern-day association mapping approach which is
more suitable for an outbred crop like tea. Marker-assisted selection could be
fastened through modern-day tools of genomic selection in tea.
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Chapter 6
Molecular Cytogenetic Approaches
in Exploration of Important Chromosomal
Landmarks in Plants

Santosh Kumar Sharma, Maki Yamamoto and Yasuhiko Mukai

Abstract Multicolored fluorescence-based chromosome biology or ‘molecular
cytogenetics’ in common continue to flourish and make essential contributions to
elucidate the plant gene regulation, genome architecture, and organization by
revealing essential chromosomal landmarks. Fluorescence in situ hybridization
(FISH) and its modifications, such as extended DNA fiber-FISH, bacterial artificial
chromosome (BAC)-FISH, multicolor-FISH (McFISH), and super-stretched
pachytene-FISH, allow the study of minute details of chromosome structure and
subsequently permit sophisticated analyses of chromosomal behavior. Similarly,
genomic in situ hybridization (GISH) facilitates genome-specific chromosome
painting in hybrids and polyploids, analysis of recombination of partially homol-
ogous chromosomes in interspecific/generic natural hybrids, and detection of
transgene and/or alien chromatin in synthetic hybrids. The global patterns of
chromatin modification (e.g., DNA methylation and histone tail modifications)
along with nuclear size and shape, relative content and distribution of
hetero/euchromatin, and organization as well as structure of chromosomes (e.g.,
position and orientation) provide new insights into epigenomic evolution of the
particular plant species. Molecular cytogenetics also provide information on gene
pool diversity and relatedness of the plant to its wild relative that ultimately
may serve as a baseline data for plant breeding programs. As more genomes
become sequenced, such cytogenetic tools will play a greater role in investigating
the function of those genomes. Attempts have been made to summarize the utility
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of molecular cytogenetic tools in exploration of important chromosomal landmarks
in plants. The evolution of plant cytogenetic research from classical to molecular
level and modern to next-generation era has been discussed.

Keywords FISH � GISH � Chromosome painting � Chromatin dynamics

6.1 Introduction

6.1.1 Classical Cytogenetics

The term cytogenetics is referred to the study of genetic consequences in terms of
chromosome number, structure, and behavior vis-à-vis speciation and evolution.
Cytogenetics has been proved to be an integral part of genome mapping projects
owing to magnificent chromosomal dynamics during mitosis and meiosis. The field
of plant cytogenetics was heavily induced by Barbara McClintock’s pioneering
work on maize (Zea mays) (McClintock 1929, 1932, 1938, 1941a, b, 1984).
McClintock used carmine for staining and uniquely identified all of the individual
chromosomes from a single meiotic nucleus with a combination of two metrics, i.e.,
the relative lengths and arm ratios of the chromosomes. Her studies on unequivocal
identification of individual chromosomes established a milestone in the scientific
community, which allowed neo-discoveries regarding the dynamic structure and
behavior of the maize genome (McClintock 1929, 1932, 1938, 1941a, b, 1984).
Further, development of chromosome-banding techniques greatly improved the
usefulness of chromosome biology to understand the basic genome architecture. In
this context, Caspersson et al. (1968) proposed Q-banding pattern using the
fluorescent dye quinacrine on plant chromosomes. Vosa and Marchi (1972) com-
pared Giemsa C-banding to Q-banding on the chromosomes of bean (Vicia faba),
keeled garlic (Allium carinatum), and maize. Further, Giemsa staining technique
also showed its utility to identify individual rice prometaphase chromosomes
(Kurata and Omura 1978), karyotype development for diploid rye (Secale cereale)
(Gill and Kimber 1974), and barley (Hordeum vulgare) (Linde-Laursen 1975).
With the advent of information on DNA and its characteristics, modifications of
DNA staining dyes and banding techniques were adapted and optimized for
cytogenetic characterization of different plant species. These classical approaches
have proven invaluable for chromosome characterization, but the development of
in situ hybridization, which allows for direct visualization of specific DNA
sequences on chromosomes, forms a quantum leap forward for cytogenetics by
combining cytology with molecular biology (Gill and Friebe 1998; Harper and
Cande 2000).
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6.1.2 Molecular Cytogenetics

A combination of ‘classical cytogenetics’ and ‘recombinant DNA technology’ gave
birth to a versatile multicolored fluorescence engineering-based chromosome
biology called ‘molecular cytogenetics.’ During initial development, such technique
had been performed by using radioactive nucleic acid probes for the detection of
specific DNA or RNA sequences in metaphase chromosomes or interphase.
Subsequently, in the late nineties, methods for labeling nucleic acids with
non-radioactive haptens such as biotin became available and adopted widely (Jiang
and Gill 1994). The advantages of non-radioactive probes over radioactive probes
include increased stability, safe handling, rapid, precise spatial localization, less
back ground, and most importantly the ability to use multiple colors on a single
chromosome preparation.

The development of in situ hybridization (ISH) techniques opened up oppor-
tunities for cytogenetic analysis of any species, regardless of its inherent chromo-
some morphology (Gall and Pardue 1969; Pardue and Gall 1975; John et al. 1969).
In plants, the use of radioactive tagged or modified nucleotides (labeled with biotin,
digoxigenin, or fluorescent haptens) and FISH probes also permits microscopic
visualization and localization of complementary sequences in cells/nuclei and on
individual chromosomes (Mukai et al. 1991; Fransz et al. 1996a; Mukai and
Yamamoto 1998). Basic FISH makes use of green and red fluorochromes for probe
detection and DAPI (4,6-diamidino-2-phenylindole) for counterstaining the chro-
mosomal DNA. Although FISH is commonly used to map unique or
low-copy-number sequences, however it also showed its potential to localize
repetitive sequence in order to produce chromosome-specific landmarks or explore
genome relations in polyploidy/closely related plant species (Lysak et al. 2001,
2003; Kato et al. 2004; Lamb and Birchler 2006). FISH has been found most
successful in mapping the repetitive and single-copy DNA sequences on prome-
taphase chromosomes, interphase nuclei, pachytene complements, chromatin fibers,
and naked DNA molecules. Accurate localization of repetitive and tandem arrays
plays a major role in chromosome identification and karyotype analysis in plants
(Mukai and Yamamoto 1998). The broad applications of FISH in structural,
comparative, and functional genomics place plant cytogenetics in an important
place to complement, accelerate, or guide plant genome research (Lamb et al. 2007;
Danilova and Birchler 2008; Nagaki et al. 2012b). On the other hand, genomic
in situ hybridization (GISH) (Le et al. 1989; Mukai and Gill 1991), a special type of
FISH that uses genomic DNA of a donor species as a probe in combination with an
excess amount of unlabeled blocking DNA, provides a powerful technique to
monitor chromatin introgression during interspecific hybridization. In addition, the
GISH technique allows the study of genome affinity between polyploid species and
their progenitors (Mukai et al. 1993b; Raina et al. 1998; Raina and Mukai 1999).
GISH is thus a valuable supplemental technique to traditional genome analysis such
as conventional meiotic pairing analysis.
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Molecular cytogenetics has now become an indispensible tool and a conceptual
foundation for modern genome projects by providing significant information
on individual chromosome portfolio of the organism under investigation.

6.2 Advances in Molecular Cytogenetic Techniques

Rapid developments in genetics, molecular genetics, molecular biology, and
genomics, together with molecular cytogenetics, have driven major conceptual
advances in mitotic, meiotic analysis, chromosome structure, and chromosome
manipulation. Along such development although the principal steps of the FISH
technique have remained same, various technical developments have been adapted
in plant molecular cytogenetics. The basic development was the use of several
colors for labeling the probes which provide holistic view of genome structure at a
single glance, i.e., McFISH and McGISH (Mukai et al. 1993b; Mukai 1996). Some
of the recent developments in the field of plant molecular cytogenetics in order to
understand genome architecture and organization at ultra-resolution are described
below.

6.2.1 Tyr-FISH

Tyr-FISH was developed to improve the detection sensitivity of FISH experiments.
This method allows signal amplification by using a peroxidase-conjugated antibody
as the first layer of signal detection. Fluorochrome-labeled tyramides as peroxidase
substrate are used to generate and deposit many fluorochromes close to the in situ
bound peroxidase (Raap et al. 1995). The sensitivity of the basic FISH technique
can be increased by 10–100 times using such modification. DNA probes smaller
than 1 kb were successfully visualized on plant chromosomes using Tyr-FISH
(Khrustaleva and Kik 2001; Stephens et al. 2004).

6.2.2 DNA Fiber-FISH

The DNA fiber-FISH technology is applied to characterize complex genomic
arrangements in plant nuclei by using decondensed chromatin and highly extended
intact DNA fibers on microscopic slides (Fransz et al. 1996a). The method involves
the release of DNA molecules from lysed nuclei followed by spreading them on the
surface of a microscope slide and the hybridization of probes using a standard FISH
method. Applying FISH probes to the stretched DNA molecules provides the higher
spatial resolution with increased detection sensitivity. DNA prepared from BAC
clones or plant tissues extends approximately 2.5–3.5 kb/μm on slides and provides
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fine-mapping resolution of up to a few kilobases. The drawback of the technique is
that chromosome identification requires control DNA sequences, since there is no
chromosome structure. In plants, Fransz et al. (1996b) demonstrated the utility of
the extended DNA fiber-FISH (EDF-FISH) technology to characterize Arabidopsis
thaliana and tomato genome. Later, this method was applied on other plants (e.g.,
rye, rice, and maize) in order to characterize complex genomic arrangements
(Nagaki et al. 2004; Jin et al. 2004; Nakano et al. 2005; Yamamoto and Mukai
2007). Fiber-FISH is particularly informative when the exact position and ordering
of DNA clones are needed. It can also evaluate the distances and overlaps between
neighboring sequences (Ersfeld 2004; Suzuki et al. 2004; Yamamoto and Mukai
2007). The minimum target DNA size that can be distinguished unambiguously in
plants is 10 kb (representing a *3 μm fluorescent signal, de Jong et al. 1999);
however, good flanking markers are crucial in order to differentiate and identify
shorter DNA stretches.

6.2.3 Three-Dimensional (3D) FISH

The 3D-FISH technique had developed by Bass et al. (1997). Meiotic cells of maize
were fixed in a buffer to preserve chromosome structure. Pollen mother cells were
also gently extruded out of the fixed anthers and embedded in optically clear
polyacrylamide for staining and imaging. Stacks of FISH images were taken and
composed into a single 3D image. Individual chromosomes bearing the FISH
signals were traced out and computationally straightened (Harper and Cande 2000).
Since the chromosome structure can be preserved using this technique, it is
advantageous for the identification of precise location of DNA probes on the
chromosomes as well as within the nucleus.

6.2.4 FISH on Super-Stretched Chromosomes

Interphase nuclei, super-stretched mitotic metaphase chromosomes, and meiotic
pachytene chromosome provide intermediate resolving power for FISH mapping.
The relative positions of clone separated by <100 kb can be resolved on these
cytological targets (Jiang et al. 1996; Wang et al. 2006). Pachytene chromosomes
are particularly versatile targets for FISH mapping. Late pachytene chromosomes
can be used to orient the telomere–centromere positions of the adjacent clones,
whereas early pachytene chromosomes can be used to resolve even partially
overlapped BAC clones. Nevertheless, pachytene chromosomes are not amenable
for cytological analysis in many plant species.

On the other hand, flow-sorted plant chromosome at meiotic metaphase can be
stretched to more than 100 times of their original size (Valarik et al. 2004). FISH on
stretched chromosomes showed brighter signals than on the untreated control
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presumably as a result of better probe accessibility to the stretched chromatin. FISH
on super-stretched metaphase chromosomes provides a mapping resolution of up to
70 kb (Valarik et al. 2004), similar to the resolution on meiotic pachytene chro-
mosomes (Cheng et al. 2002). Thus, this modification of FISH provides an alter-
native mapping target for those plant species where meiotic pachytene
chromosomes are not suitable for cytological analysis.

6.2.5 BAC-FISH

For the genome-wide sequencing project, a genomic library-holding large DNA
fragments is an important tool for physical mapping or positional cloning of
important chromosome landmarks. BAC-FISH, a unique tool of molecular cyto-
genetics, uses genomic DNA cloned in large-insert vectors such as bacterial arti-
ficial chromosomes (BACs) (Shizuya et al. 1992) in combination with FISH. This
technique has shown its tremendous potential for physically mapping of specific
DNA sequences and identifying individual chromosomes in plants (Suzuki and
Mukai 2004). The BAC clones provide efficient resources for chromosome-specific
FISH markers especially for plant species having small genomes such as rice,
cotton, and sorghum. BAC-FISH favors the large clone as a probe for better res-
olution. The conventional FISH analysis on plant chromosomes employing probes
containing over 10-kb insert DNA provides stable and distinct signals (Mukai and
Yamamoto 1998; Suzuki et al. 2010). It is quite difficult to detect a single locus by
using a plasmid clone of several kbs as the FISH probe. In this regard, the BAC
clones containing around 50–100 kb fragments are suitable for probe of the FISH
analysis.

6.3 Molecular Cytogenetics in Plant Genome Research

6.3.1 Physical Mapping and In Situ PCR

Plant genome are known for abundance of repeat sequences and cytogenetic or
physical mapping of such repetitive DNA sequences decipher their genomic dis-
tribution and precisely identify the typical chromosome or set of chromosomes.
These repeated rDNA gene clusters are being widely used and a common starting
point for FISH-based mapping (Mukai et al. 1991; Yamamoto and Mukai 1991;
Fransz et al. 1996a; Mukai and Yamamoto 1998; Sharma et al. 2012). The two
types of ribosomal RNA genes (rDNA), 18S-5.8S-26S rDNA and 5S rDNA, have
been extensively used as probes for physical mapping in higher plants due to their
arrangement in tandem arrays (Mukai 1999). FISH mapping of rDNA clusters has
provided a number of chromosomal markers that proved their efficacy in explo-
ration of chromosome evolution and species interrelationships.
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In hexaploid wheat, the six loci of 5S rRNA genes were identified on the short
arm of the chromosomes of homoeologous group 1 and 5 (1A, 1B, 1D, 5A, 5B, and
5D) (Mukai et al. 1990), whereas 18S-5.8S-26S rDNA loci were mapped on the
short arm of 1A, 1B, 6B, and 5D chromosomes and the long arm of 7D chromo-
some (Mukai et al. 1991) (Fig. 6.1). The rRNA genes are associated with the
nucleolar organizing region (NOR), and the visualization of such repeat clusters at
interphase represents the number of active rDNA loci. Multicolor FISH (McFISH)
approach targeting repetitive DNA and rDNA probes also serves as chromosome
identification markers in many plant species, for example, common wheat
(Fig. 6.2). Similarly, Xu and Earle (1996) mapped the 45S rRNA DNA loci on to
the tomato pachytene chromosomes, and Pedrosa et al. (2002) demonstrated the
rDNA FISH for creating a karyotype of the model legume lotus. In addition, rDNA
FISH in combination with other tandem repeats aids the generation of core cyto-
genetic maps, as demonstrated for maize, wheat (Jaing and Gill 1994), cotton
(Hanson et al. 1996), tomato (Xu and Earle 1996), Pinus (Hizume et al. 2002), and
Arabidopsis (Koornneef et al. 2003). The rDNA sequences are conserved across
most plant species, but other tandem repeats exhibit variable degree of
conservation.

Further, the chromosomal localization of rDNA has been widely used for
comparative characterization of polyploid plant species. A comparison of FISH
patterns of polyploid species with those of diploid progenitors of Aegilops revealed
natural amphiplasty, in which the active rDNA sites either transformed to inactive
or silent (deleted) during polyplodization event (Yamamoto 1994). Similarly, the U
genome mostly suppresses the NOR activity of other genomes in tetraploids. On the
other hand, the NOR activity of the D-genome chromosomes is completely sup-
pressed by other genomes. In hexaploid species, all rDNA sites on the third genome
remain active, reflecting time lapse after polyploid formation.

Fig. 6.1 Multicolor FISH
mapping of 5S rRNA and
18S-5.8S-26S rRNA genes on
the chromosomes of bread
wheat (Triticum aestivum,
2n = 6x = 42, AABBDD
genome), and fluorescence
signals can be seen for 5S
(red) and 18S-5.8S-26S
(green) rRNA genes,
respectively (Mukai 2004)
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Simultaneously, Mukai and Apples (1996) invented the in situ polymerase chain
reaction (in situ PCR)-FISH for mapping plant genes. This method uses the extreme
temperature gradient sensitivity of PCR along with the cytological location of DNA
sequences by means of in situ hybridization. The in situ locations of the rye-specific
spacer region were determined on metaphase chromosomes. In such experiment,
two pairs of primers for rye, i.e., Nor-R1 and rye 5S-Rrna-R1, were amplified
in situ, which resulted in 386- and 107-bp amplified products, respectively.
Rye NOR primers (45S) were localized on chromosome 1R and 4R, while 5S
primers showed signals on the chromosome 1R and 3R. Interestingly, a previously
described locus chromosome 5R did not show any signal in this experiment. It was
concluded that the absence of a 5S site could be due to the sequence differences
between the different 5S rDNA lineages. Several chromosome-specific sequences
were also identified through primers specific to the chromosome. Thus, in situ PCR
proved its utility in amplification of DNA sequences of specific plant chromosomes
and for mapping low-copy genes of interest (Mukai and Yamamoto 1998).

Centromeric and telomeric sequences are also widely used in FISH mapping
studies. Telomere repeats are highly conserved in plant species and occur in at least
two major variants, i.e., (TTAGGG)n and (TTTAGGG)n (Lapitan et al. 1989;
Adams et al. 1998; Fajkus et al. 2005). Similarly, the centromere associated 156-bp
tandem repeat of maize, Cent C, was first discovered by Ananiev et al. (1998) and
has become an invaluable cytogenetic milestone for maize and many related grass
species. Cent O, a 155-bp centromere-specific satellite repeat sequence, the 180-bp
satellite repeat, and CEN38, a 140-bp repeat sequence, have proven useful for
labeling the primary constriction in rice, Arabidopsis, and sorghum, respectively

Fig. 6.2 Seven-color FISH on a metaphase cell of common wheat. Seven DNA
sequences-pSc119.2, pSc74, pAs1, telomere, 18S-26S rDNA, 5S rDNA, and gliadin were
detected by red, bluish green, green, orange, pink, blue, and white fluorescence, respectively, and
the photographs were taken by triple exposures (Mukai 1996)
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(Heslop-Harrison et al. 1999; Cheng et al. 2002; Nagaki et al. 2003; Kim et al.
2005).

Further, employing BAC clones as a probes in FISH experiments become rev-
olutionizing inventory in the field of molecular cytogenetic and extensively used in
many plant species including cotton (Hanson et al. 1995), rice (Jiang et al. 1995),
tomato (Zhong et al. 1996), Arabidopsis (Fransz et al. 1996b), onion (Suzuki et al.
2001), and sorghum (Kim et al. 2005). This approach can also be used to acquire
insight for ongoing genome-sequencing projects worldwide.

King et al. (2002) demonstrated a GISH-based approach for physical mapping to
distinguish recombination events between chromosomes of Festuca pratensis and
Lolium perenne. A similar approach has also been used for the integration of
genetic and physical maps of two Allium chromosomes (Khrustaleva et al. 2005).
This GISH-based mapping strategy is similar to physical mapping using deletion
and translocation stocks. This approach overcomes the major drawback of the
tedious and time-consuming process of developing a large number of deletion and
translocation stocks.

On the other hand, DNA clones were also used as probes for comparative FISH
mapping in relative species. Several cytogenetics researchers reported FISH map-
ping of A. thaliana BACs on chromosomes of Brassica species. Comparative FISH
mapping between Arabidopsis and Brassica provided a direct visualization of the
genome duplication within Brassica species (Howell et al. 2005; Lysak et al. 2005).
In addition, comparative chromosome painting with pooled BAC probes was used
to investigate ancestral relationships among species that diverged within the
Brassicaceae (Lysak et al. 2001, 2003, 2005). Recently, Koo and Jiang (2009)
developed a technique by stretching maize pachytene chromosomes mechanically
more than 20 times longer than their original size. Such super-stretched pachytene
chromosomes can be directly used in conventional as well as molecular cytogenetic
experiments. Super-stretching of the chromosomes coupled with immunofluores-
cence in situ detection of DNA methylation can lead to a new dimension and higher
resolving power to modern molecular cytogenetics research. Collectively, these
studies revealed that such FISH-based plant cytogenetical tools are uniquely
informative and beneficial for genome analysis.

6.3.2 Chromosome Identification Subject to Parentage,
Hybridity, and Ploidy

Fluorescence signal allows the identification of chromosomes, specific sequences,
segments, or whole set of chromosome to gain a genome-wide view at a single
glance in order to understand the plant genome organization and behavior.
Fluorescence signals of either a single repetitive DNA probe or a mixture of several
probes can be utilized for hybridization independently to identify individual
chromosomes within a species. Chromosome identification through FISH method
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has advantage over the traditional chromosome-banding techniques due to avail-
ability of several probes for a particular species. Many repetitive DNA elements can
also generate specific FISH signal pattern on individual chromosome within a
single species (Mukai et al. 1991; Mukai and Yamamoto 1998; Koo et al. 2005). In
this context, Pedersen and Langridge (1997) demonstrated the identification of all
21 chromosomes of hexaploid wheat through fluorescence signals derived from two
different repetitive DNA probes. Later, similar approach has been adopted in sev-
eral plant species for chromosome identification (Franz et al. 1998; Hizume et al.
2002; Kato et al. 2004; Koo et al. 2004).

On the other hand, GISH provides a direct visual method for distinguishing
parental genomes and analyzing genome organization in intra-/interspecific hybrids,
allopolyploid species, and introgression lines. This technique has an incredible
prospective to identify application in identifying alien chromatin introgression and
to study chromosomal pairing and recombination between divergent genomes.
GISH has validated its utility in recognizing synthetic Hordeum chilense × Secale
africanum (Schwarzacher et al. 1989) and Triticum aestivum (wheat) × S. cereale
(rye) (Le et al. 1989). Mukai and Gill (1991) showed that GISH optimally detects
barley chromosomes in a wheat background and further identified A-, B-, and
D-genomes of the common wheat (Mukai et al. 1993b) using the same approach
(Fig. 6.3). Similarly, Raina et al. (1998) and Raina and Mukai (1999) conclusively
revealed that Coffea congensis and C. eugenioides, and Arachis villosa and A.
ipaensis are the diploid wild progenitors of allotetraploid C. arabica (2n = 4x = 44)
and A. hypogaea (2n = 4x = 40), respectively, using GISH as a tool. GISH has also
been widely used to characterize the genome constitution of natural hybrids and to
identify the parental origin of specific loci. By following the same approach,
Takahashi et al. (1999) categorized the ancestral genome donors in maize and

Fig. 6.3 Chromosome identification of Triticum aestivum (2n = 6x = 42). The AABBDD genome
was simultaneously discriminated using GISH technique in which the diploid A genome
progenitor Triticum urartu (yellow), diploid B genome progenitor Aegilops speltoides (brown),
and diploid D genome progenitor Aegilops squarrosa (orange) have been identified precisely
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examined inter-genomic translocations and homeologous chromosome pairing
(Zwierzykowski et al. 2008), as well as chromosomal areas with large
species-specific sequences (alien chromatin introgression) or translocation break
points (Qi et al. 2008). Such versatile approach of molecular cytogenetics also
provides insight into somaclonal variation, the origin of B chromosomes, control of
chromosome pairing, and other aspects of chromosome evolution (Kato et al.
2005).

6.3.3 Karyotype and Phylogenetic Analysis

FISH-based chromosome identification systems could lead to precise karyotyping
and to understand the evolution of particular plant taxa by means of speciation from
wild to cultivated ones. For example, several repetitive DNA probes generate
specific hybridization pattern on chromosomes of wheat and related species (Mukai
et al. 1993a; Pederson and Langridge 1997). The FISH karyotypes from some
repetitive DNA probes are similar to karyotypes based on C- or N-banding analysis
(Cuadrado et al. 1995; Pederson and Langridge 1997). FISH-based karyotyping
also specifies the phylogenetic view of related plant species (Lim et al. 2000).
A number of repetitive DNA probes had utilized to develop FISH karyotypes of
several diploid and polyploid Triticum and Aegilops species by Badaeva et al.
(1996a, b). Similarly, comparative FISH mapping using several repetitive DNA
probes in Nicotiana species found N. tomentosiformis to be the T-genome donor
(Lim et al. 2000). Comparison of such karyotypes evidently revealed chromosomal
landmarks to understand the evolutionary relationship between these species.
Karyotyping using repetitive DNA probes can also visualize inter-genomic chro-
mosome translocations in polyploid species. Since molecular cytogenetic tech-
niques are often used to compare the ability of different genomes to hybridize
(homology of genomes), together with the use of interspecific hybrids and
allopolyploids, there by can serve as a powerful tool to understand phylogenetic
relationships between species that is independent of nucleotide sequence-based
approaches.

6.3.4 Chromosome Painting

The basic principle of FISH was further exploited to ‘paint’ individual plant
chromosomes. The ‘chromosome painting’ is one of the most powerful molecular
cytogenetic techniques to analyze nuclear organization and genome structure
through visualization of specific cytogenetic target regions or entire chromosomes
using this technique (Pinkel et al. 1986). Such technique involves the hybridization
of fluorescence-tagged chromosome-specific composite probe pools (generally
BAC clones) to various cytological preparations. Lysak et al. (2001) painted the
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chromosome of dicotyledonous model organism A. thaliana for the first time by
employing selected BACs as differential labeled probes. However, in plants, mainly
due to the presence of large amounts of repetitive DNA sequences such technique is
remained limited (Jiang and Gill 2006). Such technique was found to be useful to
identify individual chromosome in the interphase nuclei and could reveal the spatial
arrangement and functional properties of individual chromatin domains. Further,
Han et al. (2003, 2004) modified the McGISH to identify closely related
wheat-Thinopyrum intermediates. Such chromosome painting provides insight into
genome duplication/multiplication and karyotype evolution in closely related taxa.
Arabidopsis chromosome and/or segment-specific probes were hybridized to ‘paint’
the chromosomes from species related to A. thaliana (Lysak et al. 2005). In later
studies, the chromosome painting technique was applied successfully in related
Brassica species (Lysak et al. 2010). These experiments proved that the technique
is feasible for the detailed investigation of the pairing behavior of homologous
chromosomes during early prophase I. Painting by this method is found to be
feasible on small B chromosomes as well as alien chromosomes that possess
chromosome-specific repeats (Houben et al. 1996). Comparative chromosome
painting is an efficient and powerful approach to study the partial genome dupli-
cations and karyotype evolution. This advantage of the technique has been used to
investigate the mechanisms of chromosome number reduction in A. thaliana and
related Brassicaceae species.

Successful interspecific chromosome painting experiments were carried out
between sorghum and maize (Koumbaris and Bass 2003). Ma et al. (2010) used
Brachypodium distachyon BAC-clone to map the barley genome. Recently, the
evolution and taxonomic split of the model grass B. distachyon were analyzed, and
substantial phenotypic, cytogenetic, and molecular differences were detected
between three cytotypes with the help of chromosome painting (Catalán et al.
2012). The development of comparative chromosome painting paves the way
toward comparative chromosome mapping in several crop taxa including Triticeae
hexaploid wheat, thereby facilitating the formulation of meaningful breeding pro-
gram in light of the gene pool diversity.

6.3.5 Alien Chromatin and Transgene Detection

Schwarzacher et al. (1992) ascertained the alien chromatin incorporated from
Leymus, Thinopyrum, Hordeum, or Secale in five bread wheat lines by GISH
analysis. Friebe et al. (1991) also used GISH to locate the translocation chromo-
somes in different leaf rust-resistant wheat using GISH technology. Mukai et al.
(1993a) also noticed the rye chromatin transfer in wheat. This technique has been
effectively applied to detect genome donors in Brassica allopolyploids (Snowdon
et al. 1997).

FISH has also analyzed the structure of the transgene loci on interphase nuclei,
metaphase chromosomes, and on extended DNA fibers (Forsbach et al. 2003;
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Chen et al. 2003). Particle bombardment often generates very large,
high-copy-number transgenic arrays that can extend for megabases. Interestingly,
earlier studies showed that dispersed metaphase FISH signals come together at
interphase. By contrast, Agrobacterium transformation gives rise to lower transgene
copy numbers and is usually characterized by single discrete FISH signals.
Employing molecular cytogenetic approaches, transgenes have been identified in
Arabidopsis, barley, and rice, respectively (Forsbach et al. 2003; Chen et al. 2003).

6.4 Modern Molecular Cytogenetics

A biological question may not be solved by a simple localization of DNA
sequences in interphase nuclei or on chromosomes. However, physical localization
of a DNA sequence together with its associated protein may dramatically enhance
the power of FISH. The global patterns of chromatin modification (e.g., DNA
methylation and histone tail modifications) along with nuclear size and shape,
relative content and distribution of heterochromatin/euchromatin, and organization
and structure of chromosomes (e.g., position and orientation) provides new insight
into evolution of the particular plant species at chromosomal level. Therefore, it has
acquired am important share in this newly developing research field of studying
chromatin dynamics through localization of epigenetic signatures of histone/DNA
modifications and methylation. It has also been emphasized that amino-terminal
tails of histone proteins are targets for a series of posttranslational modifications
(PTMs), including acetylation, phosphorylation, and methylation. These modifi-
cations regulate chromatin structure and gene expression (Jenuwein and Allis
2001).

6.4.1 Immuno-FISH

Several plant laboratories have developed techniques that combine FISH with
immunoassay methods (Jasencakova et al. 2001; Zhong et al. 2002; Nagaki et al.
2005, 2012a, b; Lavania et al. 2012). Such modernization of cytogenetic technique
involves an immunoassay of specific antibodies and cytological preparations fol-
lowed by standard FISH procedure. Immuno-FISH has been used to reveal DNA
methylation and histone modifications with specific genomic region. A number of
antibodies are available for studying 5mC and histone modifications vis-à-vis
chromatin status. Recently, several studies have been conducted on plants using
immunohistochemical staining to elucidate chromosomal distribution pattern of the
epigenetic marks including Arabidopsis (Zhang et al. 2008), Allium (Suzuki et al.
2010; Nagaki et al. 2012b), maize (Jin et al. 2008; Koo and Jiang 2009; Koo et al.
2011), rice (Yan et al. 2010), brassica (Wang et al. 2011), Barley (Sanei et al.
2011), tobacco (Nagaki et al. 2009), sugarcane (Nagaki et al. 2005), and other taxa
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(Lavania et al. 2012). Most of the studies suggest that H3K4me1,2,3 mostly mark
euchromatin, while H3K9me1 and H3K27me1 mostly target heterochromatin
(Fuchs et al. 2006). While H3K9me2 and H3K27me2,3 showed diverse distribution
pattern among angiosperms (Fuchs et al. 2006). On the other hand,
centromere-specific histone H3 (CENH3) is one of the most fundamental cen-
tromeric proteins known to be involved in recruiting other centromeric proteins.
CENH3 was first identified as CENP-A in humans (Earnshaw and Rothfield 1985)
and subsequently found in a large number of plant species including Brassicaceae,
Solanaceae, Leguminosae, Poaceae, and Juncaceae species (Zhong et al. 2002;
Telbert et al. 2002; Nagaki et al. 2004, 2005, 2009, 2012a; Sanei et al. 2011; Tek
et al. 2011; Wang et al. 2011; Neumann et al. 2012). Since CENH3 comprises part
of the core histone that binds directly to DNA at centromeres, centromeric DNA has
been isolated from several plant species using antibodies against CENH3 (Nagaki
et al. 2003, 2004, 2009, 2011, 2012b; Nagaki and Murata 2005; Tek et al. 2011;
Zhong et al. 2002; Neumann et al. 2012; Houben et al. 2007). Immunostaining of
chromosomes of Allium species using anti-AfiCENH3 antibody has been shown in
Fig. 6.4. Such studies suggest that these histone variants have immense potential to
generate extensive information about chromosomal distribution pattern of the epi-
genetic marks in a wide range of plant species (Sharma et al. 2015).

Fig. 6.4 Immunostaining of
chromosomes of Allium
species using anti-AfiCENH3
antibody: DAPIstained
chromosomes (blue) and
visualization of
immunosignals of
anti-AfiCENH3 antibody
(red)
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6.5 Future Prospects

Exciting advances in plant molecular cytogenetic tools and array-based techniques
are changing the nature of chromosome biology, in both basic research and at
molecular diagnostic levels. Cytogenetic analysis now extends beyond the simple
description of the chromosomal status of a genome and allows the study of fun-
damental biological questions of chromosomal evolution underlying speciation and
adaptation. One of the major challenges in plant cytogenetics includes the incre-
ment of the resolution power of in situ hybridization and immunostaining tech-
niques to detect shorter nucleotide stretches or single antigen molecules reliably on
metaphase chromosomes, extended chromatin fibers and/or in interphase nuclei.
Further, improvement of efficient and effective fluorescent chromatin tags for
in vivo studies is also needed. FISH may play a powerful role to delineate the
structure and DNA composition of long track of highly repeated regions, for
example, centromere as well as telomeric ends that are difficult to clone.

As discussed earlier in this article, DNA methylation, nucleosome remodeling
(including histone modification and histone variants), and noncoding RNAs can
organize chromatin into accessible (euchromatic) and inaccessible (heterochro-
matic) sub-domains. This extends the information potential of the genetic code, and
one genome can generate many ‘epigenomes’ in time and space, during the life
span of an organism. The implications of epigenetic research seek attention and
efforts that should be targeted to epigenome in a variety of plant systems especially
at chromosome inheritance level. In a recent study, it was shown that these epi-
genetic modifications are not as conserved as was once thought. Further, very little
is known about histone/DNA methylation/modification in large genome plants
(Houben et al. 2003), which make up the bulk of the angiosperms (Arumuganthan
and Earle 1991). Immuno-FISH should be practiced worldwide that has potential to
significantly increase the resolving power to reveal fine interaction between DNA
and proteins.

6.6 Next-Generation FISH

Next-generation sequencing (NGS) technologies continue to develop at a fast pace,
and whole genome sequence of several plants have either been released or to be
released soon. NGS technologies of third-generation platforms could produce reads
reaching up to a few kilobases, whereas read lengths presently range from 30 to
400 bp depending on the platform. NGS may also facilitate probe development for
studies of chromosome using FISH. These genomic regions can be mapped on the
chromosome for precise location information with reference to chromosome rear-
rangements and translocation events and to identify chromosome with/without
physical gaps, if any. Further, transcriptome sequencing has also been engaged in
construction of large datasets of nuclear genes. NGS is also making the rapid
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sequencing of complete nuclear genomes routine, thus transforming the genomics
research field and opening up new avenues of systematic endeavor in comparative
genomics. Further, research should be aimed at understanding the distribution,
location, and copy number of the epigenetically inherited gene/genic regions
identified through NGS data in several crop/plant species/families in order to shed
light on the role of chromatin dynamics in speciation and evolution.
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Chapter 7
Technological Advances in Studying Gene
Pool Diversity and Its Exploitation

Sapinder Bali, Shailendra Goel and Soom Nath Raina

Abstract Molecular biology-based plant breeding methodology has contributed
significantly to crop improvement by creation of new improved varieties with
superior genotypes. The advancements in genomic sciences led to the development
of several new faster methods that have improved our understanding and accessi-
bility of available gene pools, thus providing an efficient source of information.
These developments have enabled researchers to develop richer gene pools that
would be capable of meeting the challenges of increasing agriculture demands over
the globe. Informative descriptions of gene pools may become available as the
genomes are being sequenced, functionally characterized, and made available at the
public domain. Modern technologies for large-scale marker surveys are capable of
exploring various dimensions of gene pools and provide the raw information for
understanding the extent of genetic variation in gene pools and its exploitation for
crop improvement. High-throughput marker development methods provide several
advantages as sufficient databases can be generated for various crop genomes
assisting in the assessment of crop diversity which can be an efficient source of
information for developing breeding schemes for crop improvement programmes in
future.
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7.1 Introduction

Crop gene pools have helped to sustain the agricultural demands of the world
populations for thousands of years. But our knowledge about content, structure,
distribution, and diversity of the gene pools had been very scarce (Lee 1998).
Molecular marker-based techniques such as restriction fragment length polymor-
phism (RFLP), random amplified polymorphic DNA (RAPD), simple sequence
repeats (SSR), and amplified fragment length polymorphism (AFLP) have been
routinely used to perform taxonomical, phylogenetic, evolutionary and genetic
studies at smaller scale in crop plants for decades. But due to low-throughput
marker techniques, most of the germplasm has remained uncharacterized, unex-
plored, and underutilized for several years. With the advent of faster and cheaper
technologies, a new class of advanced high-throughput techniques has emerged in
the recent years, which are primarily derived from modification of earlier basic
technology combining the advantageous features of several techniques. It is now
possible to genotype hundreds of individuals across thousands of loci, which
facilitates the genetic analysis of the available germplasm on larger scale (Agarwal
et al. 2008; Glaszmann et al. 2010), thus generating broad gene pool collections of
useful genetic resources for various domesticated crop plants. These methods have
led to the increase in sensitivity and resolution for detecting genetic distinctiveness
among closely related individuals (Royo and Galan 2009).

The gene pool diversity can be analysed in three phases: sampling the indi-
viduals, genotyping the individuals for large independent loci, and estimating the
diversity patterns (Luikart et al. 2003). These well-characterized gene pools can be
utilized for the development of new improved cultivars by initiating various crop
improvement programmes in domesticated crops (Hajjar and Hodgkin 2007;
Hamblin et al. 2011). The increasing ease of generating abundant genome-based
markers spanning across the whole genome and ease of sampling numerous indi-
viduals in minimal time have made the genome-wide scanning an attractive
approach for population genetics programmes as well (Hamblin et al. 2011).

High-throughput marker techniques can be used for the whole-genome and
gene-targeted surveys, which provide insights into the population genomics and
assist crop improvement programmes in many crop plants, viz. chickpea, grapevine,
cacao, and banana (Glaszmann et al. 2010). In order to fully utilize the advantages
of high-throughput genotyping, one needs to be vigilant in choosing the appropriate
technology depending on the goals and the stage of the experiment to be performed,
being cognizant of the number of samples and resources (Edenberg and Liu 2009).

Based on the nature of their origin in the genome, high-throughput markers can
be classified into two major classes, viz. genomic markers and genic markers
(Fig. 7.1). This classification although artificial provides a convenient way to
organize various technologies available in the fathomable framework. Some of the
markers, although explained under one category in the present chapter, can be
classified under both the categories as indicated in Fig. 7.1.
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Genomic markers can be developed from the whole-genome sequences and are
of two major types, viz. diversity array technology (DArT) and single-nucleotide
polymorphisms (SNPs). SNP markers can be further classified into various types
based on the technology used for genotyping. Likewise, genic markers are devel-
oped from the transcribed regions of the genome and can be of five main types, viz.
serial analysis of gene expression (SAGE), quantitative nuclease protection assay
(qNPA), transcript-derived markers (TDMs), target region amplification polymor-
phism (TRAP), and SNPs.

In this chapter, we will discuss various high-throughput techniques available for
genomic and genic marker development.

7.2 High-Throughput Genomic Markers

Various genomic high-throughput markers have been discussed below.

7.2.1 Diversity Array Technology (DArT Markers)

DArT is a high-throughput marker technique that can detect DNA polymorphism
spanning hundreds of genomic loci based on endonuclease restriction site variation
between genotypes (Jaccoud et al. 2001; Wenzl et al. 2004). DArT does not require
any prior sequence information and utilizes a microarray platform. Individual
clones to be genotyped are prepared from a genomic representation library by

Fig. 7.1 Schematic representation of the types of genomic and genic high-throughput molecular
markers
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amplifying the restriction fragments which are labelled and then hybridized to the
arrays. The polymorphism is based on the presence versus absence of hybridization
to individual array elements. The platform allows high-throughput screening of
hundreds of molecular markers in parallel and is especially suited for the generation
of genome-wide markers for large-scale germplasm characterization and genetic
linkage mapping. Linkage maps can be further exploited for QTL analysis and
map-based cloning of agronomically important genes. DArT enables efficient fin-
gerprinting of germplasm, whole-genome screening, simultaneous detection of
quantitative trait loci, marker-based selection of loci of interest, and introgression of
preferable genomic regions. These markers have been utilized for diversity analysis
and generating linkage maps in major crop plants such as rice (Xie et al. 2006),
wheat (Akbari et al. 2006; Semagn et al. 2006; Crossa et al. 2007; White et al.
2008), barley (Wenzl et al. 2004, 2006; Alsop et al. 2011; Steffenson et al. 2007;
Hearnden et al. 2007), sorghum (Jordan et al. 2010; Mace et al. 2008, 2009),
common beans (Brinez et al. 2012), pigeonpea (Yang et al. 2011), oat (Tinker et al.
2009), ryegrass (King et al. 2013), willow (Przyborowski et al. 2013), and euca-
lyptus (Petroli et al. 2012).

7.2.2 Single-Nucleotide Polymorphisms (SNP) Markers

SNP markers are the individual nucleotide polymorphisms found in the genome.
SNPs can be discovered from the sequence information using various platforms
(Steemers and Gunderson 2007). The binary nature of SNPs and no known effects
on gene expression or function have made them a marker of choice (Edenberg and
Liu 2009). These markers can be utilized to scan one or more individuals for SNPs
ranging from hundreds to thousands or allelotyping hundreds of individuals for one
SNP locus. SNPs can be efficiently used for marker-assisted selection
(MAS) programmes because of the high fidelity of their inheritance, strict biallelic
nature, and extraordinary abundance in the genome (Gupta et al. 2001).

Several methods are available for the discovery of SNP markers. The most
common method is to directly compare sequence obtained from public databases
(Kwok and Chen 2003; Matukumalli et al. 2006) and amplification of target gen-
ome loci from various individuals for sequence comparison (Twyman 2004; Suh
and Vijg 2005). Various methods can be followed for SNP pre-screening, viz.
single-strand conformational polymorphism (SSCP) (Orita et al. 1989), overlapping
regions in BACs and PACs (Miller et al. 1998), denaturation kinetics (Gundry et al.
2003), chemical cleavage (Ellis et al. 1998; Tabone et al. 2006), enzyme cleavage
(Oleykowski et al. 1998; Goldrick 2001; Sokurenko et al. 2001; Till et al. 2004),
array hybridization (Borevitz et al. 2003), mismatch repair detection (Fakhrai-Rad
et al. 2004), and bacteriophage Mu DNA transposition (Yanagihara and Mizuuchi
2002; Orsini et al. 2007). The choice of technique used for SNP depends on the
regions of interest in the genome and resources available.
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The pre-screened polymorphic SNP markers are further utilized for individual
genotyping. A number of platforms are currently available for high-throughput SNP
genotyping (Kim and Misra 2007). No single technique is ideal for all applications,
and the choice of the technique used is often influenced by the need of study. The
criterion of choice includes speed of assay development, cost of the assays, and
multiplexing potential of the assay (Kwok 2001 ; Kwok and Chen 2003). Various
genotyping platforms available have been described below.

7.2.2.1 Genotyping System Based on Capillary Electrophoresis

There are three main multiplex systems available for SNP genotyping using cap-
illary electrophoresis, viz. SNaPshot Multiplex System (Applied Biosystems),
SNPlex genotyping system (Applied Biosystems), and LightTyper system (Roche
Applied Science). SNaPshot Multiplex System is based upon primer extension,
followed by detection using capillary electrophoresis (multiplexing ≤ 10 SNPs with
3 ng DNA). SNPlex genotyping system is based on oligonucleotide ligation assay
(PCR-based) followed by capillary electrophoresis (multiplexing up to 48 SNPs)
(Vega et al. 2005). LightTyper system (Roche Applied Science) is based upon
melting curve analysis to discriminate individual SNPs. These methods use
fluorescently labelled oligonucleotides for detection of the SNPs and can process
approximately 1.5 million genotypes in just 5 days (Bennett et al. 2005).

7.2.2.2 TaqMan Assay

TaqMan Assay genotypes individual SNPs using a 5′ nuclease assay
of Taq polymerase to generate a fluorescent signal during PCR (Vega et al. 2005).
SNPs are run as sets of 96 or 384 samples, and the assay relies on sequence
differences between alleles using different TaqMan probes designed for each allele.
The detection is based on FRET assay in which two dyes (5′ reporter dye and a 3′
quencher dye) are covalently linked to the variant allele probes. The proximity
between the two dyes suppresses the fluorescence in the intact probes. During
annealing step in PCR, the TaqMan probe hybridizes to the target SNP site and the
extension leads to the release of reporter and quencher dyes. This release is caused
by the 5′ nuclease activity of the Taq polymerase which results in fluorescent signal
of the reporter dye. Polymerase-based exonuclease activity takes place only in the
perfectly hybridized probes (with perfect complementarity), whereas the probe with
a mismatched base is not recognized by the polymerase, thus resulting in SNP allele
calling. The fluorescent signal for the reporter dye and the quencher dye is mea-
sured and the ratio of the signals indicates SNP for the sample.
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7.2.2.3 Pyro-sequencing for SNP Genotyping

Pyro-sequencing utilizes a synthesis reaction which results in flashes of light which
are produced due to the incorporation of a nucleotide in DNA synthesis, thus
detecting a SNP marker (Pourmand et al. 2002). Template generated by PCR is
hybridized with a sequencing primer prior to pyro-sequencing. During the sequence
elongation step, a single-nucleotide (dNTP) addition results in release of a
pyrophosphate molecule, which converts adenosine phosphosulfate (APS) to ade-
nosine triphosphate (ATP) by sulfurylase. This ATP is finally utilized by luciferase
enzyme to generate signal in the form of light flashes. The reaction is completed in
a few milliseconds, the light produced can be captured with a CCD camera, and the
incorporation of the nucleotides is quantified (Royo and Galan 2009). This tech-
nique is flexible and accurate and possesses the advantage of parallel processing
and automation. The technique also possesses the advantage of not using labelled
primers or labelled nucleotides, and gel electrophoresis (Ronaghi 2003). This
technology was developed by pyro-sequencing AB (SSE:PYRO) (Uppasala,
Sweden). Nowadays, pyro-sequencing services are provided by Roche, Switzerland
(454 sequencing).

7.2.2.4 Next-Generation Sequencing (NGS) Methods

Recently introduced next-generation sequencing (NGS) technologies have opened
up efficient approaches to generate abundant sequence information as compared to
former sequencing methods, viz. Sanger sequencing methods (Pareek et al. 2011;
Berkman et al. 2012). This technology can sequence millions of DNA fragments
per run and has been used for various sequencing applications, viz. de novo
sequencing, resequencing to detect SNPs, transcriptome sequencing,
immuno-precipitation-based protein–DNA or protein–RNA interaction mapping,
and DNA methylation using bisulfite-mediated cytosine conversion. Initially, three
major platforms were commercially used for sequencing, viz. Illumina Genome
Analyzer (Solexa), Roche GS FLX Sequencer (454 technology, 454 Life Sciences,
Roche), and Applied Biosystems SOLiD sequencer (SOLiD 3 System). The 454
sequencer uses pyro-sequencing methodology (explained earlier). It produces
longer reads of*1 kb, as compared to 250-bp reads on Illumina platform. Recently
introduced more efficient and affordable sequencing platforms such as Ion
Torrent PGM (Personal Genome Machine) (Life Technologies, USA), PacBio RS
(Pacific Biosciences, USA), and Hiseq (Illumina, USA) platforms have further
advanced the sequencing technology. Ion Torrent is based on semiconductor
technology that detects the protons released during nucleotide incorporation
(Rothberg et al. 2011), PacBio utilizes a process enabling single-molecule real-time
(SMRT) sequencing (Eid et al. 2009), and Illumina Hiseq is based on sequencing
by strand synthesis using fluorescently labelled reversible terminator nucleotides
(Minoche et al. 2011). These technologies have revolutionized the molecular
biology-based methods, thus enabling the genetic analysis of the genomes at
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high-throughput scales which were not possible earlier with conventional tech-
niques. SNP detection by resequencing is not advisable for high-throughput SNP
genotyping as high cost is involved to carry out sequencing on larger sets of
genotypes (Lam et al. 2010). In order to reduce the cost, several alternate methods
have been developed for SNP genotyping. These methods involve sequencing a
fraction of the individual genome. There are three methods, namely reduced rep-
resentation libraries (RRLs) or complexity reduction of polymorphic sequences
(CRoPS), restriction site associated DNA (RAD) sequencing, and genotyping by
sequencing (GBS) (Davey et al. 2011). These methods have been discussed below.

Reduced Representation Libraries (RRLs)

Reduced representation library is prepared for CRoPS. RRLs are prepared by
restriction of the whole genome and size fractionating target regions which are deep
sequenced using available platforms (Luca et al. 2011). It is an economical
single-step method which can be utilized for SNP discovery, validation, and
characterization. It is also well suited for de novo discovery of SNPs that may be
applied to any species with a partially sequenced genome available (Tassell et al.
2008; Hyten et al. 2010). The only disadvantage of this approach is that the amount
of DNA required is too high (10–50 µg).

Restriction Site Associated DNA (RAD)

RAD is based on next-generation sequencing for simultaneous discovery and
genotyping of thousands of SNP markers in hundreds of individuals with minimal
resource utilization (Etter et al. 2011). RAD sequencing is based on a combination
of two concepts: restriction digestion of the genome and using molecular identifiers
(MID) to associate sequence reads to different individuals. RADseq utilizes unique
adapters that bind and amplify restriction sites only. It has recently been used for
variety of applications including genetic mapping and QTL analysis (Rowe et al.
2011).

Genotyping by Sequencing (GBS)

Most of the modern sequencing platforms for SNP genotyping per sample is
expensive for small-scale users. GBS approach is highly cost-effective for
large-scale SNP discovery and genotyping. It involves a simple library preparation
which is amenable for a large set of individuals, and it requires very small amounts
of DNA (*100 ng). Restriction library preparation and selection step are intro-
duced to reduce the genome complexity. The number of SNPs genotyped can be
increased by 40 % with double depth of coverage as compared to the other tech-
niques (Poland and Trevor 2012; Sonah et al. 2013).
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Biplex Invader Technology

Invader assay (Third Wave Technologies, Madison, WI, now Holologic) was
introduced as an alternative to TaqMan Assay. A cleavage (flap endonuclease that
cleaves predetermined sequence of nucleic acids) recognizes and cleaves an invader
structure which is formed due to hybridization of two overlapping oligonucleotides
to the target sequence. The signal thus generated by the initial cleavage of flap is
further amplified via second fluorescence resonance energy transfer reaction
(FRET), and the fluorescent signals generated are detected using a traditional signal
reader (Lyamichev and Neri 2003). This method can use PCR products as well as
template DNA for the reaction. PCR amplicons are assayed using 384-well plates
which are set in Biomek2000 system (Bechman, CA). Plates are read using
fluorescent signals, and data are automatically transferred and analysed using two
different clustering algorithms (Olivier et al. 2002; Olivier 2005).

MassCode System

MassCode system is based on reporter tags (Agilent Technologies). Theses tags are
covalently conjugated to a photocleavable linker (6-amino-1-hexanol) attached to
the DNA primers. These oligonucleotide primers are SNP-based which genotype
the allele-specific products and differentiate them through their tag assignments.
The MassCode liquid array detection system can be run as a single tube or 96-well
plate formats. It is based on a cleavage step that depends on the photolysis of the
tags from the amplification product. The signal is based on a single quadrupole
mass spectrometry detection system called Agilent 1200 Series HiP-ALS (high
performance automated liquid sampler, G1367B) for analysis, and genotyping is
determined by the relative proportions of the paired allele tags (Richmond et al.
2011). This system can detect as less as femtomolar range (10−15 M). There are
about 30 different MassCode tags available which can be multiplexed to provide
more than 40,000 SNP genotyping data in one day (Kokoris et al. 2000).

WAVE DNA Fragment Analysis System

The effort and cost involved in the detection of sufficient SNPs across larger
physical distances on the genome is one of the limiting steps for establishing SNP
markers. One of the effective alternatives to the problem is SNP detection using
denaturing high-performance liquid chromatography (DHPLC) performed on
pooled DNA. This technique is based on the detection of sequence variation in PCR
products. This leads to the formation of mismatched heteroduplexes during rean-
nealing of wild-type and mutant DNA, and the melting temperature differences
between heteroduplexes and homoduplexes allow separation by IP-RP-DHPLC
(ion-pair reversed-phase HPLC), thus identifying variation (Spiegelman et al.
2000).
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DHPLC has the efficiency to detect SNPs with frequency less than 5 %, whereas
fluorescent sequencing techniques detect variants in the same pools only if the allele
frequency is ≥10 %. Thus, pooling of DNA samples in conjunction with the use of
DHPLC presents an effective way to increase efficiency of SNP genotyping (Kuklin
et al. 1997; Wolford et al. 2000).

Microarray-Based Techniques

Microarray may be defined as an arrayed set of probes for detecting complementary
sequences (nucleic acids) present in the target genomes. It is a high-throughput
technique which utilizes hybridization followed by signal detection of the target.
Microarray-based techniques can be further classified as below.

Golden Gate and Infinium Assays (Illumina)

Golden Gate and Infinium assay platforms are devised by Illumina for high-density
assaying of SNP markers (96–1536 SNPs) (Steemers and Gunderson 2007). Golden
Gate assay is based on BeadArray technology which involves a multiplexed SNP
genotyping reaction. It uses two oligonucleotides for each SNP: one of which is
allele-specific and the second is locus-specific. The locus-specific oligonucleotide
contains an anti-tag sequence which is used for detection by the BeadArray.
Multiple oligonucleotide pools can also be used at one time in order to increase the
number of SNPs genotyped per reaction (Fan et al. 2003; Hyten et al. 2008).
A custom Oligo Pool Assay (OPA) format in Golden Gate has been developed in
crop plants such as Arabidopsis, barley (3000-SNP-based BeadArray) (Hayes and
Szucs 2006), soya bean (384-SNP-based BeadArray), and wheat and maize by
Southern California Genotyping Consortium (Rostoks et al. 2006).

Infinium assay is also based on BeadArray technology which allows parallel
detection of SNPs in a genome. The multiplexing efficiency of Infinium assay
relays on the array feature density (Fan et al. 2006). Total genomic DNA is ran-
domly amplified and hybridized to BeadArrays or BeadChips which are micro-
scopic slides containing 12 sections, each section containing 1.1 million beads
holding decoded oligonucleotides. These chips may be used for a single sample
multiplexing by loading 12 different bead pools for 720,000 assays or 12 different
sample multiplexing by loading a single bead pool 12 times for 60,000 assays.
Robotic automated chambers have been developed to analyse 24, 48, or 96
BeadChips assaying multiple genomic DNA samples simultaneously (Syvanen
2005; Gunderson et al. 2005).

MegAllele Assays (Affymetrix)

MegAllele genotyping system is based on ParAllele’s molecular inversion probe
(MIP) method, multiplexing thousands of genotyping reactions. The MIP
oligonucleotide probe has recognition sequences at each terminus which hybridize
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with the genomic sequences in a way that it forms circular structure leaving a gap at
the location of SNP. This probe is now allowed to circularize in four separate
reaction tubes by providing one of the four dNTPs in each tube. The covalently
circularized probes (suggesting the correct allele) are amplified using a universal
primer pair. Each amplified probe contains a unique tag complementary to the
sequence on universal tag array that helps in detection (Fan et al. 2006; Hardenbol
et al. 2005).

SNPstream Genotyping System (Beckman Coulter)

SNPstream assay is based on two step detection method using base-specific
polymerase-dependent extension followed by hybridization capture. Probe for
hybridization is represented by a unique DNA sequence attached to a solid phase of
the SNPware Tag Array plate (384-well microplate format). DNA samples are
amplified using tagged extension primers, the extension step involves a single
fluorescence-labelled nucleotide terminator reaction, and the final products are
hybridized to the complementary unique tags. These tags are fixed to each well of
the microplate and the position of the tag in the well confirms the SNP calling. This
technique allows high-throughput genotyping of 384 samples for either 12 or 48
SNPs in one array (Bell et al. 2002; Meirmans et al. 2007).

Tagged Microarray Markers (TAMs)

This is a microarray‐based method which can be used for scoring thousands of
individuals for SNP markers on a glass slide. SNP alleles are amplified, biotin
terminated, and spotted on glass slides coated with streptavidin. The SNP detection
is based on the hybridization of fluorescent detector oligonucleotides complemen-
tary to tags already attached with SNP allele‐specific primers. For each SNP loci,
two primer pairs are used and tag is detected by hybridization to a concatameric
DNA probe which is labelled with multiple set of fluorochromes (Flavell et al.
2003; Jing et al. 2007).

High-Resolution Melting Curve Analysis (HRM)

High-resolution melting curve (HRM) is one of the most recent advances for
genotyping SNP markers. This technique monitors the decreasing fluorescence
signal of intercalating dye in the process of dissociation of double-stranded DNA in
PCR (Wittwer et al. 2003). The strand separation process of short PCR-amplified
fragments based on temperature is detected as variation, and it can detect even one
base difference between two samples. This technique is very fast, low cost, and
efficient (Wu et al. 2008). HRM has been used recently for SNP genotyping in
almond (Wu et al. 2008, 2009), wheat (Dong et al. 2009), rice (Li et al. 2011),
barley (Lehmensiek et al. 2008; Hofinger et al. 2009), olive (Muleo et al. 2009), and
capsicum (Jeong et al. 2010).
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7.3 High-Throughput Genic Markers

Genic markers are based on the transcribed regions of genome, viz. RNA, mRNA,
ESTs, and cDNA. These markers can be utilized for diversity, genome finger-
printing, and studying gene expression.

Various types of genic markers can be classified as given below.

7.3.1 Serial Analysis of Gene Expression (SAGE)

SAGE is an efficient technique which can be used for genome-wide analysis of gene
expression. This technique was developed by Velculescu et al. in 1995. It is a
sequence-based technology and quantifies a ‘tag’ representing the transcriptome
product of a gene. It is a high-throughput technique which generates accurate and
non-biased transcript expression profile for a genome. cDNA is cleaved with the
help of anchoring enzyme (AE), and short sequence tags of 10–14 bp are obtained
from a unique position within each transcript. These tags are concatenated together
to form long serial molecules, which are cloned and sequenced using modern
high-throughput DNA sequencers. The quantification of a particular tag provides
the expression level of the respective transcript. Each read allows information for
more than 50 transcripts, and the abundance of specific mRNA is defined by the
frequency of each tag. This technology possesses the capability to detect minor
differences in gene expression (Trendelenburg et al. 2002). Data produced by
SAGE contain a list of tags along with their count values, thus providing a digital
representation of expression profile for an organism. SAGE has been used for
transcript profiling of plants to analyse their response to various biotic and abiotic
stresses, host–pathogen interactions, metabolism of stress-induced compounds, and
gene expression data of a particular cell, tissue, or organ. SAGE has been suc-
cessfully employed to study quantitative gene expression in rice (Matsumura et al.
1999) to profile transcript levels in Arabidopsis roots in response to TNT
(2,4,6-trinitrotoluene) exposure (Ekman et al. 2003), low temperature (Robinson
and Parkin 2008), and profiling of gene expression of CMV (Cassava mosaic virus)
in cassava cultivars (Fregene et al. 2004). SAGE has also been reported in maize
(Poroyko et al. 2005), rice (Bao et al. 2005), and soya bean (Moy et al. 2004).

7.3.2 Quantitative Nuclease Protection Assay (qNPA)

qNPA platform can be utilized for high-throughput analysis of plant gene expres-
sion by detecting the expected changes in gene expression pattern in response to
specific treatments. Gene expression is analysed using the plants grown in 96-well
plate format or from plant tissues.
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Quantitative nuclease protection assays can directly analyse mRNA from
formalin-fixed or paraffin-embedded (FFPE) tissues. Probes are designed for genes
of interest which are allowed to hybridize with complementary DNA probe–mRNA
heteroduplexes. The remaining unhybridized probes and RNA are digested by
nucleases which are specific for single-stranded nucleic acids only, and the mRNA
from the heteroduplexes is destroyed using alkaline hydrolysis. The remaining
intact probe concentrations which are directly proportional to the amounts of
specific mRNA present in the sample are transferred to an Array Plate. An
oligonucleotide array and a sandwich hybridization linker are used to capture and
label the probes for chemiluminescent detection and quantification. This assay can
be used to scan small amounts of preserved tissue from large sets of samples
(Roberts et al. 2007).

Quantitative gene expression assays can be utilized to deduct the molecular
phenotypes (described as the combination of genes whose expression gives rise to
specific cellular state) of the samples (Hughes et al. 2000). This platform has been
widely used in mammalian cells as well as plant cells to identify small molecules
that initiate the expression of defined targeted genes, viz. Arabidopsis (Kris et al.
2007; Martel et al. 2002; Roberts et al. 2007). This technique is cost-efficient when
compared with microarrays as standard 96-well plates are used to detect the gene
expression.

7.3.3 GeneChips for Transcript-Derived Markers (TDMs)

In GeneChip-based TDMs, RNA is hybridized to chips and used for marker
development as well as genome-wide gene expression analysis in crop plants.
TDMs can be used to construct genetic linkage maps and genome-wide QTL
analysis for large population. (Potokina et al. 2008). About 2000 genetic poly-
morphisms from an experiment have been developed for two commercial varieties
of barley (Hordeum vulgare; Steptoe and Morex).

The various types of TDMs, viz. expression level polymorphisms (ELPs) or
gene expression markers (GEMs), single-feature polymorphisms (SFPs), copy
number variations (CNVs), and presence–absence variations (PAVs), are developed
from sequenced transcripts.

7.4 Expression Level Polymorphisms (ELPs) or Gene
Expression Markers (GEMs)

GEMs are developed based on differential gene expression or transcript level dif-
ferences that show bimodal distribution in segregating progeny. These can be
developed from any type of DNA-based expression microarray technology (West
et al. 2006). Affymetrix GeneChip expression data are used to survey ELPs. ELPs
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are generally considered as e-traits to establish expression QTL (eQTL) (Jordan
et al. 2010; West et al. 2006).

7.4.1 Single-Feature Polymorphisms (SFPs)

SFP is nucleotide variation captured by using expression array. It represents
sequence variation between two genotypes within an individual oligonucleotide
probe that can be detected by hybridization or affinity differences (Borevitz et al.
2003, 2007). SFPs within a transcribed gene may reflect in phenotypic differences.
Sequencing of SFPs confirms that they come into existence as a result of SNPs.
However, a SFP is only a prediction of a possible SNP within an oligonucleotide.
SFPs have been reported in Arabidopsis (West et al. 2006; Borevitz et al. 2007),
rice (Kumar et al. 2007; Kim et al. 2009), wheat (Bernardo et al. 2009; Banks et al.
2009), cowpea (Das et al. 2008), and barley (Rostoks et al. 2005).

7.4.2 Copy Number Variations (CNVs)

CNV describes the genomic rearrangements resulting from gain or loss of DNA
segments (larger than 1 kb) (Shaikh et al. 2009). CNVs are found on all chromo-
somes, more concentrated in regions devoid of genes, although they also represent
the regions that contain protein-coding genes or important regulatory elements
(Redon et al. 2006). CNVs originate in a genome due to non-allelic homologous
recombination (NAHR) events among low copy number, highly similar but
non-allelic DNA segments, whereas segments larger than 1 kb originate due to
ancient duplication events (Gu et al. 2008). The most efficient approaches to
establish high-throughput CNVs are array-based comparative genome hybridization
(CGH) and NGS based on reference genome. CGH involves immobilization of DNA
probes on an array and hybridization of the target sequences. The detection and
resolution of the target signal are determined by the number and type of immobilized
probes on the array. The copy number is deduced based on the relative amounts of
signal produced by tested sample and reference genome. The capturing of the target
sequences is directly monitored by the sequence homology with the probes. DNA
segments which are present in the tested genome but absent in the reference genome
are not detected because of the lack of complementary probes (Springer et al. 2009).
Discovering CNVs using NGS methodology involves bioinformatics approach
involving data analysis for calculating the absolute copy number of various genomic
segments by finding the relative differences (increase or decrease) in the sequence
coverage by mapping the short reads to a reference genome and assembling
non-mapping reads for the discovery of new sequences. CNVs have been established
in maize (Springer et al. 2009; Belo et al. 2010; Swanson-Wagner et al. 2010), rice
(Yu et al. 2011), and soybean (McHale et al. 2012).
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7.4.3 Presence–Absence Variations (PAVs)

PAV is used to describe the sequences that are present in one genome but totally
absent in the other genomes when compared. The presence/absence variants may
also possess the structural variations that could be a result of the presence of
segmental DNA (>10‐bp) in one genome, which is altogether absent in another
genome. PAVs generally affect a larger portion of the genome as compared to other
sequence variations, viz. SNPs or insertions or deletions (Zheng et al. 2011; Zhang
et al. 2014). PAVs are used to examine the phenotypic variations in a set of
genotypes, and the information thus generated can be utilized for fine‐mapping the
genes of interest (Salathia et al. 2007). Putative PAVs are discovered by aligning
paired‐end reads with already known insert sizes from the sequenced reference
genome, and these alignments consider the assumption that the paired-end reads
should not align in regions containing structural variations (Zheng et al. 2011). Two
primer pairs are designed for each PAV, and these primers are used for massive
genotyping programmes. In plants, PAVs have been discovered in maize (Springer
et al. 2009), Arabidopsis thaliana (Borevitz et al. 2007; Tan et al. 2012), and
Glycine max (Lam et al. 2010).

7.4.4 Target Region Amplification Polymorphism (TRAP)

TRAP is an efficient and high-throughput PCR-based marker technique which uses
already reported EST database to generate polymorphic markers in close proximity
to targeted genes (Hu and Vick 2003). A set of 18 nucleotides long primers are
designed (one from the target EST and second being arbitrary with AT- or GC-rich
core sequence to anneal with the intron or exon, respectively) to generate markers.
Amplified products are separated on polyacrylamide sequencing gel, and data are
analysed. TRAP has been used in genotyping valuable germplasm containing
desirable gene pools and marker-based tagging of the genes governing agronomi-
cally important traits of crop plants (Hu and Vick 2003). This technique has been
utilized for QTL-mapping in wheat (Liu et al. 2005; Chu et al. 2008), genetic
fingerprinting in lettuce cultivars (Hu et al. 2005), mapping and gene tagging in
common bean (Miklas et al. 2006), and genetic diversity analysis in sugar cane
(Alwala 2006).

7.4.5 Single-Nucleotide Polymorphisms (SNPs)

Genic SNP markers are discovered from the transcribed regions of the genome. The
techniques which can be utilized for genotyping genic SNPs have been discussed
earlier in this chapter in the section of genomic high-throughput markers.
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Development of high-throughput techniques for gene pool analysis is a dynamic
tool which will keep on improving in the future. The older technologies will be
replaced by new sophisticated ones, and every development will keep on revolu-
tionizing our understanding of the germplasm and its utilization for crop
improvement programmes. Among all the marker types, SNPs seem to have a
greater influence on genotyping for crop improvement programmes in future
because of its higher abundance in the genomes (Koebner and Summers 2003).

Similarly, among the recent marker detection (validation) assays, DNA chips
have revolutionized the germplasm characterization and genome mapping-based
plant breeding methodologies. But with the rapid development of highly efficient,
low cost, and faster next-generation sequencing (NGS) technologies, GBS will
further boost up the molecular marker-based crop improvement programmes
(Thompson 2014).
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Chapter 8
Introgression and Exploitation of QTL
for Yield and Yield Components
from Related Wild Species in Rice
Cultivars

Kumari Neelam, Kishor Kumar, Harcharan Singh Dhaliwal
and Kuldeep Singh

Abstract Green revolution led to the narrowing of the genetic base of cultivated
rice gene pool. Genetic diversity is the prerequisite for increasing yield and for
stabilizing production under series of biotic and abiotic stresses. The wild Oryza
species comprising AA, BB, CC, BBCC, CCDD, EE, FF, GG, HH, and JJ genomes
are the important reservoir of useful genes. The wild relatives of crop species with
hidden potential for useful variability are, however, phenotypically less desirable
than the modern cultivars in their overall appearance. They have been utilized
extensively for introgression of major genes for disease and insect resistance, but
their utilization in enhancing yield and yield-related traits of modern cultivars has
remained limited. The related wild species Oryza rufipogon (AA genome) has been
utilized widely for transferring yield and yield-related traits to the elite rice cultivars
followed by reports on O. glaberrima, O. minuta, O. nivara, and O. glumaepatula.
The availability of advance molecular breeding techniques has enabled the use of
alien species with minimum linkage drag. Yield QTLs have been identified on
almost all the rice chromosomes though the QTL clusters are confined to only four
(1, 2, 3, and 4) chromosomes. Some of the component traits of yield have higher
heritability and correlation among themselves. This provides an opportunity for
their simultaneous improvement for more than one trait using marker-assisted
selection. Many QTLs from different wild species are mapped to the identical
chromosomal regions, thus giving an idea of orthologous yield QTLs across the
species and populations. This chapter deals with the utilization of wild species for
introgression of QTLs for yield and yield-related traits for the improvement of rice
productivity.
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8.1 Introduction

Rice (Oryza sativa L.) is one of the most important staple food crops serving nearly
21 % and 76 % of the total calorific intake of the world population and of southeast
Asia, respectively (Brar and Singh 2011, Miura et al. 2011). The rice production
has increased by 130 percent during 1966 to 2000 which needs to be increased
further by 25–30 percent by 2035 to feed the ever-growing population (Khush
2013; http://www.gigasciencejournal.com/content/3/1/7; 2014). In order to achieve
this goal, continuous work on improving yield potential and other superior agro-
nomic traits is needed. Many important agronomic traits including yield are con-
trolled simultaneously by multiple genes with smaller effects known as quantitative
trait loci (QTL) which are strongly influenced by the environment. The identifi-
cation and understanding of QTL-controlled agronomical traits are difficult because
of their complex inheritance. For gaining insight into the mechanism behind the
contribution of each of the QTLs, the dissection of complex traits into each QTL
(quantitative trait locus) and their isolation and characterization are important. The
availability of genomic sequences of the two rice subspecies, O. sativa ssp.
japonica (cv. Nipponbare) and O. sativa ssp. indica 93–11, paved the way for
detailed genetic analysis and isolation of many important QTLs (Goff et al. 2002,
Yu et al. 2002a, b, International rice genome sequencing project, 2005). Further,
availability of sequences of 3000 rice genomes by the efforts of international rice
resequencing group has provided foundation for many more novel alleles and QTLs
to be identified and cloned http://www.gigasciencejournal.com/content/3/1/7,
2014). Presently, the information on rice QTLs can be found on Gramene QTL data
base (www.gramene.org/qtl). These QTLs are categorized into nine categories. The
largest QTL found is of plant height (1011), followed by days to headings (618),
spikelet number (353), spikelet fertility, and panicle length (Yamamoto et al. 2009).
Only a few QTLs from the wild species of rice for yield-related traits have been
reported (Li et al. 2004; Xie et al. 2006, 2008; Luo et al. 2013). Advances in
molecular marker techniques, genomics, and statistical methods have facilitated the
analysis of QTLs in greater depth (Miah et al. 2013; Huang et al. 2014). Currently,
all rice breeding programs aiming at yield improvement are facing a major problem
of narrow genetic base of high yielding varieties and hybrids due to severe
domestication of cultivated rice (Tanksley and McCouch 1997). Furthermore, the
narrow genetic pool reduces the probability of additional selection gains in breeding
programs (Rangel et al. 1996). As the QTLs are derived from natural variation, the
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use of a wider range of variations as that found in wild species is important. The
wild rice species represent a magnificent reservoir of genetic variability for many of
the traits of agronomic interest (Harlan 1976; Hawkes 1977; Brar and Khush 2002,
2006). They have been exploited vigorously for genes for biotic stress tolerance, but
their use remained limited earlier in improving yield and yield components. Later
on, it has been discovered that the phenotypically poor wild species can contribute
genes for improving yield and yield component traits (Eshed and Zamir 1995; Gur
and Zamir 2004; Swamy et al. 2012 ; Gaikwad et al. 2014). The advent of new
technologies and dense molecular maps opened up the opportunity for utilizing
wild relatives for the improvement of complex traits. In this chapter, we will discuss
the current status of the quantitative traits loci which have been introgressed from
wild relatives and utilized for improving yield and its component traits in rice.

8.2 The Genus Oryza

The genus Oryza was first described by Linnaeus (1753) with only one species (O.
sativa). Today, more than 100 species have been recognized in Oryza by various
scientists (Vaughan 1989). The cultivated rice (O. sativa L.) belongs to the tribe
Oryzeae, subfamily Oryzoideae of Poaceae. The tribe Oryzeae has 11 genera, of
which genus Oryza is the only one with cultivated species. The genus Oryza
includes two cultivated (2n = 24, AA) and 22 wild species (2n = 24, 48) repre-
senting the AA, BB, CC, BBCC, CCDD, EE, FF, GG, KKLL, and HHJJ genome
types (Brar and Singh 2011). This has been further divided into four species
complexes: (1) sativa complex, (2) officinalis complex, (3) meyeriana complex, and
(4) ridleyi complex. Two species, O. brachyantha and O. schlechteri, could not be
placed in any of these groups (Vaughan 1989, 1994). The wild Oryza species is
known to have a large number of genes for disease and insect resistance such as
bacterial blight, blast, brown plant hopper, white backed plant hopper, tungro virus,
and abiotic stress tolerance such as to heat, cold, phosphorus deficiency, aluminum
toxicity, and others (Heinrich et al. 1985; Amante-Brodeos et al. 1992; Brar and
Khush 1997, 2006; Bhasin et al. 2012; Zeliang and Pattanayak 2013). These
resistance genes have been transferred to the cultivated rice through wide
hybridization and continuous backcrossing with the recurrent parents. This has been
facilitated by the use of molecular markers, fluorescence in situ hybridization and
other genomics tools. Using this approach, a number of varieties have been released
for cultivation in rice-growing countries of Asia, Bangladesh, Philippines, India,
China, USA, and many other countries (Sanchez et al. 2013). The different species,
their chromosome number, genomic constitutions along with their useful traits are
given in Table 8.1 (Inferred from Sanchez et al. 2013; Brar and Singh 2011).
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Table 8.1 Species, chromosome number, genomic constitution, and distribution of Oryza and
related genera along with their useful traits

S.No. Species 2n Genome Distribution Useful traits

O. sativa complex
1 O. sativa L. 24 AA World wide Cultigen: high yielding
2 O. glaberrima

Steud.
24 AgAg West Africa Cultigen: tolerance to

drought, acidity, iron
toxicity, P-deficiency,
resistance to BB, blast,
RYMV, African gall
midge, nematodes

3 O. nivara Sharma
et Shastry

24 AA Tropical and
subtropical
Asia

Resistance to grassy stunt
virus, BB

4 O. rufipogon Griff. 24 AA Tropical and
subtropical
Asia, tropical
Australia

Resistance to BB, blast,
BPH, tungro virus,
tolerance to aluminum and
soil acidity, increased
elongation under deep
water, source of CMS and
yield-enhancing loci

5 O. breviligulata A.
Chev. et Roehr.
O. barthii

24 AgAg Africa Resistance to GLH, BB,
drought avoidance,
tolerance to heat, and
drought

6 O. longistaminata
A. Chev et Roehr

24 AlAl Africa Resistance to BB,
nematodes, stem borer,
drought avoidance

7 O. meridionalis
Ng

24 AmAm Tropical
Australia

Drought avoidance, heat
tolerance

8 O. glumaepatula
Steud.

24 AgpAgp South and
Central
America

Elongation ability, source
of CMS, tolerance to heat

O. officinalis complex
9 O. punctata

Kotschy ex Steud.
24, 48 BB,

BBCC
Africa Resistance to BPH, BB,

zigzag leafhopper,
tolerance to heat and
drought

10 O. minuta J.S.
Presl. ex C.B.
Presl.

48 BBCC Philippines
and Papua
New Guinea

Resistance to BB, blast,
BPH, GLH

11 O. officinalis Wall
ex Watt

24 CC Tropical and
subtropical
Asia, tropical
Australia

Resistance to thrips, BPH,
GLH, WPH, BB, stem rot,
tolerance to heat

12 O. rhizomatis
Vaughan

24 CC Sri Lanka Drought avoidance,
resistance to blast, tolerance
to heat

13 O. eichingeri A.
Peter

24 CC South Asia
and East
Africa

Resistance to BPH, WBPH,
GLH

(continued)
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Table 8.1 (continued)

S.No. Species 2n Genome Distribution Useful traits

14 O. latifolia Desv. 48 CCDD South and
Central
America

Resistance to BPH, BB,
high biomass production

15 O. alta Swallen 48 CCDD South and
Central
America

Resistance to striped stem
borer, high biomass
production

16 O. grandiglumis
(Doell) Prod.

48 CCDD South and
Central
America

High biomass production

17 O. australiensis
Domin.

24 EE Tropical
Australia

Resistance to BPH, BB,
blast, drought avoidance,
tolerance to heat and
drought

O. meyeriana complex
18 O. granulata Nees

et Arn. ex Watt
24 GG South and

South Asia
Shade tolerance, adaptation
to aerobic soil

19 O. meyeriana
(Zoll. et (Mor. ex
Steud.) Baill.)

24 GG Southeast
Asia

Shade tolerance, adaptation
to aerobic soil

O. ridleyi complex
20 O. longiglumis

Jansen
48 HHJJ Irian Jaya,

Indonesia,
and Papua
New Guinea

Resistance to blast, BB

21 O. ridleyi Hook .
F .

48 HHJJ South Asia Resistance to blast, BB,
tungro virus, stem borer,
whorl maggot

Unclassified
1 O. brachyantha A .

Chev . et Roehr
24 FF Africa Resistance to BB, yellow

Stem borer, leaf folder,
whorl maggot, tolerance to
laterite soil

2 O schlechteri
Pilger

48 KKLL Papua New
Guinea

Stoloniferous

3 O. coarctata
Tateoka

48 KKLL Asian
Coastal Area

Tolerance to salinity,
Stoloniferous

4 Leersia perrieri A
. Camus

24 unknown Africa Shade tolerance,
stoloniferous

BPH brown plant hopper, GLH green leaf hopper, WBPH white backed plant hopper, BB bacterial
blight, Shb sheath blight, CMS cytoplasmic male sterility, RYMV rice yellow mottle virus. Adopted
from Sanchez et al. (2013), Brar and Singh (2011)
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8.3 QTL Mapping

Quantitative trait loci have been a major area of study in genetics for over a century.
For most of the period up to 1980, the study of genetics of QTLs was based on
means, variances, and covariances of relatives and these provided a base for par-
titioning the total phenotypic variance into genetic and environmental variances.
Further studies by Sax (1923) on beans demonstrated that the effects of an indi-
vidual locus affecting a quantitative trait locus could be isolated. Very little success
on utilization of marker–QTL linkage in crop plants during the 1930–1980s could
be obtained due to lack of availability of adequate polymorphic markers. The
discoveries of series of molecular markers and statistical packages that could help in
analyzing variation in quantitative traits changed the scenario during the 1980s.
This led to more systematic studies on quantitative trait loci, a term first coined by
Gelderman (1975). A QTL is defined as “a region of the genome that contributes to
the variation of the traits” (Kearsay 1998). The basic objective of QTL mapping is
to (1) identify the regions of genome afof interest an2) analyze the effect of QTL on
the trait, i.e., how much variation for the trait is controlled by a specific region, what
type of gene actions are involved (additive, dominant and other effects), and which
allele is associated with favorable effects. The salient requirement for QTL mapping
is as follows: (1) a suitable mapping population generated from phenotypically
contrasting parents, (2) a suitable linkage map based on molecular markers,
(3) extensive phenotypic data of the mapping population, and (4) appropriate sta-
tistical packages to analyze the genotyping information in combination with the
phenotypic data for QTL detection. The QTL analysis needs a mapping population
such as F2 plants, recombinant inbred lines (RILs), backcrossed inbred lines (BILs),
double haploid lines (DHLs), near-isogeneic lines (NILs), and linkage map con-
structed with a large number of molecular markers (Yano and Sasaki 1997; Yano
et al. 2001). Out of these, use of RILs for QTL mapping is most suitable as the RILs
can be tested in different environments to avoid G × E interaction. Near-isogenic
lines with only target trait QTL in unique genomic background further facilitates
comprehensive analysis of the trait of interest. The desirable loci without any
linkage drag can be introgressed and pooled in various genetic backgrounds to
study their individual and combined effects. With the completion of rice genome
sequencing and availability of dense genetic maps, isolation of QTLs based on
NILs has become a routine (Zhang et al. 2006). In NILs, the traits of interest are
behaving as single Mendelian factor and thus easy to clone. Over the last five years,
several studies utilized NILs for fine mapping and cloning of QTLs in rice and
tomato (Frary et al. 2000; Spielmeyer et al. 2002; Li et al. 2004; Fan et al. 2006).
Some other mapping populations such as obtained from intersubspecies crosses
between indica and japonica species, backcrossed and advanced backcrossed
populations (AB-QTL), and introgression lines made from wild rice were also used
for QTL mapping (Li et al. 2006; Song et al. 2007; Nonoue et al. 2008). The
effectiveness of AB-QTL was demonstrated by McCouch et al. (2007) in
improving yield-related QTLs from weedy rice O. rufipogon using different parallel
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populations and under diverse environments. The favorable alleles from O.
rufipogon were found to improve recurrent parent performance by 5–20 % for most
of the characters studied. Other successful example of AB-QTL includes mapping
of yield components in interspecific population derived from crosses between O.
sativa and the wild species O. glaberrima (acc. IRGC#103544 from Mali) (Li et al.
2004), and O. nivara (Eizenga et al. 2013). Recently, Gaikwad et al. (2014)
reported the presence of yield-enhancing (panicle length, spikelet per panicle,
grains per panicle, 1000 grain weight, and grain yield) heterotic QTLs in the
introgression lines of O. glaberrima, O. grandiglumis, O. glumaepatula, and O.
longistaminata. Some other mapping populations such as advanced intercrossed
lines (AILs), chromosome segment substitution lines (CSSLs), multiparent
advanced generation intercross (MAGIC), association mapping(AM) panel, and
nested association mapping (NAM) are also gaining importance for mapping yield
QTLs. Jacquemin et al. (2013) summarized different advanced mapping popula-
tions derived from wild Oryza species for the improvement of elite O. sativa
cultivars. For QTL mapping, the composite interval mapping (Zeng 1994) is the
most commonly used method. Based on the principles of interval mapping and
composite interval mapping, various softwares have been designed and are freely
available. These include R/qtl (Broman et al. 2003; http://www.rqtl.org/), QTL
cartographer (Zeng 1994; http://statgen.ncsu.edu/qtlcart/WQTLCart.htm), and
many others.

8.4 Advanced QTL Mapping Approaches

The presence of next-generation sequencing techniques and availability of SNP
chips for high-throughput genotyping greatly enhances the precision of QTL
mapping (Huang et al. 2009a, b; Bai et al. 2012). Advanced QTL mapping includes
various approaches such as whole genome sequencing, QTL-Seq, MutMap, and
many others (Fig. 8.1) which are dealt in detail as below.

Fig. 8.1 Advanced techniques for QTL mapping
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8.4.1 Whole Genome Sequencing

Single-nucleotide polymorphic (SNP) markers are gaining importance in plant
breeding and genetics as they are more abundant, amenable to automation, and
cost-effective and help in high-throughput profiling of large populations (Edward
and Batley 2010, McCouch et al. 2010). SNPs are the most abundant form of
genetic variation in eukaryotic genomes, and they occur in both coding and non-
coding regions. SNPs markers have wide applicability in marker-assisted selection,
QTL mapping, genome-wide association mapping, positional cloning of genes,
germplasm characterization, pedigree analysis, and many others. Huang et al.
(2009 a, b) reported approximately 20 times faster efficacy of whole genome
resequencing methods in data collection and 35 times more precise in recombi-
nation breakpoint determination, when used with 287 PCR-based markers along
with resequencing with Illumina Genome Analyzer of 150 RILs. This depicts the
potential of next-generation sequencing technologies in detecting and accelerating
cloning of the genes underlying QTLs. Yu et al. (2011) constructed ultra
high-density map from low-coverage sequences of a RIL population of rice and
validated positions of previously identified QTL for grain size (GS3), grain weight
(GW5), two major QTL for grain length, and also mapped three yield-related QTL,
tillers per plant, number of grains per panicle, and grain length. Gao et al. (2013)
resequenced a segregating population of 132 Liang-You-Pei- Jiu (a widely used
super hybrid rice) RILs, using Illumina HiSeq 2000 platform. Using 1, 71, 847
high-quality polymorphic SNPs markers, they were able to identify 43
yield-associated loci and also fine-mapped two quantitative trait loci spikelet
number per plant (qSN8) and secondary panicle branch number (qSPB1).
High-throughput single-nucleotide polymorphism (Affymetrix SNP chips, 96 Plex
set, 384 Plex OPA set) is being actively used for diversity analysis, DNA finger-
printing, QTL mapping, and MAS (McNally et al. 2009; www.oryzasnp.org;
Thomson et al. 2011; Huang et al. 2010).

8.4.2 QTL-Seq

This is a rapid method for the identification of QTLs by combining the bulk
segregant analysis with high-throughput genotyping technologies. Initially,
microarray-based genotyping (eXtreme Array Mapping) was used for the identifi-
cation and mapping of QTLs in yeast (Ehrenreich et al. 2010). Later, Takagi et al.
(2013) developed the QTL-Seq method for rapid identification of QTLs in the
progenies obtained from diverse crosses. In this method, two bulk DNA were used.
One is H bulk, consisting of 20–50 progenies with higher score of phenotype, and
the other one is L bulk with lower phenotypic value. These two bulks along with
parents were sequenced using whole genome sequencing approaches. The short
reads obtained were aligned and compared with the reference genome and genomic
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regions displaying contrasting patterns of SNP-index plots between the two bulks
indicated the positions of QTLs (Fig. 8.2). The QTLs for partial resistance to the
rice blast disease, seedling vigor, and seedling cold tolerance were mapped using
this method (Takagi et al. 2013; Yang et al. 2013). The advantage offered by
NGS-assisted BSA over other methods are as follows: (i) It does not require precise
phenotyping of each individuals but only identification of individuals with extreme
phenotype and (ii) the development of large number SNP-based markers in the
desired region helps in fine mapping and cloning of the QTLs. The developed
markers could be used for marker-assisted breeding.

8.4.3 MutMap Approach

Mutants are one of the major resources for identification of genes underlying the
QTLs responsible for important agronomic traits. The MutMap approach was pro-
posed by Abe et al. (2012). This method involves crossing of the desired mutant to
its wild type followed by selfing of F1 individuals to generate F2 progeny. The plant

Fig. 8.2 Graphical representation of QTL-Seq: Contrasting bulks are made based on phenotype.
The H and L bulks are genotyped and compared with the reference sequence for QTL
identification
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from approximately 20 F2 individuals showing mutant phenotype is pooled in equal
ratio and subjected to whole genome sequencing. The sequences were aligned to the
reference sequence for identifying unique SNP-index peak (SNP-index = 1) which is
responsible for the causal phenotype (Fig. 8.3). Further, modification of this
approach was given by Fekih et al. (2013) and known as MutMap+. The MutMap+
identifies causal mutation by comparing SNP frequency of bulked DNA of M3

mutant progenies and wild type. This method has an advantage over other methods
as this does not involve artificial crossing and also in mapping of early development
genes, sterility genes, and isolation of genes from the plants which are not amenable
to crossing.

8.4.4 TILLING and Eco-TILLING

Targeting induced local lesions in genomes (TILLING) is a non-transgenic, reverse
genetics method that allows rapid screening of thousands of mutagenized lines for
mutations in a particular gene (McCallum et al. 2000). In TILLING, mutations are
induced using certain mutagenic agents (such as ethyl methyl sulfonate, EMS) to
generate variation in a gene of interest. DNA from mutagenized population is then

Fig. 8.3 Pictorial representation of MutMap approach for QTL mapping
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pooled and arrayed in microtiter plates. Pooled DNA is amplified using fluores-
cently labeled primers designed from the gene of interest. The PCR products are
denatured and re-annealed resulted in formation of heteroduplexes if a mutation is
present. Heteroduplexes are digested using a crude protein extract of celery juice
containing the nuclease CEL I. CEL I enzyme targets point mutation, such as SNP
and InDel, present in genome. The digested products are resolved on denaturing
polyacrylamide gels and visualized using fluorescence imaging. TILLING combi-
nes classical mutagenesis with high-throughput screening of nucleotide polymor-
phisms using molecular biological techniques in a targeted sequence. Unlike other
methods of reverse genetics (i.e., RNA interference, T-DNA mutagenesis),
TILLING does not relies on transformation and hence can be used for species that
are not transformable or recalcitrant. Since TILLING is non-transgenic method, not
any IPR regulation or gene containment regulation is applicable. In rice, Wu et al.
(2005) developed more than 38,000 mutant lines through chemical mutagenesis and
used them for identifying allelic series of particular genes using TILLING. Serrat
et al. (2014) screened OsACS1 and OsSGR genes to identify variation in 6912
mutant population generated from mutagenized mature seed-derived calli.
TILLING methodology can also be used to uncover natural nucleotide variation
linked to important phenotypic traits using a process termed as EcoTILLING
(Comai et al. 2004). Yu et al. (2012) reported allelic series of transcription factors
responsible for drought stress tolerance using EcoTILLING. They identified allelic
variation within promoter region of 24 transcription factors in indica and japonica
rice. EcoTILLING was successfully used by Negrao et al. (2011) for indentifying
nucleotide variation in salt-tolerant genes, SalT and OsCPK17, while screening 375
diverse germplasm of rice. This method can be used for getting allelic variations of
yield-related cloned QTL of rice.

8.4.5 Association Mapping

Association mapping holds a great potential in identifying and resolving quanti-
tative variations of complex traits of agronomic and economic importance.
Association mapping recognizes QTLs by identifying marker trait associations that
can be contributed to the strength of linkage disequilibrium (LD) between markers
and functional polymorphisms across a set of diverse germplasm (Zhu et al. 2008).
Traditionally, QTL mapping approaches have been based on the analysis of pop-
ulations derived from biparental crosses that segregated for trait(s) of interest with
limited number of recombination events. This leads to the poor resolution of the
QTLs and also hampers their direct use in breeding programs. Whereas association
mapping utilizes natural populations, landraces, the collection of cultivars released
over years and the material within a breeding program and hence harnesses the
maximum diversity present in wider genetic pool. However, it is important to
critically consider population structure and kinship among individuals, because
false associations may be detected due to the confusing effects of population
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admixture and unequal allele frequency distribution between subgroups. Therefore,
it is essential to apply appropriate statistical methods that account for population
structure. Various statistical methods, i.e., structured association (Pritchard et al.
2000; Falush et al. 2003), genomic control (Devlin and Roeder 1999), mixed model
approach (Yu et al. 2006), and principal component approach (Price 2006) have
been proposed to take into account for population structure and family relatedness.
The essence of these approaches is to use genotypic information from random and
independent molecular markers across the genome for detecting population struc-
ture. In addition to population structure, the extent and the distribution of LD across
the genome also affect the resolution of association mapping (Remington et al.
2001). LD, or gametic-phase disequilibrium, measures the degree of non-random
association between alleles at different loci. The pattern of LD is usually affected by
population history, but other factors such as population structure, selection, muta-
tion, relatedness, and genetic drift also have an effect on LD. It is found that in case
of self-pollinated crops, LD extends to a much larger distance than that in
cross-pollinated species. The detailed reviews on LD in plant species have been
given previously by various scientists (Flint-Gracia et al. 2005; Ersoz et al. 2008)
and can be referred for better understanding of LD. A range of software packages
are available for data analysis in association mapping. TASSEL is the most com-
monly used software for association mapping in plants (Bradbury et al. 2007).
Other software also includes SAS, R, STRUCTURE, SPAGeDi, EINGENSTRAT,
and MTDFREML which can be used for analysis. In rice, large number of studies
have been conducted for getting insight into population structure, its effect on
genetic diversity, LD, and utilization in fine mapping of QTLs (Garris et al. 2005;
Olsen et al. 2006; Agrama et al. 2007; Jin et al. 2010, Choudhury et al. 2014).
These studies suggest that the extent of LD varies among different genomic regions,
different rice accessions studied (Agrama and Eizenga 2008), and different markers
used.

8.4.6 Genome Editing Tools

Mapping traits to the gene level remains a daunting task despite the tremendously
reduced cost of DNA sequencing and a growing number of success stories. In
particular, regions of low recombination such as inversions, centromeres, and
telomeres have been found to harbor many alleles of interest but can frustrate
fine-mapping efforts. Some of them could be overcome by using association studies
as discussed above in outbred populations, but these approaches have additional
complications such as low statistical power. New approaches to genomic engi-
neering can be applied to partially alleviate these difficulties. This includes the use
of nucleases in genome editing such as zinc finger nucleases (ZFNs) and tran-
scription activator-like effector nucleases (TALENs). Zinc finger nucleases (ZFNs)
are a class of engineered DNA-binding proteins that facilitate genome editing by
creating a double-stranded break in DNA at predetermined position. These enzymes
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generate targeted double-strand DNA breaks that are fixed by the cell’s own repair
pathways, through either non-homologous end joining or homologous recombi-
nation. These enzymes lead to a new gene or regulatory element or to knock
existing gene out. ZFNs are capable of creating several types of genomic alterations
including point mutations, deletions, insertions, inversions, duplications, and
translocations, thus providing opportunities to perform genetic manipulations.
Transcription activator-like (TAL) effectors are virulent factors from Xanthomonas
bacteria. TALENs are similar to ZFNs and comprise a non-specific FokI nuclease
domain fused to a customizable DNA-binding domain. This DNA-binding domain
is composed of highly conserved repeats derived from transcription activator-like
effectors (TALEs), which are proteins secreted by Xanthomonas bacteria to alter
transcription of genes in host plant cells. Several groups have used TALENs to
modify endogenous genes in yeast, fruit fly, roundworm, crickets, zebrafish, frog,
rat, pig, cow, thale cress, rice, silkworm, human, etc. (Joung and Sander 2013). The
next one is CRISPR/Cas9 technology, “clustered regularly interspaced short
palindromic repeats,” which was recently discovered to be a component of the
immune responses of bacteria and archaea (Barrangou et al. 2007, Turner 2014).
This technology involves the spacer sequences acquired from foreign DNA to be
positioned between host repeats, and transcribed together as CRISPR RNA
(crRNA). In the type II CRISPR system, a single nuclease Cas9, guided by a
dual-crRNA:tracrRNA, is sufficient to cleave cognate DNA homologous to the
spacer (Miao et al. 2013). Comprehensive studies depicting detail methods and use
of CRISPR in genome manipulation are provided by many scientists (Cong et al.
2013; Mali et al. 2013; Gratz et al. 2013; Hsu et al. 2014; Wang et al. 2014).

8.5 Yield and Its Component Traits in Rice

Grain yield (GY) of rice is a complex trait consisting of three major yield com-
ponents, panicles per plant, spikelets per panicle, and grain weight (Yoshida1983,
Sakamoto and Matsuoka 2008). Some indirect components such as plant height,
tiller number, and heading date also have an impact on yield. Each component traits
has varying degree of contribution toward yield increment. It is also known that
yield components have higher heritability than GY; therefore, increase in GY could
effectively be achieved through the improvement of yield components (Xiong
1992). High broad-sense heritability estimate of 98.89 % for days to maturity,
75.20 % for the number of tillers per plant, 41.74 % for the number of panicles per
plant, 98.97 % for 1000 grain weight, and 90.87 % for panicle weight was observed
by El-Malky et al. (2008). Akinwale et al., (2011) observed significant positive
correlation of grain yield with the number of tillers per plant (r = 0.58**), panicle
weight (r = 0.60*), and number of grains per panicle (r = 0.52*). Along with the
influence of environment on component traits, the correlation among them also
played a role in deciding yield of rice plant (Frankel 1935; Adams 1967). The
relationship between rice yield and yield components has been studied extensively.
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Subramanian and Rathinam (1984) observed highly significant associations of grain
yield with the 1000 grain weight and number of tillers per plant. Deosarkar et al.
(1989) and Mehetre et al. (1994) reported significant positive associations between
grain yield per plant and number of grains per panicle. In the last decade, a number
of studies were conducted to dissect the genetic basis of the interactions between
QTL × environment and epistatic interactions among various yield components (Yu
et al. 1997; Zhuang et al. 1997; Yamamoto et al. 2000; Xing et al. 2002). However,
negative correlation between yield and component traits is also there which ulti-
mately limits the maximum achievable targets for yield improvements. The details
of utilization of wild species for the improvement of yield and component traits will
be discussed under following subheadings.

8.5.1 QTLs for Grain Number

Among the yield components, grain number showed the largest range of variation
and was the major objective of improvement in rice high yield breeding program
(Li et al. 1998; Yamagishi et al. 2002). During the course of domestication from
wild rice to cultivated rice, profound changes of agronomic traits and genetic
diversity occurred (Sun et al. 2001). One of the most important hallmarks of rice
domestication is the dramatic increases in grain number, as evidenced by the fact
that most cultivated rice showed more grain number than wild rice (Tian et al.
2006). Rice grain number is quantitatively inherited, and a great deal of QTL
mapping for grain number has been conducted using various mapping populations
derived from interspecific crosses (Xiao et al. 1998; Thomson et al. 2003), indica–
japonica intersubspecific crosses (Lu et al. 1996; Xing et al. 2002; Bai et al. 2012),
indica–indica crosses (Lin et al. 1996; Zhuang et al. 1997), and japonica–Japonica
crosses (Yamagishi et al. 2002). These detected QTLs are distributed in all the 12
rice chromosomes and created a firm basis to investigate the genetic control of grain
number. The O. rufipogon Griff. is the wild ancestor of cultivated rice (Second
1982, Wang et al. 1992) and has been extensively used for improving yield and
related traits of cultivated rice. Tian et al. (2006) mapped a QTL for grain number
(gpa7) on chromosome 7 by using F3 population derived from SIL040 (an intro-
gression line derived from O. rufipogon in O. sativa background) with Guichao 2.
However, the contributing alleles from O. rufipogon were not favorable for grain
number. Using AB-QTL approach, Moncada et al. (2001) identified eight
yield-related traits (plant height, panicle length, number of panicles per plant, grains
per plant, 1000 grain weight, days to heading, and plant yield) in BC2F2 population
of Caiapo and O. rufipogon (Table 8.2). The AB-QTL approach has also been used
by others for mapping QTLs in rice (Marri et al. 2005; Thomson et al. 2003).
Ashikari et al. (2005) cloned Gn1a, a QTL located on chromosome 1, that increases
grain number in rice and elucidated the molecular mechanism of this gene.
Table 8.2 summarizes other important QTLs introgressed and mapped from wild
species of rice for enhancing grain number.
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Table 8.2 The yield and yield-related QTLs introgressed from wild species of rice

Wild species Mapping
populations

Yield-enhancing QTL Chromosomes References

Grain number

1 O. rufipogon BC2 gpl1.1, gpl2.1, gpl4.1,
gpl5.1, gpl8.1, gpl8.2

1, 2, 4, 5, 8 Xiao et al.
(1998)

2 O. rufipogon BC2F1 gnp2.1, gnp2.2, gnp5.1,
gnp5.1

2, 5 Marri et al.
(2005)

3 O. rufipogon BC2 gpl1.1, gpl2.1, gpl11.1 1, 2, 11 Moncada
et al. (2001)

4 O. rufipogon BC3F4 gn9.1 9 Xie et al.
(2008)

5 O. rufipogon BC2F2 gpl1.1 1 Septiningsih
et al. (2003)

6 O. rufipogon F2:3 gpp8 8 Jin et al.
(2009)

7 O. rufipogon BC2F4 gpp1.1, gpp3.1, gpp7.1,
gpp 12.1

1, 3, 7, 12 Fu et al.
(2010)

Grain size

1 O. rufipogon BC3F3 gw8.1 8 Xie et al.
(2006)

2 O. grandiglumis BC5F3 gw2, gw6, gw11, gt2,
gt6, gt11, gl6, gl11

2, 6, 11 Yoon et al.
(2006)

3 O. rufipogon BC2F2 gw1.1, gw3.1, gw3.2 1, 3 Septiningsih
et al. (2003)

Panicles per plant

1 O. rufipogon BC2F2 ppl2.1 2 Septiningsih
et al. (2003)

2 O. grandiglumis BC5F3 pn11 11 Yoon et al.
(2006)

3 O. rufipogon BC2 ppl6.1, ppl11.1 6, 11 Moncada
et al. (2001)

4 O. rufipogon BC2F1 np2.1, np2.2 Marri et al.
(2005)

5 O. rufipogon BC2F4 ppl1.1, ppl2.1, ppl7.1,
ppl8.1, ppl11.1

1, 2, 7, 8, 11 Fu et al.
(2010)

6 O. rufipogon BC2 ppl3.1, ppl7.1 3, 7 Thomson
et al. (2003)

7 O. minuta F2:3 pn4, pn6 4, 6 Rahman
et al. (2007)

8 O. glumaepatula BC2F2 pn5, pn8, pn11 5, 8, 11 Brondani
et al. (2002)

Panicle length

1 O. rufipogon BC2 pl1.1, pl8.1 1, 8 Xiao et al.
(1998)

2 O. grandiglumis BC5F3 pl6 6 Yoon et al.
(2006)

(continued)
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Table 8.2 (continued)

Wild species Mapping
populations

Yield-enhancing QTL Chromosomes References

3 O. minuata F2:3 pl6, pl7, pl8 6, 7, 8 Rahman
et al. (2007)

4 O. rufipogon BC2 pl1.1, pl2.1, pl4.1, pl9.1,
pl12.1

1, 2, 4, 9, 12 Thomson
et al. (2003)

5 O. rufipogon BC2F1 pl2.1, pl5.1, pl9.1 2, 5, 9 Marri et al.
(2005)

6 O. rufipogon BC2F2 pl1.1, pl9.1, pl10.1,
pl10.2

1, 9, 10 Septiningsih
et al. (2003)

Spikelet number per panicle

1 O. rufipogon BC2F1 snp2.1, snp5.1, snp5.2 2, 5 Marri et al.
(2005)

2 O. minuta BC7F2 qspp7 7 Balkunde
et al. (2013)

3 O. rufipogon BC2F2 spp2.1, spp3.1, spp9.1 2, 3, 9 Septiningsih
et al. (2003)

4 O. rufipogon ILs qspp1, qspp11 1, 11 Liu et al.
(2009)

5 O.
longistaminata

ILs qspp2.1, qspp 2.2 2 Sidana et al.
(2012)

Number of primary and secondary branches NPB

1 O. nivara BC2F2 qNPB2.1, qNSB1.1,
qNSB2.1

1, 2 Swamy et al.
(2012)

2 O. nivara F2 pbr1, sbr1, sbr 3, sbr 7 1, 3, 7 Li et al.
(2006)

3 O. rufipogon ILs QPbn1, QPbn2, QPbn8,
QPbn11, QPbn12,
QSbn1, QSbn2, QSbn4,
QSbn7

1, 2, 8, 11, 12,
4, 7

Luo et al.
(2008)

1000 grain weight

1 O. glaberrima CSSL TGRWT4, TGRWT6 4, 6 Gutiérrez
et al. (2010)

2 O. rufipogon BC2F1 gy2.1, gy2.2, gy2.3,
gy9.2

2, 9 Marri et al.
(2005)

3 O. minuata F2:3 tgw7, tgw11 7, 11 Rahman
et al. (2007)

4 O. rufipogon BC2F4 kgw1.1, kgw2.1, kgw3.1,
kgw 4.1, kgw7.1,
kgw11.1

1, 2, 3, 4, 7,
11

Fu et al.
(2010)

Yield

1 O. glaberrima CSSL YLD3, YLD4, YLD6,
YLD9

3, 4, 6, 9 Gutiérrez
et al. (2010)

2 O. rufipogon BC2F2 yld1.1, yld1.2, yld2.1 1, 2 Septiningsih
et al. (2003)

(continued)
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8.5.2 QTLs for Panicle Architecture

Grain number per panicle is basically determined by the panicle architecture, i.e.,
the number and length of primary branches of a panicle, the number and length of
secondary branches on each primary branch, and the number of branches on sec-
ondary and higher order branches and panicle length. Panicle-related traits are
important agronomic traits which are directly associated with grain yield. A total of
39 QTLs were found to be associated with panicle-related traits including panicle
length (PN), primary branch number (PBN), secondary branch number (SBN),
spikelet number per panicle (SPP), and spikelet density (SD) and were detected
using a set of 265 ILs of common wild rice (O. rufipogon Griff.) in the background
of indica high yielding cultivar Guichao 2 (O. sativa L.) with single-point analysis.
The alleles of 20 QTLs derived from wild rice showed positive effects, and some
QTLs such as QPl1b for PL, QPbn8 for PBN, QSd4 and QSd11b for SD, and
QSpp4 for SPP showed larger positive effects, providing good candidates and
useful information for marker-aided improvement of yield potential of rice (Luo
et al. 2008). Brondani et al. (2002) studied 11 agronomic traits in BC2F2 families of
the interspecific cross O. sativa × O. glumaepatula and reported positive effect of
O. glumaepatula alleles on panicle number and tiller number. Further, Rangel et al.
(2013) conducted CIM analysis and confined the region to the marker interval
4752-RM82 on chromosome 7 with LOD 4.2.

8.5.3 QTLs for Spikelet Number

The number of spikelets per rice panicle is very important in determining yield,
which is defined as the product of spikelet yield (or sink) and ripening ability (or
source) (Hua et al. 2002). Luo et al. (2013) has demonstrated that 2 QTLs, qSPP5

Table 8.2 (continued)

Wild species Mapping
populations

Yield-enhancing QTL Chromosomes References

3 O. rufipogon BC2F4 yld1.1, yld2.1, yld8.1,
yld12.1

1, 2, 8 Fu et al.
(2010)

4 O. rufipogon BC2F1 Yldp2.1, yldp2.2,
yldp9.1

2, 9 Marri et al.
(2005)

Abbreviations: gpl grains per panicle, gn grain number, gpp grains per panicle, gw grain weight,
ppl panicle per plant, pn panicle number, np number of panicles, pl panicle length, snp spikelet
number per panicle, spp spikelets per plant, NPB number of primary branches, NSB number of
secondary branches, pbr primary branches, sbr secondary branches, QPbn QTL for primary branch
number, QSbn QTL for secondary branch number, TGRWT thousand grain weight, gy grain yield,
tgw thousand grain weight, YLD yield per plant, ILs introgression lines, and CSSL chromosome
segment substitution line
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for spikelets per panicle (SPP), and qTGW5 for grain weight (TGW) are tightly
linked on chromosome 5 in a BC5F4 (NILs) populations that were derived from a
cross between the Korean japonica cultivar Hwayeongbyeo and O. rufipogon.
Sidana (2012) extensively studied the yield-contributing characters from the wild
species O. longistaminata. She reported the colocalization of QTLs for number of
spikelet per panicle, fertile grain per panicle, and plant height on chromosome 2
between the marker intervals RM13742-RM13750 and RM13750-RM13781, and
the favorable allele is contributed by O. longistaminata.

8.5.4 QTLs for Grain Size

Grain size in rice is a major determinant of grain yield and market value (Huang
et al. 2012). A large diversity in grain size has been observed within and between
different subpopulations of O. sativa. The four genes (GS3, GW2, G1F1, and GS5)
contributing to seed or grain size have been identified and characterized (Fan et al.
2006; Song et al. 2007; Wang et al. 2008; Shomura et al. 2008; Weng et al. 2008).
The wild species of rice also possess positive effects in enhancing grain size either
by improving grain length and grain width. Li et al. (2004) fine mapped a grain
weight QTL, gw3.1, using a set of near-isogenic lines (NILs) developed from O.
sativa, and cv. Jefferson X O. rufipogon (IRGC105491) population based on five
generations of backcrossing and seven generations of selfing. Yoon et al. (2006)
identified five QTLs for grain width located on chromosome 2, 3, 6, 8, and 11; four
QTLs for grain thickness located on chromosome 2, 6, 7, and 11; and two QTLs for
grain weight, using a F2:3 families derived from a cross between introgression line
of O. grandiglumis and Hwaseong Yeo. Oh et al. (2011) further fine mapped the
grain weight QTL tgw11 between the two SSR markers RM224 and RM27358 on
chromosome 11. Yield-enhancing QTLs cluster for grain weight on chromosome 8
has been fine mapped using NILs population of O. sativa and O. rufipogon (Xie
et al. 2006, 2008).

The summary of QTLs mapped and utilized from wild species of rice for
improving yield and component traits is given in Table 8.2.

8.5.5 Colocalization of QTLs for Yield and Yield-Related
Traits

The QTLs with major effect on yield and yield-related component traits are usually
clustered in a few chromosomal segments. As obvious from the Table 8.2, each
chromosome of rice was found harboring a minimum of one or two QTLs for yield
and yield-related traits although more QTLs were identified on chromosomes 1, 2,
3, and 4 of rice. Xie et al. (2008) reported colocalization of sn9.1, gn9.1, dn9.1,
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pl9.1, and yl9.1 QTLs with gw9, hd9.1, and ph9.1 in the 37.4 kb interval flanked by
markers RM24718-RM30005. In BC5F3 population derived from a cross involving
O. grandiglumis, six QTLs (panicle length, panicle number, spikelets per panicle,
grain width, grain thickness, and 1000 grain weight) were found between the same
marker interval RM224-RM144 on chromosome 11. Yield QTLs on chromosome 1
were colocalized with QTLs for grain yield per panicle, grains per plant, filled
grains, and spikelets per panicle (Septiningsih et al. 2003; Brondani et al. 2002).
The presence of the QTLs for yield and yield-related traits at the similar marker
interval of the chromosome has been reported in several other studies (Table 8.3)
which indicated non-random distribution of yield-related traits in rice genome.
These QTLs are also having some common genomic regions shared across the
species and populations. The colocalization of QTLs for different yield-related traits
might be due to independent but closely related genes or might be because of single
gene with pleiotropic effects. Cloning of colocalized QTLs for multiple traits has
unequivocally shown that the colocalized QTLs is due to the same major gene with
pleiotropic effect (Xue et al. 2008).

Such hot spot QTL regions are important for manipulating or improving more
than one trait at a time. These regions can be further dissected, fine mapped, and
cloned for knowing the biology of the genes controlling underlying QTLs (Ashikari
et al. 2005; Eshed and Zamir 1995). Till date, a large number of QTLs related with
yield and yield components have been cloned though they are not from wild

Table 8.3 Chromosomal region harboring QTL cluster for yield and yield-related traits across
population and species in rice

Chromosome Marker (s) QTL clusters* References

1 RM220-
RM272

ph1.1, spp1,
gyp1, fgp1

Brondani et al. (2002), Li et al.
(2004)

RM272-RM259 ph1.2, dth1.1,
spp1.1, gpp1.1

Thomson et al. (2003), Xiao et al.
(1996), Marri et al. (2005)

RM212-
RM315

pl1.1, pss1.1,
dth1.1, sf1.1,
ph1.1

Thomson et al. (2003), Septiningsih
et al. (2003), Marri et al. (2005)

2 RM250-RM208 pl2.1, sn2.1,
yld2.1, gpp2.1,
gw2.1

Marri et al. (2005), Septiningsih
et al. (2003), Li et al. (2004),
Moncada et al. (2001)

RM262-RM263 gnp2.1, yld2.1,
yld2.2

Li et al. (2004), Marri et al. (2005)

5 RM194-RM249 qspp5, qtgw5,
qsb5, qgw5,
snp5.1, gn5.1

Li et al. (2004), Marri et al. (2005),
Luo et al. (2013)

8 RM350-RM210 yld8.1, snp8.1,
gpp8.1, ph8.1

Xiao et al. (1998), Thomson et al.
(2003), Marri et al. (2005), Li et al.
(2004)

9 RM242-RM250 pl9.1, gw9.2,
spp9.1, pp9.1,
yld9.1

Marri et al. (2005), Li et al. (2004)
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Table 8.4 Summary of QTLs cloned by map-based cloning techniques in rice

Chromosome Trait* QTL/Genes** Encoded protein References

1 NGP Gn1a Cytokinin
oxidase/dehydrogenase

Ashikari et al. (2005)

1 NGP LOG Cytokinin-activating
enzyme

Kurakawa et al.
(2007)

1 NGP,
NPP

LAX1 A bHLH transcription
factor

Komatsu et al. (2001)

2 NPP,
NGP

qGY2-1 Leucine-rich repeat
receptor-like kinase

Zha et al. (2009)

2 NGP LP Kelch repeat-containing
F-box protein

Li et al. (2011a, b)

2 GW,
GS

GW2 RING-type E3 ubiquitin
ligase

Song et al. (2007)

2 GW,
GS

PGL2 Atypical bHLH protein Heang and Sassa
(2012a, b)

3 GW,
GS

GS3 Transmembrane protein Mao et al. (2010)

3 GW,
GS

BRD1 Brassinosteroid-6-oxidase Mori et al. (2002)

3 GW,
GS

GL3.1/qGL3 Phosphatase with
Kelch-like repeat domain

Zhang et al. (2012b),
Qi et al. (2012)

4 NPP D17/HTD1 Carotenoid cleavage
dioxygenase

Zou et al. (2006)

4 NGP,
NPP

APO2 Plant-specific
transcription factor

Ikeda-Kawakatsu
et al. (2012)

4 GW,
GF

GIF1 Cell wall invertase Wang et al. (2008)

4 GW,
GF

FLO2 Protein with a
tetratricopeptide repeat
motif

She et al. (2010)

4 TSN Nal1/GPS Trypsin-like serine and
cysteine proteases

Fujita et al. (2013),
Takai et al. (2013)

5 GW,
GS

APG Typical bHLH protein Heang and Sassa
(2012a, b)

5 GW,
GS

SRS3 Kinesin 13 protein Kitagawa et al.
(2010)

5 GW,
GS

GS5 Putative serine
carboxypeptidase

Li et al. (2011a, b)

5 GW,
GS

qSW5/GW5 Nuclear protein Weng et al. (2008),
Shomura et al. (2008)

6 NPP D3 F-box leucine-rich repeat
protein

Ishikawa et al. (2005)

6 NPP MOC1 GRAS family nuclear
protein

Li et al. (2003)

(continued)

190 K. Neelam et al.



Table 8.4 (continued)

Chromosome Trait* QTL/Genes** Encoded protein References

6 NGP SCM2/APO1 F-box protein Ookawa et al. (2010),
Ikeda et al. (2007)

6 NGP Hd1 Protein with a zinc finger
domain

Zhang et al. (2012a)

6 GW,
GS

TGW6 Iindole-3-acetic acid
(IAA)-glucose hydrolase

Ishimaru et al. (2013)

6 GW,
GF

HGW ubiquitin-associated
domain protein

Wang et al. (2008)

7 NPP,
NGP

PROG1 Zinc finger nuclear
transcription factor

Jin et al. (2008)

7 NGP,
NPP

EP2/DEP2/SRS1 Plant-specific protein Zhu et al. (2010), Li
et al. (2010)

7 NGP,
NPP

DEP3 Patatin-like phospholipase
A2 (PLA2) superfamily

Quiao et al. (2011)

7 NGP,
NPP

FZP Ethylene-responsive
element-binding factor

Komatsu et al. (2003)

7 NGP Ghd7 CCT domain protein Xue et al. (2008)

8 NPP,
NGP

WFP/IPA1
(OsSPL14)

Squamosa
promoter-binding
protein-like 14

Miura et al. (2010),
Jiao et al. (2010)

8 NGP Ghd8/DTH8 OsHAP3 subunit of a
CCAAT-box-binding
protein

Wei et al. (2010),
Yan et al. (2011)

8 GW,
GS

GW8/OsSPL16 Squamosa
promoter-binding
protein-like 16

Wang et al. (2012)

9 NGP DEP1 PEBP-like domain protein Huang et al. (2009a,
b)

9 GW,
GS

SG1 Novel protein Nakagawa et al.
(2012)

11 NGP SP1 Transporter of the peptide
transporter family

Li et al. (2009)

11 GW,
GS

SRS5 Alpha-tubulin protein Segami et al. (2012)

*Traits: NPP number of panicles per plant, NGP number of grains per panicle, GW grain weight,
GS grain size, GF grain filling, and TSN total spikelet number per panicle
** Gene(s): Gn1 grain number, LOG lonely guy, LAX qGY2 grain yield, LP large panicle, GW
grain weight, PGL positive regulator of grain length, GS grain size, BRD
brassinosteroid-6-oxidase, GL grain length, D17/HTD DWARF17 high-tillering dwarf, APO
aberrant panicle organization, GIF1 grain incomplete filling, FLO2 floury endosperm2, NGL
narrow leaf, GPS green for photosynthesis, APG antagonist of PGL, SRS3 small and round seed,
GS grain size, SW seed weight, MOC monoculm, FZP frizzy panicle, PROG prostrate growth,
Ghd7 heading date, DTH days to heading, WFP wealthy farmers panicle, SG short grain, OsSPL
Squamosa promoter-binding protein-like, DEP dense and erect panicle, TWG thousand grain
weight, SCM strong culm, and HGW heading and grain weight
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species. Their sequences can, however, be used for discovering and mining their
superior alleles among the wild-related species for introgression and exploitation.
These QTLs controls several rice traits, including grain productivity (Gn1a,
OsSPL14, DEP1), grain size and weight (GW2, qSW5, GS3), yield potential
(Ghd7), number of panicles per plant (NPP), and heading date (Hd1, Hd3a, Hd6,
Ehd1). A summary of cloned QTLs is given below (Table 8.4).

8.6 Future Perspective

The wild relatives of rice harbor many useful genes particularly for resistance to
biotic and abiotic stresses along with many other agronomically useful traits. With
the progress made in plant breeding, biotechnology, bioinformatics, and other
related technologies, it has become easier to reduce the linkage drag and transfer
only desired variability from wild relatives. The New Rice for Africa (NERICA),
which was developed from a cross between African rice (O. glabrrima Steud.) and
Asian rice (O. sativa L.), is a successful example of utilization of wild rice towards
sustainable agricultural development. NERICA varieties have high yield potential,
short growth cycle, weed competitiveness, early vigor trait, and resistant to African
insect and pests along with higher protein content and amino acid balance.
Tables 8.2 and 8.3 revealed the presence of useful alleles for yield improvement in
wild species of rice, and further, their colocalization provides an opportunity to pool
and introgress major effect QTLs together. The progress made in genomics enables
researchers to enrich the QTLs region with more number of SNPs markers, also
construct high-density haplotype map, and perform genome-wide association
studies and the dissection of complex traits. Further, systematic integration of the
developments made in functional genomics, proteomics, and metabolomics is
required for understanding the functions of underlying genes.
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Chapter 9
A Molecular Phylogenetic Framework
for Timothy (Phleum pratense L.)
Improvement

Alan V. Stewart and Nicholas W. Ellison

Abstract The recent molecular phylogenetic analysis of Phleum germplasm has
provided a clear evolutionary history of the genus from which modern hexaploid
germplasm and their cultivars have evolved. This framework will allow us to
effectively use the full set of germplasm from all ploidies (2x, 4x, 6x and 8x) for a
more systematic improvement of Timothy. The many new molecular forms of
Phleum now known offer a huge potential to expand the gene pool of commercial
hexaploid Timothy. The opportunity exists to hybridize and incorporate many new
forms of molecular diversity into Timothy. However, genebank samples of many of
these new forms are absent and urgently require collection. In addition, many of the
novel diploid, tetraploid, hexaploid and octoploid forms are under serious threat
from habitat degradation and climate warming in situ. It is also critical that core
collections are developed and maintained using molecular phylogenetic and genetic
diversity information as a basic framework. In order to apply molecular resources in
an effective and balanced manner, it is important to ensure pragmatic field breeding
programmes are continued in all major regions. This is a concern for Timothy, as it
is a species with limited international breeding investment.

Keywords Timothy � Phleum pratense � Germplasm � Molecular breeding �
Phylogeny

9.1 Introduction

The genus Phleum contains one important commercial hexaploid species, Timothy,
Phleum pratense and two minor commercial species, turf Timothy, P. pratense
subsp. bertolonii and Alpine Timothy, P. alpinum. Timothy, P. pratense
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ssp. pratense, is commonly used in cold winter pastures for high-quality hay. It is
particularly widely used in Scandinavia, northern Europe, northern Japan, Canada
and northern USA, but there is also a very small amount used in Patagonia and in
the south of New Zealand. Cultivars are all hexaploid and frequently divided into
early- and late-flowering types.

The diploid turf Timothy, P. pratense ssp. bertolonii, is used occasionally in the
northern Europe for turf purposes, often in mixtures with other turf grass species.

Alpine Timothy, P. alpinum, is used to a limited extent in Europe for
high-altitude revegetation plantings.

Each year approximately 34,000 tons of Timothy seed are harvested, a few
hundred tons of turf Timothy and only a few tons of alpine Timothy. This makes
Phleum the third most widely sown grass genus with 8 % of the world’s temperate
grass seed, following Lolium and Festuca (Bondesen 2007).

9.2 Taxonomy

The genus Phleum contains 14 species in four sections over a polyploid series from
diploid to octoploid as outlined by Joachimiak (2005) and Stewart et al. (2010).

The three commercial species are in section Phleum. In this paper, we use the
widely accepted nomenclature of Humphries (1978, 1980) for European species
and of Barkworth (2007) for American species, as followed by Stewart et al.
(2010).

1. P. alpinum L. or alpine Timothy is an alpine species differentiated into three
very different diploid or tetraploid cytotypes with ciliate or glabrous awns:

(a) A glabrous awned allotetraploid; P. alpinum L. ≡ P. commutatum Gaudin
with a circumpolar northern hemisphere and South American distribution.

(b) A ciliate awned diploid form, known from the Rhaetic Alps of Italy and the
Balkans; P. alpinum ssp. rhaeticum Humphries, ≡ P. rhaeticum (Humphries)
Rauschert.

(c) A glabrous awned diploid form also known as P. alpinum L., currently
referred to here by the informal name “commutatum” following Joachimiak
and Kula (1993). This form grows among the snow-bed vegetation at high
altitudes (Zernig 2005) and occurs in the mountains of central Europe from
the Northern Alps to the Carpathian Mountains.

2. P. pratense L. is a lowland species represented by a diploid to octoploid
polyploid series:

(a) The diploids occur throughout much of Europe and parts of North Africa;
P. pratense ssp. bertolonii (DC.) Bornm.,≡P. bertoloniiDC.,≡P. nodosumL.

(b) Less common tetraploid forms in southern Europe; P. pratense ssp. pratense.
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(c) Widespread agricultural hexaploid forms; P. pratense ssp. pratense.
(d) An octoploid form restricted to southern Italy; P. pratense ssp. pratense

3. P. echinatum Host is a winter active annual grass of eastern Mediterranean
mountains which is not used commercially.

The other three sections, Chilochloa, Achnodon and Maillea, contain 11 species
but none of these is commercial so will not be described here (Stewart et al. 2010).

9.3 Botanical Origin and Evolution

The molecular results of Stewart et al. (2010) show an Asian origin for the section
Phleum and at least two separate migrations into Europe have been identified.

The first migration into Europe was of an ancestor of diploid P. alpinum
subsp. rhaeticum. The penultimate Riss glaciation 130,000–150,000 year
B.P. provided ample opportunity for this subalpine species to migrate vast distances
through lowland areas to eventually become isolated on the Alps during the sub-
sequent warmer interglacial period. Subsequent migration along mountain ranges
has occurred so that today rhaeticum occurs in the Alps, Pyrenees, Apennines and
the Balkans (with differing molecular signatures).

Migration of the “rhaeticum” also occurred onto the colder mountain ranges to
the north into Germany and to the Carpathian Mountains of Poland and Romania.
This was also associated with micro-evolutionary changes in morphology and
cytology to develop into diploid “commutatum”. The overlap of the range of
rhaeticum and “commutatum” has since allowed considerable hybridization so that
a swarm of hybrids overlaps the range of “commutatum” and the part of the
rhaeticum range. Occasional tetraploid hybrids have developed from these, and
these have migrated back east again, at least as far as Kazakhstan.

Migration of rhaeticum populations back into the lowlands as a result of climate
cooling eventually resulted in the first lowland species of this group, P. pratense
subsp. bertolonii. This was also accompanied by micro-evolutionary changes in
cytology, morphology and adaptation. As the climate cooled during the last
glaciation (the Würm 22,000–13,000 years B.P.), this lowland species retreated into
southern European glacial refugia. Upon warming, these subsequently reinvaded
northern Europe from the Balkan/Italy refugia. Those in the Spanish/Portuguese
glacial refuge remained restricted to that region. Hybridization occurred when these
2 forms met at the interface in France resulting in the generation of a tetraploid
(probably best termed an autotetraploid).

Hybrids formed in the Italian Alps where subsp. bertolonii and the Balkans
rhaeticum overlapped resulting in an allotetraploid pratense. It is probable that a
further hybridization with the adjacent northern European subsp. bertolonii leads to
the formation of the agricultural hexaploid pratense. Upon warming in the
Holocene, these subsequently reinvaded northern Europe from the Balkan/Italy
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refugium, a refugium common to a wide range of European biota (Hewitt 1996,
1999) (Fig. 9.1).

Hexaploid and octoploid forms occur today within known glacial refugia, with
two different hexaploids in southern Italy and Morocco and an octoploid in the
mountains of southern Italy.

The very widespread allotetraploid P. alpinum formed over 300,000 years
B.P. in Asia from the hybridization of an ancestral rhaeticum with another
unknown genome (possibly from a taxonomic different section of Phleum). This
form remained in Asia until eventually migrating into Europe during the last
glaciation (the Würm 22,000–13,000 years B.P.), when conditions became suitable.
At the same time, many species, including this one, were able to migrate into the
Americas via the Bering/Aleutian route, although probably not completing their
entry into the America until this route became open around 8000 years ago (Hong
et al. 1999; Weber 2003). This divergent migration has led to a divergence in
molecular forms, one in northern Europe and the other in Japan and the Americas.
This circumpolar migration was completed in Iceland where derivatives of both the
forms now occur.

Dogan (1991) describes the Mediterranean and western Asia as the centre of
origin for the genus Phleum. This remains true for P. pratense today, although it
may be considered surprising that a species so common in high-latitude cold
temperate zones has originated within Southern European glacial refugia and that
these areas still retain high genetic diversity today. Although it has been suggested
that northern Europe is a centre of diversity (Guo et al. 2003), this appears unlikely
as it has only been free of glaciation in the last 12,000 years and any diversity must
be recent, or of migratory origin.

Fig. 9.1 Generic glacial refugia of southern Europe (shaded areas) (after Hewitt 1999) and
potential post-glacial migration route of diploid ssp. bertolonii and agricultural hexaploid pratense
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9.4 Germplasm and Gene pools

Genetic resources for commercial Timothy breeding at the hexaploid level can be
divided into four gene pools on the following basis (Stewart et al. 2010).

9.4.1 Primary Gene pool

These can be defined as cultivars and elite breeding lines adapted to the region of
agricultural use. This is largely northern Europe, northern Asia and North America
and to a much lesser extent southern hemisphere regions such as New Zealand. This
is the primary source of material for Timothy breeders and consists almost exclu-
sively of hexaploids, although the diploids subsp. bertolonii are used occasionally
for turf. In general, these resources are well used by breeders and their “working”
collections largely represent this gene pool.

Interestingly, all the commercial materials explored to date and the vast bulk of
hexaploid germplasm lines in genebanks represent a single molecular form with a
common ITS sequence of the genomic formula BNBNBNBNRGRG as assigned by
Stewart et al. (2010). The uniform molecular genomic constitution suggests that this
pool has originated from a very narrow series of hybridization events. Events most
probably occur in the Balkans/Italy glacial refugia during the last ice age (the Würm
22,000–13,000 years B.P.). This hexaploid gene pool most likely results from a
limited series of hybridizations of diploid and tetraploid plants suggesting that the
genetic basis for this gene pool is quite limited, possibly even as narrow as a single
cross of two plants and probably no more than a few at most. Furthermore, the
tetraploid parent would also most likely have resulted from limited hybridization
events. Although the diversity of each genome may be limited, genetic exchange
between the 3 genomes has likely contributed greatly to the diversity available
today within this gene pool, as would micro-mutations and any introgression which
may have occurred from other forms.

9.4.2 Secondary Gene pool

This pool includes hexaploid germplasm of P. pratense from the centre of origin in
the Balkans/Italy region of Southern Europe, the Mediterranean mountains and
North Africa, a region largely outside the region of commercial use. These represent
hexaploid forms with different molecular ITS sequences than the primary gene
pool. They will represent different hybridization events between different molecular
forms of diploid and tetraploid ancestors. To date, it appears that breeders have not
used this material due to their poor winter hardiness in northern Europe.
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The genomic formula assigned by Stewart et al. (2010) to a unique hexaploid
found in Basilicata in Southern Italy is RGRGXXXX (represented by one unique
accession, line 6091 in the Kew collection collected in 1977). This form never
expanded beyond the glacial refuge and could potentially be a reciprocal cross of
the forms which contributed to the primary gene pool but further molecular and
cytological characterization would be required to confirm this. The author has
hybridized this with commercial hexaploids to form fertile hybrids.

The genomic formula assigned by Stewart et al. (2010) to a unique hexaploid
found in Morocco BSBSXXXX (line CGN10072 in the Netherlands genebank).
Interestingly, this form was labelled bertolonii and has many features in common
with diploid bertolonii including much shorter reproductive stems than the other
hexaploid forms. It could potentially be an auto-hexaploid of bertolonii but further
molecular and cytological characterization would be required to confirm this. The
author has hybridized this with commercial hexaploids to form fertile hybrids.

To date, it appears that other breeders have not used these two unique forms of
material due to their poor winter hardiness in the northern regions. However, further
collections are urgently required as these southern regions have almost never been
targeted for genebank collection because of this lack of winter hardiness. However,
such material deserves special attention as it represents unique hexaploid genomic
constitutions. Sadly, genetic erosion in these southern regions is occurring at an
alarming rate as many in situ populations are under threat from climate warming
and human-induced habitat degradation.

9.4.3 Tertiary Gene pool

This consists of germplasm of ploidy levels other than hexaploid. Ploidy remains
the major barriers to hybridization between Phleum species but apart from ploidy
difficulties most forms cross readily (Nath 1967). The one exception to this is the
widespread and more ancient palaeo-allotetraploid P. alpinum (genomic formula of
the eastern form from Europe to Iceland REREXX and the western form from East
Asia, the Americas, to Iceland RWRWXX) which is difficult to cross with other
forms and here we would classify that into the quaternary gene pool.

With the latest knowledge of the genomic constitution of P. pratense (Stewart
et al. 2010), it should now be possible to either resynthesize P. pratense from
different forms of the same genomes as listed in the “Genomic Formula” table, or
use genomes from other forms and ploidy levels of section Phleum for introgression
into P. pratense hexaploids.

Resynthesis of new and novel hexaploid forms from a full range of diploid and
tetraploid genomic forms should be possible. For example, crosses involving the
following diploids (with examples of germplasm lines, note forms lacking examples
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were determined from herbarium specimens and no germplasm lines are known to
occur in collections):

Diploid subsp. bertolonii in Spain and Portugal BSBS e.g. PI319076, RBG43968

Diploid subsp. bertolonii in Greece and the Balkans BGBG

Diploid rhaeticum in the Alps RSRS

Diploid rhaeticum in the Pyrenees RPRP

Diploid rhaeticum in Greece RGRG e.g. H729

Diploid rhaeticum in Italy RIRI

Diploid “commutatum” in the Carpathian Mountains CC e.g. 2189

Diploid hybrids of rhaeticum and “commutatum” RC e.g. 13G2304001

with any of the following tetraploids (or their reciprocals)

Tetraploid rhaeticum “commutatum” hybrids, Italy RSRSCC
Tetraploid rhaeticum “commutatum” hybrids,
Caucasus

CCRGRG eg. PI619539,
PI619567

Autotetraploid pratense in France BSBSBNBN e.g. 58702

Allotetraploid pratense in the Italian Alps BNBNRGRG e.g. H677

Tetraploid hybrid of bertolonii and hexaploid
pratense

BNBNBNRG

Similarly, crosses of any of the tetraploid forms above with the octoploid from
southern Italy R8R8XXXXXX (represented by one unique accession, line
RBG20633 from Kew collection and duplicated in the Margot Forde Genebank in
New Zealand as accession H736).

These will provide a huge diversity of new forms for hexaploid Timothy
improvement.

Crosses between diploid bertolonii and hexaploid P. pratense are easy to pro-
duce artificially (Nordenskiold 1945), and although they are not always tetraploid
(Løhde 1978), they are found in nature (Müntzing 1935; Foerster 1968, 2005).
These readily backcrossed to hexaploid P. pratense or could be crossed to the
octoploid forms.

Hybrids between tetraploid P. pratense forms and the Southern Italian octo-
ploids have been made by the senior author and these form semi-fertile hexaploid
plants. These plants have been crossed with regular agricultural hexaploids to
generate fertile progeny.

Hybrids of tetraploid and hexaploid forms are pentaploid as expected (Nielsen
and Nath 1961) and these may be backcrossed to hexaploids quite readily.

This tertiary germplasm pool represents an enormous untapped pool of unex-
plored material for breeders, but collections and molecular characterization will be
necessary.
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9.4.4 Quaternary Gene pool

By definition, these would consist of the more difficult to cross material such as
widespread allotetraploid P. alpinum (genomic formula of the eastern form from
Europe to Iceland REREXX and the western form from East Asia, the Americas, to
Iceland RWRWXX), as well as species in other sections. Other crosses which
appear to be possible with hexaploid P. pratense include P. phleoides in section
Chilochloa, of which there is a herbarium sample in the Leiden University National
Herbarium in the Netherlands; P. hirsutum in section Chilochloa, which the senior
author has crossed to obtain tetraploids; P. subulatum in section Achnodon, which
Myers (1941) crossed to obtain a male sterile tetraploid progeny.

There is also a report of a sterile cross between tetraploid Dactylis glomerata and
hexaploid P. pratense (Nakazumi et al. 1997).

At this stage, the quaternary gene pool offers much less potential for breeders
than the secondary and tertiary gene pools and resources would be much better
targeted at the resources which are easiest to utilize.

9.5 Recommendations for Future Actions

The current understanding of the genomic constitution within Phleum should allow
breeders to utilize the genetic resources more effectively than previously. It should
now be possible to resynthesize or introgress a much wider range of diverse
P. pratense than has occurred naturally.

However, many of the genetic resources of wild relatives are under threat from
climate warming and human-induced habitat degradation (‘t Mannetje 2007).

There is an urgent need to collect hexaploid P. pratense germplasm from
Mediterranean mountain glacial refuge areas as well as a wide range of genetically
diverse diploid, tetraploid and octoploid P. pratense and the readily crossable forms
of P. alpinum. These include diploid subspecies rhaeticum and “commutatum” as
well as their diploid and tetraploid hybrids.

These collections should be integrated into core collections to maximize
molecular diversity of the available genomes.

It is also important that each of the major regions where Timothy is used
maintains strong functional field breeding programs to allow adequate cultivar
development, germplasm collection, introgressions of wild germplasm and explo-
ration of molecular resources.
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Chapter 10
Genetic Improvement of Basmati
Rice—The Journey from Conventional
to Molecular Breeding

A.K. Singh and S. Gopala Krishnan

Abstract Marker-assisted breeding provides a great opportunity to the present-day
researchers for breeding new crop varieties by design through precise transfer of
desirable gene(s). Among the molecular breeding approaches, marker-assisted
backcross breeding (MABB) is an attractive proposition for breeders as it can help
in improving an already popular variety for specific target traits such as resistance to
disease/pest/improvement in quality. MABB has been successfully employed in
transferring genes (xa13 and Xa21) governing resistance to diseases such as bac-
terial blight (BB), blast (Pi54, Pita, Pi1, Pi9, Pib, Piz5 and Pi5), sheath blight
(qSBR 11-1), and brown plant hopper (BPH; Bph18, Bph20 and Bph21) into a
number of Basmati rice varieties, namely Pusa Basmati 1, Pusa Basmati 1121, and
Pusa Basmati 6 as well as long slender grain aromatic rice varieties such as Pusa
Sugandh 5. Further, a major QTL for salt tolerance (Saltol) has been transferred to
Pusa Basmati 1121 and Pusa Basmati 1, which are widely grown in northwestern
India. Genetically enhanced donor sources in the form of near-isogenic lines (NILs)
carrying major gene(s)/QTLs for resistance to biotic (BB, blast, sheath blight, and
BPH) and abiotic (salt tolerance) stresses in the background Pusa Basmati 1, the
first semi-dwarf, high-yielding Basmati rice variety, have been developed. QTL
mapping using recombinant inbred line (RIL) population has unveiled several novel
QTLs for different agronomic, grain and cooking quality traits. Besides their
effective use in Basmati rice improvement, molecular markers are also utilized in
basic studies as well as in maintenance breeding of Basmati rice varieties, which is
discussed in the present chapter.
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10.1 Introduction

Basmati rice from Indian subcontinent has unique quality characteristics, because of
which it is highly sought-after rice in the international market. The traditional
Basmati cultivars are poor yielders owing to their tall stature, which makes them
prone to lodging, photoperiod and sensitive to temperature and have low input
response. Genetic improvement of Basmati rice at ICAR Indian Agricultural
Research Institute (ICAR-IARI) led to the development of number of high-yielding
Basmati rice varieties, namely Pusa Basmati 1, Pusa Basmati 1121, Improved Pusa
Basmati 1, Pusa Basmati 6, and Pusa Basmati 1509 (Singh et al. 2013). Through
concerted research, progressive improvement has been brought about in cooked
kernel length (Fig. 10.1) and the duration of traditional Basmati rice varieties has
been reduced from 160 to 115–140 days with the enhancement of productivity from
2.5 to 6–8 tons/ha in improved dwarf Basmati rice varieties (Fig. 10.2). As a result,
India’s forex earning from the export of Basmati rice has gone up from a mere 294
crores in 1990–1991 to 29,300 crores in 2013–2014 (www.apeda.gov.in) (Fig. 10.3).
The ICAR-IARI-bred Basmati rice varieties alone contribute to more than 75 % of
the Basmati rice export. Although, these high-yielding Basmati rice varieties are
widely grown and liked by the farmers, millers, and traders, their productivity and
quality suffered on account of their susceptibility to biotic stresses such as bacterial
blight (BB) caused by Xanthomonas oryzae pv. oryzae, blast caused by
Magnoporthae oryzae, sheath blight caused by Rhizoctonia solani and brown plant
hopper (BPH) infection by Nilaparvata lugens. Therefore, it was imperative to
improve them for resistance to biotic and abiotic stresses.

Utilizing host plant resistance is one the most cost-effective and environment-
friendly strategies for managing these stresses. Availability of major genes imparting
resistance to these stresses along with gene-based/gene-linked markers for 39
BB resistance genes, 105 blast resistance genes (Sharma et al. 2010), and 21 BPH
resistance genes (Jena et al. 2010) provided an excellent opportunity for targeted

Fig. 10.1 Improvement in milled rice length and kernel length after cooking in the Basmati rice
varieties released by ICAR-IARI, New Delhi
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transfer of these genes into popular Basmati varieties. However, all these genes were
available in non-Basmati sources, and their transfer to Basmati background could
have adverse effects on the superior grain and cooking quality traits of Basmati rice
varieties. Under such situations, marker-assisted backcross breeding (MABB) offers a
unique opportunity for transferring desirable genes from unadapted donors to
otherwise agronomically superior cultivars having specific weakness (Singh et al.

Fig. 10.2 Graph representing the change brought about by combining high yield with short
duration in Basmati rice through genetic improvement at ICAR-IARI, New Delhi
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Fig. 10.3 Trend showing the increase in foreign exchange (forex) earnings through the export of
Basmati rice from India since 1990–1991
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2011). The wealth of genomic resources available in the case of rice eases the
effectiveness of marker-aided transfer of not only the traits controlled by major genes
but also the QTLs (Gopala Krishnan et al. 2012). Molecular markers have been
deployed in MABB aiding foreground selection, the selection of target locus using a
gene-linked/gene-based marker and background selection, the selection for recovery
of recurrent parent genome using markers uniformly distributed across the genome
(Singh et al. 2013). MABB has been employed for the incorporation of genes
governing BB, blast, BPH resistance, and salt-tolerant cultivars in Basmati rice
improvement, through precise marker-aided transfer of a number of resistance
genes/QTLs (Singh et al. 2011). A schematic outline for MABB is presented in
Fig. 10.4, which involves three steps: (1) foreground selection, (2) recombinant
selection and (3) background selection.

Recurrent Parent X Donor Parent 
(RP) (DP)

RP x F1

RP x BC1F1

RP x BC2F1

Analysis with gene based/ gene linked marker to ascertain
hybridity of F1 plants

Foreground selection for target gene with gene based/ gene linked
market
Background selection using polymorphic markers distributed
uniformly across the genome
Recombinant selection using markers flanking the gene of interest
Phenotypic selection for agro-morphological and quality traits

Foreground and background selection identify homozygous BC3F3
progenies with maximum recovery of recurrent parent genome

Phenotypic selection for agro-morphological and quality traits

Screening of the promising BC3F3 progenies for target trait(s)

Identification of elite single plant selections based on the above
analysis

Season 
VIII & 

Season IX 

Season VI

Season V

Season IV

Season III

Season II

Season I

BC2F2

Foreground selection for target gene with gene based/ gene linked
market
Background selection using polymorphic markers distributed
uniformly across the genome
Recombinant selection using markers flanking the gene of interest
Phenotypic selection for agro-morphological and quality traits

Evaluation of the elite single plant selections in unreplicated trial
for agronomic and quality traits

Screening of the elite lines for resistance/ tolerance to target
trait(s)

Identification of promising genotypes based on the above analysis
for nomination in multi-location trials

Evaluation of the promising genotypes in multilocation trials for
agronomic and quality traits

Screening of the elite lines for resistance/ tolerance to target
trait(s)

Identification of promising genotypes based on multi-location
trials

Season VII

BC2F3

Station trial
(BC2F4)

Multi Location 
Trials 

(2 years for 
NILs)

Evaluation of the elite genotypes in replicated trial for agronomic
and quality traits

Screening of the elite lines for resistance/ tolerance to target
trait(s)

Identification of promising genotypes based on the above analysis
for nomination in multi-location trials

Fig. 10.4 A general scheme for marker-assisted backcross breeding
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1. Foreground selection: It refers to the selection for the target gene/locus using a
marker tightly linked to the gene/locus under selection. The distance between
marker and the gene/locus should preferably be less than one cM. However, the
most ideal situation would be to use a marker based on functional polymorphism
within the gene. Using gene-based markers for foreground selection increases
the selection efficiency for the target locus to 100 %.

2. Recombinant selection: In a backcross breeding program, when we transfer a
desirable gene from an unadapted donor to an otherwise agronomically superior
variety, which lacks the desirable gene under question, the donor segment in the
flanking genomic regions of the target locus is also introduced, which may be
associated with some undesirable characteristics, often described as “linkage
drag.” It is therefore important to eliminate undesirable flanking genomic region
from donor during the backcross generations. In order to accomplish this goal, a
set of markers polymorphic between donor and recurrent parents in the genomic
regions flanking the target locus are selected, and in backcross generations, say
in BC1F1, plants having recurrent parent allele at the nearest flanking marker on
one side of the target locus are selected and used for generating BC2F1 seeds. In
BC2F1, the same exercise is repeated on the other side of the target locus. The
recombinant selection reduces the donor segment in the flanking genomic region
of the target locus to a minimum size possible and thus the associated unde-
sirable introgressions. However, the extent to which donor segment can be
reduced will depend upon the fact that how closely the polymorphic markers
between donor and recurrent parents are identified in the genomic regions
flanking of the target locus.

3. Background selection: Recovery of recurrent parent genome in the plants pos-
itive for target locus based on foreground selection and having minimum
linkage drag based on recombinant selection is an important activity in a MABB
program. This involves the identification of a set of markers polymorphic
between donor and recurrent parents providing genome-wide coverage. Usually,
the polymorphic markers should be spaced 10–20 cM apart. In backcross
generations, the plants selected for target locus and having minimum linkage
drag are analyzed using polymorphic markers in the background genome to
identify the plants showing homozygosity for recurrent parent alleles at maxi-
mum number of loci and thus the higher recovery of recurrent parent genome.
This exercise reduces the number of backcrosses required for reconstituting the
recurrent parent genome and thus reduces the time required for product
development.

In addition to the three-step selection as described above, stringent phenotypic
selection for recurrent parent phenotype is also practiced as done in conventional
backcross breeding to expedite the recovery of recurrent parent genome and
phenome.

In the ongoing discussion, we present the achievements of MABB in Basmati
rice. The target genes, their location, markers used for foreground selection, and
donors and the recurrent parents are presented in Table 10.1.
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10.2 Marker-Assisted Improvement of Pusa Basmati 1
for BB Resistance

Pusa Basmati 1 (PB1), the first semi-dwarf, high-yielding Basmati quality rice
variety, was released in 1989. It became highly susceptible to BB disease caused by
Xanthomonas oryzae pv. oryzae. MABB approach was used to incorporate two
genes for BB resistance, namely xa13 and Xa21 into PB1 using IRBB55 as a donor.
The CAPS marker RG136 linked to xa13 and STS marker pTA248 linked to Xa21
were used for foreground selection. Foreground selection for xa13 and Xa21
coupled with phenotypic selection for agronomic, grain, and cooking quality traits
in BC1F1, BC1F2, and BC1F3 generations made it possible to recover as high as
86.7 % recurrent parent genome as assessed with 252 polymorphic AFLP markers
(Joseph et al. 2004). Further, marker-assisted background analysis using simple
sequence repeat (SSR) markers was effectively integrated with foreground selection
to identify superior BB-resistant recombinants with minimal linkage drag
(Gopalakrishnan et al. 2008), which led to the release of Improved Pusa Basmati 1
(Pusa 1460), the first product of molecular breeding in rice in India (Singh et al.
2007).

10.3 MABB for Incorporating BB and Blast Resistance
in Pusa Basmati 1121 and Pusa Basmati 6

Pusa Basmati 1121 is one of the most widely grown Basmati rice varieties in India,
occupying an area of 1.2 m ha out of the total Basmati-cultivating area of 2 m ha.
Pusa Basmati 6 (Pusa 1401), another Basmati rice variety, surpasses Pusa Basmati
1121 in several attributes such as non-lodging, non-shattering habit, response to
input use, dwarf stature, higher yield, non-chalky grains, strong aroma, and better
cooking quality. In spite of these advantages, both these varieties are also sus-
ceptible to BB and blast disease. In order to incorporate BB resistance in both these
varieties, the improved Basmati quality donor, “Pusa 1460,” was used as the donor
parent for marker-assisted transfer of BB-resistant genes xa13 and Xa21. As shown
in Fig. 10.4, selection of plants in each backcross generation was carried out for
respective genes using foreground markers, followed by the rigorous phenotypic
and background selection to hasten the recovery of both the recurrent parent phe-
nome and genome. A large number of genotypes, with Pusa 1718
(PB1121 + xa13 + Xa21) (Pusa Basmati 1121/Improved Pusa Basmati 1/Pusa
Basmati 1121*3) with recurrent parent genome (RPG) recovery of more than
85.0 %, were developed possessing grain and cooking quality in the BB-resistant
PB1121 genotypes, which were on par with the recurrent parent for their grain
length, cooked kernel length, elongation ratio, and aroma (Ellur et al. 2012, 2013a,
b, 2016). Similarly, MABB in combination with phenotypic selection helped in the
development of Pusa 1728 (xa13 + Xa21), the BB resistant improved PB6
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genotypes with recurrent RPG recovery of as high as 97.7 % estimated using a
minimum of 60 polymorphic SSR markers providing genome-wide coverage. The
rapid recovery of Basmati quality traits in both the improved BB-resistant PB1121
and PB6 genotypes is attributed to the utilization of Basmati quality donor parent,
Improved Pusa Basmati 1 (Ellur et al. 2016). Pusa 1728 (PB6 + xa13 + Xa21) was
found resistant against the virulent BB isolates collected from Basmati-growing
areas of the country (Ellur et al. 2013a, b). The improved BB-resistant lines showed
performance on par with PB6 for agronomic and cooking quality traits.
Additionally, MABB in combination with stringent phenotypic selection helped in
the development of PB1121 + Xa38, using O. nivara-derived novel BB-resistant
gene, Xa38 from PR114-Xa38 to PB1121.

10.4 Marker-Assisted Improvement of Basmati Rice
Varieties PB1121, Pusa Basmati 6, and Pusa Basmati
1 for Resistance to Rice Blast

Basmati rice is severely affected by rice blast caused by Magnaporthe grisea, and
till date, there is no resistant source available in the Basmati rice germplasm. Until
now, 105 major blast resistance genes have been documented in rice. However, all
these genes are present in non-Basmati background, and their transfer to Basmati
varieties poses the problem of impairment of grain and cooking quality traits.

The blast resistant donors developed by marker-assisted breeding Pusa 1602
(PRR78 + Piz-5) and Pusa 1603 (PRR78 + Pi54) were used to transfer the respective
genes into Pusa Basmati 1121 and Pusa Basmati 6 (Singh et al. 2012a).
Marker-assisted simultaneous but stepwise backcross breeding (MASS-BB) was
adopted for the transfer of two blast resistance genes, Piz5 and Pi54 from Pusa 1602
and Pusa 1603, respectively, into PB1121 and PB6 using gene-linked markers, which
was followed by intercrossing the BC3F1 plants to pyramid both the blast resistant
genes. In each backcross generation, the plants were selected for respective genes
using foregroundmarkers andwere subjected to rigorous phenotypic and background
selection to accelerate the recovery of both the recurrent parent phenome and genome.
Marker-aided selection in combination with phenotypic selection helped in the
development of Pusa 1716 (PB1121 + Piz5), Pusa 1717 (PB1121 + Pi54), Pusa 1726
(PB6 +Piz5), and Pusa 1727 (PB6 +Pi54) with RPG recovery of 93.8, 94.7, 94.2, and
93.5 % estimated using 56, 58, 54, and 59 STMS markers representing genome-wide
coverage, respectively (Ellur et al. 2013a, b, 2016).

Additionally, two gene pyramided lines for blast resistance have been developed
including Pusa 1883 (PB1121 + Piz5 + Pi54) and Pusa 1884 (PB6 + Piz5 + Pi54),
which exhibited resistance to blast disease under artificial inoculation with
respective diagnostic isolates. The improved lines showed performance on par with
the recurrent parents, PB1121 and PB6, for agronomic and cooking quality traits.
Further, these lines have been evaluated and found to be resistant in natural
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epiphytotics at uniform blast nurseries located at 3 hotspot locations across India
(Ellur et al. 2013a, b, 2016). The pyramided lines will be further evaluated under
multilocation trials for release as improved cultivar and as an invaluable donor for
BB and blast resistance in Basmati rice improvement.

In a unique attempt, for the first time a set of seven major blast resistance genes
have been transferred into the genetic background of PB1. The development of
near-isogenic lines (NILs) was carried out using the series of IRBL lines
(IRBL5-M: Pi5; IRBLb-B: Pib; IRBL9-W: Pi9; and IRBLz5-CA: Piz-5) and a
doubled haploid line carrying three blast resistant genes (Pi1, Pi54, Pita) as the
donors and PB1 as the recurrent parent in independent backcross breeding
programs (Khanna et al. 2012, Shikar et al. 2012). Marker-assisted backcross
breeding was carried out to transfer seven blast genes governing resistance to blast
disease of rice, namely Pi1, Pi54, Pita, Pi-5, Pib, Pi9, and Piz-5 with
DHMAS70Q164-2a, IRBL5-M, IRBLb-B, IRBL9-W, and IRBLz5-CA as donors,
respectively (Khanna et al. 2012, 2013). Foreground selection using gene-linked
markers along with simultaneous selection for plant phenotype, agronomic per-
formance, and grain and cooking quality was adapted to recover the recurrent parent
phenotype as well as disease resistance. The lines with higher recovery of RPG
namely Pusa 1634-19 (Piz-5) with 92.7 %, Pusa 1635-12 (Pib) with 93.6 %, Pusa
1636-2 (Pi5) with 94.6 % and Pusa 1637-6 (Pi9) with 97.2 % recovery of
RPG have been developed (Khanna et al. 2015). Artificial screening with virulent
isolates and screening in the uniform blast nursery at two hotspot locations con-
firmed the resistance in the NILs. The monogenic lines developed in the back-
ground of Pusa Basmati 1 will serve as useful donors for blast resistance genes in
the Basmati breeding program (Khanna et al. 2012).

The monogenic lines developed in the background of Pusa Basmati 1 were then
used for pyramiding these genes to build in durable resistance for blast resistance in
Basmati rice. Intercrosses of the NILs were effected to develop gene pyramided
NILs with 2, 3, and 4 genes in different combinations in the background of Pusa
Basmati 1. Three and two gene pyramided lines homozygous for the genes,
Pi54 + Pi1 + Pita, Pi54 + Pi1, Pi54 + Pita, Pi1 + Pita, Pi9 + Pi5, Pi9 + Pib,
Pib + Pi5, etc., were developed with RPG recovery ranging from 93.6 to 98.6 %,
and the improved lines, viz. Pusa-1633-4-2, Pusa-1633-170-6, Pusa-1633-30-8,
Pusa-1633-162-3, and Pusa-1633-101-4, expressed resistance reaction to diagnostic
isolates from Basmati-growing regions (Shikari et al. 2013, Khanna et al. 2015b).
These monogenic and pyramided NILs will not only serve as an excellent resource
for functional genomic analyses for blast resistance but also serve as valuable
donors for blast resistance genes in Basmati rice improvement. The improved lines
possessed excellent grain and cooking quality besides good agronomic perfor-
mance, at par with check Pusa Basmati 1. Further, a set of improved blast resistant
genotypes are being tested in the national Basmati trials for their deployment as
improved cultivars, which will help to achieve durable resistance to rice blast in
Basmati-growing regions of India (Khanna et al. 2015a, b).
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10.5 Development of Multiple Biotic Stress-Resistant
Basmati Rice

Besides BB and blast diseases, sheath blight (ShB) caused by Rhizoctonia solani
not only causes severe yield losses but also impairs the quality of the rice grain
(Singh et al. 2011). ShB resistance is quantitatively inherited (Pinson et al. 2005),
and 16 QTLs for ShB resistance have been identified (Srinivasachary et al. 2011),
out of which qSBR11-1 is a major QTL that has been found stable and effective
against the ShB (Channamallikarjuna et al. 2010). “Tetep,” an indica rice cultivar
from Vietnam, is the source of resistance to both blast (Pi54), and ShB (qSBR11-1)
disease was used a donor for developing Basmati rice genotypes with resistance to
multiple diseases, namely BB, blast, and ShB, in the Basmati rice background using
Improved Pusa Basmati 1 as recipient parent in the MABB. Development of Pusa
1608 is the first successful example, where marker-assisted selection has been
utilized for transferring of genes conferring resistance to three different diseases in
rice namely, xa13 and Xa21 for BB resistance; Pi54 for blast resistance and a major
QTL qSBR11-1 (Singh et al. 2012).

10.6 Marker-Aided Improvement of Pusa Basmati 1121
and Pusa Basmati 6 for BPH Resistance

The donors for BPH resistance Rathu Heenati (Bph3, Bph17), IR68542 (Bph18),
and IR71033 (Bph20, Bph21) were screened for their resistance level in the
greenhouse using the standard protocol (Pathak et al. 1969). The genotype, Rathu
Heenati, was found to be highly resistant, followed by IR68542 and IR71033. The
donors IR68542 and IR71033 were used for marker-assisted introgression of three
genes, Bph18, Bph20, and Bph21 into Pusa Basmati 1121 and Pusa Basmati 6
through MASS-BB. Advanced backcross-derived lines have been developed with
Bph18, Bph20, and Bph21 in the genetic background of Pusa Basmati 1121 and
Pusa Basmati 6, which are in advanced stages of evaluation.

10.7 Marker-Assisted Improvement of Pusa Basmati 1121
and Pusa Basmati 1 for Salt Tolerance

Increasing soil salinity is a serious threat to rice production worldwide in
twenty-first century. Rice is highly sensitive to salt stress at seedling and repro-
ductive stages, and development of salinity tolerance at seedling stage is important
for crop establishment (Vinod et al. 2013). A major QTL among these was Saltol
(for salt tolerance) mapped on the short arm of chromosome 1 by using an F8
recombinant inbred lines (RILs) developed from the cross of a salt-tolerant land
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race, Pokkali, from Kerala and IR29, a salt-sensitive rice variety (Gregario 1997).
A set of 23 diverse germplasm including land races, wild germplasm, and improved
varieties were characterized for the haplotype diversity in the Saltol region using 20
SSR markers, in order to find associations with seedling stage salt tolerance under
controlled condition (ECe of 12 dSm−1). It was observed that haplotypes possessing
Pokkali alleles at both RM8094 and RM3412 markers could be useful for
marker-assisted selection (Babu et al. 2014).

Pusa Basmati 1121 is widely cultivated in Haryana, occupying almost 0.8 m ha
(80 %) of the Basmati rice area in the state, which is severely affected by inland
salinity owing to brackish underground water used for irrigation. Since Pusa
Basmati 1121 is sensitive to soil salinity, its full potential is not realized in saline
soil. Saltol is a major QTL for seedling stage salinity tolerance, which explains up
to 70 % phenotypic variance for seedling stage salinity stress (Gregario 1997). The
introgression of Saltol in Pusa Basmati 1121 was undertaken using FL478 as donor
parent through MABB. The foreground selection for Saltol was carried out with
linked molecular marker RM3412. Recombinant selection on the carrier chromo-
some was carried out with 21 polymorphic markers flanking/including the Saltol
region, and 58 polymorphic markers having genome-wide coverage were used for
background analysis. Background analysis with the three best advanced
backcross-derived Pusa 1734 genotypes revealed the RPG recovery ranging from
92.8 to 96.4 %. The advanced backcross-derived Saltol-positive PB1121 genotypes
(Pusa 1734) were evaluated for agronomic performance as well as grain and
cooking quality analysis and were found to be on par with the Pusa Basmati 1121
for grain length, kernel elongation, elongation ratio, and aroma (Babu et al. 2012).
A set of these lines is being tested in AICRP trials for further evaluation and variety
release.

Pusa Basmati 1, another popular Basmati rice variety, is also susceptible to
salinity. MABB approach was employed to incorporate “Saltol” into the genetic
background of Pusa Basmati 1 by using backcross-derived genotype, Pusa 1734,
developed from the cross between Pusa Basmati 1121 and FL478. Foreground
selection for Saltol QTL was carried out using linked marker RM10793 and
background selection done using SSR markers spanning across the rice genome.
Further, foreground selection was coupled with rigorous phenotypic selection for
agronomic, grain, and other cooking quality traits, to accelerate the recurrent parent
phenome recovery. Eighteen superior BC4F2 homozygous plants were selected and
advanced to next generation through pedigree selection to develop improved ver-
sion of Pusa Basmati 1 with salt tolerance. The agronomic performance and grain
and cooking quality of the improved lines were on par with the original Pusa
Basmati 1. These improved lines along with susceptible check and parents were
artificially screened for salinity tolerance at seedling stage using hydroponics under
controlled condition. Salt stress was imposed 14 days after germination by adding
60 mM NaCl (ECe of 6.9 dSm−1), and salt concentration was increased to 120 mM
(ECe of 13.9 dSm−1). These lines are further being evaluated for their performance
and will help in the development of Improved Pusa Basmati 1 with salinity toler-
ance (Chaudhary et al. 2014).
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10.8 Haplotype Analysis of Pup1 Gene in Basmati Rice
Varieties

Phosphorus use efficiency of rice is an important trait in rice improvement, and it
would aid in the development of rice with higher P fertilizer use efficiency. Pup1
(Phosphorous uptake 1) is a major QTL conferring tolerance to the P deficiency
under field conditions identified in rice (Wissuwa et al. 1998), which was further
fine-mapped to 130 kb region (Chin et al. 2010). PSTOL1, a gene governing
phosphorus starvation tolerance, have been cloned from an Aus rice variety
Kasalath (Gamuyao et al. 2012). It was also shown that modern rice varieties lack
PSTOL1. Based on the screening of rice germplasm including Basmati rice varieties
using gene-based markers, namely K29, K46, K59, and K41, spanning the Pup1
locus, along with checks, Vandana and Anjali, it was demonstrated for the first time
that showed that all Basmati/aromatic rice varieties were Pup1 positive, while most
of the non-aromatic varieties were devoid of Pup1 (Singh et al. 2011). Further,
validation of “P” use efficiency of Basmati varieties vis-à-vis presence of Pup1
locus is being undertaken in P sick plot, and the findings have great relevance in
management and use of phosphorous in Basmati rice (Singh et al. 2011).

10.9 Mapping Grain Quality Traits in Basmati Rice

Mapping of milled rice grain length was carried out in a mapping population
developed from a cross between a short grain aromatic rice landrace, Sonasal, and
long slender grain Basmati rice variety, Pusa Basmati 1121. Based on the pheno-
typing of 300 F2 plants for grain dimensions before and after cooking for different
grain dimension traits (milled rice length and breadth, L/B ratio, cooked kernel
length, and elongation ratio) and genotypic data of 141 SSR markers across rice
genome, a major QTL responsible for milled rice length was mapped on chromo-
some 3, which explained phenotypic variance as high as 74 % (Singh et al. 2011).

10.10 Validation and Use of Fragrance Gene-Linked
Markers

Aroma in rice is mainly due to the production of 2-acetyl-1-pyrroline (2-AP) even
though more than 100 volatile aroma compounds have been identified in cooked
rice (Buttery et al. 1988). Selection for aroma in Basmati rice has been mainly
based on sensory evaluation, which is labor-intensive and time-consuming and
varies with individual perception. Further, with each successive analysis, the ability
to perceive aroma in the samples diminishes due to saturation of sensory organ
and/or physical abrasions to the tongue.

10 Genetic Improvement of Basmati Rice—The Journey … 225



A recessive gene governing aroma in rice was mapped on chromosome 8 (Ahn
et al. 1992). The gene, badh2, has been cloned, and it has been demonstrated that
aroma is due to an eight-base-pair deletion in aromatic varieties compared to
non-aromatic varieties (Bradbury et al. 2005). However, the efficacy of the 8-bp
deletion marker to differentiate between Basmati and non-Basmati rice genotypes
was low. Therefore, a new marker nksdel based on BADH2 gene sequence infor-
mation from Basmati and non-Basmati rice varieties was developed (Amaravathi
et al. 2008) and validated in a set of aromatic and non-aromatic rice genotypes with
100 % efficacy (Singh et al. 2011).

10.11 Conclusion

Marker-assisted breeding has provided an unprecedented opportunity for precise
transfer of genes responsible for biotic and abiotic stress-tolerant genes/QTLs into
various popular Basmati rice varieties. Conventional breeding, essentially based on
phenotypic selection, was the mainstay of Basmati rice improvement which had
helped in making significant impacts on the development of improved cultivars.
However, with the evolution of marker technology in rice, it has been possible to
refine Basmati rice improvement through mapping important Basmati quality traits
in rice. Further, marker-assisted selection has enabled pyramiding of genes gov-
erning resistance/tolerance for different biotic and abiotic stresses, respectively.
Marker-assisted breeding has been successfully employed for the development of
Improved Pusa Basmati 1 and the improved versions of PB1121, Pusa Basmati 6
and Pusa Basmati 1 with resistance to BB, blast, sheath blight, BPH and tolerance
to seedling stage salinity, which are in different stages of testing for release as
improved varieties. This has been possible through the adoption of cost-effective
MAS strategy complemented by phenotypic selection aiding in precise gene
transfer for the improvement of Basmati rice varieties.
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Chapter 11
Genetic Diversity and Coffee Improvement
in India

N. Surya Prakash, Jeena Devasia, Y. Raghuramulu
and Ramesh K. Aggarwal

Abstract Coffee, often referred to as ‘Brown Gold’, is a popular beverage crop
produced in more than 80 countries including India, having an annual turnover of
ca. US$ 70 billion globally. This economically important plantation crop of tropics
and subtropics comprises only two commercial species, Coffea arabica L. and
Coffea canephora Pierre ex Froehner (popularly known as arabica and robusta
coffee, respectively) although there exists large number of Coffea species world-
wide. C. arabica L. is the only allotetraploid species (2n = 4x = 44) in the genus and
self-fertile while all other species including C. canephora are diploids (2n = 22) and
self-incompatible. Arabica and robusta coffee types differ significantly in terms of
phenotype, agronomic behaviour, bean and liquor quality, and breeding behaviour
as well as genetic variability in their extant germplasm. Arabicas produce superior
quality coffee but are susceptible to major diseases and pests while robustas are
more tolerant to the diseases and pests but the bean and the liquor qualities are
inferior to arabicas. Therefore, the major focus of coffee improvement in India is on
the development of high-yielding hybrids having durable host resistance in arabica
and evolving drought-tolerant robusta genotypes to cope with the changing climate,
more efficiently. Till date, the Central Coffee Research Institute (CCRI), India, has
developed 13 improved arabica and three robusta selections for commercial culti-
vation, by employing conventional breeding approaches and utilizing coffee
germplasm that was introduced in the nineteenth century through multiple inter-
national expeditions. Occurrence of spontaneous tetraploid inter-specific hybrids
between tetraploid arabica and other diploid species has also facilitated arabica
coffee improvement through introgressive breeding. More recently, the DNA
marker tools and technologies that provide new opportunities to overcome some of
the limitations of the conventional breeding strategies are being integrated for more
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precise characterization of primary as well as secondary gene pools for exploitation
in breeding through marker-assisted selection. This chapter highlights the key
aspects of Indian coffee sector vis-a-vis world scenario and unique features of
Indian coffee cultivation, genetic resources, analysis and exploitation of genetic
diversity for crop improvement through conventional breeding.

Keywords Coffee germplasm � Genetic resources � Molecular analysis � Genetic
diversity � Coffee breeding � Indian coffee varieties

List of Abbreviations

% Per cent
AD Anno Domini
AFLP Amplified fragment length polymorphism
BC Backcross
CxR Coffea congensis × Robusta (Coffea canephora)
C Coffea
CBD Coffee berry disease
CCRI Central Coffee Research Institute
CIFC Centro Investigacao das Ferrugens do Cafeeiro
CLR Coffee leaf rust
DMS Dimethyl sulphate
DNA Deoxyribonucleic acid
Dt. District
EST-SSRs Expressed sequence tags–simple sequence repeats
etc. Etcetera
EMS Ethyl methane sulphonate
f-AFLP Fluorescent-amplified fragment length polymorphism
F1 First filial generation
FAO Food and agricultural organization
FAQ Fair average quality
Fig Figure
GDP Gross domestic product
ha Hectares
HdT Hibrido de Timor
ICO International coffee organization
INEAC Institut National pour l’Etude Agronomique du Congo Belge
IPR Intellectual property rights
ISSR Inter-simple sequence repeats
ITS Internal transcribed spacer
kg Kilogram
m Metres
MSL Mean sea level
MT Metric tonnes
mt-DNA Mitochondrial DNA
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P. Psilanthus
PLS Pure line selection
RAPD Random-amplified polymorphic DNA
rDNA Ribosomal DNA
RFLP Restricted fragment length polymorphism
Sln. Selection
sp. Species
SSR Simple sequence repeats
US$ US dollars
viz. Namely

11.1 Introduction

Coffee is a popular tropical plantation crop, produced in more than 80 countries
spread over in both tropical and subtropical regions of the world. A beverage of
choice in most part of the world, coffee ranks second in International trade next to
petroleum products and is often referred to as ‘Brown gold’ with an annual turnover
touching US$ 70 billion.

Coffee is mostly produced in developing countries while is consumed mainly in
developed countries and hence forms an important source of export earnings for the
producer countries. The coffee industry also provides employment to an estimated
100 million people in the areas of cultivation, processing, trading, transportation
and marketing. Coffee cultivation is predominantly a small holder enterprise with
26 million farmers belonging to this category across the globe. Coffee in India
occupies a place of pride among the plantation crops with a planted area of ca. 0.40
million ha. India ranks sixth in global coffee production after Brazil, Vietnam,
Columbia, Indonesia and Ethiopia, with a total production of 5.3 million bags
contributing to 3.7 % of world production (ICO Ann Rev 12/13). The coffee sector
is dominated by small holdings, with 99 % of coffee farmers having holdings of less
than 10 ha and coffee farming forms their main livelihood activity.

Coffee belongs to family Rubiaceae and the genus Coffea that includes over 100
species. Of these, only two species, namely C. arabica L. or arabica coffee and the
C. canephora Pierre ex A. Froehner or robusta coffee, are commercially grown
which together constitute 99 % of global coffee production. Another species, C.
liberica Bull ex Hiern or liberica coffee, is grown to a smaller extent in East Africa
and Asia and accounts for about 1 % of global production.
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11.1.1 Brief Overview of Indian Coffee Industry

Coffee in India is an export-oriented commodity with the exports showing steady
increase over the past 15 years and for the year 2012–13 about 95 % of the produce
was exported, realizing Rs. 4552.7 crores to state exchequer. The area and pro-
duction of coffee in India has shown a steady increase over the years (Fig. 11.1),
from 92,523 ha during 1950 to over 4.09 lakh ha by 2011–12. There has been a
phenomenal increase in production from 0.19 lakh MT to 3.14 lakh MT during the
corresponding period (Anonymous 2014a). The major coffee-growing areas are
distributed in the Southern states such as, Karnataka (56 %), Kerala (20 %) and
Tamil Nadu (8 %), which forms the traditional coffee-growing areas. The
non-traditional growing region comprises 58,000 ha spread across Andhra Pradesh,
Odisha and North-Eastern states of India (Fig. 11.2).

The share of planted area under coffee cultivation in different coffee-growing
states of India is presented in Fig. 11.3, while the distribution pattern of the two
types of coffees, arabica and robusta, is depicted in Fig. 11.4.

For many decades, there was stagnation in domestic consumption of coffee in
India at 60,000 MT. With Café culture coming to the forefront in most metropolitan
cities, the domestic consumption of coffee has seen a huge surge with upward trend
from the year 2000 that touched over a lakh tonnes by the year 2010 with an
average growth rate of about 5–6 %. Notably, there seems to be a concurrence
between the growing areas under coffee plantation and the major part of domestic
consumption (78 %), which is concentrated in the Southern states of the country. Of
the total consumption of coffee in India, urban share is 73 % while the remaining
27 % accounts for rural sector (Reddy 2009).

11.1.2 Unique Features of Indian Coffee

Coffee cultivation in India is unique as it is cultivated in eco-friendly manner under
two-tier shade canopy, compared to open cultivation practices followed in most of

Fig. 11.1 Area under coffee
in India from 1950–51 to
2010–11
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Fig. 11.2 Map showing coffee-growing regions of India

Fig. 11.3 Area under coffee plantation in different states of India
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the other countries. The shade-grown cultivation of coffee represents a wide
diversity of more than 250 different types of shade trees, sheltering about 80 species
of flora and fauna. Thus, coffee plantations help in preserving the rich biodiversity
of western and eastern hill ranges, besides providing corridors for movements for
several wild animals (Venkatachalam 2005). In many plantations, intercrops such as
areca, orange and banana, serve as the lower canopy shade and black pepper is the
most suitable associated crop as shade trees provide ideal strands for training the
pepper vines. These crops serve as a valuable source of additional income for the
planters. The Indian arabicas are rated as good with good body, good acidity and
fairly good flavour, especially the high-grown coffees that show distinct flavour in
cup. On the robusta front, India has been globally recognized for meticulously
prepared shade-grown washed robustas. The Indian robusta coffees are often rated
as neutral in taste with light to fair acidity with liquor quality rating as FAQ to
Good. Because of the sustainable shade-grown practices, Indian robusta coffees are
acclaimed world over for their unique quality attributes. Some of the specialty
coffee grades such as washed robusta (Robusta Kaapi Royale) and Monsooned
Malabar have become an important constituent of leading espresso blends in the
Global market and earn substantial premiums.

11.2 Origin and Distribution

Arabica coffee (C. arabica) is reported to have originated in the high lands of
Abyssinia in south-west Ethiopia where it is grown at altitudes ranging from 1300
to 2000 m above MSL, while robusta coffee (C. canephora) has its origin in
western Africa and the species is distributed at altitudes below 1000 m MSL. C.
arabica is adapted to highlands while C. canephora is adapted to lowland tropical
areas. The two commercially grown species also differ significantly in terms of their
morphology, vegetative vigour, ploidy level, breeding behaviour, genetic diversity,
yielding potential, bean quality traits and also in genes conditioning resistance for

Fig. 11.4 Distribution of area
under arabica and robusta
cultivation in major
coffee-growing states of India
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major diseases and pests (Herrera et al. 2012). Robustas grow up to 10 m in
untrained conditions and is more vigorous and productive than arabicas. Further,
robusta is also an important source of disease-resistant genes but the bean and
beverage quality is inferior to arabica. Among all the identified species of coffee,
only C. arabica is self-fertile allotetraploid (2n = 4x = 44) while all other species,
including C. canephora, are diploids (2n = 22) and are generally self-incompatible
(Charrier and Berthaud, 1985). Molecular–cytogenetic analysis established C.
eugenioides and C. canephora or ecotypes related to these diploid species as the
likely progenitors of C. arabica (Lashermes et al. 1999).

11.3 Taxonomy of the Genus Coffea

Initially, the taxonomy of coffee species was described mainly based on morpho-
logical characters of the specimens preserved in different herbaria. Subsequently,
advanced techniques including the DNA sequence information were used to
describe the species relationships. The first tropical flora published by Kew
Botanical Gardens in 1877 contained only 10 coffee species. In the taxonomic
classification of Chevalier (1947), the genus Coffea included four sections, viz.
Eucoffea, Mascarocoffea, Paracoffea and Argocoffea, among which the first two
sections are presently grouped under the genus Coffea and the other two are con-
sidered as distinct genera as Psilanthus and Argocoffeopsis, respectively. Eucoffea
was further divided into five subsections, viz. Erythrocoffea, Pachycoffea,
Nanocoffea, Melanocoffea and Mozambicoffea. All the cultivated species were
placed under subsection Erythrocoffea. Leroy (1980) described three genera under
tribe Coffeeae: Coffea, Psilanthus and Nostalachma. The first two genera are
reported to have close affinity and most of the species including the commercially
cultivated species belong to the subgenera Coffea. The classification of genus
Coffea into two subgenera Coffea and Psilanthus was mainly based on differences
in their floral structure. The flowers in Coffea are characterized by a long style,
medium corolla tube with anthers protruding from the corolla tube, while those
under genus Psilanthus with short style, long corolla tube with anthers encased in
the corolla tube. The genus Psilanthus with around 20 species has wider distri-
bution in the tropical humid regions of Africa, India, South-East Asia and Pacific
while the geographic distribution of the genus Coffea is confined to tropical humid
regions of Africa and islands of West Indian Ocean (Charrier and Eskes 2004).

The East African species of Coffea were revised by Bridson (1982) and Berthaud
(1986), who proposed some revisions to the classification of Chevalier (1947).
However, the discovery of several new species during twentieth century in East,
West and Central Africa and in Madagascar (Charrier and Eskes 2004) made the
taxonomic classification increasingly complex. Majority of the coffee species are
found to occur naturally in the humid evergreen forests of Africa, Madagascar and
Mascarenes, but some species are also found in seasonally dry deciduous forest
and/or bush land (Maurin et al. 2007).

11 Genetic Diversity and Coffee Improvement in India 237



11.4 Genetic Resources and Diversity of Coffee Gene pool

The coffee genetic resources mainly consist of primary gene pool comprising the
wild and cultivated varieties of C. arabica and C. canephora and secondary gene
pool comprising over 100 related diploid species of Coffea and Psilanthus. Among
cultivated species, C. arabica is characterized by low genetic diversity (Lashermes
et al. 1996a) which has been attributed to the allotetraploid origin, reproductive
biology and evolutionary process of this species. However, diploid species harbors
considerable variability. Some of the diploid species form valuable gene reservoir
for various breeding programmes (Berthaud and Charrier 1988). The diploid Coffea
varieties are known to interbreed freely with each other and produce relatively
fertile progeny (Anthony 1992; Louarn 1993). Thus, the primary as well as sec-
ondary gene pool is of great significance in coffee improvement; however, there is a
need for thorough characterization of the variability in this extant germplasm using
high-resolution genetic approaches. To this end, a number of studies have been
carried out in recent years using different types of DNA markers to ascertain the
genetic diversity in the available coffee germplasm. Genetic diversity within C.
arabica cultivars and wild collections has been extensively analysed using various
DNA marker approaches such as RAPD (Lashermes et al. 1996b; Zezlina et al.
1999; Anthony et al. 2001; Aga et al. 2003; Sera et al. 2003; Cristancho et al.
2004), AFLP (Anthony et al. 2002a; Steiger et al. 2002; Prakash et al. 2002;
Aggarwal et al. 2004) and SSR markers (Anthony et al. 2002a, b; Aggarwal et al.
2004). All these studies have largely confirmed that there exists a low genetic
diversity within the arabica germplasm.

In the case of the second commercial species C. canephora (robusta), initial
studies to ascertain genetic diversity were based on isozyme variability (Berthaud,
1986; Montagnon et al. 1992). These studies, although limited to few samples,
revealed genetic structuring of the species in two clearly distinct groups. The first
one was the ‘Guinean Group’ consisting of wild populations of Ivory Coast and the
second one was ‘Congolese group’ comprising wild and cultivated germplasm from
Central African Republic and Cameroon. Subsequent studies using RFLP poly-
morphism (Dussert et al. 1999) grouped the wild and cultivated forms of robusta
coffee into five diversity groups (A, B, C, D, and E). All the studies established high
genetic diversity in robustas compared to arabicas.

Among the other Coffea species, DNA sequence data were used to establish the
molecular phylogeny and phylogenetic relationships. Further, the internal tran-
scribed spacer ITS-2 region of the nuclear ribosomal DNA (Lashermes et al. 1997)
and the chloroplast DNA variation (Lashermes et al. 1996a; Cros et al. 1998) were
successfully used to infer phylogenetic relationships of Coffea species. The results
suggest a radial mode of speciation and a recent origin in Africa for the genus
Coffea (Etienne et al. 2002). In addition, several major clads were also identified,
which reveal a strong geographical, correspondence i.e. coffee clads specific to
West Africa, Central Africa, East Africa and Madagascar.
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11.5 Coffee Genetic Resources in India

India is one of the countries that started systematic research on coffee in early
nineteenth century with the primary mandate of addressing the leaf-rust problem
and to evolve rust-resistant varieties. Initially, the Mysore Coffee Experiment
Station was established near Balehonnur in Chikmagalur district of Karnataka,
during 1925. This station was later expanded as Central Coffee Research Institute
(CCRI) under administrative control of Coffee Board of India. To start with, con-
certed efforts were made to collect and conserve the available variability through
systematic surveys of existing coffee plantations. This process undertaken during
1925–1940 resulted in the establishment of indigenous germplasm comprising more
than 250 collections of arabica and robusta. This massive achievement however
was a collective effort of a number of researchers/workers, but became a reality due
to the singular efforts of Dr. M.K. Venkat Rao, the first Research Officer in-charge
of Mysore Coffee Experimental Station, Balehonnur, for which he needs to be
acknowledged here. These collections also formed the base material for the
development of early Indian selections of arabica and robusta in India.

Subsequently, with the support from International agencies during 1954–1955,
several world collections were introduced to India and an exotic germplasm bank was
established at CCRI. Later during 1964, Dr. R.L. Narasimhaswamy, Botanist from
CCRI, participated in an FAO-sponsored expedition to Ethiopia, the original habitat
of arabica coffee, and collected 80 wild collections from different provinces of
Ethiopia and established the same in CCRI (Meyer et al. 1968). At present, the Coffee
Genebank at CCRI, Chikmagalur, has about 300 surviving collections of arabica, 73
types of robusta and 17 different species of Coffea (Figs. 11.5 and 11.6). In addition,
two field genebanks with 76world collections of arabica and 73 collections of robusta
were established and maintained at Coffee Research Sub-Station, Chettalli, Coorg
Dt., Karnataka, and Regional Coffee Research Station, Chundale, Kerala, respec-
tively. These germplasm resources have been thoroughly characterized and the col-
lections with useful agronomic traits were exploited in breeding programmes towards
the development of improved genotypes for commercial cultivation.

11.5.1 Distribution of Coffee (Psilanthus) Species in India

Although coffee is considered as an introduced plant to India, some of the Coffea
species (currently regrouped under the genusPsilanthus) are reported to be distributed
in India (Narasimhaswamy and Vishweshwara 1963). Popularly called as indigenous
species, these belong to two distinct phyto-geographical groups: the first group
comprisingP. bababudanii, P. bengalensis, P. khasiana andP. fragrans is distributed
predominantly in the EasternHimalayas, while the second groupwithP.malabaricus,
P. travancorensis and P. wightianus is confined to Western and Eastern Ghats in the
Southern parts of peninsular India. These indigenous species are of special interest
because their beans contain either low levels of caffeine or free from caffeine.
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Five indigenous coffee species such as P. bengalensis, P. travancorensis,
P. wightianus, P. khasiana and P. bababudanii were collected from their natural
habitats in the forests of North East India and Tamil Nadu (South India) and estab-
lished in the coffee genebanks maintained at CCRI and its Regional stations.

Fig. 11.5 A view of coffee genebank at CCRI

Fig. 11.6 S.1587 (Rume Sudan) an exotic collection from Kenya
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11.5.2 Molecular Characterization of Representative Coffee
Germplasm Available in India

The genetic diversity of representative coffee germplasm collections available in
India was analysed using various DNA marker approaches. The collections inclu-
ded a set of 25 accessions representing all the Ethiopian provinces, 33 rust dif-
ferential clones, 16 different species of Coffea and 16 superior selections (14 arabica
and 2 robusta) developed by the CCRI for commercial cultivation. Over all, four
fragment size-based marker approaches (RAPD, ISSR, f-AFLP and SSRs), as well
as DNA sequencing-based nucleotide variations in nuclear and organelle genomic
domains, were employed for molecular characterization (Aggarwal 2005), as briefly
described below.

11.5.2.1 Diversity Among Ethiopian Collections

The 80 Ethiopian arabica collections introduced into coffee genebank in India
during 1964–65 belongs to different provinces of Ethiopia, viz. Shoa, Illubabor,
Gojam, Kaffa, Erytrea, Sidamo and Harar.

Molecular analysis of a set of 25 accessions representing the collections from all
these provinces using 25 RAPD and 15 ISSR markers revealed very low variation
among different Ethiopian arabica accessions. Interestingly, the data generated
using both the multilocus markers, viz. RAPD and ISSR, suggested a very narrow
genetic base of the collection. Further, the analysis revealed no distinct generic
affinities/clusters between Ethiopian arabicas and their provincial origin, thereby
indicating that the geographical isolation did not result into variation among them.
Interestingly, almost close correspondence was noticed between the grouping pat-
terns of Ethiopian arabicas based on the two marker approaches, viz. RAPD and
ISSR (Aggarwal 2005).

11.5.2.2 Molecular Characterization of Coffea Species Present
in the Coffee Genebank at CCRI

Molecular characterization of 14 Coffea species and four species belongs to
Psilanthus present in genebank was analysed using mobility-based DNA markers
such as RAPD, ISSR and SSRs (Aggarwal 2005). Further, direct sequencing of
three phylogenetically informative domains of nuclear and organelle genomes, viz.
internal transcribed spacer regions ITS1-5SrDNA-ITS2 of the nuclear ribosomal
DNA, 16S rDNA domain of mitochondrial genome and intergenic ‘trnL’ region of
chloroplast genome, was also undertaken. Both individual plant sample and pooled
samples were used for analysis to define the sampling strategy for DNA
marker-based analysis of inherently heterozygous study material. The intra-species
variation was also analysed using founder genotypes for four of the coffee species,
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viz. C. eugenioides, C. stenophylla, C. dewevrei and C. salvatrix, using
RAPDs/ISSRs and ITS1-5SrDNA-ITS2 sequencing. The analysis revealed con-
siderable variability in the species gene pool as 96 % of the 625 reproducible
amplicons generated using 20 RAPD primers were polymorphic. Similarly, all the
162 reproducible amplicons generated using nine selected ISSR primers were
polymorphic and informative for the purpose of species relationships. Comparative
analysis of pooled or individual samples using different DNA marker systems
established that multiple individual samples are not necessary to draw valid
inferences to define the generic affinities between coffee species. Sequencing of
around 30 kb of the three genomic domains of the 19 representative genotypes
covering all the coffee species and related genera revealed significant variation in
the form of both indel and base substitutions across species. Internal Transcribed
Spacer regions ITS 1 and ITS 2 of the ITS1-5SrDNA-ITS2 nuclear ribosomal
domain had average sequence sizes of 247 and 231 bp, respectively. Similarly,
average sequence sizes of the sequenced partial Mt 16S rDNA conserved domain
and the intergenic ‘trnL’ region of chloroplast genome were 756 bp and 532 bp for
all the species. Among the diploid species, C. canephora was found to be phylo-
genetically most close to C. arabica followed by the cluster comprising C. con-
gensis, C. liberica and C. dewevrei. A strong geographical correspondence was
observed for the six Pachycoffea species, namely C. arnoldiana, C. abeokutae, C.
arwensiensis, C. exelsa, C. liberica and C. dewevreii.

The molecular data validated the placement of the indigenous species,
Psilanthus bengalensis, P. travencorensis, P. khasiana and P. wightiana, under the
related Paracoffea genus Psilanthus. Both the dominant DNA markers (RAPD and
ISSRs) were found to be effective and promising for detecting genetic variation and
phylogenetic inferences. Moreover, ISSRs were found to be more informative than
RAPD in terms of polymorphic bands detected per primer, and reliable in terms of
reproducibility.

The analysis of ITS sequences defined the utility of nuclear ITS domain to derive
the realistic affinities between different Coffea species, and the need to analyse the
whole domain rather than only one of the variable segments, i.e. ITS-1 or ITS-2, for
reliable inference in phylogenetic reconstruction (Hendre and Aggarwal 2007).
Furthermore, the sequence-based genomic analysis of the three organellar com-
partments, viz. nucleus, chloroplast, and mitochondrion, suggests that organelle
DNA may not be the ideal candidate for phylogenetic analysis of coffee species
(Aggarwal 2005).

11.5.2.3 Molecular Characterization of Coffee Rust Differential Clones

A set of 33 rust differential clones, comprising of 29 different clones of C. arabica
and one differential host each of C. racemosa, C. excelsa, C. canephora and C.
congensis maintained in the coffee germplasm bank at CCRI, was subjected to
DNA marker assays using 35 RAPD primers, 7 AFLP primer combinations and
>150 in-house developed SSR markers. The analysis indicated presence of only
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subtle variation among the arabica-based rust differentials while it was substantial
between arabicas and diploid rust differentials. Among the rust differentials, all the
arabica genotypes formed one cluster and the four diploid rust differentials clustered
out as per their genetic origin. The grouping of the arabica-based rust differentials
was however not in accordance with rust-resistant factors (Aggarwal 2005).

11.5.2.4 Molecular Characterization of CCRI Station-Bred Selections

Genetic improvement of coffee undertaken at CCRI since 1925, using both
indigenous and exotic collections, resulted in the development of 13 improved
arabica coffee selections and three superior robusta selections. Released for com-
mercial cultivation from time to time, these improved selections have been culti-
vated across the Indian coffee tracts depending on their agro-climatic suitability.

All these selections were fingerprinted using high-resolution DNA marker
techniques involving nuclear genomic markers such as RAPD, f-AFLP, SSR and
IRAP. The DNA profiles generated using all the marker systems showed clear
distinction between tetraploid arabicas and diploid robustas, with more polymor-
phism among the later. The arabica selections indicated limited variability while it
was substantial for robustas (Fig. 11.7). Average per cent polymorphic markers
using the different marker approaches were found to range from 51 to 62 % for
diploid selections and only 18–23 % for tetraploid arabicas (Aggarwal 2005). All
the selections were grouped into two clusters, representing arabica genotypes and
robustas as per their genetic origin which also confirms to their pedigree (Fig. 11.8).

Fig. 11.7 Representative DNA profiles of Coffea arabica selections generated using: a RAPD
markers; b in-house developed coffee-specific SSR markers; and c AFLP markers
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The low variability among the arabica-based selections confirms to the narrow
genetic base of arabica germplasm.

11.5.3 Reference Polymorphism Panels
for Individualization of Coffee Genotypes

Despite the narrow genetic base and very low detectable genetic variability, the
cultivated arabica selections could be uniquely discriminated from each other but
required the use of large number of DNA markers. Based on fingerprint data
generated by use of the various marker systems, a reference DNA polymorphism
panel was prepared for distinguishing the CCRI selections that are expected to be
useful for varietal registration/IPR protection (Aggarwal 2005).

11.5.4 Molecular Characterization of Robusta Coffee
Germplasm

The genetic diversity in 40 germplasm collections of robusta, including both
indigenous and exotics, maintained in Genebank at Regional Coffee Research
Station, Chundale, was assessed in comparison with 14 representative samples of

Fig. 11.8 UPGMA trees generated using: a RAPD markers, and b SSR markers, showing genetic
affinities between different arabica selections
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core collections of C. canephora and three accessions of C. congensis using AFLP
and SSR marker approaches (Prakash et al. 2005a, b). The accessions of Indian
gene pool grouped together with the robusta types identified as diversity group ‘E’.
The study clearly revealed high amount of diversity present in core samples, which
was not represented in Indian gene pool. Further, the vast diversity found in the
accessions representing a core collection from Africa, the centre of genetic diversity
of robusta coffee, was however not present in the cultivated lines of robusta
genotypes.

11.6 Brief Overview of Coffee Genetic Improvement
Worldwide

Availability of genetic variability, especially for characters of agronomic impor-
tance, is an important prerequisite for the success of genetic improvement of any
crop. In the case of coffee, the two commercially cultivated species, C. arabica
popularly known as arabica coffee and C. canephora called as robusta coffee, differ
to a great extent in morphology, vegetative vigour, genetic diversity, yield potential,
bean quality traits and breeding behaviour. Arabica coffee grows into a small tree
under natural growth but attains bushy growth and looks like a shrub when regu-
lated by training. On the other hand, robusta coffee is characterized by more erect
and robust growth as the name denotes and grows into large vigorous bushes.

Arabica produces superior quality coffee but the crop yields are often affected by
major diseases and pests as arabica coffee plants manifest susceptibility to several
diseases and pests such as leaf rust (Hemileia vastatrix Berk & Br), coffee berry
disease (CBD) (Colletotrichum kahawaeWaller et Bridge), stem borer (Xylotrechus
quadripes Chevrolat) and nematodes (Meloidogyne sp. and Pratylenchus sp.).
Robusta is more tolerant to these diseases and pests and has potential to give
consistently high yields but the bean and liquor qualities of robusta are inferior to
arabica.

Therefore, the main objectives of genetic improvement in coffee have been
largely focussed to improve production coupled with resistance in arabica and
production with bean and liquor qualities in robusta.

11.6.1 Genetic Improvement of Arabica Coffee

The main focus of early breeding programmes for arabica improvement undertaken
world over during 1920s–1950s was on yield, quality and adaptability to local
conditions. Simple selection and crossing within genetically homogeneous base
populations were the strategies adopted. In general, breeding for disease resistance
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was given low priority except in India where the primary focus of arabica coffee
breeding was on leaf-rust resistance since the initiation of organized research in the
1920s with the inception of Mysore Coffee Experiment Station, located at
Balehonnur, Chikmagalur district, Karnataka, India, currently known as CCRI. The
early programmes resulted in considerable success in the development of vigorous
and productive cultivars such as ‘Mundo Novo’, ‘Caturra’ and ‘Catuai’ from Brazil,
‘Kents’, ‘S.288’ and ‘S.795’ from India, ‘Blue Mountain’ from Jamaica and several
others. Consequent to the gradual spread of leaf-rust disease to various other
coffee-growing countries across Africa, Central and South America, there was a
shift in breeding focus towards rust resistance. During the second phase of arabica
coffee improvement, from the 1950s to the 1990s, the priority was on disease
resistance, especially coffee leaf rust (CLR) and CBD. This phase of coffee
improvement was very productive, as several high-yielding varieties with broad
spectrum of resistance were developed in a relatively short period. The success
could be largely attributed to the coordinated efforts of different coffee research
groups across the continents in enriching the valuable genetic resources (Meyer
et al. 1968) through germplasm exchange and exploitation of new genetic diversity
by the application of advanced selection and breeding methods (Van der Vossen
1985). Generation of basic information on coffee genetics in Brazil (Sybenga 1960;
Carvalho et al. 1969) and also the establishment of Coffee Rust Research Centre
(CIFC) in Oeiras, Portugal, to work exclusively on various aspects of coffee rust
pathogen, Hemileia vastatrix, were instrumental in driving forward the
rust-resistant breeding programmes in many countries. Further, identification of
high-yielding mutants of arabica such as ‘Caturra’, ‘San Ramon’ and ‘Villasarchi’
(having dwarf/compact bush stature) and spontaneous hybrids of robusta and ara-
bica, such as ‘Hibrido de Timor (HdT)’ and ‘Devamachy’ (with high levels of
disease resistance), contributed to a great extent towards the development of several
high-yielding and disease-tolerant cultivars with compact bush stature, viz.
‘Catimor’, ‘Ruiru-11’, ‘Sarchimor’, that have been extensively used for commercial
cultivation.

Further, based on the objective, appropriate breeding strategy was employed for
evolving improved varieties. The progress of selection and breeding until 2000 has
been excellently reviewed by Van der Vossen (1985), Carvalho (1988), Berthaud
and Charrier (1988), Wrigly (1988) and Van der Vossen (2001). An exclusive
review on rust-resistant breeding was made by Bettencourt and Rodrigues (1988).
Recently, the status of arabica coffee breeding with respect to durable resistance to
CLR in different countries has been reviewed during the first Workshop on durable
resistance to coffee rust, held at University of Vicosa, Brazil, in September 2005
(Alvarado 2005; Fazouli et al. 2005; Matiello et al. 2005; Pereira et al. 2005;
Prakash et al. 2005b; Sera et al. 2005). More recently, a comprehensive account of
coffee breeding was published by Herrera et al. (2012) while Montagnon et al.
(2012) reviewed the status of breeding coffee for quality.
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11.6.1.1 Arabica Coffee Improvement in India

Arabica coffee was introduced in India sometime during 1600 AD by a Muslim
pilgrim, Baba Budan, who is believed to have brought seven seeds from Yemen,
presumably Mokka coffee and planted on his hermitage located in Chandragiri hills
near Chikmagalur in Karnataka which later became popular as Baba Budan Giris.
However, the arabica coffee plants remained as backyard plants for long time and it
is only during the late 1820s, when the British entrepreneurs started coffee culti-
vation on commercial scale in South India. The cultivation of coffee rapidly pro-
gressed during the next 40 years, till the outbreak of CLR disease caused by an
obligate parasitic fungus, Hemileia vastatrix (orange rust) affecting arabica coffee
plants. Soon, by the later part of the eighteenth century, CLR posed a serious threat
for arabica coffee plantations in South-East Asia including India, as the disease was
relatively unknown and no fungicides were invented. In India, some of the enter-
prising planters made efforts to select the disease-tolerant plants from existing
populations. The early cultivars such as ‘Coorgs’, ‘Chicks’ and ‘Kents’ belong to
this category of selections, of which ‘Kents’ became popular and was largely used
for cultivation in the 1920s. Soon, the ‘Kents’ variety also succumbed to rust
disease. To tide over the situation, the rust-resistant diploid Coffea species such as
C. liberica and C. canephora were also introduced. Some efforts were also made to
develop rust-tolerant hybrids by crossing arabica with rust hardy diploid species.
But, fertile hybrids could not be generated due to variation in ploidy level (te-
traploid vs. diploid); nevertheless, a few of the hybrids such as ‘Hamiltons’,
‘Jacksons’, ‘Netrakonda’ and ‘Chandrapore’ were used for cultivation. Despite
these efforts, the leaf-rust problem of arabica coffee could not be effectively tackled.
Consequently, the coffee paved the way for tea in neighbouring Sri Lanka, while in
Indonesia arabica coffee was replaced with robusta coffee. In India, the need for
systematic research on coffee was felt and as a result the Mysore Coffee Experiment
Station was established in 1925 with the primary mandate of developing
rust-resistant varieties and to address the problems in coffee cultivation
(Anonymous 2014b). Thus, unlike other coffee-growing countries, the main focus
of arabica coffee improvement in India has been on breeding for rust resistance
coupled with high production, improved quality and wide adaptability.

For genetic improvement in any crop, genetic variability and heritability are the
two important prerequisites. In the early breeding programmes, the indigenous
germplasm collections established during 1925–1940 were exploited.
Subsequently, the exotic germplasm and the spontaneous tetraploid inter-specific
hybrids have been used in breeding programmes. Similar to the observation else-
where that arabica coffee has a narrow genetic base, the arabica coffee gene pool in
India, collected from indigenous and exotic sources, represent limited variability in
relation to the various agronomic traits such as plant size (dwarf, semi-dwarf, tall),
branching habit (erect, spreading, drooping), fruit size (small, medium, bold), fruit
ripening (early, late), quality traits, yield potential and a wide spectrum of resistance
from complete susceptibility to mild resistance to leaf-rust pathogen. However,
some of the tetraploid inter-specific arabica hybrids of spontaneous origin manifest
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complete resistance to leaf-rust pathogen due to introgression of diploid genomes,
and these provided additional variability for resistance breeding. In line with the
scope and objectives of breeding, CCRI has successfully utilized the available
variability and developed 13 improved arabica genotypes (selections) for com-
mercial cultivation by employing proven breeding methods (Anonymous 2014b;
Srinivasan and Narasimhaswamy 1975). The station-bred selections have been
designated as Sln.1 to Sln.13 and depending on the location-specific adaptability,
the improved arabica genotypes have been recommended for commercial cultiva-
tion across the arabica-growing tracts in India. The CCRI selections, viz. Sln.3
(S.795), Sln.5A, Sln.5B, Sln.6, Sln.9 and Sln.13, are very popular, and occupy
sizeable area (ca. 90 %) under arabica coffee.

The pedigree and characteristic features of some popular arabica selections are
summarized in Table 11.1.

11.6.1.2 Breeding Strategies Employed for Arabica Coffee
Improvement

The classical genetic studies undertaken in Brazil established that C. arabica is the
only allotetraploid and self-fertile species under the genus Coffea, and it exhibits
diploid mode of inheritance for all the characters (Krug and Carvalho 1951). Hence,
some of the breeding methods relevant to self-pollinated diploid crops, such as pure
line selection, inter-varietal hybridization followed by pedigree selection,
inter-specific hybridization followed by backcross breeding, multiple crosses and
introgressive breeding using spontaneous tetraploid inter-specific hybrids, have
been successfully employed for arabica improvement, world over. The resultant
hybrids were sufficiently homogeneous to permit propagation by seed and practi-
cally majority of the arabica cultivars grown in the world today have been estab-
lished from seedlings (Van der Vossen 1985). There are some reports on success
achieved in large-scale multiplication of F1 hybrids using somatic embryogenesis
technology and their superior field performance (Betrand et al. 2010). The breeding
strategies adopted and arabica improvement in Indian context are detailed below.

Pure Line Selection
In arabica coffee improvement programmes taken up initially, pure line selection
was the main strategy applied wherein the elite individual plants with desired
agronomical traits were identified in the populations and selected individual plants
were advanced by recurrent selfing to derive commercial lines. The early Indian
coffee varieties, ‘Kents’ and S.288 were developed by this strategy. Similarly, pure
line selection strategy was used to exploit exotic Ethiopian collections from the
genebank for race-specific resistance to leaf-rust pathogen. The major constraint in
arabica coffee breeding has been its narrow genetic base, which is a bottleneck to
achieve a selection efficiency sufficient enough for quick progress besides main-
taining adequate variability in subsequent generations. In advanced generations, the
selection efficiency from individual and even family selection within same
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Table 11.1 Details and distinguishing features of arabica (Coffea arabica) selections released by
the Central Coffee Research Institute, India

Selection Breeding method Distinguishing
characters

Agronomical
features/adaptability

Sln.1 (S.288) – Pure line selection
(PLS) from S.26, a
putative natural
hybrid between
C. arabica and
C. liberica.

– Given for cultivation
during in 1936–37

– Tall phenotype with
vigorous growth

– Leaves are dark
green, thick, elliptic
in shape; young
leaves (tip) bronze
coloured

– Fruits round with
broad disc and
orange yellow to red
in colour popularly
known as ‘Golden
drops’

– Fruits show
relatively high
percentage of
multilocular
condition

– Moderate yielder
(800–1000 kg/ha)

– Manifest resistance
to leaf-rust races I
and II due to
presence of SH3
rust-resistant gene
introgressed from C.
liberica

– Found superior to
other varieties such
as ‘Chicks’ and
‘Kents’ under
cultivation during
that time

– Liquor quality is
FAQ (fair average
quality)

– Adaptable to all
coffee-growing
regions

Sln.3 (S.795) – Developed from the
cross between S.288
(C. liberica
introgressed
line) × ‘Kents’

– Given for cultivation
during 1945–46

– Vigorous and
widespreading bush
with profuse growth

– Leaves are oblong,
broad and elliptic in
shape

– Young leaves
(tip) bronze
coloured

– Fruits round to
oblong with broad
honey disc, red in
colour

– Number of fruits 12–
16 per cluster.

– Beans are bold in
size, bluish-grey
colour with good
visual appearance
when wet processed

– Yield potential
1500–2000 kg/ha

– Manifest resistance
to leaf-rust races I
and II, prevalent at
the time of release
due to presence of
SH3 rust-resistant
gene introgressed
from C. liberica

– Later fell susceptible
to new virulent races
VII, VIII, XII, XIV
and XVI

– ‘A’ grade beans 60–
65 %

– Liquor balanced
with good body,
good acidity and
fairly good flavour

– Most widely
adaptable and
cultivated tall
arabica variety in
India

(continued)
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Table 11.1 (continued)

Selection Breeding method Distinguishing
characters

Agronomical
features/adaptability

Sln.4 – Composite selection
of 3 Ethiopian
arabica collections,
viz. Cioccie, Agaro
and Tafarikela

– Given for cultivation
during the 1960s

– Tall bush types,
Cioccie and Agaro,
exhibit semi-erect
branching while
Tafarikela shows
drooping growth
habit

– The young leaf (leaf
tip) colour is green
(Cioccie)/bronze
(Agaro) and dark
bronze (Tafarikela)

– Fruits are long, bold,
flat orange red with
projected honey
disc, occasionally
with persistent calyx
in Agaro and
Cioccie

– Fruits relatively
small in Tafarikela
and ripen early
compared to other
arabicas

– Beans are long and
bold in size

– Moderate yielders
with yield potential
of 1000 kg/ha

– Shows specific
resistance to
leaf-rust race VIII.
In addition,
Tafarikela manifests
horizontal resistance

– Released for
commercial
cultivation as a
strategy to check the
devastation of race
VIII on S.795
plantations

– 65 % of the beans
belong to ‘A’ grade
with excellent liquor
quality

– performs well in
high altitudes and
under
well-maintained
two-tier shade
canopy

Sln.5A – Derivative of the
cross between
Devamachy (a
spontaneous
Robusta × Arabica
hybrid) x S.881 (a
wild arabica
collection from
Rume Sudan)

– Given for cultivation
during the early
1970s

– Plants are tall,
widespreading and
exhibits vigorous
vegetative growth

– leaves are narrow
and elliptic; young
leaves (leaf tip) are
generally green in
colour

– Fruits round to
oblong, variable in
size with long
peduncles and 8–12
per cluster, medium
size beans

– Relatively late
ripener

– Consistent yielder
(1200–1500 kg/ha)

– Manifest high field
resistance to leaf
rust; normally
defoliation is not
seen even in rust
susceptible plants

– High percentage of
B grade beans
(*40 %), with
liquor quality rating
of FAQ to FAQ+

– Adaptable to hot and
humid climate and
performs well across
the arabica-growing
areas

– Largely cultivated
variety in
non-traditional
coffee areas
especially the tribal
holdings of Andhra
Pradesh

(continued)
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Table 11.1 (continued)

Selection Breeding method Distinguishing
characters

Agronomical
features/adaptability

Sln.5B (S.2931) – Derivative of the
cross between
Devamachy × S.333

– Given for cultivation
during the early
1970s

– Tall bushes with
vigorous growth and
semi-erect branches
that droop on
bearing

– Leaves are elliptic
and young leaves
(tip) are bronze
coloured

– Fruits are round,
bold with round
naval, 12–16 per
cluster, normal in
ripening

– Beans are round,
bold in size

– Yield potential of
1500 kg/ha.

– The plants exhibit
high field tolerance
to leaf rust

– 60 % of the beans
represent ‘A’ grade
and liquor quality is
FAQ to FAQ+

– Shows wider
adaptability, suitable
for cultivation in
different
arabica-growing
regions and
performs well in
medium-to-high
altitudes

Sln.6 (S.2828) – Developed by
crossing robusta cv.
S.274 and ‘Kents
Arabica’ followed
by recurrent
backcrosses to Kents
parent

– Given for cultivation
during the 1970s

– Tall and wide
spreading bushes

– Leaves are broad,
elliptic and young
leaves (tip) are
bronze coloured

– Fruits are bold,
round in tight
clusters with 16–20
fruits per cluster

– Yield ranges
between 1200 and
1500 kg/ha

– Shows mixed type of
rust reaction with
about 80 % plants
manifesting high
field tolerance to rust

– Beans bluish-grey,
round and bold with
60–65 % ‘A’ grade

– Adaptable to
medium altitudes

Sln.7.3 – Derived from
multiple crosses
involving ‘San
Ramon’, a dwarf
mutant and other tall
arabicas such as
S.795, Agaro and
Hibrido de Timor
(HdT)

– Given for cultivation
during the 1970s

– Majority of the
plants show dwarf
bush stature with
few medium and to
tall segregants

– Branches are
compact with close
internodes

– Leaves are broad
elliptic and
wrinkled; young
leaves (tip) are
bronze coloured

– Fruits are round, red
in colour and late
ripener

– Yield potential of
over 1500 kg/ha,
annual variations for
production with
alternate bearing
behaviour

– Susceptible to
virulent races of rust

– Withstand drought
conditions because
of deep-rooted
system, suitable for
marginal areas

– Around 60 % of the
beans belong to ‘A’
grade with FAQ to
above FAQ cup
quality

(continued)
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Table 11.1 (continued)

Selection Breeding method Distinguishing
characters

Agronomical
features/adaptability

Sln.8 – Developed by pure
line selection from
‘Hibrido de Timor’
popularly known as
HdT, a spontaneous
Robusta x Arabica
hybrid, identified in
Timor island

– Given for cultivation
during the late 1970s

– Plants are tall and
vigorous

– Plant phenotype
closely resembles
other arabica
varieties with
semi-erect to
drooping growth
habit

– Leaves are dark
green, elliptic in
shape; young leaves
(tip) are bronze
coloured

– Fruits are round, red
in colour and normal
in ripening

– Moderate yielder,
yield potential of
1000–1200 kg/ha

– Manifest high
resistance to leaf
rust, majority of the
plants show
resistance to all
known races of rust

– Beans are round and
medium in size with
over 60 % ‘A’ grade.
Cup quality is FAQ
to FAQ+

– Suitable for
cultivation in
medium altitudes

Sln.9 (S.2790) – Derived from
HdT × Tafarikela

– Given for cultivation
during the late 1970s

– Plants tall, vigorous
with semi-erect to
drooping branches

– Inter-node length is
medium to long

– Leaves broad,
elliptic, and young
leaves are dark
bronze coloured

– Fruits are bold, dark
red, flat, oblong and
12–16 per cluster
and ripen early
compared to other
arabica varieties

– Yield potential of
1200–1600 kg/ha

– Manifests high
tolerance to leaf rust
under field
conditions and
drought hardy

– Beans are bluish
green, round, bold
with 60–65 % ‘A’
grade

– Liquor quality is
excellent with strong
body and possessing
distinct flavour in
cup

– Widely adaptable
across all the
coffee-growing
regions

– Suitable for gap
filling and plants
establishes well in
supply positions

Sln.10 – Double cross-hybrid
developed by
crossing two F1s,
Caturra (a
high-yielding dwarf
mutant) × Cioccie
and Caturra × S.795

– Plants are compact
and semi-dwarf in
bush stature with
profuse branching
habit

– Leaves are broad and
elliptic, and young

– Moderate Yielder
(1000–1200 kg/ha)

– Exhibits resistance
to common races of
rust due to presence
of SH3 rust-resistant
gene, but susceptible

(continued)
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Table 11.1 (continued)

Selection Breeding method Distinguishing
characters

Agronomical
features/adaptability

– Given for cultivation
during the 1980s

leaves are green to
light bronze
coloured

– Fruits bold, 12–15
per cluster, normal
ripening

to virulent races
with V3 gene
combinations

– Cup quality is
similar to S.795.
Fruits are bold and
produce nearly 65 %
‘A’ grade beans

– Shows
location-specific
adaptability and
performs well in
higher altitudes

Sln.11 – Amphiploid of the
diploid inter-specific
hybrid between C.
arabica and C.
eugenioides

– Given for cultivation
during the 1980s

– Tall, vigorous
bushes with thin
branches

– Leaves are small in
size, narrow, linear
and elliptic, and
young leaves are
green in colour

– Fruits are small,
oblong, 10–15 per
cluster and late
ripening

– Moderate yielder
(1000–1200 kg/ha)

– Plants show high
field tolerance to
leaf rust and
moderately tolerant
to drought
conditions

– Produces more B
grade beans (30–
40 %) with FAQ and
FAQ + cup quality

– Exhibits better
adaptability to hot
and humid climate

Sln.12
(Cauvery/Catimor)

– Derived from cross
between Caturra and
HdT

– Given for
commercial
cultivation during
1986

– Semi-dwarf bushes,
vigorous growth
with profuse
primaries and
secondaries and
close internodes

– Leaves are medium
in size and elliptic,
and young leaves are
green in colour

– Fruits are dark red,
round, bold, 12–18
in tight clusters

– Early bearing habit

– High-yield potential
of 2000 kg/ha

– In initial years,
manifested high
resistance to leaf
rust, later broke
down due to
appearance of seven
new rust races

– Beans are round,
bold with over 60 %
‘A’ grade and liquor
quality is FAQ to
FAQ + with pleasant
aroma and taste

– Widely adaptable
across all the coffee
regions and suitable
for cultivation in
high elevations

(continued)
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population based on phenotypic performance becomes uncertain and slow. In sit-
uations where the heritability is low, it is more reliable to select parents on the
performance of their offspring, but this method has several disadvantages including
long time frame.

Inter-varietal Hybridization Followed by Pedigree Selection
Predominantly, this strategy has been used to improve the agronomically desirable
characters such as yield, tolerance to diseases and quality. In general, a proven
genotype is selected as recipient parent that is crossed with a donor parent for any
specific trait. The hybrid progenies are subjected to recurrent selection by pedigree
method. The famous and well-known variety of India, S.795 (Fig. 11.9), was
developed during the late 1940s, by following this strategy.

Subsequently, several other genotypes such as Sln.5A, Sln.5B (Fig. 11.10) and
Sln.9 (Fig. 11.11) were developed by crossing the selected arabica genotypes with
diverse sources of rust resistance. In majority of these cases, spontaneous tetraploid
inter-specific hybrids such as Devamachy and Hibrido de Timor were used as
donors of resistance. Both these donor sources are the natural hybrids between C.
arabica and C. canephora, very much resembling arabica coffee, with high levels
of resistance to major coffee diseases and pests due to the genes introgressed from
diploid species. Thus, this strategy helped to transfer the genes conferring
disease/pest resistance into selected arabica genotypes. The introgressive breeding
strategy has been the most successful strategy for arabica improvement especially
for host resistance and the Timor hybrid (HdeT) has been extensively used as the

Table 11.1 (continued)

Selection Breeding method Distinguishing
characters

Agronomical
features/adaptability

(above 1000 m
MSL)

– Suitable for
high-density
planting

Sln.13
(Chandragiri)

– Derived from the
cross
Villasarchi × HdT

– Given for
commercial
cultivation during
2007

– Semi-dwarf bushes
with vigorous
growth and
widespreading
branches and closer
nodes

– Leaves are broad,
thick, dark green in
colour and elliptic in
shape, and young
leaves (tip) are green
in colour

– Fruits oblong, flat,
elongated, 12–18, in
number and borne in
loose clusters

– Yield potential of
1500–1800 kg/ha.

– Manifests high field
tolerance to leaf rust

– Suitable for
cultivation at higher
elevations (1000 m
and above MSL)

– Beans are long and
bold with over 70 %
‘A’ grade of which
20–25 % belong to
extrabold (‘AA’
grade).

– Cup quality is FAQ
to FAQ+
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donor for broad spectrum of resistance to diseases and pests, worldwide. This
strategy assumed greater significance for arabica coffee breeding as it helps in
minimizing the time frame compared to inter-specific hybridization strategy.

Inter-specific Hybridization
The diploid species of Coffea are more heterogeneous because of cross-pollinating
nature compared to tetraploid arabica, and thus have been the important source of
variability for arabica improvement. Among several diploid species, C. canephora is
the major source for resistance genes for several important diseases, such as CLR
(Hemileia vastatrix), CBD (Colletotrichum kahawae) and root knot nematode
(Meloidogyne spp.). Similarly, other diploid species such as C. liberica have been
successfully used as source of rust-resistant breeding in India (Srinivasan and
Narasimhaswamy 1975) whileC. racemosawas used as source of resistance to coffee
leaf minor (Guerreiro Filho et al. 1999). Hence, inter-specific hybridization with an
objective to transfer the desirable genes (in particular) for disease resistance from
diploid species such as C. canephora and C. liberica into tetraploid arabica cultivars
without affecting quality traits has remained the main objective of arabica coffee

Fig. 11.9 S.795, the most
popular arabica variety of
India
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breeding (Van der Vossen 2001). However, the ploidy difference between C. arabica
(tetraploid) and other species (diploids) is the main limitation for developing fertile
hybrids from direct crosses. To overcome this limitation, two different methods, the

Fig. 11.10 Sln.5B, a popular inter-varietal hybrid having wider adaptability

Fig. 11.11 Sln.9, a popular tall arabica selection known for its superior bean and liquor quality
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tetraploid breeding method and triploid breeding method, were followed to obtain
fertile tetraploid inter-specific hybrids. In tetraploid breeding method followed in
Brazil, the chromosome number of the diploid species (C. canephora) was doubled
using colchicine and such induced tetraploid robusta types were crossed with normal
tetraploid arabicas. The tetraploid breeding strategy helped in realizing fertile F1
hybrids due to gametic balance. The resultant hybrids were backcrossed to arabicas
and selection was exercised in the progeny for desirable types.

The triploid breeding strategy, which was followed in India and Colombia, direct
crosses were made between tetraploid C. arabica and diploid C. canephora. The
resultant triploids were recurrently backcrossed to arabica. One of the arabica
selections, Sln.6 (S.2828), developed in India by using triploid breeding strategy
resembles arabica phenotype with vigorous growth and compact fruit clusters as
well as resistance of robusta coupled with superior bean and liquor quality of
arabica (Fig. 11.12).

Exploitation of Spontaneous Mutants
As arabica coffee is known for narrow genetic base, efforts to induce variability by
using physical mutagens such as gamma irradiation and chemical mutagens such as
EMS and DMS were made, but in general, most such efforts were unsuccessful
except for generation of a few mutants such as ‘purpurascens’ that were found to be
of no agronomical value. Nevertheless, screening of large populations in Brazil
resulted in the identification of few spontaneous mutants with dwarf (San Ramon)
and semi-dwarf bush stature (Caturra, Villasarchi). These mutants with high-yield
potential and precocious bearing nature were exploited for breeding purposes and

Fig. 11.12 Sln.6, a popular inter-specific hybrid performing well at medium altitudes
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several outstanding compact arabica varieties such as Catuai, Catimor and
Sarchimor, suitable for high-density planting were developed. In India also, several
such coffee varieties were developed, a few prominent being: Sln.7.3 (Fig. 11.13)
derived from multiple crosses involving dwarf mutant San Ramon; Sln.12
(Cauvery-Catimor) developed from a cross between high yielding 'Caturra' mutant
and resistant donor Hibrido de Timor; and the semi-dwarf variety Chandragiri
(Sln.13—Sarchimor; Fig. 11. 14) developed from a cross of Villasarchi, a vigorous
dwarf mutant with Hibrido de Timor.

Heterosis Breeding and Development of F1 Hybrids
In order to enhance the chances of exploiting transgressive hybrid vigour, creation
of hybrids between genetically diverse subpopulations, such as crosses between
common cultivars and Ethiopian accessions, was suggested by Lashermes et al.
(1996b) and Van der Vossen (2001). Further, Lashermes et al. (2008) envisaged the
development of F1 hybrids between diverse genetic groups, such as wild Sudan and
Ethiopian origins, as one of the promising strategies in arabica breeding to obtain
high percentage of heterosis. This strategy was successfully applied in Kenya and
Ethiopia to develop commercial cultivars such as, variety ‘Ababuna’ in Ethiopia
and Ruiru-II, a composite F1 hybrid variety in Kenya. In Central America, a pro-
gramme for development of F1 hybrids between high-yielding and cultivated
varieties of arabica (Caturra, Catuai, Catimor, Sarchimor) and semi-wild trees of

Fig. 11.13 Sln.7.3, a dwarf arabica variety
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Ethiopia or Sudan origin was initiated during 1992 (Etienne et al. 2002). Field trials
of these F1 hybrids recorded 30 % higher productivity, along with resistance to leaf
rust and nematodes, besides maintaining an excellent cup quality (Bertrand et al.
2005). Because of promising performance, the selected F1 hybrids have been
multiplied in large numbers using somatic embryogenesis technique for commercial
cultivation (Bertrand et al. 2010). Availability of male sterile lines provides great
practical advantages for development of heterotic F1 hybrids and Georget et al.
(2014) reported the successful exploitation of male sterility for development of F1
hybrids that recorded superior performance over the pollinator parent in field trials
conducted at Nicaragua. In India, four male sterile plants have been identified
recently from exotic germplasm collections and efforts are being made to identify
the best pollinators, as well as for exploitation in heterosis breeding programmes.

Fig. 11.14 Chandragiri, a
semi-dwarf arabica variety
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11.6.2 Genetic Improvement of Robusta Coffee

The epidemics of H. vastatrix (orange rust) in South-East Asia between 1870 and
1900 threatened the arabica coffee cultivation in several coffee-growing countries of
the region. Consequently, other tolerant species such as Coffea canephora
(Robusta) and Coffea liberica were introduced in Indonesia and India where as in
Sri Lanka, there was a shift towards tea cultivation. These diploid species, espe-
cially C. canephora, adopted well to the low-altitude regions. As a result, robusta
breeding programmes were initiated even earlier to arabica with the objective of
improving bean quality. The pioneering work on coffee biology and selection
carried out in East Java in the early years of nineteenth century was reviewed by
Cramer (1957) that formed the basis for subsequent breeding programmes of
robusta coffee not only in India but also in Africa (Van der Vossen 1985).

11.6.2.1 Robusta Coffee Improvement in India

According to the earlier reports, the nucleus robusta stock introduced into Java in
1901 came from trees already under cultivation in Zaire in 1895, originating in
Lomani River region. The material selected in Java was reintroduced in the Belgian
Congo around 1916 at INEAC (Institut National pour l’Etude Agronomique du
Congo Belge), which has become the major selection centre of C. canephora from
1930 to 1960 (Montagnon et al. 1998). It was also believed that the improved seed
from Java was used to establish robusta plantations in India and also in African
countries such as Uganda, Ivory Coast and Zaire, from where robusta coffee
originated (Van der Vossen 1985). Apart from Java, Ceylon was reported to be the
other source of robusta introduced into India during early nineteenth century which
is popularly known as Peradeniya Robusta. At present, both these robusta types still
occupy larger area under robusta and broadly known as ‘Old robusta’. The ‘Old
robustas’ show vigorous growth compared to arabica and grows into moderately
large bushes. Their fruits are red, round to oblong with pronounced navel, small to
medium in size, 30–40 per node and borne in tight clusters. Beans of old robustas
are greenish grey, small in size, comprises less than 50 % AB grade and the liquor
quality rated as Fair Average Quality (FAQ) to Good.

Therefore, the main objective of robusta coffee improvement in India was bean
and liquor quality improvement. As C. canephora is strictly allogamous species,
breeding methods suitable to cross-pollinated crops such as mass selection and
intra-specific, as well as inter-specific hybridization, have been followed. The
efforts at CCRI for robusta improvement have resulted in the development of three
superior robusta selections (Table 11.2), of which S.274 (Sln.1R) and C×R (Sln.
3R) are very popular among the coffee growers and occupy sizeable area under
robusta coffee.
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Table 11.2 Details and distinguishing features of robusta (Coffea canephohra) selections released
by the Central Coffee Research Institute, India

Selection Breeding method Distinguishing
characters

Agronomical
features/adaptability

Sln.1R
(S.274)

– Seedling progenies of
two individual
high-yielding mother
plants

– Given for cultivation
during the 1940s

– The plants are
vigorous and grow
into moderately large
trees

– Leaves are large,
broader, light green in
colour

– Fruits dark red,
medium to bold,
round to oblong with
pronounced navel and
borne in tight clusters
of 30–50 fruits each

– Yield potential is
2000–2500 kg/ha
under irrigated and
1000–1500 kg/ha
under unirrigated
conditions

– Beans are medium to
bold in size, round in
shape and about 45 %
represent ‘A’ grade

– The cup quality is
neutral with rating of
FAQ to good

– Adaptable to almost
all robusta-growing
regions

Sln.2R
(BR
Series
9,10,11)

– High-yielding clonal
progenies (BR 9, 10,
11) of 12 single plant
progenies (S.267–
S.278) that yielded
twice the family mean
yield

– Given for cultivation
during the 1960s

– This plants resemble
S.274 in growth habit,
yield potential and
bean/cup
characteristics

– Yield potential similar
to S.274

– High stability for
production and ‘A’
grade beans

– The cup quality is
neutral with rating of
FAQ to good

– Adaptable to all
robusta-growing
regions

Sln.3R
(C×R)

– Inter-specific
hybridization
involving C.
congensis and C.
canephora (Robusta)
followed by back
cross to robusta

– Given for cultivation
during the 1970s

– Plants are compact in
bush stature compared
to S.274

– Branches show
semi-erect to drooping
growth habit; nodes
are close

– Early bearer, fruits
arranged in tight
clusters of 30–40 per
node with prominent
and projected naval

– Fruits contain high
mucilage content that
enable easy pulping

– Yield potential is
2000–2500 kg/ha
under irrigated and
1000–1500 kg/ha
under unirrigated
conditions

– Early and uniform
ripener

– Suitable for planting
at closer spacing,
2.7 × 2.7 m or
2.4 × 2.4 m (9 × 9 ft
or 8 × 8 ft)

– Beans are medium to
bold, 50–55 % are ‘A’
grade

– Liquor is soft, neutral
with light to fair
acidity and good cup
quality

– Suitable to all
robusta-growing
regions of India
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11.6.2.2 Breeding Methods Adopted for Robusta Coffee Improvement

Mass Selection
In mass selection strategy, the plants with outstanding vigour, yield and bean
quality characters were selected in the base populations and progenies were
advanced through open pollinated seed. The varieties, Apoata of Brazil, S.274 of
India, Nemaya of Central America were derived by using this strategy.

Bi-clonal and Poly-clonal Gardens
In the second strategy, superior plants which yielded higher than the family mean
yields in single plant progenies were selected and used for establishing bi- and
poly-clonal gardens depending on the combining ability. The seed mixture of these
clones or the mixture of clones was released for commercial cultivation in different
countries. The Balehonnur Robusta clones (BR series) of India, SA and BP
selections of Indonesia, IF clones of Ivory Coast are some of the varieties developed
by using this strategy.

Hybridization

Intra-specific Breeding
In robusta, both intra-specific and inter-specific hybridizations were employed. In
intraspecific hybridization strategy, emphasis has been given to exploit the available
diversity within the species. Initial studies on genetic diversity of C. canephora
using isozyme profiles (Berthaud 1986) distinguished two major diversity groups,
the ‘Guinean’ group from West Africa (Ivory Coast and Guinea) and ‘Congolese’
group from Central African countries. Among these two groups, the Congolese
coffee types generally showed better agronomic value than Guinean types, and
majority of the cultivated canephora populations in the world constitute Congolese
genotypes. The Guinean types are limited to Ivory Coast and Guinea, both as wild
and as commercial cultivations. Dussert et al. (1999) have carried out extensive
studies on the C. canephora populations and grouped the wild and cultivated forms
of robusta coffee into five diversity groups (A, B, C, D, and E) based on the analysis
of RFLP polymorphism. Berthaud (1986) emphasized the importance of Guinean
genotypes for C. canephora breeding as the most productive clones obtained in
Ivory Coast during the 1960s were the hybrids between Congolese and Guinean
types. Montagnon et al. (1998) carried out a reciprocal recurrent selection pro-
gramme among Congolese and Guinean hybrids developed in Ivory Coast. High
amount of heterosis for vigour and yield in inter-group hybrids compared to
intra-group hybrids was achieved as reported by Leroy et al. (1993). In India, the
main limitation for robusta coffee breeding is the non-availability of adequate
genetic resources especially the wild genotypes belonging to diversity groups (A, B,
C, D) from the centre of diversity.

Inter-specific Breeding
Inter-specific hybridization has also been tried for robusta improvement, beginning
in Java during nineteenth century with the discovery of a spontaneous diploid
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inter-specific hybrid between C. canephora var ugandae and C. congensis called
Congusta or Conuga that proved to be of considerable commercial value (Cramer
1957). The hybrids were fertile and also exhibited several important features, such
as good vigour, production, adaptation to sandy soils, tolerance to temporary water
logging, and good bean size and cup quality. In India, systematic breeding pro-
gramme was undertaken between C. canephora and C. congensis that led to the
development of a highly fertile Congensis × Robusta hybrid (C×R). The strategy
included the development of F1 hybrid between C. congensis and robusta which
was backcrossed to robusta and BC progeny was subjected to mass selection fol-
lowed by sib-mating that resulted in a highly fertile and compact C×R hybrid
variety. The C×R variety shows good vegetative vigour and compact bush stature
(Fig. 11.15), thus suitable for planting at closer spacing than other robusta varieties.
There was a remarkable improvement for bean size in C×R, besides superior liquor
characteristics than that from other robustas.
The distinguishing features of robusta varieties released from CCRI for commercial
cultivation are detailed in Table 11.2.

Fig. 11.15 C×R, a popular
robusta variety suitable for
high-density planting and
known for its intrinsic quality
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11.7 Current Focus of Coffee Improvement in India

The current focus of coffee improvement programmes in India is aimed at the
development of high-yielding hybrids coupled with durable host resistance in
arabica for maximizing productivity and evolving drought-tolerant robusta geno-
types, to cope with the changing climate and demands of consumer markets, more
efficiently. Systematic breeding programme is being pursued with emphasis on
development of heterotic F1 hybrids in both arabica and robusta using genetically
distant genotypes and male sterile lines identified in wild gene pool/land races from
Ethiopia. In breeding for resistance, pyramiding of the resistance genes in selected
arabica cultivars by using marker-assisted selection for durability of rust resistance
search for new sources of tolerance/resistance to white stem borer (Xylotrechus
quadripes) in coffee gene pool for breeding purposes, and integration of genomic
information for improving the efficiency of conventional breeding are some of the
major priorities of genetic improvement programmes of coffee in India.

11.8 Conclusion

Despite limited genetic diversity in arabica germplasm, remarkable successes have
been achieved with respect to the development of new varieties that contributed
significantly for sustainable growth of the world coffee industry. Further, avail-
ability of suitable varieties prompted the farmers to adopt innovative farming
approaches such as high-density planting and new planting designs that suit for
mechanization of farm operations. These developments supported by the technical
advances in coffee agronomy facilitated the coffee farmers’ world over towards
realizing high yields and improved product quality both in robusta and in arabica
that enabled to maximize the economic returns. However, considering the growing
importance of coffee as a popular drink in the new emerging markets and rising
growth of coffee consumption in domestic sector of many producing countries,
there exists a great scope for assured market of the produce and to realize better
prices. Coffee being an important crop for the developing countries with significant
contribution to their GDP, efforts to achieve sustainable coffee economy would
have profound socioeconomic implications on livelihood of millions of people
worldwide including India. Further, the changes in climatic conditions such as rise
in temperatures and erratic rainfall patterns are posing new challenges for coffee
cultivation. In this realm, there is a continuous need for development and
deployment of genetically improved coffee varieties to meet the ever-changing
demands of markets and environment. However, the available opportunities are
limited for conventional genetic improvement of coffee. The problem is more
pronounced in arabica coffee because of its tetraploid status and very narrow
genetic base, making genetic improvement more difficult to be realized.
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The recent advances in DNA markers/technologies and coffee genomics provide
new possibilities to overcome some of the limitations of conventional coffee
improvement with requisite speed and efficiency. Thus, the situation warrants
serious efforts to integrate the newer molecular genomic tools/technologies for
genetic research and crop improvement of coffee. DNA analysis of existing coffee
germplasm resources to date have indicated very low genetic diversity in cultivated
gene pool, and thus enriching the genetic resources through exchange programmes
and exploitation of wild arabica genotypes should be the important components of
coffee improvement efforts. Similarly, considering the quick success achieved in
resistance breeding programmes of arabica through introgressive breeding involv-
ing spontaneous tetraploid inter-specific hybrids between arabica and diploid spe-
cies, search for new spontaneous hybrids assumes significance and should be
aggressively pursued. Furthermore, exploitation of secondary gene pool consisting
of diploid species for desired variability/gene(s) remains an important approach as
inter-species gene flow is widespread in coffee. Thus, enriching the genetic
resources through new explorations, integration of conventional breeding approa-
ches with advanced genotyping methods based on DNA markers, marker-assisted
selection breeding and genomics are some of the available options that have great
promise for accelerated genetic improvement of coffee in India and elsewhere.
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Chapter 12
Introgression and Exploitation of Biotic
Stress Tolerance from Related Wild
Species in Wheat Cultivars

Parveen Chhuneja, Satinder Kaur and H.S. Dhaliwal

Abstract Bread wheat is one of the three most important cereal crops which has
major role in feeding the population globally. Biotic stresses, mainly the fungal
diseases, pose major constraint to wheat production. To combat against these dis-
eases, continuous efforts have been made to mine genes from wide variety of
sources including primary, secondary, and tertiary gene pools of cultivated wheat
which are rich sources of genes against different biotic stresses. More than 100
resistance genes against leaf rust, stripe rust, stem rust, and powdery mildew have
been identified from these gene pools and successfully transferred to cultivated
wheat. The transfers from primary gene pool are achieved through homologous
pairing while transfer from secondary and territory gene pool requires special
chromosome engineering techniques for affecting transfers through induced
homoeologous pairing or translocations. The introgressions have been reported as
small cryptic alien segments or complete chromosome arms or chromosomes such
as chromosome addition and substitution lines. Molecular cytogenetic techniques
such as genomic in situ hybridization (GISH) have proved to be a highly efficient
technique to directly and precisely detect the alien segments in wheat while
molecular marker technologies now combined with next-generation sequencing
techniques have facilitated the mapping as well as marker-based mobilization of
alien genes to cultivated wheat background. Present review gives a brief description
of the contributions of different gene pools of wheat toward the biotic stress
resistance, methodologies of gene transfer, characterization of these transfers, and
use of the molecular marker technologies for precisely mapping the alien genes for
resistance to various biotic stresses in wheat.
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12.1 Introduction

Wheat is one of the most important staple foods of the world, occupying 17 % of
the total crop acreage worldwide, feeding nearly half of the world population.
A steadily growing population and limited areas available for growing crops make
it necessary to secure and extend yield potential. Exploitation of the basic genetic
principles has resulted in the development of high-yielding varieties and this pro-
ductivity is maintaining its rate of progress. Genetic manipulation of dwarfing genes
coupled with improved production technology led to the green revolution during
the mid-1960s. This led to quantum jump in yield of two major cereals: wheat and
rice. Since then increase in yield has been consistent but slow. Global population
has doubled during last 45 years and expected to reach 9 billion by 2050. Feeding a
population of 9 billion people would require raising overall food production by
70 %. Production in the developing countries would need to be almost double.
Quantity of food produced per capita has been declining for last more than
20 years estimated based on available cereal grains, which make up about 80 % of
the world’s food supply. The present rate of increase in the production of three
major cereals may not keep pace with the growing world population.

The population of India will be 1.4 billion by 2020 and will need *109 million
tons (MT) of wheat to meet its food demands. Wheat production in India has shown
an upward trend for the last five years producing a record of 95.91 MT during 2013–
2014 harvest (http://agricoop.nic.in/imagedefault/trade/wheatnew.pdf). However,
most of the existing wheat varieties, which were released more than a decade ago, are
showing signs of fatigue and have succumbed to the new races of the stripe rust. The
future techniques will require newer wheat-breeding strategies including quicker and
reliable selection methods to have designer plants combining high yield and disease
resistance. Breeding for resistance against diseases is an important objective of
wheat-breeding programs globally. It is also widely recognized that in the absence of
diverse genetic input, the breeding approach may not prove fruitful. The genetic
variability for resistance to major diseases, viz., yellow rust, leaf rust, stem rust,
Karnal bunt, powdery mildew and leaf blight within bread wheat germplasm needs
to be supplemented with identification and mobilization of new genes from untapped
germplasm collections. Wild relatives of wheat provide a rich reservoir of genes for
resistance to various wheat diseases and can provide a valuable source of genetic
variation for the improvement of biotic stress tolerance in cultivated wheat (Sharma
and Gill 1983; Jiang et al. 1994; Friebe et al. 1996; Singh et al. 1998). A thorough
knowledge of phylogenetic relationships of cultivated wheats with its wild pro-
genitors and related species is absolutely essential for the successful introgression
and exploitation of useful variability in the wheat germplasm.
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12.2 Major Diseases of Wheat

The rust diseases of wheat have historically been one of the major productivity
constraints for wheat cultivation globally. Stem (or black) rust caused by Puccinia
graminis is one of the most significant threats to global wheat production (Singh
et al. 2008) with the emergence of Ug99 group of stem rust races. Leaf rust caused
by Puccinia triticina and stripe rust caused by Puccinia striiformis continue to pose
a major threat to wheat production over a large area. Leaf rust and stripe rust could
affect production on approximately 60 (63 %) and 43 (46 %) m ha, respectively, in
Asia, if susceptible cultivars were grown there (Singh et al. 2004a). Powdery
mildew, caused by Blumeria graminis f. sp. tritici, is another important foliar
disease of wheat occurring worldwide. It competes for nutrients and reduces the
photosynthetic capacity of the leaves. Severe epidemics of this disease often occur
in areas with cool and humid climates, causing significant yield losses (Bennett
1984). Breeding and deployment of powdery mildew resistant cultivars is the
economical and environmentally friendly method to avoid fungicide applications
and reduction in the yield due to diseases. The discovery and utilization of new
powdery mildew-resistant genes has been a long-term objective for wheat geneti-
cists and breeders worldwide.

Karnal bunt (KB) of wheat, caused by Tilletia indica, was first reported in
Karnal, India (Mitra 1931). The disease was soon detected in numerous other
regions throughout Northern and Central India. Later, the disease was found to
occur in several other countries such as Nepal, Pakistan, Afghanistan, Iran, Iraq,
South Africa, Mexico, and USA (Rush et al. 2005). Wheat grains infected by T.
indica produce trimethylamine and flour from grains with over 3 % bunted kernels
imparts an off-color and unpleasant odour (Mehdi et al. 1973). The disease has
become important worldwide due to the strict international quarantine measures
imposed by a number of countries (Rush et al. 2005). The pathogen is soil, seed,
and airborne in nature and hence difficult to control once introduced and established
in an area. The host genetic resistance is the most effective, economical, and
eco-friendly method of KB management. However, development of KB resistant
varieties is difficult due to limited variability for KB resistance in hexaploid wheat
(Dhaliwal et al. 1993), quantitative nature of inheritance, and considerable influence
of environment on screening for disease resistance (Dhaliwal and Singh 1997).
Also, our knowledge of genetics of this host–pathogen system is limited.
Inheritance studies have indicated that KB resistance is governed by two or more
genes which act additively (Morgunov et al. 1994; Fuentes-Davila et al. 1995;
Singh et al. 1995; Villareal et al. 1995; Singh et al. 1999).
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12.3 Phylogeny of Polyploid Wheats

Hexaploid wheat originated in two steps of natural hybridization and chromosome
doubling, thus comprising genomes of three diploid species (Fig. 12.1). One wild
diploid Triticum species and two species of the closely related genus Aegilops are the
wild progenitors of bread wheat. Kihara (1919) and Sax (1922) based on the cyto-
logical data on chromosome pairing in interspecific hybrids among species of dif-
ferent ploidy levels indicated that T. monococcum and T. turgidum have one genome
in common while T. turgidum and T. aestivum share two genomes in common.
A diploid wheat species T. urartu was found to be a distinct biological species,
reproductively isolated from T. monococcum (Johnson and Dhaliwal 1976) and on
the basis of molecular data it was found that T. urartu and not T. monococcum
contributed the A genome to polyploid wheats (Dvorak et al. 1993). There has been a
lot of controversy regarding Ae. speltoides as the donor of the B and G genomes to
polyploid wheats (Sarkar and Stebbins 1956; Riley et al. 1958). Evidences from
diverse sources indicate that Ae. speltoides contributed the G genome to timopheevii
wheats, whereas Ae. speltoides with a different cytotype or a species closely related
to it contributed the B genome to turgidum wheats (Jiang and Gill 1994).

McFaden and Sears (1946) and Kihara (1944) unequivocally demonstrated that
Ae. tauschii was the D genome donor of bread wheat which arose from a
hybridization between T. turgidum and Ae. tauschii var. strangulata about
7000 years ago (Dvorak et al. 1998). The tetraploid parent probably was cultivated
emmer, ssp. dicoccum because the range of wild progenitor, ssp. dicoccoides does
not overlap with that of Ae. tauschii. Vast cytological, molecular cytogenetic, and

Fig. 12.1 Phylogeny of Triticum and Aegilops species (Source BS Gill, Wheat Genetic and
Genomic Resource Centre)

272 P. Chhuneja et al.



molecular mapping data in Triticeae and related tribes indicate that a very high level
of gene content and synteny is maintained among different species thus making it
possible to substitute complete chromosome or chromosome segment carrying
useful traits from progenitor and non-progenitor genomes into any of the wheat A,
B, and D genomes without drastic effects. The ease of transfer of useful variability
and its subsequent commercial exploitation would, however, depend on the evo-
lutionary relationship and differentiation between the donor and the recipient
genomes.

12.4 Gene Pools of Wheat

The most recent taxonomic status of Triticum and Aegilops genera to which the
cultivated wheats and their progenitors belong as established by van Slageren
(1994) is given in Table 12.1 with some modifications. There are three ploidy levels
in both the genera with 2n chromosomes 14, 28, 42 and the basic chromosome
x = 7 in all the species. Other genera of Poaceae such as Secale, Hordeum,
Dasopyrum, Agropyron, Elymus, Leymus, Elytrigia, and Thinopyrum are also
important for introgression of useful variability into cultivated wheats.

On the basis of their genomic constitution, the wild relatives of wheat can be
classified into primary, secondary, and tertiary gene pools (Jiang et al. 1994; Friebe
et al. 1996). Species belonging to the primary gene pool share homologous gen-
omes with cultivated wheat (Fig. 12.2). This group includes land races of T. aes-
tivum, the wild and cultivated forms of T. turgidum, and donor species of the A and
D genomes of bread wheat, T. monococcum, T. urartu, T. boeoticum, and Ae.
tauschii. Gene transfer from these species can be achieved by direct hybridization,
backcrossing, and selection (Friebe et al. 1996). No special cytogenetic manipu-
lation except embryo rescue in certain cases is necessary to produce F1 hybrid
(Jiang et al. 1994). Many genes conferring resistance to diseases and insect pests
have been transferred using this method and several of them are still being exploited
in cultivar improvement (McIntosh et al. 1995a, b).

The secondary gene pool of common wheat includes the polyploid Triticum and
Aegilops species that have at least one genome in common with wheat. Gene
transfer from these species by homologous recombination is possible, if the target
gene is located on a homologous chromosome. However, if the genes are present in
a non-homologous genome, special cytogenetic manipulations are required. These
species have contributed several resistance genes that are being used in cultivar
development (Jiang et al. 1994).

Species belonging to the tertiary gene pool are more distantly related. Their
chromosomes are not homologous to those of wheat. Gene transfer from these
species cannot be achieved by homologous recombination, chromosome pairing,
and recombination between wheat chromosome and alien chromosomes (Jiang et al.
1994; Friebe et al. 1996). Special cytogenetic techniques are required to ensure
compensating transfers with least linkage drag for commercial exploitation of
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Table 12.1 Species of genus Triticum and Aegilops and their genomic constitution

Species Genome Synonyms

Triticum

Diploids
T.monococcum L. (Einkorn) Am T. boeoticum

var. boeoticum T. aegilopoides

var. aegilopoides(wild)

T. urartu Tumanian ex Gandilyan(wild) A

Tetraploids
T. turgidum L. AB T. durum

var durum, (macaroni wheat)

var. dicoccum (emmer wheat) T. dicoccum

var. polonicum (polish wheat) T. polonicum

var. carthlicum (persian wheat) T. carthlicum

var. dicoccoides (wild emmer) T. dicoccoides

T. timopheevii (cultivated) AtG T. araraticum

var. araraticum (wild timopheevi)

Hexaploids
T. aestivum (common or bread wheat) ABD T. vulgare

var. spelta (spelta or dinkel wheat) T. spelta

var. campactum (club wheat) T. campactum

var. sphaerococcum (Indian dwarf
wheat)

T. sphaerococcum

var. vavilovii T. vavilovii

var. macha T. macha

T. zhukouskyi AtAmG

Aegilops

Diploid
Ae. speltoides Tausch S T. speltoides var. aucheriVar.

ligustica

Ae. longissima Schweinfx Maschl Sl T. longissimum

Ae. sharonensis Eig Ssh T. sharonense

Ae.searsei Feldman & Kislv ex
Harmmer

Ss T. searsii

Ae. bicornis (Forsk) Jaub & spach Ss T. bicorne

Ae. tauschii (Coss) Schmalh D T. tauschii

var. strangulata

var. tauschii

Ae. mutica Boiss T T. tripsacoides

Ae. comosa (Sm.& Sibth)Richter M Ae. heldreiohii, T. comosum

Ae. caudata L. C Ae. markgrafii, T. dichasian

Ae. umbellulata Zhuk U T. umbellulatum

Ae. uniaristata Vis N T. uniaristatum
(continued)
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introgressed derivatives. Even though such transfers may include an entire chro-
mosome arm or part of an arm, these have been successfully bred into commercial
wheat cultivars because the alien chromosome arm or segment genetically com-
pensates for the missing wheat chromatin.

Though gene transfers from distant relatives is more difficult, but it has been
established that the more distant from wheat the relative is, the more likely it is to
have genes that are not present in any of the wheat cultivars themselves. Some of
the genes may be of great value to wheat growers (Sears 1981).

Table 12.1 (continued)

Species Genome Synonyms

Tetraploid
Ae. cylindrica host DcCc T. cylindricum

Ae. ventricosa Tausch DVNV T. ventricosum

Ae. crassa L. DCLMc T. crissum

Ae. triuncialis L. UCt T. triunciale

Ae. geniculata Roth UMo T. ovatum

Ae. neglecta UM Ae. triaristata

Ae. columnaris Zhuk UM T. columnare

Ae. biuncialis Vis UM Ae. lorentii, T. machrochaetum

Ae. kotschyi Boiss USl T. kotschyi

Ae. peregrina USl Ae. variabilis

Hexaploids
Ae. juvenalis (Thell) eig DMU T. juvenile

Ae. vavilovii (Zhuk) Chennav DMS T. syriacum

Ae. crassa var. glumiaristata DDM T. crassum(6x)

Ae. neglecta var. recta UMN Ae. triaristata(6x)

Fig. 12.2 Gene pools of
wheat
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12.5 Steps and Techniques for Alien Gene Introgression

Various steps for successful hybridization, introgression of useful variability, and
characterization of introgressed derivatives are listed below:

12.5.1 Steps of Introgression

i. Synchronization of flowering
ii. Embryo rescue
iii. Overcoming hybrid dysgenesis
iv. Synthetic amphiploid
v. Circumventing gene suppression
vi. Development of alien addition and homoeologous substitutions
vii. Induction of homoeologous pairing and translocations

Introgression of useful variability from related cultivars and wild species into
cultivated bread and durum wheats has been reviewed by Cox (1998). In this
chapter, we will describe only the techniques for promoting alien gene transfer and
characterization of interspecific derivatives.

12.5.2 Techniques for Promoting Alien Gene Transfer

12.5.2.1 Induced Homoeologous Pairing

The pairing affinity among homoeologous chromosomes of the three wheat gen-
omes is suppressed by the genetic activity of the pairing homoeologous gene, Ph1,
on the long arm of chromosome 5B. In the presence of Ph1, the alien chromosomes
will not pair with their wheat homoeologues. Therefore, different strategies for
promoting pairing between wheat and alien chromosomes must be used.

12.5.2.2 Use of 5B—Deficient Stocks

If an alien species can be crossed directly with bread wheat, plants monosomic for
chromosome 5B can be used as female parents in crosses with it. About 75 % of the
offspring will be deficient for 5B. Progeny lacking 5B will show considerable
homoeologous pairing and desired recombinants may be recovered by backcrossing
them with the wheat parent.
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12.5.2.3 Crosses with Species Carrying a Suppressor of Ph1

An effective method of inducing homoeologous pairing is by crossing wheat with
certain genotypes of alien species that inactivate the homoeologous pairing sup-
pressors. Aegilops speltoides, for example, is known to suppress the activity of Ph1
in hybrids with wheat, resulting in high homoeologous pairing (Riley 1960). These
hybrids are then backcrossed to wheat and direct transfer of genetic material from
Ae. speltoides to wheat may be obtained. Riley et al. (1968a) used this technique to
transfer stripe rust resistance from Ae. comosa (MM) to wheat. Chen et al. (1994)
transferred a dominant homoeologous pairing inducer PhI gene from Ae. speltoides
into hexaploid wheat cultivar Chinese Spring (CS). Aghaee-Sarbarzeh (2000) has
successfully induced homoeologous pairing between alien chromosomes and their
wheat homoeologues using Chinese Spring stock with suppressor for Ph locus. The
availability of this system in T. aestivum would allow the exploitation of this system
for reducing the linkage drag during the transfer of alien genes.

12.5.2.4 Crosses Involving Ph Mutants

A high-pairing mutation involving a small, intercalary deficiency for Ph1 was
produced by Sears (1977) and is designated ph1b. Subsequently, another mutation
(a terminal deficiency) that conditions an intermediate level of homoeologous
pairing was induced. This mutant is designated as ph2a and is located on the short
arm of 3D. It seems that the level of homoeologous pairing obtained in the absence
of Ph1 is about the highest obtainable. Another mutant induced in the durum wheat
cultivar Cappelli has been designated ph1c and is being used in promoting ho-
moeologous pairing in intergeneric hybrids. These mutants, when crossed with
alien species, may induce wheat–alien chromosome pairing and thus facilitate
desired gene transfer into wheat.

12.5.2.5 Chemical Agents

Knight et al. (2010) showed in detached wheat tillers of wheat–rye hybrids that
okadaic acid (OA), a drug known to induce chromosome condensation, can be
introduced into wheat interspecific hybrids prior to meiosis to induce homoeolo-
gous chromosome pairing. This pairing occurs in the presence of the Ph1 locus,
which usually suppresses pairing of related chromosomes through delayed con-
densation. The timing of chromosome condensation during the onset of meiosis is
an important factor in controlling chromosome pairing. This indicated that with the
correct concentration of OA, chromosome pairing can be induced in wheat–rye
interspecific hybrid plants even in the presence of the Ph1 locus, mimicking the
pairing observed in the absence of Ph1. Thus, this approach of treating detached
wheat tillers with a drug can in principal provide a powerful method to enhance
genetic exchange between chromosomes once standardized for in vivo system.
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12.5.2.6 Radiation-Induced Translocations

Sears (1956) pioneered a method using ionizing radiation to produce translocation
between homoeologous chromosomes. He developed synthetic amphiploids by
crossing Ae. umbellulata (UU) with T. dicoccoides (AABB) which was further
crossed with Chinese Spring wheat to transfer leaf rust resistance from Ae.
umbellulata to bread wheat. After two backcrosses of the F1 plants (pollen parent)
to Chinese Spring leaf rust-resistant plants with 21 bivalents plus an added Ae.
umbellulata (UU) chromosome were obtained, including one carrying an isochro-
mosome for the long arm of the umbellulata chromosome, the arm carries the
resistance gene. Plants carrying the isochromosome were irradiated with X-rays
when the first spikes were entering meiosis. Pollen from these plants was used to
pollinate Chinese Spring. Since the U chromosome was deleterious and showed low
transmission through the pollen, it was expected that most resistant progeny would
carry a translocation. Of the 6091 plants, 132 were rust-resistant and 40 proved to
carry translocation. One line was named Transfer and its gene for resistance, Lr9,
was used in several cultivars in the USA.

12.5.2.7 Spontaneous Translocations

During meiosis in wide crosses, chromosomes often occur as univalents which may
divide incorrectly to give rise to telocentrics; reunions are known to occur between
different telocentrics resulting in novel chromosomes with desired genes. Based on
this phenomenon, Sears (1972) proposed a method of transferring genes involving
the exchange of whole chromosome arms. In a wheat–alien hybrid having wheat as
well as an alien monosome, both univalents may occasionally divide incorrectly in
the same sporocyte and thus a wheat chromosome arm may rejoin an alien chro-
mosome arm. Although, frequency of such unions is low, Zeller (1973) could
produce two wheat–rye exchanges in crosses between Chinese Spring monosomics
and Chinese Spring–Rye addition lines. Several European cultivars carry a spon-
taneous translocation between chromosome 1B of wheat and 1R of rye. The Veery
lines developed in the CIMMYT program in Mexico also carry a 1BL/1RS
translocation derived from the winter wheat, Kavkaz. They have proven to be very
high yielding as well as having good resistance to several diseases.

12.5.2.8 Introgression via Direct Hybrid

Gene transfer by direct backcrossing is possible in those combinations where there
are one or more genomes homologous between recipient and donor species
(Table 12.2). Hybrids between durum or common wheat and related donor species
are generally male sterile which set seed when backcrossed. Gerechter-Amitai and
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Grama (1974) transferred stem rust-resistant gene from T. monococcum
spp. aegilopoides into T. durum by simple backcrossing. Sterile triploid hybrid
(AmAB) produces viable female gamete with only 14 chromosomes (Am/AB) and
on backcrossing with recurrent durum parents as male, fertile durum derivatives are
recovered in BC1 generation with complete recovery of B genome and recombi-
nation and assortment of Am/A. During gene transfer via direct hybrids, embryos
have to be rescued in wider ploidy level differences between the recipient and the
donor species such as between T. aestivum and Ae. tauschii or T. monococcum.
Moreover, there is very little seed set on backcrossing the sterile F1 hybrids as the
chances of formation of viable female gametes are very rare unless and until there is
unreduced gamete formation in certain combinations. It is desirable in certain cases
with partial male fertility to use early backcross generation derivatives as male
parent for rapid recovery of euploid and elimination of unwanted chromosomes and
translocations. Repeated backcrossing and selfing of recovered euploid with alien
introgression accompanied with stringent selection may be required for rapid
recovery of cultivated background without any linkage drag. At PAU, we have
successfully transferred genes for disease resistance and HMW glutenin subunits
from several Triticum and Aegilops species into wheat and durum cultivars via
direct hybridization and backcrossing.

Table 12.2 Gene transfer into wheat by direct backcrossing

Recipient
parent

Donor parent Trait References

T. durum T. boeoticum Stem rust Gerechter-Amitai et al.
(1971)

T. aestivum Ae. speltoides Leaf rust Dvorak (1977)

T. aestivum T.
monococcum

Leaf rust Cox et al. (1994)

T. aestivum Ae. squarrosa Leaf rust Cox et al. (1994)

T. durum T.
monococcum

Hessian fly Cox and Hatchett (1994)

Herbicide tolerance Gill et al. (1987)

T. durum T. timopheevii Glume blotch Ma et al. (1995)

Stem rust

Powdery mildew

T. aestivum T. araraticum Powdery mildew Dhaliwal et al. (2002)

Stripe rust

Leaf rust

T. aestivum Ae. triuncialis Leaf rust, powdery
mildew

Harjit Singh et al. (2000)

Cereal cyst nematode

T. aestivum Ae. ovata Leaf rust, stripe rust Dhaliwal et al. (2002)
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12.5.2.9 Gene Transfer via Synthetic Amphiploids

Synthetic amphiploids, being fertile and true breeding, have been used for transfer
of genes for disease resistance from diploid to tetraploid or hexaploid wheat
(Table 12.3). In majority of cases of gene transfer from diploid species via synthetic
amphiploids, T. durum has been used as one of the buffering or bridging species for
making synthetic amphiploids for their ultimate hybridization with bread wheat
cultivars. During development of synthetic amphiploid between T. durum and the
donor diploid species such as T. monococcum, Ae. umbellulata, Ae. caudata,
doubling of chromosomes of sterile triploid hybrids is required, whereas no col-
chicine treatment is needed in T. durum × Ae. tauschii and T. durum x Ae.
longissima hybrids as there is a high degree of seed set on selfing due to unreduced
female and male gamete formation. It is, however, very important to use T. durum
parent susceptible to a particular disease or with low expression of a trait that is
intended to be transferred from a particular diploid species so that concomitant
transfer for the same trait for T. durum parent does not get confounded or interfere
with the monitoring of genes transferred from the diploid donor species.

Series of durum–Ae. tauschii synthetic amphiploids have been developed and
very extensively used at CIMMYT, Mexico, for transfer of disease and insect
resistance and quality traits from Ae. tauschii into bread wheat. The suppression of
disease resistance in certain amphiploids due to the presence of gene suppressors in
T. durum and T. aestivum has to be avoided through careful selection of T. durum
and T. aestivum parents. Due to the presence of Ne1 gene in most of the T. durum
cultivars and Ne2 in most of the CIMMYT-derived T. aestivum lines, hybrids
between wheat and synthetic durum-tauschii often end up with hybrid necrosis. To
avoid hybrid necrosis, we have developed a WL711 version without Ne alleles,
which is being exhaustively used for gene transfer. In case of intended gene transfer
from a non-progenitor species with non-homologous genome, it will be desirable to

Table 12.3 Gene transfer into common wheat via synthetic amphiploids

Amphiploid Trait References

Ae. speltoides–T. monococcum Leaf rust Kerber and Dyck (1990)

Stem rust

T. durum–T. monococcum Leaf rust Valkoun et al. (1986)

Stripe rust

Karnal bunt Kuraparthy et al. (2001)

Dhaliwal et al. (2002)

Tetra Canthatch–Ae. tauschii Leaf rust Kerber and Dyck (1969)

T. durum–Ae. tauschii Septorial leaf blotch May and Lagudah (1992)

Karnal bunt Villareal et al. (1994a,b)

T. durum–Ae. umbellulata/T aestivum Leaf rust Chhuneja et al. (2008b)

Stripe rust
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cross the amphiploid with PhI stock for inducing homoeologous pairing before
backcrossing with the elite wheat variety.

Polyploid wheats have been successfully hybridized with several distantly
related species and genera of Poaceae including Aegilops, Agropyron, Leymus,
Elymus, Secale, Hordeum, Haynaldia, Thinopyrum, Sorghum, Pennisetum, and Zea
mays due to their higher ploidy levels, buffering genomes, and genes controlling
crossability which has been extensively reviewed (Sharma and Gill 1983; Jiang
et al. 1994).

12.6 Molecular Cytogenetic Characterization of Alien
Introgressions

Characterization of a wheat–alien chromosome translocation includes the identifi-
cation of the translocated chromosome, localization of the break points, and esti-
mation of the amount of the transferred alien chromatin. Molecular cytogenetic
techniques such as genomic in situ hybridization (GISH) have proved to be the
most efficient techniques to directly and precisely detect the alien segments in
wheat. It allows rapid identification of individual chromosomes in situ (on a glass
slide). Non-isotopic methods of mapping DNA sequences in situ on chromosomes
on a glass slide were used to construct a molecular karyotype of wheat (Rayburn
and Gill 1985). These molecular cytogenetic methods of genome analysis have
greatly facilitated cytogenetic analysis in wheat and related species, especially the
analysis of alien transfers (Friebe et al. 1991, 1996).

A number of wheat–alien translocations conferring resistances to diseases and
pests have been successfully characterized (Table 12.4) through strenuous and
collaborative efforts at the international level, some of which have been included in
an excellent review by Friebe et al. (1996). Eleven of the 58 wheat–alien translo-
cations analyzed by C-banding and GISH were whole arm translocations with break
points within the centromere, whereas 45 translocations were terminal. There were
only two intercalary translocations with an alien segment inserted into wheat
chromosome arm. The majority of the translocations obtained through irradiation
were of non-compensating type involving transfers between non-homoeologous
chromosome arms, whereas most of the wheat–alien translocations produced by
induced homoeologous recombinations were of compensating type with greater
agronomic potential.

In situ hybridization was initially developed, independently, by Gall and Pardue
(1969) and John et al. (1969). Genomic in situ hybridization (Pinkel et al. 1986) is a
special type of fluorescence in situ hybridization, which uses genomic DNA of
donor species as a probe in combination with an excess amount of unlabeled
blocking DNA, to monitor alien chromatin introgressions. Genomics in situ
hybridization using genomic DNA of the donor species as probe offers advantages
as compared to other methods as it leads to the ‘painting’ of all alien chromatin
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located in the nucleus. GISH has been widely used to investigate the origin of
genomes, chromosomes, and parental genomes in hybrids (Schwarzacher et al.
1989) and to analyze derived introgressed lines from interspecific crosses (Murata
et al. 1992; Schwarzacher et al. 1992; Taketa et al. 1997). Technical advances in
DNA probe labeling, in situ hybridization and microscopy, allow repeated
hybridization, mapping, and processing of chromosome images for multiprobe
mapping on a single metaphase.

C-banding and GISH patterns detected alien introgression carrying Lr9, the first
alien-resistant gene transferred from Ae. umbellulata into wheat, on chromosome
6B (Friebe et al. 1996). Alien introgressions carrying leaf and stripe rust resistance
genes Lr57 and Yr40 from Ae. geniculata have been characterized by GISH
(Kuraparthy et al. 2007a). One of the introgression lines (IL) had an alien
translocation covering complete short arm and half of the long arm of chromosome
5D. Another IL had a small translocation spanning 1/4th of the short arm of 5D
while the third IL did not show any GISH signal indicating that the alien segment
was very small. Schwarzacher et al. (1992) used fluorescent in situ hybridization
(FISH) technique to identify alien chromatin from H. vulgare, Th. bessarabicum,
Leymus muticaulis, and S. cereale in chromosome spreads of wheat.
Radiation-induced wheat–rye translocation lines resistant to Hessian fly were
analyzed by the total genomic and highly repetitive rye DNA probes (Mukai et al.
1993). FISH analysis revealed the exact locations of the break points and allowed
the estimation of the sizes of the transferred rye segments. Wheat–rye 1B-1R
translocation has also been characterized by GISH (Heslop-Harrison et al. 1990).
Using biotin labeled total genomic DNA of rye as probe for in situ hybridization,
the sizes and 1B-1R translocation points in five wheat varieties were determined.
All translocation break points were found to be at or near to centromere.

12.7 Molecular Markers for Characterization of Alien
Introgressions

Molecular markers are useful tools for assaying genetic variation and provide an
efficient means to link phenotypic and genotypic variations (Varshney et al. 2005).
Using molecular markers, high-density genetic linkage maps in various crops have
been established which in turn provide a basis for marker-assisted selection
(MAS) of agronomically useful traits, for the pyramiding of the genes of interest
and their isolation by map-based cloning.

Restriction fragment length polymorphism (RFLP) was one of the first DNA
marker techniques used to characterize wheat cultivars (Vaccino et al. 1993). The
polymerase chain reaction (PCR) technique facilitated the development of simpler
and low-cost molecular markers, called SSR (also called microsatellites, Tautz and
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Renz 1984). PCR-based markers, RAPD (Random Amplified Polymorphic DNA),
STS (Sequence Tagged Sites), and SSR (Simple Sequence Repeat), etc. have been
found to be invaluable tools for the monitoring of introgressed genes from different
wild relatives into cultivated species (Autrique et al. 1995; Brown et al. 1996).
Autrique et al. (1995) used RFLP markers to mark the resistance genes Lr9 from
Ae. umbellulata and Lr32 from Ae. tauschii. RAPD markers were used to identify
addition lines of Ae. searsii (Diaz-Salazar and Orellana 1995) and Ae. caudata (Peil
et al. 1998).

Molecular markers are powerful tools for identifying quantitative traits and
dissecting these complex traits into Mendelian factors in the form of quantitative
trait loci (QTL) as well as for establishing the genomic locations of such genetic
loci. Bulked segregant analysis (BSA), which involves pooling of entries at the two
extremes for a segregating trait (Michelmore et al. 1991), has been effectively used
for identifying molecular markers associated with disease-resistant genes in a
number of species.

Various molecular markers have been widely used to tag and map resistance
genes in wheat; however, SSRs have emerged as the choice of marker in
gene-mapping studies. This type of molecular marker is genome-specific, appears to
be evenly distributed over the wheat genome, and shows a higher level of poly-
morphism compared to any other marker system (Röder et al. 1998).

Microsatellite markers have been developed and incorporated in already-existing
RFLP linkage maps in crops such as wheat (Roder et al. 1998). Wheat has more
than 3000 SSR markers mapped so far (Song et al. 2005). Molecular markers can be
used for alien gene transfers and understanding the mechanism of gene transfer. The
size of the smallest translocation with a particular trait can be revealed by molecular
mapping using physically and/or genetically mapped markers. Several DNA
markers closely linked with rust-resistant genes have also been developed. Such
markers ensure selection of a target gene based on the presence of the linked
genotype. The success of selection depends on the close genetic association and
robustness of a given marker across different genetic backgrounds. The markers
found to be closely linked with the rust-resistant genes transferred from wild species
are listed in Tables 12.5 and 12.6.

Schachermayr et al. (1994) developed near isogenic lines (NILs) for the Ae.
umbellulata leaf rust-resistant gene Lr9 and used two linked RFLP markers
(cMWG 684, PSR 546) to locate it on 6BL of wheat. Gold et al. (1999) converted
an ISSR (inter-simple-sequence repeat) marker to a SCAR (sequence characterized
amplified region) marker linked to the chromosome segment carrying Lr35 and
Sr39. Robert et al. (1999) identified one RAPD and one RFLP marker closely
linked to the stripe rust-resistant gene Yr17. Gupta et al. (2006) reported tagging of
leaf rust-resistant gene Lr19 (7DL) of wheat derived from Ag. elongatum using
RAPD and microsatellite markers. Sixteen RAPD markers were identified as linked
to the alien gene Lr19. Feuillet et al. (1995) screened Thatcher NILs for Lr1 (5DL)
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Table 12.5 List of leaf rust and stripe rust resistance genes, transferred from wild progenitor
species and tagged with molecular markers

Gene Source Chromosome Marker References

Leaf rust resistance genes

Lr63 T. monococcum 3AS SSR Kolmer et al. (2010)

Lr21 Ae. tauschii 1DS RFLP/RGA-STS Rowland and Kerber
(1974)

Huang and Gill
(2001)

Lr22a Ae. tauschii 2DS SSR Hiebert et al. (2007)

Lr32 Ae. tauschii 3D SSR Thomas et (2010)

Lr39/Lr41 Ae. tauschii 2DS SSR Raup et al. (2001)

Singh et al. (2004)

Lr40 Ae. tauschii 1DS SSR Spielmeyer et al.
(2000)

Lr42 Ae. tauschii 1DS SSR Liu et al. (2013)

Lr43 Ae. tauschii 7DS SSR Hussien et al. (1997)

Lr28 Ae. speltoides 4AL RAPD/TPSCAR/SSR Cherukuri et al.
(2005); Vikal et al.
(2004)

Lr35 Ae. speltoides 2B RAPD/TPSCAR Seyfarth et al. (1999)

Lr36 Ae. speltoides 6BS – Gold et al. (1999)

Lr47 Ae. speltoides 7AS CAPS/SSR Helguera et al.
(2003)

Lr51 Ae. speltoides 1BL CAPS Helguera et al.
(2005)

Lr66 Ae. speltoides 3A SCAR Marais et al. (2009a,
b)

Lr53 T. dicoccoides 6BS SSR Dadkhodaie et al.
(2011)

Lr61 T. turgidum 6BS AFLP Herrera-Fossel et al.
(2008)

Lr64 T. dicoccoides 6AL SSR Kolmer (2008)

Stripe rust resistance genes
Yr28 Ae. tauschii 4DS SSR Singh et al. (2000a,

b)

Yr15 T. dicoccoides 6BS Sun et al. (1997)

Yr35 T. dicoccoides 6BS SSR Dadkhodaie et al.
(2011)

Stem rust resistance genes
Sr2 T. turgidum 3BS SSR/STS Mago et al. (2011)

Sr13 T. turgidum 1DL/1RS SSR Knott (1962), Simons
et al. (2011)

Sr21 T. monococcum 2AL Sequence-based
markers

Chen et al. (2015)

(continued)
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Table 12.5 (continued)

Gene Source Chromosome Marker References

Sr22 T. monococcum 7AL SSR Oslon et al. (2010)

Sr35 T. monococcum 3AL SSR Saintenac et al.
(2013)

Sr33 Ae. tauschii 1DL SSR Periyannan et al.
(2013)

Sr45 Ae. tauschii 1DS EST/SSR/AFLP Periyannan et al.
(2014)

Sr46 Ae. tauschii 2DS – Yu et al. (2011)

Singh et al. (2011)

Sr32 Ae. speltoides 2AL, 2BL SSR/EST Mago et al. (2013a,
b)

Sr39 Ae. speltoides 2B SCAR Gold et al. (2002)

Mago et al. (2009)

Sr47 Ae. speltoides 2BL SSR Faris et al. (2008)

Powdery mildew resistance genes
Pm1b T. monococcum 7AL STS Hsam et al. (1998)

Pm1c T. monococcum 7AL RFLP/RAPD Sears and Briggle
(1969)

Hartl et al. (1995)

Pm4d T. monococcum 2AL SSR/STS Schmolke et al.
(2012)

Pm25 T. monococcum 1A RAPD Shi et al. (1998)

Pm2 Ae. tauschii 5DS SSR Qiu et al. (2006)

Pm19 Ae. tauschii 7D – Lutz et al. (1995a, b)

Pm34 Ae. tauschii 5DL SSR Miranda et al. (2006)

Pm35 Ae. tauschii 5DL SSR Miranda et al. (2007)

Pm1d T. spelta var
duhamelianum

7AL STS Hsam et al. (1998)

Pm12 Ae. speltoides 6BS RFLP Jia et al. (1996)

Pm32 Ae. speltoides 1BL Monosomic Hsam et al. (2003)

Pm3 k T. dicoccoides 1AS Yahiaoui et al.
(2009)

Pm16 T. dicoccoides 4A SSR Chen et al. (2005)

Pm26 T. turgidum var.
dicoccoides

2BS RFLP Rong et al. (2000)

Pm30 T. dicoccoides 5BS – Liu et al. (2002)

Pm31 T. dicoccoides 6AL – Xie et al. (2003)

Pm36 T. dicoccoides 5BL EST Blanco et al. (2008)

Pm41 T. dicoccoides 3BL SSR/RFLP Li et al. (2009)

Pm42 T. dicoccoides 2BS SSR/RFLP Hua et al. (2009a)
(continued)
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Table 12.5 (continued)

Gene Source Chromosome Marker References

Pm5a T. dicoccum 7BL SSR Law and Wolfe
(1966)

Pm49 T. dicoccum 2BS Piarulli et al. (2012)

Pm50 T. dicoccum 2AL Mohler et al. (2013)

Table 12.6 List of leaf rust and stripe rust resistance genes, transferred from wild non-progenitor
species and tagged with molecular markers

Gene Source Chromosome Marker References

Leaf rust resistance genes

Lr9 Ae. umbellulata 6BL STS/RFLP/RAPD/SCAR Schachermayr et al.
(1994)

Lr76 Ae. umbellulata 5DS STS Bansal et al. (2015)

Lr18 T. timopheevi 5BL N-band Yamamori (1994)

Lr50 T. timopheevi
subsp. armeniacum

2BL SSR Brown-Guerdira
et al. (2003)

Lr52 T. timopheevi
subsp. viticulosum

2A SSR Tar et al. (2008)

Lr54 Ae. kotschyi 2DL SCAR Marais et al. (2005)

Lr59 Ae. peregrina 1AL SSR Marais et al. (2008,
2010)

Lr57 Ae. geniculata 5DS CAPS Kuraparthy et al.
(2009)

Lr58 Ae. triuncialis 2BL SSR Kuraparthy et al.
(2011)

Lr62 Ae. neglecta 6AS SSR Marais et al. (2009a,
b)

Lr56 Ae. sharonensis 6A SSR Marais et al. (2010a,
b)

Lr25 Secale cereale 4BL RAPD/SSR Procunier et al.
(1995, )

Singh et al. (2011)

Lr26 Secale cereale 1BL RFLP Mago et al. (2005a,
b)

Lr44 T. spelta 1B SSR Dyck and Sykes
(1994)

Lr37 Ae. ventricosa 2AS SCAR/CAPS Helguera et al.
(2003)

Lr38 Ag. intermedium 2AL SSR Mebrate et al.
(2008)

(continued)
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Table 12.6 (continued)

Gene Source Chromosome Marker References

Lr19 Ag. elongatum 7DL RFLP/STS/RAPD Prins et al. (2001)
Gupta et al. (2006)

Lr24 Ag. elongatum 3DL STS/SCAR Dedryver et al.
(1996)

Gupta et al. (2006)

Lr29 Ag. elongatum 7DS RAPD/SCAR Procunier et al.
(1995)

Lr55 Elymus
trachycaulis

1B Dart Friebe et al. (2005)

Stripe rust resistance genes
Yr37 Ae. kotschyi 2DL SCAR Marais et al. (2005)

Yr38 Ae. sharonensis 6AL SSR Marais et al. (2010a,
b)

Yr40 Ae. geniculata 5DS CAPS Kuraparthy et al.
(2009)

Yr42 Ae. neglecta 6AS SSR Marais et al. (2009a,
b)

Yr8 Ae. comosa 2A, 2D – Riley et al. (1968a,
b)

Yr5 T. spelta 2BL STS McGrann et al.
(2014)

Yr17 Ae. ventricosa 2AS SCAR/CAPS Robert et al. (1999)

Yr70 Ae. umbellulata 5DS STS Bansal et al. (2015)

Yr9 S. cereal 1BL/1RS RFLP Mago et al. (2005a,
b)

Yr50 Th. intermedium 4BL SSR Liu et al. (2013)

Stem rust resistance genes
Sr34 Ae. comosa 2A, 2D Friebe et al. (1996)

Sr36 T. timopheevi 2BS SSR Tsilo et al. (2008)

Sr37 T. timopheevi 4BL SSR Zhang et al. (2012)

Sr40 T. timopheevi 2BS SSR Wu et al. (2009)

Sr38 Ae. ventricosa 2AS Helguera et al.
(2003)

Sr53 Ae. geniculata 5DL RFLP Liu et al. (2011)

Sr27 Secale cereal 3AS Singh et al. (2011)

Sr31 Secale cereal 1BL Mago et al. (2002)

Sr50 Secale cereal 1DL/1RS – Anugrawati et al.
(2008)

Sr24 Th. elongatum 3DL SSR Mago et al. (2005a,
b)

Sr25 Th. elongatum 7DL STS Liu et al. (2010)
(continued)
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with 37 RFLP probes and found three to be linked to the gene after testing on F2
populations between Thatcher and Lr1/Thatcher. Helguera et al. (2003) developed
PCR primers based on existing RFLP markers for the Lr37–Yr17–Sr38 gene
cluster.

Lr57 and Yr40, a leaf rust and stripe rust resistance gene, respectively, intro-
gressed from Ae. geniculata have been mapped on chromosome 5DS of wheat
using 11 RFLP probes (Kuraparthy et al. 2007a). PCR-based CAPS markers were
later developed by Kuraparthy et al. (2009) which are being used for
marker-assisted transfer of these genes to other backgrounds. The leaf rust-resistant
gene Lr21 has been located onto chromosome 1D and successfully cloned by
Huang et al. (2003) using RFLP and STS markers. The rust-resistant genes Lr20–
Sr15 (7AL) and Lr47 (7AS) were mapped using STS, SSR, CAPS, and SCAR

Table 12.6 (continued)

Gene Source Chromosome Marker References

Sr26 Th. elongatum 6AL STS Mago et al. (2005a,
b)

Sr43 Th. elongatum 7DL SSR/EST Xu et al. (2009)

Sr44 Th. intermedium 7DS Liu et al. (2013)

Sr52 Dasypyrum
villosum

6AL SSR/RFLP Qi et al. (2011)

Powdery mildew resistance genes
Pm1d T. spelta var

duhamelianum
7AL AFLP Hsam et al. (1998)

Pm4b T. carthlicum 2AL SSR/STS The et al. (1979)

Pm33 T. carthlicum 2BL SSR/STS Zhu et al. (2005)

Pm3b T. sphaerococcum 1AS SSR/RFLP Yahiaoui et al.
(2004)

Pm7 S. cereale 4BL – Friebe et al. (1994)

Pm20 S. cereale 6BS – Heun et al. (1990)

Pm8 S. cereale 1BL/1RS STS Mohler et al. (2001)

Pm17 S. cereale 1BL/1RS RFLP Mohler et al. (2001)

Pm29 Ae. ovata 7DL RFLP/AFLP Zeller et al. (2002)

Pm13 Ae. longissima 3B STS/RFLP/RAPD Ceoloni et al.
(1992), Cenci et al.
(1999)

Pm6 T. timopheevii 2B RFLP Jørgensen (1973)

Pm27 T. timopheevii 6B SSR/RFLP Jarve et al. (2000)

Pm37 T. timopheevii 7AL SSR Perugini et al.
(2008)

Pm40 Th. intermedium 7BS SSR Luo et al. (2009)

Pm43 Th. intermedium 2DL SSR He et al. (2009)

Pm21 Haynaldia villosum 6AS SCAR/RFLP Qi et al. (1996)
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markers (Purnhauser et al. 2000; Neu et al. 2002; Stepien et al. 2003, Khan et al.
2005). A leaf rust-resistant gene Lr58 has been transferred from Ae. triuncialis L.
into common wheat (Triticum aestivum L.). Using RFLP markers XksuF11,
XksuH16, and Xbg123, the gene was mapped on distal region of chromosome arm
2BL (Kuraparthy et al. 2007b).

Stripe rust-resistant genes in diploid A genome were mapped and transferred to
bread wheat. A linkage map with 169 SSR and RFLP loci generated from a set of
93 RILs from a cross involving T. monococcum (acc. pau14087) and T. boeoticum
(acc. pau5088) was used for mapping stripe rust-resistant genes. The
QTL-controlling stripe rust resistance in T. monococcum was mapped on chro-
mosome 2A (QYrtm.pau-2A), whereas the QTL from T. boeoticum was mapped on
5A (QYrtm.pau-5A). One stripe rust-resistant gene from T. boeoticum acc. pau5088
was confirmed to be introgressed in cultivated wheat which was indicated by
co-introgression of T. boeoticum sequences linked to stripe rust-resistant QTL,
QYrtb.pau-5A (Chhuneja et al. 2008a). Some of the reported stripe rust QTLs are
listed in Table 12.7.

12.8 Progenitor Gene Pool of Wheat—A Source for
Disease Resistance

12.8.1 Diploid 'A' Genome Species

Triticum monococcum L., generally known as einkorn wheat, is an ancient diploid
A genome wheat that was domesticated about 10,000 years ago in the southwest
Turkey in the Karaca Dag mountains (Heun et al. 1997). T. monococcum
ssp. monococcum L. is domesticated and T. monococcum ssp. aegilopoides (Link)
Thell. T. boeoticum Boiss. (2n = 2x = 14) is a wild form of T. monococcum
ssp. monococcum. Primary gene pool of wheat, T. monococcum s.l., comprising
three closely related species T. monococcum, T. boeoticum, and T. urartu, harbors

Table 12.7 Stripe rust QTLs on different chromosomes

QTL Markers References

QPst.jic-1BL Xgwm259-Xgwm818 Melichar et al. (2008)

QYr.uga-2AS Xbarc124-Xgwm359 Hao et al. (2011)

QYr.sgi.2B.1 Xgwm148 Ramburan et al. (2004)

QYrl.cau-2BS.2 Xgwm148-Xbarc167 Guo et al. (2008)

QYrcaas-5AL Xwmc410-Xbarc261 Lan et al. (2010)

QYrtm.pau-2A Xwmc407-Xwmc170 Chhuneja et al. (2008a)

QYrtb.pau-5A Xbarc151-Xcfd12 Chhuneja et al. (2008a)

QYr-tem-5B.2 Xwmc235-Xgwm604 Feng et al. (2011)

QYrst.wgp-6BS.2 Xgwm132-Xgdm113 Santra et al. (2008)
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useful variability for many economically important genes, including resistance to
diseases, which can be used for hexaploid wheat improvement (Feldman and Sears
1981; Dhaliwal et al. 1993; Hussien et al. 1997; Yao et al. 2007) but they have not
been exploited to the level of the D genome or other Aegilops species have been
exploited. T. urartu has been the A genome donor of the most important polyploid
wheat species including the durum or macaroni wheat T. turgidum (AABB), T.
timopheevii (AAGG), and common wheat T. aestivum (AABBDD). In contrast, T.
monococcum has only been used for the generation of T. zhukovskyi (AmAmAAGG)
(Dvorak et al. 1993; Dubcovsky et al. 1995). Thus, the Am genome is
under-represented in hexaploid wheat, and the exploitation of genetic diversity in T.
monococcum and discovery of novel variant alleles may provide opportunities for
further wheat genetic improvement. There is advantage of introgressing traits from
T. monococcum than other wheat relatives as introgressed chromatin from T.
monococcum readily recombines with T. aestivum chromatin thus facilitating the
transfer of traits into wheat germplasm with ease. This provides an opportunity to
reduce the size of the alien chromatin and to eliminate linkage to unwanted genes.

T. monococcum has high levels of resistance to the wheat leaf rust. Though some
reports suggested the low level of genetic variation in T. monococcum, Bai et al.
(1998) studied 49 T. monococcum accessions for leaf rust and all were found to
possess the same gene for leaf rust resistance. Anker and Niks (2001) reported most
of the T. monococcum accessions (84 %) to be resistant, whereas all T. urartu
accessions were found susceptible to leaf rust. T. monococcum and T. boeoticum
were found to be closely related but their host status for the wheat leaf rust fungus
clearly differed. These three diploid wheat species thus differed in their reaction to
wheat leaf rust. This is more likely based on a high allele frequency of one or more
effective major genes in T. monococcum which are absent in T. boeoticum hence, T.
monococcum has almost a non-host status to the wheat leaf rust (Anker et al. 2001).

Several disease resistance genes have been transferred from T. monococcum, T.
boeoticum, and T. urartu to cultivated wheat. A summary of the resistance genes for
leaf rust, stripe rust, stem rust and powdery mildew transferred from A genome
species and cataloged is summarized in Table 12.5. Valkoun et al. (1986) reported
leaf rust resistance in three accessions of T. boeoticum and its transfer into hex-
aploid wheat. A single gene giving partial resistance to leaf rust was introduced
from T. monococcum to Thatcher isogenic line RL6137 mapped on chromosome
3A. This gene in RL6137 on chromosome 3AS was designated as Lr63 (McIntosh
et al. 2009). Also, Hussien et al. (1997) mapped leaf rust-resistant genes in winter
wheat lines derived from T. boeoticum on chromosomes 6A, 1A, and 5A.

Rouse and Jin (2011) screened 1061 accessions of T. monococcum and 205
accessions of T. urartu against five P. graminis f. sp. tritici races and found 78.7 %
of T. monococcum and 93.0 % of T. urartu to be resistant to race TTKSK, however,
only 6.4 % T. monococcum accessions were resistant to all the five races.
Infection-type patterns of accessions of both species indicated previously unchar-
acterized genes for resistance to race TTKSK exist in both T. monococcum and T.
urartu. Stem rust resistance genes, namely Sr21 (2A), Sr22 (7A) and Sr35 (3A),
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have been successfully transferred and mapped in common wheat from T. mono-
coccum (Table 12.5; Paull et al. 1994; McIntosh et al. 1984).

Apart from rust resistance, powdery mildew resistance has also been introduced
from T. monococcum. Pm1 and its two alleles Pm1b and Pm1c have been trans-
ferred from T. monococcum into cultivated wheat (Sears and Briggle 1969; Hsam
et al. 1998; McIntosh et al. 2008). Pm25 a major gene for powdery mildew
resistance has been transferred to common wheat germplasm NC96BGTA5 from
wild einkorn accession PI427662 and mapped on chromosome 1A in close asso-
ciation with gene Pm3A (Shi et al. 1998). Plamenov et al. (2009) produced
amphiploid between two durum cultivars and the T. monococcum ssp. aegilopoides
which showed resistance to powdery mildew at seedling and adult plant stage and
to four leaf rust races at seedling stage showing that amphiploids of A genome and
durum are valuable resource of fungal resistance. Pm4d from T. monococcum is
another gene located on Pm4 locus, which was found in Tm27d2 cultivar
(Schmolke et al. 2012). Monneveux et al. (2001) reviewed T. monococcum as a
useful resource of several resistance genes for root rot (Yamaleev et al. 1989), scab
(Saur 1991), Septoria tritici avenae (Yu and Sun 1995), nodorum (Ma and Hughes
1993), Hessian fly (Bouhssini et al. 1997) and aphids (Pietro et al. 1998).

At Punjab Agricultural University, Ludhiana, India, about 200 accessions of T.
monococcum and T. boeoticum were screened for leaf rust and stripe rust resistance
for several years and we found that all the T. monococcum accessions, most of the
T. boeoticum and a few T. urartu accessions, were completely resistant to leaf rust.
However, a lot of variation was observed for stripe rust resistance. Most of the T.
monococcum accessions have shown moderate to complete resistance; most of the
T. boeoticum accessions showed complete resistance and the majority of the T.
urartu accessions were highly susceptible. The stripe rust data recorded during
2012–2013, 2013–2014, and 2014–2015 crop seasons and leaf rust data for 2013–
2014 are summarized in Table 12.8.

A recombinant inbred line (RIL) population developed by crossing T. boeoticum
acc. pau5088 with T. monococcum acc. pau14087 showed segregation for resis-
tance to several diseases including stripe rust, powdery mildew, Karnal bunt, and
cereal cyst nematode (Dhaliwal et al. 2003; Singh et al. 2007a). This population
was used for generating a linkage map of the diploid A genome of wheat (Singh
et al. 2007a, b) consisting of 179 SSR, RFLP, and bin-mapped EST markers
(Fig. 12.3). Using this inter-subspecific map, we have mapped genes/QTLs for a
number of wheat diseases including stripe rust, cereal cyst nematode, and Karnal
bunt. Two QTLs, one each in T. monococcum acc. pau14087, and T. boeoticum acc.
pau5088, were detected for resistance in the RIL population. The QTL in T.
monococcum mapped on 2A in a 3.6 cM interval between Xwmc407 and Xwmc170,
whereas the QTL from T. boeoticum mapped on 5A in 8.3 cM interval between
Xbarc151 and Xcfd12 (Chhuneja et al. 2008a, b, c).

With the objective of transferring these genes into hexaploid wheat, T. mono-
coccum acc. pau14087 and one resistant RIL were crossed to hexaploid wheat,
using T. durum as a bridging species. The F1 triploid plants were crossed to
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susceptible hexaploid wheat cvs. WL711 and PBW343. In the F1 triploid, only
those gametes were viable to those have a full complement of A and B genomes
(Gill et al. 1986). However, no resistant plants could be recovered in the backcross
generations from this cross indicating that the resistance in diploid wheats was
either recessive in nature or was being suppressed by the A and/or B genome of T.
durum. The A genome of diploid wheat was expected to segregate in the F1 of the
cross T. durum/Tm14087//WL711 but not the B genome. The B genome of T.
durum, however, was expected to segregate in the BC1F1 generation of the cross T.

Table 12.8 Rust reaction of different accessions of progenitor species of wheat recorded during
2012–2013 and 2013–2014 crop seasons under field conditions at Punjab Agricultural University,
Ludhiana, India

Species Year Number of accessions Total
accessionsHighly

resistanta
Moderately
resistant

Susceptible

Stripe rust
T. monococcum 2013 52 6 3 61

2014 46 2 4 52

2015 58 1 1 60

T. boeoticum 2013 58 6 9 73

2014 157 3 14 174

2015 153 4 14 171

T. urartu 2013 – – – –

2014 15 8 6 29

2015 8 3 18 29

Ae. tauschii 2013 67 52 84 203

2014 72 11 198 281

2015 22 53 208 283

Ae. speltoides 2013 88 24 3 115

2014 66 24 9 99

2015 168 5 2 175

T. diccocoides 2013 3 10 15 28

2014 57 35 81 173

2015 72 39 45 156

Leaf rust
T. monococcum 2014 52 0 0 52

T. boeoticum 2014 166 0 8 174

T. urartu 2014 20 4 6 30

Ae. tauschii 2014 51 0 18 69

Ae. speltoides 2014 50 0 2 52

T. diccocoides 2014 122 0 51 173
aThe accessions with rust scores of 0, TR, and 5MR were categorized as highly resistant and those
with 10MR–20MR and ≥10S were categorized as moderately resistant and susceptible,
respectively
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durum/Tm14087//2*WL711. If the B genome suppressed the resistance, then
resistant plants were expected in this generation, which turned out to be true.
Suppression of leaf and stripe rust-resistant genes in amphiploids generated by
crossing susceptible T. durum and several accessions of Ae. umbellulata and Ae.
caudata was also observed (Aghaee et al. 2001). The leaf rust- and stripe
rust-resistant BC1F1 plants were then allowed to self and stripe rust-resistant
homozygous progenies with good plant type were developed.

T. boeoticum/T. monococcum RIL population showed digenic segregation for
cereal cyst nematode resistance also. Composite interval mapping identified two
QTLs, one each on chromosome 1AS and 2AS, conferring CCN resistance to T.
monococcum. 1A QTL, designated as Qcre.pau-1A, appeared to be a major gene
with 34 % contribution to the overall phenotypic variance (Singh et al. 2010).
Qcre.pau-1A is a putative novel CCN resistance gene since this is the only CCN
resistance gene mapped in any ‘A’ genome species and none of other known genes
have been mapped on chromosome 1A. The other QTL mapped on 2A, designated
as Qcre.pau-2A, might be allelic to Cre5, a CCN resistance gene transferred from
Ae. ventricosa and mapped on 2AS almost in the same chromosomal region.
Qcre.pau-1A was transferred to cultivated wheat using T. durum as bridging spe-
cies. Selected CCN-resistant F8 homozygous introgression lines with 2n = 28 and
2n = 42 also showed the co-introgression of the molecular markers identified to be
linked with CCN resistance gene Qcre.pau-1A indicating that this gene itself can
provide complete resistance to H. avenae.

BE4893230.0
Xbcd13027.4
Xgdm3342.7
Xgwm3347.9
Xcfd5849.2
Xgwm13653.6
Xcfa215355.7
BE44489059.3
Xmwg710
Xpsr54959.8

Xmwg202160.3
Xgwm110466.6
BE442682
Xbarc20469.2

BE49983574.2
Xcfa2158
Xcfd2178.5

BE44340180.8
BE443103.183.7
BE59168286.9
BE49529291.6
Xbarc9101.4
Xgdm36116.2
Xcfd65
Xcfd59126.9

Xwmc470131.2
Xgwm135135.9

XBE443103.2171.2

1A
Xmwg8510.0
XksuD1818.5
BE49835819.6
Xwmc38223.6
Xbarc12425.1
Xgwm63633.9
Xpsr66652.3
Xpsr108
Xwmc17757.8

Xfba198
Xfba17858.7

Xwmc66460.6
Xfba27268.5
BE49749481.2
BE49947884.9
Xgwm27587.5
BE406808
Xwmc47490.1

BE406584
Xgwm51591.3

Xgwm1011
Xgwm1045
BE406923
Xgwm71
Xcfd26

94.7

Xwmc42096.0
BE425962
Xpsr630115.5

Xbarc5117.4
Xpsr681127.0
Xpsr933127.4
Xwmc407127.6
Xwmc170
Xpsr331131.2

Xfba374132.3
Xgwm30138.8
Xpsr540150.2
Xcfd267163.7
Xcfd223197.0

Xgwm3820.0
Xgwm3110.6
Xbarc1228.9

2A

Xwmc1470.0

Xgwm75721.4
Xbarc5725.1
Xbarc1233.6
Xwmc1134.3

Xcfd7949.8

Xbarc61865.3
Xgwm77966.6
Xwmc15075.7

Xwmc7995.7
Xbarc1996.3
Xbarc6796.6
Xwmc26996.9
Xcfa2134103.2
Xpsr570104.4
Xgwm1121109.0
Xpsr74121.0
Xwmc492123.5
Xbarc152138.7
Xwmc96140.6

Xbcd131186.1

Xwmc153198.7
Xcfa2170202.4
Xcfd62205.3
Xwmc326214.2
Xwmc322222.6

Xgwm391253.4

3A

Xgwm6140.0
Xwmc894.1
Xbarc1065.6
Xcfd716.2
Ba216.5

Xcfa217333.0

Xgwm49446.2
Xmwg202153.4
Xcdo48454.0

Xmwg67679.9

Xpsr9210.0
Xgwm3973.3

4A

BE4969030.0
Xbarc18618.1
Xbarc1
Xwmc15018.7

Xcfd4019.3
Xbarc11721.9

Xgwm44349.0
BE49983559.5
Xgwm20560.6
Xgwm15464.3
Xbarc14183.0
Xgwm18688.0
Xwmc37194.5
Xcfd2.296.3
Xbarc151117.0
Xcfd12125.9
Xgwm271130.0
Xpsr426135.8
Xcfd2.1140.7
Xpsr549144.3
Xbarc124147.2
Xcfa2163
Xbarc142150.0

Xcfa2141150.9
Xwmc470154.8
Xbcd98157.1

XKsuG14178.6

Xcfd39201.4
Xgwm126207.4
Xgwm6211.0
Xcfd47222.2
Xwmc74224.2

5A

Xcfd1900.0
Xwmc961.2
Xbarc371.8
Xbarc11313.0

Xgwm57026.7
Xwmc17932.5

Xgwm101744.0
Xwmc41746.2
Xgwm61757.1
Xgwm42760.1
Xgwm108963.4
Xpsr96667.8

Xpsr687
Xbarc10489.0

6A

Xgwm4710.0

Xbarc7036.2

Xgwm63547.9

Xcfd3172.6

Xcfa204993.5
Xswm6100.9
Xgwm130102.0
Xbarc154103.7
Xcfa2028106.7
Xwmc405122.2
Xwmc58123.9
Xcfa2174135.0
RC_A138.3
Xgwm573
Xwmc17142.6

Xcfd68145.4
Xwmc96149.8
Xgwm473153.8
Xbarc69163.7

Xmwg710192.1

Xgwm3320.0

Xcfa201911.8

Xgwm3440.0

Xwmc67334.7

7A

Fig. 12.3 A-genome linkage map based on T. boeoticum/T. monococcum RIL population (Singh
et al. 2007a, b)
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T. boeoticum pau5088 showed resistance against a number of powdery mildew
resistance isolates and T. monococcum pau14087 was completely susceptible.
Inheritance studies in the RIL population T. boeoticum pau5088/T. monococcum
pau14087 indicated the presence of two powdery mildew-resistant genes in T.
boeoticum acc. pau5088. Analysis of powdery mildew infection and molecular
marker data of the RIL population revealed that both powdery mildew-resistant genes
are located on the long arm of chromosome 7A. Mapping was conducted using an
integrated linkage map of 7A consisting of SSR, RFLP, STS, and DArT markers.
These powdery mildew-resistant genes were tentatively designated as PmTb7A.1 and
PmTb7A.2 (Chhuneja et al. 2012). The PmTb7A.2 is closely linked to STS markers
MAG2185 andMAG1759 derived from anRFLP probeswhich are linked to powdery
mildew-resistant gene Pm1. This indicated that PmTb7A.2 might be allelic to Pm1.
ThePmTb7A.1,flanked by aDArTmarkerwPt4553 and an SSRmarkerXcfa2019 in a
4.3 cM interval, mapped proximal to PmT7A.2. PmTb7A.1 is putatively a new
powdery mildew-resistant gene. The powdery mildew-resistant genes from T.
boeoticum have been transferred to cultivated wheat background through
marker-assisted backcrossing, using T. durum as bridging species (Elkot et al. 2015).
Besides disease-resistant genes, the RIL population also segregated for quality and
domestication traits. The position of 13 QTL mapped so far in T. boeoticum/T
monococcum RIL population is summarized in Fig. 12.4. This population is the
evidence of the level of variability captured in the A genome of the wild species of
wheat as from only two accessions 13 new genes/QTL could be identified and
mapped.

Fig. 12.4 Summary of the QTLs detected in T. boeoticum/T. monococcum RIL population for
cereal cyst nematode resistance, yellow rust resistance, grain number/spikelet, grain weight, grain
Fe and Zn concentration
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12.8.2 Aegilops tauschii the D Genome Donor of Wheat:
A Mine of Biotic Stress Tolerance Genes

Aegilops tauschii Coss., a diploid self-pollinating goatgrass species has contributed
the D genome to common wheat. Hybridization of Ae. tauschii (DD) with tetraploid
wheat, T. turgidum L. (AABB) about 7000 years ago, led to the development of
hexaploid wheat Triticum spelta (L) Thell (AABBDD) from which common wheat
evolved. The D genome of Ae. tauschii has much greater genetic diversity com-
pared to the D genome of T. aestivum. The hybridization events that led to the
evolution of bread wheat are thought to have involved only a few accessions of Ae.
tauschii. In fact, Ae. tauschii represents more than 90 % of the total genetic vari-
ability present in the D genome (Lubbers et al. 1991). The morphological variation
and ecological amplitude of Ae. tauschii exceeds that of any other diploid Triticum
or Aegilops species (Zohary et al. 1969). Much of the genetic diversity in Ae.
tauschii gene pool thus remained unutilized and may not be represented in the T.
aestivum gene pool. Furthermore, the D genome of bread wheat has not undergone
any major chromosomal restructuring in relation to the Ae. tauschii genome,
ensuring high homology and ease of gene transfer. Ae. tauschii represents a rich
reservoir of disease resistance (Dhaliwal et al. 1993; Villareal et al. 1994a, b; Cox
1998; Aseefa and Fehrmann 2004), productivity traits (Waines et al. 1987) and
abiotic stress resistance (Trethowan and Mujeeb-Kazi 2008).

Based on spikelet morphology, Ae. tauschii has been divided into two sub-
species, tauschii and strangulata. ssp. tauschii has a very wide geographic distri-
bution extending westward to Turkey and eastward to Afghanistan and China,
whereas ssp. strangulata has a narrow distribution occurring only in two disjoined
regions, in southeastern Caspian Iran and Transcaucasia (Kihara et al. 1965; Yen
et al. 1983; Jakaska 1995). Subspecies strangulata has been proposed as the D
genome donor of wheat. Strangulata has been reported to have higher level of
resistance than ssp. tauschii (Yildirim et al. 1995; Knaggs et al. 2000; Liu et al.
2010). Kihara and Tanaka (1958) and Kihara et al. (1965) assessed seedling
responses to all three rusts among 167 accessions of Ae. tauschii from Pakistan,
Afghanistan, and Iran. Resistant accessions were found mainly in the forms meyeri
and strangulata collected from the Caspian Sea area of Iran while all accessions
from Afghanistan and Pakistan were susceptible.

A commonly used route to transfer genes from Ae. tauschii is a two-step process
of producing synthetic wheat via tetraploid × Ae. tauschii hybridization and col-
chicine doubling. These synthetics are then crossed to elite wheat lines and
homologous recombination between Ae. tauschii and T. aestivum ‘D’ genome
chromosomes can readily break undesirable linkages between target genes and
alleles associated with linkage drag which might not be possible with introgressions
from other species. CIMMYT recognized the potential of Ae. tauschii germplasm in
broadening the gene pool of wheat and developed 1000 synthetics from 460 Ae.

296 P. Chhuneja et al.



tauschii accessions (Muzeeb-Kazi et al. 1987). These synthetics were later back-
crossed to many CIMMYT and global elite breeding lines to introduce new vari-
ation for various morphological and agronomic traits (Villareal et al. 1994a, b),
resistance to biotic stresses (Cox 1998; Ma et al. 1995) and abiotic stresses
(Villareal et al. 2001). The synthetics were also shown to be diverse at the
molecular level, and genetically distinct from cultivated wheats (Zhang et al. 2005).

Yellow rust-resistant gene Yr28 is the only cataloged stripe rust resistance which
has been derived from Ae. tauschii. It has been mapped on chromosome arm 4DS
after its transfer to synthetic hexaploid wheat from Ae. tauschii (McIntosh et al.
2008, 2010; Singh et al. 2000a, b). Another gene temporarily designated as
YrAS2388 has been mapped on chromosome 4DS using an F2 population between a
resistant (strangulata) and susceptible Ae. tauschii accessions but this gene showed
partial resistance when transferred in synthetic hexaploid wheat background (Huang
et al. 2011).

Lr21 was transferred from Ae. tauschii accession TA1599 via a synthetic wheat
(Rowland and Kerber 1974). This gene has been cloned from Ae. tauschii only
(Huang et al. 2003). Lr21 provides resistance to the current spectrum
of P. triticina races in the Southern Great Plains. There are no confirmed reports of
virulence to Lr21. Lr1 is widespread in Ae. tauschii though there is no record of its
transfer from Ae. tauschii; it may probably transferred to wheat at the time of the
origin of wheat (Ling et al. 2004). Similarly, the Lr34 haplotype was not detected in
Ae. tauschii, and this gene probably arose during the few thousand years since the
origin of common wheat (Gill et al. 2008).

An alternative method to transfer genes from Ae. tauschii is the direct
hybridization between Ae. tauschii and T. aestivum. Combining gene transfer,
genomic localization, and introgression (Olson et al. 2013) is an efficient method of
expediting transfer of genes from Ae. tauschii into wheat-breeding germplasm.
Adverse genetic interactions between the D genome of Ae. tauschii and the ABD
genome of hexaploid wheat are uncommon (Gill and Raupp 1987). Pm19 and
Pm34 (Lutz et al. 1995a, b; Miranda et al. 2006) were transferred from Ae. tauschii
into cultivated wheat. Pm2 was physically mapped to chromosome 5DS by
McIntosh and Baker (1970). Pm35 is another gene derived from Ae. tauschii direct
crosses with hexaploid wheat and is mapped on chromosome 5DL (Miranda et al.
2007).

Many leaf rust resistance genes have been identified in the Ae. tauschii including
Lr22a (2DS), Lr32 (3D), Lr39/Lr41 (2DS), Lr42 (1D) (Cox et al. 1994; Gill et al.
1991; Kerber 1987; Hiebert et al. 2007; Huang and Gill 2001; Huang et al. 2003;
Rowland and Kerber 1974; Raupp et al. 2001) which were transferred to hexaploid
wheat germplasm and later on mapped onto specific chromosomes (Table 12.5).
Recently, new flanking markers have been identified in vicinity of Lr42 which will
aid in MAS of this gene (Liu et al. 2013). Lr21 and Lr39 have been introgressed
from Ae. tauschii ssp. tauschii and Lr22a and Lr42 from ssp. strangulata (McIntosh
et al. 2013). Two stem rust resistance genes such as Sr33 and Sr45 and powdery
mildew resistance genes such as Pm2 and Pm19 have been transferred from Ae.
tauschii (Hsam and Zeller 2002; Marais et al. 1998; McIntosh et al. 2013). Two
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germplasm lines were developed carrying genes Pm34, Pm35 also from Ae. tauschii
(Miranda et al. 2006, 2007) and mapped on chromosome 5D (Table 12.5).

At Punjab Agricultural University, Ludhiana, India, we are maintaining an active
collection of 280 Ae. tauschii accessions. These accessions have been found to
carry resistance genes for various biotic stresses including leaf rust, stripe rust,
powdery mildew, and Karnal bunt. Stripe rust reactions of these accessions over last
five years have shown a lot of variation in the rust reaction. Reaction of the stripe
rust resistant accessions of Ae. tauschii varied from totally immune to traces of
resistance (TR), moderately resistant, and moderately susceptible.

The stripe rust and leaf rust data of these accessions are summarized in
Table 12.8. In 2013, 67 out of 203 accessions showed high level of stripe rust
resistance and 52 were moderately resistant while in 2014 out of 281 accessions, 72
were highly resistant and 11 moderately resistant. Genome-wide Association
studies based on SNP markers identified eight significant loci (p < 0.01) mapped on
chromosome 7DL, 3DS, 2DS, 5DL for stripe rust resistance (our unpublished data).
One of the accession pau14195 with multiple disease resistance was crossed with
durum wheat cultivar PBW114 and resulting F1 was crossed and backcrossed with
leaf rust, stripe rust, and KB susceptible cultivar WH542 for transferring leaf rust
and stripe rust resistance genes to hexaploid wheat background. One gene for leaf
rust resistance and linked non-glaucousness was mapped on chromosome 2D in
hexaploid background (Saluja personal communication).

Ae. tauschii has a very high level of KB resistance also and a subset of Ae.
tauschii germplasm was screened for KB resistance. Over three years of screening
under artificial inoculations, 20 accessions were identified to be resistant to KB and
six accessions were moderately resistant (Chhuneja et al. 2008c). Almost 80 % of
the KB-resistant accessions belonged to ssp. tauschii which is contrary to the rust
resistance where almost 90 % of the resistant accessions belonged to ssp. strangu-
lata (Chhuneja et al. 2010). For the transfer of KB resistance to cultivated wheat, an
amphiploid was synthesized by crossing a KB-resistant Ae. tauschii acc. pau 3743
with KB susceptible T. durum cultivar WH890. The synthetic hexaploid was
crossed with a KB susceptible hexaploid wheat cv. to transfer KB resistance to
desirable agronomic background and homozygous introgression lines were devel-
oped (ILs). Introgressions of Ae. tauschii specific alleles were found on chromo-
somes 1D, 2D, 4D, and 6D (Fig. 12.5) which indicated that the KB resistance gene
(s) may be located on these regions.

12.8.3 Ae. Speltoides and Other S Genome Species

Ae. speltoides has depicted very high levels of disease resistance for leaf rust and
stripe rust from screening over many years in PAU, Ludhiana. Leaf and stripe rust
data for 2012–2013 and 2013–2014 crop seasons recorded under field conditions is
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presented in Table 12.8. Leaf rust resistance genes Lr28, Lr35, Lr36, Lr47, Lr51,
Lr54, and stem rust resistance genes Sr32, Sr39, Sr47 have been transferred from
different accessions of Ae. speltoides by different workers (Table 12.5; McIntosh
et al. 2013). Leaf rust resistance gene Lr28 located on chromosome 4AL was
transferred from Aegilops speltoides into wheat by Riley et al. (1968b). It was
subsequently backcrossed into different wheat backgrounds in India (Tomar and
Menon 1998) and it provides effective resistance against all the Indian leaf rust
pathotypes. The stem rust resistance gene Sr39 was transferred to the hexaploid
wheat cultivar Thatcher (Tc) from Ae. speltoides. The gene is also associated with
adult plant leaf rust resistance gene Lr35 which is highly effective against North
American populations of P. recondita f. sp. tritici. Both the Sr39 and the
Lr35 genes are located on the alien translocated segment on chromosome 2BS (Niu
et al. 2011). Sr47, also from Ae. speltoides, has been mapped in durum wheat–Ae.
speltoides chromosome translocation line T2BL-2SL&2SS which is different from
Sr32 and Sr39 located in the same region of 2BS (Faris et al. 2008). Gene Pm12
originating from Ae. speltoides is located on T6BS–6SS–6SL (Miller et al. 1988; Jia
et al. 1996).

Fig. 12.5 Graphical genotyping of wheat–Ae. tauschii introgression lines using D
genome-specific SSR markers. Gray areas represent wheat-specific alleles and black areas
indicate introgression of Ae. tauschii-specific alleles on chromosomes 1D, 2D, 4D, and 6D. Map
distances are according to Komugi composite wheat map
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12.8.4 Non-progenitor Aegilops Species for Transfer
of Disease-Resistant Genes to Hexaploid Wheat

The genus Aegilops consists of 22 species of which 10 are diploid, 10 are tetraploid,
and 2 are hexaploid with basic chromosome number x = n = 7 and six different
genomes as C, D, M, N, S, and U (van Slageren, 1994). Aegilops represents the
largest part of the secondary gene pool of wheat and several species have been used
in crop improvement programs. Non-progenitor Aegilops species with one of the
genome as U has been found to be rich source of resistance genes (Mamluk and van
Slageren 1994). Ae. umbellulata (UU), Ae. geniculata (UM), Ae. triuncilais (UC),
Ae. peregrina (US), Ae. kotschyi (US), etc. are valuable sources of useful genes for
wheat breeding. Ae. caudata (C), Ae. comosa (M), Ae. uniaristrata (NN) are also
known to be rich sources of resistance to various pathogens and pests (Pasquini
1980; Gill et al. 1985; Manisterski et al. 1988; Anikster et al. 2005). Many genes
conferring resistance to rust diseases, powdery mildew, cereal cyst nematode, and
insect pests were transferred from Aegilops species into wheat (Jiang et al. 1994;
Friebe et al. 1996; Dhaliwal et al. 2003; Marais et al. 2005; Kuraparthy et al. 2007a,
b; Chhuneja et al. 2008a, b; Riar et al. 2012).

Some leaf rust and stripe rust resistance genes transferred from wild
non-progenitor species to cultivated wheat have been shown in Table 12.6. Some of
the genes for disease resistance transferred from distantly related species have been
exploited commercially but others seem to be associated with reduced yield due to
linkage drag (Young and Tanksley 1989). The most successful example of alien
genome segment transfer is wheat–rye translocation. In this wheat chromosome,
1BL was replaced by rye chromosome 1RS. The 1RS arm in this translocation has
many genes such as Lr26 for leaf rust resistance, Sr31 for stem rust resistance, Yr9
for stripe rust resistance (Bartos and Bares 1971; Bartos et al. 1973, b), and Pm8 for
powdery mildew resistance. This translocation has been incorporated into 60 wheat
varieties, including the prominent Veery lines, that occupied 50 % of all developing
country wheat area, almost 40 million hectares. Translocation T3DS.3DL-3Ae#1L
from Agropyron elongatum carrying Lr24/Sr24 is the second most exploited alien
introgression. Lr9 from Ae. umbellulata, Sr26, Lr19 and Sr25 from Ag. elongatum
have also been exploited to some extent.

In the past several years, about 20 stem rust, 30 leaf rust, 10 stripe rust, and 15
powdery mildew resistance genes have been transferred from near and distant
relatives of hexaploid wheat. Stem rust-resistant genes transferred from the tertiary
gene pools of wheat include Sr24 from Agropyron elongatum; Sr31, Sr1, and Sr50
(Anugrahwati et al. 2008) from Secale cereale; Sr36 from T. timopheevii (Olson
et al. 2010); Sr38 from Ae. ventricosa (McIntosh et al. 1995a, b); Sr26 from A.
elongatum; and Sr44 from A. intermedium (Liu et al. 2013). Stem rust resistance
genes Sr51, Sr52, and Sr53 transferred from the tertiary gene pool were identified
in chromosome addition lines and Robertsonian translocations from Ae. searsii,
Dasypryum villosum, and Ae. geniculata, respectively (Liu et al. 2011; Qi et al.
2011).
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Mwale et al. (2014) reviewed all the cataloged and uncataloged genes of powdery
mildew resistance from wild progenitor of wheat. Hsam et al. (1998) reported the
presence of allele Pm1d in T. spelta. Pm4a and Pm4b on chromosome 2AL were first
reported by The et al. (1979) on cultivars Khapli (T. dicoccum) and Armada (T.
carthlicum), respectively, and subsequently reviewed by Huang and Roder (2004)
and Alam et al. (2011). Alleles of Pm5 were identified and mapped on wheat chro-
mosome 7BL. These include gene Pm5a in the wheat cultivars Hope, and a recessive
gene that originated from T. dicoccum L. Pm5c was derived from T. sphaerococcum
var. rotundatum (Hasm et al., 2001). T. diccocoides is another important donor of
powdery mildew resistance genes as Pm26, located on chromosome 2BS (Rong et al.
2000), Pm42 (Hua et al. 2009a), and Pm49, located on chromosome 2BS were
originated from T. dicoccoides. Other resistance genes transferred from T. dicco-
coides include Pm16, Pm30, Pm31, Pm36, Pm41, Pm42, Pm49, and Pm50, located
on chromosomes 4A, 5B, 6A, 5B, 3B, 2B, and 2A, respectively (Piarulli et al. 2012;
Mohler et al. 2013a). Pm6 is originated from the 2G chromosome of T. timopheevii
and was introgressed into chromosome 2BL of common wheat (Tao et al. 2000). T.
carthlicum is another wild relative source of powdery mildew-resistant genes. They
include genes Pm4b and Pm33 (Zhu et al. 2005). Secale cereale, a distant relative of
common wheat also contributed Pm7, Pm8, Pm17, and Pm20 genes to common
wheat (McIntosh et al. 2011). Two designated genes Pm40 and Pm43 were intro-
gressed into common wheat from Elytrigia intermedium and Th. intermedium,
respectively (Luo et al. 2009; He et al. 2009) while Pm21 originated from Haynaldia
villosum (Chen et al. 1995; Piarulli et al. 2012; Xiao et al. 2013).

Ernie Sears (1956) used Ae. umbellulata for the transfer of leaf rust resistance to
wheat. He presented this remarkable work at the 1956 Brookhaven Symposium. This
commenced with the addition to T. aestivum of a single chromosome of Ae. umbel-
lulatawhich also carried a number of undesirable genetic information. Sears X-rayed
addition line carrying Ae. umbellulata chromosome with leaf rust resistance. The
irradiated plants were then used to pollinate normal wheat and resistance progeny was
selected. Forty of these had one of at least seventeen different translocations between
the Aegilops chromosome and the wheat chromosomes. There was one line with the
resistance chromosome segment apparently incorporated in the form of an intercalary
translocation. Further work, published in 1966, showed that the Ae. umbellulata
segment was not in an intercalary position but that a long Aegilops segment had
replaced the terminal part of the long arm of wheat 6B. This gene was later on
designated as Lr9. The gene Lr9 derived from Ae. umbellulata is a highly effective
gene throughout the world except in North America (Shaner et al. 1972) and in
Canada (Samborski and Dyck 1976). Another important leaf rust-resistant gene Lr24
is tightly linked to stem rust-resistant gene Sr24 on the long arm of the chromosome
3D. Both resistance genes were introduced from Ag. elongatum in a spontaneous
translocation involving 3Ag from Agropyron and 3DL from wheat. The alien seg-
ment carrying Lr24/Sr24 does not impose any deleterious effect on yield as several
cultivars carrying Lr24 have been released for cultivation in India.

Evaluation of the wild Aegilops species belonging to secondary and tertiary gene
pool over many years led to the identification of potential sources of
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disease-resistant genes. The number of resistant accessions varied from year to year.
One of the reasons could be change in the pathotype specificity which was observed
in some other wheat lines also known genes.

12.9 Transfer of Rust Resistance Genes
from Non-progenitor Aegilops Species

A leaf rust- and stripe rust-resistant disomic substitution line {DS5 M(5D)} with
5 M chromosome of Ae. geniculata substituted for 5D of wheat was developed
through restricted backcrossing and selfing. The rust resistance of Ae. geniculata
was transferred to wheat by induced homoeologous chromosome pairing between
chromosomes 5 Mg of Ae. geniculata and 5D of wheat. The introgression lines
were developed by crossing disomic substitution line DS 5 Mg(5D) with the
Chinese Spring (CS) PhI stock (Chen et al. 1994) and crossing the F1 with sus-
ceptible bread wheat cultivar WL711. Advanced backcross lines were characterized
using molecular cytogenetic and molecular techniques, and translocation carrying
these leaf and stripe rust-resistant genes was mapped on distal end of 5DS
(Fig. 12.6). These co-segregating genes have been designated as Lr57 and Yr40
(Kuraparthy et al. 2007a; McIntosh et al. 2008). This translocation encompass-
ing *3.5 % of 5DS is the smallest alien introgression characterized so far.

(a) (b)
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Lr57-Yr40 
Introgression Lines
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Fig. 12.6 Transfer and mapping of leaf rust and stripe rust resistance genes Lr57-Yr40
introgressed from Aegilops geniculata (UUMM) through induced homoeologous pairing in T.
aestivum. a Leaf and stripe rust reaction b Genomic in situ hybridization c mapping of Lr57, Yr40
in introgression lines (Kuraparthy et al. 2007a, b)
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PCR-based markers for these genes have also been developed. The introgression
line with the smallest introgression carrying Lr57-Yr40 is being used as a donor
parent for mobilizing these genes to elite wheat backgrounds using MAS.

Similarly, a spontaneous translocation line developed from a cross of WL711
and Ae. triuncialis acc. 3549 was resistant to the most prevalent races of leaf rust in
India. Genetic mapping in a segregating F2:3 population showed that the rust
resistance was monogenically inherited. Molecular analysis identified homeologous
group 2 carrying the gene in question. The Ae. triuncialis-specific alleles of
XksuH16, XksuF11, Xbg123, and one simple sequence repeat marker Xcfd50
co-segregated with the rust resistance, suggesting that the wheat–Ae. triuncialis
translocation occurred in the distal region of chromosome arm 2BL (Fig. 12.7 a,e)
and was designated Lr58 (Kuraparthy et al. 2007b).

From the same accession of Ae. triuncialis pau3549, a substitution line with
resistance to leaf rust (slow rusting), powdery mildew, and cereal cyst nematode has
also been developed. Alien chromosome in the WL711-Ae. triuncialis substitution
line has been identified as 5U through C-banding . GISH studies also identified a
satellite chromosome in the substitution line (Fig. 12.7 b,c,d). An alien addition line
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Fig. 12.7 a Leaf rust reaction of wheat–Ae. triuncialis translocation, addition, and introgression
lines; b Slow rusting for leaf rust in wheat–Ae. triuncialis substitution line 5U-5A; c powdery
mildew resistance in PBW343–Ae. triuncilais introgression lines; d Genomic in situ hybridization
of wheat–Ae. triuncialis 5U-5A substitution line; e mapping of Lr58 introgressed from Ae.
triuncialis through spontaneous translocation and characterized using molecular markers in wheat–
Ae. triuncialis translocation line (Kuraparthy et al. 2007b)
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from the same cross has resistance for leaf rust, powdery mildew, and Karnal bunt.
Karnal bunt and powdery mildew resistance has been transferred from the alien
chromosome to the wheat cultivar PBW343.

Leaf and stripe rust resistance genes have also been introgressed from diploid
species Ae. umbellulata and Ae. caudata using T. durum as bridging species
(Chhuneja et al. 2008b; Riar et al. 2012). Rust resistance of Ae. umbellulata was
transferred to wheat by homoeologous pairing between Ae. umbellulata and wheat
chromosomes. The resistant plants were backcrossed 2–3 times with a susceptible
wheat cv. WL711 followed by selfing to develop homozygous introgression lines
with a high level of resistance to leaf rust as well as stripe rust. One of these
introgression lines was crossed with T. aestivum cv. PBW343 to generate a map-
ping population, and a BC-RIL population was developed which segregated for a
single gene each for leaf rust and stripe rust resistance. Both the rust resistance
genes, however, co-segregated and were mapped on short arm of wheat chromo-
some 5D (Fig. 12.8) and have been designated as Lr76 and Yr70 (Bansal et al.
2015). Similar strategy was used for transfer of leaf and stripe rust resistance from
Ae. caudata. Two genes one each for leaf rust and stripe rust were again mapped on
chromosome 5DS. The stripe rust resistance gene transferred from Ae. caudata was
found to be an adult plant resistance gene (Riar et al. 2012; Kaur 2014).

Two leaf rust and one stripe rust resistance genes have also been transferred from
a tetraploid non-progenitor species Ae. peregrina to wheat cultivar WL711 through
induction of homoeologous pairing. Ae. peregrina accession pau3519 was crossed
with Chinese Spring stock carrying inhibitor of Ph1 locus, F1 was crossed with
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Fig. 12.8 a–cMeiotic analysis in wheat–Ae. umbellulata introgression lines; dMeiotic analysis in
F1 plant from the cross of IL393-4 with bread wheat cv. PBW343; e Genomic in situ hybridization
of WL711–Ae. umbellulata addition lines; f Leaf rust and stripe rust reaction of WL711, Ae.
umbellulata, and six different WL711–Ae. umbellulata introgression lines; g Molecular mapping
of Lr76-Yr70 transferred from Ae. umbellulata through induced homoeologous pairing in IL 393-4
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WL711 and advance backcross introgression lines developed. Molecular mapping
in two different introgression lines identified one leaf rust resistance gene on 2DL
and a pair of linked leaf and stripe rust resistance genes on 5DS.

12.10 R Gene Clusters from Alien Germplasm

Most of the resistance genes introduced from wild progenitor and non-progenitor of
wheat are major/race-specific genes. The short-lived nature of race-specific leaf rust
resistance genes greatly compromises the efforts of scientists and breeders.
Alternatively, a more durable form of resistance is attributed to slow leaf-rusting or
durable resistance in the form of retarded disease progress in the field results from a
longer latent period, smaller pustule size, and lower spore production (Ohm and
Shaner 1976 ; Wilcoxson 1981 ; Das et al. 1992 ). These genes confer a slow
rusting type of resistance (Caldwell 1968 ) despite a compatible host reaction and
are effective across all races of the pathogen, and disease reaction is measured
several times during the course of disease in a growing season as Area Under
Disease progress Curve (AUDPC) (Jeger and Viljanen-Rollinson 2001 ). So far
only five resistance gene blocks, Lr34/Yr18/Pm38/Sr57, Lr46/Yr29/Pm39/Sr58,
Sr2/Yr30 Lr67/Yr46/Pm46/Sr55, and Lr68 known for partial but durable resistance;
however, none is from wild wheat (Singh et al. 2000a , b ; Hiebert et al. 2010 ;
Herrera-Foessel et al. 2011; Singh et al. 2011 ). Main reason of wild germplasm
contributing major genes is their tedious process of resistance gene transfer into
cultivated wheat involving the use of bridging cultivars, many crosses and back-
crosses, selecting resistant plants throughout the process, and maintain recurrent
parent background. This ends up transferring only major genes, as in most of the
cases resistance genes are mapped after their transfer into cultivated backgrounds.

Genes from wild germplasm are inherited as blocks of multiple disease resis-
tance due to the absence of recombination from alien chromosomal segments such
as gene cluster Lr26/Yr9/Sr31/Pm8 from rye chromosome IRS, ViRGA/
Lr37/Yr17/Sr38 on chromosome 2B from Ae. ventricosa (McIntosh et al. 1995a, b ;
Seah et al. 2001), Lr57/Yr40 on chromosome 5D from Ae. geniculata (Kurapathy
et al. 2007a), Lr76/Yr70 on chromosome 5D from Ae. umbellulata (Bansal et al.
2015), Sr36/Pm6 from T. timopheevii on chromosome 2A, Gb2/Pm17 from S.
cereale, and two clusters of two genes each Lr19/Sr25 and Sr24/Lr24 from A.
elongatum (Sears 1956; McIntosh et al. 1991; Delibes et al. 1993; Friebe et al.
1996). These introgressed segments of major genes clusters were shown to carry
diverse and multiple genes that encode nucleotide-binding and leucine-rich repeat
sequences, the most common class of plant disease resistance genes (Seah et al.
2001; Mago et al. 2005a, b). R genes evolve through a variety of molecular
mechanisms: point mutations, unequal crossing over, gene conversion and
recombination, illegitimate recombination, and insertion/deletions all contribute to
variability (Kuang et al. 2004; Michelmore and Meyers 1998). Sequence variability
in R genes/alleles was mostly found in the LRR region, which was shown to play a
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major role in pathogen recognition specificity (Shen et al. 2003a , b ; Yahiaoui et al.
2006 ). Tandem and segmental duplications have been reported as a source of
structural plasticity of NBS-LRR genes in plant genomes. Clustering usually results
from tandem duplications of paralogous sequences resulting in unequal crossing
over. Analyses of the Arabidopsis genome indicate that numerous small-scale
genomic duplications have copied or translocated one or several NBS-LRR genes
from these clusters to distal and probably random locations in the genome. At some
loci, tandem duplications have expanded gene families and the duplicated
sequences have diverged through accumulated mutations, increasing the complexity
of R gene sequences. Clusters of durable resistance genes differ from that of major
genes as inactivation of Lr34 mean inactivation of Yr18, Pm38, and Sr57 also,
while clusters of major genes Lr26/Yr9/Sr31/Pm8 all are different loci inactivation
of one cannot inactivate other (Mago et al. 2005a, b). These slow rusting genes
boost the resistance of many major genes as German and Kolmer (1992) showed
that Lr34 enhance the effect of many major genes when present together. One way
of prolonging the resistance of major genes is their combination with slow rusting
genes. The combination of Lr34 with Lr12 and/or Lr13 provided durable leaf rust
resistance cultivars worldwide (Roelfs 1988). Singh and Huerta Espino (1995)
showed an increased resistance of Lr16 with the presence of slow rusting genes.
Similarly, presence of slow rusting genes Yr29 and Yr30 increased the resistance of
Yr31 (Singh et al. 2003). Enhanced expression of major gene Sr25 is reported in the
presence of slow rusting gene Sr2 in CIMMYT (Njau et al. 2010). The pleiotropic
action of these genes on other diseases such as powdery mildew make them
additionally valuable for breeding for broad spectrum resistance (Lillemo et al.
2008; Mago et al. 2011). Mostly, durable resistance genes are also found in clusters
and unlike gene clusters from wild germplasm, these clusters are like single genes
as described in Lr34/Yr18/Pm38 locus.

12.11 Next-Generation Sequencing Technologies
for Monitoring Alien Introgressions

Identification of markers closely linked with disease resistance genes has pro-
gressed in the last decade through the development of high-throughput and
cost-effective genotyping facilities. One of the first high-throughput platforms in
wheat, diversity arrays technology (DArT) exploits independent chip hybridization
of genome representation for diversity assessment of tested genomes and could test
hundreds to thousands of genomic loci in parallel (Jaccoud et al. 2001). This
approach can be more efficient using high-throughput next-generation sequencing
(NGS) platforms for genome sequencing referred to as genotyping-by-sequencing
(GBS) and can identify several hundred thousand genome tags (Poland et al. 2012).
Another approach includes the use of advances in wheat genome sequencing and
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NGS technologies to develop SNP chips for wheat. All these technologies indi-
vidually or in combination can be used to fine map the genes of interest.

The International Wheat Genome Sequencing Consortium (IWGSC) was
established in 2005 to sequence the wheat genome to enhance the knowledge of
structure and function of wheat genome and create a platform for accelerating wheat
improvement. With a genome sequence in hand, breeders can have access to
complete, ordered gene catalog and an almost unlimited number of molecular
markers that can be used for marker-assisted selection and precision-breeding
approaches (Collard and Mackill 2008; Tester and Langridge 2010). Combined
strategies are being deployed by the consortium to achieve a reference genome
sequence of the hexaploid bread wheat genome cultivar Chinese Spring. These
include physical mapping of Chinese Spring and Aegilops tauschii (the D genome
progenitor of bread wheat), as well as survey sequencing and BAC-based (i.e., the
minimum tiling path of the physical map) reference sequencing of Chinese Spring.
The physical map of Aegilops tauschii was completed by Jia et al. (2013). The
physical map of the largest wheat chromosome (3B, *1 Gb) was completed in
2008 (Paux et al. 2008). Physical mapping of the remaining chromosomes is
underway. To facilitate anchoring, marker development, and to gain a first insight
into the gene space composition, survey sequences were completed with the con-
struction of the physical maps. The chromosome arm-based draft sequence of the
bread wheat genome (IWGSC 2014) provided new insight into the structure,
organization, and evolution of the large, complex genome of the world’s most
widely grown cereal crop. These arm-based sequences also became an immense
resources for marker development. 7AL sequence was aligned against genic
sequences of Brachypodium 7AL genic contig as well as those carrying NBS-LRR
domains were identified. SSR and RGA-STS marker were developed from these
contigs and mapped on 7AL of T. boeoticum/T. monococcum RIL population
leading to fine mapping of two powdery mildew-resistant genes PmTb7AL.1 and
PmTb7AL.2 (Chhuneja et al. 2015). Both the genes have been transferred to hex-
aploid wheat background using the linked RGA-STS marker (Elkot et al. 2015).

12.12 Flow Sorting of Chromosomes and Gene
Identification

Dissecting and cloning individual chromosomes would largely facilitate genome
analysis and gene cloning in wheat and other organisms with large and complex
genomes. This approach reduces sample complexity and enables analysis at the
subgenomic level. Flow cytometric chromosome sorting has been implemented
successfully in many plant species, including cultivated cereals (such as bread and
durum wheat), barley, rye, oats, rice, and maize (Dolezel et al. 2012). Molnár et al.
(2011) reported flow sorting of individual chromosomes from Ae. umbellulata
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(2n = 2x = 14, UU) and Ae. comosa (2n = 2x = 14, MM) and from their natural
allotetraploid hybrids (Ae. biuncialis and Ae. geniculata). This study provided
opportunity for the next-generation sequencing of individual Aegilops chromo-
somes for the development of sequence-based markers and their application in
wheat breeding. Tiwari et al. (2014) flow-sorted short arm of chromosome 5 Mg of
Ae. geniculata from a wheat line in which it was maintained as a telocentric
chromosome. DNA of the sorted arm was amplified, sequenced, and used for SNP
discovery against wheat homoeologous group-5 assemblies. A total of 2178 unique,
5 MgS-specific SNPs were discovered. Randomly selected samples of 59
5 MgS-specific SNPs were tested and of the selected SNPs, 97 % mapped to a
chromosome 5 Mg addition to wheat, and 94 % to 5Mg introgressed from a
different accession of Ae. geniculata substituting for chromosome 5D of wheat. The
validated SNPs also identified chromosome segments of 5MgS origin in a set of
T5D-5Mg translocation lines; eight SNPs (25 %) mapped to TA5601 and three to
TA5602, the introgression lines carrying resistance to leaf rust (Lr57) and stripe rust
(Yr40) identified by Kuraparthy et al. (2007a). The development of a large number
of species/genome-specific SNP markers will facilitate the precise introgression and
monitoring of alien introgressions in crop-breeding programs and enable fine
mapping and cloning novel genes from the wild relatives of crop plants.

12.13 Cloning of Alien Disease Resistance Genes

A very large number of disease-resistant genes have been mapped and molecular
markers suitable for marker-assisted selection (MAS) have been identified. It was
considered very difficult to clone genes from wheat as it is an allohexaploid. Some
success has been achieved and some rust-resistant genes (Lr1, Lr10, Lr21, Lr34,
and Yr36) have been cloned and characterized. Lr21 and Yr36 are the only alien
genes which have been cloned so far.

Map-based cloning of Yr36 was done by crossing the susceptible durum wheat
variety Langdon with the resistant isogenic recombinant substitution line RSL65.
A population of 4500 F2 plants was screened using Yr36 flanking markers Xucw71
and Xbarc136 and identified 121 lines with recombination events between these
two markers. Based on genes from the rice collinear region, nine PCR markers were
developed to construct a high-density map of Yr36. Yr36 was mapped to a 0.14 cM
interval delimited by markers Xucw113 and Xucw111. BAC ends were used to
rescreen the library and extend the contig by chromosome walking. BAC-end
marker Xucw127 was mapped proximal to Yr36, thereby completing the physical
map. New markers were developed after sequencing of the BAC clones and Yr36
resistance was mapped between Xucw129 and Xucw148 (0.02 cM). The gene
includes a kinase and a putative START lipid-binding domain. Five independent
mutations and transgenic complementations confirmed that both domains were
necessary to confer resistance (Fu et al. 2009). Resequencing cloned genes can
identify all mutations in single genes for population-based analyses of genetic
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changes in improved gene pools. This is useful to know about the genetic impacts
of modern plant breeding on specific breeding target loci.

Another alien rust-resistant gene Lr21 was cloned by diploid/polyploid shuttle
mapping strategy (Huang et al. 2003). Lr21 spanned 4318 bp and encoded a
1080-amino-acid protein containing a conserved nucleotide-binding site
(NBS) domain, 13 imperfect leucine-rich repeats (LRRs), and a unique 151-amino-
acid sequence missing from known NBS-LRR proteins at the N terminus.
Fine-structure genetic analysis at the Lr21 locus detected a non-crossover (recom-
bination without exchange of flanking markers) within a 1415-bp region resulting
from either a gene conversion tract of at least 191 bp or a double crossover. With the
advancements in the wheat genome sequencing and flow sorting of the chromosomes,
it will become comparatively easier to clone disease-resistant genes in wheat.
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Chapter 13
Genetic Improvement of Sugarcane
Through Conventional and Molecular
Approaches

Upendra Kumar, Priyanka and Sundip Kumar

Abstract In recent years, efforts to improve sugarcane have focused on the
development of biotechnology tools for this crop. It has become clear that sugar-
cane lacks tools for the biotechnological route of improvement and that the initial
efforts in sequencing ESTs had limited impact on breeding. Until recently, the
models used by breeders in statistical genetic approaches have been developed for
diploid organisms, which are not ideal for a polyploid genome such as that of
sugarcane. Breeding programs deal with decreasing yield gains. The contribution of
multiple alleles to complex traits such as yield is a basic question underlining the
breeding efforts that could only be addressed by the development of specific tools
for this grass. However, functional genomics has progressed, and gene expression
profiling leads to the definition of gene networks. The sequencing of the sugarcane
genome, which is underway, will greatly contribute to numerous aspects of research
on grasses. We expect that both the transgenic and the marker-assisted routes for
sugarcane improvement will contribute to increased sugar, stress tolerance, and
higher yield and that the industry for years to come will be able to rely on sugarcane
as the most productive energy crop.
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13.1 Introduction

Sugarcane is an important tropical crop and has served as a source of sugar for
hundreds of years. With an originally soft, watery culm sugarcane acquired a
distinctive feature of partitioning carbon into sucrose in its stem. The striking ability
of accumulating levels of sucrose that can reach around 0.7 M in mature internodes
(Moore 1995) is an almost unique feature in cultivated plants. Sugarcane is gen-
erally used to produce sugar and has recently gained increased attention because of
its use in the production of ethanol, which represents an important renewable
biofuel source (Pandey et al. 2000). The main product of sugarcane is sugar.
Several by-products are produced from crushing sugarcane at the sugar mill. These
include refined sugar, raw sugar, bagasse, molasses, alcohol, dextran, crude wax
and glucose. These by-products are used by various industries like Bagasse-based
industries to produce pulp, paper, particle boards etc. Press mud-based industries
mainly produce fertilizer and the wax and compost industries animal feed.
Sugarcane bagasse is largely used for energy cogeneration at the mill or for the
production of animal feed, thus increasing the overall efficiency of the crop system
(Pandey et al. 2000; Sun et al. 2004; Sangnark and Noomhorm 2004; Paiva et al.
2004; Han and Wu 2004). It is expected that enzymatic and hydrolytic processes
that allow the bagasse carbon units from cellulose and hemicellulose to be fer-
mented will soon be scaled up for ethanol production, turning sugarcane into an
efficient crop for energy production (Paiva et al. 2004; Han and Wu 2004).
Sugarcane is cultivated in more than 50.12 lakh hectares in tropical and subtropical
regions of the world, producing up to 3521.4 lakh tons of sugarcane and 245.5 lakh
tones of sugar during the year 2014–2015. India is the second largest producer of
sugar in the world after Brazil and shares 17 %of the world production (http://www.
agricoop.nic.in).

Both naturally occurring polyploidization and human-mediated polyploidization
have been central to sugarcane domestication and improvement. Saccharum and
sorghum are thought to have diverged from a common ancestor between 5 and
9 million years ago (Al-Janabi et al. 1994; Wang et al. 2010), and intergeneric
crosses between some genotypes can still be made (Dewet et al. 1976). Saccharum
and sorghum share more extensive genome-wide colinearity, and fewer chromo-
somal rearrangements (Dufour et al. 1997a, b; Ming et al. 1998), than share with
maize, wheat, and rice. Many regions of the sorghum genome correspond to four or
more homologous regions of S. officinarum, showing that in the short period since
their divergence from a common ancestor, S. officinarum has been through at least
two whole-genome duplications (Ming et al. 1998). These recent genome dupli-
cations are superimposed on an additional duplication shared by most if not all
cereals (Paterson et al. 2004). A basic chromosome number of x = 10 appears likely
to be ancestral to the Saccharinae, being consistent with sorghum, and note that
x = 5 sorghums are not ancestral but are recently derived from x = 10 types
(Spangler et al. 1999).
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A further unusual feature of Saccharum transmission genetics has introduced
still additional complexity into its genetic composition. The interspecific crosses
that were a hallmark in the evolution of modern cultivars were followed by
backcrosses to S. officinarum clones to recover types adapted to increased sugar
content (Price 1965). During this process, a high frequency of transmission of
2n chromosomes by the female (S. officinarum) parent was discovered (Bremer
1961), which facilitated the recovery of S. officinarum alleles for sugar production,
while introgressing disease resistance, vigor, and adaptability from S. spontaneum.
This “nobilization” process yielded interspecific polyaneuploid genotypes of a
complexity exceeding that of most if not all other crops. The meiosis of modern
sugarcane cultivars mainly involves bivalent pairing (Price 1963; Burner and
Legendre 1994), and chromosome assortment results from general polysomy in
some cases of preferential pairing (Grivet et al. 1996).

13.2 Centers of Origin and Diversity

The genus Saccharum probably originated before the continents assumed their cur-
rent shapes and locations. The genus consists of 35–40 species and has two centers of
diversity: the Old World (Asia and Africa) and the New World (North, Central, and
South America). Asia has approximately 25 native species, North America six native
species, four or five introduced species, and Central America three or four native and
some introduced species (Webster and Shaw 1995). Africa has two native, and
Australia has one naturalized species (Darke 1999; Bonnett et al. 2008).

The Brazilian Saccharum species have not been well characterized. Only regional
floristic surveys have reported the presence of these species. One study described the
native species S. asperum, S. angustifolium, S. purpureum, S. biaristatum, S.
glabrinodis, S. clandestinus, and S. villosum, but the authors commented that these
species were poorly defined so that it is possible that they all might be variations of a
single species (Smith et al. 1982). In fact, from these species, only S. asperum, S.
angustifolium, and S. villosum are currently accepted scientific names (The Plant List
2010). In another study, the native Brazilian species were identified as S. villosum, S.
asperum, and S. baldwinii (Filgueiras and Lerina 2001).

The center of origin and diversity of S. spontaneum is the more temperate
regions of subtropical India. However, because S. spontaneum can be grown in a
wide range of habitats and altitudes (in both tropical and temperate regions), it is
currently spread over latitudes ranging from 8°S to 40°N in three geographic zones:
(a) east, in the South Pacific Islands, the Philippines, Taiwan, Japan, China,
Vietnam, Thailand, Malaysia, and Myanmar; (b) central, in India, Nepal,
Bangladesh, Sri Lanka, Pakistan, Afghanistan, Iran, and the Middle East; and
(c) west, in Egypt, Kenya, Sudan, Uganda, Tanzania, and other Mediterranean
countries. These zones roughly represent natural cytogeographical clusters because
S. spontaneum tends to present a different number of chromosomes in each of these
locations (Daniels and Roach 1987).
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13.3 Taxonomy

Sugarcane belongs to the tribe Andropogoneae and to the subtribe Saccharinae.
Sugarcane geneticists have adopted the term ‘Saccharum’ complex, originally
coined by Mukherjee (1957) to describe a subset of genera within Saccharinae
closely related to Saccharum to have contributed to its genetic background. Genera
within the Saccharum complex include Erianthus, Miscanthus, Narenga,
Saccharum, and Sclerostachya (Amalraj and Balasundaram 2005). Using DNA
sequences to assess the interrelationships of genera within the Saccharum complex,
Hodkinson et al. (2002) concluded that Saccharum and Miscanthus are more clo-
sely allied to each other than they are to other genera.

Sugarcane geneticists have traditionally included six species in the genus
Saccharum, namely S. officinarum (x = 10, 2n = 80; sweet chewing cane found in
native gardens in New Guinea and other South Pacific Islands), S. robustum (x = 10,
2n = 60, 80; putative ancestor of S. officinarum found most commonly on river
banks in the same region), S. edule (2n = 60–80, produces aborted tassels, a
delicacy in the same region), S. barberi (2n = 111–120, semisweet Indian cane), S.
sinense (2n = 81–124, semisweet Chinese cane), and S. spontaneum (x = 8,
2n = 40–128, wild cane found throughout Asia).

13.4 Sugarcane Breeding

13.4.1 Classical Breeding

The cultivated varieties of sugarcane (complex hybrids) are developed by using S.
officinarum, the noble sugarcanes; S. barberi, the Indian sugarcanes; S. sinense, the
Chinese sugarcane; and two wild species, viz. S. spontaneum and S. robustum
germplasm. The genes for sucrose accumulation in modern sugarcane varieties are
derived from S. officinarum, S. barberi, and S. sinense. The wild species has
contributed disease resistance, tolerance to environmental stress, and higher yield
potential through higher biomass production. Prior to the twentieth century, the
world sugarcane industry was dependent on the noble canes (S. officinarum) and the
canes of India (S. barberi) and China (S. sinense). The varieties were limited in
number and yield potential, were susceptible to disease and pests, and were not
adaptable to unfavorable ecological conditions. It was the pioneering work of the
Dutch breeders in Indonesia that provided the basis for breeding high-yielding
cultivars. Since the resistance to stress environments and diseases was not available
within the genetic variability of S. officinarum, S. barberi, and S. sinense, therefore,
wild species of Saccharum were also brought into the breeding programs. In India,
Imperial Sugarcane Breeding Station, Coimbatore, was established in the year
1912, and Dr. C.A. Barber who was the first in charge of this station crossed
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S. officinarum with S. spontaneum (nobilization) and produced a commercial
variety, Co. 205 in the first generation (Fig. 13.1). Later clones of S. officinarum,
S. spontaneum, and S. barberi were hybridized, and their derivatives were back-
crossed to S. officinarum (renobilization). Subsequently, the derivatives of these
species were utilized objectively for the development of improved varieties of
sugarcane. However, it was realized in the recent past that the genetic improvement
in the newly developed varieties was not forthcoming as expected. It was probably
because the narrow genetic base of the available breeding stocks is based on the
limited number of clones of the above species. Therefore, emphasis was made to
broaden the genetic base of the breeding stocks by the development of new
interspecific hybrid (ISH) clones for utilization in breeding programs at Sugarcane
Breeding Institute, Coimbatore, India. As a result, a total of 486 ISH clones have
been produced. In the development of these ISH clones, a number of species,
namely S. officinarum (33 clones), S. spontaneum (20 clones), S. barberi, S. sinense
(9 clones), S. robustum (13 clones), and some indigenous (13 clones) and exotic
(6 clones) ISH derivatives, were used as parents. The qualitative and quantitative
characters of these ISH clones were studied, and some of these ISH clones (about
20) were included in the breeding population at National Hybridization Garden,
Coimbatore, India, to be used as parents in the further breeding programs.

Intergeneric hybridization has also been tried as a means to broaden the genetic
base, to obtain commercially useful characteristics, and to increase hybrid vigor.
Although many attempts to cross between the intergeneric species may have been
made in sugarcane research stations, limited publications are available. Two genera,
namely Erianthus and Miscanthus, have received considerable attention of plant
breeders. Among the Erianthus genus, E. arundinaceus has been of greatest interest
because of its large stature, excellent ratoon yields, deep and extensive root system,
tolerance to drought and floods, and resistance to diseases of importance in sug-
arcane. The genus Miscanthus has been attractive because of its superior over-
wintering ability in temperate climates and as an energy cane (Tew and Cobill
2008). In addition, downy mildew (Peronosclerospora sacchari) resistance genes

Fig. 13.1 Genetic base-broadening through “nobilization.” The noble canes include the S.
officinarum spp. or commercial hybrids with high sucrose content
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have been reported to be successfully transferred from Miscanthus to sugarcane
(Chen and Lo 1989).

Despite all the promises, introgression breeding may hold; in general, it is
difficult to estimate its impact or success in recent decades. It has also been noted
that much effort has not led to commensurate commercial successes (Berding and
Roach 1987; Stalker 1980). According to Wang et al. (2008), the process of
introgression in sugarcane breeding is therefore traditionally a long-term and risky
investment. The time and risk factors have clearly acted to reduce the level of
resources devoted in most sugarcane breeding programs to introgression breeding
despite general agreement among sugarcane breeders of its potential value. Much
emphasis is laid on crosses that include S. officinarum hybrid parents with poten-
tially high breeding values and appreciable agronomic characteristics.

13.4.2 Molecular Breeding

As such, modern sugarcane cultivars are highly heterozygous, with several different
alleles at each locus. Such genomic redundancy may confer an evolutionary
advantage (to buffer mutation load), or encourage the divergence of duplicated
genes to adopt new functions. However, its large genome size, complicated genome
organization and high level of diversity present special challenges for sugarcane
genetic analysis, and generally slow rates of gain in crop improvement program
through conventional breeding approach. However, biotechnology has arisen as a
powerful tool to establish association between different traits and genes or
molecular markers and has been used to facilitate genetic manipulation via
marker-assisted selection (MAS). A number of candidate genes are now reported
for various traits of sugarcane, and the work for the saturation of genetic maps of
sugarcane is in progress in different laboratories. Marker techniques such as RAPD
(Al-Janabi et al. 1993), RFLP (Da Silva et al. 1993; Lu et al. 1994a, b), AFLP
(Lima et al. 2002), and SSR (Selvi et al. 2003) have already been used in sugarcane
for genotyping or genetic mapping, and the efforts have been made to develop
molecular markers using these techniques (Glaszmann 1994; Lu et al. 1994a, b;
D’Hont et al. 1995; Alix et al. 1998; Jannoo et al. 1999b; Paulet et al. 2000).

13.5 Molecular Cytogenetics of Sugarcane

Sugarcanes are characterized by numerous (from 36 to more than 200) small- and
variable-sized chromosomes (Fig. 13.2a). Classical cytogenetic studies have been
essential in establishing a classification of the genus Saccharum and in under-
standing the nobilization process (reviewed by Sreenivasan et al. 1987). Modern
sugarcane cultivars are derived from a few interspecific crosses performed a century
ago between S. officinarum (2n = 80), the domesticated sugar-producing species,
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Fig. 13.2 Somatic chromosomes of sugarcane: (a) showing the functioning 2n gametes in an
intergeneric hybrid of S. officinarum × Erianthus, the presence of 11 45S rDNA sites (8 green sites
on the chromosomes of S. officinarum (due to functioning of 2n gametes) and rest of the three 45S
rDNA sites on the chromosomes of Erianthus (due to functioning of n gametes), (b) 2n = 64
chromosomes of S. spontaneum showing 45S rDNA sites (red) on 8 chromosomes and 5S rDNA
sites on 8 chromosomes indicating x = 8, the basic chromosome number of S. spontaneum,
(c) 2n = 80 chromosomes of S. officinarum showing 45S rDNA sites (red) on 8 chromosomes and
5S rDNA sites on 8 chromosomes indicating x = 10, the basic chromosome number of S.
officinarum, (d) 2n = 106 chromosomes of a commercial hybrid (Co 419) after GISH using
genomic probe of S. spontaneum labeled with rhodamine (red) and genomic probe of S.
officinarum labeled with FITC (green) showing strong hybridization signals (red) on 22
chromosomes and on 84 chromosomes (green), (e) 2n = 108 chromosomes of a newly developed
interspecific hybrid (ISH 100) after GISH using genomic probe of S. spontaneum labeled with
FITC (green) showing strong hybridization signals (green) on 22 chromosomes, (f) 2n = 62
chromosomes of an intergeneric F1 hybrid among S. spontaneum × Erianthus after GISH using
genomic probe of Erianthus labeled with rhodamine (red) and 45S rDNA probe labeled with FITC
(green) showing strong hybridization signals (red) on 30 chromosomes and 45S rDNA sites on
7 chromosomes indicating functioning of n + n gametes of S. spontaneum and Erianthus
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S. barberi (2n = 81–124), a group of old Indian cultivars, and S. spontaneum
(2n = 36–128), the wild species. These interspecific crosses were followed by a few
backcrosses to S. officinarum clones to recover types adapted to cultivation
(Arceneaux 1965; Price 1965). During these crosses, breeders selected the results of
a transmission of 2n chromosomes by the female parent, a phenomenon commonly
observed in this type of combination (Bremer 1923, 1961, Fig. 13.2a), which
facilitated the recovery of clones adapted to sugar production. These crosses were
successful in introgressing disease resistance, vigor, and adaptability to the
sugar-producing lines. This process yielded composite interspecific genomes, the
complexity of which probably exceeds that of any other major crops. Modern
cultivars are highly polyploid and aneuploid, with 100–130 chromosomes
(Simmonds 1976).

A breakthrough in our understanding of sugarcane cytogenetics has been
achieved over the last 20 years by using molecular cytogenetics in conjunction with
diversity and genetic mapping studies. Molecular cytogenetics has been used to
determine the origin of S. barberi, a group of canes involved in the origin of
modern sugarcane cultivars. In addition, molecular cytogenetics revealed the size of
the basic chromosome sets in S. officinarum and S. spontaneum and the genome
structure of modern cultivars and related genera.

13.5.1 Determination of Basic Chromosome Numbers

The size of the basic chromosome set (1x) in sugarcane and related germplasm has
been actively debated for a long time. Basic chromosome numbers of x = 5, 6, 8,
10, and 12 have been proposed for the Saccharum species (reviewed by
Sreenivasan et al. 1987), and the possibility of several basic chromosome numbers
in this genus has been suggested. The chromosome number of S. officinarum has
been established as 2n = 80. Clones with the morphology of S. officinarum but with
higher chromosome numbers are considered as typical or hybrids (reviewed by
Sreenivasan et al. 1987) for S. officinarum and its wild progenitor, S. robustum,
which exhibits 60 to 200 chromosomes with major cytotypes of 2n = 60 or 80; the
most likely basic chromosome number is x = 10. This is consistent with the most
common number in the Andropogoneae tribe (Bremer 1961), and the major cyto-
types are more likely to represent euploid forms. For S. spontaneum, which displays
a wide range of chromosome numbers from 2n = 36 to 2n = 128 with five major
cytotypes: 2n = 64, 80, 96, 112, and 128 (Panje and Babu 1960), the series sug-
gested a basic chromosome number of x = 8. However, because of the high
polyploidy and the difficulty of differentiating the chromosomes based on their
morphology, these hypotheses could not be tested with classical cytogenetics.

Fluorescence in situ hybridization (FISH) of ribosomal gene clusters was used to
address the question of basic chromosome numbers in S. officinarum and
S. spontaneum, the two species involved in the origin of modern cultivars either
directly or through S. barberi. In plants, the 45S and 5S rRNA genes are arranged in
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long tandem arrays of repeat units containing the coding sequences and intergenic
spacers. These two multigene families are organized in separated clusters, each one
being located at one locus or several loci in the genome (Appels and Honeycutt
1986). The major 45S rDNA sites are usually associated with secondary constric-
tions and nucleolus organizer regions as opposed to non-expressed minor sites. The
45S rRNA loci consist of many copies (up to several thousands) of a DNA unit of
several kbps. The 5S genes are smaller (several 100 bp) and less repeated. D’Hont
et al. (1996, 1998) and Panwar et al. (2012) analyzed the number of 5S and 45S
rDNA sites in different accessions of three of the Saccharum species, namely
S. officinarum, S. spontaneum, and S. robustum, and on the basis of distribution of
45S and 5S rDNA sites, they have reported the basic chromosome numbers in these
species 10, 8, and 10, respectively, and their ploidy level, assuming one site (45S
rDNA/5S rDNA) per copy of genome which is also confirmed by Panwar et al.
(2012) (Fig. 13.2b, c). Two distinct chromosome organizations coexist in modern
cultivars. The genetic maps available so far suggest that the parental genomes are
colinear and probably differ by only a small number of rearrangements (Grivet et al.
1996; Ming et al. 1998). One such case may reside on homology group (HG) VIII.
The 45S rRNA genes were genetically mapped by Grivet and coworkers in cultivar
R570 at an interstitial position on S. spontaneum cosegregation groups of HG VIII.
This HG comprises two large S. spontaneum cosegregating groups together with
two separate sets of smaller S. officinarum cosegregation groups that could not be
merged. The structure of the chromosomes of this HG VIII may thus be different in
S. officinarum and S. spontaneum.

Flow cytometry has been used to estimate the genome size of sugarcane (D’Hont
and Glaszmann 2001). The size of the total genome is 7.7 pg (7440 Mbp) for
S. officinarum (2n = 8x = 80), 6.2 pg (5990 Mbp) for S. spontaneum (2n = 8x = 64),
and 11 pg (10,000 Mbp) for a typical model sugarcane cultivar (R570, 2n = 115).
This is much larger than that in rice, 860 Mbp (2n = 24); sorghum, 1600 Mbp
(2n = 20); or maize, 5500 Mbp (2n = 20). However, taking into account the ploidy
level, the size of the basic genome (1X), 930 Mbp (0.96 pg) for S. officinarum and
750 Mbp (0.78 pg) for S. spontaneum are close to sorghum, with 800 Mb (x = 10),
as compared to 430 Mbp for rice (x = 12) and 2750 Mbp for maize (x = 10).

13.5.2 Genetic Constitution

Saccharum species present high ploidy levels. S. officinarum is octoploid (2n = 80)
having x = 10 chromosomes, which is the basic chromosome number of members
of the Andropogoneae tribe (D’Hont et al. 1995; Cesnik and Miocque 2004; de
Nobrega and Dornelas 2006; Panwar et al. 2012). S. spontaneum has x = 8 chro-
mosomes (D’Hont et al. 1996; Panwar et al. 2012) but presents great variation in
chromosome numbers with five main cytotypes: 2n = 62, 80, 96, 112, or 128
(Daniels and Roach 1987; Sreenivasan et al. 1987).
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Modern sugarcane cultivars, which were derived from the hybridization between
these two species, are considered allopolyploid hybrids (Daniels and Roach 1987),
with most exhibiting a 2n + n constitution, representing two copies of the S.
officinarum genome plus one copy of the S. spontaneum genome (Cesnik and
Miocque 2004). The S. officinarum genome usually duplicates when it is hybridized
with S. spontaneum and even with Erianthus (Kumar et al. unpublished). This
phenomenon facilitated the work of the first breeders because nobilization consisted
of increasing the ratio of the S. officinarum to that of the S. spontaneum genome
(Bremer 1961). Genomic in situ hybridization (GISH) in interspecific and inter-
generic hybrids has proved as a powerful tool to differentiate the chromosomes of
different genomes and to identify the true interspecific/intergeneric hybrids
(Fig. 13.2f). According to GISH studies, the genomes of modern hybrids are
composed of 10–20 % of S. spontaneum chromosomes, 5–17 % of recombinant
chromosomes containing part of S. officinarum and part of S. spontaneum chro-
mosomes, and the remainder composed of S. officinarum chromosomes (Piperidis
and D’Hont 2001; D’Hont 2005; Kumar et al. 2007, Fig. 13.2d, e). The hybrids are
usually aneuploid, with a prevalence of bivalents, a significant proportion of uni-
valents and rare multivalent associations during meiosis (Daniels and Roach 1987).
Despite this genome complexity, evidence suggests a diploid-like mode of inheri-
tance (Hogarth 1987).

13.6 Existing Genomic Resources

13.6.1 Genetic Diversity

Recent genomic data for evaluating genetic diversity within the genus suggest new
relationships among accessions and may ultimately produce a definitive classifi-
cation for the sugarcane species. The first molecular evidence came from restriction
fragment patterns of nuclear ribosomal DNA that was used to separate accessions of
S. spontaneum, which showed the widest within-species variation, from accessions
of four other taxa often afforded species status: S. robustum, S. officinarum,
S. barberi, and S. sinense (Glaszmann et al. 1990). RFLP analyses of mitochondrial
genome showed an identical pattern among 18 S. officinarum clones and 15 of 17
S. robustum clones (D’Hont et al. 1993). RFLP patterns were similar among
S. officinarum, S. barberi, S. sinense, and S. edule, all of which were distinctively
different from S. spontaneum. Restriction patterns of the chloroplast genome sug-
gested that, except for S. spontaneum, all the Saccharum species have the same
chloroplast restriction sites (Sobral et al. 1994). RFLP analysis of nuclear genomic
DNA confirmed observations about the cytoplasmic genomes that suggested dis-
tinctively greater diversity within S. spontaneum than among the four other species
that were highly similar (Burnquist et al. 1992; Lu et al. 1994a; Nair et al. 1999).
The most recent analysis, based on genomic in situ hybridization, is compatible
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with the hypothesis that S. barberi and S. sinense were derived from interspecific
hybridization between S. officinarum and S. spontaneum (D’Hont et al. 2002).
These authors conclude that genetic similarities among S. barberi and S. sinense
accessions do not support the present classification of these being two distinct taxa.

Because of its polyploid nature, interspecific origin, and vegetative propagation,
high levels of heterozygosity were detected among modern sugarcane cultivars
using RFLP markers (Lu et al. 1994b; Jannoo et al. 1999a). The major part of this
diversity was attributed to the 15–25 % chromosome complement that was inherited
from S. spontaneum by random assortment of half of its chromosome, which has
the greatest interspecific diversity (D’Hont et al. 1996). Similar patterns of
molecular diversity were also detected using AFLP markers (Lima et al. 2002). On
the other hand, modern sugarcane cultivars, derived from a small germplasm base
contributed by only a few genotypes, show strong linkage disequilibrium.

13.6.2 Synteny with Other Members of the Grass Family

The conservation of gene repertoire and colinearity of gene order in the genomes of
diverse grasses are well established (Freeling 2001). For sugarcane, the small
diploid genome of sorghum has proven an especially facile model. Sorghum is the
closest relative of sugarcane, and the two grasses differed from a common ancestor
about five million years ago. Sorghum and sugarcane genomes share more exten-
sive genome-wide colinearity and fewer chromosomal rearrangements (Dufour
et al. 1997a, b; Guimaraes et al. 1997; Ming et al. 1998), than either share with any
other known grass. Comparative mapping to establish colinearity between sugar-
cane and maize is complicated by segmental polyploidy of the maize genome and
the resulting mapping of many sugarcane loci to two duplicated loci in maize
(Grivet et al. 1996; Dufour et al. 1997a, b). Although it has not been through a
genomic duplication event subsequent to its divergence from sugarcane, rice is
much more distantly related and numerous chromosomal rearrangements are found
when attempting to align their genomes.

Colinearity has been employed to evaluate the correspondence of QTLs affecting
related traits in sugarcane and other grasses. Corresponding QTLs controlling plant
height and flowering were found in sorghum and sugarcane (Ming et al. 2002).
Several previously mapped maize and rice mutants and QTLs of the sugar meta-
bolic pathway might be candidate genes for controlling sugar content in sugarcane
(Ming et al. 2001). Sorghum, rice, and maize linkage maps and physical maps were
used to identify potential markers for fine mapping and chromosome walking
toward cloning the rust resistance gene in sugarcane (Asnaghi et al. 2000); sorghum
RFLP markers played a key role in mapping this gene to a small interval. The close
relationship between these grasses, a high degree of colinearity, and
cross-hybridization of DNA probes are compelling reasons for using the more
abundant information from the small genome sorghum to guide molecular mapping
and positional cloning in sugarcane.
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13.6.3 Mapping Quantitative Trait Loci for Economic Traits

Mapping quantitative trait loci (QTL) in autopolyploids is complicated by the
potential for segregation of three or more alleles at a locus and by the lack of
preferential pairing. As a consequence, different parental alleles of autopolyploids
are not mutually exclusive alternatives. For the subset of polymorphic alleles that
show simplex segregation ratios, the effect of an allele substitution can be estimated
from the average phenotypic difference between the two possible genotypes
(presence vs absence). Large-scale QTL mapping was conducted in two inter-
specific populations (Ming et al. 2001, 2002) and in a segregating population from a
selfed hybrid R570 (Hoarau et al. 2002). Most QTL alleles for sugar content
showed phenotypic effects consistent with the parental phenotypes. However, the
occasional transgressive QTLs revealed opportunities to purge unfavorable alleles
from cultivars or to introgress valuable alleles from exotics (Ming et al. 2001). In
many cases, QTLs controlling a given trait were mapped to corresponding genomic
locations within the same genotype, across genotypes, and across species. This
complex mapping of a given trait suggests that at least some QTLs on the same
cluster might be different forms of the same gene or conserved homologous genes
(Ming et al. 2001, 2002).

Multiplex segregation at QTL loci may be partly responsible for phenotypic
buffering that is an important factor in the success of many autopolyploid crops. In
several cases, two or more loci detected by the same DNA probe were each
associated with variation in sugar content and plant height, and enabled to inves-
tigate the possibility of multiplex phenotypic buffering in sugarcane. “Stacking” of
multiple doses of chromosomal segments containing favorable QTLs generally
produced diminishing effects on phenotype, especially in cases where high-order
duplications could be tested (Ming et al. 2001, 2002). This is similar to the results
reported from stacking unlinked QTLs in the diploid tomato. The tomato results
were attributed to epistasis (Eshed and Zamir 1996). Evaluating epistasis in sug-
arcane is complicated by the possibility of nonlinear interactions between alleles at
homologous loci, in addition to nonlinear interactions between unrelated loci
(Eshed and Zamir 1996). Detecting this type of phenotypic buffering has potential
for cultivar improvement through marker-assisted selection in autopolyploid crops.
Although diagnostic DNA markers are capable to pyramid multiple QTLs in a
polyploid, incorporating just one copy of the multiple alleles may be sufficient to
achieve most of the desired effects in the breeding population. Nonadditive gene
action in multiple-dose QTLs also may have contributed to evolutionary opportu-
nities. If single copy of a gene/QTL is physiologically sufficient, the additional
copies are “extra” and thus free to collect mutations, often becoming nonfunctional,
but perhaps occasionally resulting in a distinctive new function that improves
fitness.
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13.6.4 Map-Based Cloning

The first major gene of sugarcane mapped was the gene for resistance to brown rust
(Puccinia melanocephala H & P Syd.) in “R570” (Daugrois et al. 1996). Mapping
this gene with sugarcane c-DNA probe CDSR29 provided the first opportunity to
evaluate the potential for map-based cloning in a complex polyploid plant.
A bacterial artificial chromosome (BAC) library was constructed with 14 × basic
genome or 1.3 × total genome coverage using genomic DNA from R570 (Tomkins
et al. 1999). Meanwhile, a fine mapping project began to saturate the region sur-
rounding the rust resistance gene. Using the synteny relationship between sugarcane
and sorghum, maize, and rice, and selecting probes in the surrounding regions, this
unlinked rust resistance gene was mapped to the end of a linkage group corre-
sponding to sorghum linkage group D (Asnaghi et al. 2000). Bulk segregant
analysis added eight markers surrounding the rust resistance gene with the two
closest flanking markers placed 1.9 and 2.2 cM from the resistance gene (Asnaghi
et al. 2004). Flanking markers were narrowed down to 0.1 and 0.3 cM on each side
of the target gene, by chromosome walking using sugarcane, sorghum, and rice
BAC resource. Beginning with an unlinked rust resistance gene with a tagged
marker 10 cM away to produce a fine-mapped target gene flanked by sugarcane
BACs, this work demonstrated the rapid advancement of sugarcane genomics.

13.6.5 Sugarcane ESTs

Sugarcane was not among early candidates for whole-genome sequencing due to
the complexity and size of its genome, estimated at 10 Gb for a modern cultivar
(D’Hont and Glaszmann 2001). However, mRNAs, the transcribed part of the
genome, are much more tractable and constitute the bulk of DNA sequences cur-
rently available for sugarcane. An organism search of the NCBI nucleic acid
databases on 15 May, 2015, using the term Saccharum yields 9717 nucleotide
sequences, 285,216 expressed sequence tags (ESTs), and 83,138 genome survey
sequences (GSSs). The ESTs can be subdivided by species into three major groups:
two small groups of ESTs from S. arundinaceum and S. officinarum as well as an
extremely large group of ESTs derived from Saccharum hybrid cultivars, the
modern varieties of sugarcane. The bulk of the cultivar ESTs correspond to six
cultivars from breeding programs in Brazil (SP80-3280, SP70-1143), India (CoS
767, Co 1148), Australia (Q117), and USA (CP72-2086). The mixed group con-
tains ESTs from mixed tissue samples containing the Brazilian varieties CB47-89,
RB855205, RB845298, RB805028, SP80-87432, PB5211 × P57150-4 or
SP83-5077, SP80-185, SP87-396, SP80-3280, and SP803280 × SP81-5441.
Sugarcane EST acquisition commenced in South Africa, with a small collection of
ESTs being generated from both leaf roll and stem from the cultivar NCo376
(Carson and Botha 2002). The largest collection of ESTs was generated by
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SUCEST, a consortium of Brazilian researchers who generated approximately
238,000 ESTs from 26 libraries constructed from diverse tissues from several
Brazilian varieties (Vettore et al. 2001, 2003). EST collections were also generated
in Australia from cultivar Q117 (Bower et al. 2005), in the USA from CP72-2086
research used their own nomenclature since they all entered the sequencing arena
well before the large-scale public sequence clustering projects commenced.
However, the variations in nomenclature and “species” designation impacted the
ability of the entire sugarcane community to correctly utilize the vast resource. This
was seen in various sugarcane EST cluster databases, including sugarcane
UniGene, the sugarcane transcript assembly at JCVI, and the sugarcane transcript
assembly at PlantGBD. This group made a decision in 2009 to engage with NCBI
to harmonize sugarcane species and hybrid name in order to remove artificial
discrepancies. Sugarcane EST data available at NCBI reflect this harmonization of
nomenclature and therefore may differ in some cases from nomenclature used in the
earlier publications. Most of the issues centered on the incorrect use of “Saccharum
officinarum” as a species name for modern cultivars instead of “Saccharum hybrid
cultivar.” Data mining of the existing entries as well as publications associated with
these cultivar names allowed for the reassignment of most entries into their correct
cultivar groups. The species name “Saccharum officinarum” is now reserved for
the ancestral species of sugarcane which has 2n = 80 chromosomes, x = 10
(Sreenivasan et al. 1987), distinct from modern commercial varieties which are
interspecific polyaneuploid hybrids with chromosome numbers varying between
100 and 130 (D’Hont et al. 1996). The correct assignment of species or cultivar
name to the sequence entries will provide an extra layer of information that will be
useful during sequence assembly and annotation. It may also assist in in silico SNP
and microsatellite discovery.

Comparative analysis of 42,982 sugarcane aligned sequences (SASs) with the
protein and DNA sequences from Arabidopsis and rice provided the first detailed
estimates of the degree conservation/divergence between a monocot and eudicot
(Vincentz et al. 2004). The 42,982 SASs represent possibly 33,620 unique genes
(Vettore et al. 2003). Among them, 70.5 % have homologous sequences in
Arabidopsis, 2 % in other eudicot, 14 % in monocot, and 13.5 % no matches. The
14 % monocot-specific cDNA sequences may represent novel genes on
fast-evolving sequences that diverged from their eudicot counterparts. Another
noticeable application of the EST resources is the identification of resistance gene
analogs (RGAs) (Rossi et al. 2003). A total of 88 RGAs were identified based on
their sequence homology to typical disease resistance genes. These sugarcane
RGAs included representatives of the three major groups of resistance genes with a
nucleotide-binding site (NBS), leucine-rich repeat (LRR), and a serine–methionine
(S/T Kinase) domain. Fifty-five RGAs were used as RFLP probes for genetic
mapping and identified 148 single-dose loci. Several RGA clusters were found,
including one cluster of two loci mapped close to the sugarcane brown rust resis-
tance gene. Detailed sequence analyses of these two RGAs with their rice and maize
orthologs suggested a polyphyletic origin. These sugarcane RGAs are a useful
resource for identifying and cloning disease resistance genes (Rossi et al. 2003).
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Chapter 14
Germline Transformation for Crop
Improvement

Divya Mohanty, Atika Chandra and Rajesh Tandon

Abstract In present times, when genetically modified (GM) crops are creating a
niche for themselves in the agricultural arena, germline transformation is likely to
reduce the time and effort to produce transgenics. In the last three decades of
transgenic research, phenomenal success has been achieved but has remained
limited to species that lent themselves easily to genetic modification. More than 15
dicot and 11 monocot taxa have been tested for male germline transformation. On
the other hand at least 23 three dicot and four monocot taxa have been tested for
genetic modification through female germline. Amongst the male germ cells, cel-
lular systems ranging from microspore, immature and mature pollen, pollinaria,
pollen protoplasts, pollen tubes, exine detached pollen (EDP) and pollen derived
embryos have been tested for transient or stable integration of foreign genes.
A variety of methods and variants and combinations of methods such as agrolistics
that combines Agrobacterium mediated transformation and biolistics, are available
for the introduction of genes into the male germline, as it is accessible to treatments
under a variety of conditions. Amongst the methods tested in male germline
transformation, particle bombardment remains the most preferred method. The
female germline, being largely inaccessible has lent itself to modification mostly via
Agrobacterium-mediated methods. The success of in planta vacuum infiltration and
floral dip exercise seems to be confined to Crucifers with ovule as the prime target.
Applicability of germline transformation methods is being tested on a wider range
of crop plants.
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14.1 Introduction

By the year 2050, the demand for food, feed, fibre and biomass is expected to
increase by 70 % (FAO 2009). Unfortunately, many crops have stagnated in yield
due to a variety of reasons including biotic and abiotic stresses (Grover and Pental
2003; Ray et al. 2012). Arable land remains limited and further expansions are
severely curbed due to the deteriorating soil profiles, habitat modification and cli-
mate change. Conventional methods of crop breeding or the contemporary tools of
biotechnology alone cannot meet the challenge of providing for billions in the
immediate future. It is thus imperative to integrate the two and improve the tools of
both the approaches to fulfil the needs.

Genetically modified (GM) crops such as soybean, cotton, maize and canola
were the first to become commercially available in the year 1996 (Mannion and
Morse 2013). United States of America is the major contributor of GM crops
followed by Brazil and Argentina, both in acreage and production (Mannion and
Morse 2013). World wide release and cultivation of transgenic crops has been
limited due to various reasons, but the need for economic benefits and sustainable
agriculture is breaking the barriers (Choudhary et al. 2014; Prado et al. 2014). GM
technology has been the fastest adopted strategy, revolutionizing agriculture within
the first sixteen years of its existence (James 2012). This is substantiated in the
hundred-fold increase in the area under GM crop cultivation.

Recovering a ‘useful’ transgenic plant itself is a tenacious exercise requiring
standardization at each step of the process and often aggravated by in vitro recal-
citrance in some of the important crops. The challenge lies in optimizing multiple
parameters that include identification of suitable genotype/s, selection of responsive
tissue, screening compatible and most efficient method/s for stable delivery and
integration of the desired gene that finally culminate in recovery of genetically
stable transformants. Efficiency of transformations is further influenced by unpre-
dictable transgene expression, silencing of genes and formation of chimeric plants
(aberrant tissue formed by genetically distinct cells—untransformed and trans-
formed). With advancement in transformation technologies, the last two decades
have witnessed refinement of existing and the development of newer methods to
recover transgenic crops. Amongst all the available transformation methods, the
most preferred have been the Agrobacterium-mediated and microprojectile bom-
bardment-mediated (biolistic) transformation methods (Barampuram and Zhang
2011). It has been realized that rapid production of GM crops would require sim-
plification of transformation strategies and protocols and yet ensure higher effi-
ciencies of recovering stable transformants.

Plant germline transformation, involving the introduction of desired genes into
the male and/or female gametophytes, can prove to be a useful approach (Alwen
et al. 1990; Roeckel et al. 1992). Essentially, the recovery of transgenics from
transformed germline cells can follow either the pollination/pollen tube pathway or
in vitro regeneration pathway. Theoretically, it is possible to bypass some inter-
vening steps of in vitro regeneration and use either of the genetically transformed
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gametes for affecting fertilization and seed formation (in planta transformation).
The seeds thus obtained would develop into transgenic plants in the usual way.
Alternatively, protocols based on direct morphogenesis of shoots from the rescued
transgenic embryos could alleviate the possible aberrations and variations that arise
through indirect morphogenesis of callus. In former, pollination would ensure that
the trait gets transmitted to the progeny while in the latter, regeneration from
germline tissues can be accomplished [doubled haploids (DH)/
androgenesis/gynogenesis]. Both the strategies would be extremely useful in
recovering transgenics especially from the recalcitrant crops and also in species
where regeneration time is longer (Bolik and Koop 1991). The DH represent a
unique genetic population where the haploid complement carried by pollen is
doubled. Such plants have been advantageous in mapping and breeding of several
useful agronomic traits. Contemporary interest in doubled haploids has surged so as
to attain the dual purpose of introgressing genes and recovering homozygous lines
for the transgene (Forster et al. 2007). Earlier, the researchers and breeders were
captivated to reach the same end product of double haploids rather than improving
the technique. Subsequently, with the improvement of technology and better
understanding of the fundamental mechanisms, there is a renewed interest in the
production of haploids and double haploids (Forster et al. 2007). At present, DH
have been recovered from more than 200 plant species across the plant kingdom
(Forster et al. 2007; Maluszynski et al. 2003). In Europe, nearly 50 % of
modern-day barley cultivars are produced via DH technology (Forster et al. 2007).
In comparison to the traditional plant breeding methods of backcrossing, DH along
with marker-assisted selection save ample amount of time (Toojinda et al. 1998).

Techniques of transformation employed so far, such as floral dip (Clough and Bent
1998) and MAGELITR (Touraev et al. 1997), have proved successful in germline
transformation, although obtaining high transformation efficiencies in many plant
species is still a challenge. Also it appears that the methods to recover transgenics
through germline transformation are yet to be attempted on many crops and there is
need to refine the methods. In this review, we provide a conspectus and assessment of
the progress made in male and female germline transformation techniques.

14.2 Male Germline Transformation

The male germline in plants essentially includes the sporogenous tissue and the
post-meiotic products of microspore mother cell. Based on the developmental stage
targeted for transformation, it may be broadly classified into two pathways: the
sporophytic and the gametophytic (Resch and Touraev 2011; Brew-Appiah et al.
2013). When the immature pollen grains (microspores) are transformed and induced
towards the embryogenesis (androgenesis), it is referred to as sporophytic path.
Whereas when the microspores are transformed and matured in vitro or when the
mature pollen grains are targeted and then either used for pollinations with the aim
of producing GM seed (pollen tube pathway), it refers to the gametophytic path.
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Pollen transformation has been proposed as a convenient method of gene
transfer into higher plants (Eudes et al. 2014; Eapen 2011; Hess 1980, 1987; Ohta
1986; Resch and Touraev 2011). The key factors that influence the process of
integrating and expressing genes via male germline include the microspore stage,
several pre-treatments including osmotic treatment, the plant species/genotypes
used, method of gene introduction, vector constructs and genes used. Uninucleate
microspore (immature pollen) is the preferred stage for germline transformation, as
it offers several advantages. Microspores and young pollen grains are devoid of
exine, produced in large numbers and thus numerous targets are available for gene
transfer in a single experiment raising the chances of recovering independent
transformation events (Touraev et al. 2001). Additionally, all microspores exhibit
physiological uniformity within an anther and can also be synchronously matured
in vitro. This is especially useful in germline transformations via gametophytic
pathway. The sporophytic pathway, wherein the microspores, can be induced to
embark on the embryogenic route giving rise to haploid plants has an obvious
advantage of producing homozygous doubled haploid plants in a single generation.
Contrastingly, in conventional breeding programs the recombinant progeny
obtained from the heterozygous individuals are selected and have to be backcrossed
several times so that the desired trait/s gets fixed in the homozygous state. The
androgenic strategy is time saving and has facilitated crop breeding programs
extensively. The androgenic haploids can be later chemically induced to form
homozygous diploid plants, thereby ensuring that the transgenic trait is stably
inherited in the successive generations.

Experimental evidence has confirmed that mature pollen may also take up DNA
and deliver it to the embryo sac, resulting in the integration of foreign DNA into the
genome of the embryo and endosperm (Alwen et al. 1990). However, the presence
of exine in mature pollen hinders gene delivery, particularly when Agrobacterium-
mediated transformation or microinjection approaches are employed.

14.2.1 Methods of Gene Transfer into Pollen

As a standard practice, microspores are usually isolated at a stage before pollen
mitosis is initiated. In some cases even the early binucleate stage has been found to
be amenable for both haploid pollen culture and pollen transformation. At these
stages, the cell fate is relatively undefined, and thus, genetic manipulation is easier.
The gene of interest (GOI) should essentially be incorporated into the microspore
genome at the single cell stage before first mitosis, so that it is transmitted to all the
subsequent daughter cells, reducing the chance of obtaining chimeras. In case
where the binucleate pollen grains are used, the success of transformation depends
on which of the cells—the vegetative or the generative is transformed. In the case
where successful production of transgenic plants via biolistic transformation of
bicellular pollen had been reported (van der Leede-Plegt et al. 1995), transmission
to the F2 generation was not found and may be due to damage of sperm nuclei
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inflicted by the microprojectiles (Touraev et al. 1997). As early as 1985, Sanford
and co-workers attempted to validate the claim that simple imbibition of pollen with
genomic DNA followed by normal pollination would result in production of
transformed seed. However, no clear-cut transformation events could be recovered
at that time. Consequently, the other methods were devised. Several direct and
indirect methods of gene delivery have been developed for transformation of
pollen/microspores such as Agrobacterium-mediated transformation, electropora-
tion, microprojectile bombardment, microinjection, MAGELITR and sonication.
The four key factors that may influence the process of integrating and expressing
genes via male germline transformations include the developmental stage, plant
species (and genotypes) used, method of gene introduction and the vector con-
structs used. Variable rates of transformation have been reported for a transient or
stable integration of marker genes introduced into the microspore/pollen
(Table 14.1). However, a reliable, efficient and general protocol applicable to a
variety of plants is yet to be standardized.

14.2.1.1 Agrobacterium-Mediated Transformation (Agroinfiltration)

Agrobacterium sps. are well known as the ‘natural genetic engineers’. Amongst
these, A. tumefaciens (recently classified as Rhizobium radiobacter; Young et al.
2001) is most widely employed for transformations. The transformation method
involving these bacterial species is termed ‘Agroinfiltration’ and is regulated by
unique mechanism of gene transfer (Tinland 1996; Zupan and Zambryski 1997).
Agroinfiltration is a comparatively simple method involving no specialized
equipment but is dependent on the genotype of plant species as well as the host
range of the bacterium. The method is one of the most efficient and extensively used
procedures for transformations in a variety of plant tissues and species (Sharma
et al. 2005). It has been used for transfer of single gene of interest or even large
DNA sequences (Hamilton 1997). It primarily results in the integration of a single
or low copy number of transferred DNA per transformed cell, giving way to stable
expression. Further, it excludes the vector backbone sequences (the non-T-DNA
portion of the Ti plasmid) from the introduced DNA into the plant genome. It also
has high potential for independent integration of co-transformed DNA fragments.

Infection of rapeseed pollen (Brassica napus) with Agrobacterium had been
tested (Pechan 1989; Huang 1992), even though no evidence of stable gene inte-
gration into the genome was presented. Vacuum infiltration method devised suc-
cessfully for transformation of Arabidopsis thaliana (Bechtold et al. 1993; Bechtold
and Bouchez 1995) has also been tested for pollen of Petunia hybrida resulting in
9 % transformation efficiency (Tjokrokusumo et al. 2000). The evidence for pollen
transformation was observed by Ye et al. (1999), Tjokrokusumo et al. (2000), Xu
et al. (2008) in A. thaliana, P. hybrida, B. rapa ssp. chinensis, respectively.
However, Desfeux et al. (2000) could not reproduce the same in case of
Arabidopsis. Nevertheless, some pollen grains did give positive expression and it
cannot be completely ruled out, as the target of transformation during in planta
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transformations. Infiltration of B. campestris ssp. chinensis, B. rapa ssp. chinensis,
and A. lasiocarpa, produced hemizygous transformants, which indicated that either
the pollen or the ovule could be targets but much was not explored (Liu et al. 1998;
Qing et al. 2000; Tague 2001).

Although a favoured method, agroinfiltration has been difficult in many
monocots. Moreover, agroinfiltration of their microspores or pollen grains is
problematic due to a thicker exine (Potrykus 1991; Sangwan et al. 1993; Dormann
et al. 2001). The exine is known to adsorb bacteria and interferes with their
elimination from the cultures at later stages. The alternatives to overcome this
physical barrier are limited, providing one of the main reasons for preference of
other methods such as microprojectile bombardment. Nevertheless, it has been
observed that the flavonoid compounds extracted from the pollen and stigma of
P. hybrida act as analogues of acetosyringone-like compounds (comparably less
efficient) that are inducers of the virulence genes (in the vir region) of the Ti
plasmid (Zerback et al. 1989).

Although earlier attempts of transforming microspores/pollen of monocots were
largely unsuccessful (Dormann et al. 2001; Heberle-Bors 1995; Wu et al. 1998),
modifications in the protocols have led to successful transformation of
microspores/pollen in wheat (Liu 2004) and barley (Kumlehn et al. 2006). In wheat,
transformation of the microspores by co-cultivation with A. tumefaciens strain
AGL-1 produced transgenic plants including spontaneous doubled haploids (Liu
2004). Recently, conditions have been optimized for transformation of three spring
wheat cultivars (Brew-Appiah et al. 2013). In Hordeum vulgare (L.), infection of
androgenic pollen cultures with agrobacteria presented a novel approach for genetic
transformation. Several parameters were identified and optimized including target
cell survival, to establish an efficient and reproducible method of generating
transgenic barley. Primary transgenics thus recovered, exhibited stable integration,
expression and inheritance of the gene introduced and few were even found to be
homozygous (Kumlehn et al. 2006).

Amongst the dicots, tobacco and Brassica plants are the favourable material but
legumes have also been tested. Ilori and Pellegrineschi (2011) transformed twelve
accessions of cowpea (Vigna unguiculata). In addition to the effect of genotype,
role of flower pigmentation if any on pollen transformation was also analysed. After
agroinfiltration, a high rate of flower abortion was encountered in cowpea. They
concluded that transformation was genotype dependent but flower pigmentation
independent. However, very low transformation frequencies observed were attrib-
uted to the Agrobacterium strain used, effect of temperature, failure of incorporation
of the Bar gene, incorporation of Bar gene into a reading frame not recognized by
the host plant genome and gene inactivation or silencing.

The renewed interest is paving the way to improve the efficiency of
Agrobacterium-mediated transformation of male germline by inclusion of the
pre-treatments. In particular, pre-treatments such as physical wounding by soni-
cation (Trick and Finer 1997), silicon carbide fibres, sand, aluminium oxide (Kim
et al. 2007) and microprojectile bombardment (‘Agrolistics’; Abdollahi et al. 2009)
have been tested with some degree of success (Tables 14.1 and 14.2) in different
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systems thereby opening up future options for devising efficient, reproducible
protocols in the future.

14.2.1.2 Electroporation

Electroporation relies on the use of electric pulse to create transient pore/s in the
membrane to facilitate transmembrane movement of molecules. It is an effective
and valuable tool for the direct delivery of naked DNA into a range of plant tissues
including pollen. Uptake of dyes by electroporation of the germinating pollen
grains had been confirmed earlier, by Mishra et al. (1987), suggesting that there is a
possibility of introducing large molecular weight molecules with little loss of pollen
viability. Matthews et al. (1990) demonstrated for the first time the potential of
transforming pollen of tobacco by electroporation without any detrimental effects,
strengthening the idea that transformation of mature pollen could be an effective
method/technique of gene transfer in plants. By employing electroporation method,
transient GUS activity in the intact microspores was reported in B. napus (Jardinaud
et al. 1993).

Further optimization of the conditions for successful electroporation of tobacco
pollen and stable integration of ß-glucuronidase (GUS) and chloramphenicol
acetyltransferase (CAT) in the recovered transgenics was reported by Saunders and
Matthews (1995). As the exine posed a barrier to transformation of pollen, a new
(cell) system the exine-detached pollen (EDP) was developed in Nicotiana taba-
cum. Electroporation of the EDP resulted in a fivefold increase in expression of
GUS/uidI A gene as compared to transformation of the pollen or germinating pollen
grains (Shi et al. 1996).

Electroporation overcame the ‘host range’ limitation of Agrobacterium-mediated
transformations. The monocot pollen was equally competent in uptake of exoge-
nous DNA as those of dicots. A small molecule such as propidium iodide was
shown to electropermeate into barley microspores (Joersbo et al. 1990). Combining
electroporation with polyethylene glycol (PEG), successfully delivered free DNA
into maize microspores (Fennell and Hauptmann 1992). In lily pollen, it was
essential to use pollen protoplasts for the transfer of genes by electroporation
(Miyoshi et al. 1995). Several parameters may influence the efficiency of electro-
poration and subsequent recovery of transformants. These include, concentration of
plasmid DNA, promoter driving GOI (monocot-specific versus constitutive pro-
moter), electroporation media, number and duration of pulse, voltage and fre-
quency. Detailed studies have been done to study the effect of these parameters on
microspore viability and induction of embryogenesis in maize (Obert et al. 2004).
Positive GUS expression was detected only when the gene was placed under
monocot-specific promoter. The ideal physical parameters were 200 mg/ml con-
centration of plasmid DNA, application of three pulses with frequency of 0.1 Hz
and field strength of 400 V/cm for 20 ms. Brew-Appiah et al. (2013) studied the
factors affecting microspore transformation by electroporation in seven different
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cultivars of wheat. They tested a range of voltages, 150–1000 V, and found a single
pulse of *375 V effective in producing maximum number of transformants.

14.2.1.3 Microprojectile Bombardment

Sanford et al. (1987) for the first time devised a method to introduce DNA coated
on metal microjectiles, fired by helium gas under high pressure. The helium
accelerates the gold or tungsten particles coated with DNA enabling them to cross
any physical barrier by brute force. This method is largely genotype independent
and is a promising tool for gene delivery into plants that are recalcitrant to
Agrobacterium infections and those plant parts that were not amenable to other
methods. The first successful application of particle bombardment method was
reported in tobacco by Twell et al. (1989a) where transient expression of GUS
marker gene was observed. Subsequently, particle bombardment-mediated entry of
foreign DNA into the pollen grains was reported in Nicotiana glutinosa and Lilium
longiflorum (van der Leede-Plegt et al. 1992). It further led to the development of
transformants for N. glutinosa by bombarding the pollen with DNA-coated parti-
cles, pollinating and then selecting the resulting seeds with kanamycin for trans-
formation events (van der Leede-Plegt et al. 1995).

The successful production of fertile and homozygous transformants by micro-
projectile bombardment was reported first by Stöger et al. (1995) in N. tabacum.
Microspores at mid-binucleate stage were selected for transformation. However,
survival of microspores and in vitro regeneration was poor and resulted in low
transformation rates. Phenotypic, molecular and genetic evidence for the production
of stable transformants was presented by directly transferring the gene into isolated
microspores of rapeseed by bombarding, modifying the microspore culture condi-
tions and adopting the firefly luciferase (LUC) gene as a non-destructive marker
(Fukuoka et al. 1998).

Several monocot species have been successfully transformed using variants of
the particle bombardment method. Transformation of pollen grains of lily (L.
longiftorum), freesia (Freesia refracta) and tulip (Tulipa gesneriana) was achieved
by the use of a pneumatic particle gun (Tanaka et al. 1995). In this study, successful
expression of gus gene was found to be influenced by the developmental stage of
pollen. In barley, selection of developmental stage and pre-treatments was crucial
for success. Shim et al. (2009) tested the hypothesis that targeting the pollen at the
S-phase of cell cycle (or just prior) coupled with arabinogalactans in the induction
medium (pre-treatments) led to a higher frequency of homozygous gene insertion.
Genes were successfully delivered into pollen of maize and asparagus with help of
an improved particle gun and magnetic selection of the pollen after bombarding
with magnetic particles (Kakuta et al. 2001).

Irrespective of the method employed, the developmental stage of pollen may
greatly influence the uptake of foreign DNA. When mature pollen was bombarded
with β-glucuronidase (GUS) gene cloned behind the pollen-specific PA2 promoter
of the chalcone isomerase gene of P. hybrida, expression was observed. While
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using immature pollen with same gene and technique, the gene expressed at a very
low frequency. Co-culture of mature pollen with A. tumefaciens or the imbibition
method did not express the GUS gene (Stöger et al. 1992). Till 1998, although the
transient expression of introduced marker genes was observed following electro-
poration and PEG-mediated gene transfer, no stable transformation was confirmed
(Fennell and Hauptmann 1992; Jardinaud et al. 1993). On the other hand, the
particle bombardment technique had proven reliable for the introduction of genes
into isolated pollen/microspores (Twell et al. 1989a; Nishihara et al. 1993) and
stable transformation had been reported in Nicotiana (Stöger et al. 1995; Nishihara
et al. 1995) and barley (Jähne et al. 1994). The first reproducible transformation of
Zea mays pollen was achieved in 2003 by Schreiber and Dresselhaus.

14.2.1.4 Microinjection

Microinjection is a skill-dependent technique that has been employed successfully
for the introduction of foreign DNA into animal cells. It does present a favourable
option for delivering DNA directly into single cell systems like the microspores,
bypassing the exine, intine and the plasma membrane. In practice, a fine injection
needle is used to inject the exogenous DNA through the membrane and the cell is
allowed to mature in vitro. The method is laborious, requiring training, patience and
precision. If the accuracy is not met, the injection needle is likely to push the
microspore to one side rather than penetrating it. Osmotic balance has also been
found to be major factor affecting survival of treated microspores. Bolik and Koop
(1991) reported bursting of pollen due to inadequate osmotic environment. A major
limitation of this method is that only a small number of cells can be treated at any
given time. Success of this method would largely depend on optimization of
protocol/s for in vitro pollen maturation and further facilitate gametophytic pathway
of transformation.

14.2.1.5 MAGELITR

Male germline transformation (MAGELITR), developed by Touraev et al. in 1997,
was the first successful demonstration of recovering transgenic plants based on the
gametophytic transformation pathway. They biolistically transferred foreign DNA
into unicellular microspores of N. tabacum cv. Petite Havana SR1 that were
allowed to develop into mature pollen in vitro and further used for in vivo polli-
nation. MAGELITR is a fast, regeneration-independent and genotype-independent
method, not prone to chimerism and somaclonal variation, which should be
applicable to a wide range of species. It is dependent on the development of
protocols that sustain in vitro maturation of pollen that would be genotype/species
specific. The major drawback is the reported low transformation efficiency of
0.017 % (obtained 5 resistant seeds out of 30,000). On similar lines, Barinova et al.
(2002) developed a novel transformation method for in vitro maturation of
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microspores followed by transient transformation of pollen at different stages in
Antirrhinum majus; however, no transgenic seed was obtained.

An efficient male germline transformation protocol was devised for producing
transgenic tobacco (N. tabacum L. cv. anthii) without selection, dispensing the need
for a selectable marker (Aziz and Machray 2003). The high frequency (15 %) of
stable transformation observed exceeded that reported by other methods in the
previous studies (Negrutiu et al. 1986; Booy et al. 1989; Tjokrokusumo et al. 2000).
In cases where higher transformation efficiencies were reported (Bechtold and
Bouchez 1995), reproducibility and stable transformation across the successive
generations were not achieved and DNA integration in the progeny was unstable
(Hess et al. 1991; Langridge et al. 1992; Zeng et al. 1994). The method lays
promise in its applicability to those plants for which the standardized protocols for
in vitro maturation of pollen are available.

14.2.1.6 Sonication

The use of ultrasound to facilitate uptake of naked, exogenous DNA into a variety
of plant tissues has been reported by several workers (Joersbo and Brunstedt 1990,
1992; Zhang et al. 1991). This method involves cavitation and has been used to
overcome the barrier presented by the pollen exine of maize for uptake of exoge-
nous DNA (Wang et al. 2001). They successfully recovered transgenic maize plants
by disrupting the pollen wall by ultrasonication. The method was also successful in
transformation of Sorghum bicolor (Wang et al. 2007) and Brassica juncea (Wang
et al. 2008). Mild ultrasonication pre-treatment of pollen generated nearly 16 %
efficiency in two inbred lines of Sorghum (Wang et al. 2007). This method, albeit
simple, has not gained wide popularity, probably as it requires some degree of skill
and employs specific instrumentation. It could be used in combination with the
other methods to enhance the recovery of transgenics. Sonication has been found to
assist and improve the agroinfiltration of the vegetative tissues of different plants
known as SAAT (Sonication Assisted Agrobacterium Transformation; Trick and
Finer 1997). This can also prove beneficial for the transformations of pollen grains.

14.2.1.7 Peptide Nanocarrier-Mediated Transfection/Transduction

The discovery that short peptide sequences of 9–30 amino acids could efficiently
transport biologically active molecules across the cell membranes, led to a new
method of gene delivery known as cell-penetrating peptides (CPPs) or protein
transduction domains (PTDs) or peptide nanocarriers (e.g. Tat2, Pep1). Although
this method was devised around 20 years ago, it has largely been used in animal
systems to transport a variety of macromolecules that are generally excluded due to
permeability barriers via physical interaction or chemical conjugation with
CPPs/PTDs. They have recently been used for plant systems (Chugh and Eudes
2008a, b). The CPPs have been demonstrated to non-covalently deliver
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macromolecules like linear plasmid DNA or protein in the isolated microspores of
Triticale cv. Alta. The delivery of *272 kDa Gus enzyme in its active and tetramer
form suggested that CPPs could carry macromolecules much larger than their own
size (Chugh et al. 2009). This proved that CPPs could enter the microspores as
efficiently as they translocate in other plant or mammalian cells. Ziemienowicz et al.
(2012) successfully showed the delivery of an in vitro-prepared nanocomplex of
single-stranded T-DNA molecule (independent of Agrobacterium), VirD2 (viru-
lence protein D2), Rec A (recombination protein A) by a Tat2 nanocarrier into
Triticale microspores. It was hypothesized that this approach would result in suc-
cessful delivery and integration of low copy number of transgene into the genome,
although no transgenic plants were generated. Recently, the efficiency of transport
of double-stranded DNA by Tat2 and Pep1 CPP nanocarriers into Triticale
microspores and the capacity of Rec A to protect the degradation of linear DNA
was validated (Shim et al. 2013). A detailed mechanism of the delivery and stable
inheritance is yet to be elucidated. These discoveries further confirm potential of
CPPs in designing simple, cost-/time-effective strategies for genetic manipulation
especially in those crops that are not amenable to Agrobacterium-mediated
transformation.

14.3 Female Germline Transformation

The female gametophyte or the embryo sac is a unique genetic and cellular
assemblage, with seven cells and eight nuclei (in the typical Polygonum type).
Genetic modification of female germline cells offers several advantages over
transformation of vegetative cells. Theoretically, ovules could be isolated and
subjected to different methods of gene introduction and cultured in vitro till
maturity. However, the method is extremely laborious and inefficient. Amenability
of the female germline was first demonstrated through in planta transformation by
successfully obtaining stable transformants after co-cultivating the germinating
seeds of Arabidopsis (Feldmann and Marks 1987). This method of gene transfer
was devised to bypass in vitro regeneration via organogenesis or embryogenesis,
thereby preventing stress induced under in vitro conditions and the generation of
somaclonal variants (Cullis 1990; Cullis and Cleary 1986; Cullis and Kolodynska
1975; Labra et al. 2004; Phillips et al. 1994). In planta transformation method
overcame many limitations: First, it was relatively genotype independent than the
other Agrobacterium-mediated protocols; second, as the young differentiating
ovaries (with or without ovules) were targeted, many independently transformed
events from a single transformation experiment could be recovered; third, it is a
non-destructive method that was cost-effective (as compared to earlier protocols)
allowing for rapid and easy transformation protocols; fourth, it could (theoretically)
recover a large number of transgenic plants; and finally, it was time saving as
numerous genes could be tested and transgenics analysed in a comparatively shorter
duration. This method was particularly promising for recalcitrant plants. Using this
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basic strategy, several protocols/variants have been developed. It has also been used
to generate a large pool of transgenics (T-DNA-tagged mutants) that have been
instrumental in unravelling the function of many Arabidopsis genes.

However, the transformation efficiency is relatively low as compared to trans-
formation of vegetative tissues, and the exact biological mechanisms involved
behind this transformation are still obscure. The prime requirements affecting
agroinfiltration of the generative organs depend on the ease with which the
Agrobacterium interacts with the target cell and induct the virulence genes
(Bechtold et al. 2000). Also, one of the major drawbacks of this in planta trans-
formation is the inability of replicating the same in plants besides A. thaliana and
beyond the family Brassicaceae. It is conjectured that in member of Brassicaceae
some inducers of virulence are produced or allows the bacteria an easy access to the
target.

There are also reports of recovering transgenic by pollen tube pathway (rice; Luo
and Wu 1989) and ovarian injection in soybean, a recalcitrant legume crop (Hu and
Wang 1999). Application of Agrobacterium onto previously isolated silks of maize
followed by pollination with pollen of the same cultivar has also been reported to
yield transgenic seeds (Chumakov et al. 2006).

14.3.1 The Methods for Altering (Gene Delivery into)
the Female Germline

Agrobacterium-mediated transformation remains the most favoured amongst the
different methods of gene introduction. The capability of A. tumefaciens to carry out
genetic modification has several advantages (Alimohammadi and Bagherieh-Najjar
2009; Tzfira and Citovsky 2006; Bernhardt et al. 2012). The ability of this unique
group of soil pathogens to infect different plant parts has been utilized in developing
protocols that bypass the lengthy procedures involved in in vitro regeneration and
selection. Successful agroinfections have been reported in a variety of plant
parts/tissue systems like germinating seeds (Feldmann and Marks 1987); inflores-
cences (Clough and Bent 1998; Bechtold et al. 2000; Chang et al. 1994; Desfeux
et al. 2000; Katavic et al. 1994; Trieu et al. 2000) and the complete plants of
Arabidopsis in bloom (Bechtold et al. 1993). However, the reproducibility and
efficiency of transformation varies across these tissues (Tables 14.3 and 14.4).
Several modifications have been incorporated to reduce the time-, cost-, space- and
achieve-enhanced transformation efficiency. This has led to formulation of a variety
of protocols that are discussed below.
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14.3.1.1 In Planta Vacuum Infiltration

Vacuum infiltration had been an important tool for plant physiologists to study
plant–pathogen interaction. By applying vacuum, the air spaces between the cells in
the plant tissue are decreased and allow better penetration of pathogenic bacteria
into the inter cellular spaces. The vacuum generates a negative atmospheric pres-
sure causing the infiltration medium to relocate into the plant tissue. Bechtold et al.
(1993) devised the method of Agrobacterium vacuum infiltration of adult
Arabidopsis plants. This involved six main steps—growing Arabidopsis to flow-
ering stage, uprooting of plants, application of Agrobacterium to whole plants via
vacuum infiltration in a sucrose/hormone growth medium, replanting, collection of
seeds, and selection on antibiotic or herbicide media or other selectable markers. As
this method did not require any sophisticated instrument, it was adopted rapidly and
became very popular (Bent 2000; Hansen and Wright 1999; Bechtold et al. 1993).
Further improvisations to the basic method included infiltrating only the floral
buds/shoots that removed the cumbersome step of uprooting the whole plants and
the subsequent replanting steps.

Vacuum infiltration has been successful in crucifers like B. rapa ssp. chinensis
(Qing et al. 2000; Xu et al. 2008), Arabidopsis lasiocarpa (Tague 2001), B. napus
(Wang et al. 2003), B. juncea (Chhikara et al. 2012), Camelina sativa (Lu and Kang
2008). A few species from the other families also exhibited positive results,
including P. hybrida (Solanaceae; Tjokrokusumo et al. 2000) and Medicago
truncatula (Fabaceae; Trieu et al. 2000). Several factors including pressure, dura-
tion of infection, duration and intensity of vacuum applied, infiltration medium
used, pre-treatment of parent plant (used for infiltration) are crucial for vacuum
infiltration. Two variations on this theme have been equally successful (in Petunia)
—infiltration of the pollen before pollination and subsequent recovery of trans-
formed seed; or application of Agrobacterium suspension onto the stigma followed
by pollination with untransformed pollen. Two sequential Agrobacterium vacuum
infiltrations of the young buds at interval of a week have been successful in
transforming only the anther and pollen of B. juncea, with an efficiency of 0.8 %
and not the female germline (Chhikara et al. 2012).

The pressure due to vacuum adversely effects the survival of the cells. The most
appropriate inoculation time for highest efficiency in case of Arabidopsis is 4 min.
(Wiktorek-Smagur et al. 2009). In A. lasiocarpa, the infiltration medium was
modified, and both vacuum infiltration and floral dip were performed. In compar-
ison with floral dip vacuum infiltration gave higher rate of transformation without
any affecting the seed set (Tague 2001). In B. napus, transgenic plants could be
obtained by using both the plants that started flowering naturally or those in which
flowering was induced by low temperature. The most effective condition was
infiltration at 25–27 in. Hg vacuum applied twice for duration of more than 5 min
either continuously or at an interval of 1 week. Lower vacuum pressure (<25 in.
Hg) or infiltration of germinating seedlings did not yield any transgenic (Wang
et al. 2003). In P. hybrid, two methods were employed that yielded almost similar
efficiency. Pollen was transformed by vacuum infiltration and applied on the stigma
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or Agrobacterium suspension was directly applied on the stigma before pollination
and then pollination performed with untreated pollen. In former, pollen was the
target, while target for latter was not clear (Tjokrokusumo et al. 2000). For B. rapa,
the original method was modified with prolongation of vacuum step (Liu et al.
1998; Qing et al. 2000). In C. sativa, an attempt for floral dip failed to produce any
transgenic plant. While 85 kPa vacuum for 5 min. was successful for recovering the
transgenic plants (Lu and Kang 2008). Use of vacuum did not have any adverse
effect on the survival of the treated plant and subsequent seed set.

14.3.1.2 Floral Dip

The original in planta transformation method was labour-intensive even though it
avoided the intricacies of in vitro cultures. In addition, reproducibility and
extrapolation of this method to the other plant species were limited. These draw-
backs could be attributed to several factors, but the vacuum step was considered a
major hurdle as it affected survival of cells. To omit this step, the protocol was
simplified to develop the ‘floral dip’ method. This modified method involved
submerging the developing inflorescence only into the infiltration medium con-
taining Agrobacterium in a buffered solution and a surfactant. Importantly, the
method eliminated the need for uprooting and replanting of plants during agroin-
filtration (Clough and Bent 1998). This protocol was simple, fast and proved to be
efficacious. Several parameters affected the efficiency of transformation such as the
components of the infiltration medium, inoculation frequency, inoculation time,
co-cultivation in different plant species (Wiktorek-Smagur et al. 2009). Analyses of
the transformants demonstrated that insertion is random and there was need to
overcome the uncontrolled gene expression (Bernhardt et al. 2012).

In monocots also, which are usually difficult systems for regeneration, floral dip
proved useful in producing stable, low copy number transgenics of wheat over three
to six generations. The first transgenic was produced after infiltrating six une-
masculated mid-to-late-uninucleate-stage spikes with clipped florets with
agrobacteria for two minutes. The ideal stage for dipping identified was
mid-to-late-uninucleate microspore stage, when the spike is yet to emerge from the
sheath. Dipped the inflorescence at other stages resulted in decreased seed set (Zale
et al. 2009).

Furthermore, with the aim of improving the protocol many manipulations have
been attempted. For Arabidopsis Logemann et al. (2006) proposed obliterating the
need for large volumes of bacterial cultures in liquid medium to save time and
space. They demonstrated that similar transformation efficiency could be achieved
by using the bacteria grown on culture plates even after one week of storage at 4 °C.
It also reduced the risk of large-scale contamination to some extent. Manipulation
of the Agrobacterium culture by pelleting and resuspending it into a buffered
medium (mostly sucrose) is a prerequisite before dipping the plants. Davis et al.
(2009) and Li et al. (2010) have devised a simple method for transforming A.
thaliana and B. napus, respectively, by floral dip method. They developed a
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bacterial growth medium supplemented with surfactant which supported floral dip,
thereby circumventing the need for exchange into a buffer medium for resuspending
the bacterial cells before inoculation. Davis et al. (2009) also showed that by using
two Agrobacterium cultures harbouring two different vectors, it was possible to
generate a double-transformation event at once by dipping into a mixture of the two
cultures. This saves cost and time by facilitating insertion of two different trans-
genes into a single plant in one generation.

14.3.1.3 Floral Spray

This technique was primarily devised to omit the vacuum step and avoid handling
of large volumes of Agrobacterium culture (Chung et al. 2000). The bolting plants
were sprayed once or up to three times with the bacterial inoculum per transfor-
mation until the suspension began to drip off and then covered with a plastic dome
to maintain the humidity. The primary transformants were then allowed to grow and
set seeds. Spraying the bacterial culture in the form of aerosols yielded transfor-
mation rate comparable to floral dip.

14.3.1.4 Drop-by-Drop Method

Modification of floral dip was needed to overcome the adverse effects of the
detergent on silique development. In this modification, the inoculum was directly
and selectively applied ‘drop-by-drop’ onto the new closed floral buds (without
opening the flowers). This reduced the exposure to infiltration medium and damage
to the developing siliques (Martinez-Trujillo et al. 2004). A comparative study
revealed that a twofold higher efficiency could be achieved in drop-by-drop method
as compared to the conventional floral dip method. Amaranthus has been suc-
cessfully transformed using drop-by-drop method (Munusamy et al. 2013).
Inoculum density and number of applications influence the transformation effi-
ciency of this method.

14.3.1.5 Floral or Flower Inoculating Method

A hypothesis put forth by a Zhou et al. (1979) engendered a new technique of
transformation via the pollen tube pathway. In 1983, this method was successfully
used to transfer DNA into cotton (Zhou et al. 1983). Transformation via the pollen
tube pathway involves applying the bacterial inoculum to the inflorescence or the
stigma directly. This could be before, after or during the pollination event. The
germinated pollen grains along with Agrobacterium are transferred into close
vicinity of its target. In some cases, even the pollen may get transformed, which
would still lead to the formation of a heterozygous transformant after fertilization.
There have been successful reports of transforming some monocot species, namely
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Sorghum bicolor (Elkonin et al. 2009), Triticum aestivum (Hess et al. 1991), Z.
mays (Mamontova et al. 2010), by applying Agrobacterium culture to the pistil (on
the stigmatic surface) suggesting transformation via the pollen tube pathway. On
the same lines, a floral inoculating method was developed by Narusaka et al. (2010)
in A. thaliana. The inoculation of bacterial cell suspension on independent flower
buds allowed many transformation events to be accomplished simultaneously.

14.3.1.6 Ovary/Pistil Drip Transformation

Ovary-drip transformation is biosafe transformation system which comprises
self-pollination followed by making a wound site on the ovary wall through
excision of whole of the style, onto which the exogenous DNA solution supple-
mented with surfactant is directly dripped. This method, initially developed for
soybean cultivars, has been established for maize also. In case of soybean, it has
been found that for improving the efficiency dripping should be synchronized with
syngamy (fusion of gametes) and the division of the zygote. The earlier attempt for
transforming soybean through the pollen tube pathway was irreproducible (Shou
et al. 2002). Reproducible and improved transformation efficiency has been
established in soybean through ovary-drip transformation (Liu et al. 2009a, b). It is
a simple and direct method of transformation with the help of a linear gene cassette
and does not involve Agrobacterium or vir-gene machinery to integrate the DNA,
producing low copy number, vector- and marker-free stable transgenic. At present,
this is the only strategy available for effecting transformation in legume (Liu et al.
2009a, b).

In case of maize, a window is incised into the central portion of the ear with the
help of a sterile scalpel, styles are completely removed, and then, exogenous DNA
with sucrose and surfactant is directly applied to each ovary drop-by-drop with help
of a micropipette (Yang et al. 2009). Pistil drip transformation has also been applied
for transforming Gossypium hirsutum (Chen et al. 2010). In this case, agroinfil-
tration was performed by inoculating Agrobacterium at different times on the first
and second day of flowering on pistils either with intact stigma or after decapitating
it. They found that the excision of stigma resulted in a shorter travel distance of
Agrobacterium and easier accessibility to the ovarian locule which eventually
yielded enhanced transformation efficiency.

For both soybean and maize, 0.05 % surfactant and 5 % sucrose promote the
exogenous DNA to enter the embryo sac (Liu et al. 2009a, b; Yang et al. 2009). In
addition to reducing the surface tension, surfactant protects the linear gene cassette
from degradation. This showed that an enhanced efficiency could be obtained if the
passage to the embryo sac in the ovules is shortened due to less DNA degradation.
The time of application of extraneous DNA to the wound site is very important for
success in ovary-drip transformation and for soybean it is 6–8 h after
self-pollination. The other factors, which influence the efficiency, include the
physiological traits of the host soybean plants like the pod-bearing rate. Excessive
wounding of the flowers results into abortion, reducing the pod-bearing rate. But

14 Germline Transformation for Crop Improvement 375



inadequate infiltration may not lead to target, which reiterates the importance of
pathway length that gives highest frequency and pod-bearing rates. In the study on
soybean, the complete removal of style without causing wounding of ovary gives
maximum frequency. Besides transformation of barrel medic by the floral dip
method (Trieu et al. 2000), this is the only one strategy for successful transfor-
mation of a legume (Liu et al. 2009a, b).

14.3.2 Factors Influencing Female Germline
Transformation Efficiencies

Success of different transformation protocols has been attributed to several
parameters either singly or in combination thereof. These include the physiological
state of the plant, the infiltration medium, number of inoculations performed,
duration of vacuum treatment, and inoculation density (concentration of
Agrobacterium) (Grabowska and Filipecki 2004; Bechtold et al. 1993). Clough and
Bent (1998) have identified sucrose and surfactant/vacuum to be the main param-
eters influencing transformation efficiency of in planta methods, although species-/
genotype-specific optimization has to be carried out for all the systems tested.
Inclusion of surfactant in the infiltration medium could seamlessly replace the use
of vacuum. Altering the composition of media, growth regulators and even changes
in pH or bacterial density did not have significant effect on the transformation
efficiencies.

14.3.2.1 Plant Genotype, Physiological State and Developmental Stage

One of the most important variables in germline transformation is the develop-
mental stage of the plant at the time of inoculation with Agrobacterium. Plants that
reach either at the primary or secondary bolt development are suitable for sup-
porting high and reproducible transformation efficiency (Curtis and Nam 2001).
Clough and Bent (1998) reported that Arabidopsis plants in which primary bolts
were clipped and secondary bolts were 2–10 cm, having well-developed inflores-
cence with maximum unopened floral bud clusters, represented the ideal stage.
Seeds harvested from the plants that had tertiary bolt development at time of
transformation were not transformed (Curtis and Nam 2001). Partly open-flower
buds gave the best results during alfalfa transformation (Trieu et al. 2000). With B.
rapa ssp. chinensis, 50- to 60-cm-long floral shoots with few open flowers were the
best (Liu et al. 1998; Qing et al. 2000). In A. lasiocarpa and Raphanus sativus, the
floral shoots with closed buds were considered the ideal stage (Tague 2001; Curtis
and Nam 2001).
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Different plants or the ecotypes of the same species may exhibit variation in
transformation efficiencies even after being transformed by the same
Agrobacterium strain. A study with different Arabidopsis ecotypes showed resis-
tance of some ecotypes to agroinfection (Nam et al. 1997). This observation was
supported by Ghedira et al. (2013a) who provided the evidence that physiology and
the ecotype of the dipped plant influences transformation efficiency of A. thaliana
along with the bacterial strain.

14.3.2.2 Sucrose

Sucrose is a crucial component of the inoculation medium. Absence of sucrose in
medium invariably results in the failure of transformation. Usually, 5 % sucrose is
added to the inoculation medium. However, for transforming Capsella bursa-
pastoris infiltration medium having 10 % sucrose was found to be the best
(Bartholmes et al. 2008). In case of Arabidopsis, 10 % sucrose gave highest effi-
ciency, but it could not be reproduced consistently (Clough and Bent 1998).
Low-grade sucrose or 5 % glucose can also be used as substitutes, but mannitol has
deleterious effects on the growth of plant (Clough and Bent 1998).

14.3.2.3 Surfactant

In floral dip method, a non-ionic, organosilicone-based surfactant-like Silwet L-77
(0.05–0.1 %) was vital for successful transformation. In case of in planta vacuum
transformations, surfactant was not required. Concentrations of Silwet L-77 beyond
0.1 % were detrimental causing necrosis of plant tissue, destruction of flower buds,
inhibiting fruit development (Clough and Bent 1998) and also resulting in abortive
flowers and low seed set (Tague 2001). In A. thaliana, B. rapa and M. truncatula,
the concentration of Silwet L-77 was optimized at 0.02 %, but for A. lasiocarpa, it
was five times greater (Clough and Bent 1998; Bechtold et al. 2000; Chung et al.
2000; Qing et al. 2000; Trieu et al. 2000; Ye et al. 1999; Tague 2001). Bartholmes
et al. (2008) reported that Silwet L-77 at concentrations between 0.02 and 0.05 %
was best for C. bursa-pastoris.

Detergent surfactants like Tween 20 or Pluronic F-68 have also been used.
However, Silwet L-77 is preferred as compared to others as it reduces surface
tension more effectively, keeps bacterial suspension viable for longer duration on
plant and has low phytotoxicity, supporting intensive penetration of bacteria to
relatively inaccessible plant tissues. Use of Silwet L-77 also replaces the vacuum
step in floral dip experiment. In radish, Pluronic F-68 at 0.1 % (w/v) on primary
bolted plants gave a superior efficiency than 0.01 and 0.1 % Silwet L-77 (Curtis and
Nam 2001). The reason is attributed to the fact that Pluronic F-68 can increase the
permeability of plasma membrane (Lowe et al. 1993) and may facilitate the
movement of agrobacteria to sites responsible for seed development. Recently,
XIAMETER OFX-0309, a non-ionic, non-cytotoxic and silicon-based surfactant,
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has been reported to attain enhanced transformation frequency of *1.6 % in A.
thaliana, at a concentration of 0.05 % in floral dip experiments (Mireault et al.
2014).

14.3.2.4 Agrobacterium Strain

Host-strain specificity is well established in case of Agrobacterium strains. The host
genotype and bacterial strain should be compatible for obtaining high transfor-
mation efficiency. Such an interaction has been recorded for Arabidopsis trans-
formation via Agrobacterium (Clough and Bent 1998; Bent 2000). Use of
acetosyringone, a phenolic compound, has been tested to achieve higher transfor-
mations even for vegetative tissues. Phenolic compounds induce the activity of
virulence genes of Agrobacterium (Hirooka et al. 1987), thereby enhancing trans-
formation efficiencies. Correct choice of Agrobacterium strain resulted in successful
transformation of C. bursa-pastoris (Bartholmes et al. 2008), on which the earlier
attempts had failed (Tague 2001).

14.3.2.5 Number of Applications of Agrobacterium

When plants with indeterminate inflorescences are infiltrated, repeated applications
of Agrobacterium have been found to enhance the transformation efficiency. As the
flower buds in Arabidopsis belonging to Brassicaceae are borne acropetally on the
inflorescence, new unopened buds differentiate successively providing opportunity
for reapplication. Excessive reapplication of Agrobacterium at less than 4-day
intervals causes necrosis and may even lead to death (Clough and Bent 1998). The
number of applications required for higher efficiency varies in different species. In
floral dip experiments of barrel medic, two inoculations at a seven-day interval
increased the efficiency on one the hand, but on the other hand decreased viability
of plants (Trieu et al. 2000). Whereas in A. lasiocarpa (Tague 2001) only one
application yielded efficiency than in A. thaliana. In floral spray experiments of
Arabidopsis, spraying for thrice gave higher efficiency than once (Chung et al.
2000). Liu et al. (2012) also used two floral dip steps with an interval of one week
for successful transformation of C. sativa without the use of vacuum.

14.3.2.6 Humidity Chamber

Maintaining high humidity during the first 12–24 h after Agrobacterium inoculation
has been found to be beneficial in most cases (Clough and Bent 1998). A plastic
dome or wrap/sheet is put around the inflorescence or plant. It is assumed that this
prolongs availability of surface water through which Agrobacterium can swim
eventually helps in reaching the target cells. In addition, it also maintains host
tissues in good condition.
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14.3.2.7 Accessibility of Germline Cells

It is a widely known fact that floral dip is a success with very few plant species
beyond the family Brassicaceae. This is largely because of the developmental
pattern of the floral organs. Within the family also, there is enormous variation in
the pattern of flower development which accounts for the differences in transfor-
mation frequency. For example, Pak choi (B. rapa ssp. chinensis) and A. thaliana
vary in the development pattern of pistil. In Pak choi, the access to gynoecium is
difficult than in Arabidopsis, thus reducing the transformation efficiency. In addi-
tion, the density and viability of bacterial population around the target cell, as well
as the presence of virulence-inducing factors, affect the rate of transformations.
Continued transformation was observed even weeks after the first transformation
event by increasing the amount of time of bacterial exposure to the plant tissue (Xu
et al. 2008). Ghedira et al. (2013b) reported that the target accessibility to
Agrobacterium is a limiting factor for successful transformation as compared to
integration of T-DNA. If the target is not accessible to the agrobacteria, any attempt
to transform may become futile even if all the other parameters are fulfilled. It
appears that a combination of different methods supported by crucial levels of
factors may hold the key to successful germline transformations.

14.3.3 Establishing the Target of Female Germline
Transformation

In various protocols based on Agrobacterium-mediated transformations, access to
the embryo sac requires the bacteria to traverse through a tortuous maze of tissues
systems and their exudates. In spite of these tissue barriers, the possibility of ovules
being a target was considered in Arabidopsis. As high transformation efficiency was
achieved by in planta transformation, it was opined that the target to be transformed
must have been easily accessible and present on the exterior of the plant part. Thus,
it was proposed that the Agrobacterium could be transforming the pollen grains
either on the stigmatic surface or within the anthers at some developmental stage
(Bechtold et al. 2000; Desfeux et al. 2000; Ye et al. 1999). Conclusive evidence
came from the analysis of the transformants. The progeny recovered after infiltra-
tion were hemizygous for the transgene indicating that transformation occurred at a
late stage of male and female germline development (Feldmann 1992; Bechtold
et al. 1993).

Experimental evidence for confirming the target of transformation was provided
by Ye et al. (1999). In genetic crosses, trans-seeds were obtained only when the
infiltrated plants were used as pollen recipient and not as pollen donor. This sug-
gested that Agrobacterium transformation occurred through the ovule pathway
(Desfeux et al. 2000; Ye et al. 1999). Further, the expression of the scorable marker
gene GUS was found to be more in several ovules especially of unopened
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agroinfiltrated flowers than to the pollen, in which it was almost negligible. During
microscopic analyses, two conditions were revealed even within the same ovarian
locule: one, in which the entire ovule/ovules turned blue indicating GUS expression
throughout ovule; second, in which ovules were stained only at the site of embryo,
and more specifically at the micropylar end. The transgenic seeds thus recovered
also tested positive for GUS (including seed coats and parts of the interior of seed
tissues). In general, the final seed transformation efficiencies determined after
selection correlated well with those of ovule transformation. This demonstrated
clearly that the various developmental stages from ovule primordia to the mature
gametophyte served as the prime and effective targets. Thus, the most probable
cellular target of vacuum infiltration or floral dip transformation is likely to be the
female reproductive tissue, particularly the ovule and the genetic target is female
chromosome set (Bechtold et al. 2000).

Further investigations by Bechtold et al. (2003) were done to establish the
optimum developmental stage required to achieve higher transformation efficien-
cies. GUS analyses of the transgenic progeny obtained after infiltrations revealed
two distinct categories of transformants: first, where the GUS positive tissues could
be either the embryo or the endosperm; the second, where both tested positive
(co-transformation). This observation led to the conclusion that transformation
could be an early- or a late-event.

Early transformation events, where both the endosperm and embryo scored
positive for expression, indicated that transformation occurred before the gameto-
phyte differentiation. This observation also suggested that in addition to the egg cell
even the endosperm was a prospective target, as was previously established
(Bechtold et al. 2003). In certain seeds, where both the embryo and endosperm were
transformed, it was difficult to establish whether they were the result of single or
two independent transformation events. Late transformation events were cases
where either the embryo or the endosperm tested positive for GUS expression. In
such cases, the transformation occurred after differentiation of the gametophyte.
Conclusive proof for the above was established by performing Southern blot
analyses on transformants in C. bursa-pastoris (Bartholmes et al. 2008). Here, the
mechanism of infection is similar to that of A. thaliana. Southern blot analysis
revealed unique band patterns in the different transformants indicating infection
after the formation of ovules. Moreover, the embryo and the endosperm were
analysed for the expression of a selectable marker and more independent trans-
formations were observed in which either one was transformed as compared to
co-transformation. The transfer of T-DNA occurs during gametophyte development
and on repeating the transformation, the second T-DNA gets randomly integrated in
the genome which is not influenced by previous transformation event (Bechtold
et al. 2000).

Besides the relatively more responsive crucifers, in planta method has also been
tested in the forage legume M. truncatula (Trieu et al. 2000). A vernalization
treatment (4 °C for 2 weeks) was included in the procedure to induce early flow-
ering. Most of the transformants were homozygous and sibling transformants, even
though independent transformants were also produced. Sibling transformants
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exhibited identical hybridization patterns through Southern Blot, as they were
derivatives of the same T-DNA integration event. Infiltration of plants in bloom as
well as those of seedlings exhibited remarkable transformation frequencies.
However, the exact cellular target and the mechanism remained elusive (Trieu et al.
2000; Bent 2000). It has been proposed that the meristematic cells of the axillary
buds which later give rise to the developing bolts get transformed, leading to
production of sibling transformants. Investigation of R. sativus transformation also
suggests infection of meristem cells (Curtis and Nam 2001). Thus, transformation
in Medicago probably occurred at developmental stages earlier than those observed
in Arabidopsis, ensuring female germline modification.

Higher transformation efficiencies achieved in different members of the
Brassicaceae as compared to species from the other families distinctly points to the
presence of special attributes in Brassicaceae. One common point would be the
pattern of inflorescence and floral development. An indeterminate inflorescence as
in Arabidopsis, Pak choi, radish, cabbage and Capsella provides flowers at different
developmental stages, thus providing an advantage for successful transformation.
Thus, inoculation of the entire inflorescence with Agrobacterium increases the
possibility that at least some flowers might be at the right developmental stage.

Bowman (1994) studied the floral development of Arabidopsis by scanning
electron microscopy and proposed the probable route of Agrobacterium
entry/passage into the interior of gynoecium. In Arabidopsis, the floral meristem
differentiates organs in a concentric pattern giving rise to the four whorls. This
developmental pattern positions the gynoecium in the centre, surrounded by
androecium, petals and sepals in the second, third and fourth whorls, respectively.
As further growth continues, the gynoecium elongates and develops like a cylinder
but remains open at the apical region. The stigmatic cap seals the locular cavity
(Bowman 1994) only three days prior to anthesis. This pattern of development is
different from other plants like soybean, where the locule closes more than 10 days
prior to anthesis (Johns and Palmer 1982). Comparison of the transformation fre-
quencies in the two species clearly provides the insight for success of floral dip in
case of Arabidoposis and the other members of Brassicaceae. In Arabidopsis, ovule
primordium arises one day earlier and megasporocyte formation occurs one day
after the closure of gynoecium (Bowman 1994). Flowers at younger developmental
stages (*6–11 days from anthesis) exhibit higher rates of transformations, which
could be due to the fact that an open gynoecium (at the time of infiltration) allows
the bacteria an easy access to the target tissue. Such an entry is prevented by the
stigmatic cap in the mature flowers. Similar findings have been reported in radish,
where transgenic seeds were obtained only when flowers were dipped at the early
stage of bolting (Curtis and Nam 2001). In Pak choi, the ideal stage for transfor-
mation is around 10 days before anthesis (period prior to closure of ovarian locule)
(Xu et al. 2008).
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14.4 Nature and Selection of Transformants

The recovery of ‘useful’ transgenics is the final measure of success for any method
of genetic transformation. Transgenics containing single copy inserts of gene of
interest (GOI) and exhibiting optimum levels of transgene expression are the
desired end products. These can be deployed directly for agronomic ends or taken
forward for building the germplasm base in breeding programs.

As discussed in earlier sections, every method/protocol employed for germline
transformations has its own merit/s and demerit/s. A spectrum of variables needs to
be optimized for successful gene delivery, integration and expression. Amongst
these, an important parameter is the nature of exogenous DNA. Published infor-
mation spanning over two decades has shown a gradual progress in the nature of
DNA used for transforming pollen, microspores germline from genomic prepara-
tions to purified plasmid vectors. There has also been a significant improvement in
vector/gene constructs that includes testing promoters—constitutive to tissue
specific.

Agrobacterium is the most favoured agent of gene delivery as it is naturally
tailored to deliver single copy of transgene that usually exhibits optimum expres-
sion (Tinland 1996; Zupan and Zambryski 1997). Success has been reported for
transformation of both male and female germlines (Eapen 2011; Chumakov and
Moiseeva 2012). The major limitation of this method remains the preferential
infection of a given host by the bacterial strain (strain dependent host specificity)
(Grabowska and Filipecki 2004). Due to this limitation, studies based on testing
efficiencies of transformation with several types of constructs are tedious. The other
methods like microinjection (major limitation is that only a small number of cells
can be treated at any given time) and electroporation are good for analyses of
transient expression rather than recovery of transgenics from male and female
germline.

Most of the analyses for studies in dicots that assess role of promoters have
focussed on using particle bombardment as the method of gene delivery and
tobacco as a model system. Although this method gives rise to integration of
transgene at multiple sites in the genome and these could be tandem inserts, it
allows for screening a variety of constructs simultaneously (Travella et al. 2005).
Multiple inserts can lead to gene silencing and have been reported although studies
indicate that such incidence is similar in both the Agrobacterium-mediated trans-
formations and particle bombardment (Birch 1997). The insertion of truncated,
duplicated and/or rearranged transgenes could also be due to the fact that the DNA
delivered is naked and not protected from the nucleases. Nevertheless, this method
has been used for screening a variety of constructs simultaneously (Travella et al.
2005). It has been considered to be genotype independent and a very promising tool
for plants as well as plant parts that are recalcitrant to other methods of gene
delivery.

Vector constructs also influence detection, selection and recovery of transfor-
mants. As compared to vegetative tissues, developmental stage-specific promoters
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are required for expression in male and female germline. Traditionally most
transgenes were put under control of the constitutive promoter CaMV35S from
cauliflower mosaic virus. However, transient expression of the GUS gene driven by
CaMV35S promoter was not detected histochemically in pollen grains of lily and N.
glutinosa (van der Leede-Plegt et al. 1992) and detected rarely in those of tobacco
(Guerrero et al. 1990, Stöger et al. 1991; Twell et al. 1989a), petunia (Mascarenhas
and Hamilton 1992) and Tradescantia (Hamilton et al. 1992). A comparison of the
activity of different promoters in pollen has been performed using the particle
bombardment system (Twell et al. 1989a; Hamilton et al. 1992; van der Leede-Plegt
et al. 1992; Stöger et al. 1992; Nishihara et al. 1993). Twell et al. (1989a, b) were
the first to show that anther-specific LAT52 promoter from tomato could drive
expression of the GUS gene in tobacco and tomato pollen using particle bom-
bardment. This promoter has since then been successfully deployed to drive the
expression of foreign genes in the pollen of various species, including tobacco (N.
glutinosa, N. tabacum, N. rustica and Paeonia (McCormick et al. 1991; Nishihara
et al. 1993; van der Leede-Plegt et al. 1992). Several other anther-specific pro-
moters LAT56 and LAT59 (from tomato) and a PA2 promoter (from Petunia) have
also been tested successfully in tobacco pollen (van Tunen et al. 1990; McCormick
et al. 1991; Twell et al. 1991; Stöger et al. 1992). Chimeric genes containing a
pollen-specific promoter from tomato (Lycopersicon esculentum) LAT52 or the
CaMV35S promoter were transiently expressed following their introduction into
tobacco (N. tabacum) pollen using high-velocity microprojectiles (Twell et al.
1989a).

Van der Leede-Plegt et al. (1992) studied the differential use of various pro-
moters, namely CaMV 35S, LAT52, chiA, PA2 and TR2’, in pollen grains of a dicot
(N. glutinosa) and a monocot (L. longiflorum) plant species. Gene constructs in
which the β-glucuronidase (GUS) gene was placed under the control of these
promoters was introduced in pollen using a particle delivery system. No activity of
the cauliflower mosaic virus (CaMV35S) promoter was detected in pollen of both N.
glutinosa and L. longiflorum. The promoter of the tomato flower-specific LAT52
gene was highly active in N. glutinosa pollen but remained silent in L. longiflorum
pollen. Same was true for the pollen-specific chalcone–flavanone isomerase
(chiAPA2) promoter originally isolated from petunia. This showed the differential
activity of LAT52 and chiAPA2 in dicots and monocots, respectively. Interestingly,
the TR2′ mannopine synthase promoter of Agrobacterium tumefaciens was active in
pollen from Solanaceous species (N. glutinosa) and also in pollen from the monocot
L. longiflorum suggesting that it is active in vegetative and sporogenous tissues of
both dicot and monocot plant species.

Nishihara et al. (1993) re-evaluated constructs tested earlier by Twell et al.
(1989b) and van der Leede-Plegt et al. (1992) by particle bombardment of pollen
grains of lily (L. longiflorum), two species of tobacco (N. tabacum and N. rustica)
and peony (Paeonia lactiflora) by a pneumatic particle gun device (Iida et al. 1990).
They reported that 35S CaMV induced expression of GUS gene in all the species
studied, albeit significantly lower levels as compared to expression driven by
LAT52. The pollen-specific Zm13 promoter from maize was tested by
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microprojectile bombardment of pollen of Tradescantia and tobacco (Hamilton
et al. 1992). Miyoshi et al. (1995) reported 800-fold higher activity of Zm13 in lily
pollen as compared to LAT52 promoter from tomato. Essentially, these studies
confirmed the differential activity of promoters in pollen tested from dicots and
monocots (van der Leede-Plegt et al. 1992). Thus, vector constructs need to be
designed such that transient as well as stable expression is achieved depending on
the plant genotype to be targeted and whether sporophytic or gametophytic pathway
is to be employed.

In studies aimed at genetic modification of female germline, focus has been on
evaluating bacterial strains and other parameters for infiltration. The binary plas-
mids tested, range from the C58ClRif(3850:1003) cointegrate vector (Feldman and
Marks 1987) to pBIN/pBI121(Tague 2001) and the more recent pCAMBIA and
pBECKSred vectors. Detection of gene expression also interferes with calculations
of transformation efficiency and even comparison of constructs. The most favoured
marker gene is the GUS gene (uidA from Escherichia coli K-12). Such a discrep-
ancy between the results/observations of GUS expression in bombarded pollen of
lily has been attributed to the presence (Nishihara et al. 1993) or absence (Twell
et al. 1991; van der Leede-Plegt et al. 1992) of 20 % methanol in the X-Gluc
solution used for the assay (Jefferson et al. 1987; Kosugi et al. 1990). Discrepancies
such as ‘background stain’ have also been reported in vegetative tissues as well as
pollen (Hu et al. 1990; Shi et al. 1995). The modified green fluorescent protein
(mgfp) has also been tested in Arabidopsis and Medicago (refs from Chumakov and
Moiseeva 2012). Anthocyanin pigmentation has been used as marker in wheat floral
bud inoculation (Zale et al. 2009) where the transcription factors Lc and C1 have
been included in the binary vector. This is a novel and non-destructive visual,
scorable marker. Different selection regimes determine the recovery of transgenic
plants after genetic modification. In most cases of recovering transformants from
male germline, Basta selection has been used.

The selection of seedlings is a crucial, but time-consuming process after the
floral dip technique and requires 7-to 10-day selection period. This duration is
enough to allow fungal pathogens to flourish due to the humidity provided and
presence of sucrose in the residual infiltration medium. Fungal infections jeopardize
the recovery of transformants; thus, it is imperative to include antibiotics. A method
that segregates the kanamycin-, phosphinothricin- and hygromycin-resistant seed-
lings from the susceptible ones in only 3.25 days was put forth (Harrison et al.
(2006). It also minimizes the risk of seedling loss by pathogen infection. Selection
of kanamycin and phosphinothricin is on the basis of presence of chlorophyll in the
expanded cotyledon as the former inhibits plastid protein synthesis (Gray et al.
1984), while latter inhibits glutamine synthase activity (Bayer et al. 1972;
Tachibana et al. 1986), respectively. For hygromycin B, it is based on hypocotyls
length as it suppresses cytosolic protein synthesis (Cabanas et al. 1978).

As per the conventional selection method, first the plants are allowed to dry and
seeds are harvested. The seeds are surface sterilized by liquid- or vapour-phase
methods and suspended in plates with half-strength Murashige and Skoog’s med-
ium (1/2X MS; Murashige and Skoog 1962) supplemented with 0.8 % agar to
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prepare plates. The medium also contains antibiotics kanamycin or hygromycin B
or the herbicide phopshinothricin, for selection, medium cold treated for 2 days,
grown for 7–10 days in a controlled environment at 24 °C under 23 h light 50–100
Einsteins m−2 s−1. Resistant seedlings are transplanted into pots and grown to
maturity (Clough and Bent 1998).

In the modified method, the seeds produced after transformations are surface
sterilized and pipetted onto 1 % agar plates containing MS medium and kanamycin
monosulphate (50 µg ml−1) or phosphinothricin (50 µM) or hygromycin B
(15 µg ml−1). Seeds are stratified for 2 days in dark at 4 °C and then incubated for
4–6 h at 22 °C in continuous white light (80–200 µmol m−2 s1) to stimulate
germination in growth chamber. Then, plates are wrapped in foil and incubated for
2 days at 22 °C followed by removal of foil and incubation of seedlings for 24–48 h
at 22 °C in continuous white light (80–200 µmol m−2 s1). There after
resistant/transformed seedlings are identified from non-resistant/non-transformed
seedlings as kanamycin-resistant seedlings have long hypocotyls and green
cotyledons, while non-resistant seedlings have long hypocotyls but pale cotyledons.
Similarly, phosphinothricin-resistant seedlings have long hypocotyls and green
cotyledons, whereas non-resistant seedlings have long hypocotyls and pale
cotyledons. In contrast, hygromycin B-resistant seedlings have long hypocotyls and
green cotyledons, whereas non-resistant seedlings have short hypocotyls but also
have green cotyledons (Harrison et al. 2006).

Davis et al. (2009) tested an alternative method of transgenic selection on
chromatography sand evading the need for surface sterilization of seeds. Another
easy and quicker selection protocol has been put forth by Li et al. (2010) that
involved only soaking of seeds with antibiotic for 24–36 h, followed by sowing in
soil and selecting after germination of the seedlings.

14.5 Conclusion and Future Perspective

Germline transformation is a promising technique with fundamental and applied
facets. However, this strategy has not gained widespread use especially with respect
to crop improvement. Rapid advances in the DNA and RNA methodologies are
churning out extensive expression profiles and regulatory networks are being
constructed. Transcriptome analyses of microspores (at different stages of devel-
opment), pollen grain, germinating pollen and the sperm nuclei are now providing
valuable information on gene expression and the key regulators of germline dif-
ferentiation in the model plant Arabidopsis (Grennan 2007). An interesting fact that
emerges from the above analysis is that at most stages of development, DNA
methylation is employed to ensure that male genome is transmitted without errors
and the mechanisms to silence any extra genetic material are enhanced (Twell
2011). Developing germline transformation for any plant species would therefore
require a very intense selection of a developmental stage, design of vectors and
genes of interest, method of gene introduction and investigative procedures for
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analyses of gene expression. With the advent of new technologies, it opens up new
avenues for crop improvement.

Currently, the entire research on germline transformations has been successful
mostly on a very few monocots, members of the Brassicaceae family, more
specifically Arabidopsis and Brassica and a Solanaceous member, tobacco. In
future, it would be important to find the applicability of methods discussed to a
wider range of crop plants and carry out in-depth experiments. The general
mechanisms discovered in Arabidopsis may not hold true for other members as has
been shown in case of Pak choi (Xu et al. 2008) and Medicago (Trieu et al. 2000).
Transformation efficiencies may vary amongst the germline transformed, the plant
species, the methods employed, and vector constructs tested.

Many findings are yet to be resolved like the questions as to why transgene
expression levels decrease with plant age or over generations. The movement of
Agrobacterium in plants via vascular bundle or plasmodesmata remains to be
explored, as in case of Pak choi (Xu et al. 2008). Even the ovary-drip method
beckons further investigation to assess the stability and inheritance of the transgene
as well as to determine the cause of non-Mendelian inheritance (Liu et al. 2009a, b).
The arabidopsis crabs-claw (crc) mutants have a more accessible ovarian locule
with an open gynoecium and thus served as an improved target for transformation
by nearly sixfold (Desfeux et al. 2000). The open-flower (opf) mutant of M. alba
has been studied for its potential of floral dip transformation. It is also found to be
refractory just like its wild type (Hirsch et al. 2010) and trial to transform it has met
with no success. This indicates that some additional factors beyond the plant
genotype and accessibility of target might be affecting the transformation process.
These aspects are yet to be deciphered.
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Chapter 15
Advances in Molecular Breeding of Pearl
Millet

Deepmala Sehgal

Abstract Pearl millet [Pennisetum glaucum (L.) R. Br.] (2n = 2 × = 14) is the sixth
most important global cereal crop (after rice, wheat, maize, barley, and sorghum)
which is grown in the hottest and driest regions of sub-Saharan Africa and the Indian
subcontinent. It produces grains with high nutritive value even under hot, dry
conditions, and on infertile soils of low water-holding capacity, where other cereal
crops fail. This makes pearl millet a highly desirable crop for farmers in such harsh
environments. Pearl millet became the focus of genome research almost at the same
time as other major crops but then lagged behind as major crops dominated the
genomics era. However, in the last decade, several efforts were initiated to rekindle
the genomic research of this orphan crop resulting into generation of vast amounts of
genomic information. Particularly, the recent whole-genome sequencing efforts
taken for pearl millet by an international pearl millet genome sequencing consortium
are remarkable. This chapter reviews the advances made in generating the genetic
and genomics resources in pearl millet and their integration into molecular breeding.
A successful example of marker-assisted selection (MAS) culminating in a product
release is cited.

Keywords Pearl millet � SSRs � ESTs � TILLING � Whole-genome sequencing

15.1 Introduction

Pearl millet [Pennisetum glaucum (L.) R. Br.] is the sixth most important global
cereal crop and the main source of food for 500 million of the poorest people living
predominantly in parts of Asia and Africa. It is grown primarily by subsistence
farmers in areas with very limited rainfall (300–500 mm), environments with high
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mean temperatures and frequent droughts and even on soils with poor fertility. Pearl
millet grain has relatively high nutritional value compared to wheat, rice, and maize
in terms of both protein content and amino acid composition (Sawaya et al. 1984;
Ejeta et al. 1987). It also has superior levels of grain Fe and Zn (Velu et al. 2007;
Govindaraj et al. 2013). The energy density of pearl millet is also relatively high,
arising from its higher oil content relative to maize, wheat, or sorghum (Hill and
Hanna 1990). These properties have made it a central component of the food
security of the rural poor in dry areas.

Pearl millet became the focus of genome research almost at the same time (the
early 1990s) as the other major crops. This genomics research led to the devel-
opment of first linkage map in 1993 (Liu et al. 1994) by restriction fragment length
polymorphism (RFLP) markers. However, as major crops dominated the genomics
era, pearl millet lagged behind and remained an orphan crop for many years in
terms of genetic and genomic resources development. The limited amount of
genomic sequence information in pearl millet has limited progress in gene dis-
covery and characterization, global transcript profiling, probe design for the
development of gene arrays, and generation of molecular markers and their
application in crop improvement programs. However, in the last decade, substantial
investments have been made in large-scale genetic and genomic resources devel-
opment in this crop, including development of simple sequence repeats (SSRs),
diversity array technology (DArT), single-nucleotide polymorphism (SNPs)
markers, expressed sequence tags (ESTs) or transcript reads, bacterial artificial
chromosome (BAC) libraries, linkage maps, comparative maps, and genetic stocks
such as core reference sets, mapping populations, near-isogenic lines, and an
association mapping panel. These resources have not only accelerated gene dis-
covery in this crop but also provided impetus to initiate molecular breeding.

This chapter will first review the progress made in the development of first and
second generation of DNA markers, linkage maps, and genetic and genomic
resources, and then provide briefings on the recent efforts put together in using the
next-generation sequencing (NGS) technologies for genome-wide SNP marker
development to accelerate fine mapping and molecular breeding.

15.2 Progress in Marker Development

15.2.1 First- and Second-Generation Markers and Their
Use in Diversity Studies

A detailed description of different marker types available for plant genome research
is beyond the scope of this review. Various reviews have been published which can
be referred to by the readers (Sehgal et al. 2008; Kesawat and Das 2009; Jonah et al.
2011). Briefly, DNA markers can be classified into the following: (i) the first-
generation molecular markers, including RFLPs, random amplified polymorphic
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DNA (RAPD), and their modifications; (ii) the second-generation molecular
markers, including SSRs, amplified fragment length polymorphism (AFLP), and
their modified forms; and (iii) the third-generation molecular markers, SNPs from
ESTs or from transcriptome/whole-genome sequencing.

Like in any other crop, initial genetic studies in pearl millet were conducted with
isozymes-based markers (Tostain et al. 1987, Tostain and Marchais 1989; Tostain
1994) but soon replaced with RFLP markers (Clegg et al. 1984; Gepts and Clegg
1989). Chloroplast and nuclear DNA (rDNA and Adh sequences) probes were used
to assess diversity in cultivated and wild accessions (Gepts and Clegg 1989), where
profiles generated using nuclear DNA probes correlated with geographic distribu-
tion of genotypes, and chloroplast probes remained highly monomorphic. RFLP
markers remained popular for quite some time for diversity assessments because of
their codominant and highly reproducible nature (Bhattacharjee et al. 2002). These
markers, however, were found difficult to adopt for large-scale studies that are
hallmark of any worthwhile genetic study on genetic improvement. Therefore, soon
PCR-based markers such as RAPDs and inter-simple sequence repeats (ISSRs)
were adopted and became popular as they proved highly polymorphic and more
informative in assessing diversity of cultivars and landraces, cytoplasmic male
sterile and restorer lines (Chowdari et al. 1998; Kale and Munjal 2005; Yadav et al.
2007a, b), and for the identification of genetically diverse lines for hybridization
programs (Govindaraj et al. 2009). At the same time, AFLP markers were also
employed for the assessment of genetic diversity in landraces from India and West
Africa (Busso et al. 2000; Vom Brocke et al. 2003). AFLP markers are dominant
markers such as RAPDs, but the large number of loci amplified and their high
reproducibility made them attractive over RAPDs.

In 2000, initiatives were taken for the development of sequence-based markers in
pearl millet. It started with the development of BAC libraries in line Tift 23DB
(Allouis et al. 2001). The library contained a total of 159,100 clones with an average
insert size of 90 kb and corresponded to 14,200 Mb of genomic DNA (5.8 haploid
genome equivalents). The BAC clones were used to develop the second generation
of markers called microsatellites or SSRs (Allouis et al. 2001). More SSR markers
were further designed from 40 BAC pools using 3′ end-anchored SSR primers which
proved to be highly polymorphic with polymorphism information content
(PIC) values up to 0.84 (Qi et al. 2001). With this advancement, more SSR markers
were subsequently designed (Yadav et al. 2007) and various genetic diversity studies
were initiated worldwide using SSR markers, and various gene bank and landrace
collections were characterized (Budak et al. 2003; Kapila et al. 2008; Oumar et al.
2008; Stich et al. 2010). Many of these above-mentioned investigations also pro-
vided new and important insights into the origin of the cultivated species, phylo-
genetic relationships, and indication of domestication centers of cultivated pearl
millet and/or possible location of domestication genes. For example, Kapila et al.
(2008) revealed linkage group (LG) 6 to be least diverse and with least number of
SSR markers. Such highly conserved nature of LG 6 was attributed to the presence
of important genes involved in domestication. Oumar et al. (2008) analyzed 84 wild
accessions and 355 cultivated accessions originating from the whole pearl millet
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distribution area in Africa and Asia and suggested a monophyletic origin of culti-
vated pearl millet in West Africa. This study also indicated eastern Mali and western
Niger as the possible regions of domestication of pearl millet.

15.2.2 Development of EST-SSRs and Third-Generation
Markers

15.2.2.1 Development of Expressed Sequence Tags (ESTs)

A comprehensive stress-response transcriptome resource for pearl millet was first
developed by a group at International Centre for Genetic Engineering and
Biotechnology (ICGEB), India. A drought-tolerant line 863B was used to generate
subtractive cDNA libraries derived from leaves and root tissues of plants grown
under controlled conditions and imposed to various drought, salinity, and cold
stresses. The libraries were sequenced using traditional Sanger sequencing
approach. A total of 2494 ESTs in response to drought, salinity, and cold stresses
were made publicly available in NCBI database in 2003 (Mishra et al. 2007). They
were assembled into a collection of 1850 unique sequences with 224 contigs and
1626 singleton sequences. Sequence comparison of these ESTs using BLASTX
algorithm revealed many genes with stress-related functions. Based on their func-
tions, they were divided into various categories, for example, transcription factors,
kinases and phosphatases, secondary messengers, chaperons, proteinases, and those
involved in scavenging and/or prevention of reactive oxygen species. The infor-
mation on GenBank accession number and dbEST number for all the ESTs can be
accessed from CD724312 to CD726805 in NCBI. These EST sequences are a rich
source of stress-related genes and represent a major part of the stress-response
transcriptome that will provide the foundation for further studies into understanding
Pennisetum’s adaptability to harsh environmental conditions. The number of ESTs
in NCBI database is rising for pearl millet. Hitherto, more than 6000 ESTs are
available at NCBI’s dbEST. More recently, high-temperature responsive ESTs have
been added to this list (Padaria et al. 2012 unpublished).

15.2.2.2 Development of EST-SSRs

The exploitation of EST databases to develop microsatellite markers was first
attempted in rice (Miyao et al. 1996) and has subsequently been reported from
many plant species (Kantety et al. 2002; Varshney et al. 2002; Holton et al. 2002).
This discovery provided the opportunity to develop markers (EST-SSRs) in a
simple way just by electronic searches (data mining) of EST databases and primer
designing using a freely available tool SSR identification tool (SSRIT) integrated in
GRAMENE database. EST-SSRs constitute a novel source of markers that are

400 D. Sehgal



physically associated with coding regions of the genome. In contrast to genomic
SSRs, EST-SSRs enable assaying of the variation in transcribed sequences and
genes where function is known. In pearl millet, EST-SSRs were developed by
Senthilvel et al. (2004, 2008), Mariac et al. (2006), and Yadav et al. (2007). While
Mariac et al. (2006) and Yadav et al. (2007) developed 16 and 19 EST-SSRs,
respectively, Senthilvel et al. (2008) reported 58 new EST-SSRs which were also
used for mapping (see later section on 15.3).

15.2.2.3 Development of Single-Strand Conformational Polymorphism
(SSCP)-SNP Marker System

The ESTs were also utilized to develop the first SNP-based marker system called
SSCP-SNP (Bertin et al. 2005) in pearl millet with the two objectives: (a) to
develop a codominant and robust system that is moderately throughput, amenable
to multiplexing such as SSRs and transferrable to breeding laboratories and (b) to
design new markers for pearl millet with maximum comparative utility. Hence,
ESTs showing good homology with rice single-copy genes were selected, and
alignment of these selected ESTs with rice genomic sequences was done to obtain
information on intron–exon boundaries in the millet ESTs. Primers were then
designed in such a way so that they would amplify across the introns. A preliminary
analysis showed that the millet SSCP-SNP primers amplified with a success rate of
about 50 % in other cereals (rice, wheat, barley, and finger millet).

15.3 Development of Genetic Linkage Maps and Their
Saturation

The first molecular genetic linkage map of pearl millet was created in 1992 (Liu et al.
1992, 1994a, b). It was based on RFLP markers using homologous (from the same
crop) pearl millet probes. A few heterologous probes from rice, wheat, and barley
along with several isozymes and known function probes were also included in this
base map resulting in a map of 181 loci covering approximately 303 cM. This initial
map was transferred to several additional crosses (Busso et al. 1995; Liu et al. 1996)
in studies of sex-specific recombination rates in cultivated × cultivated and culti-
vated ×wild crosses, and a pearl millet reference mapping population was developed
based on the cross 81B × ICMP 451 (Hash and Witcombe 1994). This map has been
used for high saturation marker genotyping using dominant AFLP markers, addi-
tional homologous probes from pearl millet, and heterologous probes from other
grasses. The latter group of markers has improved our understanding of the complex
relationships between the pearl millet genome and those of other cultivated grami-
naceous species such as rice and foxtail millet (Devos and Gale 2000; Devos et al.
2000). It was revealed that compared to most other grasses, the pearl millet genome
has undergone a large number of structural rearrangements (Devos and Gale 2000).
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Nevertheless, regions of colinearity between the pearl millet and rice (grass model
genome) could be clearly identified (Devos et al. 2000). These regions formed a
framework for exploitation of the rice genomic sequence as a source of new markers
and candidate genes underlying traits in pearl millet. This work extended the total
pearl millet genetic linkage map length to approximately 600 cM.

The first SSR-based integrated map was reported by Qi et al. (2004). A new set
of 44 genomic SSRs from a (CA)n-enriched small-insert genomic library was
generated. Thirty-five of these SSRs from enriched library were integrated with 28
SSRs developed from BAC clones (Qi et al. 2001) and 353 RFLP markers to build
a consensus map with mapping data from four pearl millet mapping populations;
LGD 1-B-10 × ICMP 85410, 81B × ICMP 451, ICMB 841 × 863B, and PT
732B × P1449-2. The LGD 1-B-10 × ICMP 85410 cross comprised 133 F2 progeny
and was the original mapping population used by Liu et al. (1994). The parents of
this cross differed by a translocation (Liu et al. 1994). The second mapping pop-
ulation 81B × ICMP 451 was a cross between two inbred lines and consisted of 157
F2 progeny. Two further crosses, ICMB 841 × 863B (Yadav et al. 2004) consisting
of 149 F2 progeny, and PT 732B × P1449-2 consisting of 131 F2 progeny, showed
segregation for drought tolerance and downy mildew resistance, respectively. The
consensus map contained a total of 418 markers in which 85 % of the markers were
clustered and occupied less than one-third of the total map length. Also, the map
contained big gaps of about 30 cM in the distal regions of some chromosomes.

Subsequently, EST-SSRs were developed (described previously in subsection
development of EST-SSRs) and were added to the map using the F2 mapping
population of the cross ICMB 841-P3 and 863B-P2 (Senthilvel et al. 2008). Out of
58 EST-SSRs, 17 could be mapped on five linkage groups. Since the consensus
map by Qi et al. (2004) contained RFLP and SSR markers mostly in the cen-
tromeric regions, EST-SSRs were expected to map in non-centromeric regions,
thereby filling large gaps on distal regions of chromosomes. Some of the large gaps
observed on LGs 1, 2, 6, and 7 on the map of this cross were filled by the
EST-SSRs. For example, the 63 cM gap between Xpsm52 and Xpsm196.1 on LG 1
was covered by EST-SSRs Xicmp3085, Xicmp3088, Xctm112, and Xctm27.
Further, new EST-SSRs mapped to distal ends of LGs 3 and 5 and increased their
map lengths by 8 and 39 cM, respectively. To further increase the coverage of
linkage groups and to increase the number of easy to use PCR-based markers on the
map, another map was generated which contained 66 sequence-related amplified
polymorphisms (SRAPs), 63 RAPDs, 27 ISSRs, 31 pearl millet, 6 sorghum, and 3
maize SSRs (Pedraza-Garcia et al. 2010). The resulting map consisted of nine
linkage groups that spanned about 1796 cM.

Supriya et al. (2011) developed a map integrating EST-SSRs with diversity array
technology (DArT) markers with an objective to increase the number of
high-throughput markers which can be utilized for whole-genome breeding
strategies. DArT allows simultaneous scoring of hundreds of restriction site-based
polymorphisms between genotypes and does not require DNA sequence informa-
tion or site-specific oligonucleotides. A genomic representation from 95 diverse
pearl millet genotypes was used to develop a DArT array with circa 7000 clones
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following PstI/BanII complexity reduction. This array was used to genotype a set of
24 diverse pearl millet inbreds, and 574 polymorphic DArT markers were identi-
fied. A mapping population of 140 F7 recombinant inbred lines (RILs) from cross H
77/833-2 × PRLT 2/89-33 was used to generate a map integrating DArT and
EST-SSR marker data. This map contained 321 loci (258 DArTs and 63 SSRs) and
spanned 1148 cM.

To facilitate search for association between candidate genes and QTLs under-
lying important agronomic traits, the map of H 77/833-2 × PRLT 2/89-33 cross was
saturated with functionally important genes (Sehgal et al. 2012). Such maps are
called molecular-function maps and have been generated in many species (Rostoks
et al. 2005; Kota et al. 2008). These have facilitated the identification of candidate
genes for various biotic stress resistance and abiotic stress tolerance QTLs in many
crops (Nguyen et al. 2004; Tondelli et al. 2006; Diab et al. 2008). The
molecular-function map in pearl millet was initially developed to saturate LG2
where a major QTL for drought tolerance (DT) resided. Subsequently the
gene-based markers were extended to all LGs. To saturate LG2 with gene-based
markers, published information of synteny between pearl millet LG2 and rice
chromosomes 2S, 3L, 6S, and 10L (Devos et al. 2000) was utilized. The genomic
sequences of 100 selected genes within the rice BAC contigs from each of the four
syntenic rice chromosomes were retrieved, and primer pairs were designed for
genes which showed significant homologies with pearl millet ESTs. To saturate
other LGs with genes, another in silico approach was used wherein 200 pearl millet
ESTs that were homologous to drought and other abiotic stress genes reported in
other model or non-model crops were identified using the BLAST2GO program
(http://www.blast2go.org/). For this set of 200 ESTs, primers were designed to
amplify part of the 3′ untranslated region (3′UTR). These approaches led to map-
ping of 75 genes as SNP and CISP (conserved intron spanning primers) markers
across seven LGs. Most importantly, DT-QTL region on LG2 was saturated with 18
genes which became candidates for future study (see Sect. 15.5).

Recently, a consensus map containing the largest set of mapped SSRs reported
to date in pearl millet was developed by Rajaram et al. (2013). Briefly, 116
EST-SSR markers, 53 genomic SSRs, and 2 STS markers were used to construct
linkage maps of four F7 recombinant inbred populations (RIPs) based on crosses
ICMB 841-P3 × 863B-P2, H 77/833-2 × PRLT 2/89-33, 81B-P6 × ICMP 451-P8,
and PT 732B-P2 × P1449-2-P1. Eighty-nine EST-SSR marker loci from this
consensus map had significant BLAST hits (top hits with e-value ≤ 1E-10) with the
genome sequences of rice, foxtail millet, sorghum, maize, and Brachypodium with
35, 88, 58, 48, and 38 loci, respectively.

The most comprehensive map with the third-generation markers, i.e., SNPs has
been generated using the most advanced NGS technology called
genotyping-by-sequencing (GBS). The current NGS technologies are capable of
analyzing anywhere from hundreds of thousands to tens of millions of DNA
molecules in parallel, thus allowing the rapid identification of a large numbers of
genetic markers, mainly SNPs (Imelfort et al. 2009). GBS is an advanced and
highly cost-effective NGS approach for genotyping which produces up to a million
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SNPs per genotype at a cost as low as $20–$40. Moumouni et al. (2015) con-
structed a GBS map in pearl millet using a F2 population of 93 progenies from a
wild × cultivated pearl millet cross. A total of 3321 SNPs were generated and 2809
high-quality SNPs exhibited a minor allele frequency ≥0.3. These formed a total of
314 non-redundant haplotypes for which a single representative SNP marker was
used for map construction. This resulted in a genetic map with 314 SNP markers
spanning a total distance of 640 cM. The SNPs were evenly distributed over seven
linkage groups with an average density of 0.51 SNP/cM.

15.4 QTL Mapping in Pearl Millet

15.4.1 QTLs for Resistance to Biotic Stresses

15.4.1.1 QTLs for Downy Mildew Resistance

Downy mildew (DM) caused by the obligate biotrophic pathogen Scelerospora
graminicola can cause devastating yield losses in pearl millet and is a major
constraint to productivity (Singh et al. 1993). The inheritance of resistance to
downy mildew is a quantitative character. QTLs for resistance to DM have been
mapped by using phenotypic data from field as well as glasshouse screens estab-
lished in UK and India (Jones et al. 1995, 2002). This was done to test whether the
glasshouse screens established in India and UK are effective indicators of resistance
in the field. Jones et al. (1995) screened pathogen populations of S. graminicola
from India, Nigeria, Niger, and Senegal on F4 mapping population of a cross
LGD-1-B-10 × ICMP 85410. RFLP markers (Liu et al. 1994) were used to con-
struct the map using F2 plants. Independent inheritance of resistance to pathogen
populations from India, Senegal, and populations from Niger to Nigeria was shown.
These results demonstrate the existence of differing virulences in the pathogen
populations from within Africa and between Africa and India. A major QTL for
resistance against pathogen population from India was detected on LG1, against the
pathogen populations from Nigeria to Niger on LG4, and against pathogen popu-
lation from Senegal on LG2. There was no QTL that was effective against all four
pathogen populations, suggesting that pathotype-specific resistance is a major
mechanism of downy mildew resistance in this cross (Jones et al. 1995). The
glasshouse experiments were done in India and UK using F4 mapping population of
another cross 7042(S)-1 × and P 7-3 (Jones et al. 2002). Again RFLP markers were
employed for map construction. Two consistent QTLs were detected on LG1 and 2
in both field and glasshouse screens (UK and India) with LG1 QTL showing higher
percentage variation (up to 60 %) than LG2 QTL (up to 16 %). The LG1 QTL
detected in both these studies (Jones et al. 1995, 2002) was same. QTLs for DM
resistance have also been identified on these LGs in other studies (Breese et al.
2002; Gulia 2004; Gulia et al. 2007)
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15.4.1.2 QTLs for Rust and Pyricularia Leaf Spot Resistance

Rust caused by Puccinia substriata var. indica and pyricularia leaf spot caused by
Pyricularia grisea are the two most-destructive diseases of pearl millet in the USA.
Attempts have been made to identify closely linked markers/QTLs for disease
resistances. Three populations were developed for mapping disease resistance, two
for rust and one for pyricularia leaf spot. The first rust-resistant population segre-
gated for the Rr1 gene as well as rust resistance from the line ICMP 83506
developed at ICRISAT, India. ICMP 83506 was crossed to Tift 85DB, and a single
F1 individual was selfed to produce an F2 population of 54 individuals segregating
for two sources of rust resistance. This population was screened with two different
races, 93-3 (avirulent to Rr1) and 92-1 (avirulent to ICMP 83506). The second
population was made by pollinating the susceptible parent Tift 23DB with the
resistant parent Tift 89D2. A single F1 individual was selfed to produce an F2
population of 62 individuals which was screened with the rust race 92-1 (avirulent
to Tift 89D2). The third population segregating for pyricularia resistance was made
by crossing the resistant parent P. glaucum ssp. monodii Ps34 (rp1rp1 TrTr,
pyricularia resistant) onto the pyricularia-susceptible genetic stock, red trichomeless
(Rp1Rp1 trtr) in a Tift 23 background (Hanna and Burton 1992). A red, trichomed
F1 plant was selfed to produce an F2 population of 62 individuals segregating for
pyricularia disease resistance. Three segregating populations were screened for
RAPDs using random decamer primers and for RFLPs using a core set of probes
detecting single-copy markers on the pearl millet map (Liu et al. 1994).

The rust resistance gene Rr1 from the pearl millet subspecies P. glaucum
ssp. monodii was linked 8.5 cM from the RAPD OP-G8350. The linkage of two
RFLP markers, Xpsm108 (15.5 cM) and Xpsm174 (17.7 cM), placed the Rr1 gene
on LG3 of the pearl millet map. Rust resistance genes from both Tift 89D2 and
ICMP 83506 were placed on LG4 by determining genetic linkage to the RFLP
marker Xpsm716 (4.9 and 0.0 cM, respectively). Only one RAPD marker
(OP-D11700, 5.6 cM) was linked to pyricularia leaf spot resistance. The use of
these markers linked to rust- and pyricularia-resistant loci is currently limited to
marker-assisted selection (MAS). Map-based cloning of these resistance genes was
not feasible before due to the absence of a saturated genetic map for pearl millet and
the presence of large gaps between markers. Now that the highly saturated maps are
available (see above section on 15.3, cloning these resistance loci for designing
markers for MAS is possible.

15.4.2 QTLs for Resistance to Abiotic Stresses

Post-flowering drought stress is one of the most important environmental factors
reducing the grain yield (GY) and yield stability of pearl millet and increasing the
incidence of crop failure in dryland production environments (Mahalakshmi et al.
1987). Terminal drought stress (flowering through grain filling) is more damaging
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to pearl millet productivity than stress at the vegetative stages. This is because pearl
millet’s asynchronous tillering behavior and rapid growth rate allow it to recover
rapidly from intermittent drought stress during vegetative stages of plant devel-
opment, but provide no advantages under terminal drought stress (Bidinger et al.
1987). Therefore, breeding for terminal drought tolerance has been a major goal.
Significant progress has been made in mapping a number of QTLs for components
of grain and stover yield, as well as yield maintenance, under terminal drought
stress conditions in pearl millet (Yadav et al. 2002, 2003, 2004; Bidinger et al.
2007). Two sets of mapping population progeny, one from a cross between two
elite inbred pollinators (H 77/833-2 and PRLT 2/89-33) and the other from a cross
between two elite inbred seed parents (ICMB 841 and 863B), were used to map
terminal drought tolerance of GY and their component traits (Yadav et al. 2002,
2003, 2004; Hash et al. 2003; Bidinger et al. 2007). Most importantly, both crosses
identified a major QTL for terminal drought tolerance (DT) on LG2 explaining
23 % of the variation. The QTLs for biomass yield and harvest index (HI) also
colocated with this major QTL on LG2 which suggested that increased DT con-
ferred by this QTL on GY and its components might have been achieved by the
effect of this QTL on both increased dry matter production and increased parti-
tioning of dry matter to the grain (Yadav et al. 2002).

Kholova et al. (2010a, b; 2011) carried out important physiological and bio-
chemical studies to dissect the physiological processes underlying this QTL.
Various physiological (ABA concentration and transpiration efficiency) and bio-
chemical (activities of ROS scavenging enzymes and photosynthetic pigment
content) traits were analyzed in drought-sensitive and drought-tolerant parental
lines and QTL NILs. The authors concluded that ROS machinery and pigment
content do not play a key role in terminal drought tolerance in pearl millet (Kholova
et al. 2011). They further discovered that DT-QTL on LG2 is correlated with a
lower transpiration rate and a higher ABA levels under well-watered conditions
(constitutive water-saving mechanism) and concluded that these traits contribute to
water saving in the soil profile when water is non-limiting. This “extra” water,
available for the later stage of the crop, becomes critical to guarantee water supply
to the plants at the time of grain filling and therefore for GY under terminal drought.
The effect of this QTL was also tested under saline and alkaline conditions which
revealed positive effects of this QTL on GY and yield components (Sharma et al.
2011, 2014).

This QTL was identified as a major QTL for MAS in pearl millet. However, the
size of this QTL was too large (circa 30 cM) to be taken up for MAS. Recently,
efforts were made to delimit the QTL interval, and success has been achieved in
identifying markers from candidate genes that could be used for MAS (see
Sect. 15.5).
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15.4.3 QTLs for Domestication Traits

QTLs involved in the domestication syndrome in pearl millet were dissected by
studying the morphological differences between cultivated pearl millet (Pennisetum
glaucum ssp. glaucum) and its wild ancestor (Pennisetum glaucum ssp. monodii)
and mapping them using a F2 population generated from wild × cultivated cross by
means of RFLP markers (Poncet et al. 2000). Many morphological differences could
be attributed to the effect of a small number of loci with relatively large effects. These
loci were detected on four LGs (2, 5, 6, and 7). The loss of shedding ability, due to
the absence of a functional abscission layer, was reported to be controlled by a single
locus on LG6 (al6). Genetic control of the other spikelet traits involved factors with
large effects was located close to al6 and to an esterase gene, Esterase-E. QTLs with
large effects on plant and spike morphology traits such as plant height, number of
spikes, and weight of the spike were also mapped on LGs 6 and 7.

Poncet et al. (2002) also conducted a comparative mapping of QTLs involved in
domestication of adaptative syndrome traits of pearl millet in two F2 populations
derived from domesticated (Pennisetum glaucum ssp. glaucum) × wild (Pennisetum
glaucum ssp. monodii) crosses. In both populations, two regions of the genome
were identified on LGs 6 and 7 that controlled most of the key morphological
differences. Thus, these LGs play a central role both in the developmental control of
spikelet structure and in the domestication process of this crop. The correspondence
of the mapped QTLs on LGs 6 and 7 with those identified in other cereals was also
determined using comparative maps of rice, maize, sorghum, and pearl millet
(Whitkus et al. 1992; Ahn and Tanksley 1993; Ahn et al. 1993; Wilson et al. 1999;
Devos et al. 2000). The region of LG6 involved in the shattering and spikelet
structure in pearl millet corresponded to the ESTI-2-Mal I interval of rice chro-
mosome 1 (Causse et al. 1994). This rice interval harbored a QTL for shattering
(Xiong et al. 1999; Cai and Morishima 2000) and corresponded to regions of maize
chromosomes 3 and 8 affecting seed dispersal ability. Similarly, the QTL on LG7
associated with spikelet architecture was reported to be syntenic to a QTL affecting
seed dispersal located on rice chromosome 9 and sorghum LG C.

15.4.4 QTLs for Stover Yield and Quality

Two pearl millet mapping populations have been used for mapping pearl millet
stover quality-related traits: ICMB 841 × 863B (also used previously for mapping
drought-tolerant traits) and PT 732B × P 1449-2 (Hash et al. 2003). Important
QTLs were obtained on LGs 3, 5, 6, and 7. The best putative QTL was detected for
gas production from the leaf blade fraction of the stover, which maps to the top of
LG7 of 863B, and accounts for ca. 20 % of the observed variation for this trait.
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A marker-assisted backcross program was also initiated to transfer this leaf blade
QTL from LG7 of 863B to ICMB 841 (Hash et al. 2003).

Nepolean et al. (2006) dissected QTLs for stover ruminant nutritional quality
traits using one of the previously used populations (863B × ICMB 841). Ground
stover samples were subjected to near-infrared reflectance spectroscopic (NIRS)
analysis, and many traits were evaluated including gas volume (mL) produced after
24 h of in vitro digestion of 200 mg dry matter (GAS24), in vitro organic matter
digestibility (IVOMD), nitrogen content (NDM), metabolizable energy content
(ME), and sugar content (SUGSDM) on dry matter basis. Most important finding of
this investigation was that a major pleiotropic QTL on LG2 was detected con-
trolling GAS24, IVOMD, ME, and SUGSDM. This region was reported to be
associated with drought tolerance previously by Yadav et al. (2002, 2004). These
results suggested that transferring this stover quality QTL from 863B to 841B will
improve both stover quality and terminal drought tolerance.

15.4.5 QTLs for Sink-Size Traits

In pearl millet, poor sink capacity with low HI (15–20 %), which in turn leads to
low GY, has been a major issue (Yagya and Bainiwal 2001). To identify the stable
regions in genome controlling sink-size traits, QTL analysis was conducted recently
using a cross of two inbred lines having large differences in sink-size traits (panicle
size and grain size). The mapping population, consisting of 188 F2 individuals and
their F2:3 progenies, was produced from a cross between two diverse inbred lines:
(81B × 4025-3-2-B)-11-5-2-2-B-2 used as the female parent and HHVBC II D2
HS-302-3-1-6-8-2-6-2-B used as male parent. These lines differed primarily for
grain size (5 g 1000 grain female parent versus 13 g 1000 grain male parent) and
panicle diameter (16 mm female parent versus 38 mm male parent). SSCP-SNP
markers were used and a linkage map with 44 markers was used to map the QTLs.
Genomic regions associated with panicle length, panicle diameter, and grain size
were comapped on LG6, indicating the existence of a gene or gene cluster. The
QTLs for panicle length on LG2 and LG6 (LOD > 3in both F2 and F2:3 data sets),
for panicle diameter on LG2 and LG3 (LOD > 14 in the F2:3 data set), and for grain
size on LG3 and LG6 (LOD > 3 in both F2 and F2:3 data sets), were identified as
promising candidates for validation prior to possible application in marker-assisted
breeding (Vengadessan et al. 2013).

15.5 From QTLs to Genes

The ultimate goal of all QTL studies is to identify candidate gene(s) to design
functional markers for MAS. In pearl millet, although many QTLs have been
reported for many traits, candidate gene identification has not met with much
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success mainly due to lack of sufficient genome sequence data. However, two
important recent studies where a little success has been achieved using traditional
fine mapping or association mapping are briefed here.

The recessive d2 dwarfing gene has been deployed widely in commercial
germplasm grown in India, the USA, and Australia. The d2 dwarfing gene was
previously located to a 23.2-cM interval on pearl millet LG4 (Azhaguvel et al.
2003) and Padi (2002) delimited the d2 gene to a 2.8 cM between markers
PSMP344 and the cosegregating markers B224C4P2 and RGR1963. Parvathaneni
et al. (2013) identified the likely candidate for d2 using a combination of approa-
ches: genetic mapping in two F2 populations with some 1500 progeny, haplotype
analysis of three tall and three dwarf inbred lines to delineate the d2 region,
comparative information, and identification of annotated genes in sorghum in this
delineated region. F2 populations used were derived from crosses Tift 23DB (the d2
dwarf inbred) × ICMP 451 (the tall inbred) and PT 732B (d2d2) × P1449-2 (D2D2).
Twenty-two F2:3 plants of cross PT 732B × P1449-2 were grown and analyzed with
markers for the region of interest on LG4, and a heterozygous F3 plant was selfed to
produce a 552 progeny population. This population was phenotyped for d2 and
mapped with RFLP markers to identify the important recombination events. Of the
19 recombination events that could be allocated, 18 events occurred between
PSMP344 and d2, and 1 occurred between B224C4P2/RGR1963 and d2, indicating
a tight linkage of d2 with B224C4P2/RGR1963. Pearl millet BAC library (Allouis
et al. 2001) was screened with RGR1963 marker and eleven positive clones were
identified, of which BAC 293B22 was selected for sequencing. The sequence of
BAC 293B22 was analyzed for gene prediction using the standard in silico
approaches. A total of 915 F2 individuals from the cross Tift 23DB × ICMP 451
were genotyped with markers to identify recombinants in the d2 region. Plants
carrying a recombination event in the d2 region were selfed to produce F3 seed. 13–
25 F3 plants were phenotyped for plant height, and their allelic composition was
determined. This analysis delimited the gene to a 1.6-cM interval. A comparative
mapping approach was then utilized to identify the candidate gene (for detailed
information, readers are requested to refer to Parvathaneni et al. 2013). Briefly,
haplotype analysis of three tall and three dwarf inbred lines delineated the d2 region
by two genetic markers that, in sorghum, defined a region of 410 kb with 40
annotated genes. One of the sorghum genes annotated within this region was
ABCB1, which encodes a P-glycoprotein involved in auxin transport. This gene had
previously been shown to underlie the economically important dw3 dwarf mutation
in sorghum. The cosegregation of ABCB1 with the d2 phenotype, its differential
expression in the tall inbred ICMP 451 and the dwarf inbred Tift 23DB, and the
similar phenotype of stacked lower internodes in the sorghum dw3 (ortholog of d2
in sorghum) and pearl millet d2 mutants suggested that ABCB1 is a likely candidate
for d2.

Similarly, the major drought tolerance QTL (DT-QTL) on LG2 has been iden-
tified as a major QTL for MAS in pearl millet. Recently, efforts were taken to fine
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map this QTL using the traditional fine-mapping population and a complementary
association mapping approach. A high-resolution cross segregating specifically for
the DT-QTL interval on LG 2 was developed at ICRISAT by crossing a DT-QTL
NIL (ICMR 01029) with another NIL of the H 77/833-2 parent introgressed with
DM QTLs. F1 plants of each of the seven plant-by-plant crosses made between
ICMR 1029 and ICMR 1004 were selfed to produce F2 seeds. Seeds from two F2
families were taken forward for the development of a fine-mapping population of
2500 individuals segregating for the DT-QTL interval on LG2. A schematic dia-
gram of development of this population is outlined in Yadav et al. (2011). A smaller
subset of the 55 most informative recombinants, representing all probable parental
combinations, was identified from within this fine-mapping population by geno-
typing it with six SSR markers bracketing the entire DT-QTL region (Fig. 15.1).
Each marker was used to divide the population into three genotypic classes (ho-
mozygous ICMR 1029, heterozygous ICMR 1029/ICMR 1004, and homozygous
ICMR 1004). The phenotypic means of these genotypic groups were then compared
with the phenotypic mean of ICMR 01004 (drought susceptible parent) using t-test.
Using this strategy, the QTL was fine mapped to a 10-cM interval between markers
Xpsmp3056 and Xpsmp2059 and showed 24.3, 15.2, 9.0, 18.9, 24.9, 11.9, 9.5, and
3.6 % increased GY, panicle harvest index (PHI), HI, thousand grain weight
(TGW) and drought tolerance (DT) of GY, PHI, HI, and TGW, respectively,
compared to the recurrent parent ICMR 01004 (Fig. 15.1).

To further fine map the interval, new gene-based markers were designed to
saturate the DT-QTL region (Sehgal et al. 2012) and a complementary approach of
candidate gene-based association mapping was utilized to identify the genes for
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Fig. 15.1 Recombination break points in DT-QTL region on LG2 identified by six SSR markers.
GY grain yield, PHI panicle harvest index, TGW thousand grain weight, DTGY drought tolerance
of grain yield, DTPHI drought tolerance of panicle harvest index, DTHI drought tolerance of
harvest index, DTTGW drought tolerance of thousand grain weight (Sehgal et al. unpublished)
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MAS (Sehgal et al. 2015). To accomplish this, a pearl millet germplasm association
panel (PMiGAP), comprising 250 inbred lines, was utilized. PMiGAP has been
recently assembled from a large set of 1000 diverse breeding lines and accessions of
landraces, elite cultivars, and mapping population parents, representing wide geo-
graphical range in Africa and Asia. Assemblage of PMiGAP is a further progress in
terms of genetic and genomic resources development in pearl millet (Sehgal et al.
2015). It is anticipated that PMiGAP will provide the pearl millet community with a
high-resolution platform for fine mapping of QTLs and (or) for allele mining of
favorable genes of agronomic importance. The 250 PMiGAP entries have been
assigned to four precocity groups (61, 63, 63, and 63 entries in early, medium early,
medium, and late maturity groups, respectively) to reduce the confounding effects
of flowering time.

The genes mapping in DT-QTL interval (Sehgal et al. 2012) were sequenced in
all 250 PMiGAP lines and were studied for association with several traits including
GY and yield components [panicle harvest index (PHI), grain harvest index (GHI),
thousand grain weight (TGW), panicle diameter (PD), panicle yield (PY), etc.) and
morpho-physiological traits (leaf senescence, leaf rolling) under both well-watered
and drought conditions (Sehgal et al. 2015). Additionally, expression patterns of the
genes were analyzed to shed a light on physiological mechanisms involved.
Interestingly, many genes showed association with traits, and it became arduous to
pinpoint a single candidate gene based on the results. However, two SNPs in two
genes were identified which were suggested by the authors as promising candidates
for MAS. A SNP in putative acetyl CoA carboxylase gene showed constitutive
association with GY, GHI, and PY under all treatments, and an InDEl in putative
chlorophyll a-/b-binding protein gene was significantly associated with both
stay-green and GY traits under drought stress (Sehgal et al. 2015).

15.6 Development of TILLING Populations

Targeting induced local lesions in genomes (TILLING) is a method in molecular
biology that allows directed identification of mutations in a specific gene. It is a
non-transgenic reverse genetics approach that is applicable to all animal and plant
species. This approach requires prior DNA sequence information and takes
advantage of a mismatch endonuclease to locate and detect induced mutations.
Ultimately, it can provide an allelic series of silent, missense, nonsense, and splice
site mutations to examine the effect of various mutations in a gene. TILLING has
proven to be a practical, efficient, and an effective approach for functional genomic
studies in numerous plant and animal species. For a detailed knowledge on the
protocols for TILLING, readers are requested to read Barkley and Wang (2008).

Since the inception of TILLING, this method has been widely used for the study
of functional genomics in plants, especially for the model plants Arabidopsis
thaliana (Greene et al. 2003) and Lotus japonicas (Perry et al. 2003; Horst et al.
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2007). Today, TILLING populations are available for many crops including pea,
maize, wheat, rice, and soybean (Barkley and Wang 2008). In pearl millet, initia-
tives to develop a TILLING population were taken in 2005 at ICRISAT for mining
allelic variants in drought-responsive candidate genes (http://www.icrisat.org/bt-
gene-discovery.htm). A total of 31,000 seeds of inbred line “P1449-2-P1” were
mutagenized in three different batches using 5, 7.5, 9, and 10 mM ethylmethane
sulfonate (generation M1). The M1 seeds were selfed to produce a M2 generation.
To date, DNA from 9938 M2 TILLING lines is available. In order to increase the
throughput during allele mining, eightfold pooling of normalized genomic DNA
from 9938 lines has been accomplished in 12 pooled plates. The pools of DNA
from mutant population are available to the researchers worldwide for allelic
mining of candidate genes. Research efforts have been made to mine allelic variants
for drought-responsive candidate genes (DREB2A, EDR2) with success (Jalaja
2011). For example, a mutant line 84081 has been identified, where changes in
nucleotide sequences and the corresponding amino acids are clearly evident. This
DREB mutant line should be tested for drought tolerance or susceptibility.

15.7 Success Story of Product Release Through MAS

The discovery of QTLs for downy mildew resistance led not only to identification of
genomic region conferring resistance to the disease but also to the identification of
donors of naturally occurring host-plant resistance genes, and a well-chosen set of
lines to incorporate genes into cultivars grown by resource-poor farmers. A variety
called HHB 67 was released from CCS Haryana Agricultural University in 1989
(Kapoor et al. 1989). HHB 67 possessed many traits that farmers appreciated,
including early maturity that allowed the plants to escape drought stress at the end of
the season. It became the most popular public sector pearl millet hybrid in India
occupying over half of the pearl millet area in Haryana (over 300,000 ha during the
rainy season of 2001). However, it soon became vulnerable to an epidemic of downy
mildew. To improve the disease resistance of the parental lines of HHB 67,
marker-assisted backcrossing (MABC) was used (Sharma 2001) to pyramid resis-
tance genes. MABC is a rapid and more effective strategy than conventional
breeding. In conventional breeding, once a single effective resistance gene is
included it is often impossible to detect the presence of a second without expensive
and time-consuming progeny testing every backcross generation. An improved
version of HHB 67 was developed which showed GY gains of 15 % along with
significant improvements in downy mildew resistance without adversely affecting
the early maturity of HHB 67. This was a remarkable achievement as yield gains
from conventional yield-focused hybrid breeding were typically on the order of 1–
2 % per year. This improved version ofHHB 67was called HHB 67 Improved, and it
was validated by ICRISAT, All India Coordinated Pearl Millet Improvement Project
(AICPMIP) and CCS Haryana Agricultural University (CCS HAU). HHB 67
Improved was released for commercial cultivation in 2005 as the first public-bred
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product of marker-assisted breeding in India (Hash et al. 2006; Khairwal and Hash
2007). HHB 67 Improved is much more resistant to downy mildew disease and
yields 2.0 tons ha−1, while the original HHB 67 yielded only 1.79 tons ha−1.

15.8 Whole-Genome Sequencing Efforts in Pearl Millet

In the last decade, advances in DNA sequencing technologies have enabled the
generation of a wealth of sequence information including whole-genome sequences.
NGS platforms such as Roche 454GS FLX Titanium (http://www.454.com/) or
Illumina Solexa Genome Analyzer (http://www.illumina.com/) can carry out
high-capacity sequencing at reduced costs and increased rates compared to con-
ventional Sanger sequencing (Varshney et al. 2009). Through NGS technologies,
sequencing and resequencing of even large genomes have become feasible.
Accordingly, reference or draft genome sequences for a number of species,
including the model species Arabidopsis thaliana and Brachypodium distachyon,
along with important crop species such as rice, sorghum, soybean, and maize, have
been published (Morrell et al. 2012).

For whole-genome sequencing of pearl millet, ICRISAT established an informal
consortium of research organizations with expertise in genome sequencing, crop
genomics, and pearl millet research. The consortium members include the
International Crops Research Institute for the Semi-Arid Tropics (ICRISAT, http://
www.icrisat.org), India; L’institut de recherché pour le développement (IRD, http://
www.ird.fr), France; Indian Council of Agricultural Research (http://www.icar.org.
in/), India; University of Georgia (http://www.uga.edu), USA; Cornell University
(http://www.cornell.edu/), USA;University of Florida (http://agronomy.ifas.ufl.edu),
USA; L’Institut Sénégalais de Recherches Agricoles (ISRA; http://www.isra.sn/),
Pioneer Overseas Corporation, India (http://www.pioneer.com/web/site/india), Fort
Valley State University, USA (http://www.fvsu.edu), University of Vienna, Austria
(http://www.univie.ac.at), Oklahoma State University, USA (http://biochemistry.
okstate.edu), and Consiglio Nazionale delle Ricerche, Italy (http://www.cnr.it/
sitocnr/home.html). Tift 23D2B1 was chosen for developing the draft genome
sequence as it is an important ancestral genotype of many seed parents of pearl millet
hybrids which are currently in use for forage and grain all over. A high-quality draft
genome assembly has been developed using a hybrid sequence assembly approach
[whole-genome shotgun sequence (WGS) data and BAC sequencing data together
with a restriction site associated DNA (RAD) sequence tag-based genetic map]. In
parallel, resequencing of 993 pearl millet germplasm lines (including 606 B and
R-lines and 387 PMiGAP lines) by using whole-genome resequencing (WGRS)
and/or RAD sequencing has also been accomplished.

Briefly, a total of 1.49 TB raw data has been generated from 9 insert libraries as
well as from BAC pools using whole-genome shotgun sequencing approach.
A genome assembly of 1.79 GB with 25,241 scaffolds (N50 = 884.94 kb) and
>92 % scaffolds was anchored onto 7 linkage groups. A total of 38,579 genes have
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been identified. A comprehensive repeat annotation of the assembly showed that
73.6 % of the genome is comprised of transposable elements. A hapmap of pearl
millet has also been developed based on resequencing of 993 germplasm lines.
Further analysis of the data has shown up to *29.5 million SNPs and 3.84 million
InDEls in pearl millet.

15.9 Conclusions

Pearl millet genomics research boomed in the last decade leading to the develop-
ment of highly saturated genetic maps, well-tailored segregating biparental and fine-
mapping populations, association mapping panel, core sets, and whole-genome
sequence. These genetics and genomics resources will open up new avenues for
molecular breeding and application of genomic selection (predictive breeding) in
pearl millet taking it to a new status as a crop. Transcriptomics applied to pearl
millet has revealed an insight into mechanisms of drought/salt/cold stress tolerance
developmental processes. The future will certainly see much more impact of
transcriptomics in pearl millet breeding including identification of genes controlling
complex traits. The saturation of genetic maps with gene-based markers will also
facilitate identification of candidate genes for various biotic and abiotic
stress-related traits. TILLING populations generated in pearl millet will make
validation of candidate genes easy, and implementation of reverse genetics
approaches will be a routine in future. Once the candidate genes are identified and
validated, the complete genome sequence of the genes will facilitate primer
designing from different parts of the genes (exons, introns, UTRs, etc.) to initiate
allele mining projects. Some of the other more immediate opportunities lend by
whole-genome sequence may be listed as follows: (a) innumerable number of
molecular markers in genomic regions of choice to facilitate large-scale cloning of
new genes, analysis of quantitative trait loci, and association studies of traits, (b) a
plethora of approaches for understanding the function of each and every gene,
(c) understanding temporal and tissue-specific gene expression in response to
developmental and environmental cues, and (d) designing of a genome-wide perfect
marker system based on SNPs in entire gene space of the species.
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Chapter 16
Molecular Marker-Based Selection Tools
in Spring Bread Wheat Improvement:
CIMMYT Experience and Prospects

Susanne Dreisigacker, Sivakumar Sukumaran, Carlos Guzmán,
Xinyao He, Caixa Lan, David Bonnett and Jose Crossa

Abstract Wheat is a staple food for the major part of the world’s population. For
wheat and other crops, it is generally agreed that in order to meet future challenges
in food production, multifaceted breeding approaches are needed, including the use
of current available genomics resources. Since more than three decades, molecular
markers have acted as a versatile genomics tool for fast and unambiguous genetic
analysis of plant species of both diploid and polyploid origin. Together with
decreasing marker assay costs and interconnected genotyping service facilities, the
opportunity to apply marker-assisted selection (MAS) strategies is becoming
accessible to more and more breeding programs. We describe the use of molecular
markers in wheat breeding with emphasis on the status of MAS in the CIMMYT
global wheat program and will share our experience on recently developed pre-
diction methods using genome-wide markers to archive genetic gain for more
complex traits.
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16.1 Introduction

Wheat is a staple food for the major part of the world’s population. Significant
growth in productivity and the production of wheat has been achieved in the past
through conventional plant breeding. However, the wheat breeding community still
faces formidable challenges in advancing yield potential and yield stability, espe-
cially in light of future climate change scenarios (Reynolds et al. 2009). It is therefore
generally agreed that in order to meet future challenges in food production,
multi-disciplinary, multifaceted breeding approaches are needed, including the use
of current available genomics resources. This chapter describes the use of molecular
markers in spring bread wheat breeding with emphasis on the status of
marker-assisted selection (MAS) at the International Maize and Wheat Improvement
Centre (CIMMYT). The number of markers known to be associated with quanti-
tative trait loci (QTL) or genes for major economic traits in wheat has been growing
during the last decade, and marker discovery will be further accelerated with the
availability of a high-quality reference sequence of the wheat genome (Choulet et al.
2014). Together with decreasing marker assay costs and interconnected genotyping
service facilities, the opportunity to apply MAS strategies is becoming accessible to
more and more breeding programs. We have not attempted a comprehensive review
of the literature related to the future potential of genomics resources in wheat
improvement nor on the detailed biology of each described trait. In the context of
wheat production challenges, this chapter seeks to provide insights into the current
use of molecular markers as a progressing selection tool in the hands of wheat
breeders. We will briefly describe how to optimize MAS strategies and how MAS is
currently used at CIMMYT for major trait categories such as biotic stresses and
quality traits and will share our experience on recently developed prediction methods
using genome-wide markers to archive genetic gain for more complex traits.

16.2 Marker-Assisted Selection (MAS) Strategies

MAS allows for the selection of QTL or genes that control traits of interest and can
supplement conventional breeding to increase genetic gain. The application of
efficient MAS strategies in a breeding program can substantially cut down popu-
lation sizes, allow selection for a maximum number of target loci, and thus reduce
the time and cost needed to recover a desirable genotype. However, for a MAS
strategy to be appropriate, several factors related to the trait and breeding approach
need to be considered.
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Depending on the trait selected for, empirical comparisons of MAS and phe-
notypic selection for increasing genetic gain revealed different results. In some
studies, MAS has reported to archive higher selection gains than phenotypic
selection (Abalo et al. 2009; Kuchel et al. 2007a; Miedaner et al. 2009). Other
studies considered the two methods as equally effective (Moreau et al. 2004). In a
third group of studies, phenotypic selection proved to be more efficient than MAS
(Davis et al. 2006; Wilde et al. 2007). Most of the studies concluded that using
MAS is most appropriate when the target trait (1) shows low heritability, (2) is
difficult and cost-prohibitive to measure, or (3) requires desired pyramiding of a
number of genes. Every breeding program has its own set of breeding objectives
and its own way to measure a trait; therefore, the choice of traits for MAS and to be
combined with phenotypic selection is individual for each breeding program and
might vary between programs. The CIMMYT wheat breeding program targets
breeding objectives of global relevance. Traits that have been targeted for MAS in
CIMMYT spring bread wheat include mainly biotic stresses, quality traits, traits
related to grain yield and plant development.

In every breeding program, modern varieties are combinations of alleles that
have been assembled over multiple cycles of crossing and selection. A cross made
with the aim of producing a variety will have parents with many alleles in common
controlling these characters, and simple crosses or top crosses will be made. If
parents have a lower coancestry and differ for a greater number of alleles, genetic
variation of the progenies will increase, but it will be difficult to produce a line
suitable for release as a variety from a simple biparental cross (Longin and Reif
2014). In these latter cases, or where one parent contributes only a small number of
desirable attributes and the other contribute many more, one or more backcrosses
may be necessary to recover a commercially viable line. Therefore, in addition to
the target trait, a careful planning of the integration of marker and phenotypic
selection depending on the breeding approach is crucial to maximize overall genetic
gains.

16.2.1 Marker-Assisted Allele-Enrichment Strategies
in Early Generations

In the commonly used breeding methods for self-pollinating crops, selecting
desirable plants begins in early generations for traits of higher heritability. For traits
of low heritability, selection is often postponed until the lines become more
homozygous in later generations (F5 or F6). Selection of superior plants involves
visual assessment for agronomic traits or resistance to stresses, as well as laboratory
tests for quality and other traits. To improve early generation selection, markers
should decrease the number of plants retained due to their early generation per-
formance, and at the same time, they should ensure a high probability of retaining
superior lines for selection in later generations (Eathington et al. 2007). If markers
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are cheaper, more heritable, easier, or more accurate to select for than the target
trait, they should be used in earlier stages of a breeding program to increase the
frequency of the alleles favorable for the trait under selection.

The principle of F2-enrichment introduced by Bonnett et al. (2005) is applied at
CIMMYT after parental material is first characterized with markers for known
genes to identify those parents with favorable alleles, which are then selectively
combined in crosses. The concept of F2-enrichment is illustrated in Fig. 16.1. In a
F2-population from a cross, at every polymorphic locus, 3/4 of F2-individuals will
carry at least one copy of the preferred A allele. Both AA and Aa individuals will
produce the preferred AA homozygous (fixed) progeny and should be retained in
the population. Individuals with the aa genotype cannot produce the AA progeny
and should be culled from the population. Culling aa and retaining both AA and Aa
increase the frequency of the A allele from 1/2 to 2/3 and thus enrich the frequency
of the A allele in the population. If no further selection was applied and the
population was progressed to homozygosity by inbreeding or production of double
haploids (DHs) from selected F2’s, the frequency of AA genotypes in the final
population would be 2/3 and the frequency of aa only 1/3. Alternatively, to
retaining all carriers of the desirable allele (AA, Aa), only the AA homozygous
individuals could be retained in the population. The locus would not further seg-
regate in the progeny; however, as the frequency of the AA individuals is only 1/4,
one half less of F2-individuals would be overall retained.

The advantage of F2-enrichment becomes even more apparent with greater
numbers of polymorphic loci (B, C, D, etc.), the breeding target being to pyramid or
combine several genes into one single genotype. The difference in the frequencies
needed to recover only homozygotes (fixation of the target allele) versus carriers
(enrichment of the target allele) of all desirable alleles becomes larger. For example,

Fig. 16.1 Schematic representation of the F2-enrichment strategy
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in a population segregating at two loci, A and B, the frequency of the preferred
AABB homozygote is much smaller at just 1/16 than the frequency of A-B-carriers
(AABB, AABb, AaBB, AaBb) at 9/16. With n polymorphic loci, the frequency of
homozygotes in F2 is (1/4)

n and the frequency of carriers is (3/4)n. F2-enrichment
will increase the frequency of desirable homozygotes to (2/3)n in inbred or DH lines
produced from the selected F2’s that carry at least one copy of the target allele at all
loci. At CIMMYT, A-B-carriers are usually advanced via bulk breeding. In cases
when three loci are combined, several bulks are sometimes advanced, e.g., a bulk
that includes the A-B-carriers of all three loci but also a bulk that includes the
A-B-carriers of two of the three loci.

Each selected F2 will need to produce several progenies to make up the required
number of lines in subsequent generations. Each selected F2 should contribute equal
numbers of progeny to the subsequent population in order to avoid changes in allele
frequencies due to genetic drift. Table 16.1 shows the minimum number of pro-
genies needed to recover one genotype homozygote for the target locus when using
F2-enrichment in a biparental cross in the F2-generation and in later generation
populations derived from the selected F2’s. For comparison, it also shows the
population sizes needed to recover homozygotes in different generations when
enrichment has not been applied.

In certain cases, backcross (BC1F1) or topcross (TCF1) populations are made to
combine genes of interest. If markers are going to be used in BC1F1 or TCF1-
populations, the desired alleles or allele combinations are of lower frequency. For
example, desirable alleles coming from the non-recurrent or donor line will have a
frequency of 1/4 in BC1F1 or TCF1-populations, and half of the population will lack
the allele. Selection among BC1F1 or TCF1 populations will increase the frequency
of target alleles from donors from 1/4 to 1/2 and ensure all selected individuals
carry one copy of all target allele. If followed by F2-enrichment, the frequency of
donor alleles is increased from 1/4 to 2/3. Table 16.2 shows the frequencies of
carriers and homozygotes for target alleles at single loci with a range of common
initial allelic frequencies in different generations. This table can be used to calculate
frequencies of carriers or homozygotes that can be selected in a desired generation.

In populations with differing frequencies of target alleles at different polymor-
phic loci, the frequency of an individual with a particular genotype across all loci
can be calculated by multiplying the individual frequencies at each locus. For
example, in a biparental population in which F2-enrichment has been applied for
target alleles at 6 loci, the frequency of a genotype homozygous at all loci in the F4-
generation is 0.5836 = 0.060. In a similar backcross population in which target al-
leles at 4 loci coming from the recurrent parent and 2 from the donor with
enrichment applied in the BC1F1 for donor alleles and in F2 for donor and recurrent
parent alleles, the frequency of an individual in a DH population developed fol-
lowing F2-enrichment would be 0.672 (donor alleles) × 0.8574 (recurrent parent
alleles) in both BC1F1 (increasing frequency at each locus from 1/4 to 1/2) and
subsequent enrichment in F2 increasing the frequency of these donor alleles from
1/2 to 2/3. Enrichment of the recurrent parent alleles in BC1F2 increases their
frequency from 3/4 to 7/8. In spite of the relatively high frequency of homozygotes
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for the recurrent parent alleles in a backcross, enrichment still requires smaller
population sizes than selection of homozygotes. For more information on appli-
cation of allele enrichment, refer to the publication of Bonnett et al. (2005). On high
priority materials, at CIMMYT, we apply marker assays additionally at the F4- or
F5-generation to ensure a high frequency of advanced progeny containing the
alleles of interest.

In reality, markers or efficient phenotypic screens will rarely be available for
allele’s at all important loci segregating in a cross and it will not be possible to
enrich frequencies of these alleles in early generations. Early generation selection
strategies must therefore be designed to retain important allelic variation until later
stages of the breeding process to select for more complex traits like yield that
require homogeneous lines, large seed quantities, and expensive phenotypic screens
to achieve acceptable heritability. Estimating the number of important polymorphic
loci or deciding on a certain number of inbred lines to be retained for phenotypic
selection such as in Table 16.1 can be implemented to optimize overall required
population sizes. Required population sizes to recover an individual with a target
genotype are inversely related to the frequency of those individuals. A formula for
calculating population size for any frequency and desired level of confidence of
recovery was given by Hanson (1959):

N ¼ logn xð Þ
logn 1� Gð Þ ;

where N is the population size, x is the specified probability of failure, and G is the
genotypic frequency. A useful rule of thumb is to multiply the inverse of the
frequency by 3 to achieve a commonly desired 95 % probability of recovery. For
example, with a frequency of 1/16, the population size needed for 95 % probability
of recovering the target genotype is 16 × 3 = 48. In other words, population
size = (1/frequency of target genotype) × 3. This formula applies regardless of
whether the target genotype is homozygous or heterozygous. Often, the number of
important loci contributing variation to important traits in a cross will not be known,
and partial enrichment is applied by estimating the number of important poly-
morphic loci or deciding on a certain number of inbred lines to retain for phenotypic
selection. For example, measures can be translated to a partial enrichment strategy
where, e.g., six loci are taken into account for enrichment plus additional four
important polymorphic loci for which markers are not available.

16.2.2 Marker-Assisted Backcrossing (MABC)

As outlined above, if parents have a low coancestry, genetic variation of the pro-
geny will increase, but it will be difficult to produce a line suitable for release as a
variety from a simple biparental cross. Various generations of backcrossing are
therefore used to transfer a desired trait from a rather unadapted donor plant into an
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elite genotype (recurrent parent) until most of the genes stemming from the donor
are eliminated (Becker 1993). For example, wild relatives in wheat are crossed with
current breeding lines to transfer a desired trait.

Markers can be used in the context of MABC to either control the target gene
(foreground selection) or accelerate the reconstruction of the recurrent parent
genotype (background selection). According to Tanksley et al. (1989), in traditional
backcross breeding, the reconstruction of the recurrent parent genotype requires
more than six generations, while this may be reduced to only three generations in
MABC. Similarly, Hospital et al. (1992) and Ribaut and Hoisington (1998) con-
cluded that employing molecular markers with known map position can speed up
the recovery of the recurrent parent genome by about two to three generations.
These findings are confirmed by the results of Frisch et al. (1999), who showed in a
computer simulation that MAS can reconstruct a level of recurrent parent genome in
BC3 which would only be reached in BC7 without the use of markers. Prigge et al.
(2008) compared simulated and experimental data of a MABC program in rice and
revealed good agreement.

The effectiveness of MABC depends on the availability of closely linked
markers/flanking markers for the target loci, the size of the population, the number of
backcrosses, and the position and number of markers for background selection.
A straight forward way to accomplish MABC is the two-stage selection strategy. In
BC1F1 populations, heterozygote genotypes at the target loci are first identified
reducing the population size for further screening (foreground selection). For the
background selection step, individuals with the fewest number of background
markers from the donor parent are then selected. The upper limit of the number of
background markers is defined by the number and length of the chromosomes. In rice
and sugar beet, 50–60 background markers resulted in efficient selection response
(Frisch and Melchinger 2005; Prigge et al. 2008). Markers should be evenly dis-
tributed to reflect all proportions of the genome. In subsequent backcross generations,
selection is carried out to the same scheme, but only those markers are analyzed
which have not been fixed for the recurrent parent in the preceding generation.

In BC1F1 populations, MABC would be more efficient for larger populations.
Larger population sizes in earlier generations are also of advantage for more
quantitative traits. However, larger population increase the number of marker data
points required and hence the cost. In comparison with BC1F1 populations, the
number of markers that needs to be analyzed in later backcross generations is lower.
In a two-stage selection strategy, increasing the population size with the number of
backcross generations reduces the number of marker loci and cost with comparable
percentages of recovery of the recurrent parent genome (Frisch et al. 1999). Prigge
et al. (2009) additionally showed that the approach of increasing population sizes in
advanced backcross generations can be refined by sequentially increasing marker
densities.

Two additional selection steps can follow the two-stage selection strategy. As a
third step, after preselecting the individuals with the target loci, individuals can be
analyzed for the two markers flanking the target locus. Individuals with one or two
flanking markers fixed for the recurrent parent’s allele are retained and then
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analyzed for the remaining markers. In some publication, this three-stage selection
strategy is also called ‘recombinant selection’. As a fourth step, individuals with the
maximum number of markers fixed on the chromosome of the target locus can be
selected before analyzing all other remaining markers. These two steps provide an
option which significantly reduces the number of data points required in compar-
ison with the two-stage selection strategy.

16.2.3 Other Factors to Consider When Applying MAS

16.2.3.1 Imperfect Linkage Between Markers and Target Alleles

Due to the increased marker availability, recent genetic maps are dense; however,
markers are mostly not perfectly linked with the target allele, which reflects the
accuracy of MAS. For example, if the genetic distance between the marker and the
target allele is 5 cM, on average five recombinants occur in a set of 100 progenies.
In such cases, flanking markers can be very useful to decrease the probability of
recombinants between target alleles and markers. If two flanking markers with a
genetic distance of 5 cM to the target allele are applied, on average only 1
recombinant occurs in a set of 100 progenies. If imperfect markers are used in F2-
enrichment, the change in allele frequency will be slightly less than if markers were
perfect. In spite of a slight reduction in efficiency, the use of imperfect markers still
increases allele frequencies and is very worthwhile.

16.2.3.2 Dominant Versus Codominant Markers

Markers can be dominant or codominant, the latter being able to distinguish
heterozygote and homozygote carriers of the target allele. Due to improved marker
technologies, most of the more recent developed single-nucleotide polymorphism
(SNP) markers for relevant genes in wheat are codominant. The advantages of
codominant markers in F2-enrichment are that they allow a more direct assessment
of the frequencies of target alleles that they remove the need for progeny testing of
selected later generation individuals (e.g., F5 or F6) to recover homozygotes. When
dominant markers are used and progeny testing is not done, some selected indi-
viduals will be heterozygous for some of the target alleles. However, because the
frequency of heterozygous individuals is halved with each generation of inbreeding,
only relatively small numbers of selected F6-individuals would be heterozygous at
any of the target loci. In MABC, the advantages of codominant markers are more
evident. For the background selection step in MABC, loci homozygote for the
recurrent parent can be identified.
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16.2.3.3 Linkage Between Two Alleles

With greater numbers of markers available for selection, it is inevitable at some
point that a cross will involve target alleles that are linked. If the alleles are linked in
coupling, they will behave more like a single gene and required population sizes
will be smaller than if they were unlinked. If the alleles are linked in repulsion and a
crossover between the loci is necessary to bring the target alleles together on the
same chromosome, required population sizes will be considerably larger. For
example, the wheat stem rust gene Sr2 and the fusarium head blight gene Fhb1 are
linked in repulsion on chromosome 3BS (Anderson et al. 2007).

16.2.3.4 Polymorphism and Genetic Backgrounds

Ideally, a marker should be highly polymorphic in breeding materials and dis-
criminate between different genotypes. In some cases, the target polymorphism of a
marker is only specific in certain donors (e.g., for the stem rust resistance genes
Sr13 or Sr47, http://maswheat.ucdavis.edu/) and therefore not diagnostic in all
genetic backgrounds. These markers cannot be used for the screening of unknown
sets of germplasm of a breeding program. They can be used to follow a target allele
in segregating populations including the parental line known to carry the tar-
get allele and the marker showing polymorphism between the carrier and
non-carrier of the allele.

In QTL mapping experiments, parents that represent the extreme ends of a trait
phenotype are chosen. The effect of the QTL might therefore be less significant
when used for introgression into an elite breeding line. In other cases, the effect of a
locus may differ in different genetic backgrounds due to the interaction with other
loci (epistasis) (Holland 2001).

16.2.3.5 Environmental Effects and Genome Structure

While the effect of a QTL appears to be consistent across environments, the
magnitude of the effect may vary. The extent of the QTL × environment interaction
is often unknown because the mapping studies have been limited to only a few
years or locations (Wang et al. 2007).

Markers can be identified and developed using populations where parents do not
represent adapted germplasm, such as diploid or tetraploid wheat species. In such
cases, the known polymorphism can be of little practical value although it is
transferred to wheat through interspecific hybridization. Many key traits for wheat
improvement present in alien segments have been transferred to wheat. The alien
segments, however, are often large and can carry undesired characters in addition to
the favorable trait, such as the high grain protein content gene Gpc-B1 transferred
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from Triticum turgidum ssp. dicoccoides, which is negatively correlated with grain
yield (Uauy et al. 2006). Recombination within these alien segments is very low,
and advanced approaches that reduce the large linkage blocks are needed.

16.2.3.6 Logistic and Cost of MAS

Typically, breeding programs grow hundreds of populations and many thousands of
individual plants. Given the extent and the complexity of selection required in
breeding programs, one can easily appreciate the usefulness of new tools that may
assist breeders in plant selection. The scale of the breeding programs, however, also
underlines the challenges of incorporating MAS. A close relationship between
breeders and molecular biologists supports the level of integration of MAS. For
example, it is vital that the robustness and reliability of the markers available for
genes or alleles of interest are evaluated before considering their routine applica-
tion. Lack of confidence in published information is cited as one of the reasons that
limit the use of markers in practical plant breeding (Kuchel et al. 2003). Leaf tissue
collected in the field has also to be brought to the laboratory in time to provide the
marker data to the breeders prior to selection or harvest.

Despite the recent shift to SNP-based platforms, e.g., KASP in wheat (http://
www.cerealsdb.uk.net/) at least at CIMMYT, the cost of marker assays remains the
rate-limiting factor for the adoption of MAS. Taking advantage of that present
specialized genotype service, providers can evade the requirements of large capital
investments for the acquisition of equipment and the regular labor expenses, and
drastic reductions in assay costs are, however, difficult to achieve unless very large
numbers of marker assays are deployed. For service providers and genotyping
platforms, the cost per marker assay is associated with the sample volume. With its
current sample volume, CIMMYT is reaching a minimum of 0.2 USD cost per SNP
assay, while one-tenth of the cost would be desired.

16.3 Current Use of MAS for Wheat Biotic Stresses

16.3.1 Rust Resistance

Wheat leaf (brown) rust, stripe (yellow) rust, and stem (black) rust caused by
Puccinia triticina (Pt), P. striiformis f. sp. tritici (Pst), and P. graminis f. sp. tritici
(Pgt), respectively, are the most widely distributed wheat (Triticum aestivum L.)
diseases in the world. They can cause yield loss up to 40 % of the wheat production
area in countries such as Mexico, India, Pakistan, Bangladesh, and China (Dubin
and Brennan 2009), and more than 20 stripe rust epidemics have been documented
worldwide (Wellings 2011). Stem rust has historically been a big threat to global
wheat production (Saari and Prescott 1985). A new Pgt race, TTKSK (commonly
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referred to as Ug99), detected in Uganda in 1998, had virulence to most of the
widely deployed specific resistance genes and was seen as threat to global food
security (Li et al. 2014). There are ways to manage these diseases, e.g., fungizide
treatments, however, development and using resistant cultivars is the most efficient
method to control them.

Two types of rust resistance genes are often defined in wheat. Race-specific
resistance genes usually confer protection throughout the growth cycle, and
therefore, resistance conferred by them is also called all-stage resistance (Chen et al.
2013). These resistance genes cause various degrees of hypersensitive reactions in
the host if the pathogen possesses corresponding avirulence genes (Flor 1942). In
contrast, race non-specific minor genes that confer adult plant resistance (APR) are
usually present together with other similar genes and therefore associated with
quantitative inheritance (Johnson and Law 1973). Most cultivars with multiple
genes for APR are susceptible at the seedling stage but later display resistance to a
number of races (Bjarko and Line 1988). For the last decade, identification of new
sources of rust resistance has gained high priority in the wheat scientific commu-
nity, e.g., via the Borlaug Global Rust Initiative (http://globalrust.org/). As a result,
several new sources of resistance have been identified in global wheat germplasm,
including CIMMYT by QTL mapping and association mapping approaches.

Tables 16.3, 16.4, and 16.5 provide an overview of available molecular markers
for seedling resistance genes, APR genes with pleiotropic effect, and APR genes,
respectively, present in CIMMYT wheat germplasm. Single gene resistance can
usually be selected phenotypically in the greenhouse. For quantitative disease
resistance, MAS can be very useful for pyramiding individual small-effect QTL or
small and large-effect QTL in elite wheat lines.

Due to the vast availability of molecular markers demonstrated in Tables 16.3,
16.4, and 16.5, the screening of parental material, key breeding germplasm, and
MAS for improved rust resistance represents a main part of molecular breeding work
at CIMMYT. During the last years, CIMMYT has started to routinely evaluate its
spring bread wheat international screening nurseries and other set of elite lines with
some of the associated markers. The race non-specific slow rusting APR genes, such
as Lr34/Yr18/Sr57/Pm38, Lr46/Yr29/Sr58/Pm39, Lr67/Yr46/Sr55/Pm46, and
Sr2/Yr30, have been the major foundation of durable resistance in CIMMYT’s
germplasm. Early generation MAS is applied on a project bases to combine these
genes with each other or with additional seedling resistance genes. Table 16.6 shows
the results of a F2-enrichment strategy for UG99 stem rust resistance. The total 305
lines in the 31st Semi-Arid Wheat Yield Screening Nursery (SAWYSN) are listed
according to the environment they have been selected in and according to the
selection method, conventional (Conv) selection or MAS, that has been used. The
lines within each selection environment and scheme were subsequently classified
according their disease rating. The main target for MAS was to combine two to three
markers linked to the genes Sr25, Sr1A1R, Sr24, Sr26, and Sr42/SrCad in diverse
CIMMYT wheat backgrounds. The lowest number of the SAWYSN, in total 40
lines, was derived from the MAS program in Mexico. However, within these 40
lines, the percentage of lines with R and R-MR ratings was highest (90 %) and about
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Table 16.3 Available molecular markers for seedling resistance genes to rusts in the CIMMYT
wheat breeding program

Gene Marker name Source Reference

Lr16 gwm210, wmc661 Francolin#1 Lan et al. (2014)

Lr19/Sr25 Psy1-E, wmc221 Agatha,
Misr#1

Zhang and Dubkovsky (2008),
Dreisigacker, pers. comm.

Lr21 D14 Talbert et al. (1994)

Lr42 cfd15, wmc432 Quaiu#3 Basnet et al. (2014a)

Lr47 CIMwMAS0055 Helguera et al. (2000),
Dreisigacker, pers. comm.

Lr51 S30-13L/AGA7-759R Helguera et al. (2005)

Yr17/Sr38/Lr37 CIMwMAS004 Milan Helguera et al. (2003),
Dreisigacker, pers. comm.

Yr24/26 We173 Chuanmai
42

Wang et al. (2008)

Yr41 gwm410, gwm374 Chuannong
19

Luo et al. (2008)

Yr43 wgp110, wgp103,
barc139

ID0377S Cheng and Chen (2010)

Yr44 pWB5/N1R1, wgp100,
gwm501

Zak Cheng and Chen (2010)

Yr50 gwm540, barc1096,
wmc47, wmc310

CH223 Liu et al. (2013a, b)

Yr60 wmc776, wmc313,
wmc219

Lal Bahadur Herrera-Foessel, pers, comm.

YrF gwm374, wmc474 Francolin#1 Lan et al. (2014)

YrSuj/Yr67 cfa2040, wmc526 Sujata,
C591

Lan, pers. comm.

Sr1BL.1RS SCM9 Seri 82 Weng et al. (2007)

Sr13 barc104, dupw167,
CD926040, BE471213

Kofa,
Kronos

Simons et al. (2011)

Sr22 wmc633, cfa2123 Sr22 Tb,
Steinwedel

Olson et al. (2010)

Sr23 gwm210 AC Domain McCartney et al. (2005)

Sr26 Sr26#43, BE518379 WA1 Mago et al. (2005)

Sr33 barc152, cfd15,
BE405778, BE499711

RL5288 Sambasivam et al. (2008),
Periyannan et al. (2013)

Sr35 cfa2170, cfa2076,
wmc169, wmc559

G2919 Zhang et al. (2010a, b)

Sr42/SrCad FSD_RSA Norin 40 Ghazvini et al. (2012)

Sr-6DS gpw5182, cfd49 Niini, Coni,
Blouk

Lopez-Vera et al. (2014a, b)

SrND643 gwm350, wmc776,
wmc219

ND643 Basnet et al. (2014b)

SrHuw234 wmc332 Huwa Lopez-Vera et al. (2014a, b)

SrYanac barc200 Yaye Lopez-Vera et al. (2014a, b)
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Table 16.4 Available molecular markers for pleiotropic adult plant resistance (PAPR) genes to
rusts in the CIMMYT wheat breeding program

Gene Marker name Source Reference

Lr34/Yr18/Pm38/Sr57 wMAS000003,
wMAS000004

Parula Lagudah et al. 2009, http://www.
cerealsdb.uk.net/

Lr46/Yr29/Pm39/Sr58 csLv46,
csLV46G22

Pavon 76, Kenya
Kongoni

Lagudah, pers. comm.

Lr67/Yr46/Pm46/Sr55 csSNP856 RL6077 Forrest et al. (2014)

Sr2/Yr30 wMAS000005 Pavon76 Mago et al. (2011), http://www.
cerealsdb.uk.net/

Sr2/Yr30 gwm533 Pavon76 Spielmayr et al. (2003)

Table 16.5 Available molecular markers for adult plant resistance (APR) genes to rusts in the
CIMMYT wheat breeding program

Gene Marker name Source Reference

Lr68 cs7BLNLRR,
CIMwMAS0056

Parula Herrera-Foessel et al. (2012),
Dreisigacker, pers. comm.

Yr54 gwm301 Quaiu#3 Basnet et al. (2014a)

Yr36 wMAS000017 Glupro Uauy et al. 2005, http://www.cerealsdb.
uk.net/

Yr39 wgp36, wgp45,
gwm18, gwm11

Alpowa Lin and Chen (2007)

Yr52 barc182, wgp5258 PI 183527 Ren et al. (2012)

Yr59 wgp5175, bac32,
bac182

PI178759, PI
660061

Chen, pers. comm.

Sr56 Sun209, Sun320 Arina Bansal et al. (2014)

Table 16.6 Disease rating for stem rust in the 31st Semi-Arid Wheat Yield Screening Nursery

Selection environment Total Disease rating for stem rust

R R-MR MR MR-MS MS MSS S

Mexico—Conv No 159 25 52 30 27 22 3 0

% 15.7 48.4 67.3 84.3 98.1 100.0

Mexico—MAS No 40 23 13 4 0 0 0 0

% 57.5 90.0 100.0

Kenya—Conv No 106 44 46 10 5 1 0 0

% 41.5 84.9 94.3 99.1 100.0

ALL No 305 92 111 44 32 23 3 0

% 30.2 66.6 81.0 91.5 99.0 100.0

Lines were classified according the selection environment and using conventional selection or
MAS
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twofold larger than the percentage of lines with the same ratings derived from
conventional selections in Mexico (48.4 %), clearly showing the effectiveness of
MAS. A high percentage of lines with R and R-MR ratings were also derived from
conventional selection in Kenya due to the large selection pressure that is obtained at
that site underlining the importance of disease hot spot regions for selection.

Some genes currently not present in the CIMMYT elite germplasm are addi-
tionally introgressed. For example, Yr36, Lr67/Yr46/Sr55, Sr33, and Sr35 will be
introduced into advanced breeding lines using MABC. Resistance genes introduced
to or derived from bread wheat Lr19/Sr25 and Lr47 were also introgressed in
different durum genetic backgrounds via MABC. Furthermore, Lr19/Sr25 and Sr22,
both genes tightly linked on the long arm of chromosome 7A were combined in
durum wheat backgrounds via the F2-enrichment strategy. MAS is therefore
enhancing and strengthening the resistance diversity in CIMMYT wheat germplasm
with multiple gene pyramiding and will provide a better foundation for future
breeding to reach the goal of developing durably resistant high-yielding wheat
varieties.

16.3.2 Fusarium Head Blight (FHB)

Fusarium head blight (FHB) is a globally important wheat disease, with major
epidemic regions being North America, Europe, East Asia, and the South Cone of
South America. Fusarium graminearum (teleom. Gibberella zeae) is the most
important causal agent worldwide. Besides yield reduction, FHB produces a set of
mycotoxins, particularly deoxynivalenol (DON), which is harmful to both human
and livestock. In most developed countries, legally enforceable DON limits in
wheat grain and food products have been set, reflecting concerns for food safety.

Host resistance is the most important component in the disease management
system, although other measures such as fungicide and cultural practices should
also be considered to achieve a satisfactory control (Gilbert and Haber 2013). There
are three major difficulties for breeding FHB resistance varieties: (1) the multigenic
control of host resistance and a lack of functional markers; (2) limited resistance
sources in adapted elite germplasm; and (3) multiple resistance components.
Numerous host resistance mechanisms have been proposed, each having its own
evaluation methods. The most famous resistance components are Type I for initial
infection and Type II for disease spread in spike tissues (Liu et al. 2009).

FHB is a quantitatively inherited disease, making the application of MAS in this
disease more difficult than in qualitatively inherited traits. Until now, more than
hundred published studies have been performed to identify FHB resistance QTLs,
which have been mapped to all the 21 wheat chromosomes, with various pheno-
typic effects (Buerstmayr et al. 2009; Liu et al. 2009). Until now, five QTLs have
been fine-mapped and designated (Table 16.7), but none has been cloned and
mostly only flanking SSR markers are available.
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Fhb1 identified in Sumai 3 is the most well-studied FHB resistance gene. After
its fine mapping, a codominant STS marker, umn10, was developed based on a
polymorphic site near the candidate gene region. Recently, SNP markers, Xsnp3BS-
8 and Xsnp3BS-11, were developed to facilitate high-throughput genotyping
(Bernardo et al. 2012). It is noteworthy that this gene is usually in repulsive phase
with the stem rust resistance gene, Sr2, compromising its application in breeding
practices. This situation is being changed with the availability of lines in which the
two genes are in coupling phase (Thapa et al. 2013). Similar lines with the two
genes in coupling are recently available at CIMMYT. The 3BS chromosome region
was transferred in the background of a set of adapted spring wheat lines, some of
which are currently being introgressed via MABC into elite breeding germplasm.

In addition to these FHB resistance QTLs, dwarfing genes such as Rht-B1b, Rht-
D1b, and Rht8 have also been proved to be associated with FHB resistance, based
on either pleiotropy, tight linkage, or disease escape (Buerstmayr et al. 2009).
Although all the three aforementioned dwarfing genes reduce Type I resistance,
Rht-B1b and Rht8 confer less FHB susceptibility compared with Rht-D1b, and there
was evidence showing that Rht-B1b is able to confer Type II resistance. Therefore,
it is recommended to use Rht-B1b and Rht8 in breeding practices to combine
reduced plant stature with acceptable FHB resistance (Gilbert and Haber 2013).

Despite the extensive efforts on identification of resistance QTLs, limited pro-
gress has been obtained regarding the utilization of those QTLs in MAS, primarily
due to the lack of functional markers. Nevertheless, there were examples where
MAS was employed to develop FHB-resistant cultivars, such as the newly regis-
tered Canadian wheat cultivar ‘Cardale’ (Gilbert and Haber 2013). The utilization
of MAS in FHB-resistant breeding at CIMMYT dates back to 2008 when a col-
laborative project with USDA-ARS Small Grains Genotyping Center, Fargo, was
initiated (Duveiller et al. 2008). And nowadays, the ‘haplotyping’ system at
CIMMYT comprises 17 markers for 10 validated QTLs on seven chromosomes
(Table 16.8), which has facilitated the genotypic characterization of numerous
CIMMYT elite lines, including the 13th and 14th FHB screening nursery (He et al.

Table 16.7 Information on the five nominated FHB resistance genes

Gene Source Chromosome Resistance
type

Flanking markers References

Fhb1 Sumai 3 3BS II gwm533 and gwm493 Cuthbert et al.
(2006)

Fhb2 Sumai 3 6BS II gwm133 and gwm644 Cuthbert et al.
(2007)

Fhb3 Leymus
racemosus

T7AL·7Lr#1S II BE586744, BE404728,
BE586111

Qi et al.
(2008)

Fhb4 Wangshuibai 4B I barc20 and wmc349 Xue et al.
(2010)

Fhb5 Wangshuibai 5A I barc56 and barc100 Xue et al.
(2011)
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2013a, b). However, this system is being upgraded to incorporate markers in closer
linkage with several of the QTLs, and it is predictable that the SSR and STS
markers will be replaced by high-throughput SNP markers in near future.

16.3.3 Septoria Tritici Blotch (STB)

Septoria tritici blotch (STB) is a foliar blight disease that reduces yields up to 60 %
under conducive environmental conditions, with Europe, North America, South
America, Australia, and Central West Asia and North Africa (CWANA) region
being the major epidemic regions (Raman and Milgate 2012). This disease is
caused by the ascomycete fungal agent Zymoseptoria tritici (anamorph: Septoria
tritici).

Host resistance to STB is reported to be both qualitative and quantitative.
Although gene-for-gene interactions exist between a certain resistance genes and
the corresponding pathogen isolates, the resistance conferred by each gene is weak
and cannot provide sufficient protection to wheat as those in rusts and powdery
mildew (Goodwin 2012). Like in other diseases, breakdown of STB resistance
genes has been observed, e.g., resistance of the wheat cultivar ‘Gene’ was defeated
only five years after its release, implying its resistance nature of ‘race-specific’
(Cowger et al. 2000). Thus, it is recommended to pyramid both qualitative and
quantitative resistance genes in breeding materials to achieve durable resistance
(Raman and Milgate 2012).

The first STB resistance gene, Stb1, was discovered in 1966 and designated in
1985, followed by Stb2 and Stb3 in 1985, and Stb4 in 1994 (Goodwin 2012). But it is
Stb5 that was firstly mapped on a genetic map (Arraiano et al. 2001). Soon after this
landmark work, 12 more resistance genes were reported in 2000s as reviewed by
Goodwin (2012). In the last few years, Stb16, Stb17, and Stb18 were identified and

Table 16.8 FHB markers used in CIMMYT’s haplotyping system

Source Chromosome Resistance type Flanking markers Locus

Sumai 3 3BS II umn10, Xsnp3BS-11, Xsnp3BS-8 Fhb1

5AS I barc186 and barc180 Fhb5

6BS II gwm133 and wmc179 Fhb2

Frontana 3A I dupw227

5AS I barc197 and gwm129 Fhb5

Wuhan 1 2DL II wmc144 and wmc245

4BS II wmc238 and gwn149 Fhb4

CJ 9306 2DL II gwm157 and gwm539

T. dicoccoides 3A II gwm2

7A II barc121 and wmc488

This table was modified from He et al. (2013b)
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mapped (Ghaffary et al. 2011, 2012), and the chromosomal localizations of Stb2 and
Stb3 were adjusted from 3BS to 1BS and from 6DS to 7AS, respectively (Liu et al.
2013a, b; Goodwin et al. 2015). In addition to major resistance genes, several
quantitative loci with minor effects (Simon et al. 2012; Kelm et al. 2012; Risser et al.
2011; Kosellek et al. 2013) have been identified. Add CIMMYT, recently two new
resistant QTL were mapped on chromosomes 5AL and 3BS in two populations
evaluated under field conditions in Mexico (Dreisigacker et al. 2015).

All mapped Stb genes but Stb15 have at least one linked SSR marker, which
enables the application of MAS (Ghaffary et al. 2011, 2012; Goodwin 2012). At
CIMMYT, the haplotyping work on STB started from late 2000s on elite breeding
materials and parents of mapping populations, and recently, it became a routine
procedure for genotypically characterizing CIMMYT’s International Septoria
Observation Nurseries (ISEPTON) with linked SSRs (Table 16.9). Similar to the
FHB markers, the ones for STB are also being constantly updated to incorporate
new findings.

16.3.4 Other Diseases and Pests

Many other biotic stresses with global or regional importance exist in wheat. Some
functional markers and many QTL associated with resistance genes for these dis-
eases have been mapped and are applied in breeding. At CIMMYT, besides the

Table 16.9 STB markers used in CIMMYT’s haplotyping system

Gene Flanking markers Chromosome Source

Stb1 barc74 5BL Bulgaria 88

Stb2 wmc230 1BS Veranopolis

Stb3 gdm132 7AS Israel 493

Stb4 gwm111 7DS Tadinia

Stb5 gwm44 7DS CS/Synthetic 6x

Stb6 gwm369 3AS Flame

Stb7 wmc313 4AL Estanzuela Federal, Kavkaz-K4500 L.6.A.4

Stb8 gwm577, gwm146 7BL Synthetic W7984, Opata m85

Stb9 wmc317 2B Courtot

Stb10 wms848 1D Kavkaz-K4500 L.6.A.4

Stb11 barc008 1BS TE 9111

Stb12 wmc219 4AL Estanzuela Federal, Kavkaz-K4500 L.6.A.4

Stb13 wmc396 7B Salamouni

Stb14 wmc500, wmc623 3B Salamouni

Stb16 wmc494 6B SH M3, Opata M85

Stb17 hbg247 5A Kavkaz-K4500 L.6.A.4

Stb18 gpw3087, gpw5176 6DS Balance
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major focus on rust, FHB, and STB, germplasm is additionally characterized for tan
spot (caused by Pyrenophora tritici-repentis (Died.) Drechs.), stagonospora
nodorum blotch (caused by Parastagonospora nodorum (Berk.) Quaedvlieg,
Verkley and Crous), soilborne diseases such as the cereal cyst (Heterodera avenae)
and root lesion nematode (Pratylenchus thornei), and Hessian fly (Mayetiola
destructor).

16.4 Current Use of MAS for Quality Traits

New wheat varieties should meet specific grain quality requirements to satisfy the
increasing demand for processed wheat-based foods. Grain quality is a variable
concept, and its meaning depends on the type of flour to produce (whole meal flour,
refined flour, semolina, etc.), the end product to manufacture (bread, biscuit, pasta,
etc.), the process used to produce it (handmade, semi-mechanized, mechanized,
etc.), and the consumer’s preferences. In defining quality for any given end use,
processing performance and end-product properties have to be considered.

Processing quality and end-product properties are determined by a set of com-
plex traits, the most important being the endosperm texture or grain hardness, the
content and composition of storage proteins (mainly glutenins), the composition of
starch and non-starch polysaccharides, and, for some specific products, the color of
the flour/semolina. The high variability in grain quality traits existing in wheat has
led to the creation of thousands of varieties possessing many different grain com-
position combinations, allowing using wheat to manufacture many different types
of foods.

Although the main quality traits are influenced by the environment and cropping
practices, their expression is mainly controlled by qualitative genes and their allelic
variations. The good association between genotype and phenotype for main grain
quality parameters has made the use of these parameters possible to estimate the
presence/absence of quality-related loci. Until now, functional markers for almost
all important high-molecular-weight glutenin subunit (HMWGS) and
low-molecular-weight glutenin subunit (LMWGS) associated with the gluten
properties are available, as well as for genes related to grain hardness, protein
content, flour/semolina color, and starch properties (Liu et al. 2012). Due to the
complexity of analyzing some quantitative and qualitative traits using conventional
non-molecular tools, these molecular markers have received attention and are being
implemented in some breeding programs including CIMMYT.

16.4.1 Gluten Composition

When wheat flour is mixed with water to form dough, the storage proteins of the
grain are aggregated in a viscoelastic protein network named gluten. The processing
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of most wheat-based products requires gluten strength and extensibility in a greater
or lesser extent. Gluten elasticity or strength requirements depend on the processing
conditions and the end product to be manufactured. Gluten is composed of a large
number of proteins, mainly glutenins and gliadins. Glutenins contribute more to
gluten strength, while gliadins do to extensibility and viscosity. It is impossible to
understand dough/gluten viscoelastic properties without studying both kinds of
proteins independently but coexisting together in the intricate gluten protein net-
work and in the complex dough system. Among the glutenins, the HMWGSs are
codified by the Glu-A1, Glu-B1, and Glu-D1 loci (located at the long arm of
chromosomes 1A, 1B, and 1D, respectively), and the LMWGSs are codified by the
Glu-A3, Glu-B3, and Glu-D3 loci (located at the short arms of chromosomes 1A,
1B, and 1D, respectively). Different alleles for each of the glutenin and gliadin
genes have been detected and classified mainly by SDS-PAGE protein elec-
trophoresis. Most of these alleles have been associated to high or poor quality, the
clearest example being the association of the Glu-D1d allele (subunits 5+10) with
higher elasticity and extensibility than that conferred by the allele Glu-D1a (sub-
units 2+12) (Payne et al. 1987).

The six Glu-1 and Glu-3 loci have been already characterized at a molecular
level, and molecular markers are available for almost all the alleles (see Rasheed
et al. 2013 for a review). Most of them are STS-type markers, although several SNP
markers have been already developed and validated (http://www.cerealsdb.uk.net/).
At CIMMYT up to now, SDS-PAGE electrophoresis has resulted still more
time-efficient and has a lower cost than the use of several individual markers, as
low-cost multiplex assays for all observed alleles do still not exist. The lines that
carry SDS-PAGE subunit bands difficult to differentiate, mainly due to band
overlapping, are additionally analyzed by the specific molecular markers. Those are
usually the lines carrying the subunit 7 overexpressed (Bx-7OE), which has been
shown to increase the concentration of this subunit, which is difficult to detect in an
SDS-PAGE gel. Other alleles difficult to identify by SDS-PAGE are Glu-A3f and e,
as well as Glu-B3f and g. In those cases, the power resolution of the molecular
markers (Table 16.10) is very useful to have a concluding result.

Table 16.10 Functional markers for grain quality traits

Gene Allele Marker name Reference

Glu-B1 Glu-B7OE TaBAC1215C06-F517/R964
TaBAC1215C06-F24671/R25515

Ragupathy et al. (2008)

Glu-A3 Glu-A3f LA1F/SA6R Wang et al. (2010)

Glu-A3e LA1F, SA5R

Glu-B3 Glu-B3f SB6 Wang et al. (2009)

Glu-B3g SB7

Wx-A1 Wx-A1b MAG264 Liu et al. (2005)

Wx-B1 Wx-B1b GBSS McLauchlan et al. (2001)

Wx-D1 Wx-D1b MAG269 Liu et al. (2005)
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16.4.2 Grain Hardness

Grain hardness could be considered the most important single factor determining
the general end use of a wheat cultivar (Morris 2002). Hard wheat is for bread,
while soft wheat is for biscuits, and the very hard, vitreous grain of durum wheat, is
suitable for pasta. The importance of grain hardness resides in its influence on the
level of damaged starch resulting during flour milling; the harder the grain, the
higher the level of damaged starch in the flour, and the higher the water hydration
capacity of the flour (Posner 2000).

Grain hardness is controlled in common wheat by Pina-D1 and Pinb-D1, two
small genes without introns located at the short arm of chromosome 5D (Morris
2002). These genes are codified for two proteins named puroindolines (PINA and
PINB), associated with the membrane surrounding starch granules, and that have
direct role in the definition of grain hardness (see Morris and Bhave 2008 for a
review). When wild forms of both proteins are present, the grain texture is soft.
However, if one of the proteins is missing or has a modified amino acid sequence,
the texture will be hard or semi-hard. Up to date, four and fourteen different alleles
leading to hard texture have been identified for Pina-D1 and Pinb-D1, respectively
(McIntosh et al. 2014). All these alleles, except Pina-D1b, are characterized by the
presence of one SNP in the coding region that either changes the ORF leading to a
premature stop codon or to the change of one amino acid in the protein sequence.
The most common Pin alleles causing hard texture are Pina-D1b and Pinb-D1b.
The first one, predominant in CIMMYT germplasm (Lillemo et al. 2006), is
characterized by the almost complete deletion of the Pina-D1 gene.

Although grain hardness is easily measured in the laboratory and shows only
small environmental influence, the molecular markers related to the Pin-D1 genes
are useful to determine the different allele combinations associated with different
hardness levels (Martin et al. 2001; Takata et al. 2010). For example, Pina-D1b is
associated with a harder texture than Pinb-D1b and in some cases with higher flour
yield. Knowing the Pin genotype can help to develop wheat with specific and
desirable texture for a specific end product. At CIMMYT, parental lines are ana-
lyzed with respect to Pina-D1 and Pinb-D1 with developed SNP markers (http://
www.cerealsdb.uk.net/). Markers are being used to identify lines carrying the
uncommon Pinb-D1b allele to enhance variability. In addition, SNP markers for
additional less frequently found alleles that could lead to a different texture such as
Pinb-D1c, Pinb-D1d, or Pina-D1m are being developed to screen different wheat
collections and introduce them into CIMMYT germplasm.

16.4.3 Starch Properties

Starch is mainly composed of amylose and amylopectin. The ratio of both
macromolecules has a significant impact on starch and dough characteristics such as
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viscosity, extensibility, and expansion, particularly at the oven stage in
bread-making, when hydration of macromolecules changes, mainly due to denat-
uration. In common wheat, the amount of amylose and amylopectin is 25–28 and
75–72 %, respectively. From the nutrition and health point of view, high amylose
content is related to high-resistant starch concentration, which acts as pseudo-fiber
in the human intestine during digestion and which is associated with a healthier diet
due to its lower glycemic index and because it increases satiation with less ingest of
food.

The amylose/amylopectin ratio is controlled by the enzymes responsible of their
synthesis (Morell et al. 2001). The amylopectin synthesis is complex and is carried
out by different starch synthases (SGP-1, SGP-2, and SGP-3), branching and
debranching enzymes of the grain. Amylose is synthesized by the granule-bound
starch synthase (GBSS) I commonly named waxy protein. In bread wheat, three
different waxy proteins are present and controlled by the three Wx loci (Wx-A1, Wx-
B1, and Wx-D1) located at chromosomes 7AS, 4AL, and 7DS, respectively
(Yamamori et al. 1994). These proteins have shown polymorphism, denoting the
existence of null alleles that lead to the reduction of the amylose content. The
coding region of these genes is composed of eleven exons and ten introns of a total
size between 2781 and 2862 bp. The null alleles are known as Wx-A1b, Wx-B1b,
and Wx-D1b, and molecular markers have been validated (Liu et al. 2005;
McLauchlan et al. 2001; Saito et al. 2009). At CIMMYT, there is an increasing
interest in determining the variation in starch properties of modern germplasm, as
well as diverse genetic resources. Although starch composition is not considered a
major factor in defining processing quality, parental lines have been analyzed with
molecular markers (Table 16.10) for the presence of different null alleles, finding
significant presence of the Wx-B1b allele (11 % of the lines) but not for the others.
The use of these markers, especially when breeding is oriented to improve very
specific products such as biscuits, flat unleavened breads, or noodles, with very
specific quality requirements, is useful because colorimetric assays to determine
amylose content or electrophoretic separation or waxy proteins are time-consuming
processes and interpretation of the results is not always easy.

16.4.4 Flour Color

Flour color is an important trait in the assessment of flour quality. The enzyme
polyphenol oxidase (PPO) has been found to be involved in undesirable
time-dependent browning of noodles, flat breads, and steam bread. PPO activity,
although largely dependent on the environment, is variable among different geno-
types. Six loci, two per each genome (Ppo-1 and Ppo-2), have been characterized at
a molecular level, and alleles associated to high or low PPO activity are available.
The validation and implementation of markers for PPO activity at CIMMYThave
been initiated as this physiological–biochemical trait that cannot be easily evaluated
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based on its phenotype. The use of these markers would allow the selection of
wheat progenies in the early generations and would greatly improve selection
efficiency for color.

16.4.5 Nutritional Quality

Plant breeding to develop biofortified crops with enhanced micronutrient concen-
trations has emerged as a sustainable solution to complement strategies such as
supplementation or fortification, especially for micronutrient-deficient rural inhab-
itants with limited access to formal markets or health care and who rely heavily on
locally grown staple food crops (Bouis et al. 2011). In particular, South Asia suffers
from high population densities and alarming rates of malnutrition (Velu et al. 2012).
With funding from the HarvestPlus Challenge Program and the CGIAR Research
Program on Agriculture for Nutrition and Health, CIMMYT is leading a global
effort to develop and disseminate to partners in South Asia high-yielding wheat
varieties that contain high levels of grain Zn concentration. Identifying the QTL that
regulate the accumulation of high Zn levels in the wheat grain would allow breeders
to more efficiently develop biofortified cultivars by using closely linked molecular
markers to screen and select the most favorable genotypes. Two novel QTLs of
large effect for increasing GZnC on chromosomes 2Bc and 3AL were recently
detected by Hao et al. (2014) from the cross between PBW343 and Kenya Swara.
The two QTLs individually explained about 10–15 % of the total phenotypic
variation. Closely linked markers, DArT markers, identified were recently con-
verted to SNPs and MABC using best RILs as donor parents are underway for
validation and introgression of the QTL in CIMMYT-advanced breeding lines.

16.5 Marker-Assisted Selection for Grain Yield
and Developmental Traits

Grain yield is the most important trait plant breeders are interested in. It is reflecting
the culmination of all the processes of vegetative and reproductive growth and
development, and their interactions with the edaphic and aerial environments. Most
of the improvements in grain yield have arisen through incremental genetic
advances. For example, wheat varieties with reduced plant height were introduced
to the global wheat industry during the Green Revolution. These varieties sub-
stantially improved grain yield through increased harvest index and straw strength
(Borlaug 1968).

Grain yield is usually broken down into three components: number of spikes per
area, grain number per spike, and grain size estimated as thousand grain weight
(TGW). These yield components are sequentially fixed during the growth cycle,
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vary in terms of their heritability, and are not always positively correlated with
yield. TGW usually shows stable heritability (Kuchel et al. 2007b) and can be
further broken down into individual components including physical parameters
(grain length, width, area) and grain-filling characteristics, which are also under
independent genetic control. In the past decade, there have been significant
advances in the understanding of the genetic control of grain size, shape, and
grain-filling parameters in the diploid crop species especially in rice (Ikeda et al.
2013). Several genes with relatively large effects have been identified through
map-based cloning and support the independent genetic control of grain length,
width, and grain-filling parameters. In wheat, there is still a limited understanding
of grain weight genetic control. Many studies have identified QTL for TGW, grain
size, and shape (Gross et al. 2003; Kumar et al. 2006; Breseghello and Sorrells
2007; Tsilo et al. 2010; Rustgi et al. 2013; Sun et al. 2009; Zhang et al. 2010a, b),
but no gene has yet been cloned. Many of the observed QTL are in addition in
relatively wide genomic regions and have not been validated and fine-mapped and
have therefore limited impact in breeding.

For some of the genes associated with TGW and grain shape cloned in rice,
orthologs have been identified in wheat via comparative genetics. These genes play
different roles in various stages of grain development and include (1) sucrose
synthase genes (TaSus1 and 2), which are correlated to dry matter accumulation
(Hou et al. 2014); (2) cell wall invertase genes (TaCwi-2A, -4A, -4B and -5D)
related to sink tissue development and carbon partitioning (Ma et al. 2012; Jiang
et al. 2015); (3) TaGW2 (TaGw2-6A, 6B, 6D), a orthologous gene to the rice gene
OsGW2 and associated with kernel width and weight by controlling endosperm cell
number in both the cell division and late grain-filling phases (Su et al. 2011); (4) a
cytokinin oxidase/dehydrogenase gene (TaCKX6-D1) that plays a principal role in
controlling cytokinin levels and affects grain weight in wheat (Zhang et al. 2012);
(5) TaSAP1, a member of the stress associated protein (SAP) gene family in wheat
associated with grain weight, number of grains per spike, spike length, and
peduncle length in multiple environments (Chang et al. 2013a, b); and (6) TaGS-D1
and TaGASR7, two genes mainly related to grain length (Zhang et al. 2015; Dong
et al. 2014).

The exact effect of these genes on TGW, grain size, or shape in wheat is still not
well understood to date. For example, several studies have examined the role of
TaGW2 on grain size parameters and contradictory results have been reported. Two
studies have described a SNP upstream of the putative start codon as significantly
associated with wider grains and increased TGW in Chinese germplasm (Su et al.
2011; Zhang et al. 2013). However, each study found the positive association with
the opposite SNP and a negative association between TaGW2 expression levels and
grain width. Yang et al. (2012) identified a TaGW2 frameshift mutation in a large
grain variety and associated this mutant allele with increased grain width and TGW
in a large F2:3-population. However, down-regulation of TaGW2 through RNA
interference (RNAi) resulted in decreased grain size and TGW in wheat, suggesting
that TaGW2 is a positive regulator of grain size. At CIMMYT, we have initially
validated molecular markers related to some of the published genes in four different
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germplasm sets (Table 16.11). Frequencies of the published favorable alleles varied
between the data sets, and the most frequent favorable allele was the allele for
TaCWi-2A. Initial analyses evaluating the effect of each of the alleles on TGW were
inconclusive and only positively consistent for TaCWi-2A over all germplasm sets
and in different environments (data not shown).

Recently, Simmonds et al. (2014) positioned the TaGW2-6A gene within the 6A
QTL interval of the population Rialto × Spark. This QTL on chromosome 6 has
been consistent in different populations and showed significant effects over seasons
and environments (Snape et al. 2007). The QTL has been introgressed into
CIMMYT germplasm via Spring × Winter Wheat crosses using UK cultivars such
as ‘Premio’ or ‘Mercato’. The QTL has also been observed in a recent CIMMYT
parent ‘PFAU/SERI.1B//AMAD/3/WAXWING’ which shows good yield stability.
The QTL has most likely been introgressed via the line ‘PFAU’ which also has
European lines in its pedigree. The effect of this QTL in CIMMYT germplasm has
still to be determined. Overall, it is therefore too early to conclude if and how these
genes affect TGW grain size and shape and additional experiments are required.

16.5.1 Plant Phenology

Variation in expression to phenology is the most essential physiological adaptation
of wheat to its cropping system. Archiving the appropriate plant, phenology permits
wheat varieties (1) to fit into the timeframe of the cropping cycle, (2) to avoid
extreme weather events (e.g., frost, drought), and (3) to optimize the use of
resources to maximize yield. The manipulation of plant phenology is therefore a
common target. The genetic determination of plant phenology has demonstrated
that it is a complex character which exhibits a continuous variation and is controlled
by many genes scattered over the whole genome (Snape et al. 1996). In wheat, the
genetic bases of flowering time have been well studied and related genes have been
classified according to whether they respond to vernalization or to photoperiod or to
earliness per se during the preanthesis developmental phases. Stelmakh (1998)

Table 16.11 Allele frequencies of the favorable allele of diverse published genes related to TKW
in four different data sets

Germplasm Number of
lines

TaSus1 Tasus2-2B TaCWi-2A TaGW2-6A

% favorable allele

Mexican landraces 33 0.58 0.09 0.85 0.2

Turkish landraces 153 1 0.37 0.86 0.01

Historical set of CIMMYT
lines

54 0.39 0.00 0.83 0.13

Current CIMMYT elite
lines

112 0.48 0.00 0.91 0.12
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estimated that the vernalization gene system accounts for about 70–75 %, the
photoperiod gene system for about 20–25 %, and the earliness per se for about 5 %
or the genetic variability in the flowering time of bread wheat. Cane et al. (2013)
estimated the effects of frequent alleles of Vrn-1, Ppd-D1, and Ppd-B1 genes on
flowering time, which accounted for 53 % of the genotypic variance of the trait.
Diagnostic markers to identify the allelic variation of the genes have been devel-
oped (for a recent review see Kamran et al. 2014) and can be used in breeding
programs. A recent study by Chen et al. (2014) has shown that Phytochrome C and
circadian clock output genes play an additionally in long-day induced flowering in
wheat. Phytochrome C operates by light activation upstream of the vernalization
and photoperiod pathways and on the regulation of the circadian clock.

16.5.1.1 Vernalization Requirement

Vernalization is the acquisition or acceleration of plant’s ability to initiate the
flowering process by exposure to cold (Chouard 1960). According to the vernal-
ization requirements, wheat is classified to have winter or spring growth habit.
Spring wheat may be insensitive or partly sensitive to vernalization, but winter
wheat has a considerable vernalization requirement. Genetic differences are caused
by allelic variation at Vrn-1, Vrn-2, Vrn-3, and Vrn-4 loci (Distelfeld et al. 2009).
Spring wheat and facultative wheat are manifested by the presence of one or more
dominant alleles at Vrn-1 which confer the insensitivity or partial sensitivity to
vernalization. Winter wheat possesses dominant alleles at Vrn-2, a floral repressor
which is considered to delay flowering until the plants are vernalized and recessive
alleles at the other three loci (Trevaskis et al. 2007). Fu et al. (2005) sequenced the
Vrn-1 genes located on the homologues chromosomes 5 from diverse wheat
accessions. Several Vrn-1 alleles result from insertion and deletions in the promoter
and intron-1 regions of the gene (Yan et al. 2004a, b; Fu et al. 2005; Diaz et al.
2012). The role in altering vernalization response of each allele differs. While some
alleles have large effects on the growth habit, others are silent mutations and
therefore unlikely to have any direct role in the vernalization response. The Vrn-3
genes mapped on the homologues chromosomes 7 promote the transcription of Vrn-
1, thereby accelerating flowering time further. Genetic variation has been observed
in Vrn-B3 and Vrn-D3 (Yan et al. 2006, Chen et al. 2010). Rather limited infor-
mation is available for Vrn-4. So far only one allele has been described which was
designated Vrn-D4 and assigned to chromosome 5D (Kato et al. 2003, Yoshida
et al. 2010).

At CIMMYT, molecular markers linked to the Vrn-1 and Vrn-3 genes are uti-
lized to evaluate CIMMYT-advanced wheat lines. Summarizing the results of 1041
recent advanced lines, the most common allele in CIMMYT wheat is the dominant
spring allele Vrn-D1a (99 %), followed by Vrn-B1a (70 %). Stelmakh (1993) and
Eagles et al. (2011) evaluated the genetic effect of the three Vrn-1 genes and
suggested a higher effect on heading date of Vrn-D1 or -A1 compared with Vrn-B1.
The Japanese cultivar ‘Akakomugi’ is thought to be the donor parent of the Vrn-
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D1a allele (Stelmakh 1990) which was later transferred into early Green Revolution
cultivars such as ‘Lerma Rojo’ and ‘Sonora 64.’ These two cultivars are thought to
be the potential source of the Vrn-D1a allele in South and Southeast Asian wheat
(Stelmakh 1990; Van Beem et al. 2005). Stelmakh (1993) also concluded that the
highest yield was predicted for varieties containing Vrn-D1a. Vrn-A1a is almost
absent in CIMMYT wheat. Different recessive winter vrn-A1 alleles (V and W)
have been identified which are distinguished by a C/T SNP in the fourth exon of the
gene and are also associated with copy number variation (Zhu et al. 2014). The ‘W’
allele is present in 80 % of CIMMYT wheat lines. The allele is characterized by a
higher copy number variation, a greater vernalization requirement, and increased
frost tolerance (Zhu et al. 2014). The allele was previously observed in CIMMYT
‘Veery’ lines and derivatives such as ‘Attila’ and ‘Babax’ (Eagles et al. 2011) and
might have some adaptive advantage or is linked to another favorable allele. For
Vrn-3 genes, no variation was observed for Vrn-B3 in CIMMYT wheat. However,
the published allele of Vrn-D3 from the cultivar ‘Jagger’ is present in 60 % of the
CIMMYT lines evaluated. The Vrn-D3 allele further promotes development and
according to Chen et al. (2010) maximizes effects at physiological maturity. The
effect of Vrn-D3 on heading and maturity date could not be confirmed yet. Overall,
the most common haplotype at Vrn-1 and Vrn-3 in CIMMYT wheat is vrn-A1W,
Vrn-B1a, Vrn-D1a, and Vrn-D3.

16.5.1.2 Photoperiod-Sensitivity Genes

Photoperiod-sensitive wheat is stimulated to flower only in long days, and flow-
ering is delayed under short days provided that any requirement for vernalization is
met. In spring habit wheat, photoperiod-sensitive types cannot be grown as an
overwinter crop in tropical or low latitude areas, since the day length requirement
would not be satisfied in a short enough time frame to produce a commercially
viable crop (Worland and Snape 2001). Photoperiod-insensitive wheat flowers
independently of day length can be grown to maturity in long or short day envi-
ronments. This is of particular advantage in warmer and dry climates as early
flowering varieties are able to fill their grains prior to the onset of high temperatures
and droughtstress occurring late in the season (Worland and Snape 2001). To date,
three such genes have been identified, including Ppd-A1, Ppd-B1, and Ppd-D1,
located on chromosomes 2A, 2B, and 2D, respectively. The primary influence of
the genes is on ear growth and spikelet growth (Scrath et al. 1985). A novel
photoperiod response gene designated as Ppd-B2 has been mapped on wheat
chromosome 7BS (Khlestkina et al. 2009). This gene accelerates flowering only
under long photoperiods in contrast to the Ppd-1 genes that induce earlier flowering
irrespective of day length. Ppd-D1 is the photoperiod-insensitive locus with the
largest effect followed by Ppd-B1 and Ppd-A1 (Worland 1996). Photoperiod
insensitivity is induced by In/Dels in the 5′ upstream region of the gene
pseudo-response regulator genes; they do not exist in the photoperiod-sensitive
alleles (Beales et al. 2007; Wilhelm et al. 2009; Nishida et al. 2013). Furthermore

448 S. Dreisigacker et al.



Diaz et al. (2012) showed that for Ppd-B1, alleles conferring altered flowering time
had an increased copy number of the gene and altered gene expression.

In CIMMYT, wheat Ppd-D1a is predominant in CIMMYT wheat germplasm
(Table 16.12). Across the same 1041 recent advanced lines described above, 95 %
of the lines carry the Ppd-D1a allele. Since its beginning by Norman Borlaug and
his colleges, the CIMMYT wheat program is based in Mexico and shuttles germ-
plasm between two contrasting environments (NW Mexico, Ciudad Obregon [(27°
N109°W) and central highlands in El Batan (20°N100°W)]. This shuttle breeding
exposes wheat materials to diverse photoperiod and temperatures and to a range of
important diseases led to the selection of photoperiod-insensitive lines. The Ppd-
A1a alleles first described in durum wheat are present in 3–5 % CIMMYT bread
wheat germplasm. The allele was transferred from durum wheat via synthetic
hexaploid wheat derivative that has been incorporated with increasing number into
the bread wheat breeding programs (Dreisigacker et al. 2008). The Ppd-B1 alleles
show the largest variation in CIMMYT wheat. Most of the reported alleles were
observed, e.g., the four copy number variant initially identified in ‘Chinese Spring.’

Table 16.12 Allele frequency of reported Vrn and Ppd alleles in two sets of germplasm forming
the international bread wheat screening nursery (IBWSN)

Trial M45IWBSN M46IBWSN

Gene/Allele No No of lines % No No of lines %

Vrn-A1a 706 4 0.6 317 0 0.0

vrn-A1 706 702 99.4 317 317 100.0

Vrn-A1v 704 168 23.9 317 63 19.9

Vrn-A1w 704 536 76.1 317 254 80.1

Vrn-B1a 720 452 62.8 298 252 84.6

Vrn-B1b 720 20 2.8 298 16 5.4

vrn-B1 720 248 34.4 298 30 10.1

Vrn-D1a 706 702 99.4 319 319 100.0

vrn-D1 706 4 0.6 319 0 0.0

Vrn-D3a 698 452 64.8 321 187 58.3

vrn-D3 698 246 35.2 321 134 41.7

Ppd-A1a (GS105) 714 10 1.4 319 5 1.6

Ppd-A1b 713 5 0.7 298 2 0.7

Ppd-A1(Null) 701 145 20.7 318 133 41.8

Ppd-A1 714 554 77.6 319 181 56.7

Ppd-B1a (4x) 709 3 0.4 319 2 0.6

Ppd-B1a (3x) 720 497 69.0 308 207 67.2

Ppd-B1b (1x) 719 213 29.6 308 88 28.6

Ppd-B1b (1x) 720 6 0.8 308 10 3.2

Ppd-D1a 716 641 89.5 319 289 90.6

Ppd-D1b 705 76 10.8 319 30 9.4

Ppd-D1(null) 714 1 0.14 317 1 0.3
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The most frequent allele is the three copy number variant first characterized in the
Green Revolution line ‘Sonora 64.’

16.5.1.3 Earliness

Earliness per se (Eps) genes are those that regulate flowering time independently of
vernalization and photoperiod and are important for the fine-tuning of flowering
time and for the wide adaptation of wheat to different environments. Among the
contributing factors influencing time to flowering, earliness per se (Eps) has been
least investigated. Eps loci have already been identified in wheat (Hoogendoorn
1985), and meta-QTL analysis of heading time in bread wheat revealed that
numerous QTL colocated in chromosomal regions known to carry Eps loci (Hanocq
et al. 2007; Griffiths et al. 2009). However, most of these Eps loci remained
molecularly undefined, and only the Eps-Am1 locus in einkorn wheat has been
fine-mapped and phenotypically characterized (Faricelli et al. 2010). Gawronski
and Schnurbusch (2012) recently fine-mapped a second gene derived from einkorn
wheat Eps-Am3.

Under combined vernalization and photoperiod treatments, we identified an Eps
QTL on chromosome 1DL using genome-wide association mapping in the Wheat
Association Mapping Initiative (WAMI) population genotyped with the 90K Wheat
Illumina SNP array (Sukumaran, personal communication). Subsequent BLAST
searches indicated that the QTL region with sequence similarity identity higher than
96 % contained the Mot1 and ELF3 genes that were candidates for earliness per se
from earlier studies in einkorn wheat, so is a likely orthologue of Eps-Am1. A recent
study using four independent pairs of NILs derived from a cross between Spark and
Rialto winter wheat varieties identified the same region on 1DL for Eps in wheat
suggesting that MAS of Eps effects is getting feasible (Zikhali et al. 2014).

16.5.2 Plant Height

Plant height is an important agronomic trait in cereal crops. It not only determines
plant architecture but also contributes a lot to grain yield. The Rht-B1b (Rht1) and
Rht-D1b (Rht2) semidwarfing genes were introduced into commercial wheat cul-
tivars from the Japanese variety Norin10 in the 1960s as part of wheat improvement
programs in the USA and at CIMMYT and lead to the first ‘Green Revolution’
wheat varieties. A reduction in plant height improved stem strength and thus
lodging resistance and Harvest Index, the partitioning of assimilates to the devel-
oping grain (Borlaug 1968). The large increases in yield that followed the intro-
duction of these dwarfing genes led to widespread adoption of the dwarfing genes
throughout the world (Gale et al. 1985). Perfect STS and SNP markers were
developed in wheat for these genes (Ellis et al. 2002, http://www.cerealsdb.uk.net/).
Rht1 and Rht2 encode proteins involved in gibberellin signal transduction, but also
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have pleiotropic effects on plant growth, causing reductions in coleoptile length and
seedling leaf area. These genes reduce the leaf elongation rate and coleoptile length.
A number of alternative plant height genes have been observed that might be more
suitable for final plant height without compromising early plant growth (Ellis et al.
2004). Examples are Rht4, Rht5, or Rht8 that do not reduce the leaf elongation rate
and coleoptile length and do not affect early growth. Rht1 is predominant in
CIMMYT germplasm due to the introgression of this gene during the ‘green rev-
olution.’ Efforts are, however, underway to incorporate some of the alternative
alleles, e.g., Rht4, Rht5, or Rht13 into CIMMYT germplasm using MAS. The SNP
assays are routinely used to evaluate the CIMMYT elite germplasm. For the
alternative drawing genes, the markers reported in Ellis et al. (2005) are utilized.

16.6 Marker-Assisted Selection for Abiotic Stresses
in Wheat

Abiotic stresses affect plant development, productivity, and grain quality in wheat.
Research on plant responses to abiotic stresses and their impact on crop production
continue to be a major focus in breeding, especially as in the current scenario of
climate change, climate-resilient wheat is a necessity. Among the four main abiotic
stresses (drought, heat, salinity, and metal toxicity) drought is the single most threat
to food security.

16.6.1 Drought and Heat Tolerance

Plant responses to drought and heat stress are complex depending on the genotypes,
environments, and the G × E. In addition, the difficulties to identify QTLs for traits
under drought and heat are as follows: (1) the availability of mapping population
with controlled height and phenology to avoid confounding effect of major genes
and (2) the phenotyping procedure in a time frame in large populations that will
avoid confounding masking effect of major genes on minor genes (Reynolds and
Tuberosa 2008).

Drought tolerance phenotyping can be realized indirectly by measurements of
morpho-physiological traits mainly water use, water-use efficiency, carbon parti-
tioning to grain, carbon isotope discrimination to determine transpiration efficiency,
canopy temperature, green leaf area, stay green, water soluble carbohydrates, above
ground biomass, grain yield and root parameters, root biomass, rooting depth, and
root development under drought conditions (Rashid et al. 1999; Foulkes et al.
2007). At present, these traits are followed in CIMMYT to perform trait-based
crosses to combine the high-value alleles. Parents with contrasting desired physi-
ological traits are selected from available evaluated germplasm, and crosses are
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made with recurrent parents or elite lines. The developed lines are then tested under
different environmental conditions.

At the candidate gene level, among the most common gene networks and
pathways related to drought tolerance, abscisic acid (ABA)-dependent and
ABA-independent related pathways are the most studied. Abscisic acid is a plant
growth regulator and stress hormone, which induces leaf stomata closure to reduce
water loss through transpiration and decreases the photosynthetic rate in order to
improve the water-use efficiency of plants. A major QTL affecting drought-induced
ABA accumulation was located on chromosome 5A in wheat, and examples of
source genotypes are the cultivars ‘Ciano 67’ and ‘SQ1’ (Quarrie et al. 1994).
Furthermore, many families of transcription factors have been demonstrated to play
a role in stress responses in plants. bZIP, DREB, WRKY, bHLH, MYB, and NAC
transcription factors represent the major groups of regulatory genes of which some
members are found to be involved in wheat stress tolerance. A very limited number
of markers are developed for these genes. Wei et al. 2009 developed a functional
marker for the Dreb-B1 gene that is initially tested at CIMMYT and Chang et al.
(2013a, b) identified linked markers to the gene TaSAP-A1.

Further international efforts using genome-wide mapping approaches to detect
QTLs for grain yield under drought stress conditions have been made with some
success. Fleury et al. (2010) summarized more than 20 QTL for drought in wheat.
To give an example, a QTL on chromosome 3BL was detected under heat, drought,
and high yield potential conditions that explained up to 22 % of the variance for
grain yield and canopy temperature (Bennett et al. 2012). The same QTL on
chromosome 3B was also associated with grain yield in the studies of Bonneau
et al. (2013) and Sukumaran et al. (2015).

Heat stress mostly occurs in combination with drought, and the combined effect
of drought and heat is severe than any one of the stresses (Prasad et al. 2011).
Higher temperature above 30 °C at grain-filling period is detrimental to wheat crop
yield. For heat-tolerant studies, several traits have shown promises, viz. light
interception traits, rapid ground cover, canopy structure, radiation use efficiency,
stay green, photosynthesis and reduced photorespiration, photoprotective metabo-
lites, wax, membrane thermostability, spike fertility, water soluble carbohydrate,
starch synthesis, and plant signaling (Cossani and Reynolds 2012).

While confronting high temperature stress and alleviation from damage of cel-
lular protein structure essential for survival in stressed conditions, plant triggers a
novel class of protein called HSPs. These HSPs serve as molecular chaperons to
maintain conformational protein functions as well as cellular protein refolding,
thereby protecting plants under HS conditions (Wang et al. 2004). So far only one
attempt has been made to identify SNPs that differentiate heat-tolerant and heat-
susceptible genotypes of wheat analyzing the heat-shock protein HSP16.9 as the
target gene. DNA fragments covering a partial sequence of wheat HSP16.9 were
amplified from the heat-tolerant genotype ‘K7903’ and heat-susceptible genotype
‘RAJ4014’ and subsequently analyzed for the presence of SNPs. One SNP was
found between these genotypes, and the analysis of the corresponding amino acid
sequence showed that the base transition (A/G) positioned at 31 amino acid resulted
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in a missense mutation from aspartic acid to asparagine residue (Garg et al. 2012).
Allele-specific primers based on SNP explained 29 and 24 % phenotypic variation
for grain weight and TEWs, respectively.

Despite the importance of heat tolerance, only a few studies have focused to
identify QTL via genome wide scans. Yang et al. (2002) found QTL linked to
grain-filling duration on the short arms of chromosomes 1B and 5A. Vijayalakshmi
et al. (2010) reported QTL with significant effects on grain yield, grain weight,
grain filling, stay green, and senescence-associated traits on 2A, 3A, 4A, 6A, 6B,
and 7A under post-anthesis high temperature stress in wheat. Heat susceptibility
index (HSI) calculated from agronomic traits is associated with heat stress toler-
ance, and QTLs were mapped on chromosomes 1A, 2A, 2B, and 3B for HSI
calculated from the kernel characteristics under stress conditions applied during
early grain-filling stage that explained up to 31 % of the variation in the traits
(Mason et al. 2010). QTLs were mapped for heat stress using the Fischer suscep-
tibility index on chromosomes 1B, 5B, and 7B that explained up to 44 % of the
variation in the traits (Mohammadi and Zali 2010). QTL mapping for terminal heat
stress has identified QTL in chromosome 2B, 7B, and 7D that colocalized for kernel
weight, grain-filling duration, and canopy temperature difference. During flowering,
higher temperature can cause pollen abortion and thereby low yield. QTLs for heat
stress tolerance were identified in a cross on cultivar NW1014 (heat tolerant) and
HUW468 (heat susceptible) using HSI of grain weight, grain-filling duration, grain
yield, and canopy temperature depression on chromosomes 2B, 7B, and 7D. These
explained up to 20 % of the phenotypic variation for the traits (Paliwal et al. 2012).
Mondal et al. (2015) identified QTL for leaf wax content located on chromosomes
1B and 5A with the 5A QTL region showing localization with QTL for leaf and
spike temperature depression, indicating a genetic link between these traits.
Composite interval mapping by the study of Talukder et al. (2014) identified five
QTL regions significantly associated with response to heat stress. Associations were
identified for plasma membrane damage on chromosomes 7A, 2B, and 1D; SPAD
chlorophyll content on 6A, 7A, 1B, and 1D; and thylakoid membrane damage on
6A, 7A, and 1D. The variability explained by these QTLs ranged from 11.9 to
30.6 % for thylakoid membrane damage, 11.4 to 30.8 % for SPAD chlorophyll
content, and 10.5 to 33.5 % for plasma membrane damage.

The plant developmental genes in wheat for vernalization and photoperiod (Vrn
and Ppd, respectively) are related to the performance of the lines under drought and
heat stress (Bogard et al. 2014). Therefore, care must be taken to avoid these effects
in gene discovery when developing mapping populations. In CIMMYT, to study
the genetic basis of drought and heat tolerance and to make strategic crosses for trait
integration and line development, mapping populations are available with restricted
phenology and plant height (Sukumaran et al. 2013). The Seri × Babax recombinant
inbred line (RIL) population was the first of this type of population developed with
a phenology range of 10 days. Using this Seri × Babax population, QTLs were
identified for drought and heat tolerance on chromosome 4A that colocalized with
grain yield. Common QTLs for drought and heat tolerance were identified on 1B,
2B, 3B, 4A, and 7A using canopy temperature measurements (Pinto et al. 2010).
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Canopy temperature measurements are surrogates for estimating stomatal conduc-
tance (Rebetzke et al. 2013).

The WAMI population was subsequently created and consists of 287 lines
selected from a series of CIMMYT international nurseries that has a phenology
range of 14 days. The CIMMYT WAMI population was studied through
genome-wide association study (GWAS) at the population level and by a candidate
gene approach (Edae et al. 2013, 2014; Lopes et al. 2014; Sukumaran et al. 2015).
Edae et al. (2013) performed a candidate gene study and confirmed the effects of the
dehydration-responsive element binding 1A (DREB1A) gene on NDVI, heading
date, biomass, and spikelet number; the enhanced response to abscisic acid (ERA1-
A and ERA1-B) genes on harvest index, flag leaf senescence, and flag leaf width;
and the fructan 1-exohydrolase (1-FEH-A and 1-FEH-B) genes associated with
grain yield and thousand kernel weight, respectively. A consistent QTL in chro-
mosome 2DS for grain yield and yield components under contrasting moisture
conditions in the USA and Ethiopia was additionally identified through GWAS
(Edae et al. 2014). On chromosomes 5A and 6A, loci for grain yield, thousand
kernel weight, grain number, and canopy temperature were detected in the WAMI
grown in Mexico (Sukumaran et al. 2015).

A recently developed RIL population Synthetic × Weebil at CIMMYT has a
phenology range of three days that was phenotyped under drought and heat con-
ditions. Identifying QTL for heat and drought tolerance in these populations will be
more independent of the confounding effects of phenology. This population was
phenotyped though 90K Illumina Bead chip array (Wang et al. 2014), and the
research is under progress to detect QTL.

The detected QTL in the phenology-controlled populations is recent, and the
validation of the identified QTL is only underway. Based on the up-to-date obtained
knowledge on the underlying mechanisms and architecture of heat and drought
tolerance, the applicability of MAS for both traits has to been questioned to its
inability to capture small-effect QTL. Genome-wide approaches such as GS attempt
to avoid this deficiency by capturing both large- and small-effect QTL with dense
molecular marker coverage to predict complex trait values (Meuwissen et al. 2001).

16.6.2 Metal Toxicity

Wheat is susceptible to excess amounts of aluminum (Al), boron (B), cadmium
(Cd), and copper (Cu). Out of these, under low pH, Al is the most prevalent and
most toxic to wheat plants (Delhaize and Ryan 1995; Kochian et al. 2005). A major
gene (TaALMT1) on chromosome 4DL which encodes a malate transporter con-
stitutively expressed on root apices has been identified in wheat cultivars
‘BH1146,’ ‘Atlas 66,’ and ‘Chinese Spring’ (Ma et al. 2005; Raman et al. 2005;
Sasaki et al. 2004). Raman et al. (2006) developed SSR markers, ALMT1-SSR3a
and ALMT1-SSR3b, and a CAPS marker from the repetitive InDels and substitution
region of the TaALMT1gene which can be used in MAS, but have not been applied
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in CIMMYT yet. However, some studies demonstrated that more than one gene
might be involved in Al tolerance in wheat. Tang et al. (2002) suggested that at
least two genetic loci might contribute to Al resistance in ‘Atlas 66.’ Zhu et al.
(2007) reported a minor QTL on chromosome 3BL of ‘Atlas 66’ in addition to the
major QTL on chromosome 4DL. A Al tolerance QTL on chromosome 3BL was
also contributed by ‘Chinese Spring’(Navakode et al. 2009). QTLs on chromosome
3BL and 2A apart from the major effect gene on chromosome 4DL collectively
explained 80 % of the phenotypic variation (Cai et al. 2008; Dai et al. 2013).

Boron toxicity occurs when plants are grown in alkaline or volcanic soils. Boron
has the narrowest range between deficient and toxic soil solution concentration of
all plant nutrients. Boron toxicity in wheat can cause poor root growth, low above
ground biomass, low seed set and sterility, and low grain yield (Pallotta et al. 2014).
TaBot1L (Bo1) and Bo4 are the two major effect QTL forboron tolerance in wheat.
The utilization of Bo1 on the long arm of chromosome 7BL has been a long-term
priority for marker-assisted selection in wheat breeding programs in Australia.
At CIMMYT, the STS marker AWW5L7 published by Schnurbusch et al. (2008) is
used. Sources of resistance were, e.g., the Australian line ‘Gladius.’ Bo4 is located
on chromosome 4AL and was recently placed with the marker interval Xabg390-
4A–XksuG10-4A (Pallotta et al. 2014).

16.7 Genomic Predictions in CIMMYT Wheat

For polygenic or quantitative traits (such as drought and heat tolerance), the diffi-
culty of the large-scale validation and refinement of large-effect QTL limits the
implementation of MAS strategies in plant breeding programs (Xu and Crouch
2008). With the development of modern genotyping and sequencing methods, the
MAS theory has recently shifted to the use of genome-wide markers to predict the
performance of both phenotyped and unphenotyped individuals (genomic selection
(GS)) for polygenic or quantitative traits. Using genome-wide markers, every trait
locus is likely to be in linkage disequilibrium (LD) with a minimum of one marker
locus in the entire target population. In GS, a training population related to the
breeding germplasm is genotyped with genome-wide markers and phenotyped in
target environments. These data are used to derive a prediction equation that can
then be applied to genotypes of unphenotyped individuals to predict breeding
values that can be used to inform selection decisions (Meuwissen et al. 2001;
Bernardo and Yu 2007; de los Campos et al. 2009). Genetically estimated breeding
values (GEBV) open up several new routes for increasing genetic improvement
rates in plant breeding programs. They offer opportunities to (1) increase the
selection efficiency of preliminary and multi-location yield trials and (2) shorten the
breeding cycle by repeated early generation selection, thus increasing the genetic
gain per unit of time. Several GS studies, many of which were developed or used
data generated by CIMMYT’s wheat breeding program (see Crossa et al. 2014 for a
recent review), have shown that GS can achieve reasonably high prediction
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accuracy. This has raised expectations about the prospects of implementing GS in
wheat breeding programs. However, implementing GS in breeding also presents
important challenges.

16.7.1 Prediction Results Using CIMMYT Wheat Data Sets

For inbreeding species such as wheat, their relatively small effective population size
(Ne) is the main advantage for GS. The smaller the Ne, the smaller the number of
independent chromosome segments in the genome that allow for higher GEBV
accuracies (Lin et al. 2014). Most studies report prediction accuracy as the correlation
between GEBVs and phenotypes. In CIMMYTwheat data sets, prediction accuracies
for grain yield, for example, ranged from 0.3 (Poland et al. 2012) to 0.7
(Perez-Rodriguez et al. 2012); for days to heading, prediction accuracies between 0.4
(Poland et al. 2012) and 0.7 (Wimmer et al. 2013) were reported. Prediction accuracy
depends on the prediction problem assessed and on several other factors, such as trait
heritability, the relationship between the individuals to be predicted, and those used to
train the models for prediction, sample size, number of markers, and G × E. A large
number of prediction models have been developed or adopted from other fields to
handle the high-dimensional marker data sets that are typical of GS. The various types
of models respond differently because they vary in their assumptions when treating
the variance of complex traits. In GS, the number of predictors (p) is usually far
greater than the number of individuals (n). In such cases, estimates of ordinary least
squares have poor prediction ability becausemarker effects are treated as fixed effects,
which leads to multicollinearity and overfitting among predictors, therebymaking the
model unfeasible (for a review see Lorenz et al. 2011, or de los Campos et al. 2013).
To further improve genome-wide predictions in wheat, the Biometrics Unit at
CIMMYT has developed and recommended various prediction algorithms mainly for
low heritable traits. The R (R Development Core Team 2010) package ‘Bayesian
Generalized Linear Regression (BGLR)’ (de los Campos et al. 2013) is applied for
most CIMMYT implementations.

16.7.1.1 Trait Heritability

Heritability allows comparing the relative importance of genes and environments to
the variation of traits within and across populations. Heritability depends on the
genetic properties of a trait, the range of typical environments in the studied pop-
ulation, as well as various interactions between genes and environmental factors.
For traits with low heritability, genes contribute little to individual phenotypic
differences; for highly heritable traits, genes are the main reason for individual
differences. GS performs differently in traits with distinct genetic properties
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16.7.1.2 Relationship Between the Individuals in Training
and Selection Populations and Sample Size

One approach to implementing GS is to select individuals with the highest genetic
merit in the early generations of a breeding cycle (e.g., selecting F2-individuals).
The selected individuals can be intercrossed, and the resulting progenies can be
selected again a number of times before extracting inbred lines, also called rapid
cycling GS. In a simulation study, we explored the relative importance of the
relatedness between training and selection populations, sample size, and marker
density for the accuracy of genomic prediction in an early generation selection
approach (Hickey et al. 2014). For simulation, several biparental populations, each
having 550 F2-individuals, were created that were related to each other in different
ways: biparental populations that one parent in common (BP-P), that have one
grandparent in common (BP-G), or that are unrelated (BP-U). The accuracy of
selection was evaluated on 50 unphenotyped F2-individuals from a single biparental
population using the correlation between the GEBVs and the true breeding values.
For the phenotypes, a polygenic trait was simulated with 0.5 heritability, and a
range of 50–10,000 SNP markers was tested.

The phenotypes and genotypes that were used to train the prediction equation
were either generated inside the single biparental population or inside the other
biparental populations (BP-P, BP-G, or BP-U) that were simulated to have rela-
tionships with the given single biparental population. Between 1 to 40 populations
and 50 to 500 F2-individuals per population were used to train the prediction
equations. Figure 16.2 shows the accuracy of prediction inside a single biparental
population. The accuracy of the breeding values increased as the size of the training
population increased. Training with up to 50 phenotypes gave accuracies between
0.2 and 0.6, while training with 100 or more phenotypes gave accuracies of 0.8 or
higher. The results when differently related populations were used for genomic
prediction are displayed in Fig. 16.3. Prediction accuracies decrease with
decreasing relatedness to the given single biparental population (BP-P → BP-U).
Using information from unrelated populations generally gave low accuracies unless
very large numbers of phenotypes (more populations and more individuals per
population) were used. This means there is a trade-off between relationship and
population size that affects prediction accuracy. When using information from close
relatives, the marker associations are due to the linkage between markers and QTLs,
whereas when using information from distant relatives, marker associations are due
to LD. Closer relatives share longer chromosome segments or haplotypes; therefore,
a training population with close relatives will have a smaller number of independent
haplotypes and a larger sample size per haplotype, leading to more precise predi-
cations. Distant relatives share shorter haplotypes, and a training set will have a
large number of independent haplotypes with different frequencies, leading to less
accurate predictions.
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16.7.1.3 Marker Density

Genotypic data can still be expensive, especially when low-cost genotyping
approaches such as genotyping by sequencing or genotyping strategies involving
low-density SNP chips are not used. In the simulation study conducted by Hickey
et al. (2014), marker density was considered as one important factor in genomic
prediction. The simulation results in Fig. 16.3 show that the marker density required
to obtain accurate genomic predictions depends on the degree of relatedness
between the training and selection populations. With close relatives (e.g., BP-P),
accurate predictions could be obtained with 200 markers. Increasing the marker
density up to 10,000 markers did not improve prediction accuracy. A small number
of markers are sufficient because the shared haplotypes and linkage blocks are large.
When using distant relatives (e.g., BP-U in Fig. 16.3), more markers are required
because of the lower LD between markers and QTLs. Similar results were also
found by Solberg et al. (2008) and Meuwissen (2009).

16.7.1.4 Relationship Between Environments

Multi-environment trials are widely used by plant breeders to evaluate the relative
performance of genotypes across environments. Multi-environment trials are

Fig. 16.2 Accuracy of breeding values inside a given biparental population when training in the
same population with different numbers of markers and F2s (from Hickey et al. 2014)
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conducted as GE introduces uncertainty into the measure of genotypic performance
and complicates the selection of superior genotypes. Thus, accounting for G × E has
always been a concern when analyzing agronomic data, and many different
methods have been proposed for analyzing multi-environmental trials conducted by
breeders.

Genome-wide markers provide a new tool that can be used in multi-environment
trial analyses. Genome-wide markers do not change the fact of G × E; however,
their use could enable better selection decisions. Burgueño et al. (2012) and Jarquin
et al. (2013) used genome-wide markers and additional environmental factors for
multi-environment trial analyses and showed that when gene and environmental
interaction terms were introduced in the prediction equation, prediction accuracy
increased, suggesting that the proportion of variance accounted for by the prediction
model was higher. In Burgueño et al. (2012), the prediction accuracies showed the
same pattern as the genetic correlations between environments. The interaction term
allows borrowing information between environments, and for environments that are
positively correlated, this increases prediction accuracy.

Fig. 16.3 Accuracy of breeding values inside a given biparental population when training in 1, 4,
8, or 40 biparental populations with one parent in common (BP-P1 to BP-P40), one grandparent in
common (BP-G1 to BP-G40), or with no pedigree relationship (BP-U1 to BP-U40). A = 5 F2s
recorded in each population, B = 50 F2s recorded in each population, C = 500 F2s recorded in each
population, TBV-true breeding value, and Gebv-genetically estimated breeding value (from Hickey
et al. 2014)
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16.7.1.5 Modeling Selected Markers as Fixed Effects

A recent simulation study (Bernardo 2013) found that modeling a large-effect locus
as fixed to be advantageous when trait heritability was greater than 0.5 and the
proportion of genetic variance explained by the locus was greater than 0.25.
Rutkoski et al. (2014) confirmed these results using GS as a potential tool to select
for adult plant stem rust resistance. In a set of CIMMYT-advanced lines that were
tested for adult plant stem rust resistance across environments and years, markers
linked to the stem rust gene Sr2 were applied and its results included as fixed effects
in the prediction model that was more accurate than using genome-wide markers
only. Overall, the levels of prediction accuracy found in this study indicate that GS
can be effectively applied to improve stem rust APR in this germplasm.

16.7.2 Implementation of GS

GS has a great number of uses in a breeding program. Similar to MAS strategies,
the introduction of GS is flexible and may vary for each breeding program,
depending on the target traits and breeding scheme. The greatest potential use of GS
is at points in the breeding program where selection using traditional methods is too
expensive, time-consuming, or not biologically or logistically possible. Two main
applications of GS are being studied in CIMMYT’s global wheat breeding program:
(1) to predict the genotypic value of individuals for potential release as cultivars and
(2) to predict the breeding value of candidates in rapid-cycle populations.

16.7.2.1 Predicting the Genotypic Value of Individuals for Potential
Release

The breeding methodology applied by the CIMMYT wheat breeding program
includes modified bulk selection. After population advancement with selection for
more heritable traits via shuttle breeding, inbred lines are extracted and tested in
preliminary yield trials (PYTs) to identify superior entries which will then be
evaluated in the following year in more extensive multi-environment yield trials
and/or used as parents to begin another breeding cycle. CIMMYT PYTs usually
include up to 10,000 genotypes, of which approximately 1000 are selected and
evaluated in five to six different environments with two to three replications in the
subsequent cycle.

CIMMYT PYTs are carried out in replicated yield trials in small plots and a
single environment. GS could be useful to predict the GEBVs based on a large
training population that includes previous breeding germplasm and amends the
selection of lines. There is also a trade-off between the number of genotypes that
enter the multi-environment trials and the number of plots per entry. A larger
number of plots per entry allow a more accurate estimate of the performance of each
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genotype across environments, whereas a larger number of entries enhance the
germplasm pool from which selections are made. If the number of plots is fixed, a
larger number of entries can only be tested if they are divided across environments.
Consequently, not all entries would be present in all environments, but the average
genotypic performance across all environments could be determined using genomic
prediction. Initial results testing this approach using diverse models that incorporate
pedigree, marker, environment, and interaction terms into the prediction equation
revealed relatively high prediction accuracies: an average 0.6 when 20 % of the
entries were present in only one of five environments (unpublished data). These
results indicate that not all entries have to be evaluated in all environments and that
more entries could be tested. This approach can be optimized further by maximizing
the relationship between the training and testing populations and by varying the
number of genotypes and environments to be predicted. Several sister lines are
usually present in each CIMMYT multi-environment trial. Dividing the sister lines
across environments would additionally increase the relatedness between the
training and testing populations and allow higher prediction accuracies.

The best performing lines in multi-environment trials are selected to form
CIMMYT’s international screening nurseries and yield trials, which are distributed
globally via the International Wheat Improvement Network. Although trait heri-
tabilities are high at this stage of the breeding program, genomic prediction could be
useful for boosting the selection of lines to be included in each yield trial and that
could potentially be released by national programs.

16.7.2.2 Predicting the Breeding Value of Candidates in Rapid-Cycle
Populations

In a rapid-cycle GS breeding scheme, segregating populations can be genotyped at
the seedling stage and then selected based on GEBVs derived from a related
training population. The resulting F2-candidates can be used to extract inbred lines
or intercrossed. Applying GS rapid cycling in early generations (e.g., F2) is a
high-risk but high-turnover approach. In conventional breeding, early generation
intercrossing is not practiced due to highly heterozygous and heterogeneous pro-
genies and the unfeasibility of selecting for complex traits based on a single plant.
Although genomic prediction accuracy may not be high, shortening the cycle time
or generation interval is expected to increase genetic gains.

In a proof-of-concept experiment, CIMMYT has initiated a rapid-cycle GS
scheme in wheat with grain yield as the target trait. Genomic prediction was applied
in 40 F2-populations, with two cycles of subsequent intercrossing within and
between populations. In each generation, inbred lines were extracted based on
genomic and conventional selection. Initial results in two seasons replicated trials of
lines derived from single plants with a range of GEBVs have shown that higher
GEBV individuals produce higher yielding derivative lines (Bonnett et al. unpub-
lished). A yield increase of 7 % in derivatives of plants with the highest 13 % of
GEBVs compared to the lowest 13 % of GEBVs was found following just one
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cycle of GS. This represents a 30 % realized gain from selection and is an
encouraging initial result. A larger number of derivatives from simple cross F2-
derived bulks and 1st and 2nd cycle intercrosses compared to conventionally
selected cohorts from the same initial crosses are currently being tested to extend
the evaluation of rapid-cycle GS. These evaluations give the first indications of
genetics gains from GS for a highly complex trait in an actual wheat breeding
program.

16.8 Conclusions

To date, 30 different loci responsible for traits like resistance to various diseases,
quality, and agronomy have been cloned in wheat, and 97 functional markers have
been developed to categorize 93 alleles based on gene sequences (Liu et al. 2012).
Many research institutes involved in wheat cultivar development and germplasm
evaluation now have access to modern genotyping and sequencing technologies and
have the expertise for gene discovery analysis; wherefore, the development of new
functional markers is expected to grow. The development of low-cost SNP markers
and related public databases such as GrainGenes (http://wheat.pw.usda.gov/GG2/
index.shtml), CerealsDB (http://www.cerealsdb.uk.net/cerealgenomics/CerealsDB/
indexNEW.php), and MAS wheat (www.maswheat.ucdavis.edu) will additionally
encourage the widespread use of molecular markers for wheat improvement. The
CIMMYT experience and examples show that marker-assisted breeding has gained
importance among wheat breeders, pathologist, and physiologist. Application of
MAS will be further promoted if several critical factors will be addressed in the
future, including the following: (i) identified functional or linked markers need to be
validated to show trait association with the desired genetic backgrounds grown
under target environments, (ii) the DNA extraction and screening methodology will
still need to be more cost-effective and time-saving, and (iii) improved databasing
and bi-informatics pipelines will be needed to support rapid analyses.

A larger-scale implementation of GS in breeding programs will shift efforts from
evaluating the whole plant to evaluating marker effects. We think that initial GS
implementation should not significantly affect the way plant field trials are con-
ducted in each breeding program as there are still many unanswered questions
regarding how to achieve the optimal balance between genotyping and phenotyping
and the best use of marker effect evaluations to maximize the overall genetic gain
for single or multiple target traits in a particular breeding program. Significant
challenges remain with respect to the successful implementation of GS. The cost of
genotyping large numbers of SNPs is still an impediment, although technologies
such as genotyping by sequencing (GBS) are reducing these costs significantly.
Collecting large meaningful reference populations can also be costly due to
extensive phenotyping. Furthermore, logistical limitations such as DNA extraction
turnaround time, SNP genotyping, and biometric analysis have to be carefully
considered. These challenges warrant further research and a progressive increase of
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GS implementation in areas where studies inside and outside CIMMYT indicate is
the greatest opportunities to accelerate genetic gain and transform marker-assistant
plant breeding.
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Fig. 1.3 Direct cross for transfer of one or more genes from tetraploid wheat into hexaploid wheat
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