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Abstract. We consider the problem of estimation of sparse time dis-
persive channels in pilot aided OFDM systems on Single Input Multiple
Output (SIMO) channels, i.e. with a single transmit and multiple receive
antennas. In such systems the channels are inherently continuous-time
and sparse, and there is a common support of the channel coefficients of
channels associated with different antennas, resulting from the same scat-
terer. To exploit these properties, we propose a new channel estimation
algorithm that combines the atomic norm minimization of the Multiple
Measurement Vector (MMV) model, the MUSIC and the least squares
(LS) methods. The atomic norm minimization of the MMV model allows
to exploit the common support assumption and the continuous-time nature
of the channels, MUSIC allows for simple joint estimation of the delays
corresponding to the same scatterer, and LS allows for estimation of the
path gains. To evaluate the proposed algorithm, we compare its perfor-
mance with the case when the common support assumption is not used.

Keywords: Channel estimation · Joint atomic norm minimization ·
SIMO channel · Pilot aided OFDM

1 Introduction

Channel estimation is essential in contemporary communication systems. Many
of these systems are OFDM based and use pilot subcarriers for channel estima-
tion. Additionally, most systems are designed to work with multiple antennas at
the receive end. Here we consider such systems in a scenario where the channels
between the transmit and the receive antennas are time dispersive and sparse in
the sense that there are few strong channel paths that are resolvable. With the
introduction of compressed sensing (CS), sparse channels have received signifi-
cant attention [1–4], but CS, in its ordinary form, is not well suited for channel
estimation since the delays of different paths can be arbitrary within a certain
range (due to the channel continuous-time nature) and CS requires the delays
to be on a predefined grid of delays. The recent framework of atomic norm
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minimization [5,6] allows for estimation of sparse quantities not falling on a pre-
defined grid. In [7], we used this framework to propose an algorithm for channel
estimation of sparse time dispersive channel in pilot aided OFDM system with
single antennas at both the transmit and receive ends. Here we extend the algo-
rithm to the SIMO case. It has been shown in [8,9] that when the signal to noise
ratio is not too high, the delays of the paths corresponding to the same scat-
terer, received on different receive antennas, are not clearly distinguishable and
can be treated as being the same. This leads to the common support assumption
of the coefficients in the channel impulse responses, which we exploit to jointly
estimate the delays corresponding to the same scatterer, by modifying the algo-
rithm from [7]. In fact, we replace the atomic norm minimization from [7] with
the atomic norm minimization for the Multiple Measurement Vector (MMV)
model [10,11]. The algorithms presented in [8,9] require that the pilot subcar-
riers are equidistant, and in the proposed algorithm we place them at random
positions [7], resulting in the ordinary CS subsampling.

The novelty of this paper comes from introducing the atomic norm minimiza-
tion in the estimation of sparse time dispersive channels with common support
in pilot aided OFDM SIMO systems.

The paper is organized as follows. In Sect. 2 we describe the OFDM channel
estimation problem in time dispersive SIMO channels, its connection to the
atomic norm minimization of the MMV model and the new algorithm. In Sect. 3
we show simulation results. Section 4 concludes the paper.

2 Problem and Algorithm Description

We investigate an OFDM system with a single transmit antenna and Nr receive
antennas. The system uses N subcarriers to transmit pilot or data symbols. The
OFDM signal between the transmit antenna and the r-th receive antenna is sent
through a time dispersive channel whose baseband channel impulse response,
when I specular (point) scatterers are present, during a single frame transmission
(assuming a block fading model), is [2,4]:

hr(τ) =
I−1∑

i=0

hr,iδ(τ − τr,i) (1)

where hr,i and τr,i are the complex gain and the delay associated with the i-th
path. For this channel model, the channel estimation is carried out for each block
and the pilots are used in a single OFDM symbol in each block. At the receiver,
after processing the signal at antenna r, r = 1, ..., Nr we obtain:

Y0r
(n) = Hr(n)X(n) + Wr(n), n = 0, ..., N − 1 r = 1, ..., Nr (2)

where X(n) is the pilot/data symbol sent on the n-th subcarrier, Wr(n) is
the noise sample at the n-th subcarrier and r-th antenna (noise samples are
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independent in both the frequency and space coordinates and are modeled as
zero mean circularly symmetric complex Gaussian variables with variance σ2

n0
)

Hr(n) =
I−1∑

i=0

hr,ie
−j2π n

N

τr,i
Ts , n = 0, ..., N − 1 r = 1, ..., Nr (3)

and Ts is the sampling interval. We introduce a constant L, such that 0 ≤ τr,i ≤
L ≤ Lcp (where Lcp is the length of the cyclic prefix), and, assume that L is
an integer of the form L = N/D for an integer D. In the rest of the paper, the
estimation of Hr(n) for n = 0, ..., N − 1 and r = 1, ..., Nr is termed the channel
estimation problem. We set Hr = [Hr(0),Hr(1), . . . , Hr(N − 1)]T .

Since the true τr,i’s are continuous, the estimation of Hr(n) can be formu-
lated as a CS problem based on the atomic norm minimization [5,6,10,11] (such
formulation for the SISO channel is proposed in [7] but it does not exploit the
common support assumption, and, thus, it can be used only for independent
channel estimation for each r). To decrease the complexity of the solution for
such formulation, as explained in [7], the pilot subcarriers are allocated at P
positions (since the channel is sparse P < L) np, p = 0, . . . , P − 1, that create
a randomly chosen subset of the set of the equidistant L positions which are at
integer multiples of N/L i.e. np ∈ {0, N

L , ..., (L−1)N
L }. With such a pilot alloca-

tion scheme, setting n,
p = np

L
N , p = 0, ..., P − 1, using equi-powered (constant

amplitude and random phase) pilot symbols and dividing the received samples
Y0r

(np) with X(np) we obtain:

Yr(n,
p

N

L
) =

I−1∑

i=0

hr,ie
−j2π

τr,i
LTs

n,
p + W1r

(n,
p

N

L
) (4)

where W1r
(n,

p
N
L ) are zero mean circularly symmetric complex Gaussian variables

with variance σ2
n, independent in both the frequency and space coordinates.

Equation (4) represents a model with subsampled measurements of a signal in
noise. It should be noted that the subcarriers not carrying pilot symbols can be
used to transmit data symbols which increases the system capacity.

For clarity, we first introduce the atomic norm and an algorithm for indepen-
dent channel estimation (based on [7]) and then extend it to the MMV model.
The atomic norm of x ∈ C

U×1 [5] is:

||x||A = inf
ci≥0

φi∈[0,2π)
fi∈[0,1)

{
∑

i

ci : x =
∑

i

cia(fi, φi)} (5)

where A = {a(f, φ) : f ∈ [0, 1), φ ∈ [0, 2π)} is the set of atom vectors a(f, φ)
whose components are au(f, φ) = e−j(2πfu+φ) for u = 0, ..., U − 1, and ci ∈ R.
As explained in [5], the SDP form of ||x||A is:

||x||A = inf
x,u,t

{ trace(Toep(u))
2U

+
t

2
:
[

Toep(u) x
x∗ t

]
� 0} (6)
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where � 0 stands for a positive semidefinite matrix, Toep(u) is a Toeplitz matrix
created using the elements of u and trace(·) is the matrix trace.

In the approach with independent channel estimation for each r, r = 1, . . . , Nr,
we estimate each Hr as in [7]. We use the mapping fi = τr,i

LTs
∈ [0, 1), cie

−jφi =
hr,i, U = L, introduce the notation yr = [Yr(n

,
0

N
L ), . . . , Yr(n

,
P−1

N
L )]T , HL,r =

[Hr(0), . . . , Hr(
(L−1)N

L )]T and HP,r = [Hr(n
,
0

N
L ), . . . , Hr(n

,
P−1

N
L )]T , and esti-

mate HL,r for the subsampled signal in noise scenario as [7]:

min
HL,r

μ||HL,r||A +
1
2
||yr − HP,r||22 (7)

where μ is a constant. Using the SDP form of the atomic norm (6) and the
reconstruction algorithm in the subsampled noisy case (7), the estimates of HL,r

and ur can be obtained as:

[ĤL,r, ûr] = arg min
HL,r,ur,tr

μ

(
trace(Toep(ur))

2L
+

tr
2

)

+
1
2
||yr − HP,r||22

subject to
[

Toep(ur) HL,r

H∗
L,r tr

]
� 0 (8)

where μ can be estimated as ρ
ρ−1

√
L(ln M + ln(πρ) + 1)σn with ρ = limk→∞ ρk,

ρk+1 = 2 ln ρk + 2 ln(πM) + 3 for ρ0 > 2 and M = n,
P−1 − n,

0 + 1 [6].
As explained in [7], the estimates τ̂r,i of τr,i can be obtained from the Toeplitz

matrix Toep(ûr) using root MUSIC. As in [7] we assume that I is known (other-
wise, it can be estimated as explained in [6]). Having obtained τ̂r,i’s, we estimate
the hr,i’s using the LS method:

ĥI,r = arg min
hI,r

||DrhI,r − yr||22 (9)

where Dr is a P × I matrix with elements [Dr]p,i = e−j2π
τ̂r,i
LTs

n,
p , i = 0, ..., I − 1,

p = 0, ..., P −1 and hI,r is an I ×1 vector that contains the hr,i’s. The estimated
τ̂r,i’s and ĥr,i’s are used in (3) instead of the τr,i’s and the hr,i’s to estimate
Hr. To obtain the estimates of Hr of all Nr channels the procedure is repeated
Nr times (r = 1, ..., Nr). It should be noted that if the correlations among the
channels are available at the receiver, ĥI,r can be obtained as an MMSE estimate
instead of using the LS method, which may improve the method performance,
but the evaluation of such improvement is left for future work.

If the signal to noise ratio is not high, then it can be assumed that [8,9]:

τ1,i ≈ τ2,i ≈ ... ≈ τNr,i for i = 1, ..., I (10)
h1,i �= h2,i �= ... �= hNr,i for i = 1, ..., I (11)

which means that the different channels have common support. It should be
noted that the correlation between hr,i for different r and given i depends on the
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system parameters (carrier frequency and distance between receive antennas).
The expressions for calculating its value can be found in [9], and, for current
communication systems its value is below 0.5 [8].

Based on (10) and (11) we reformulate the channel estimation problem as
an atomic norm minimization of the MMV model. Namely, the definition of the
atomic norm of matrix X of dimensions U × Nr is [10,11]:

||X||A = inf
bi≥0,bi∈R

ψi∈C
1×Nr ,||ψi||2=1
fi∈[0,1)

{
∑

i

bi : X =
∑

i

bia(fi, 0)ψi} (12)

When bi �= 0 in (12), a(fi, 0) can be included in the creation of each column of X
with arbitrary phase and gain that are included in the value of the corresponding
element of ψi (the influence of the gains is partially contained in ψi and in bi).
So, each column of X is constructed of the same atoms a(fi, 0) but mixed with
different complex gains which means that each column of X can be considered as
a different measurement vector. By constructing HL = [HL,1,HL,2, ...,HL,Nr

],
HP = [HP,1,HP,2, ...,HP,Nr

] and Y = [y1,y2, ...,yNr
] the joint estimation of

the channel delays can be carried out using an SDP program for the atomic
norm minimization of the MMV model [11]:

[ĤL, û] = arg min
HL,u,W

μX

(
trace(Toep(u))

2
+

trace(W)
2

)

+
1
2
||Y − HP ||22

subject to
[

Toep(u) HL

H∗
L W

]
� 0 (13)

where Toep(u) is of the form Toep(u) = AKAH for A = [a(f0, 0) ... a(fI−1, 0)],
K = diag([k0 ... kI−1]) (ki, i = 0, ..., I−1 are positive real numbers).UsingToep(û)
from (13), the estimation of τr,i is jointly carried out for all r = 1, . . . , Nr using
root MUSIC [7]. Having obtained τ̂r,i, the hr,i’s are estimated using (9). In (13),

μX canbe estimated asσn

√
1 + 1

L

√
Nr + lnαNr +

√
2Nr ln αNr +

√
πNr

2 + 1 for

α = 4πM ln L, which is obtained by combining the results from [6] and [11].

3 Numerical Results

To evaluate the performance of the proposed algorithm we carried out Mat-
lab simulations. We assumed N = 512 and L = 64 in the OFDM system and
used CVX [12] for solving the SDP programs. In each simulation run we used
different realizations of the channel impulse responses. To generate the τr,i’s
we first generated I values τi from a uniform distribution on [2Ts, (L − 2)Ts)
such that |τi − τj | ≥ 1.5Ts for i �= j (see [5–7]), then generated Δτr,i’s for
r = 1, ..., Nr and i = 1, ..., I to have a uniform distribution on [−Ts

50 , Ts

50 ], and
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obtained the τr,i’s as τr,i = τi + Δτr,i. We generated the channel gains hr,i

as zero mean and unit variance circularly symmetric complex Gaussian vari-
ables, independent in both the frequency and space variable. We chose the P
pilot positions from the L available using equal probability for each position.
We called the algorithm that uses (13) ‘JAtomSR’ and we called the algorithm
that uses (8) ‘AtomSR’. Additionally, when appropriate, we showed the MSE
of the LS estimates obtained if all N subcarriers were used as pilot subcarri-
ers transmitting equi-powered symbols and the estimation was carried out as
Hr(n) = Y0r

(n)/X(n), n = 0, . . . , N − 1, r = 1, ..., Nr (termed ‘Full LS’). In (8)
we used μ obtained by scaling the value below (8) by 1/1.4 and in (13) for μX

we used the value below (13) scaled by 1/1.7. To obtain each point in each plot
we averaged the results from 500 simulation runs. As a performance criterion we
used the average per sample and per antenna mean squared error defined as:

MSE = E

[
1

NNr

Nr∑

r=0

N−1∑

n=0

|Ĥr(n) − Hr(n)|2
]

(14)

A performance comparison in terms of P and I is shown in Fig. 1. The lower bound,
assuming perfect knowledge of τr,i’s prior to the LS step (termed ‘Known delays’)
is also shown. JAtomSR shows significant performance gain over AtomSR due to
the utilization of the common support assumption, and its performance is very
close to the lower bound. The improvement is highest in regions where P is small
and/or I is high, and as P increases or I decreases the improvement decreases.
By comparing Full LS and JAtomSR in Fig. 1(b) we conclude that exploiting the
channel sparsity leads to reduced MSE even when low number of pilot subcarri-
ers are used. It should be noted that the Full LS algorithm has low complexity,
negligible compared to JAtomSR.

Performance comparison in terms of Nr and the inverse noise power 10 log10
1

σ2
n

is shown in Fig. 2. The improvement of JAtomSR over AtomSR, shown in Fig. 2(a),
increases as Nr increases, but the improvement slope is highest for Nr = 2 and

Fig. 1. The MSE in terms of P and I at 10 log10
1

σ2
n

= 10dB, Nr = 5
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Fig. 2. The MSE in terms of Nr and the inverse noise power at P = 32

decreases with the increase of Nr. Figure 2(b) shows that the improvement of
JAtomSR compared to AtomSR is almost constant for broad range of inverse noise
powers. However, in the high inverse noise power region the performance of
AtomSR becomes comparable to and even better than the performance of
JAtomSR. In this region, using the common support assumption does not help
anymore. Namely, here the noise power is very low and AtomSR is capable of esti-
mating the τr,i with such a precision that the evaluated different delays at different
antennas, associated with the same scatterer, significantly decrease the MSE. The
complexity analysis of JAtomSR is left for future work.

4 Conclusion

We proposed the use of atomic norm in the estimation of sparse time disper-
sive SIMO channels with common support in pilot aided OFDM systems. The
proposed algorithm uses specific subsampled subcarrier pilot allocation scheme
and is based on the atomic norm minimization of the Multiple Measurement
Vector model to jointly estimate the delays of the paths at different antennas,
corresponding to the same scatterer. The simulation results show that the per-
formance improvement compared to the algorithm that does not use the com-
mon support assumption, increases with the increase of the number of receive
antennas and is significant in the low to medium SNR region. At high SNR the
common support assumption does not hold and the performance of the proposed
algorithm degrades. The proposed algorithm can be also used in a MIMO OFDM
system, where specific orthogonal pilot patterns are used in the different OFDM
symbols of the training sequence, which allows the estimation of the channels
between any transmit and each receive antenna.
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