
VNF Service Chaining on SAVI SDI

Pouya Yasrebi1,2(B), Spandan Bemby1,2, Hadi Bannazadeh1,2,
and Alberto Leon-Garcia1,2

1 University of Toronto, Toronto, ON, Canada
{pouya.yasrebi,spandan.bemby,hadi.bannazadeh,

alberto.leongarcia}@utoronto.ca
2 University of Toronto - St. George Campus, 40 St George St,

Toronto, ON M5S 2E4, Canada

Abstract. Managing computational resources and networking elements
over today’s heterogeneous infrastructure has become very challenging.
A need for virtualizing network functions has emerged to reduce infrastruc-
ture operating costs. In this paper we consider using software-defined
infrastructure (SDI) resource management system (RMS) to achieve ser-
vice chaining of virtualized network functions (VNFs). SDI allows for
the integrated control and management of heterogenous resources. In
an SDI environment, the end user has access to interfaces that allow
programmatic management of the resources. The user can define their
own service graph (SG), which determines the path that traffic must take
through various VNFs. The ability to dynamically realize the SG is what
is referred to by service chaining. Use cases of service chaining include
adding a firewall in front of web server and multicasting. Furthermore,
we tested the firewall use case in two scenarios to verify validity of our
service chaining implementation.

Keywords: Software defined infrastructure · Network function virtual-
ization · Virtualized network function · Software defined networking ·
OpenFlow · Smart application on virtual infrastructure

1 Introduction

Application infrastructures consist of two primary components: computing and
networking. Due to recent advances in computing and networking technologies,
these infrastructures are experiencing two notable changes. First, computing is
shifting towards the cloud because of reduced costs through shared resources.
Second, traditional networking is being replaced by software-defined network-
ing (SDN) due to its greater flexibility and reduced management cost. Typ-
ically, compute and networking resources were controlled and managed sepa-
rately. However, in [2], Kang et al. presented the software-defined infrastructure
(SDI) architecture for a resource management system (RMS) that allows for
integrated management of networking and compute resources.

The SDI [6] RMS manages resources in a hierarchical fashion, whereby
individual resources are controlled by the corresponding resource controller.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
V. Atanasovski, L.-G. Alberto (Eds.): Fabulous 2015, LNICST 159, pp. 11–17, 2015.
DOI: 10.1007/978-3-319-27072-2 2



12 P. Yasrebi et al.

These resource controllers are managed by a centralized entity, an SDI man-
ager, which allows for integrated management of heterogeneous resources, such
as networking, computing, and other unconventional resources like FPGAs and
wireless access. The SDI manager also exposes interfaces that allow applications
to programmatically manage their resources while having access to topology
information and monitoring data. These SDI interfaces also facilitate functions
such as orchestration and service chaining.

The SDI RMS is responsible for coordinating all interactions with resources,
including the deployment of applications. Deployment consists of various parts
including, resource allocation, configuration, and satisfying quality of service
(QoS) SLAs. The SDI RMS delegates the allocation and configuration of
resources to an orchestration system built upon OpenStack. Orchestration refers
to the management, i.e. the creation, deletion, and modification, of a lifecycle of
a cloud application or service. The orchestration engine abstracts various func-
tions, and facilitates the management of resource lifecycles.

An application deployment consists of various pluggable modules, such as
network functions (NF) that must be connected together. These pluggable func-
tions are also referred to as virtual network functions (VNF). NFV supplies
modules, that traditionally were provided to consumers as priority boxes, as
processes in virtual machines (VM). In general, an application may want to
specify a service graph (SG), that defines traffics order of traversal through a set
of VNFs [3]. An SG includes a set of Service Level Agreements (SLA) that the
infrastructure must fulfill. To satisfy these SLAs, the VNFs must be connected
virtually, i.e. service chained. Chaining refers to the modification in configura-
tion of network components such as switches, to direct packets through the set
of intended modules.

This paper is organized as follows. Section 2 describes how we perform service
chaining in an SDI environment. Section 3 describes what orchestration is and
how we leverage an orchestration engine to facilitate service chaining. Section 4
considers our experiments with service chaining and their evaluation. Finally,
the conclusion is presented in Sect. 5.

2 Service Chaining in SAVI

In this section we provide a more concrete definition of service chaining. We then
consider the features provided by the SDI RMS, and how these can facilitate
service chaining.

An application deployment consists of services that the end-user interacts
with, e.g. a web server, and other NFs, i.e. transparent components like a load
balancer. NFV refers to the virtualization of arbitrary NFs, such as deep packet
inspection (DPI) firewalls, load balancers, etc. Individual NFs can be composed
into a SG, that specifies a list of services and the order of traversal. For instance,
consider a web application (app) deployment. This app may consist of a firewall
that filters the traffic and a load balancer that distributes the load across hor-
izontally scaled web servers. The SG is an abstract object that corresponds to



VNF Service Chaining on SAVI SDI 13

a set of SLAs. The realization of a SG is service chaining. Service chaining con-
sists of two parts: creating the VNFs specified in the SG, and chaining them
together. These can be done through the orchestration engine and the SDI man-
ager, respectively. Specifically, the SDI manager has state information of the
infrastructure and can direct the resource controllers to execute certain opera-
tions (See Fig. 1). These combined, allow the SDI manager to perform functions
such as fault tolerance and dynamic installation of network flows.

Fig. 1. SDI overall architecture

To facilitate service chaining, the SDI manager exposes many primitive func-
tions, such as: tapping and blocking. Tapping refers to sending a copy of the
incoming traffic to a host that was not the intended destination. Blocking con-
cerns dropping packets according to system requirements in switches.

As an example of chaining, lets consider a WordPress deployment consisting
of two VMs- one running a web server and the other running a database. It is
desirable to allow the application to dynamically change their SG. For instance,
the application may want to insert an inline deep packet inspection (DPI) VNF
in front of the web server. The applications requirement can be satisfied using
service chaining. Now lets consider how service chaining in the web server exam-
ple could be realized. First, the application would request the SDI manager to
perform service chaining by inserting a DPI VNF in front of the web server. The
SDI manager would direct the network controller to install special high-priority
flows in the switches of the underlying infrastructure to ensure all traffic headed
for the web server goes to the DPI VNF. In this case we would have to configure
the DPI unit to forward the traffic to the web server. Alternatively, we could
use tapping so that the traffic is sent to the web server and mirrored to the
DPI VNF [9]. Since resource controllers can be directed to execute commands
at any time, service chaining can be performed on a live system without service
disruption.

Multicasting is another example of an application that can leverage VNF
chaining. Lets consider the sequences of events when deploying a multicasting



14 P. Yasrebi et al.

application. First, the orchestration engine creates casting modules such as vir-
tualized transceivers and load balancers. Migrating the chained casting modules
could reduce total bandwidth usage by reconstructing a more efficient multicast
tree. In [10], Zhang et al. demonstrated cost reductions in deployments of multi-
cast trees with a newly proposed routing algorithm that used dynamic chaining
of VNFs.

3 Integration with Orchestration

Orchestration is the first step for service chaining. The challenge in service chain-
ing consists of integrated management of multiple resource types such as com-
puting and networking resources. First, we have to create the VNFs (these are
typically VMs configured to perform the specific function). Second, we need to
connect the nodes to allow the required communication. As described above, the
SDI manager applies network policies (such as chaining) that ensure that the
traffic traverses the required VNF(s). In our previous DPI example, first a DPI
unit is created and then it is chained. Chaining has to position the firewall in
such a way that all packets that are intended to reach the web server have to be
redirected from the gateway through the firewall and to the web server.

Applications can request resources using an orchestration service on an SDI
environment. For our experiments we utilized the Heat Orchestration project [4]
from OpenStack. Heat facilitates the management of the creation, modification,
and deletion of cloud infrastructure resources over the applications life cycle.
Applications specify what resources they need and how they should be config-
ured in descriptive template files. The orchestration engine then parses these
templates to provision and configure the required resources. The applications
can also modify and delete resources by providing new or modified templates to
the orchestration engine. Therefore, the orchestration service allows management
of complex topologies without increasing the cost of managing that complexity.
Furthermore, template files for Heat are compatible with Amazon Web Services
(AWS) CloudFormation (another orchestration service).

4 Implementation and Evaluations

We have conducted our service chaining experiments on the SAVI testbed to
prove our concepts. The SAVI TB is an experimental platform intended to allow
investigation into future application infrastructures. The SAVI TB is based on
the SDI resource management architecture [1,5].

We conducted the following experiment to demonstrate dynamic service
chaining. Our experiment consisted of a WordPress deployment and a DPI unit
that were subsequently chained. We initiated two attacks to a web server and
then attempted to block the attacks via a network intrusion detection and pre-
vention system (NIDPS) that blocks the attackers in the same IDS. For both
tests, the initial setups consisted of a web server (WS) running WordPress, and
a database (DB) running MySQL. Both WS and DB were created using a Heat



VNF Service Chaining on SAVI SDI 15

orchestration template on the SAVI TB. The WS and DB were configured to
allow the WordPress contents to be stored on the DB. This version of WordPress
was a generic template representing a typical blogging web site over the Internet.
Hence, it did not have any advanced filtering techniques embedded in itself.

We used a web user interface (Web UI) to allow users to request to chain the
NIDPS between the client (potential attacker) and the web server. This web UI
allows a user to conveniently login with credentials and select their SAVI node
and project [5]. After login, the user could observe and select intended VMs for
chaining operation and apply the modifications on the fly. The web UI sends the
users request to the SDI manager to apply a network policy that steers the web
traffic destined for the WordPress web server through the DPI.

Hence, to block the attack we utilized the NIDPS between attacker and the
WordPress. Snort [8] is a highly active open source project that has been widely
employed as a DPI. It incorporates groups of learned network policies to judge
the validity of a packet or a group of packets passing through it. In addition,
Snort was configured to act as a NIDPS. Merely, creating a DPI does not block
the attack; we needed to chain it between the attacker and the WS. We tested
our chaining and orchestration processes on the following two attack scenarios.
The goal in both are to provide access for normal users and block attackers from
overloading or corrupting the web server.

4.1 URL Injection Attack

Fig. 2. URL injection attack

We first wanted to verify that attack would affect the web server without
presence of a firewall. A normal user will insert correct address of the web server
to the address bar, but an attacker would attempt to inject an extra text in the
URL aiming to obtain or corrupt information on the Database (URL injection).
Therefore, we initiated a sample URL injection attack on the web server (as seen
in Fig. 2 part a), that passed an invalid argument to the WS. Specifically, we
made malicious HTTP GET request by attaching a text at the end of the URL.
Despite the malicious URL, the webpage still loaded, meaning the attack was
successful. URL injection [7]could represent a general variety of access control or
virus injection problems. To prevent such attacks we used the web UI to chain
the firewall between the WS and the gateway. Afterward the same attack was



16 P. Yasrebi et al.

initiated. This time the DPI detected the attack and the web page didn’t load.
Hence the service chaining was successful (as seen in Fig. 2 part b).

4.2 DOS Attack

Fig. 3. DOS attack.

Our second test scenario was the detection and blockage of Denial of Service
(DoS) attack. As upgraded networking and computing provide users with more
bandwidth and processing, compromised users can more efficiently send high
bandwidth (tens of Mbps) of requests to overload an attack target. This attack
can be identified by deep inspection (i.e. using Snort) of packet headers that are
being sent to a WS to identify malicious users. Specifically, malicious users send
more than a threshold of requests that a web server could handle in a period
of time. In [9] the network switch leading to the WS was tapped by the IDS.
The IDS was processing the data and malicious attackers were reported to the
SDI manager. The SDI manager subsequently blocked the malicious traffic at
the ingress switch of the network. However, in this paper, where IDS is used as
NIDPS, there is no longer a need to use SDI for blocking the attacker as Snort
detects and blocks the attack right away.

We tested the WS without the firewall in place and initiated a DoS attack
from multiple users. The attack made the web server slower and in some cases
even inaccessible (as seen in Fig. 3 part a). Afterward by modifying the proper
inputs to the web UI, a new DPI was placed in the middle of WS and the
gateway. The new DPI was able to block the attackers from reaching the WS
and protected the system against this DoS attack. Therefore the normal users
were still able to access the WS even after the attack was initiated (as seen in
Fig. 3 part b).

5 Conclusion

The SDI RMS allows converged management of networking and computing
resources. These features, among other things allow us to easily perform ser-
vice chaining. Service chaining consists of provisioning the required NFs and
chaining them together. The SDI RMS exposes functions that allow us to apply



VNF Service Chaining on SAVI SDI 17

converged network and computing policies. Furthermore, we leverage the orches-
tration engine to provision and configure the VNFs. Using the orchestration ser-
vice greatly reduces the complexity and effort in managing resource lifecycles.
Service chaining and orchestration have eased development of complex architec-
tures for hyper-dynamic applications. Therefore, employing instant placement
modification of VNFs and dynamic application of network policies on SAVI
testbed has brought SDI closer than ever to a promising autonomic platform.

References

1. Kang, J.-M., Lin, T., Bannazadeh, H., Leon-Garcia, A.: Software-defined
infrastructure and the savi testbed. In: 9th International Conference on Testbeds
and Research Infrastructures for the Development of Networks and Communities
(TRIDENTCOM 2014), Guangzhou, People’s Republic of China (2014)

2. Kang, J.-M., Bannazadeh, H., Leon-Garcia, A.: Savi testbed: control and manage-
ment of converged virtual ict resources. In: 2013 IFIP/IEEE International Sympo-
sium on Integrated Network Management (IM 2013), pp. 664–667, May 2013

3. Keeney, J., van der Meer, S., Fallon, L.: Towards real-time management of vir-
tualized telecommunication networks. In: 2014 10th International Conference on
Network and Service Management (CNSM), pp. 388–393, November 2014

4. Kumar, R., Gupta, N., Charu, S., Jain, K., Jangir, S.K.: Open source solution for
cloud computing platform using openstack. Int. J. Comput. Sci. Mob. Comput.
3(5), 89–98 (2014)

5. Lin, T., Park, B., Bannazadeh, H., Leon-Garcia, A.: Savi testbed architecture and
federation. In: 1st EAI International Conference on Future Access Enablers of
Ubiquitous and Intelligent Infrastructures (Fabulous), September 2015

6. Lin, T., Kang, J.-M., Bannazadeh, H., Leon-Garcia, A.: Enabling sdn applications
on software-defined infrastructure. In: Network Operations and Management Sym-
posium (NOMS). IEEE, pp. 1–7, May 2014

7. Mookhey, K., Burghate, N.: Detection of sql injection and cross-site scripting
attacks. Symantec SecurityFocus (2004)

8. Roesch, M., et al.: Snort: lightweight intrusion detection for networks. In: LISA
1999, pp. 229–238 (1999)

9. Yasrebi, P., Monfared, S., Bannazadeh, H., Leon-Garcia, A.: Security function vir-
tualization in software defined infrastructure. In: 2015 IFIP/IEEE International
Symposium on Integrated Network Management (IM), pp. 778–781, May 2015

10. Zhang, S., Zhang, Q., Bannazadeh, H., Leon-Garcia, A.: Routing algorithms for
network function virtualization enabled multicast topology on sdn. IEEE Trans.
Netw. Serv. Manage. PP(99), 1 (2015)


	VNF Service Chaining on SAVI SDI
	1 Introduction
	2 Service Chaining in SAVI
	3 Integration with Orchestration
	4 Implementation and Evaluations
	4.1 URL Injection Attack
	4.2 DOS Attack

	5 Conclusion
	References


