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Abstract. In this paper, we present a hybrid evolutionary algorithm with
self-adaptive processes to solve a known project scheduling problem. This problem
takes into consideration an optimization objective priority for project managers: to
maximize the effectiveness of the sets of human resources assigned to the project
activities. The hybrid evolutionary algorithm integrates self-adaptive processes
with the aim of enhancing the evolutionary search. The behavior of these processes
is self-adaptive according to the state of the evolutionary search. The performance
of the hybrid evolutionary algorithm is evaluated on six different instance sets and
then is compared with that of the best algorithm previously proposed in the liter-
ature for the addressed problem. The obtained results show that the hybrid evo-
lutionary algorithm considerably outperforms the previous algorithm.
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1 Introduction

Project scheduling is a really central, complex and costly task in most organizations
and companies. This task means defining start times and human resource assignments
feasible for the activities of a given project, in such a way that a given optimization
objective is achieved. In addition, defining human resource assignments for project
activities implies considering the available knowledge about the effectiveness of the
human resources with regard to project activities. This is because the results as well as
the development of any project activity depend on the effectiveness of the human
resource assignment defined for it [1, 2].

Based on the above-mentioned, a wide variety of project scheduling problems have
been presented and addressed in the literature. Nonetheless, only few of these project
scheduling problems consider that human resources usually have very different levels
of effectiveness [3–6, 10], a really essential aspect in the context of real project
scheduling problems. These project scheduling problems differ significantly in the
assumptions considered regarding the effectiveness of human resources.
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In the project scheduling problem formally described in [6], it is supposed that the
effectiveness level of a human resource depends on different factors inherent to its work
context (i.e., the project activity to which the resource is assigned, the skill to which the
resource is assigned within the project activity, the set of human resources assigned to
the project activity, and the attributes of the resource). This assumption about the
effectiveness of human resources is really valuable. This is mainly because, in the
context of real project scheduling problems, human resources have different levels of
effectiveness with regards to different work contexts, and therefore, the effectiveness
level of a human resource is usually considered in relation to its work context [1, 2]. To
the best of our knowledge, the influence of the factors inherent to the work context on
the effectiveness levels of human resources is not taken into account in other project
scheduling problems described in the literature. Therefore, the project scheduling
problem described in [6] supposes valuable and also novel assumptions regarding the
effectiveness levels of human resources in the context of project scheduling problems.

In this paper, we present a hybrid evolutionary algorithm with self-adaptive pro-
cesses to solve the project scheduling problem described in [6]. It is necessary to
mention that this problem takes into account an optimization objective priority for
project managers: to maximize the effectiveness levels of the sets of human resources
assigned to the project activities. This algorithm integrates self-adaptive processes
which adapt their behavior in accordance with the state of the evolutionary search. The
integration of self-adaptive processes has the aim of enhancing the evolutionary search,
in both exploration and exploitation [18–20].

We present this hybrid evolutionary algorithm mainly due to the next reasons. The
addressed project scheduling problem is a special case of the RCPSP (Resource
Constrained Project Scheduling Problem) [9], and therefore, is an NP-Hard problem. In
this respect, hybrid evolutionary algorithms that integrate self-adaptive processes have
been shown to be much more effective than hybrid evolutionary algorithms with
non-adaptive processes in the resolution of a wide variety of NP-Hard problems [18–20].
Thus, we consider that the hybrid evolutionary algorithm presented could outperform the
best algorithm previously presented in the literature for the addressed problem. We refer
to the hybrid evolutionary algorithm presented in [8].

The remainder of the paper is organized as follows. In Sect. 2, we present a
description of the addressed problem. In Sect. 3, we present the hybrid evolutionary
algorithm. In Sect. 4, we present the computational experiments developed in order to
evaluate the performance of the hybrid evolutionary algorithm and also an analysis of
the obtained results. In Sect. 5, we review reported project scheduling problems in
which the effectiveness of human resources is considered. Finally, in Sect. 6 we present
the conclusions of the present work.

2 Problem Description

In this paper, we address the project scheduling problem formally presented in [6]. We
give a description of this project scheduling problem below.

Consider that a project contains a set A of N activities, A = {1, …, N}, which have
to be scheduled (i.e., the starting time and the human resources of each activity have to
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be defined). The duration, precedence relations and resource requirements of each
activity are known.

The duration of each activity j is notated as dj. Moreover, it is considered that
pre-emption of activities is not allowed (i.e., the dj periods of time must be
consecutive).

Among some project activities, there are precedence relations. The precedence
relations establish that each activity j cannot start until all its immediate predecessors,
given by the set Pj, have completely finished.

Project activities require human resources – employees – skilled in different
knowledge areas. Specifically, each activity requires one or several skills as well as a
given number of employees for each skill.

It is considered that organizations and companies have a qualified workforce to
develop their projects. This workforce is made up of a number of employees, and each
employee masters one or several skills.

Considering a given project, set SK represents the K skills required to develop the
project, SK = {1,…, K}, and set ARk represents the available employees with skill
k. Then, the term rj,k represents the number of employees with skill k required for
activity j of the project. The values of the terms rj,k are known for each project activity.

It is considered that an employee cannot take over more than one skill within a
given activity. In addition, an employee cannot be assigned more than one activity at
the same time.

Based on the previous assumptions, an employee can be assigned different activ-
ities but not at the same time, can take over different skills required for an activity but
not simultaneously, and can belong to different possible sets of employees for each
activity.

As a result, it is possible to define different work contexts for each available
employee. It is considered that the work context of an employee r, denoted as Cr,j,k,g, is
made up of four main components. The first component refers to the activity j which
r is assigned (i.e., the complexity of j, its domain, etc.). The second component refers to
the skill k which r is assigned within activity j (i.e., the tasks associated to k within j).
The third component is the set of employees g that has been assigned j and that
includes r (i.e., r must work in collaboration with the other employees assigned to j).
The fourth component refers to the attributes of r (i.e., his or her experience level in
relation to different tasks and domains, the kind of labor relation between r and the
other employees of g, his or her educational level in relation to different knowledge
areas, his or her level with respect to different skills, etc.). It is considered that the
attributes of r could be quantified from available information about r (e.g., curriculum
vitae of r, results of evaluations made to r, information about the participation of r in
already executed projects, etc.).

The four components described above are considered the main factors that deter-
mine the effectiveness level of an employee. For this reason, it is assumed that the
effectiveness of an employee depends on all the components of his or her work context.
Then, for each employee, it is possible to consider different effectiveness levels in
relation to different work contexts.

The effectiveness level of an employee r, in relation to a possible context Cr,j,k,g for
r, is notated as erCr,j,k,g. The term erCr,j,k,g represents how well r can handle, within
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activity j, the tasks associated to skill k, considering that r must work in collaboration
with the other employees of set g. The mentioned term erCr,j,k,g takes a real value over
the range [0, 1]. The values of the terms erCr,j,k,g inherent to each employee available
for the project are known. It is considered that these values could be obtained from
available information about the participation of the employees in already executed
projects.

The problem of scheduling a project entails defining feasible start times (i.e., the
precedence relations between the activities must not be violated) and feasible human
resource assignments (i.e., the human resource requirements must be met) for project
activities in such a way that the optimization objective is reached. In this sense, a
priority objective is considered for project managers at the early stage of the project
schedule design. The objective is that the most effective set of employees be assigned
each project activity. This objective is modeled by Formulas (1) and (2).

Formula (1) maximizes the effectiveness of the sets of employees assigned to the
N activities of a given project. In this formula, set S contains all the feasible schedules
for the project in question. The term e(s) represents the effectiveness level of the sets of
employees assigned to project activities by schedule s. Then, R(j,s) is the set of
employees assigned to activity j by schedule s, and the term eR(j,s) represents the
effectiveness level corresponding to R(j,s).

Formula (2) estimates the effectiveness level of the set of employees R(j,s). This
effectiveness level is estimated calculating the mean effectiveness level of the
employees belonging to R(j,s).

For a more detailed discussion of Formulas (1) and (2), we refer to [6].

max
8s2S

eðsÞ ¼
XN
j¼1

eRðj;sÞ

 !
ð1Þ

eRðj;sÞ ¼
PRðj;sÞj j

r¼1
erCr;j;kðr;j;sÞ;Rðj;sÞ

Rðj; sÞj j ð2Þ

3 Hybrid Evolutionary Algorithm with Self-Adaptive
Processes

In order to solve the addressed problem, we present a hybrid evolutionary algorithm
with self-adaptive processes. This algorithm integrates self-adaptive processes which
adapt their behavior in accordance with the state of the evolutionary search. The
integration of self-adaptive processes has the aim of enhancing the evolutionary search,
in both exploitation and exploration [18–20].

The main behavior of the hybrid evolutionary algorithm is shown in Fig. 1 and is
described below.

Taking into account a given project to be scheduled, the algorithm creates a random
initial population of solutions. In this population, each solution encodes a feasible
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project schedule. Then, the algorithm decodes and evaluates each solution of the
population by a fitness function. Specifically, the schedule related to each solution is
built and then evaluated with respect of the optimization objective of the problem. As
was detailed in Sect. 2, the optimization objective implies maximizing the effectiveness
of the sets of employees assigned to the project activities. In relation to this objective,
the fitness function evaluates the employee assignments of each solution based on
knowledge of the effectiveness of the employees considered in the solution.

After each solution of the population is evaluated, a parent selection process is
utilized to determine which solutions of the population will integrate the mating pool.
The solutions with the highest fitness values will have more chance of being selected.
Once the mating pool is complete, the solutions in the mating pool are organized in pairs.
After that, a crossover process is applied to each pair of solutions with a self-adaptive
probability APc to generate new feasible ones. After that, a mutation process is applied to
each solution obtained by the crossover process, with a self-adaptive probability APm.
After that, a survival selection process is applied in order to determine which solutions
from the solutions in the population and the solutions generated from the mating pool
will integrate the new population. Finally, a self-adaptive simulated annealing algorithm
is applied to the solutions of the new population. The above-described process is repeated
until a predefined number of iterations is reached.

3.1 Representation of Solutions

We used the representation described in [6] in order to encode the solutions. By this
representation, each solution is encoded by two lists with as many positions as
activities in the project.

The first list is a traditional activity list. This list is a feasible precedence list of the
activities in the project (i.e., each activity j can appear on this list in any position higher
than the positions of all its predecessors). The activity list defines the order in which
activities shall be added to the schedule.

BEGIN 
      CREATE initial population; 
      EVALUATE each solution of the population; 
      REPEAT UNTIL ( number of iterations is reached ) DO 
           SELECT parents; 
           RECOMBINE pairs of parents to produce offspring; 
           MUTATE the resulting offspring;
           EVALUATE new solutions;
           CREATE new population;
           IMPROVE solutions via Simulated Annealing; 
      OD 
      PROVIDE best solution; 
END 

Fig. 1. Main behavior of the hybrid evolutionary algorithm
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The second list is an assigned resources list. This list details the employees assigned
to each activity of the project (i.e., position j on this list details the employees of every
skill k assigned to activity j).

In order to decode the schedule related to the representation, we used the serial
schedule generation process described in [6]. By this process, each activity j is
scheduled at the earliest possible time.

3.2 Fitness Function

To evaluate the encoded solutions, we used a fitness function specially designed. Given
an encoded solution, this function decodes the schedule s related to the solution by the
serial schedule generation process mentioned in Sect. 3.1. After that, the fitness
function calculates the value of the term e(s) corresponding to s (Formulas (1) and (2)).
This value defines the fitness level of the solution. The term e(s) takes a real value on
[0,…, N].

In order to calculate the value of term e(s), the fitness function utilizes the values of
the terms erCr,j,k,g inherent to s (Formula 2). In this respect, the values of the terms erCr,j,
k,g inherent to each available employee r are known, as was detailed in Sect. 2.

3.3 Parent Selection and Survival Selection

To develop the parent selection, we used the process named roulette wheel selection [18].
In this process, a selection probability is defined for each solution of the current
population. The selection probability of each solution is proportional to its fitness value.
Thus, the solutions with the best fitness values have more probability of being selected
for the mating pool.

To develop the survival selection, we utilized the process named fitness-based
steady-state selection [18]. By this process, the worst λ solutions of the current pop-
ulation are replaced by the best λ solutions generated from the mating pool. This
process preserves the best solutions reached by the hybrid evolutionary algorithm [18].

3.4 Self-Adaptive Crossover and Self-Adaptive Mutation

In respect of the crossover process and the mutation process, we utilized self-adaptive
processes feasible for the representation of the solutions.

The crossover process is composed by a crossover process feasible for activity lists
and a crossover process feasible for assigned resources lists. In respect of the crossover
for activity lists, we applied a process named two-point crossover [21]. For assigned
resources lists, we applied a process named uniform crossover [18].

The mutation process is composed by a mutation process feasible for activity lists
and a mutation process feasible for assigned resources lists. In relation to the mutation
for activity lists, we applied a process named adjacent pairwise interchange [21]. For
assigned resources lists, we applied a process named random resetting [18].
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In order to apply the crossover process and the mutation process, we considered
self-adaptive probabilities APc and APm, respectively. Specifically, we considered the
known self-adaptive probabilities APc and APm described in [11]. These probabilities
are defined by Formulas (3) and (4). In these formulas, fmax is the maximal fitness of the
population, favg is the average fitness of the population, and (fmax − favg) is a measure of
the state of the evolutionary search. In Formula (3), f’ is the higher fitness of the two
solutions to be crossed, and APcLA and APcUA are predefined values for the crossover
probability, considering 0 ≤ APcLA, APcUA ≤ 1. In Formula (4), f″ is the fitness of the
solution to be mutated, and APmLA and APmUA are predefined values for the mutation
probability, considering 0 ≤ APmLA, APmUA ≤ 1.

Probabilities APc and APm are adaptive according to the state of the evolutionary
search. Specifically, when the evolutionary search starts to converge, APc and APm are
increased in order to encourage the exploration of new regions of the search space and
therefore to avoid the premature convergence of the evolutionary search. In contrast,
when the evolutionary search is scattered in the search space, APc and APm are reduced
in order to encourage the exploitation of known regions of the search space.

APc ¼
APcUAðfmax�f 0Þ

ðfmax�favgÞ f 0 � favg

APcLA f 0\favg

(
ð3Þ

APm ¼
APmUAðfmax�f 00Þ

ðfmax�favgÞ f 00 � favg

APmLA f 00\favg

8<
: ð4Þ

3.5 Self-Adaptive Simulated Annealing Algorithm

We applied a self-adaptive simulated annealing algorithm to the solutions of the
population obtained by the survival selection process, except to the solution with the
highest fitness value of this population which is preserved. The applied self-adaptive
simulated annealing algorithm is a variation of the simulated annealing algorithm
presented in [8].

The main behavior of the self-adaptive simulated annealing algorithm is described
as follows. Given an encoded solution s, the algorithm generates a new encoded
solution s′ from the solution s by using a move process, and then decides if the solution
s must be replaced or not by the new solution s′. If the fitness value of the new solution
s′ is better than that of the solution s, the algorithm replaces to the solution s by the
solution s′. In contrast, if the fitness value of the new solution s′ is worse than or equal
to that of the solution s, the algorithm replaces to the solution s by the solution s′ based
on an acceptance probability which is exp(−delta / Tc). In this probability, term Tc is the
current value of the temperature parameter and delta is the difference between the
fitness values of the solutions s and s′. Thus, the acceptance probability is proportional
to the current value of the temperature parameter.
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The above-described process is repeated until a predetermined number of iterations
is reached. It is necessary to mention that, at the end of each iteration, the value of the
temperature parameter is reduced by a predefined cooling factor.

In relation to the initial value Ti of the temperature parameter, we defined the value Ti
based on the evolutionary search state reached after the survival selection process,
considering that such state is measured by calculating the term (fmax − favg) on the
population obtained by the survival selection process. Specifically, we calculated
the value Ti by using the next formula: Ti = 1 / (fmax − favg). By this formula, when the
evolutionary search is scattered in the search space, the value Ti is low, and thus the
acceptance probability of the algorithm is also low. As consequence of this, the algorithm
promotes the exploitation of known regions of the search space. When the evolutionary
search starts to converge, the value Ti increases, and thus the acceptance probability of
the algorithm also increases. As consequence of this, the algorithm promotes the
exploration of new regions of the search space. Based on the mentioned, the algorithm is
self-adaptive to promote either the exploitation or exploration of the search space,
according to the state of the evolutionary search.

Move Process. The self-adaptive simulated annealing algorithm utilizes a move pro-
cess to produce a new encoded solution from a given encoded solution. In this respect,
we applied a move process feasible for the representation of the solutions. The move
process is composed by a move process feasible for activity lists and a move process
feasible for assigned resources lists. In respect of the move process for activity lists, we
applied a move process named simple shift [21]. For assigned resources lists, we
applied a move process which is considered as a variation of the process named random
resetting [18].

4 Computational Experiments

4.1 Instance Sets

We used the six instance sets introduced in [7] in order to evaluate the performance of
the hybrid evolutionary algorithm. Each one of these six instance sets contains 40
instances. Each instance contains a number of activities to be scheduled as well as a
number of available employees for these activities. The main characteristics of these six
instance sets are presented in Table 1. For a more detailed description of these six
instance sets, we refer to [7].

It is necessary to mention that each instance of these six instance sets has a known
optimal solution with a fitness level equal to N. Note that N is the number of activities
to be scheduled in the instance. These known optimal solutions of the instances are
considered as references to evaluate the performance of the algorithm.

4.2 Main Results

We evaluated the performance of the hybrid evolutionary algorithm on each of the six
instance sets. Specifically, we run the algorithm a predetermined number t of times (i.e.,
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t = 30 times) on each instance of the six instance sets. In order to develop these runs,
we set the algorithm parameters as follows: population size = 90; number of genera-
tions = 300; crossover process: APcLA = 0.9 and APcUA = 0.6; mutation process:
APmLA = 0.1 and APmUA = 0.05; survival selection process: λ = 45; simulated annealing
algorithm: number of iterations = 25 and cooling factor = 0.9. It is necessary to mention
that we set the algorithm parameters with these values based on exhaustive preliminary
experiments. By these preliminary experiments, we considered many different settings
for the algorithm parameters, and then we selected the best of these settings for the
algorithm parameters.

We analyzed the results obtained by the hybrid evolutionary algorithm for each of
the six instance sets. Specifically, for each instance set, we analyzed the average
percentage deviation from the optimal value (Av. Dev. (%)) as well as the percentage
of instances for which the optimal value is reached at least once among the t runs
developed (Opt. (%)).

For j30_5, j30_10, j60_5 and j60_10, the algorithm obtained an Av. Dev (%) equal
to 0 % and an Opt. (%) equal to 100 %. These results indicate that the algorithm
reached an optimal solution in each run developed on each instance of these sets.

For j120_5 and j120_10, the algorithm obtained Av. Dev (%) values equal to 0.1 %
and 0.36 %, respectively. Because the optimal solutions of the instances of both sets
have a fitness level equal to 120, these results indicate that the average fitness level of
the solutions obtained by the algorithm for j120_5 and j120_10 is 119.88 and 119.57,
respectively. Therefore, the algorithm obtained very near-optimal solutions for the
instances of both sets.

Moreover, for j120_5 and j120_10, the algorithm obtained an Opt. (%) value equal
to 100 %. These results indicate that, for each instance of these two sets, the algorithm
reached an optimal solution at least once among the t runs developed on the instance.

4.3 Comparison

In this section, we compare the performance of the hybrid evolutionary algorithm with
that of the best algorithm previously presented in the literature for solving the
addressed problem. We refer to the hybrid evolutionary algorithm presented in [8].

For simplicity, we will refer to the hybrid evolutionary algorithm presented in [8] as
algorithm H. Like the hybrid evolutionary algorithm presented here, the algorithm

Table 1. Main characteristics of the instance sets

Instance set Number of activities
per instance

Number of possible sets
of employees per activity

j30_5 30 1 to 5
j30_10 30 1 to 10
j60_5 60 1 to 5
j60_10 60 1 to 10
j120_5 120 1 to 5
j120_10 120 1 to 10
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H integrates an adaptive simulated annealing algorithm into the framework of an
evolutionary algorithm. Unlike the hybrid evolutionary algorithm presented here, the
algorithm H uses non-adaptive crossover and mutation processes. These processes do
not consider the state of the evolutionary search.

In [8], the algorithm H has been evaluated on the six instance sets presented in
Table 1 and has obtained the following results. For j30_5, j30_10, j60_5 and j60_10,
the algorithm H obtained an Av. Dev (%) equal to 0 % and an Opt. (%) equal to 100 %.
For j120_5 and j120_10, the algorithm H obtained Av. Dev (%) values equal to 0.64 %
and 0.8 %, respectively. Moreover, for j120_5 and j120_10, the algorithm obtained an
Opt. (%) value equal to 100 %.

Comparing the results obtained by the algorithm H and the hybrid evolutionary
algorithm presented here, we can mention the following points. Both algorithms have
obtained an optimal effectiveness level for j30_5, j30_10, j60_5 and j60_10 (i.e., the
less complex instance sets). However, the effectiveness level obtained by the hybrid
evolutionary algorithm for j120_5 and j120_10 (i.e., the more complex instance sets) is
significantly higher than that obtained by the algorithm H. Therefore, the hybrid
evolutionary algorithm outperforms the algorithm H on the more complex instance sets.
This is mainly because of the following reasons.

The hybrid evolutionary algorithm integrates self-adaptive crossover and mutation
processes. These processes adapt their behaviour according to the state of the evolu-
tionary search, in order to promote either the exploitation or exploration of the search
space and thus enhance the evolutionary search. In contrast with the hybrid evolu-
tionary algorithm, the algorithm H utilizes non-adaptive crossover and mutation pro-
cesses. These processes do not consider the state of the evolutionary search and thus do
not have the possibility of enhancing the evolutionary search.

5 Related Works

A wide variety of reported project scheduling problems consider the effectiveness of
human resources. Nonetheless, these project scheduling problems differ significantly in
the assumptions considered regarding the effectiveness of human resources. In this
respect, only few of these project scheduling problems consider that human resources
usually have very different levels of effectiveness [3–6, 10], a really essential aspect in
the context of real project scheduling problems. In this section, we review the
assumptions considered about the effectiveness of human resources in reported project
scheduling problems.

In the multi-skill project scheduling problems reported in [12–17], each project
activity requires a given number of skills and a given number of human resources for
each required skill. Each available human resource masters one or several skills, and all
the human resources that master a given skill have the same effectiveness level in
relation to such skill.

In the multi-skill project scheduling problem reported in [3], hierarchical levels of
skills are considered. Given a skill, for each human resource that masters the skill, an
effectiveness level is defined in relation to the skill. Thus, the human resources that master
a given skill have different levels of effectiveness in relation to the skill. Then, each project
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activity requires one or several skills, a minimum effectiveness level for each skill, and a
number of human resources for each pair skill-level. This problem assumes that all sets of
human resources that can be assigned to a given activity have the same effectiveness on the
development of the activity. Specifically, with respect to effectiveness, such sets are
merely treated as unary resources with homogeneous levels of effectiveness.

In the multi-skill project scheduling problems reported in [4, 5], most activities
require only one human resource with a particular skill, and each available human
resource masters different skills. The human resources that master a given skill have
different levels of effectiveness with respect of such skill. Then, the effectiveness of a
human resource in a given activity is defined by considering only the effectiveness level
of the human resource in relation to the skill required for the activity.

In contrast to the problems above-mentioned, in the project scheduling problem
reported in [6], it is supposed that the effectiveness level of a human resource depends
on different factors inherent to its work context. Therefore, for each human resource, it
is possible to define different effectiveness levels with respect to different work con-
texts. This assumption about the effectiveness levels of human resources is really
valuable. This is mainly because, in the context of real project scheduling problems,
human resources have different levels of effectiveness with regards to different work
contexts, and therefore, the effectiveness level of a human resource is usually con-
sidered in relation to its work context [1, 2]. Based on the above-mentioned, the project
scheduling problem reported in [6] supposes valuable assumptions about the effec-
tiveness levels of human resources in the context of project scheduling problems.

6 Conclusions

In this paper, we addressed the project scheduling problem described in [6]. This
problem considers really valuable assumptions about the effectiveness of human
resources. Moreover, this problem considers an optimization objective priority for
project managers: maximizing the effectiveness levels of the sets of human resources
assigned to the project activities.

We presented a hybrid evolutionary algorithm with self-adaptive processes for
solving the addressed problem. This algorithm integrates self-adaptive processes which
adapt their behavior in accordance with the state of the evolutionary search. The
integration of self-adaptive processes has the aim of enhancing the evolutionary search,
in both exploration and exploitation.

We evaluated the performance of the hybrid evolutionary algorithm on different
instance sets. Then, we compared the performance of the hybrid evolutionary algorithm
with that of the best algorithm previously reported in the literature for solving the
addressed problem. Based on the obtained results, we may state that the hybrid evo-
lutionary algorithm considerably outperforms the previous algorithm.

In future works, we will evaluate the integration of other self-adaptive process into
the framework of the evolutionary algorithm. In particular, we will evaluate other
self-adaptive local search and optimization techniques, other self-adaptive crossover
processes, as well as other self-adaptive mutation processes.
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