
Lifelong Learning Selection Hyper-heuristics
for Constraint Satisfaction Problems

José Carlos Ortiz-Bayliss(B), Hugo Terashima-Maŕın,
and Santiago Enrique Conant-Pablos

Tecnológico de Monterrey National School of Engineering and Sciences,
Av. Eugenio Garza Sada 2501 Sur Col. Tecnológico,

64849 Monterrey, Nuevo Leon, Mexico
{jcobayliss,terashima,sconant}@itesm.mx

Abstract. Selection hyper-heuristics are methods that manage the use
of different heuristics and recommend one of them that is suitable for
the current problem space under exploration. In this paper we describe
a hyper-heuristic model for constraint satisfaction that is inspired in the
idea of a lifelong learning process that allows the hyper-heuristic to con-
tinually improve the quality of its decisions by incorporating information
from every instance it solves. The learning takes place in a transparent
way because the learning process is executed in parallel in a different
thread than the one that deals with the user’s requests. We tested the
model on various constraint satisfaction problem instances and obtained
promising results, specially when tested on unseen instances from differ-
ent classes.

Keywords: Heuristics · Selection hyper-heuristics · Constraint satisfac-
tion · Lifelong learning

1 Introduction

A constraint satisfaction problem (CSP) contains a set of variables V , each with
a domain Dv of possible values and a set of constraints C that restricts the
values that can be assigned to those variables. When using backtracking-based
algorithms to solve CSPs [1], the ordering in which the variables are considered
for instantiation affects the way the solution space is explored and also, the
cost of the search. If this ordering is poor, the risk of taking the search into
long unpromising branches increases and, as a consequence, the time required to
find one solution also increases. Then, bad choices in the ordering in which the
variables are instantiated represent a huge amount of unnecessary work. Various
heuristics have been proposed to tackle the variable ordering problem in CSPs
and they have proven to be efficient for specific classes of instances, but usually to
fail when tested on distinct classes. As a consequence, applying the same heuristic
to every instance rarely produces good results. This drawback in the performance
of such methods arises mainly from the vast range of parameters or algorithm
c© Springer International Publishing Switzerland 2015
G. Sidorov and S.N. Galicia-Haro (Eds.): MICAI 2015, Part I, LNAI 9413, pp. 190–201, 2015.
DOI: 10.1007/978-3-319-27060-9 15

Lifelong Learning Selection Hyper-heuristics for CSPs 191

choices involved, and the lack of guidance on how to properly tune them when
the problems change. Also, the understanding of how heuristics work on different
situations is not fully understood yet, making it difficult to decide, only based on
what we currently know about them, which one is the best option for a certain
instance. For these reasons it seems reasonable to rely on an automatic method
to produce the mapping between features and heuristics.

The idea of selecting from a set of algorithms the most suitable one to solve
one specific problem is usually referred to as the algorithm selection problem [18].
This problem has been addressed in the literature by using different strategies,
but two of the most used terms include algorithm portfolios and selection hyper-
heuristics. Algorithm portfolios attempt to allocate a period for running a chosen
algorithm from a set of algorithms in a time-sharing environment [8,12], while
selection hyper-heuristics [5,19] are high-level methodologies that select among
different heuristics given the properties of the instance at hand.

This paper is organized as follows. In Sect. 2 we present related works on
hyper-heuristics for CSPs. Section 3 describes the features used to characterize
the instances and the ordering heuristics considered for this investigation. The
main contribution of this investigation, the lifelong learning selection hyper-
heuristic model for CSP, is described in Sect. 4. Section 5 presents the exper-
iments conducted, their analysis and the discussion of the results. Finally, in
Sect. 6 we present our conclusion and future work.

2 Related Work

Regarding algorithm portfolios for CSPs, the work conducted by O’Mahony
et al. [15] collects a set of solvers and decides which solver is the most suitable
one according to the features of the instance to solve. Their approach aims at
solving the instances as well as the best possible solver from the set does. More
recent studies on the combination of heuristics for CSPs include the work done
by Petrovic and Epstein [17], who studied the idea of combining various heuris-
tics to produce mixtures that work well on particular classes of CSP instances.
Their approach bases their decisions on random sets of what they call advisers,
which are basically the criteria used by the variable and value ordering heuristics
to make their decisions. The advisers are weighted according to their previous
decisions: good decisions increase their weights, while bad ones decrease them.
This approach has proven to be able to adapt to a wide range of instances but it
requires to define the size of the sets of advisers. There is a trade-off that must
be considered: the larger the set of advisers, the larger the amount of computa-
tional resources required to evaluate the criteria of the different advisers but the
fewer the number of instances to train the system.

With regard to selection hyper-heuristics, Bittle and Fox [2] worked on a
symbolic cognitive architecture to produce variable ordering hyper-heuristics for
map colouring and job shop scheduling problems represented as CSPs. Their app-
roach produces small ‘chunks’ of code that serve as the components of rules for
variable ordering. As a result, hyper-heuristics composed by a large set of rules

192 J.C. Ortiz-Bayliss et al.

operate to solve the instances by selectively applying the most suitable heuristic
for the instance being solved. The last two years include some important devel-
opments regarding hyper-heuristics for CSPs. Autonomous search was applied
to replace bad performing strategies by more promising ones during the search,
producing competent variable ordering strategies for CSPs [23]. The authors
used a choice function that evaluates some indicators of the search progress and
dynamically ranks the ordering heuristics according to their quality to exclude
those that exhibit a low performance. Ortiz-Bayliss et al. [16] proposed a learn-
ing vector quantization framework to tackle the dynamic selection of heuristics
on different sets of CSP instances. Although their approach proved to be useful
for the instances where it was tested, the model requires the expertise of the
user for tuning the parameters in the framework in order to produce reliable
hyper-heuristics.

An area of opportunity regarding all the hyper-heuristic strategies proposed
in the past for CSP involves the learning approach. Most of the hyper-heuristic
methods previously proposed for CSP require a training phase and, only after
the training process is over, the hyper-heuristic can be used to solve as many
instances as wished. Once the hyper-heuristic is trained, no further learning is
done and then, the hyper-heuristics are unable to incorporate additional informa-
tion to improve their decisions. The main limitation derived from this situation
is that such hyper-heuristics usually fail to generalize well on instances from
unseen classes of instances.

Lifelong learning [20,21] was recently introduced as an alternative learning
approach that responds to the constant changes in the nature of the instances
being solved and the available solvers. As Silver suggests [21], systems that use
lifelong learning have the ability to learn, retain and use knowledge over a life
time. Lifelong learning is more than just extending the learning phase or execut-
ing it various times: it requires the use of a suitable knowledge representation
that allows the system to modify only small parts of what it knows to improve its
further performance. The concept of lifelong learning was recently introduced to
the field of hyper-heuristics, specifically for the Bin Packing problem with excep-
tional results [11,13,22]. The lifelong learning mechanism in those models was
implemented by using an artificial immune system [6].

3 Problem Characterization and Ordering Heuristics

In this section we describe the features used to characterize the instances and
the variable ordering heuristics considered for this investigation.

3.1 Problem State Characterization

Four commonly used features are considered to characterize the instances in this
investigation:

– Problem size (N). The problem size is defined as the number of bits required
to represent the whole solution space. N is calculated as

∑
v∈V log2(|Dv|),

where |Dv| is the domain size of variable v.

Lifelong Learning Selection Hyper-heuristics for CSPs 193

– Constraintdensity (p1). The constraint density of an instance is defined as
the number of constraints in which the variables participate divided by the
maximum number of possible constraints in the instance.

– Constraint tightness (p2). A conflict is a pair of values 〈a, b〉 that is not
allowed by a particular constraint. Thus, the tightness of a constraint is the
number of forbidden pairs over the total number of pairs that may occur
between the two variables involved in the constraint. The tightness of a CSP
instance is calculated as the average tightness over all the constraints within
the instance.

– Clustering coefficient (C). The clustering coefficient estimates how close
the neighbours of a variable are to being a complete graph. Thus, the clustering
coefficient of a CSP instance is calculated as the average of the clustering
coefficient of all the variables within the instance.

All the previous features lie in the range [0, 1] (the values of N have been
normalized to lie in the same range as the rest of the features).

3.2 Ordering Heuristics

Although various heuristics for variable ordering are available in the literature,
we have selected a representative set of five of them for this investigation:

– Domain (DOM). DOM [10] prefers the variable with the fewest values in
its domain.

– Degree (DEG). The degree of a variable is calculated as the number of edges
incident to that variable. Thus, DEG selects the variable with the largest
degree [7].

– Domain Over Degree (DOM/DEG). DOM/DEG tries first the variable
with that minimizes the quotient of the domain size over the degree of the
variable [4].

– Kappa (K). The value of κ is suggested in the literature as a general measure
of how restricted a combinatorial problem is. If κ is small, the instances usually
have many solutions with respect to their size. When κ is large, instead,
the instances often have few solutions or do not have any at all [9]. κ is
defined as κ = −∑c∈C log2(1−pc)∑

v∈V log2(|Dv|) , where pc is the fraction of unfeasible tuples
on constraint c. K prefers the variable whose instantiation produces the less
constrained subproblem (the subproblem with the smallest value of κ).

– Weighted degree (WDEG). WDEG assigns a counter to each constraint, and
every time such constraint is unsatisfied, the corresponding counter is increased
by one [3]. WDEG prefers the variable with the largest weighted degree. This
is, the variable with the largest sum of weights over its constraints.

In all cases, ties are broken by using the lexical ordering of the variables. Once
a variable is selected, the value that participates in the fewest conflicts (forbidden
pairs of values between two variables) will be tried before the others [14]. In case
of ties, the minimum value will always be preferred.

194 J.C. Ortiz-Bayliss et al.

4 A Lifelong Learning Selection Hyper-heuristic
Model for CSPs

The motivation behind the lifelong learning selection hyper-heuristic (LLSHH)
model for CSP is the lack of continuous learning in current hyper-heuristic
models for CSP. The proposed hyper-heuristic model keeps learning with every
instance it solves, improving its decisions. The system uses the information from
previous instances solved with different heuristics to predict one suitable heuris-
tic to apply once a similar instance appears.

In order to describe the LLSHH model for CSP we will introduce two impor-
tant concepts: scenarios and predictors. A scenario attempts to answer the ques-
tion “How is the performance of heuristic h on instance p?”. Then, a scenario
is the time required by a specific heuristic to solve a CSP instance. Every time
an instance is solved, a new scenario is created and, during the training, the
scenario is analyzed –instance p is solved by using heuristic h and the time
consumed by the solving process is recorded. A predictor, on the other hand,
gathers information from different scenarios to allow the system to predict the
performance of a given heuristic on a new instance. A predictor contains a vector
of features that characterize a point in the problem space, and a collection of
scenarios associated to such a point. A scenario cannot belong to more than one
predictor.

Hyper-heuristic

Prediction Module

Predictor 0

Predictor 1

Predictor 2

.
.
.

Learning Module

Aux. SolverMain Solver

Solution

CSP p

(TI.1)

(TI.2, TI.4, TI.6)

(TI.3)

(TI.5)

(TII.1, TII.3)

(TII.2)

Fig. 1. The lifelong learning selection hyper-heuristic model for solving CSPs.

As shown in Fig. 1, the LLSHH model consists of three main components:
a solver, a prediction module and a learning module. The solver is exclusively
devoted to solving the instances presented to the system. It requests the predic-
tion module for one suitable heuristic given the properties of the current instance
under exploration. The prediction module has two tasks: it first recommends a
heuristic and then, it communicates with the learning module to improve further
decisions. The solver and the learning module run in parallel, each on its own

Lifelong Learning Selection Hyper-heuristics for CSPs 195

thread. Because both the solver and the prediction module can read from and
write to the prediction module, the access to the prediction module is synchro-
nized to avoid problems due to concurrency. A detailed view of the model is
described in the following lines. Please note that two descriptions are provided
as the solver and learning module run in parallel in different threads.

The main thread of the model (TI) runs as follows:

(TI.1) The user requests the hyper-heuristic to solve instance p.
(TI.2) The main solver requests the prediction module one suitable heuristic to

apply for instance p.
(TI.3) The prediction module analyzes instance p by using the features described

in Sect. 3.1. The characterization of instance p locates it on a specific
point of the problem space. The prediction module analyzes all the avail-
able predictors and selects the one whose problem state is closest to the
characterization of p. The closeness of the problem state to the char-
acterization of instance p is calculated by using the Euclidean distance.
For a predictor to be considered, there is a minimum acceptance distance
dmin. This minimum distance is needed to allow the system to create new
predictors and avoid using predictors with little relation to the current
characterization of p.
(TI.3a) The predictor r with the closest problem state to the character-

ization of p (if the distance is smaller than dmin) is selected. By
using the information from the scenarios in predictor r, the sys-
tem selects the heuristic with the smallest median recorded time
among these scenarios. Let the selected heuristic be referred to
as h.

(TI.3b) If the prediction module cannot find a predictor with distance
smaller than dmin, the module creates a new predictor r with a
problem state equal to the characterization of p. One heuristic
h from the ones described in Sect. 3.2 is randomly chosen.

(TI.4) The prediction module returns the heuristic selected from the previous
step, h, and instance p is solved with that heuristic.

(TI.5) A solution is returned to the user.
(TI.6) A new scenario is created to register the performance of h on instance p.

The scenario is assigned to predictor r.

As we already mentioned, the learning process is executed in a different
thread. The learning process runs as follows:

(TII.1) The prediction module sends instance p, the selected predictor r and the
selected heuristic h to the learning module.

(TII.2) With a probability α, each available heuristic (except for h, which is
used and evaluated in thread T1 when the system solves the instance
for the user) may be selected for the generation of new scenarios. For all
the heuristics selected, a new scenario is created and analyzed.

(TII.3) The scenarios analyzed are sent to the prediction module to incorporate
them to their respective predictors.

196 J.C. Ortiz-Bayliss et al.

4.1 Benchmark Instances

In this investigation we have incorporated instances taken from a public reposi-
tory available at http://www.cril.univ-artois.fr/∼lecoutre/benchmarks.html. All
the instances in this work are binary CSPs coded in XCSP 2.1 format (http://
www.cril.univ-artois.fr/CPAI08/XCSP2 1.pdf). In the following lines we briefly
describe the classes of instances considered for this investigation:

– RAND. This class contains 50 random instances from the set frb30-15.tgz
listed in the public repository.

– QRND. This class contains 140 random instances containing a small struc-
ture. The instances correspond to the sets geom.tgz, composed-25-10-20.tgz
and composed-75-1-2.tgz in the public repository.

– PATT. The 52 instances in this class follow a regular pattern and involve
a random generation. The instances were taken from sets coloring.tgz,
QCP-10.tgz and QCP-15.tgz from the public repository.

– REAL. This class contains 18 instances taken from real world applications.
The instances correspond to the sets driver.tgz and rlfapScens.tgz in the
repository.

Although the proposed model is able to start from scratch (with no previous
information), we recommend to conduct a training phase to provide some initial
information about the heuristics and the instances that may be updated later
when the test instances are solved. In this investigation, around 50 % of the
instances of each class were used for training and the rest exclusively for testing.

5 Experiments

We conducted two main experiments in this investigation. In total, five hyper-
heuristics were produced and tested. The first experiment is related to the ability
of the hyper-heuristics to solve specific classes of instances. The second experi-
ment explores the idea of a more general use of the hyper-heuristic where only
one general method is capable of overcoming the use of a single heuristic for all
the classes.

In both experiments we used a maximum running time of 25 seconds per
instance, a minimum acceptance distance (dmin) equal to 0.1 and a probability
of scenario generation (α) equal to 0.75.

5.1 Producing Hyper-heuristics for Specific Classes of Instances

We used the training instances from each class to produce one hyper-heuristic for
the specific class used for training. In total, four hyper-heuristics were produced
in this experiment: RAND-HH, QRND-HH, PATT-HH and REAL-HH. For each
class, all the training instances were solved by using the corresponding hyper-
heuristic. Once the system provided a solution to all the training instances, we
used the hyper-heuristics produced to solve only the test instances from their

http://www.cril.univ-artois.fr/~lecoutre/benchmarks.html
http://www.cril.univ-artois.fr/CPAI08/XCSP2_1.pdf
http://www.cril.univ-artois.fr/CPAI08/XCSP2_1.pdf

Lifelong Learning Selection Hyper-heuristics for CSPs 197

respective class. The idea of this experiment is to observe whether it is possible
to produce hyper-heuristics that perform better than the heuristics applied in
isolation for specific classes of instances.

Table 1 presents the success rate of the four hyper-heuristics on their respec-
tive classes of instances. The success rate in this investigation refers to the per-
centage of instances in each class where the hyper-heuristic required no more
time than one specific heuristic. For example, the results shown in Table 1 indi-
cate that for instances in class RAND, the hyper-heuristic RAND-HH is almost
always at least as good as DOM, DEG, DOM/DEG and WDEG, but only in
12 % of the test instances for that class it was able to perform at least as well
as K.

Table 1. Success rate of RAND-HH, QRND-HH, PATT-HH and REAL-HH on their
respective class of instances with respect to each heuristic.

DOM DEG DOM/DEG K WDEG

RAND 84.00 % 84.00 % 84.00 % 12.00 % 88.00 %

QRND 88.33 % 81.67 % 80.00 % 63.33 % 66.67 %

PATT 96.00 % 100.00 % 76.00 % 88.00 % 96.00 %

REAL 100.00 % 75.00 % 50.00 % 62.50 % 62.50 %

Table 2 complements the information of the performance of the four hyper-
heuristics, as it shows the average gain/loss of each hyper-heuristic on instances
from their respective classes of instances. For example, we know that the hyper-
heuristic RAND-HH is almost always at least as good as DOM, DEG, DOMDEG
and WDEG, but with the results from Table 2 we also know that when such
hyper-heuristic was used, the average time required to solve a test instance in
the class RAND decreased by 32.06 %, 23.57 % and 27.68 % with respect to DOM,
DEG and WDEG, respectively. The result for DOM/DEG is interesting, as it
shows that although the hyper-heuristic RAND-HH is in 84.00 % of the instances
at least as good as DOM/DEG, there is no real benefit from using this hyper-
heuristic (in average, 0.38 % time less per instance with respect to DOM/DEG).
When we compared hyper-heuristic RAND-HH against K, we observed that, in
average, it requires 56.09 % more time per instance than K.

The behaviour of hyper-heuristics QRND-HH, PATT-HH and REAL-HH
shows that these hyper-heuristics are good solving options for the classes of
instances they were trained for. In all cases, important savings in time were
obtained by using hyper-heuristics on their corresponding classes of instances.

5.2 Producing a Hyper-heuristic for Multiple Classes of Instances

In the previous experiment we produced and tested hyper-heuristics for each
specific class. Now, in this experiment we were interested in showing that there

198 J.C. Ortiz-Bayliss et al.

Table 2. Average time gain/loss per instance of RAND-HH, QRND-HH, PATT-HH
and REAL-HH on their respective class of instances when compared against each
heuristic.

DOM DEG DOM/DEG K WDEG

RAND −32.06 % −23.57 % −0.38 % +56.09 % −27.68 %

QRND −45.47 % −52.12 % −30.96 % −8.35 % −40.05 %

PATT −17.17 % −58.84 % −14.37 % −14.84 % −51.60 %

REAL −71.61 % −23.66 % −15.57 % −56.17 % −1.24 %

is a benefit from using hyper-heuristic as we can produce only one general method
and then, use it on instances from different classes with acceptable results. In
this section, we focused on producing one single hyper-heuristic (MC-HH) that
could perform well on the four classes of instances.

The training process for MC-HH was conducted in the same way we did for
training the four hyper-heuristics from the previous experiment but this time, we
constructed only one set of training instances that includes the training instances
from the four classes into a single training set.

Tables 3 and 4 show the results obtained for MC-HH when compared against
each heuristic.

Table 3. Success rate of MC-HH on each class of instances.

DOM DEG DOM/DEG K WDEG

RAND 80.00 % 84.00 % 48.00 % 8.00 % 88.00 %

QRND 88.33 % 80.00 % 86.66 % 56.66 % 68.33 %

PATT 68.00 % 88.00 % 60.00 % 76.00 % 84.00 %

REAL 75.00 % 75.00 % 75.00 % 87.50 % 62.50 %

Table 4. Average time gain/loss per instance of MC-HH on each class of instances
when compared against each heuristic.

DOM DEG DOM/DEG K WDEG

RAND −40.94 % −34.42 % +0.70 % +65.96 % −39.37 %

QRND −45.61 % −52.23 % −31.14 % −8.40 % −40.22 %

PATT −11.33 % −56.57 % −7.26 % −7.09 % −48.72 %

REAL −78.54 % −45.96 % −41.24 % −70.24 % −29.59 %

In general, MC-HH is not as good as the hyper-heuristics trained for each
particular class of instances with regard to the success rate. But, its ability to

Lifelong Learning Selection Hyper-heuristics for CSPs 199

reduce the average time for solving the instances improved for some classes,
specially for the instances from REAL. An important consideration is that K
was the best performing heuristic for classes RAND, QRND and PATT, but for
REAL the best heuristic was WDEG. MC-HH is capable of performing as well
as K and WDEG in each of these classes (except for RAND), showing that one
hyper-heuristic can combine the strengths of single heuristics to perform well on
different classes of instances.

5.3 Discussion

There is an important observation that needs to be discussed about the run-
ning time of the proposed hyper-heuristic model. First, assuming that a hyper-
heuristic always selects the same heuristic h, it will always require more time
than h applied directly to solve the problems. The additional time is the result
of revising the predictors to find one that is close to the characterization of the
current instance. The benefit of using a hyper-heuristic in this model occurs
when the hyper-heuristic changes the heuristic to apply based on the features of
each instance being solved. When that happens, its performance can be superior
to the one of a single heuristic applied to solve the same instances.

Finally, we observed that classes QRND, PATT and REAL are suitable to
be solved by the model proposed. But, RAND is difficult to solve by the hyper-
heuristic because of its lack of structure. It seems that the learning strategy
in the hyper-heuristic is unable to properly characterize the instances by using
the features described in Sect. 3.1. For this reason, we think that more features
should be considered in the future.

6 Conclusion

In this paper we have described a lifelong learning hyper-heuristic model for
solving CSPs. The hyper-heuristic learns from a set of scenarios that represent
the historical performance of heuristics on previously solved instances. Then, the
system creates predictors that group those scenarios and, when the system deals
with a new instance, it predicts one suitable heuristic for such instance based
on what the system knows about the heuristics and previously solved instances.
Every instance the hyper-heuristic solves can produce, with probability α, a
new scenario to increase the system’s knowledge about the heuristics and the
instances. Those scenarios are analyzed in a different thread, making the learning
process transparent for the user. With this model, the system is continually
learning from new instances it solves.

Although we observed promising results with this hyper-heuristic model, it is
clear for us that some elements might be improved. For example, the minimum
acceptance distance was introduced as a way to allow the hyper-heuristic to
discard some predictors, the ones which are“not similar enough” to the current
instance being solved. Despite this idea is something we found important to
include (it allows the creation of new predictors), we think that should work in a

200 J.C. Ortiz-Bayliss et al.

different way. Having one dmin for the distance worked well for this investigation
but ignores the fact that some features may have a larger effect on the time
required to solve an instance. For example, two instances with the same values
of p1, p2 and C but different N may require completely different running times,
as the number of variables increases the size of the search space. For this reason,
we think that dmin should represent a vector, where each feature has its own
minimum acceptance distance. Also, this value should be automatically updated
according to the scenarios analyzed for each predictor. At this moment we only
have preliminary ideas on how to achieve this, but we still need to figure out
how to implement it in an efficient way.

Another important aspect to consider is that the order in which the instances
are solved by the hyper-heuristic may affect the way the predictors are created.
This may not seem like an issue for the experiments conducted in this investiga-
tion but opens the door for a future and important development of the model:
predictor segmentation and integration. With segmentation, a predictor that has
evidence that two instances with similar features require considerably different
solving times may be split into two different predictors. On the other hand, inte-
gration deals with the idea of creating one new predictor by merging two or more
existing ones.

Finally, we would like to include more features and heuristics to our model
and compare the proposed model against other existing hyper-heuristic models
for CSP to better estimate its quality.

Acknowledgments. This research was supported in part by ITESM Research Group
with Strategic Focus in Intelligent Systems and CONACyT Basic Science Project under
grant 241461.

References

1. Bitner, J.R., Reingold, E.M.: Backtrack programming techniques. Commun. ACM
18, 651–656 (1975)

2. Bittle, S.A., Fox, M.S.: Learning and using hyper-heuristics for variable and value
ordering in constraint satisfaction problems. In: Proceedings of the 11th Annual
Conference Companion on Genetic and Evolutionary Computation Conference:
Late Breaking Papers, pp. 2209–2212. ACM (2009)

3. Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search by
weighting constraints. In: European Conference on Artificial Intelligence (ECAI
2004), pp. 146–150 (2004)

4. Brelaz, D.: New methods to colour the vertices of a graph. Commun. ACM 22,
251–256 (1979)

5. Burke, E., Hart, E., Kendall, G., Newall, J., Ross, P., Shulenburg, S.: Hyper-
heuristics: an emerging direction in modern research technology. In: Handbook of
metaheuristics, pp. 457–474. Kluwer Academic Publishers (2003)

6. Capodieci, N., Hart, E., Cabri, G.: Artificial immune systems in the context of
autonomic computing: integrating design paradigms. In: Proceedings of the 2014
Conference Companion on Genetic and Evolutionary Computation Companion,
GECCO Comp 2014, pp. 21–22. ACM, New York (2014)

Lifelong Learning Selection Hyper-heuristics for CSPs 201

7. Dechter, R., Meiri, I.: Experimental evaluation of preprocessing algorithms for
constraint satisfaction problems. Artif. Intell. 38(2), 211–242 (1994)

8. Gagliolo, M., Schmidhuber, J.: Dynamic algorithm portfolios. Ann. Math. Artif.
Intell. 47, 3–4 (2006)

9. Gent, I., MacIntyre, E., Prosser, P., Smith, B., T.Walsh: An empirical study of
dynamic variable ordering heuristics for the constraint satisfaction problem. In:
Proceedings of the International Conference on Principles and Practice of Con-
straint Programming (CP 1996), pp. 179–193 (1996)

10. Haralick, R.M., Elliott, G.L.: Increasing tree search efficiency for constraint satis-
faction problems. Artif. Intell. 14, 263–313 (1980)

11. Hart, E., Sim, K.: On the life-long learning capabilities of a NELLI*: a hyper-
heuristic optimisation system. In: Bartz-Beielstein, T., Branke, J., Filipič, B.,
Smith, J. (eds.) PPSN 2014. LNCS, vol. 8672, pp. 282–291. Springer, Heidelberg
(2014)

12. Huberman, B.A., Lukose, R.M., Hogg, T.: An economics approach to hard com-
putational problems. Science 27, 51–53 (1997)

13. Sim, K.E.H., Paechter, B.: A lifelong learning hyper-heuristic method for bin pack-
ing. Evol. Comput. 23(1), 37–67 (2015)

14. Minton, S., Johnston, M.D., Phillips, A., Laird, P.: Minimizing conflicts: a heuristic
repair method for CSP and scheduling problems. Artif. Intell. 58, 161–205 (1992)

15. O’Mahony, E., Hebrard, E., Holland, A., Nugent, C., O’Sullivan, B.: Using case-
based reasoning in an algorithm portfolio for constraint solving. In: Proceedings of
the 19th Irish Conference on Artificial Intelligence and Cognitive Science (2008)

16. Ortiz-Bayliss, J.C., Terashima-Maŕın, H., Conant-Pablos, S.E.: Learning vector
quantization for variable ordering in constraint satisfaction problems. Pattern
Recogn. Lett. 34(4), 423–432 (2013)

17. Petrovic, S., Epstein, S.L.: Random subsets support learning a mixture of heuris-
tics. Int. J. Artif. Intell. Tools 17, 501–520 (2008)

18. Rice, J.R.: The algorithm selection problem. Adv. Comput. 15, 65–118 (1976)
19. Ross, P., Maŕın-Blázquez, J.: Constructive hyper-heuristics in class timetabling.

In: Proceedings of the 2005 IEEE Congress on Evolutionary Computation (CEC
2005), vol. 2. IEEE Press (2005)

20. Silver, D.L.: Machine lifelong learning: challenges and benefits for artificial general
intelligence. In: Schmidhuber, J., Thórisson, K.R., Looks, M. (eds.) AGI 2011.
LNCS, vol. 6830, pp. 370–375. Springer, Heidelberg (2011)

21. Silver, D.L., Yang, Q., Li, L.: Lifelong machine learning systems: beyond learning
algorithms. In: Lifelong Machine Learning, Papers from the 2013 AAAI Spring
Symposium, Palo Alto, California, USA, 25–27 March 2013

22. Sim, K., Hart, E.: An improved immune inspired hyper-heuristic for combinatorial
optimisation problems. In: Proceedings of the 2014 Conference on Genetic and
Evolutionary Computation, GECCO 2014, pp. 121–128. ACM, New York (2014)

23. Soto, R., Crawford, B., Monfroy, E., Bustos, V.: Using autonomous search for
generating good enumeration strategy blends in constraint programming. In:
Murgante, B., Gervasi, O., Misra, S., Nedjah, N., Rocha, A.M.A.C., Taniar, D.,
Apduhan, B.O. (eds.) ICCSA 2012, Part III. LNCS, vol. 7335, pp. 607–617.
Springer, Heidelberg (2012)

	Lifelong Learning Selection Hyper-heuristics for Constraint Satisfaction Problems
	1 Introduction
	2 Related Work
	3 Problem Characterization and Ordering Heuristics
	3.1 Problem State Characterization
	3.2 Ordering Heuristics

	4 A Lifelong Learning Selection Hyper-heuristic Model for CSPs
	4.1 Benchmark Instances

	5 Experiments
	5.1 Producing Hyper-heuristics for Specific Classes of Instances
	5.2 Producing a Hyper-heuristic for Multiple Classes of Instances
	5.3 Discussion

	6 Conclusion
	References

