
Design of Algorithms for Big Data Analytics

Raj Bhatnagar(B)

Department of Electrical Engineering and Computing Systems,
University of Cincinnati, Cincinnati, OH, USA

raj.bhatnagar@uc.edu

Abstract. Processing of high volume and high velocity datasets requires
design of algorithms that can exploit the availability of multiple servers
configured for asynchronous and simultaneous processing of smaller
chunks of large datasets. The Map-Reduce paradigm provides a very
effective mechanism for designing efficient algorithms for processing high
volume datasets. Sometimes a simple adaptation of a sequential solu-
tion of a problem to design Map-Reduce algorithms doesn’t draw the
full potential of the paradigm. A completely new rethink of the solution
from the perspective of the powers of Map-Reduce paradigm can provide
very large gains. We present here an example to show that the simple
adaptation does not perform as well as a completely new Map-Reduce
compatible solution. We do this using the problem of finding all for-
mal concepts from a binary dataset. The problem of handling very high
volume data is another important problem and requires newer thinking
when designing solutions. We present here an example of the design of a
model learning solution from a very high volume monitoring data from
a manufacturing environment.

1 Introduction

Dataset sizes in all domains are growing at a pace that is faster than the pace
at which the CPU speeds and the hardware performance metrics are growing.
Most of the data analytics algorithms have high computational complexity and
are rarely bounded within the polynomial time and space limits. Therefore, for
analyzing these very large datasets the only viable alternative is to harness the
power of multiple processors working in parallel, preferably working on differ-
ent chunks of the large dataset. Traditional paradigms for parallel processing
are too restrictive for the current scales of data. The flexibility in deployment
and asynchronous operation of multiple independent servers expected to partic-
ipate in these computations require an equally flexible and adaptable operating
system structure and also a programming paradigm. Map-Reduce is an algo-
rithms design formalism that working within the hadoop kinds of environments
is very suitable for processing large datasets. This paradigm can deploy a flexible
number of asynchronously working servers without requiring extensive message-
passing or requiring shared memory among the processors. Design of data ana-
lytics algorithms using the Map-Reduce algorithms requires one to understand
the nature, the strengths, and the weaknesses of this programming paradigm.
c© Springer International Publishing Switzerland 2015
N. Kumar and V. Bhatnagar (Eds.): BDA 2015, LNCS 9498, pp. 101–107, 2015.
DOI: 10.1007/978-3-319-27057-9 7

102 R. Bhatnagar

Most analytics algorithms are designed as iterative algorithms that assume the
large original dataset to persist across iterations and use some transient data that
stays in dynamic memory. The Map-Reduce paradigm, as typically supported
by hadoop type of environments, is not suitable for multi-iteration algorithms.

We illustrate below an example problem, that of finding all formal concepts
from a large binary dataset. On single processor systems this problem is typically
solved using an iterative formulation that processes the nodes of a Depth-first
search tree. We illustrate a completely new formulation that can be performed
in a single iteration and is facilitated by the power of Mapper and Reducer
Operations. The second example we illustrate relates to a monitored data stream
in which very large amounts of data is generated continuously. We need to use
this data to predict the health related parameters of the underlying system.
A model of the system also needs to be extracted from the same data stream.
All of the data does not need to be retained for any long term record but enough
information and features must be extracted to enable our model-building and
prognostics tasks.

2 Building FCA Lattice

Let us consider the problem of building a lattice of formal concepts from a
binary database. This is an important problem from a large number of knowledge
extraction perspectives.

(a) Binary Data Table (b) Concepts in Data Table

Fig. 1. Example binary dataset and its concepts

The binary dataset in Fig. 1a shows a dataset that is typically encountered
in many application domains. The objects along the rows may be genes and the
columns may correspond to diseases. The objects may also correspond to docu-
ments and the columns may correspond to words that occur in these documents.
An entry of ‘1’ in the table means that the column entry is related to row object

Design of Algorithms for Big Data Analytics 103

and a ‘0’ entry means that the column entry is not related to the row objects. In
many applications binary datasets typically have about 50,000 rows and 1,000
columns. A “concept” existing in such a binary dataset is defined to be a rec-
tangle of only ‘1’ entries that can be formed by arbitrary shuffling of rows and
columns of the binary dataset, such that the rectangle is the largest possible
in the following sense. A rectangle of ‘1’s corresponding to a “concept” should
not be extendable by adding any additional row or column while still meeting
the condition of containing only the ‘1’s in the rectangle. These concepts found
a database are very meaningful and concise representation of co-occurrence or
associational knowledge embedded in the dataset. Figure 1b shows all the con-
cepts embedded in the binary dataset of Fig. 1a.

All the concepts of a binary dataset can also be organized in the form of a
lattice as shown in Fig. 2. The parent-child relationships of this lattice are defined
using the subset/superset relation between their object sets and between their
itemsets. The theory of formal concept analysis [2].

2.1 Inefficient Map-Reduce Based Design

Fig. 2. Example binary dataset and its concepts

Most of the existing algorithms
for finding the concepts are not
scalable to very large datasets.
A dataset of 5000 rows and
60 columns takes more than
twelve hours of CPU time on
standard desktop computers. We
need scalable algorithms that can
process much larger datasets in
reasonable time. Power of paral-
lel computing using Map-Reduce
paradigm can be employed for
designing algorithms that are
much more scalable than the
existing ones. There are various ways in which the concept-discovery problem
can be formulated using the Map-Reduce paradigm and one such formulation
has been presented in [3]. This parallel formulation takes the traditional Depth
First Search (DFS) based algorithm for finding the concepts, uses the Map-
Reduce formulation, and seeks to parallelize the processing of various branches
at each node of the corresponding Breadth First Search tree. This formulation is
not very efficient because it needs to run as many iterations of Map-Reduce as
there are nodes in the DFS/BFS search tree. Multiple iterations of Map-Reduce
make the algorithm computationally very expensive. Inherently, the search for
concepts remains structured as DFS or BFS-based and therefore, at core, a serial
processing of different nodes in the search tree takes place.

Map-Reduce paradigm has been employed to develop faster concept-discovery
algorithms. The first such algorithm was presented in [3] and is a close Map-
Reduce adaptation of the ClosebyOne algorithm [4]. The authors of [5] present

104 R. Bhatnagar

two more algorithms called MRGanter and MRGanter+ that are Map-Reduce
adaptations of the basic DFS based algorithm presented by Ganter in [2]. The
latter of these implementations is shown to perform the best among all possi-
ble algorithms, but the algorithms are run on Twister system that facilitates
iterations of Map-Reduce operations. This is facilitated by splitting the data
into static and dynamic parts and the static parts consisting the large volumes
of the data, are not removed from the servers between the iterations. On the
Mushrooms dataset having 125 attributes and 8124 objects the best of these
algorithms requires 14 Map-Reduce iterations. On a commonly available hadoop
implementations these iterations will become extremely expensive. Our algo-
rithms has abandoned the DFS skeleton for finding the concepts and is using
a different approach better suited to the Map-reduce paradigm. This proposed
algorithms performs the tasks in less than tenth of the time required by the
above mentioned algorithms.

2.2 Efficient Map-Reduce Based Design

We have developed and presented a completely new formulation for the concept
discovery problem, using theoretical basis from the FCA theory and adapting the
Map-Reduce paradigm for its implementation [1]. We show in [1] theoretically
and empirically, that our algorithm is highly efficient when compared to the
BFS/DFS based algorithms, and also much faster compared to Map-Reduce
formulations presented in [3,5].

One major difference of our approach is that we do not seek to enumerate the
entire lattice of concepts for a dataset. Such exhaustive enumeration is always
too large to store in memory and takes too long to compute. Our algorithm
generates a sufficient set of concepts and stores it. This sufficient set of concepts
can then be used to enumerate any other concept in the lattice. The lattice
shown in 2 shows in green color the nodes generated by our algorithm as the
sufficient set of concepts. The remaining nodes of a lattice can then be generated
by simple set union and intersection operations on the concepts in the sufficient
set. This example shows a large number of concepts in the sufficient set, but for
very large datasets typically the sufficient set of concepts is a very small fraction
of the number of all the concepts in the lattice. The process for generating the
sufficient set of is driven in part by a Map-Reduce formulation. This formulation
looks at the problem of finding the rows or columns corresponding to a set of
columns or rows in one single operation. That is, given a set of items, we should
find all those rows for which all the item-columns contain ‘1’s. And then, given
a set of row ids, we should find all those columns such that the given rows have
all ‘1’s in them. For very large datasets these two mapping operations cannot
be easily done as single step macro operations. But map-Reduce enables us to
achieve this and that helps us design a very efficient algorithm. The process of
merging the concept’s components that appear in different regions of rows or
columns can only be partially merged within the map-reduce based formulation.
The final merging of concept components is much less complex problem because
the problem size has been reduced from that of the whole big original data

Design of Algorithms for Big Data Analytics 105

to only the size of the sufficient set of concepts. This last merging of concept
components is done on a single processor machine by our algorithm Table 1.

Table 1. Time (Seconds) enumerating sufficient set and of complete lattice

Dataset Mushroom Anon-Web CensusIncome

of concepts 219010 129009 86532

NextClosure 618 14671 18230

Sequential

CloseByOne 2543 656 7465

Sequential

MRGanter 20269 20110 9654

map-red (5 nodes) (3 nodes) (11 nodes)

MRCbO 241 693 803

map-red (11 nodes) (11 nodes) (11 nodes)

MRGanter+ 198 496 358

map-red (9 nodes) (9 nodes) (9 nodes)

Our algorithm 42 26 69

suffic. set only

map-red (10 nodes) (10 nodes) (10 nodes)

Our algorithm OutOfMemory 361 OutOfMemory

enumeration on

single processor

Number of concepts

in sufficient set 117 365 147

Exhaustive enumeration from the sufficient set may then be performed by
a non-parallelized algorithm on a single processor. It is efficient to create and
store only the sufficient set of concepts. This set implicitly contains information
about all the other concepts in the lattice but we don’t need to keep them in an
enumerated form.

One primary idea underlying a Map-Reduce formulation of an algorithm is
to split the table horizontally into a number of partitions. Each partition is then
processed on an independent server by a Mapper function. The outputs from
the mapper functions are gathered at a central location, sorted, and then split
again among a number of independent servers that run the Reducer function.
The outputs of the reducer function from different servers are then collected at a
central location and form the output of a Map-Reduce iteration. One last step of
the algorithm of merging of concepts’ components is then performed on a single
processor system.

A comparison of two different formulations as reported in [1] can be seen in
the table here.

106 R. Bhatnagar

3 High Velocity Datasets

There are many situations in which a large amount of data is being generated
as a result of monitoring some physical or social system. Storing all the data
is neither useful nor feasible. However, we want to learn from this high volume
stream of data all the essential details about the monitored system and discard
the data. There is some buffer available for storing all monitored data for some
limited window. We consider the case of a spindle from a manufacturing domain
as shown in Fig. 3.

Fig. 3. Spindle testbed

The problem to be addressed is
that the bearings of these spindles
wear out over time and crash during
a manufacturing operation. Such dis-
ruptive crashes cause a lot of loss by
first damaging the piece being man-
ufactured and second by holding up
the pipeline of operations on the shop
floor. It is therefore very valuable to
predict the remaining life of the bear-
ings installed within a spindle. We
installed an angular acceleration sen-
sor on the spindle and this continu-
ously monitors the acceleration and
stores the data. In order to detect the
vibrations that indicate deteriorating health we need to sample the acceleration
at a rate of 25,000 samples per second. In addition to predicting the remaining
life of the bearings we need to find out the characteristics of the operating mode
in which the spindle is running at any time. We would also like to detect any
slow of rapid drifts in the operating modes of the bearings.

The above can be achieved by learning a model of the current mode of oper-
ation and then using this model to perform the above two tasks. The model
of current operating mode can be compared to some pre-existing models in a
library to characterize its current mode. However, it turns out that there is so
much uncertainty and continuous evolution in the models of operation that no
one model come very close to any one other model learned in the past. Predic-
tions based on the closest models from the past did not work very well. Our
models were constructed using the frequency domain features derived from the
sensor data.

We used these features to build regression models to predict the remaining
life of a spindle’s bearings. The plots in Fig. 4 show the results of predicting
the health of the bearings based on the features derived from a 72 h window
immediately preceding the time at which the prediction is made.

In this plot the light blue points show the actual time to failure (TTF) for the
spindle at any point of time. The three other curves show the prediction results of
three different types of regression models constructed by using different types of
features. All these models seem to have an acceptable performance in predicting

Design of Algorithms for Big Data Analytics 107

Fig. 4. Prediction results based on 72 h
window

the remaining life of the bearings. How-
ever, the biggest drawback is that we
need to store data for the preceding 72 h
and use it to generate features to make
these predictions. This is very long time
window given that we need to collect
25,000 samples per second, and also
generate Fourier transform signatures
from 0.5 s time slices as the streaming
data comes in. Any window size smaller
than 72 h does not perform well enough
to predict the remaining life of a spin-
dle. From practical shop-floor perspec-
tive it is impractical to leave a machine
unused for 72 h just so that it can be

monitored for remaining life prediction. The challenge of using and exploiting
the very high volume data still remains. Solutions that we are considering includ-
ing monitoring the spindle for few minutes every couple of hours. Such data may
not be able to generate the rich and informative features that help predict the
remaining life of the bearings.

4 Conclusions

In the discussion above we have presented some challenges that are faced while
designing systems for analytics of Big Data. We have presented the example
of finding formal concepts from a large binary dataset and have shown that
designing Map-reduce compatible algorithms must be attempted and this can
result in significantly enhanced performance. We have also presented an example
of a high volume data stream situation and described the challenges that need
to be faced in exploiting the data stream effectively.

References

1. Bhatnagar, R., Kumar, L.: An efficient map-reduce algorithm for computing formal
concepts from binary data. In: 2015 IEEE International Conference on Big Data,
Big Data 2015, Santa Clara (to appear, 2015)

2. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer, Heidelberg (2012)

3. Krajca, P., Vychodil, V.: Distributed algorithm for computing formal con-
cepts using map-reduce framework. In: Adams, N.M., Robardet, C., Siebes, A.,
Boulicaut, J.-F. (eds.) IDA 2009. LNCS, vol. 5772, pp. 333–344. Springer,
Heidelberg (2009)

4. Kuznetsov, S.O.: A fast algorithm for computing all intersections of objects in a
finite semi-lattice. Autom. Documentation Math. Linguist. 27(5), 11–21 (1993)

5. Xu, B., de Fréin, R., Robson, E., Ó Foghlú, M.: Distributed formal concept analysis
algorithms based on an iterative mapreduce framework. In: Domenach, F., Ignatov,
D.I., Poelmans, J. (eds.) ICFCA 2012. LNCS, vol. 7278, pp. 292–308. Springer,
Heidelberg (2012)

	Design of Algorithms for Big Data Analytics
	1 Introduction
	2 Building FCA Lattice
	2.1 Inefficient Map-Reduce Based Design
	2.2 Efficient Map-Reduce Based Design

	3 High Velocity Datasets
	4 Conclusions
	References

