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Abstract. High-utility itemset mining has attracted significant atten-
tion from the research community. Identifying high-utility itemsets from
a transaction database can help business owners to earn a better profit
by promoting the sales of high-utility itemsets. The technique also finds
applications in web-click stream analysis, biomedical data analysis, mobile
E-commerce etc. Several algorithms have been proposed to mine high-
utility itemsets from a transaction database. However, these algorithms
assume that items have a constant profit associated with them and don’t
embed the notion of discount into the utility-mining framework. In this
paper, we integrate the notion of discount in state-of-the-art utility-
mining algorithms and propose an algorithm for efficiently mining high-
utility itemsets. We conduct extensive experiments on real and synthetic
datasets and our results show that our proposed algorithm outperforms
the state-of-the-art algorithms in terms of total execution time and num-
ber of itemsets that need to be explored.

1 Introduction

High-utility itemset mining finds patterns from a database which have their
utility value no less than a given minimum utility-threshold. In utility-itemset
mining, a utility function is generally defined to measure the importance of an
itemset and varies according to an application domain. For example, in a retail
store, a utility function can measure the profit made by the store by selling
the items in the itemset together over a period of time. Recently, the high-
utility itemset mining research has up-surged due to its wide applicability to
different applications such as identifying fraudulent credit card transactions,
network intrusions, medicine [1], molecular biology etc. Utility-mining has also
been applied with other mining techniques like sequential-pattern mining [2] and
episode-pattern mining [3]. One of the main reason of interest in the topic is due
to its model expressiveness in terms of capturing the relevance and multiplicity
of individual items within a transaction, which were the shortcomings in the case
of frequent itemset mining (FIM). The FIM considers the frequency of itemsets
to define the importance of an itemset and works on the model of presence and
absence of an item only.

The majority of the utility mining algorithms consider that the items have
constant profits associated them and do not take into account various discount
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schemes prevalent in the retail-market domain. However, in real life scenarios,
shopkeepers often give discounts on the bulk purchase of items to improve their
sales and earn a better profit. Discounts are also given on items which are close to
being expired. Online shopping sites like Flipkart and Snapdeal provide discounts
on the bulk purchase of items which varies for different items. Discounts are also
given on the supply side of the retail chain. For example, Wal-Mart is able to
offer low prices in part because it buys large volumes of goods from suppliers at
cheaper rates. Suppliers often bid low prices in order to get a large amount of
business which Wal-Mart promises. Mining of high-utility itemsets may result in
the generation of false positives if the discount notion is not included. We propose
to integrate the discount notion in the process of high-utility mining so as to get
the correct high-utility itemsets as the output. Specifically, algorithms proposed
by Dawar et al. [4] and Viger et al. [5] are two state-of-the-art algorithms for
mining high-utility itemsets. We show how to embed the notion of discount in
these algorithms and avoid false positives in the result set.

The algorithms on high-utility itemset mining can be classified into two dif-
ferent paradigms, tree-based algorithms [4,6] and vertical mining algorithms [7].
The tree-based algorithms mainly work in two phases. In the first phase, they
find candidate high-utility itemsets, which are then verified in the second phase.
The advantage of tree-based approaches is that the tree data structure is a com-
pact representation of the complete transaction database and allows mining of
candidate high-utility itemsets quickly. However, the verification time taken by
these algorithms increases with the number of candidates generated. The vertical
mining algorithms use an Inverted-list like data structure for its working. The
algorithms in this category basically work similar to Apriori [8] and generate
k-length high-utility itemsets by intersecting (joining) the k − 1 itemsets. Basi-
cally, these algorithms first generate all the singleton high-utility itemsets and
then proceed to the generation of pairs, triplets and so on. However, solutions
based on vertical mining approach are simple and have shown to perform better
as compared to tree-based approaches. But, the join operation cost is generally
higher for small-size itemsets as compared to join operation cost for large-size
itemsets. It is due to the size of lists associated with small itemsets being more
than size of lists associated with large itemsets. On the other hand, it is efficient
to perform join for itemsets with small size Inverted-list.

In order to avoid the costly join operation for short itemsets in the case of
Inverted-list based approaches and avoid the costly operation of verifying the
candidates in the case of tree-based approaches, we propose an algorithm which
generates high-utility patterns without generating any candidate. Basically, our
proposed approach combines the techniques used in tree-based and vertical min-
ing based algorithm. The idea is to start with a tree-based recursive algorithm
and traverse the tree until there is a possibility of high-utility itemset being
generated. The algorithm then switches to vertical mining algorithm. We, in
this case, study the performance gained by combining UP-Hist tree and FHM
approaches.
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Our research contributions can be summarized as follows:

– We show how the notion of discount can be embedded in the state-of-the-art
high-utility itemsets mining algorithms to efficiently retrieve the correct set
of patterns.

– We propose an algorithm, namely UP-Hist FHM discount, which combines
two state-of-the-art algorithms, UP-Hist Growth and FHM.

– We conduct extensive experiments on real as well as synthetic datasets and
the results demonstrate that our proposed algorithm outperforms the state-
of-the-art algorithms individually in terms of total execution time and the
number of itemsets explored.

2 Related Work

Frequent-itemset mining [8,9] has been studied extensively in the literature.
Agrawal et al. [8] proposed an algorithm named Apriori, for mining association
rules from market-basket data. Their algorithm was based on the downward clo-
sure property [8]. The downward closure property states that every subset of a
frequent itemset is also frequent. Park et al. [10] proposed a hash-based algo-
rithm for mining association rules which generates less number of candidates
compared to Apriori algorithm. Zaki et al. [11] proposed an algorithm, namely
ECLAT, for mining association rules which used itemset clustering to find the
set of potentially maximal frequent itemsets. Han et al. [9] proposed a pattern-
growth algorithm to find frequent itemsets by using FP-tree data structure.
Vu et al. [12] proposed an algorithm namely FEM, which combined the FP-
Growth and ECLAT algorithm for mining frequent patterns. However, frequent-
itemset mining algorithms can’t be used to find high-utility itemsets as it is not
necessarily true that a frequent itemset is also a high-utility itemset in the data-
base. On the other hand, mining high-utility patterns is challenging compared
to the frequent-itemset mining, as there is no downward closure property [8] like
we have in frequent-itemset mining scenario.

Several algorithms have also been proposed to find high-utility itemsets. Liu
et al. [13] proposed a two-phase algorithm which generates candidate high-utility
itemsets in the first phase and verification is done in the second phase. Ahmed
et al. [14] proposed another two-phase algorithm, which uses a data structure
named IHUP-Tree, to mine high-utility patterns incrementally from dynamic
databases. The problem with the above-mentioned algorithms is the generation
of a huge amount of candidates in the first phase which leads to longer execution
times. In order to reduce the number of candidates, Tseng et al. [6] proposed a
new data structure called UP-Tree and algorithms, namely UP-Growth [6] and
UP-Growth+ [15]. The authors proposed effective strategies like DGU, DGN,
DLU and DLN to compute better utility estimates. In order to reduce the num-
ber of candidates generated in the first phase by UP-tree based algorithms,
Dawar et al. [4] proposed another data structure UP-Hist tree and better utility
estimates. Liu et al. [7] proposed a new data structure named utility-lists and an
algorithm HUI-Miner for mining high-utility itemsets. The algorithm avoids the
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costly generation and verification of candidates. However, the joining of utility-
lists of an itemset to produce a new itemset is a costly operation. In order to
reduce the number of join operations, Viger et al. [5] proposed a novel strat-
egy EUCP(Estimated Utility Co-occurrence Pruning) to prune itemsets without
performing the join operation. Recently, Li et al. [16] proposed several strategies
to embed discount notion in the utility mining framework. Discount strategies
like “buy 2 get 1 free”, “buy 1 get the second at 70 % discount” were considered.
They proposed a three-phase level-wise algorithm to mine high-utility itemsets.
In this paper, we propose an algorithm, which is efficient compared to the state-
of-the-art algorithm for mining high-utility itemsets with discount strategies.

3 Background

In this section, we present some definitions given in the earlier works and describe
the problem statement formally. We also discuss the data structures and state-
of-the-art algorithms for mining high-utility itemsets briefly.

3.1 Preliminary

We have a set of m distinct items I = {i1, i2, ..., im}, where each item has a
profit pr(ip) (external utility) with respect to number of quantities. An itemset
X of length k is a set of k items X = {i1, i2, ..., ik}, where for j ∈ 1.....k, ij ∈ I.
A transaction database D = {T1, T2, ....., Tn} consists of a set of n transactions,
where every transaction has a subset of items belonging to I. Every item ip in a
transaction Td has a quantity q(ip, Td) associated with it. Below we define how
utility of an item, an itemset can be computed in the context of a transaction.

Definition 1 (Utility of an item in a transaction). The utility of an item
ip in a transaction Td is denoted as u(ip, Td) and defined as the product of the
profit of the item and its quantity in the transaction i.e. u(ip, Td) = q(ip, Td) ∗
pr(ip).

Definition 2 (Utility of an itemset in a transaction). The utility of
an itemset X in a transaction Td is denoted as u(X,Td) and defined as∑

X⊆Td∧ip∈X u(ip, Td).

We also define a utility of a transaction as similar to an itemset over a
transaction as given below.

Definition 3 (Utility of transaction). The utility of a transaction Td is
denoted as TU(Td) and defined as

∑
ip∈Td

u(ip, Td).

Let us consider the example database shown in Table 1 and the profit asso-
ciated with each item in Table 2. The utility of item {A} in T3 = 5 and the
utility of itemset {A,B} in T3 denoted by u({A,B}, T3) = u(A, T3)+u(B, T3) =
5 + 6 = 11. The transaction utility of every transaction is shown in Table 1.
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Table 1. Example Database

TID Transaction TU

T1 (A : 1) (C : 1) (D : 1) 9

T2 (A : 2) (C : 6) (E : 2) (G : 5) 67

T3 (A : 1) (B : 2) (C : 1) (D : 6) (E : 1) (F : 5) 40

T4 (B : 4) (C : 3) (D : 3) (E : 1) 29

T5 (B : 2) (C : 2) (E : 1) (G : 2) 29

Table 2. Profit Table

Item Profit

A 5

B 3

C 2

D 2

E 5

F 2

G 7

Definition 4 (Utility of an itemset in Database). The utility of an itemset
X in database D is denoted as u(X) and defined as

∑
X⊆Td∧Td∈D u(X,Td).

For example, u(B,C) = u({B,C}, T3) + u({B,C}, T4) + u({B,C}, T5) =
8 + 18 + 10 = 36.

Definition 5 (High-utility itemset). An itemset is called a high-utility item-
set if its utility is no less than a user-specified minimum threshold denoted by
min util.

For example, u(C,E) = u({C,E}, T2) + u({C,E}, T3) + u({C,E}, T4) +
u({C,E}, T5) = 22 + 7 + 11 + 9 = 49. If min util = 40, then {C,E} is a
high-utility itemset. However, if min util = 50, then {C,E} is a low-utility
itemset.

Definition 6 (Problem Statement). Given a transaction database D and a
minimum utility threshold min util, the aim is to find all the itemsets which
have high-utility.

The high-utility itemsets at minimum utility threshold 50 are {CG}:65,
{EG}:64, {ACG}:57, {AEG}:55, {BCE}:51, {CEG}:80, {ACEG}:67 and
{BCDE}:54. We now describe the concept of transaction utility and transaction
weighted downward closure (TWDC) [17].

Definition 7 (TWU of an itemset). Transaction-weighted utility of an item-
set X is the sum of the transaction utilities of all the transactions containing X,
which is denoted as TWU(X) and defined as

∑
X⊆Td∧Td∈D TU(Td).

Definition 8 (High TWU itemset). An itemset X is called a high-
transaction-weighted utility itemset (HTWUI), if TWU(X) is no less than
min util.

Property 1 (Transaction-weighted downward closure). For any itemset
X, if X is not a (HTWUI), any superset of X is not a HTWUI.

For example, TU(T1) = u({ACD}, T1) = 9;TWU({A}) = TU(T1) +
TU(T2) + TU(T3) = 116. If min util = 110, {A} is a HTWUI. However, if
min util = 120, {A} and any of its supersets are not HTWUIs.
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3.2 UP-Hist Tree and UP-Hist Algorithm

UP-Hist Growth is a tree-based algorithm that uses the UP-Hist tree for mining
high-utility itemsets. The UP-Hist tree is created in two database scans. In
the first scan of the database, TWU of individual items is computed. Items
which have their TWU values less than the minimum threshold are identified
and removed. The remaining items in the transactions are sorted in descending
order of their TWU value and inserted to construct a global UP-Hist tree in
the second scan. The root of the tree is a special empty node which points
to its child nodes. Every other node N in UP-Hist tree [4] consists of a name
N.item, overestimated utility N.nu, support count N.count, a histogram of item
quantities (explained later), a pointer to the parent node N.parent and a pointer
N.hlink to the node which has the same name as N.name. The support count of
a node N along a path is the number of transactions in the database that contain
the itemset consisting of items on the path from the root to that node. In order
to facilitate efficient traversal of the tree, a header table is also maintained. The
header table has three columns, Item, TWU and Link. The nodes in a UP-Hist
tree along a path are maintained in descending order of their TWU values in
the header table. All nodes with the same label are stored in a linked list and
the link pointer in the header table points to the head of the list. The histogram
associated with every node of the UP-Hist tree is defined below.

Definition 9 (Histogram). A histogram h is a set of pairs 〈qi, numi〉, where
qi is an item quantity and numi is the number of transactions that contain qi
copies of an item.

The histogram associated with each node helps in computing the minimum
and maximum quantity estimates of the node as defined below.

Definition 10 (minC). Let h be a histogram, associated with an item-node
Ni, consisting of n, (1 ≤ i ≤ n) pairs < qi, numi >, sorted in ascending
order of qi. minC(Ni, s) returns the sum of item-copies of k entries of h, i.e.,
minC(Ni, s) =

∑k
1 qi, such that k is the minimal number fulfilling k ≤ ∑k

1 numi.

Definition 11 (maxC). Let h be a histogram, associated with an item-node
Ni, consisting of n, (1 ≤ i ≤ n) pairs < qi, numi >, sorted in descend-
ing order of qi. maxC(Ni, s) returns the sum of item-copies of k entries of
h, i.e., maxC(Ni, s) =

∑k
1 qi, such that k is the minimal number fulfilling

k ≤ ∑k
1 numi.

For example, the histogram of item C is h = {< 1, 2 >,< 2, 1 >,< 3, 1 >,<
6, 1 >} and let support be 3. minC(C, 3) and maxC(C, 3) is 3 and 11 respec-
tively. These quantity estimates are used by the algorithm to finally compute
better estimates for the lower-bound and upper-bound value of any itemset. The
readers can refer to [4] for more details of the algorithm.
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3.3 Utility-List Data Structure and FHM Algorithm

FHM [5] is a vertical data mining algorithm that uses a utility-list data structure
for mining high-utility itemsets. A utility-list associated with an itemset I is
a list of triples storing three columns of information: TID, Iutils and Rutils.
TID is a transaction identifier. Iutils(I, Ti) is the exact utility of itemset I in
the transaction Ti. Rutils(I, Ti) is the aggregate utility value of items which
occur after itemset I in transaction Ti. FHM algorithm assumes that items in
a transaction are sorted in ascending order of their TWU values. For example,
the utility-list of items {A} and {B} for our example database is shown in
Fig. 1. FHM works similar to HUI-Miner algorithm in a level-wise manner. The
algorithm joins two {k − 1}-length itemsets to get a {k}-length itemset. For
example, the utility-list of itemset {AB} constructed from the intersection of
utility-list of item {A} and {B} consists of single tuple < 3, 11, 30 > only.

TID Iutils Rutils
1 5 2
2 10 22
3 5 7

TID Iutils Rutils
3 6 12
4 12 11
5 6 23

Fig. 1. Utility-list of item {A} and {B}

3.4 Three-Phase Algorithm for Mining High-Utility Itemsets with
Discount Strategies

Recently, Li et al. [16] proposed a three-phase algorithm for mining high-utility
itemsets from a transaction database by applying several discount strategies.
They propose to use rules to specify discount strategies and discussed four rules;
“buy 1 with 50 % discount”, “buy 2 get 1 free”, “buy 1 get the second at 70 %
discount” and “zero discount or no discount”.

To mine correct set of high-utility itemsets with a discount notion, they incor-
porate all applicable discounts while computing of TWU of singleton itemsets.
The {1}-itemset with their TWU less than the threshold are pruned immediately.
In the second phase, a level-wise search is performed to find all the candidate
high-utility itemsets. However, they do not consider any discount related infor-
mation afterwards and their utility estimates are very loose. Due to which, their
approach ends up in the generation of many candidate itemsets. In the third
phase, the exact utility of candidate-itemsets is computed to find the actual
high-utility itemsets.

4 Integration of Discount Notion in State-of-the-art
Algorithms

In this section, we will discuss how trivial it is to introduce the discount notion
in state-of-the-art algorithms, UP-Hist Growth and FHM.
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4.1 UP-Hist Discount Algorithm

The utility value estimates are the places where if the discount notion is incorpo-
rated then it may help to compute better utility estimates. The tight estimates
will result into improved pruning of useless search space. The UP-Hist algorithm
computes TWU, Lower-bound and Upper-bound utility values of itemsets while
exploring the search space for finding high-utility itemsets. The incorporation of
various discounts schemes on items while computing the TWU value of singleton
itemsets is straight forward, i.e., apply discount rules while computing the TU
value of a transaction. We embed the notion of discount by assuming that differ-
ent profits are associated with different quantities of an item x in the database.
The discount strategies specified by Li et al. [16] can also be represented by a
quantity-profit table as shown in Table 3.

Table 3. Quantity Profit Table

Item 1 2 3 4 5 6

A 5 7 11 13 13 13

B 3 4 5 6 10 10

C 2 3 4 6 8 10

D 2 3 4 6 8 10

E 5 8 13 17 21 21

F 2 3 4 7 9 9

G 7 8 18 25 30 30

Definition 12 (Maximum and Minimum profit per unit item of an
item x). Let x be an item in database D. Let minq(x) and maxq(x) be the
minimum and maximum quantity associated with item x in D. The minimum
quantity of item x in the database. Maximum profit per unit item of x denoted
by max pr(x) is defined as

max pr(x) = prx(minq(x))/minq(x)

prx(minq(x)) is the profit of item x at minq(x) quantity from the quantity profit
table. Similarly, min pr(x) is defined as

min pr(x) = prx(maxq(x))/maxq(x)

We now show how discounts rules can be considered to compute lower-bound
and upper-bound estimates.

Definition 13 (Maximum utility of an item in a set of transactions
with support s). Let x be an item with support total support(x), utility u(x)
in database D. minq(x) is the minimum quantity of item x in the database. The
maximum utility of x for s transactions is denoted by MaxU(x, s) is defined as

MaxU(x, s) = u(x) − (minq(x) ∗ min pr(x)).
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Definition 14 (Minimum utility of an item in a set of transactions
with support s). Let x be an item with support total support(x), utility u(x)
in database D. maxq(x) is the maximum quantity of item x in the database. The
minimum utility of x for s transactions is denoted by MinU(x, s) is defined as

MinU(x, s) = u(x) − (maxq(x) ∗ max pr(x))

Using the upper-bound and lower-bound utility values of individual items,
we can compute the lower-bound and upper-bound utility value of an itemset as
given below.

Definition 15 (Upper-bound utility). Given an itemset I =< a1, a2, ..., ak >
corresponding to a path in UP-Hist tree , with support count s, the upper-bound
utility of itemset I denoted by ub(I) is defined as

ub(I) =
k∑

i=1

min(maxC(ai, s) ∗ max lpr(ai),MaxU(ai, s))

max lpr(ai) is the maximum profit per unit item of ai.

Definition 16 (Lower-bound utility). Given an itemset I =< a1, a2, ..., ak >
corresponding to a path in UP-Hist tree , with support count s, the lower bound
utility value of itemset I denoted by lb(I) is defined as

lb(I) =
k∑

i=1

max(minC(ai, s) ∗ min lpr(ai),MinU(ai, s))

min lpr(ai) is the minimum profit per unit item of ai.

Claim 1. The utility values of an itemset I are correct lower bound and upper
bound estimates of the exact utility of I.

4.2 FHM Discount Algorithm

The FHM algorithm constructs the utility-list of singleton items and explores
the search-space in a level-wise manner. The utility-list data structure keeps the
information of utility of an itemset transaction-wise. Therefore, once discount
rules are applied for individual items that information remains in the utility list
for each transaction. During join of two {k− 1} length itemsets, computation of
exact-utility and remaining-utility uses utility value of each node (transaction) in
the intersection list. Therefore, discount rules once applied over each transaction
are carried forward in the case of a vertical mining-based approach like FHM.

5 Mining High-Utility Itemsets

In this section, we present our algorithm, UP-Hist FHM discount, that mines
high-utility itemsets from a transaction database and incorporates discount
notion. We will also illustrate the working of our algorithm with an example.
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Fig. 2. Global UP-Hist Tree

Our algorithm is recursive and requires two scans of the database. In the
first scan, transactions are scanned to compute the TWU values of each item.
Items which have their TWU less than the utility threshold parameter are called
as unpromising items and removed from further consideration. In the next scan
of the database, items in every transaction are sorted in decreasing order of
their TWU values. The transactions are then inserted one-by-one to construct
the global UP-Hist tree. The utility-list of singleton items is also created in
this step.

Each item i is picked from the header table in a bottom-up manner. The
sum of node utility is computed by traversing the linked list associated with
item i and if the sum is no less than the utility threshold, the upper-bound
utility of the itemset including item i is computed. However, if the sum value
for the node is less, the current itemset including item i as well as any superset
itemset can not be of high-utility. Therefore, no processing is done further for
the itemset. In the other case, the upper-bound utility is checked with respect
to the threshold parameter. The algorithm switches to FHM strategy if the
estimate of the itemset is no less than the threshold, i.e., the utility-list of the
itemset is created and FHM algorithm is invoked. Else, the local tree is created
and the UP-Hist algorithm is called recursively. We now present an example
to illustrate the working of our proposed algorithm. We consider the example
database shown in Table 1 with a quantity profit table as shown in Table 3. Let
the utility threshold be 36. The global UP-Hist tree is shown in Fig. 2. Since, the
header table is processed in a bottom-up manner, item {D} is processed first.

The linked list associated with item {D} is traversed and the sum of node
utilities will be computed. The sum of node utilities is greater than the threshold.
Therefore, item D is processed further. The upper-bound utility of item D is 16.
Since, the upper bound utility value is less than threshold, a local tree for prefix
D is created using paths < CA >: 9, < CEAB >: 26 and < CEB >: 19. The set
of these paths is called Conditional Pattern Base (CPB). The TWU of each item
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Algorithm 1. UP-Hist FHM discount(Tx,Hx,X)
Input: A UP-Hist tree T x, a header table H x, an itemset X, a minimum utility
threshold min util.
Output: All candidate high-utility itemsets in T x.

1: for each entry {i} in H x do
2: Compute node.nu sum by following the links from the header table for each

item {i}. Also, compute the upper bound utility of item {i} denoted by UB({i})
3: if ( then node.nu sum(i) ≥ min util)
4: if ( then UBsum(a i) ≥ min util)
5: Construct I = prefix ∪ i and its utility-list. Construct the utility-list of

I-1 extensions (ULs) and call FHM(Y,item,ULs,threshold)
6: else
7: Construct the CPB of I = X ∪ i.
8: end if
9: Put local promising items in {I} − CPB into H I and apply DLU, DLN.

Insert every reorganized path into T I.
10: if T I �= null then
11: Call UP-Hist FHM discount(T I,H I,I)
12: end if
13: end if
14: end for

in the CPB is computed similar to original database and unpromising items are
removed. For our example, Item A is an unpromising item and hence removed.
The transactions are reorganized and inserted to form the local tree of item
{D}. In the next recursive invocation, item {B} from the local header of {D} is
processed. Like the previous step, the sum of node-utility for item {B} is greater
than the threshold and the upper bound utility of itemset {BD} is 25, which is
less than the minimum threshold. The local tree of item {BD} prefix is created
and the algorithm is called recursively. Next item in the header table is {E}.
The upper-bound utility value of itemset {EBD} is 40, which is greater than
the threshold. Therefore, the algorithm now constructs a utility-list for itemset
{BED} and switches to FHM strategy. The FHM algorithm computes the exact
utility of itemset {BED}, which is 34. The algorithm explores the supersets
of {EBD} to find high-utility itemsets. After FHM completes its execution,
the execution proceeds with the UP-Hist Growth algorithm. The complete set
of high-utility itemsets returned by the algorithm is: {BCDE}:40, {BCE}:38,
{G}:38, {AG}:37, {AEG}:45, {ACEG}:55, {ACG}:47, {EG}:51, {CEG}:64,
{CG}:51, {ACE}:37 and {CE}:42.

6 Experiments and Results

In this section, we compare the performance of our proposed algorithm against
the state-of-the-art algorithms UP-Hist Growth [4] and FHM [5]. We integrated
our model in FHM and UP-Hist Growth to make them comparable with our
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Table 4. Characteristics of Real Datasets

Dataset #T x Avg. length #Items Type

Kosarak 9,90,002 8.1 41270 Sparse

Retail 88,162 10.3 16470 Sparse

Accidents 3,40,183 33.8 468 Dense

Connect 67,557 43 129 Dense
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Fig. 3. Performance Evaluation on Sparse Datasets

proposed algorithm. We also implemented the three-phase algorithm integrating
discount strategies [16]. However, we don’t report the results of the three-phase
algorithm as the execution didn’t stop for three days on dense datasets. The
algorithm gave out of memory error when executed on sparse datasets. We con-
duct experiments on various real and synthetic datasets. The description of the
real datasets is shown in Table 4. We implemented all the algorithms in Java
with JDK 1.7 on a Windows 8 platform. The experiments were performed on
an Intel Xeon(R) CPU=26500@2.00 GHz with 64 GB RAM. All real datasets
were obtained from FIMI Repository [18]. The quantity information for items
was chosen randomly from 1 to 5. The external utility values were generated
between 1 to 1000 using log-normal distribution. We compared the performance
of the algorithms on the basis of total execution time as well as the number of
itemsets explored. In our experiments, the utility values are expressed in terms
of percentage. For each dataset, we find the utility threshold above which there
are no high-utility itemsets and use it as a reference to express other thresh-
old values in percentage. The results on sparse datasets are shown in Fig. 3.
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Fig. 4. Performance Evaluation on Dense Datasets
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Fig. 5. Scalability on Accidents Dataset

The results show that our proposed algorithm beats FHM in terms of total
execution time and number of itemsets explored. We observe that the difference
between the runtime of the algorithms becomes marginal at high threshold value.

The results on dense datasets are shown in Fig. 4. The results show the better
performance of our algorithm at lower threshold values, especially on Connect
and Accidents dataset. UP-Hist performs worst on dense datasets as it generates
a lot of candidate itemsets which need to be verified later. We are unable to
report the execution time on Connect dataset at lower threshold values as UP-
Hist algorithm didn’t stop execution for more than 10 h.

We also conduct experiments to evaluate the scalability of our algorithm on
Accidents dataset by varying the number of transactions in the dataset and the
result is shown in Fig. 5. The result shows that performance of our algorithm
improves with an increase in the number of transactions.
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7 Conclusion and Future Work

In this paper, we integrate the notion of discount in the state-of-the-art algo-
rithms and propose an algorithm to mine high-utility itemsets. We conduct
extensive experiments on various real and synthetic datasets and the results
confirm the superior performance of our algorithm compared to the state-of-
the-art algorithms in terms of total execution time and the number of itemsets
explored.
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