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Abstract. Given a dataset, exemplars are subset of data points that can rep-
resent a set of data points without significance loss of information. Affinity
propagation is an exemplar discovery technique that, unlike k–centres cluster-
ing, gives uniform preference to all data points. The data points iteratively
exchange real–valued messages, until clusters with their representative exemplar
become apparent.
In this paper, we propose a Class Aware Exemplar Discovery (CAED)

algorithm, which assigns preference value to data points based on their ability to
differentiate samples of one class from others. To aid this, CAED performs class
wise ranking of data points, assigning preference value to each data point based
on its class wise rank. While exchanging messages, data points with better
representative ability are more favored for being chosen as exemplar over other
data points.
The proposed method is evaluated over 18 gene expression datasets to check

its efficacy for selection of relevant exemplars from large datasets. Experimental
evaluation exhibits improvement in classification accuracy over affinity propa-
gation and other state-of-art feature selection techniques. Class Aware Exemplar
Discovery converges in lesser iterations as compared to affinity propagation
thereby dropping the execution time significantly.
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1 Introduction

With the advent of microarray technology, simultaneous profiling of thousands of gene
expression across multiple samples in a single experiment was made possible. The
microarray technology generates huge amount of gene expression data whose com-
petitive analysis is challenging. Moreover, it has been observed that gene expression
datasets has large number of uninformative and redundant features which increases
complexity of classification algorithms [1, 11–13].

To circumvent these problems many feature selection techniques are being pro-
posed. The purpose of feature selection is extracting relevant features from the
observed data which improves results of machine learning models. Compared with the
dimensionality reduction techniques like Principal Component Analysis (PCA) and
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Linear Discriminate Analysis (LDA), feature selection algorithms only select the rel-
evant subset of features instead of altering the original features. The selected relevant
genes, also known as “biomarkers”, find their application in medicine for discovery of
new diseases, development of new pharmaceuticals [2, 12] etc. Existing work on
feature subset selection from gene expression data can be categorized as (i) classifica-
tion and (ii) clustering based approaches. The classification based approaches like
ReliefF [3] and Correlation based Feature Selection [4], ranks features based on their
intrinsic properties and select subset of top ranked features. The clustering based
approaches like k-medoids [5] and affinity propagation [6] clusters the features based
on their similarity with each other. The feature set is reduced to the representative of
each cluster.

Affinity propagation proposed by Frey and Dueck in [6] for feature subset selection
identifies subset of features which can represent the dataset. Such features are called
exemplars. Affinity propagation takes similarity between features as input. Instead of
specifying the number of clusters, a real number called preference value for all features
is also passed as input to affinity propagation. The number of identified exemplars is
influenced by the preference value. Larger the preference value more the clusters are
formed. Features exchange real- valued messages until clusters with their representative
exemplars emerge. Affinity propagation has found its application in the machine
learning community, computational biology and computer vision. However, afore-
mentioned approach gives uniform preference to all features and messages are
exchanged iteratively between features irrespective of the capability of features to
differentiate samples of one class from samples of other classes.

In this paper, we propose a Class Aware Exemplar Discovery (CAED) algorithm
which calculates class wise ranking for all features and incorporates this information
while assigning preference value to features. The features are clustered by exchanging
two types of messages viz. responsibility and availability iteratively. The messages are
exchanged in a way that the features ranked higher in class wise ranking are favored
over the feature ranked lower which leads to better exemplar discovery.

We evaluated correctness of our approach by conducting experiments on 18 pub-
licly available microarray gene expression datasets. We recorded classification accu-
racy as our performance metric. Improvement in classification accuracy over affinity
propagation of three classifiers namely Support Vector Machine, Naive Bayes and C4.5
Decision Tree is achieved for 16, 17 and 13 datasets respectively.

2 Overview of Our Approach

The workflow of our approach is shown in Fig. 1. Gene expression matrix is trans-
formed into similarity matrix using a distance measure. The diagonal values of simi-
larity matrix also called preferences are updated using class aware ranking of features.
The updated matrix is used for class aware clustering. The representative from each
cluster called exemplar is extracted and the reduced set of features is evaluated over
classifiers.

Class Aware Exemplar Discovery 245



2.1 Gene Data

We selected 18 publicly available microarray datasets (available at http://faculty.iitr.ac.
in/*patelfec/index.html) for experimental evaluation of Class Aware Exemplar Dis-
covery algorithm. Microarray datasets are gene expression matrices, where expression
value for each gene is measured over different samples. Generally total numbers of
samples are very few compared to the features.

2.2 Gene-Gene Similarity

For a gene expression matrix Dn×m, with n features and m samples, similarity between
every two features is calculated and stored in similarity matrix Sn×n. The similarity s(i,
k) indicates how well the feature with index k is suited to be the exemplar for fea-
turei. The aim is to maximize the similarity, so we take negative of the distance
between each feature. We used negative of Euclidean distance as the similarity measure
for experimental evaluation.

2.3 Class Aware Preference

The affinity propagation algorithm takes similarity matrix and a real number called
preference for each feature as input. For a similarity matrix Sn×n, the value s i; ið Þ where
i ¼ f1; 2; 3. . .; ng is the preference value. These values are called preferences since the
feature i with larger values sði; iÞ is more likely to be chosen as exemplar. The number
of identified exemplars (number of clusters) is influenced by the values of input
preference. Larger the value more the clusters are formed. The preference value can be
uniform or non-uniform. If all features are equally suitable as exemplars, the preference
value is set to a common value. The preference value can be set as any number in the
range of min

js:t:j6¼isði; jÞ to max
js:t:j 6¼isði; jÞ : i; j ¼ f1; 2; 3. . .; ng.

Fig. 1. Workflow of Class Aware Exemplar Discovery (CAED)
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We propose assignment of preference value to a feature based on its ability to
distinguish samples of one class from other classes. To aid this, we do class wise
ranking of features using p-metric [1] by one versus all strategy. Top 0.015 % of
features from each class is selected and are assigned preference value zero thereby
increasing their probability of being chosen as exemplar.

Figure 2 depicts class wise ranking of features where each feature is assigned
multiple ranks, one for each class. The high ranked features of each class are
highlighted.

The other features are assigned uniform preference value i.e.
median
js:t:j 6¼i sði; jÞ : i:j ¼ f1; 2; 3. . .; ng. Figure 3 shows how accuracy of classifiers namely
support vector machine (SVM), Naïve Bayes (NB) and C4.5 decision tree (DT) varied
by changing the count of features which are assigned high value.

We observed that by selecting more than 0.015 % of features from each class no
further improvement in classification accuracy of the classifiers was observed.

2.4 Class Aware Message Passing

The similarity matrix with class aware preference values is passed to affinity propa-
gation for exemplar discovery. Affinity propagation is a message passing based clus-
tering algorithm. Affinity propagation iteratively transmits real-valued messages among
features until a good set of clusters with their representative exemplar emerge. The
messages exchanged are of two kinds viz.

Responsibility message denoted as rði; kÞ is sent from feature i to candidate
exemplar point k. It indicates the collected evidence for how appropriate feature k is to
be chosen as exemplar for feature i.

Availability message denoted as aði; kÞ is sent from candidate exemplar point k to
feature i:. It indicates the collected evidence of how appropriate it would be, for feature
i to choose feature k as its exemplar.

We propose class aware message passing algorithm where strength of message
exchanged between two features depends on their ability to discriminate samples
among different classes.

Fig. 2. Depiction of class wise ranking of features
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Each iteration of affinity propagation has three steps:

Step 1. Calculating responsibilities r(i, k) given the availabilities
Step 2. Updating all availabilities a(i, k) given the responsibilities
Step 3. Combining the responsibilities and availabilities to generate clusters

Calculating Responsibilities r(i,k) Given the Availabilities: For a dataset Dn×m with
n features, m samples and p classes we calculate class wise rank for each feature using
p–metric. Class wise rank of each feature i is denoted as Ri ¼ fC1;C2;C3. . .::;Cpg
where i ¼ f1; 2; 3::ng and C1 is rank of feature i for class 1. To calculate r(i,k) we
evaluate Ri and Rk. If rank of a feature i for class j is less than n

2 i.e. Cj� n
2, it lies in the

upper half of the ranking and we denote it as H, else it lies in lower half and denoted as
L. Hence, the ranking of feature i is changed to suppose Ri ¼ fH;H; L; . . .Lg. Similarly
ranking of feature k is changed to suppose Rk ¼ fL;H; L. . .; Lg. The strength of
responsibility message sent from i to k is governed by the occurrence of H in Ri and Rk.

Fig. 3. Change in accuracy of classifiers by changing the percentage of high preference features
on 2 datasets
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Further calculation of responsibility rði; kÞ can be divided into two sections
depending on the count of class labels of the dataset.

Two Class Label Dataset. For datasets with 2 classes, the class wise p-metric ranking
of features is identical for both classes. The values in Ri and Rk can be of four kinds as
listed below

Ri ¼ HHf g ¼ Rk ¼ HHð Þ – feature k should be assigned responsibility of serving
as exemplar for feature i. Set s i; kð Þ ¼ max

vs:t:v 6¼us u; vð Þ where u; v 2 1; 2; 3. . .nf g
Ri ¼ LLð ÞRk ¼ LLð Þ – No change in s i; kð Þ
Ri ¼ HHð ÞRk ¼ LLð Þ - No change in s i; kð Þ
Ri ¼ LLð ÞRk ¼ HHð Þ – feature k should be assigned responsibility of serving as
exemplar for feature i. Set s i; kð Þ ¼ max

vs:t:v 6¼us u; vð Þ where u; v 2 1; 2; 3. . .nf g.

Multi Class Label Dataset. Suppose Ri ¼ H;H;H; . . .Lf g and Rk ¼ H;H; L; . . .Lf g
is class wise ranking for features i and k respectively. Count of occurrences of H in
both sets is stored as Hi and Hk. If Hk �Hi then, feature k should be assigned high
responsibility of serving as exemplar for feature i. Set s i; kð Þ ¼ max

vs:t:v 6¼usðu; vÞ where
u; v 2 1; 2; 3. . .nf g:

Then, the value of responsibilities is calculated using equation:

rði; kÞ  sði; kÞ�max
k0s:t:k0 6¼kfa i; k0ð Þ þ sði; k0Þg

Setting sði; kÞ as maximum of all the similarities increases the strength of respon-
sibility message sent from feature i to candidate exemplar point k.

Initially availabilities are set to zero. For the first iteration rði; kÞ is similarity
between feature i and k as its exemplar, reduced by the maximum similarity between i
and other features. Later, when features highly similar to i are assigned to some other
exemplar, their availabilities as a candidate exemplar for i falls below zero. Such
negative value will affect the similarity value sði; k0Þ in the above equation.

Updating all availabilities a(i, k) given the responsibilities. Availabilities are Cal-
culated as:

aði; kÞ  minf0; rðk; kÞþ
X

i0s:t:i0 62fi;kg
maxf0; rði0; kÞgg

The value of availability can be zero or negative. Zero value indicates that k is
available and k can be assigned as exemplar to i. If the value of aði; kÞ is negative, it
indicates that k belongs to some other exemplar and it is not available to become
exemplar for i.
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Combining the Responsibilities and Availabilities to Generate Clusters. For every
iteration, the point j that maximizes r i; jð Þþ a i; jð Þ is regarded as exemplar for point i.
The algorithm terminate when changes in the message falls previously set threshold.
Final result is list of all the exemplars which is an optimal subset of features. Figure 4
shows dynamics of Class Aware Exemplar Discovery algorithm when applied on 15
two-dimensional features with 4 class labels. Initially, features are sized according to
their class aware preference. Each feature is numbered according to the count of classes
in which it is high ranked. Class aware messages are exchanged between features.
When convergence condition is satisfied, features are clustered with each cluster rep-
resented by red colored exemplar.

Algorithm 1 presents the steps followed by Class Aware Exemplar Discovery to
select optimal set of features. The input to the algorithm is gene expression matrix with
n specifying number of genes, m specifying number of samples and c classes. Three
matrices namely responsibility, availability and similarity are initialized with zero. First
we calculate negative of Euclidean distance between every pair of feature and store it in
similarity matrix (Line 1). Next, we calculate class wise rank of all features (Line 2).
We use Nc to denote ranked list of genes that is obtained for class c (Lines 3–11).

Fig. 4. (a) Two –dimensional features, sized according to their class aware preference value.
(b) and (c) Messages are exchanged between features. The number associated with each feature
corresponds to its count of occurrence in upper half of class wise ranking. The darkness of arrow
directed from point i to point k corresponds to the strength of message that point i belongs to
exemplar point k. (d) Clusters formed with their representative exemplar.
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Class Aware Preference (Line 4) - We select top 0.015 % of features from Nc and
assign them high preference value which is zero. To rest of the features median of
similarities is assigned as preference value.
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Class Aware Message Passing (Lines 15–43). Then features are clustered by passing
real valued class aware messages. The algorithm terminates when change in messages
falls below previously set threshold. Exemplars are returned and can be used to
accurately predict the class label of unlabeled samples.

3 Experimental Evaluation

We performed three set of experiments to evaluate the performance of our approach. In
the first experiment we compared the performance of three different classifiers using
features selected by CAED against the features selected by affinity propagation. In
second experiment, we compared performance of CAED with CFS [4] for feature
selection with greedy search strategy. WEKA [7] provided us with implementations of
CFS. The third experiment compared the performance of classifiers using all the fea-
tures versus features extracted by CAED. Details of all the three experiments are
discussed in subsequent chapters. The experiments were carried out on 3.4 GHz Intel i7
CPU with 8 GB RAM machine running Windows-based operating system.

3.1 Description of Experimental Datasets

We performed experimental evaluation of Class Aware Exemplar Discovery over 18
publicly available microarray gene expression datasets [8–11]. Table 1 describes the

Table 1. Description of datasets

S.no. Data set name Attributes Samples Classes

1 chowdary-2006_database1 183 104 2
2 alizadeh-2000-v1 1096 42 2
3 nutt-2003-v3_database1 1153 22 2
4 pomeroy-2002-v1_database1 858 34 2
5 nutt-2003-v2_database1 1071 28 2
6 west-2001_database1 1199 49 2
7 meduloblastomiGSE468 1466 23 2
8 chen-2002 86 179 2
9 breast_A 1214 98 3
10 DLBCL_B 662 180 3
11 golub-1999-v2_database1 1869 72 3
12 liang-2005 1412 37 3
13 dyrskjot-2003_database1 1204 40 3
14 DLBCL_A 662 141 3
15 bredel-2005 1740 50 3
16 risinger-2003 1772 42 4
17 tomlins-2006-v2 1289 92 4
18 Breast_B 1214 49 4
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datasets used for experimental study. The datasets used for experimental evaluation are
picked from various cancer related research work.

3.2 Comparison of Class Aware Exemplar Discovery with Affinity
Propagation

We evaluated the classification accuracy of three state-of- art classifiers namely support
vector machine (SVM), Naïve Bayes (NB) and C4.5 decision tree (DT) using the
exemplars generated by Affinity Propagation (AP) and the exemplars generated by
Class Aware Exemplar Discovery. The classification accuracy is calculated using 10
fold cross validation approach.

To visualize the results we performed “Win-Loss Experiment”. If the classification
accuracy of CAED is better than baseline approach the result is declared as win, if the
classification accuracy has degraded the result is declared as loss otherwise declared as
draw. Figure 5 shows results of “Win-Loss Experiment”, obtained when classification
accuracy of three classifiers using exemplars generated by affinity propagation is
compared against Class Aware Exemplar Discovery.

We observed that Class Aware exemplar discovery generates less exemplar in
comparison to Affinity propagation. Figure 6 shows drop in count of clusters (i.e.,
number of examples) from affinity propagation to CAED.

We also observed that Class Aware Exemplar Discovery converges in lesser
message passing iteration in comparison to affinity propagation. This reduces the
execution time tremendously. Figure 7 shows drop in execution time, Y axis is mea-
sured in seconds.

3.3 Comparison of Class Aware Exemplar Discovery with Standard
Feature Subset Selection Techniques

We compare the effectiveness of CAED with features generated using CFS (Correlation
based Feature Selection). The maximum achievable 10 fold cross validation classifi-
cation accuracy is recorded as performance metric. Figure 8 shows results of
“Win-Loss Experiment”, obtained when classification accuracy of three classifiers
using feature subset generated by CFS is compared against exemplars generated by
Class Aware Exemplar Discovery.

3.4 Comparison of Class Aware Exemplar Discovery with All Features

We evaluated the performance of three classifiers support vector machine (SVM),
Naïve Bayes (NB) and C4.5 decision tree (DT) using all features of the 18 datasets. We
compared these results with the classification accuracy obtained using features pro-
duced by Class Aware Exemplar Discovery.

Figure 9 shows results of “Win-Loss Experiment” obtained when classification
accuracy of three classifiers using all features is compared against Class Aware
Exemplar Discovery.
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Fig. 6. Drop in count of clusters in 18 dataset

(a) SVM  (b) Naïve Bayes

(c)  Decision Tree

Fig. 5. Win – loss depiction of CAED versus affinity propagation carried over classifiers
(a) support vector machine (b) Naïve Bayes (c) C4.5 decision tree
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Fig. 7. Drop in execution time

(a) SVM  (b) Naïve Bayes

(c) C4.5 Decision Tree

Fig. 8. Win – loss depiction of CAED over CFS carried over classifiers (a) support vector
machine (b) Naïve Bayes (c) C4.5 decision tree
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4 Conclusions

Gene expression datasets have large number of features. For effective application of
any learning algorithm on gene expression datasets, feature subset selection is required.
In this paper, we proposed a class aware clustering based feature subset selection
technique. Our approach quantifies the ability of a feature to distinguish samples of one
class from other classes. We use this value to influence the message passing procedure
of affinity propagation. We observed that our approach leads to more relevant selection
of features in less time in comparison to existing approach using the similar strategy for
feature selection. We evaluated the effectiveness of our approach on 18 real world
cancer datasets.

We evaluated Class Aware Exemplar Discovery against affinity propagation.
Experiments have shown have shown that our technique outruns Affinity propagation
in terms of classification accuracy. In comparison to affinity propagation, CAED
converges in less number of iteration leading to huge drop in execution time.

(a) SVM (b) Naïve Bayes

(c) C4.5 Decision Tree

Fig. 9. Win- Loss depiction of CAED over all features carried over classifiers (a) support vector
machine (b) Naïve Bayes (c) C4.5 decision tree
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We also evaluated the feature set generated by CAED against state-of-art feature
selection technique. Experimental results have shown CAED gives better classification
accuracy for all the classifiers used. Motivated by recent growth in parallel computing
[13] and NVIDIA CUDA Research Center Support, we are developing a GPU based
parallel algorithm for CAED. We are also working on improving the readability of
mathematical symbol in the printed version of the submitted paper.
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