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Abstract. Cancer research is emerging as a complex orchestration of
genomics, data-sciences, and network-sciences. For improving cancer
diagnosis and treatment strategies, data across multiple scales, from
molecules like DNA, RNA, metabolites, to the population, need to be
integrated. This requires handling of large volumes of high complexity
“Omics” data, requiring powerful computational algorithms and math-
ematical tools. Here we present an integrative analytics approach for
cancer genomics. This approach takes the multi-scale biological interac-
tions as key considerations for model development. We demonstrate the
use of this approach on a publicly available lung cancer dataset collected
for 109 individuals from an 18 years long clinical study. From this data,
we discovered novel disease markers and drug targets that were validated
using peer-reviewed literature. These results demonstrate the power of
big data analytics for deriving disease actionable insight.
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1 Introduction

For centuries, diseases have been studied and treated based on their external
manifestations. Following the Human genome project, with an improved under-
standing of the genes and their interactions, the focus of cancer research has
shifted to the genetic mechanisms which lead to disease development. The human
genome consists of the DNA present within the cell nucleus, and is made up of
over six billion nucleotides. These nucleotides code for molecules which make the
different cells function properly. Any change in the six billion nucleotides is there-
fore capable of altering the functioning of cells. Such changes sometimes result
in production of proteins with altered functions, or altered levels of proteins in
the cells. This can result in loss of the homeostatic balance and uncontrolled
growth of the cells. Such cells damage the surrounding tissue, resulting in tumor
formation, leading to cancer. Research is now focused on understanding the root
cause of the disease, which lies in the alterations in the genome (DNA) or gene
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expression. In the traditional empirical or reductionist approach, the problems
are reduced to a single scale and studied in isolation. But, the connectivity and
interdependence between the multiple levels of organization in a living system
bestow upon it the unique properties which make it function as a whole [26].
Therefore the reductionist approach ignores many of the key features and com-
plexity of the living system [27]. A more integrated, holistic approach is required
for studying cancers.

Cancers are more responsive to treatment in early stages, compared to more
advanced stages. This makes it essential to identify appropriate markers for diag-
nosis of cancer, as early as possible. When a patient is stratified and diagnosed
correctly, appropriate treatment can start. However, cancers display a high level
of variability between patients. Therefore, the same treatment/drugs may not be
suitable for two patients. Precision medicine is based on this concept of individ-
ual patient variability [12]. This means that drugs should be highly focused for
specific patient profiles right from development to treatment. This will reduce
not only the treatment burden on patients, but also improve the efficacy of drugs,
and trial success. This is of even more relevance since cancer drugs are expen-
sive and can have severe side-effects. This type of patient variability based drug
development and treatment approach, along with timely, high confidence diag-
nosis, requires an in-depth understanding of cancer. Unraveling these complex
features requires an integrated system level approach instead of a reductionist
approach [17]. This requires the integration of muti-scale “Omics” information,
and is made tractable through big data analytics.

The development of high throughput technologies have made a lot of multi-
scale “Omics” data available. These data capture DNA, RNA, protein, and
metabolite level information in the form of genomics, transcriptomics, proteo-
mics, phenomics, and metabolomics data, among others [24]. There has been
large reduction in the cost and time involved in the generation of these data. It
is estimated that over the next 10 years, Omics data will be at par, if not surpass
data generated from sources such as astronomy, YouTube, and Twitter in terms
of acquisition, storage, distribution and analysis [37]. The way the different forms
of biological data are collected and represented makes high variety and variabil-
ity inherent characteristics of these data. This makes integration across multiple
datasets a challenge [36]. In addition, biological problems are usually NP-hard,
and are therefore computationally intensive to solve [25]. These problems are
further complicated by the high dimensionality of biological data, where the
number of features (variables) for which observations are recorded is more than
the number of samples by a few orders of magnitude. Therefore, the extraction
of actionable biological and clinical insight from these data is riddled with some
of the main challenges associated with the analysis of big data.

In this paper we show how big data analytics can help in understanding can-
cer genomics. We describe an integrative analysis framework which uses data-
sciences and network-sciences techniques for model creation from multi-scale,
multi-omics data. This framework, shown in Fig. 1, is useful for discovering
actionable insights in cancer. This framework consists of 4 stages. In the first
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Fig. 1. Framework for integrative data analysis

stage, exploratory data analysis techniques are used for hypothesis creation from
the experimental data, which includes DNA and RNA data. Traditional tech-
niques are used to extract information from the individual datasets, to obtain
disease biomarkers for diagnosis and prediction of patient survival/response.
Next, the results from the exploratory data analysis are combined and filtered,
within an appropriate biological context, in the multi-scale integrative analysis.
This is a step towards developing a mechanistic model for the disease. Finally, the
results from the exploratory data analysis and multi-scale integration steps are
combined with information from existing knowledge-bases to obtain a functional
understanding of the disease along with high quality biomarkers, and potential
drug targets.

To demonstrate this integrative cancer genomics model, we have used a
publicly available lung cancer (lung squamous cell carcinoma or SCC) clini-
cal dataset, collected over 18 years [9] as an example. The data for this case
study were downloaded from the Array Express database under accession id
E-MTAB-1727 (www.ebi.ac.uk/arrayexpress). All analysis were run using the
iOMICS platform that has been built by us and deployed in the Google cloud.
This is accessible at http://iomics-clinical.interpretomics.co. This paper is orga-
nized into 5 main sections. A description of the input data, including experi-
mental data and external knowledge-bases is provided in Sect. 2. Section 3 gives

www.ebi.ac.uk/arrayexpress
http://iomics-clinical.interpretomics.co
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the key aims of the analysis. Section 4 describes the exploratory data analyses
step of the analysis framework on the experimental data. Section 5 describes
the multi-omics integrative step using results from exploratory data analysis.
Finally, the integration of external knowledge-bases and application of network
theory to derive actionable insights and biomarkers is described in Sect. 6.

2 Available Data

We have used multi-omics, multi-scale data for a group of lung cancer patients
and healthy individuals to illustrate our analytics framework. These data were
collected by the original authors [9] and made publicly available. They include
DNA, RNA, and clinical data for 93 cancer patients and 16 healthy individuals.
Together these make up the experimental datasets. Apart from the experimental
datasets, various reference knowledge-bases are available, which have been used
in the analytic framework. A description of all these available data is given,
followed by a description of the key questions which can be answered using
these multiple datasets.

2.1 DNA Level Data

The available DNA level data consist of information regarding DNA sequence
alterations for 67 lung cancer patients [9]. This data was not available for the
remaining 26 cancer patients and the 16 healthy individuals. For each of the
over 300,000 DNA sequence sites captured, the genotype data provide the state
of the DNA sequence (alleles) for both copies of DNA (one from each parent).
These data were captured from genotyping experiments.

2.2 RNA Level Data

DNA sequence alterations can cause disease by altering the production of pro-
teins in the cells. The first step in the translation of DNA sequence to proteins is
the production of mRNA. mRNA levels in the cells are therefore a measure of the
expression of DNA to proteins. mRNA levels were captured in the lung cancer
study [9] and made available in the form of intensity measures from microarray
experiments, for all 109 individuals (93 lung cancer patients and 16 healthy indi-
viduals). These intensity values need to first be normalized across samples and
converted to expression measures before they can be used for analysis.

2.3 Clinical Data

Clinical data was recorded for all 93 lung cancer patients and 16 healthy individ-
uals by the original authors [9]. These data contained patient information such
as age at diagnosis, sex, disease stage, treatments received and other features
related to disease risk and condition. A summary of the main sample charac-
teristics for the 93 lung cancer patients from this dataset is given in Table 1.
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Table 1. Sample characteristics

Gender Male 89

Female 4

Age at Diagnosis Median 64

Histology Well differentiated SCC 36

Poorly differentiated SCC 15

Mixed basaloid 18

Pure basaloid 24

Stage Stage I 55

Stage II 19

Stage III 17

Stage IV 2

This information provides disease characteristics and can therefore be used to
scale the molecular level (DNA, RNA) information, described earlier, with the
disease state.

Survival Information. Survival information was also recorded for the 93 lung
cancer patients. This information includes information regarding how long the
patients survived during the study period. This includes both overall patient sur-
vival and survival without disease recurrence. While overall survival was recorded
for all 93 patients, recurrence free survival was recorded for 87 cancer patients.
One characteristic of survival information of this kind is that it is censored. This
means that data is not available for those patients that survived beyond the
duration of the clinical study, as well as for those that withdrew from the study.
Therefore appropriate modeling algorithms, capable of handling censored data,
are required in order to combine the survival data with other types of data from
the patients (clinical, DNA, and RNA).

2.4 Background Databases

Vast quantities of biological knowledge, has been collected through biological
experiments and is available in the public domain. This knowledge, in the form
of reference databases can be used to extend the results of the experimental
data, and provide them a functional context. This step is essential to obtain
a mechanistic understanding of disease development, and for identifying drug
targets. Three types of biological databases, namely functional characterization
databases, metabolic databases, and protein interaction databases have been
used in the analysis framework to complement the experimental data.

Functional Characterization Databases. Functional characterization data-
bases contain information curated from research studies regarding the various
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biological properties of the protein products of genes. These include properties
such as biological function, cellular localization and the high level pathways
and processes. These functional properties provide biological relevance to lists of
gene names, leading to the development of an explanation for why and how they
are involved in the disease. We have used two such functional characterization
databases for our analysis. These are the Gene Ontology database (GO) [5] and
KEGG [20].

Metabolic Databases. Metabolic databases contain information regarding
the multitude of biochemical reactions taking place in the living system. This
information ranges from the small molecules (metabolites) being formed or
destroyed, along with the involvement of genes in these processes. These bio-
chemical (metabolic) reactions are responsible for the interaction of a living sys-
tem with its environment, as well as the various processes taking place within
the system. The collection of all these biochemical reactions in humans is called
human metabolism. While information regarding human metabolism is grow-
ing, models of human metabolism exist which contain the current knowledge of
metabolism. Recon X [39] is one such model, which contains information regard-
ing metabolic reactions, their reactants, products, stoichiometry and associated
genes, and is available in standard SBML format [18]. We have used Recon X
with 7439 reactions and 2626 metabolites in our framework.

Protein Interaction Databases. At a level higher than metabolism, the func-
tional characteristics of a living system arise from the interactions between pro-
teins. Proteins transfer signals within and between cells, and lead to mediation
of metabolic reactions based on these signals. The interactions between differ-
ent proteins are captured in protein interaction databases. This information is
represented as interaction networks with proteins forming the nodes, and edges
representing the interactions between them. The protein-protein interactions can
be directional or undirected, depending on the type of interaction. Our analytics
framework uses the protein interaction database available from IntAct [31].

3 Key Aims

Based on the available experimental data, we have explored three main lines
of analysis. The basaloid subtype of lung cancer is particularly aggressive and
shows poor prognosis for the patients [9]. So, in the first, we aimed to identify
the molecular differences between two cancer subtypes based on histology, the
basaloid and SCC subtypes (Table 1), along with an understanding of how these
molecular differences functionally result in differences in the two cancer sub-
types. For the second line of analysis, we aimed to identify the molecular states
associated with poor patient survival. In the third line of analysis, we compared
the healthy individuals with the cancer patients using their molecular informa-
tion, to identify therapeutic targets which can be used in drug development.
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We show how the different datasets and steps in the analysis framework come
together to answer the questions posed by these three lines of analysis.

4 Exploratory Data Analysis

The first step of the analysis framework is exploratory data analysis. This
involves the analysis of individual experimental data sets, using traditional
approaches, for hypothesis creation. The various analyses which can be per-
formed depend on the type of experimental data available, and questions to
answer. All the DNA, RNA, and clinical data were used to lay the foundation
for the remaining analysis steps.

4.1 Mutation Association with Cancer State

For the first line of our analysis, we used the DNA level data to identify DNA
sequence states which can differentiate the two cancer subtypes, namely the basa-
loid and the SCC. For each of the DNA sequence sites in the data, we first calcu-
lated the frequency of observing the least common sequence state for each cancer
subtype. Based on these, odds were calculated for each disease subtype for observ-
ing the least common state (p/(1-p)). Then a ratio of these odds, called the odds
ratio was taken for each site. Significant deviation of the odds ratio from one for
a site signified that that particular site was associated with one or the other dis-
ease subtype. This association testing analysis was run using PLINK [32]. In order
to identify meaningful results, we used high stringency cut-offs for the odds ratio
and significance p-value (p-value � 0.001, odds ratio � 3). From this analysis, we
were able to identify 735 disease subtype associated sites. Figure 2 shows the loca-
tions of these 735 sites along the chromosomes. This plot was generated using the
quantsmooth R/Bioconductor package [30].

4.2 Differential Gene Expression

Cancer subtype differences can also manifest at the gene expression level, cap-
tured by the RNA data. We analyzed the RNA level data to study the differences
between the two disease subtypes (basaloid and SCC) by identifying differentially

Fig. 2. Karyotype plot showing location of identified point mutations (red lines) along
the chromosomes (Color figure online).
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expressed genes. We used the R package LIMMA [34] for analyzing the expres-
sion level differences between the two disease subtypes. This algorithm is able
to make statistical inferences even with a small number of samples [34]. It uses
a linear model to model the expression values across samples, as a function of
the disease subtypes. A separate model is fitted for each gene. This is followed
by an empirical Bayes step across genes to identify the p-value and FDR (False
Discovery Rate) adjusted p-value [34]. The log fold change between the disease
subtypes is also estimated as the base 2 logarithm ratio of expression in the
two states. Finally, we identified the differentially expressed genes which showed
absolute log fold change > 0.6 with differential expression p-value < 0.0001.
These cut-offs are variable and affect the stringency of the results. From this
analysis, we identified 106 differentially expressed genes between the basaloid
and SCC subtypes. Figure 3 shows the mRNA expression levels and hierarchical
clustering of the 93 lung cancer patients for the identified differentially expressed
genes. A clear separation in the expression values can be seen for the two sub-
types.

For our third line of analysis, we needed to compare healthy individuals with
cancer patients to identify potential drug targets. Only RNA data was available
for the healthy patients, and therefore was used for this comparison. We identified
the differentially expressed genes between cancer and healthy individuals. The
same steps and parameters were used for this analysis, as for the differential
expression analysis between the cancer subtypes.

4.3 Patient Stratification

The second line of analysis aims at identifying markers of patient survival.
Patients’ molecular profiles influence their response to treatment and disease
progression. In the case of cancer, patient survival time is a reasonable mea-
sure of patient response. In a treatment context, markers associated with treat-
ment response can stratify patients into groups of responsive and non-responsive
patients. These markers will then be able to identify which group a new patient

Fig. 3. Heirarchical clustering of expression for identified differentially expressed genes



236 M. Agarwal et al.

belongs to and facilitate precision medicine through most effective treatment.
Since gene expression is an intermediary between DNA and protein, it can be
used to connect patient response with the molecular profile.

In this analysis, we integrate gene expression RNA level data with recurrence
free survival information for the cancer patients, to answer the questions posed
by the second line of analysis. We used the Cox regression to model survival time
as a function of gene expression. The Cox regression model was used because
of its ability to handle censored data [28]. Apart from the censored nature of
survival data, another problem for the analysis is the high data dimensional-
ity. Expression information is available for over 20,000 genes for the 87 samples
with survival information. Therefore in order to identify high confidence genes as
markers of patient survival, an appropriate dimensionality reduction technique
needs to be applied. For this, we used the semi-supervised principle compo-
nents based dimensionality reduction technique implemented in the R package
SuperPC [6,7] to calculate the adjusted Cox regression coefficients. We used a
training set constructed from a random set of 2/3rd of the samples to build the
adjusted Cox regression model, and built a reduced model with the genes with
the highest coefficients. We then tested the resulting model on the remaining
1/3rd samples (test set). This procedure was repeated 10 times, to obtain the
best fitting model.

We used the genes from the final model to cluster all 93 lung cancer patients
into 2 groups, with 78 and 9 patients each. While one of these groups showed a
good survival probability (84 patients), the survival probabilities for the other
group were very poor (Poor prognosis group: 9 patients). We then reapplied
this analysis on the 78 patients who were part of the good survival probability
group. This resulted in further subgrouping of the patients into two groups, both
of which had better survival probabilities compared to the poor prognosis group.
The survival probabilities for the resulting 3 groups of patients is shown in Fig. 4.
These curves were generated using the R package ggplot2 [40]. Interestingly, all
9 patients in the poor prognosis group belong to the pure basaloid subtype. This
indicates that these patients represent a particularly aggressive molecular profile
seen in the pure basaloid patients.

Fig. 4. Survival probability curves for identified molecular subgroups
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Fig. 5. Mapping of differentially expressed genes and SNPs. Genes are in blue/green
and mutations are in pink. The sizes of gene nodes represent fold change, while the
blue and green shades represent direction of change (Color figure online)

5 Multi-scale Integrative Analysis

The next stage of the analysis framework involves integration of the results from
exploratory data analysis within a biologically meaningful context to improve
our understanding of cancer and how the disease state develops. The type of
multi-scale integration, and resulting inferences, depends on the available exper-
imental datasets. With varied multi-scale datasets, the resulting disease model
becomes richer, providing improved insights. For the lung cancer dataset, only
DNA and RNA level molecular data are available, therefore we demonstrate the
applicability of this step through DNA-RNA integration. From this analysis, we
can identify the disease subtype associated DNA sequence mutations which lead
to changes in RNA expression, thereby providing a mechanism for how these
sequence changes are pathogenic.

We first annotated the 735 identified disease subtype associated DNA sequence
alterations with genes based on their chromosomal location. The human genome
build GrCH38 was used for the gene locations. This provided a list of 558 unique
geneswithdisease associatedmutations.Wecompared these to thedifferential gene
expression analysis results between the basaloid and SCC subtypes, and identi-
fied genes which were also differentially expressed. This gene-mutation mapping,
as visualized in Cytoscape (a tool for dynamic network visualization [1]), is shown
in Fig. 5. Many of the genes discovered in this part of the analysis such as CLCA2,
TIAM2 and BCL2 have been associated with progression and metastasis in various
tumors [11,14,23].

6 Data Integration and Network Analysis

The final step of the analysis framework takes the results of the exploratory data
analysis and multi-scale integration steps and combines them with existing bio-
logical knowledge-bases to finally answer the questions posed in the three analysis
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lines. We used network analysis to obtain insights from this stage of the analy-
sis. This is because the complex interactions in the biological system are better
understood when modeled as networks [22]. The networks provide information
regarding the biological interactions and flow of information. When analyzing
functional networks, key nodes and interactions are identified using centrality
measures such as degree, betweenness, connectedness and eigenvector centrality.
Node clustering is used to identify functional clusters. Node neighborhoods are
analyzed for identifying interactions network interactions. We have used the R
package igraph [13] for studying network properties.

6.1 Functional Characterization Databases

We used the information in the functional characterization databases for all the
gene lists from the 3 types of exploratory data analysis, as well as the multi-scale
integration analysis, for the first two lines of analysis. We used the R package
GO.db [10] and 168 cancer and metabolic KEGG pathways [35] to annotate genes
with their functional properties. Since these are non-random lists of genes, the
functions they perform will be linked with the development of the disease state.
In other words, these disease state associated functions will be over-represented
for the gene list, than expected by chance. To identify these overrepresented gene
functions, we used the Fisher’s exact test, as implemented in XomPathways [38].
We modeled the results as a bipartite gene-function (pathway/GO) network,
and the resulting gene-gene and function-function networks. The key functional
properties and genes involved in the disease state were identified from the most
central nodes in these networks. For the gene-biological processes functional
annotation, the identified key processes were related to epithelial morphology,
consistent with histology based subgrouping of the disease subtypes (Table 2).

6.2 Metabolic Network Reconstruction and Protein Interactions

The functional properties of genes provides a high level view of the contribution
of genes to the disease state. At the core of these properties lies the metabolism.

Table 2. Biological process overrepresentation results. Top overrepresented biologi-
cal processes for the genes expressed differentially between basaloid and SCC cancer
subtypes. Degree and betweenness centrality measures for these genes in the process-
process network are also given.

Over- FDR
Biological representation adjusted Degree Betweenness
process p-value q-value centrality centrality

Skin development 1.9E-9 7.1E-7 14 0.6

Epidermis development 3.8E-9 7.1E-7 14 0.6

Epithelial cell differentiation 1.1E-7 1.4E-5 6 5.1

Keratinocyte differentiation 1.6E-7 1.4E-5 10 0
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Fig. 6. Subset of human metabolic network. This image has been taken from [21]

Metabolism is centered around the processes of energy and biomass production,
as these are the two core requirements for the cell. Some of the core metabolic
reactions involved in energy production are depicted in Fig. 6. Diseases such
as cancer develop due to metabolic changes brought about by protein changes.
In order to identify potential drug targets for disease treatment, a mechanis-
tic model is essential which considers the metabolite and protein interactions.
Therefore, for our third line of analysis, we combined RNA based gene expres-
sion data, which is indicative of protein expression, with metabolic and protein
interaction data, from reference databases.

Using the approach of the GIMME algorithm [8], we used expression data
to identify reactions which were occurring in the disease and healthy states.
For this we used an expression threshold such that about 25 % of the genes were
assumed to be switched off. This information was used to initialize the metabolic
model from RECON X. The metabolic models for both state were constructed
using flux balance analysis, a type of constraint based modeling. Since the can-
cer cells show extensive growth and proliferation, the disease state network was
optimized for maximum biomass production. The healthy lung cells are differ-
entiated and primarily use energy for carrying out their functions. Therefore the
healthy state network was optimized for maximizing energy production. Ther-
modynamically unfeasible cycles were removed from the models and the fluxes
through all metabolic reactions were calculate. The R package sybil, sybilEFBA,
sybilSBML and sybilcyclefreeflux were used for this analysis, along with glpkAPI
[3,4,15,16].

We compared the fluxes through the reactions in both disease and healthy
state metabolic models to identify the reactions with the most change in flux.
From the information contained in Recon X, we identified the genes associated
with these reactions. From a therapeutics point of view, these genes are potential
targets for lung cancer. However, not all of them may be druggable. Additionally,
targeting these genes may lead to high toxicity, or alteration in tumor properties
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Fig. 7. Results from the analysis of cancer and healthy metabolic networks. The first
step identifies altered reactions, the second step lists out the genes involved directly
in the reactions. The final step identifies putative drug targets based on the protein
interaction network.

rendering the drug ineffective. To solve these problems, we extended the identi-
fied gene list to include the other genes which directly interacted with these genes
in the protein interaction network. These extra genes can indirectly modulate
the metabolic reactions. The resulting gene list had 214 genes.

Out of these, the genes which interact with many other genes in the human
protein interaction network (PIN) are likely to be inappropriate drug targets
due to high toxicity. Therefore we calculated a degree score for each gene based
on its degree centrality in the PIN. We also calculated a reaction score for each
gene by summing its interactions with target reactions. Indirect interactions were
weighted 0.5. Finally, we looked at whether the identified genes were differentially
expressed between the healthy and tumor state, since this provided a mechanism
by which the change in metabolic reactions was affected. Many well known cancer
genes such as MYC, ERBB2, STAT3 and GSR, along with novel genes, were
identified as therapeutic targets. Figure 7 gives the results from this analysis.

7 Conclusions

Here we described and illustrated the use of a big data multi-scale multi-omics
framework for the identification of gene level biomarkers associated with lung
cancer. Using this approach, we were able to identify diagnostic and prognostic
biomarkers for the cancer subtypes, therapeutic targets for lung cancer, and even
identified a hidden molecular subtype having dismal prognosis. We showed how
different stages of the analysis framework come together to answer complex dis-
ease associated questions such as mechanism of disease development, processes
influencing patient survival, and putative therapeutic targets. The results were
all validated using bibliomic data (peer reviewed publications). While a basic
meta-analysis framework for integrative analysis was described here, more com-
prehensive mathematical techniques can also be applied to get better results
[33]. The identified target genes can be further validated as potential drug tar-
gets using an in-silico knockouts approach. This type of analysis uses iterative
constraint based modeling on the metabolic network model, to study the effect
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of altering specific reactions on both the healthy and disease state [19]. We used
the iOMICS platform in a semi-automated fashion for running the analysis.
The input parameters and experimental data types were provided as input. User
intervention was required for providing a biologically meaningful direction to the
analyses, bringing them in line with the type of available data and hypotheses.
This is an essential feature for the analysis of biological data.

While we have demonstrated the use of this analysis framework for cancer,
it can be extended to other complex diseases such as neurological and heart
diseases. It provides a general framework which can be used to combine multi-
omics data to derive cross-scale inferences. For this purpose, the type of input
experimental data decides the following analytics. Depending on the type of
experiments conducted, the aspect of the disease state interactions unveiled by
the analysis may vary. AlQuraishi et al. [2] looked at a complex disease such
as cancer at the genomic scale, where they integrated biophysical data with
genomic data to study tumor vs. normal state. On the other hand, an organ and
system level view of drug interactions can provide useful insights regarding the
efficacy and toxicity of drugs [29]. However, it does not depend on the specific
type of experiment used to capture the same information. Although we have
used data collected from genotyping and mRNA microarray experiments, the
analytics approach can also be applied to cases with much larger quantities of
data, collected from sequencing experiments, and can be integrated with data
from knowledge-bases other than those used here.
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