
Concept Discovery from Un-Constrained
Distributed Context

Vishal Goel(&) and B.D. Chaudhary

School of Computing and Electrical Engineering, IIT Mandi, Mandi, India
s13003@students.iitmandi.ac.in,

bdchaudhary@iitmandi.ac.in

Abstract. Formal Concept Analysis (FCA) is a method for analysing data set
consisting of binary relation matrix between objects and their attributes to dis-
cover concepts that describe special kind of relationships between set of attri-
butes and set of objects. These concepts are related to each other and are
arranged in a hierarchy. FCA finds its application in several areas including data
mining, machine learning and semantic web.
Few iterative MapReduce based algorithms have been proposed to mine

concepts from a given data set. These algorithms either copy the entire data set
(context) on each node or partition it in a specific manner. They assume that all
attributes are known apriori and are ordered. These algorithms iterate based on
the ordering of attributes. In some applications these assumptions will limit the
scalability of algorithms.
In this paper, we present a concept mining algorithm which does not assume

apriori knowledge of all attributes and permits the distribution of context on
different nodes in an arbitrary manner. Our algorithm utilizes Apache Spark
framework for discovering and eliminating redundant concepts in each iteration.
When we aggregate data on attribute basis, we order the attributes based on the
number of objects containing them. Our method relies on finding extents for
combinations of attributes of particular size (say ‘k’). An extent which is not
regenerated in attribute combinations of size k + 1 corresponds to a valid
concept. All concepts with particular intent size k are saved in one Resilient
Distributed Data-set (RDD). We have tested our algorithms on two data sets and
have compared its performance with earlier algorithm.

Keywords: Formal concept analysis � Distributed concept mining � Incre-
mental mining

1 Introduction

FCA is a method for extracting all formal concepts from a given binary object-attribute
relational database. A formal concept can be understood as a natural cluster of par-
ticular objects and particular attributes related to each other. For example if a query is
made on an animal data-set to find all animals with certain attribute say ‘4 legs’, the
answer returned will contain a cluster or set of animals with ‘4 legs’. But a concept can
give extended information about the same query such as every animal having ‘4 legs’
also have ‘tail’ in the attributes. This is known as attribute implication. A data-set

© Springer International Publishing Switzerland 2015
N. Kumar and V. Bhatnagar (Eds.): BDA 2015, LNCS 9498, pp. 151–164, 2015.
DOI: 10.1007/978-3-319-27057-9_11

contains a number of formal concepts within it. These concepts mined have
super-concept – sub-concept relationships among them. So if we find another concept
containing ‘4 legs’, ‘tail’ and ‘long trunk’ in attribute set, object set will probably
contain only ‘elephant’. As object set with single element ‘elephant’ is subset of object
set of all animals with ‘4 legs’, we say that the newly mined concept is a sub-concept of
former concept. This type of super-concept – sub-concept relationship among all
concepts can be visualized using a lattice structure, called concept lattice. Concept
lattice provides an intuitive and powerful representation of data. For deeper under-
standing, related definitions and an example can be found in Sect. 2.

FCA finds its application in fields related to data mining and ontology engineering.
FCA is proposed to be used in machine interpretable semantic web, association rule
mining [9] and business application such as collaborative recommendation [10].
Several algorithms exist to mine formal concepts from a given data-set (also known as
Context) on standalone systems. The applicability of such algorithms is restricted when
the size of context is increased. These algorithms require scanning complete context to
generate a new concept and thus when context is large, process of finding all concepts
is time consuming. Each object or attribute can be present in a number of concepts, so
the problem also demands high storage. This spurred interest in finding distributed
solutions that would reduce the time for mining as well as enable distributed storage
using low cost networked computing nodes.

The efforts in this direction exploited the MapReduce paradigm. Iterative
MapReduce based solutions such as [3, 4, 12] were proposed to mine concepts. Two of
the most popular algorithms are described in Sect. 3. These algorithms make certain
assumptions that limit their ability to scale to large context size. One of them requires
the entire context to be stored on every node whereas the other suffers from huge
communication overhead at the end of each iteration. In practice we find large datasets
that cannot be stored on a single machine. For example, dataset of emails sent by
customers to a company might be used to find correlation between customers. Another
example could be an e-commerce website that offers a number of products to its
customers to categorize customers on specific product browsing habits.

In our approach context is neither stored on nodes statically nor is it scanned to
compute concepts. Further, the context is aggregated on the lower dimension (either
objects or attributes) as key-value pairs to create a distributed collection. In the pro-
cesses of generating new key-value collection from an existing one and filtering
concepts from parent collection, we efficiently utilize the MapReduce paradigm to scale
well. Our approach is said to be unconstrained over the context because our algorithm
does not use the context after generating the key-value pairs in the first iteration.

We have organized this paper in the following way. Basic definitions in formal
concept analysis with an example can be found in Sect. 2. In Sect. 3 we briefly describe
the two existing algorithms for distributed formal concept mining along with their
drawbacks. In Sect. 4 we describe our concept mining algorithm in form of several
steps. In Sect. 5 we describe our data processing pipeline and enlist the Spark functions
we used for implementation. In Sect. 6 we demonstrate some experimental results.
After discussing some facts about our algorithm in Sect. 7, we conclude our paper in
Sect. 8.

152 V. Goel and B.D. Chaudhary

2 Definitions and Properties in FCA

Formal Concept Analysis [1, 2] is a technique for knowledge discovery in databases
(KDD). We adopt some notations as in [1]. Some of the basic definitions from [1] are
reproduced below:

1. A formal context (G, M, I) consists of two sets G and M and of binary relation
I � G ×M. The elements of G are called the objects, those of M the attributes of (G,
M, I). If g 2 G and m 2M are in relation I, we write (g, m) 2 I or g I m and read this
as “object g has attribute M”.

2. Let A � G and B � M, then: A↑ = {m 2 M | 8g 2 A, (g I m)} and B↓ = {g 2 G |
8m 2 B, (g I m)}.
A↑↓ (precisely (A↑)↓) and B↓↑ (precisely (B↓)↑) are closure operators. From context
Table 1, consider a given object set A = {1, 2}, then A↑ = {c, g}, also A↑↓ = {c,
g}↓ = {1, 2, 5} and we can notice that A � A↑↓. Similarly B↓↑ gives complete set of
attributes present in objects containing all attributes in B and B � B↓↑. Also
∅↑ = M, set of all attributes and ∅↓ = G, set of all objects. The symbol ‘∅’
represents a null set.

3. (A, B) is formal concept of (G, M, I) iff, A � G, B � M, A↑ = B, and A = B↓. The
set A is called the extent and the set B is called the intent of the formal concept
(A, B).

4. For a context (G, M, I), a concept (A1, B1) is sub-concept of a concept (A2, B2)
(and equivalently (A2, B2) is super-concept of (A1, B1)) iff A1 � A2 or equiva-
lently, B2 � B1. We denote ≤-sign to express this relation and thus we have (A1,
B1) ≤ (A2, B2): ⇔ A1 � A2 or B2 � B1. We say (A1, B1) is proper sub-concept
of (A2, B2) if (A1, B1) ≠ (A2, B2) holds.

An example of formal context is shown in Table 1. Rows represent the objects with
their unique object IDs while column represent the attributes of objects. Presence of an
attribute in an object is shown by ‘x’ symbol in the context. Let object set AI = {1, 2, 4}
and attribute set BI = {c, d}, then (AI, BI) is a formal concept since AI

↑ = BI and
BI
↓ = AI. Let AJ = {1, 2}, then (AJ, BI) is not a formal concept since BI

↓ ≠ AJ. Consider
concepts Y = ({1, 2, 4}, {c, d}) and X = ({1, 4}, {c, d, f}), and we can say X is proper
sub-concept of Y (or C2 < C1). This ordering can be expressed in the form of a lattice
(see Fig. 1) where each node represents a concept derived from the context and it is
connected to all related concepts. The concepts reachable from a particular concept in
strictly upward direction in the lattice are super-concepts while the concepts reachable
in strictly downward direction are called sub-concepts. The top concept in the lattice is
computed using the null attribute set ∅ as <∅↓, ∅↓↑> whereas the bottom concept is
computed using the null object set ∅ as <∅↑↓, ∅↑>. Generally the top concept is equal
to <G, ∅> as no attribute is common to all objects in G while the bottom concept is
equal to <∅, M> as no object contains all the attributes in M. The top and the bottom
concepts are labeled with id C0 and C16 in the lattice.

The concept finding problem can also be viewed as a problem of discovering
maximal rectangles of crosses ‘x’ in the context table. The transpose of a context table

Concept Discovery from Un-Constrained Distributed Context 153

also contains the same number of maximal rectangles. Therefore if attributes are treated
as objects and objects are treated as attributes, newly mined concepts will correspond to
concepts from original context, but with interchanged extents-intent pair. So if the
complexity of any concept mining algorithm depends un-evenly on context dimension,
finding concepts on context transpose might reduce runtime. We utilize this property in
our implementation.

Table 1. An example Formal Context, Objects ‘G’ in first column, Attributes ‘M’ in first row
and attribute presence in an object is marked by ‘x’ mark.

a b c d e f g

1 x x x x
2 x x x x x
3 x x
4 x x x x
5 x x x x x

Fig. 1. Concept lattice corresponding to context in Table 1, each node representing concept with
Id (left), Extent (top-right) and Intent (bottom-right)

154 V. Goel and B.D. Chaudhary

3 Related Work

There are several stand-alone algorithms for concept mining [13–15]. As we are mainly
interested in distributed mining algorithms, we compare our approach with two rep-
resentative algorithms in this area, namely, Close-by-One [3] (referred as MR-CbO)
and MR-Ganter [4]. Both of them are implemented using MapReduce paradigm.
MR-CbO was the first attempt in parallelizing concept mining process by using several
networked nodes to mine concepts in parallel. This algorithm mines concepts using a
top-down approach. The top concept is evaluated in the driver code of MapReduce job.
Then the iterations are launched with single key-value pair created from the top con-
cept. In the Map phase of each iteration the mapper processes the input pair using intent
of the concept and adds non-preexisting attributes to generate several concepts. These
concepts are validated by the reducer using a canonicity test. The concepts which pass
canonicity test in reduce phase are saved as valid concepts and are used in Map phase
of next iteration for further concept generation. By using attribute ordering and
canonicity test, the algorithm ensures that each concept is validated only once in a
distributed setting. This allows it to run in continuous iterations without any syn-
chronization with the driver. The only drawback with this algorithm is that it requires
full context to be present on every node during the Map computation. This confines the
algorithm to contexts which can fit in the memory of a single machine. However, as
discussed earlier, several data-sets in practice have a large context.

The second algorithm MR-Ganter addresses the issue associated with large context
storage. It allows context to be partitioned in several disjoint parts and stores them
statically on different nodes. It takes advantage of the fact that concept intents are
closed under intersection. Thus for an input intent and every non-preexisting attribute
in it, the mappers generate new intermediate local intent(s) which are merged during
reduce phase and checked for canonicity. However, this approach has some limitations.
In this algorithm each intent can be generated multiple times within iteration as well as
across different iterations. As only the new intents are required to be used as input for
the next iteration, a repository needs to be maintained to keep track of al-ready gen-
erated intents and needs to be checked every time a concept is generated. MR-Ganter+,
an enhanced version of MR-Ganter uses a distributed hash table to speedup this check.
It is also able to mine concepts in fewer iterations. However, both MR-Ganter and
MR-Ganter+ require the newly generated concepts to be broadcasted to all the mappers
at the end of each iteration. As the number of concepts generated is substantial, this
approach imposes huge network overhead. Further, both the above algorithms do not
store the extent along with the intent, which if required needs re-computation.

Our approach neither requires scanning the context for concept generation nor does
it require storing the entire context on a single node. Thus, we can process larger data
sets simply by adding more machines.

Concept Discovery from Un-Constrained Distributed Context 155

4 Methodology

4.1 Data Format and Input

Conventional algorithms assume input context in tabular form with row-wise storage,
i.e. object along with its attributes. But in practice, many data storage systems support
append-only writes to avoid locking issues that arise from fine-grained up-dates to
existing data objects. The incoming data in such cases is <object id, attribute id> pair.
Thus, new objects and new attributes get added to the dataset over time. As big context
tables are often very sparse, this representation (key-value pair) has immense storage
benefits compared with the tabular representation. An object-attribute pair is added
only for the existing attributes of the object whereas the tabular representation would
have to store null values for every non-existing attribute in the table. We use the
key-value representation in our system. In this paper, we restrict ourselves to mining
formal concepts from a snapshot of the dataset taken at a particular time. Issues
regarding the merging of formal concepts mined over different snapshots are beyond
the scope of this paper.

4.2 Data Aggregation

Recall that finding concepts on the context table or its transpose yields the same result.
Thus, we can aggregate data by objects or by attributes. As the total number of
concepts is bounded by the number of different possible combinations of objects or
attributes (whichever is lower), we aggregate on the dimension with lower count to
reduce the search space for valid concepts. Spark has functions that can approximate
the distinct number of objects/attributes within a specified timeout. We use that
function to limit the maximum number of iterations required by the algorithm to mine
all concepts. In the dataset corresponding to our example context, it can be found that
the number of objects is less than the number of attributes. So we aggregate on the
basis of object ID’s. The aggregated key-value pairs are listed as candidate concepts of
key size one (referred as CC1) in Table 2.

4.3 Concept Finding Approach

The candidate concept set of key size 2 (CC2, Table 3) is generated using CC1 table as
follows: we take all combinations of the keys from CC1 to produce the candidate
concept keys of CC2; the candidate concept values are generated by intersecting the
corresponding values of the keys in CC1. Those keys in CC2 which have their
value-part as null are discarded from the candidate set. In general, candidate concept set
of higher order e.g. CCN+1 is generated from candidate concept set CCN by merging
key-value pairs in CCN where the keys differ only in a single element.

If the value corresponding to any candidate concept in CC1 is repeated in CC2, then
that candidate concept in CC1 is not considered to be a valid concept. The rest of the
candidate concepts from CC1 (whose values are not regenerated in CC2) are copied to
Valid Concepts of key size 1 (referred as VC1, Table 4). Thus, 4 out of the 5 candidate

156 V. Goel and B.D. Chaudhary

key-value pairs of size 1 are declared as valid concepts. Continuing in this manner, CC2

is used to generate CC3 (Table 5). Filtering out the candidate concepts in CC2 whose
values are regenerated in CC3, we are left with 6 out of 10 pairs that are valid (VC2 -

Table 6). It may also be noted that CC3 has only 7 elements out of the 10 possible
combinations. The idea of generating ‘N + 1’th order candidate set with reduced
number of elements using filtered candidates from ‘N’th order candidate set is bor-
rowed from Chap. 6 in [11].

We now generalize the process of concept mining. Let CCN be the set of candidate
key-value pairs <KN, V> of key size ‘N’ and CCN+1 be the candidate set of pairs <KN

+1, V> with key size ‘N + 1’. Let VX = {V| < KN+1, V > 2 CCN+1}, be the set of values
in CCN+1. Then valid concept set of key size N (VCN) is given by:

VCN ¼ f\KN;V[j\KN;V[2 CCN and V 62 VXg ð1Þ

4.4 Additional Important Insights

It may be noticed that key-value pairs in CC1 (number of elements = ‘N’) are listed in
lexicographic order of the keys. To generate elements in CC2 (number of ele-
ments = NC2) each key in CC1 is combined with all the keys that succeed in the order.
So from N keys in CC1, first key will be used to generate first N − 1 elements of CC2,

2nd key will generate next N − 2 elements, and so on. In general, the K’th key in CC1 is
paired with the next ‘N-K’ elements to generate elements in CC2 (highlighted in
Tables 2 and 3). By enforcing this ordering on the keys, we ensure that the same
combination is not regenerated. The value (Set) in each pair of CC2 is evaluated by
intersecting the value from parent key pairs in CC1. In a distributed implementation, we
could partition the computation such that the ‘N-K’ combinations of the K’th key reach
a single node. This way of splitting will however cause uneven number of key-value
pairs across nodes causing communication (shuffling) bottlenecks. To minimize the
communication overhead, we reorder the keys in CC1 in ascending (non-descending)
order of the number of elements in the value. After reordering, the first key in CC1 will
have least number of elements in the value. The number of combinations of this key in
CC2 will be largest (‘N − 1’) but the number of elements in each one of them will be
small (the cardinality of the intersection operation cannot be greater than the cardinality
of the smallest set). Thus by reordering strategy, even when we have large number of
keys reaching a node, the number of elements associated to them will be small. Thus,
we can reduce the communication overhead.

We now illustrate the combination of two ordered keys of size N to generate a new
concept key of size N + 1. Let us assume two ordered keys of size N, PN = {I1, I2… IN
−1, A} and QN = {I1, I2 … IN−1, B} which have the first n − 1 elements common. We
combine them to give a new ordered key of size ‘N + 1’ as:

KNþ 1 ¼ I1; I2. . .IN�1;A;Bf g only if A\B ð2Þ

Concept Discovery from Un-Constrained Distributed Context 157

In this way candidate keys are combined to create next order candidate keys. The
effect can be observed in highlighted keys in Tables 5, 7 and 8.

Table 2. Candidate concepts of key-size =
1 (CC1)

Key Value
{1} {c, d, e, f}
{2} {a, b, c, d, g}
{3} {a, b}
{4} {a, c, d, f}
{5} {a, c, e, f, g}

Table 3. Candidate concepts of key size = 2
(CC2)

Key Value
{1, 2} {c, d}
{1, 3} { }
{1, 4} {c, d, f}
{1, 5} {c, e, f}
{2, 3} {a, b}
{2, 4} {a, c, d}
{2, 5} {a, c, g}
{3, 4} {a}
{3, 5} {a}
{4, 5} {a, c, f}Table 4. Valid concepts of key size = 1 (VC1)

using CC1 and CC2

Id Extent Intent

C1 {1} {c, d, e, f}
C2 {2} {a, b, c, d, g}
C3 {4} {a, c, d, f}
C4 {5} {a, c, e, f, g}

Table 5. Candidate concepts of key-size = 3
(CC3)

Key Value
{1, 2, 4} {c, d}
{1, 2, 5} {c}
{1, 4, 5} {c, f}
{2, 3, 4} {a}
{2, 3, 5} {a}
{2, 4, 5} {a, c}
{3, 4, 5} {a}

Table 6. Valid concepts of key size = 2 (VC2)
using CC2 and CC3

Id Extent Intent

C5 {1, 4} {c, d, f}
C6 {1, 5} {c, e, f}
C7 {2, 3} {a, b}
C8 {2, 4} {a, c, d}
C9 {2, 5} {a, c, g}
C10 {4, 5} {a, c, f}

Table 7. Candidate and valid concepts of key
size = 4 (VC4), since no element for CC5

Id Key / Extent Value / Intent
C14 {1, 2, 4, 5} {c}
C15 {2, 3, 4, 5} {a}

Table 8. Valid concepts of key size = 3
(VC3) using CC3 and CC4

Id Extent Intent

C11 {1, 2, 4} {c, d}
C12 {1, 4, 5} {c, f}
C13 {2, 4, 5} {a, c}

158 V. Goel and B.D. Chaudhary

5 Implementation Using Spark

Apache Spark [5] is a popular open-source distributed data processing framework,
which is optimized to best utilize main memory of network nodes and hence is faster
than previous technologies. Spark defines its distributed storage abstraction as Resilient
Distributed Datasets (RDDs) [6]. It provides two sets of operations – transformations
and actions. Transformation allows coarse-grained manipulation of the data in RDD.
These transformations are carried out when an action is specified. For more details,
refer to Scala API documentation [7].

Data can be inputted from local file or any distributed file system to create a
temporary RDD (say R1). This RDD contains object-attribute pairs. Recall our dis-
cussion from Sect. 4.2 that we need to aggregate on the dimension with lower count to
reduce the search space. As the size of the dimensions is not known apriori, we
approximate the count with the help of “map” followed by “countApproxDistinct”
transformation. This gives us an approximate number of distinct objects and attributes
in the dataset. We aggregate on the dimension with the lower count. For instance, if the
number of objects is lower than the number of attributes, we aggregate attributes
treating object as key using “combineByKey” transformation to create new RDD, (say
R2). Thus object is paired with attributes <key=object Id, value={attribute Id, attribute
Id …}>. If the attributes are less, then we aggregate objects based on attributes:
<key=attribute Id, {value=object Id, object Id …}>. Next we order the keys within the
chosen dimension according to the number of elements. We count the number of
elements in the values of each key by using “countByKey” action. We re-label keys in
ascending numeric value according to increasing number of elements in their values.
This RDD corresponds to CC1. At this point we no longer require R1 and R2 RDDs, so
we remove them from memory.

We create CC2 RDD using “cartesian” transformation of CC1 with itself followed
by “filter” transformation as specified in Eq. 2. Then using CC1 and CC2, we generate
VC1 using “reduceByKey” followed by “filter”. As soon as VC1 is generated, CC1 is
not required anymore and thus can be purged from memory. For the subsequent
candidate set generation (e.g. CC3), we use “map” on the previous candidate set (e.g.
CC2) followed by self-join (using “join” followed by “filter”). The data pipeline is
shown in Fig. 2. The top and the bottom concepts are evaluated using reduce operations
on CC1.

Fig. 2. Spark data pipeline for our implementation

Concept Discovery from Un-Constrained Distributed Context 159

We used Scala interactive shell for our experiments. Scala shell is a single threaded
application and thus allows us to run a single job at a time on the cluster. However,
Spark also supports running several jobs launched by different threads in parallel. If we
use this Spark feature in our application then after generating CCK+1 from CCK, we can
immediately proceed to generate CCK+2 without waiting for the generation of VCK.
VCK can be generated by a separate thread and thus execution gets speeded up. The
new pipeline in this case will look similar to the one in Fig. 3.

6 Evaluation and Results

For experiments we used two standard datasets from [8]. The multivalued attributes in
data were translated to binary attributes. Then the binary attributed context(s) were
converted into text file of randomly ordered object-attribute pairs (one per line) before
giving them as input to our algorithm. The details about the converted datasets are
shown in Table 9. We used 5 lab machines with core i5-2310 (2.9 GHz) processor,
4 GB Memory and running Ubuntu 12.04 LTS operating system. We ran Spark master
on one node and used others as slaves to run Spark standalone cluster. Each slave was
configured to use a single CPU core and 512 MB of memory. In figures, when we show
results with ‘K’ nodes, it means ‘K’ slaves. In this paper, we experimentally compared
our approach with MR-CbO algorithm as porting MR-Ganter to Spark was inefficient.

Fig. 3. A parallel (Multithreaded) pipeline for implementation

Table 9. Dataset Specifications

Dataset SPECT Mushroom

Object-attribute pairs 2042 186852
Distinct attributes 23 119
Distinct objects 267 8124
Concepts 21550 238710

160 V. Goel and B.D. Chaudhary

For the smaller dataset (SPECT), MR-CbO performs much faster than our algo-
rithm as the storage of such context takes very less space in memory and scanning
small context is not computationally expensive (Figs. 4 and 5).

Fig. 4. Result comparison on SPECT dataset

Fig. 5. Result comparison on Mushroom dataset

Concept Discovery from Un-Constrained Distributed Context 161

For the larger dataset (Mushroom), our algorithm performs faster than MR-CbO.
Recall that MR-CbO stores the entire context on every node. As the dataset increases in
size, the performance is limited by the memory on the machine. Storing large context
with limited memory and scanning it several times to generate every new concept is
computationally expensive. Thus, MR-CbO algorithm did not perform well for large
data set.

7 Discussion

7.1 Scalability with Respect to Context

In this paper, we experimentally compared our approach with MR-CbO algorithm. As
MR-CbO requires the entire context to be stored in memory, we used datasets that fit in
the memory of a single node in our experiments. But our algorithm can scale with
larger context size as it does not require the entire context to be stored on a single node
at any step of the algorithm. It should be noted that the first step (generating CC2) uses
“cartesian” transformation followed by “filter” whereas the later steps use “map-
join-filter” transformation sequence. We do so because generating CC2 using “map-
join-filter” transformation sequence would result in entire context to be generated on a
single node as intermediate data. The “cartesian” transformation although not very
efficient is a distributed operation, and we employ it only in the first step. We can
improve performance of the other steps by using a different transformation sequence
(like “map-aggregateByKey-flatMap”) thereby avoiding “join” transformation for
generating next level candidate concept set. Testing the performance of this opti-
mization and others like custom Spark partitioner to minimize network shuffling of
keys during new candidate concept generation is part of our future work.

7.2 Comparison with Distributed Frequent Item-Set Mining

Although our approach resembles frequent item-set mining, there are several notable
differences between concept mining and frequent item-set mining. In frequent item-set
mining, item-sets which pass the support threshold are used to generate larger candidate
item-sets whereas in concept mining all possible combinations of item-sets are con-
sidered to generate larger candidate concepts. Further, these generated concepts have to
be validated as described in Eq. 1 and the concept lattice is formed. By applying the
threshold criteria, we can mine frequent item-sets from the concept lattice.

7.3 Concept Explosion

Even with a small number of objects (8194 in the Mushroom data-set), the number of
concepts mined are 2,38,710. When the concepts mined are large, it is hard to visualize
them. This raises several interesting questions regarding concept generation method-
ology - “should all concepts be generated? Can we rank concepts?” We are currently
exploring methods to handle the concept explosion problem.

162 V. Goel and B.D. Chaudhary

7.4 Mining Links Between Concepts

Currently, no distributed algorithm mines links between concepts. This would be useful
in visualization. In our algorithm, the concepts of different sizes are present in different
RDDs. Hence, a supplementary algorithm needs to be designed for mining links
between concepts. Concept lattice could be represented using Spark’s graph processing
component namely “GraphX” or any other graph framework for visualization or further
analytics.

8 Conclusion

In this paper, we presented an incremental approach to mine formal concepts from a
context which is assumed to be present in the form of object-attribute pairs. We
validated our approach by comparing the concepts generated with that in MR-CbO.
Our approach is more scalable than the earlier approaches as it neither requires scan-
ning the context for concept generation nor does it require storing the entire context on
a single node. Thus, we can process larger data sets simply by adding more machines.
Experimental results show that our algorithm outperforms the previously proposed
algorithms as the data-set size grows. Thus, our algorithm is suitable for practical
concept mining applications.

Acknowledgments. Authors would like to thank Dr. Sriram Kailasam, Assistant Professor at
IIT Mandi for his help in improving the manuscript.

References

1. Ganter, B., Wille, R.: Formal Concept Analysis. Springer, Berlin (1999)
2. Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concepts. In:

Ferré, S., Rudolph, S. (eds.) ICFCA 2009. LNCS, vol. 5548, pp. 314–339. Springer,
Heidelberg (2009)

3. Krajca, P., Vychodil, V.: Distributed algorithm for computing formal concepts using
map-reduce framework. In: Adams, N.M., Robardet, C., Siebes, A., Boulicaut, J.-F. (eds.)
IDA 2009. LNCS, vol. 5772, pp. 333–344. Springer, Heidelberg (2009)

4. Xu, B., de Fréin, R., Robson, E., Ó Foghlú, M.: Distributed formal concept analysis
algorithms based on an iterative mapreduce framework. In: Domenach, F., Ignatov, D.I.,
Poelmans, J. (eds.) ICFCA 2012. LNCS, vol. 7278, pp. 292–308. Springer, Heidelberg
(2012)

5. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: cluster
computing with working sets. In: Proceedings of the 2nd USENIX Conference on Hot
Topics in Cloud Computing, pp. 10–10 (2010)

6. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin, M.,
Shenker, S., Stoica, I.: Resilient distributed datasets: a fault-tolerant abstraction for
in-memory cluster computing. In: Proceedings of the 9th USENIX Conference on
Networked Systems Design and Implementation, pp. 2–2. USENIX Association (2012)

Concept Discovery from Un-Constrained Distributed Context 163

7. Spark programming guide. http://Spark.apache.org/docs/latest/programming-guide.html.
Accessed 01 July 2015

8. UCI Machine Learning Repository: Data Sets. http://archive.ics.uci.edu/ml/datasets.html.
Accessed: 01 July 2015

9. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Efficient mining of association rules using
closed itemset lattices. Inf. Syst. 24, 25–46 (1999)

10. du Boucher-Ryan, P., Bridge, D.: Collaborative recommending using formal concept
analysis. Knowl.-Based Syst. 19(5), 309–315 (2006)

11. Rajaraman, A., Ullman, J.: Mining of Massive Datasets. Cambridge University Press,
New York (2012)

12. Ying., W., Mingqing, X.: Diagnosis rule mining of airborne avionics using formal concept
analysis. In: International Conference on Cyber-Enabled Distributed Computing and
Knowledge Discovery (CyberC). IEEE (2013)

13. Ganter, B., Reuter, K.: Finding all closed sets: a general approach. Order 8(3), 283–290
(1991)

14. van der Merwe, D., Obiedkov, S., Kourie, D.G.: AddIntent: a new incremental algorithm for
constructing concept lattices. In: Eklund, P. (ed.) ICFCA 2004. LNCS (LNAI), vol. 2961,
pp. 372–385. Springer, Heidelberg (2004)

15. Kuznetsov, S.O.: Learning of simple conceptual graphs from positive and negative
examples. In: Żytkow, J.M., Rauch, J. (eds.) PKDD 1999. LNCS (LNAI), vol. 1704,
pp. 384–391. Springer, Heidelberg (1999)

164 V. Goel and B.D. Chaudhary

http://Spark.apache.org/docs/latest/programming-guide.html
http://archive.ics.uci.edu/ml/datasets.html

	Concept Discovery from Un-Constrained Distributed Context
	Abstract
	1 Introduction
	2 Definitions and Properties in FCA
	3 Related Work
	4 Methodology
	4.1 Data Format and Input
	4.2 Data Aggregation
	4.3 Concept Finding Approach
	4.4 Additional Important Insights

	5 Implementation Using Spark
	6 Evaluation and Results
	7 Discussion
	7.1 Scalability with Respect to Context
	7.2 Comparison with Distributed Frequent Item-Set Mining
	7.3 Concept Explosion
	7.4 Mining Links Between Concepts

	8 Conclusion
	Acknowledgments
	References

