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Abstract. DBSCAN is a well-known density based clustering algorithm,
which can discover clusters of different shapes and sizes along with out-
liers. However, it suffers from major drawbacks like high computational
cost, inability to find varied density clusters and dependency on user pro-
vided input density parameters. To address these issues, we propose a
novel density based clustering algorithm titled, VDMR-DBSCAN (Var-
ied Density MapReduce DBSCAN), a scalable DBSCAN algorithm using
MapReduce which can detect varied density clusters with automatic com-
putation of input density parameters. VDMR-DBSCAN divides the data
into small partitions which are parallely processed on Hadoop platform.
Thereafter, density variations in a partition are analyzed statistically
to divide the data into groups of similar density called Density level
sets (DLS). Input density parameters are estimated for each DLS, later
DBSCAN is applied on each DLS using its corresponding density para-
meters. Most importantly, we propose a novel merging technique, which
merges the similar density clusters present in different partitions and
produces meaningful and compact clusters of varied density. We exper-
imented on large and small synthetic datasets which well confirms the
efficacy of our algorithm in terms of scalability and ability to find varied
density clusters.

Keywords: Clustering + DBSCAN - Varied density - MapReduce -
Hadoop - Scalable algorithm

1 Introduction

In today’s era, the amount of data produced by different applications is increas-
ing at a very fast pace. As of 2012, 90% of the data in the world has been
generated in the last two years alone [1]. There exists an immediate need to con-
vert this huge data into some useful information and knowledge. Clustering is an
important unsupervised learning technique in data mining which partitions the
data objects into class of similar objects, based on the principle of maximizing
intraclass similarity and minimizing interclass similarity [2]. For mining of huge
data, clustering is well suited because unlike classification, it does not require
labeling of large number of test tuples which is a very costly task. Clustering

© Springer International Publishing Switzerland 2015
N. Kumar and V. Bhatnagar (Eds.): BDA 2015, LNCS 9498, pp. 134-150, 2015.
DOI: 10.1007/978-3-319-27057-9_10



VDMR-DBSCAN: Varied Density MapReduce DBSCAN 135

is broadly used for many applications like pattern recognition, data analysis,
market research, image processing etc.

DBSCAN [3] is one of the popular density based clustering algorithm and
has been widely used in past for various applications like land use detection,
anomaly detection, spam identification, medical imaging, weather forecasting etc
[4,5]. Unlike partitioning based clustering algorithms, DBSCAN does not require
apriori knowledge regarding number of clusters to be formed. It has good noise
handling abilities and can discover non-convex clusters of arbitrary shapes and
sizes. However, DBSCAN has three major drawbacks. First, it is computation-
ally very expensive due to iterative neighborhood querying and faces scalability
problems while processing large data. Second, the input density parameters ¢,
MinPts, which directly influence the clustering results are specified by the user.
Third, due to adoption of global € value, it is unable to detect clusters of varied
density.

To address these problems, many enhancements over DBSCAN have been
proposed in literature, but they address only some of the limitations of DBSCAN,
as discussed above. Today, the size of data is too huge that even a simple data
analysis task faces scalability issues. Being no exception, DBSCAN also faces
the scalability problem due to its high computational cost. Therefore, a need
arises for parallelization of DBSCAN algorithm to reduce its processing time.
Also, in huge data, it becomes a very challenging task to find good quality
clusters with minimal domain knowledge. Poor quality clusters, even obtained
in a very less time, are meaningless. Therefore, quality of clusters produced by a
clustering algorithm are equally important as its processing time. Some parallel
and distributed solutions for DBSCAN have been proposed in literature, but they
are inefficient in dealing with varied density clusters. Hence, there arises a need
of a density based clustering algorithm which is highly scalable and discovers
varied density clusters with automatic computation of input parameters.

In this paper, we propose a density based clustering algorithm, titled VDMR-
DBSCAN (Varied Density Map Reduce DBSCAN) which overcomes the major
drawbacks of traditional DBSCAN and its various enhancements. VDMR-
DBSCAN is designed on top of Hadoop [7] Platform and uses Google’s MapRe-
duce [6] paradigm for parallelization. Varied density clusters are obtained using
the concept of Density Level Partitioning. Most importantly, we have proposed
a novel merging technique, which merges the similar density clusters present
in different partitions and tends to produce meaningful and compact clusters
of varied density. We evaluated VDMR-DBSCAN on large and small synthetic
datasets. The results reveal that the proposed algorithm is highly scalable and
detects varied density clusters with minimal requirement of domain knowledge.

The rest of the paper is organized as follows. Section?2 presents related
work, which discusses the traditional DBSCAN and its various enhancements. In
Sect. 3, our proposed algorithm VDMR-DBSCAN is discussed in detail. Section 4
presents experimental settings and results, followed by Sect.5 which concludes
the paper.
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2 Related Work

In 1996, Ester et al. proposed DBSCAN [3], a well known density based clustering
algorithm. It defines the density in terms of two user provided input parameters:
e, MinPts. To find clusters, DBSCAN starts with an arbitrary unclassified point
p; and finds the points present in e-neighborhood of p; (N Eps(p;)). If [N Eps(p;)]
is greater than MinPts, then a cluster C is formed which includes all the points
in NEps(p;), with p; as a core point, otherwise p; will be marked as a noise
point. DBSCAN then iterates to expand the cluster C by collecting the density-
reachable points from all core points present in C. This step repeats until no
more points can be added to the cluster. The algorithm will continue until all
the points in dataset are assigned to a cluster or labeled as noise point. DBSCAN
has some drawbacks like unscalability, inability to find varied density clusters
and dependency on user provided input density parameters.

In 1999, Ankerst et al. proposed OPTICS [8] to attack the varied density
problem with DBSCAN by creating an augmented ordering of the data points,
which represents its density based clustering structure. OPTICS does not pro-
duce clustering results explicitly and experimentally its runtime is almost con-
stantly 1.6 times the run time of DBSCAN. Like DBSCAN, it also suffers from
scalability problems. In 1999, Xu et al. proposed PDBSCAN [9], a master-slave-
mode parallel implementation of DBSCAN. It works on shared nothing archi-
tecture where communication between nodes occur through message passing,
thereby it leads to a large communication overhead while dealing with huge data.
Also, it is unable to deal with clusters of varied density. In 2006, Uncu et al.
proposed GRIDBSCAN [10] to solve the varied density problem with DBSCAN.
Empirically, GRIDBSCAN is better than DBSCAN in terms of accuracy how-
ever, in terms of computational complexity, it is very expensive due to pairwise
distance computations which makes it unsuitable for clustering of large data. In
2007, Liu et al. proposed VDBSCAN [11] to attack the varied density problem
of DBSCAN. VDBSCAN is good at finding varied density clusters but it is not
scalable and parameter k£ has to be subjectively chosen. In 2008, Mahran et al.
proposed GriDBSCAN [12] to solve the scalability issues with DBSCAN. Data
partitioning in GriDBSCAN generates a large number of redundant boundary
points which degrades the execution efficiency of parallel algorithm and increases
the merging time. Furthermore, it is unable to find varied density clusters and
the input parameters for DBSCAN execution are provided by the user. In 2012,
Xiong et al. proposed DBSCAN-DLP [13] to solve the varied density problem
with DBSCAN using the concept of Density level partitioning. DBSCAN-DLP
is computationally very expensive due to the computation of k** nearest neigh-
bor distances and density variations values, which make it unsuitable for large
datasets. To address the scalability problem of DBSCAN, Dai et al. proposed
DBSCAN-MR [14] in 2012, which is a MapReduce based parallel DBSCAN and
uses Hadoop platform for parallel processing. DBSCAN-MR is highly scalable,
but it is unable to find varied density clusters and input density parameters are
need to be provided by user.
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None of the above stated clustering techniques, is efficient enough to tackle
all the three issues of DBSCAN. Therefore, we attempt to provide a solution by
proposing a novel density based clustering algorithm VDMR-DBSCAN, which
overcomes all these limitations.

3 Proposed Work

VDMR-DBSCAN is designed on top of Hadoop platform and uses MapReduce
paradigm for parallelization. MapReduce improves the scalability of our algo-
rithm by dividing large data into small partitions and sending those partitions
to different nodes in the Hadoop cluster, where they can be processed inde-
pendently. Later, the results from different nodes are aggregated to obtain final
results.

VDMR-DBSCAN framework consists of five different stages: Data Partition-
ing, Map, Reduce, Merge & Relabeling. In the first phase, input data is partitioned
using PRBP (Partition with reduced boundary points) [14] partitioning, with an
objective to minimize the boundary points. The data partitions are stored in HDFS
(Hadoop Distributed File System) [7]. In the second phase, the partitions obtained
are clustered independently using density level partitioning [13], to obtain clusters
of varied density. Then, the local clusters present in different partitions are merged
to obtain global clusters, followed by relabeling of data points. In the following sub-
sections, we discuss different phases of VDMR-DBSCAN which is also shown in
Fig. 1.

' Map Phase H
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PRBP Data J [Den;?ty FEVe]l Parameter I[ DBSCAN ]' Reduce
Input Data Partitioning . | Partitioning Computation : Phase

Relabel Merge
Clusters Phase
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Fig. 1. Phases of VDMR-DBSCAN

Local Clusters
Of non-boundary Points

3.1 Partitioning Phase

VDMR-DBSCAN uses PRBP partitioning [14] to divide the data into small
partitions which can be easily handled by a single node in the Hadoop cluster. It
partitions the data such that two adjacent partitions share a common region i.e.
split region. The points lying in the split region are called boundary points which
help in identifying connected clusters present in two adjacent partitions. PRBP
mainly focuses on minimizing the boundary points. It works by dividing each
dimension in slices of equal width, followed by calculation of data distribution in
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each slice. Further, the slice ‘s’ with minimum points is selected to partition the
data into two partitions. s being the common region (split region), is added to
both the partitions. The data space is recursively split until the size of partition
fits the node’s memory. We are using PRBP as a data partitioning algorithm
for VDMR-DBSCAN with an intuition that reduced number of boundary points
will reduce the merging time as well as map reduce time, which in result will
improve the execution efficiency of VDMR-DBSCAN. The partitions created by
PRBP partitioning are stored in HDFS (Hadoop Distributed File System) [7]
from where each partition is read by a mapper in map phase.

3.2 Map Phase

In Map phase, each mapper reads a complete partition from HDFS in the form
of (key, value) pair, where key = NULL and wvalue = Partition. Further, each
mapper uses Densily level partitioning [13] to find varied density clusters, based
on statistical characteristics of data points present in a partition. Density level
partitioning partitions the data into different density level sets such that points
with similar density belongs to same density level set (DLS).

The data is partitioned into different density level sets based on their k'"
nearest neighbor distance values (kdist value), where value of k is chosen from
the range 3 to 10 [13]. kdist value of a point is the measure of how far is the k*"
nearest neighbor of that point, which gives an idea about the density around that
point. Algorithm 1, shows the pseudocode for Map phase. Map phase proceeds
by finding kdist values for all the points in a partition and stores them in kdistlist.
The obtained kdistlist is sorted in ascending order. Further, for each adjacent
points p; and p; in the kdistlist, DenVar(p;,p;) (density difference between p;
&p;) is computed using Eq. 1, to obtain Den VarList.

 |kdist(p;, k) — kdist(p;, k)|
DenVar(p;,pj) = Fdist i k) , (1)
where, kdist(p;, k) is the k" nearest neighbor distance of point Dj-
To obtain the DLSs from DenVarlist, the values in DenVarlist which are larger
than a threshold 7 are separated out and the points corresponding to these sep-
arated out DenVar values are put into separate DLS. The value of the threshold
7 is computed using the statistical characteristics of Den Varlist, as follows:

T = EX(DenVarlist) + w.SD(DenV arlist) (2)

In Eq.2, EX is the mathematical expectation, w is the tuning coeffiecient and
SD is the standard deviation of the DenVarlist. Value of w is chosen from the
range (0,3) [13]. The DLS so obtained are refined further by removing the DLSs
of border and noise points and merging of DLS's with similar density levels. Based
on the density characteristics of DLS, € values are computed automatically for
each DLS using Eq. 3 and stored in EpsList.

mediankdist(DLS;) 3)
meankdist(DLS;)

€ = mamkdist(DLSi).\/
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Here, mazkdist, meankdist and mediankdist are the maximum, mean and the
median kdist values of DLS; respectively.

Algorithm 1. VDMR-DBSCAN Map phase (Mapper side)

Input: key = Null,value = Partition, k > value of k specified by user in range [3, 10]
Output: Local and boundary region outputs

1: D «— value > Whole partition is assigned to D
2: KD « Build.- Kd_ Tree(D) > build KD tree spatial index
3: kdistlist « Compute- kdistlist(k, KD) > computation of kdist values
4: Sort- in_ Asc(kdistlist) > Sort the kdistlist in ascending order
5: DenVarlist < ComputeDenVar(kdistlist)

6: 7« EX(DenVarlist) + w . SD(DenVarlist) > computation of density variation

threshold 7

DLS. List « Create- DLS(DenVarlist, 7, D) > D is partitioned into DLS

Refine_ DLS(DLS_ List)

9: EpsList < Compute_ Eps(DLS_ List, kdistlist) > ¢ values are computed for each
DLS

10: for each ¢; in EpsList do > EpsList is ordered in acending order

11: | DBSCAN(DLS List; , e, k, D)

12: end for

13: for each point Pt in D do

14: if Pt.isBoundary = true then

15: ‘ output(Pt.index, Pt.cluster- id + Pt.isCore_ point + Pt.Eps_ value +
kdistvalues)

16: else

17: ‘ write_ to_ local(Pt.index, Pt.cluster- id) > output written to local disk

18: end if

19: end for

Further, DBSCAN is applied on each DLS, using its corresponding ¢ values
from EpsList and with MinPts = k. DBSCAN iterates by selecting the initial
seed points from the DLS only, but the neighborhood counting is done over
all the unprocessed data objects. VDMR-DBSCAN improves the efficiency of
traditional DBSCAN from O(n?) to O(nlogn) by using KD-Tree [15] spatial
index. After all the iterations, final clusters of varied density are obtained and
the non-marked points are considered as noise points in the dataset.

The clustering results obtained after applying DBSCAN are divided into two
regions: Boundary and local region. The clustering results of boundary region
are used in merging of similar density clusters, which are present in adjacent
partitions. The results of boundary region are passed to the reducer in the form
of (key, value) pairs as (point_indez, cluster_id + isCore_point + Eps_value +
kdistvalues), where point_inder is the index of the point, cluster_id is the cluster
identification number for the point, isCore_point is a flag which indicates whether
the point is core or not, Eps_value is the ¢ value of the cluster to which the point
belongs. kdistvalues is the list of k nearest neighbor distances of a point in the
partition. The clustering results of local region are stored in the local disk, in
the form of key/value pair as (point_index, cluster_id).
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3.3 Reduce Phase

Reduce phase finds the pairs of clusters from adjacent partitions, which can be
merged in Merge phase. It outputs a Merge_Comb list of mergable cluster pairs
and ensures the merging of density similar clusters only. Reduce phase collects
the boundary points from Map phase and gathers all the points with same point
index from different partitions. Points with same point index (key) are executed
at the same reducer. Based on boundary point values, Reduce phase decides
whether the two clusters which share a boundary point can be merged or not.
However, the final merging will take place in Merge phase only. If two clusters,
say, C1 and C2 share a boundary point b, then C1 and C2 forms a merge
combination (M(C), if they satisfy the following two criterion:

— Boundary point should be a core point in at least one of the clusters.
— The difference in the ¢ values of the two clusters should be smaller than a
threshold, a.

A core point in the boundary region helps in identifying, if a cluster can be
extended upto a different partition. Difference in ¢ values of the two clusters
gives a measure of density difference between the two clusters. To ensure merging
of similar density clusters, it creates a Merge_Comb list of only those clusters
whose ¢ difference is less than «. The value of o can be controlled, depending
upon the quality of clusters required. Algorithm 2, gives a summary of steps
involved in Reduce phase.

Algorithm 2. VDMR-DBSCAN Reduce phase (Reducer side)

Input: key = Pt_index,value = cluster_id+ isCore_point + Eps_value + kdistvalues
Output: key = Pt_index,value = Merge_-Comb list

1: for all C1, C2 € |l do > 1 is the list of clusters to which point_index belong
2 if Pt¢_index is core point in C1||C2 then

3 FEps_dif «— compute difference in € values of C'1 &C2

4: if Eps_dif < a then

5: | Merge_Comb.add({C1,C2})

6: end if

7 end if

8: end for

9: if IMerge_Comb.isEmpty() then
10: ‘ write Merge_Comb to HDFS
11: else
12: kdistlist < combine kdistvalues from all partitions &sort
13: k_dist — kdistlist.get(k-1) > Fetch the k'™ nearest neighbor value
14: cid < find cluster with minimum absolute difference between its & &k_dist
15: output(key, cid); > The cluster-id of the point is written to the local disk

16: end if
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Non-Merged Clusters: In cases where the clusters are found to be unsuitable
for merging then the boundary point which is part of both the clusters, should
only be assigned to either of the clusters.

VDMR-DBSCAN solves this issue by using the kdistvalues list which is a
part of Mapper’s output. kdistvalues contain the k nearest neighbor distances of
a boundary point, in a partition. To find the global value of k' nearest neighbor
distance for the boundary point, kdistvalues of the point are collected from all
partitions, in Reducer. The kdistvalues collected for a point, are combined to
form a single list (kdistlist) and sorted in ascending order where k*" value is
picked from kdistlist to find k" nearest neighbor distance for this boundary
point. Further, difference between ¢ and kdist value is computed for all the
clusters to which the point belongs. The point is assigned to the cluster with
minimum absolute difference of € and kdist values. Since, points belonging to
same cluster are likely to have similar kdist values therefore, a point is more
density similar to the cluster with minimum absolute difference of ¢ and kdist
value. The cluster-id of such points are not part of Merge_Comb list and are
written to the local disk with the output of local regions. At the end of Reduce
phase, Merge_Comb list is written to the HDFS from where it is read by Merge
phase for merging of clusters.

3.4 Merge Phase

Merge phase merges the MC's discovered by Reduce phase to identify the clusters
which span over multiple partitions. It reads the input from HDFS as (key,
Merge_Comb list), written by Reduce phase, where key is the point index and
Merge_Comb list contains a list of M(C's that can be merged. The output of this
phase is a set of MergeList, where each MergeList represents the list of merged
clusters. Assume, the output of reducer contains three MC's as {P1C1, P2C2},
{P5C2, P2C2}, {P4C2, P1C1} which can be further merged, like { P1C1, P2C2}
can be merged with {P2C2, P5C2} to form a MergeList {P1C1, P2C2, P5C2},
which can be further merged with {P4C2, P1C1} to give a final MergeList as
{P1C1, P2C2, P5C2, P4C2}. Merge phase identifies those MCs which can be
merged further and merges them to produce a final set of MergeList.

Merge phase starts with finding difference between e values of clusters, for
all MC's in Merge_Comb list and sorts all of them in ascending order based on
their € difference value. Then, it first combines the one with the minimum e
difference i.e. the most density similar MC to form a MergeList. Further, all
the MC's which have an intersection with this MergeList are found, where all
MC's are already sorted in ascending order based on their ¢ difference values.
The intersection pair with minimum e difference is chosen and its e difference
is computed with all the clusters present in this MergeList. If the maximum e
difference is found to be less than the threshold « then this MC' is merged with
the existing MergeList to form a new MergeList. Further, Merge phase proceeds
by iterating on remaining MC's, until no more clusters can be merged.
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Mathematically, it can be formulated as,

eps.dif £(Ci, C;) = [eps(Cs) — eps(Cy)|. @)
In Eq.4, eps_dif f(C;,C;) computes the dissimilarity in the density of clusters
C; & Cj, where eps(C;) is the € value of cluster C;. After merging of cluster
C;, Cj, the eps_diff of resulting cluster with another C}, is computed as:

epsdif f((C;UCy),Cr) = max(eps.dif f(Ci, Cr), eps-dif f(C;, Cr)).  (5)

For Merging, eps_dif f((C; UC}), Ck) < «. Intuitively, this is similar to the com-
plete link hierarchical clustering [2], where the distance between two clusters is
determined by the most distant nodes in the two clusters. Similar to complete
link hierarchical clustering, merge phase tends to produce compact (density com-
pact) clusters and avoids long chain of clusters which would be meaningless.

\ (Ci, ck) |
\ I
\

Vo emapy /
\ /
Ly

\
(Ci,cm) | | (Cm, Ck)

Fig. 2. Merging of clusters

For illustration of merging, consider Fig. 2 which represents six M C's namely,
{Ci,C;},{C;, C}, {Ck, Cn }, {Ci, Ci }, {C, C}, {C;, Chy }, arranged in ascend-
ing order based on their eps_diff values. Here, lines between the clusters represent
their eps_diff. Assuming, C; and C; has the least eps_diff, therefore, they are com-
bined to form a MergeList. {C;,Cy} is the next most density similar MC' (least
value of eps_diff), which has an intersection with {C;,C;} and its maximum
eps_diff i.e. eps_diff (C;, Cy) is less than «, therefore it is merged into MergeList.
Now, the updated MergeList contains {C;, C;, Cr}. The next most density sim-
ilar intersection pair for the MergeList is {Cy, Cy,} whereas, eps_dif f(C;, Cp,)
is greater than «, therefore C,, is not combined with the MergeList.

It can be observed from the above illustration, that a cluster can be combined
to a list of clusters only if its eps_diff with all clusters in the list, is less than
«, i.e. it is similar in density to all clusters in the list. In absence of this, it
may lead to large variations of densities in a cluster and degrade the quality
of cluster. Hence, it can be concluded that Merge phase avoids large variations
in densities while merging of clusters and tends to provide compact clusters in
terms of density.
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3.5 Relabeling of Data Points

Once the clusters are combined in Merge phase, then all cluster-ids are sorted
in ascending order and all clusters in the list are relabeled as the first one. For
example, the clusters in the list {P1C1, P2C2, P5C2, P4C2} are relabeled as
P1C1. Both boundary points and points in local output are relabeled to correct
cluster-ids.

4 Results and Discussions

In this section, we evaluate the performance of VDMR-DBSCAN on synthetic
datasets of different densities and sizes and compare its clustering results with
DBSCAN-DLP [13] and DBSCAN-MR [14] which are found to be the best ver-
sions of DBSCAN clustering algorithm in the current state of art.

4.1 Experimental Settings

We conducted the experiments on Hadoop cluster with 4 DataNodes and 1
NameNode where NameNode contains 8 GB RAM with intel i5 CPU, running
Ubuntu-14.04 Linux operating system. DataNodes contain intel i5 CPU and
4GB RAM with Ubuntu-14.04. For MapReduce platform, we used Hadoop-
1.2.1 version on all the nodes. Both JobTracker & NameNode are configured
on same node. We have used three synthetic datasets, to illustrate the perfor-
mance of our proposed algorithm. For intuitive illustration, we have restricted
to the datasets in 2 dimensions only. No suitable cluster validity index is found
in literature for validating varied density clusters, therefore we have verified the
results visually with 2 dimensional data only. We have used two small synthetic
datasets: Zahn_compound (DS1) and Spiral dataset (DS2) [16] of varied densi-
ties. Figure3(a) and (b) shows the unclustured data points of dataset DS1 &
DS2 respectively. Zahn_compound dataset contains 399 data points whereas spi-
ral dataset contains 312 data points. We have generated, one large 2-dimensional
synthetic dataset (DS3) to illustrate the efficiency of proposed algorithm in find-
ing varied density clusters on large data.

4.2 Experimental Results

In this section, the clustering results of VDMR-DBSCAN on above metioned
datasets and its comparison with DBSCAN-DLP and DBSCAN-MR are dis-
cussed. Clustering results are represented through points in different colors and
markers which indicate the different clusters discovered whereas dashed lines
represent the data partitions obtained. In VDMR-DBSCAN k, w, a and o are
the user provided input parameters, whereas in DBSCAN-MR k, €, MinPts are
provided by user. p is the number of partitions created by PRBP partitioning.
Experimentally, £ = 4 and w = 2.5 is found to be an ideal value for multi-density
datasets [13].
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(a) DS1 with 399 data points

(b) DS2 with 312 data points

Fig. 3. Datasets

4.3 Clustering Results on Zahn_compound Dataset (DS1)

Figure 4(a) shows eight varied density clusters obtained after applying VDMR-
DBSCAN whereas, Fig. 4(b), shows the clusters obtained by applying DBSCAN-
MR, which clearly illustrates the inability of DBSCAN-MR to find varied density
clusters. DBSCAN-MR is unable to identify the points around the cyan colored
cluster (marked as red colored cross in Fig. 4(b)), as a cluster and treats them as
noise points whereas these points are identified as a separate cluster by VDMR-
DBSCAN (represented by black dots in Fig.4(a)). In DBSCAN-MR, clusters
in green and red are formed by merging of small density clusters into a single
cluster, which is due to relatively larger € value.
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Fig. 4. Clustering results on DS1 (Color figure online)

Through clustering and merging of two partitions P! & P2 (Fig.5), we
demostrate the working of VDMR-DBSCAN. Figure 5(a) and (b) show the clus-
ters obtained by VDMR-DBSCAN on P! and P2 respectively. On applying
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Fig. 5. Clustering results obtained on Partitions P1 & P2 (Color figure online)

VDMR-DBSCAN on P! (for k = 4 & w = 2.5), two € values are generated.
Cluster in blue points is generated by e value of 0.40311 whereas red and green
colored clusters are obtained by e value of 2.20055 (Fig.5(a)). In P2, four ¢
values are generated after applying VDMR-DBSCAN. The cluster in green is
generated by e value of 1.04209, cluster in magenta has an ¢ value of 2.00381,
whereas yellow colored cluster which is formed in boundary region of partition
P2 & P3 has an ¢ value of 2.84783 (Fig. 5(b)).

In Fig.4(a), it is clearly visible that green colored cluster in P2 is merged
with green colored cluster in partition P1, this is because the ¢ difference between
both the clusters is 1.1585 (2.20055 — 1.04209), which is less than « (merging
threshold), (1.4790). Similarly, red colored cluster in P! is merged with magenta
colored cluster in P2 with an e difference of 0.19674 (2.20055 — 2.00381) which
is also less than a.

Varying Width of Partitioning Slice ( ¢): Change in o value, changes the
number of partitions, data points in each partition, boundary region and number
of boundary points. We have experimented with o value of 2.2, 3.4 and 3.8
respectively. Figure6(a), (b) & Fig.4(a) show the clustering results of VDMR-
DBSCAN on partitions created by slice width of 3.4, 2.2 and 3.8 respectively
and the results obtained for different slice widths are found to be almost similar.

Figure 7(a), shows the clustering results of DBSCAN-MR, with 5 partitions
created by 0=3.4. In DBSCAN-MR, the ¢ value used should be half of o,
so a global ¢ value of 1.7 is used. As compared to the results obtained from
VDMR-DBSCAN on the same partitions (Fig.6(a)), DBSCAN-MR is able to
discover only three clusters and rest are flagged as noise points. Due to a global
¢ value, DBSCAN-MR is unable to identify varied density clusters in the dataset.
Figure 7(b) shows the clustering results of DBSCAN-MR on six partitions, cre-
ated by 0 =2.2. It uses a global € value of 1.1. Figure 4(b), shows the clustering
results of DBSCAN-MR on three partitions created by o = 3.8. From the above
comparisons, we can clearly observe that VDMR-DBSCAN can efficiently find
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(a) VDMR-DBSCAN results for o = (b) VDMR-DBSCAN results for o

34 (p = 5,clusters = T,k = 4w = = 22 (p = 6,clusters = T,k =
2.5, a = 1.640) 4,w=25a=20)

Fig. 6. Clustering results of VDMR-DBSCAN for o values of 3.4, 2.2 (Color figure
online)

% noise |

(a) DBSCAN-MR results for o = (b) DBSCAN-MR results for o =
34 (p = b5,clusters = 3,e 22 (p = 6,clusters = 5,e =
1.7, MinPts = 4) 1.1, MinPts = 4)

Fig. 7. Clustering results of DBSCAN-MR for o values of 3.4, 2.2 (Color figure online)

varied density clusters in a dataset whereas DBSCAN-MR is unable to find, due
to single € value. Also, the results of DBSCAN-MR depends on the € value used,
as explained above.

4.4 Clustering Results on Spiral Dataset (DS2)

In Fig.8(a) and (b), clustering results of VDMR-DBSCAN and DBSCAN-MR
are compared on DS2 with four partitions, which are created by ¢ value of 3. It
is clearly evident from the two figures, that VDMR-DBSCAN is able to capture
the minute density change in yellow and black, magenta and green, also blue
and cyan colored clusters, whereas DBSCAN-MR results in noise points and is
unable to differentiate between the varied density clusters.
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(a) Clustering result of VDMR-
DBSCAN (p = 4,0 = 3, clusters =
7.k =4,w=250a=15)

(b) Clustering result of DBSCAN-
MR (p = 4,0 = 3, clusters = 4,e =
1.5, MinPts = 4)

Fig. 8. Clustering results on DS2 (Color figure online)
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(a) Clustering results of DBSCAN-
DLP on DS1 (clusters = 9,k =
4,w = 2.5, MinPts = 4)

(b) Clustering results of DBSCAN-
DLP on DS2 (clusters = 6,k =
4,w = 2.5, MinPts = 4)

Fig. 9. Clustering results of DBSCAN-DLP on DS1 & DS2 (Color figure online)

Clustering Results of DBSCAN-DLP on Datasets DS1 & DS2: Results
in Fig.9(a) and (b) show the efficacy of DBSCAN-DLP in discovering varied
density clusters. The results are comparable to that of VDMR-DBSCAN but the
difference lies in scalability of the algorithm. As VDMR-DBSCAN partitions the
data into p partitions and processes each partition parallelly before going for the
merge phase, the time complexity is thus reduced by approximately a factor of
p. Thus, VDMR-DBSCAN is scalable in comparison to DBSCAN-DLP which is
partly evident from Table 1 also.

4.5 Large Synthetic Dataset (DS3)

In this section, clustering results of VDMR-DBSCAN on DS8 are discussed.
DS3 consists of 499746 data points. It is synthetically generated to have four
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Table 1. Comparison in execution time

Algorithm ‘Partition(sec) MapReduce(sec) |Merge(sec) | Total time(sec)
VDMR-DBSCAN 412.95514 674.39250 3.73998 1091.08762
DBSCAN-MR 412.95514 509.50999 3.53355 925.99868
DBSCAN-DLP |- - - 165470.30148

Fig. 10. Varied density synthetic dataset with 499746 data points

(a) Clusters discovered by VDMR- (b) Clusters discovered by
DBSCAN (p = 117,06 = 0.02, DBSCAN-MR (p = 117,0 = 0.02,
clusters = 4,k = 5,w = 2.5,a = clusters = 3, = 0.01)

0.001)

Fig. 11. Clustering results on DS3 (Color figure online)

clusters of three different densities. Figure 10 shows the data points of DS3 on a
two-dimensional plot.

Figure 11(a) shows the result of VDMR-DBSCAN on DS3. Before applying
VDMR-DBSCAN the dataset is partitioned using PRBP partitioning. We tried
the partitioning with different slice width and out of them slice width of 0.02 is
chosen because it produced least number of boundary points. As a result of par-
titioning, the dataset is divided into 117 partitions with 89459 boundary points.
VDMR-DBSCAN is then applied on these 117 partitions and it discovered four
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varied density clusters in the dataset which are represented by yellow, cyan, red
and green colored clusters in Fig. 11(a). Figure 11(b) shows the clusters obtained
by DBSCAN-MR on DS38. DBSCAN-MR is run on the partitions obtained, using
a global € value of 0.01. As a result, it discovered only three different clusters
in the dataset. DBSCAN-MR has merged two clusters of different densities into
a single cluster, which is colored as red in Fig. 11(b), whereas VDMR-DBSCAN
has discovered it as two clusters (Fig. 11(a)) of red and cyan color.

From Table 1, it can be observed that VDMR-DBSCAN has slightly higher
execution time than DBSCAN-MR, which is due to extra computations done
by VDMR-DBSCAN during map, reduce and merge phase to discover varied
clusters. DBSCAN-DLP has a very high execution time as compared to VDMR-
DBSCAN and DBSCAN-MR, because it is not scalable which makes it computa-
tionally very expensive while dealing with large datasets. Hence, in terms of exe-
cution time, DBSCAN-MR and VDMR-DBSCAN are much more efficient than
DBSCAN-DLP. The execution time of DBSCAN-MR and VDMR-DBSCAN are
comparable but VDMR-DBSCAN is far better than DBSCAN-MR in terms of
finding varied density clusters with automatic computation of input density para-
meters. Therefore, from above results it can be concluded that VDMR-DBSCAN
is better than existing versions of DBSCAN clustering algorithm because it can
efficiently find varied density clusters of different shapes and sizes in small as
well as large datasets, in a very less time.

5 Conclusions and Future Work

In this paper, we proposed a novel density based clustering algorithm VDMR-
DBSCAN, which is highly scalable and finds clusters of varied-density with
automatic computation of input density parameters in massive data. VDMR-
DBSCAN is designed on top of Hadoop Platform and uses MapReduce paradigm
for parallelization. We also proposed a novel merging technique, which merges
the similar density clusters present in different partitions and ensures meaning-
ful and compact clusters of varied density. We proved the efficiency of proposed
algorithm by experimenting on large and small synthetic datasets. Experimental
results revealed that our algorithm is highly scalable and detects varied density
clusters with minimal requirement of domain knowledge. One of the future work
is to use VDMR-DBSCAN with different existing data partitioning techniques
like ESP, CBP [17], to see if they improve the execution efficiency of VDMR-
DBSCAN.
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