
Chapter 9
Nonlinear Deformations of Soft Tissues
for Surgery Simulation

Yongmin Zhong, Bijan Shirinzadeh, Julian Smith, Chengfan Gu, and
Aleksandar Subic

Abstract Soft tissue deformation is of great importance to virtual reality based
surgery simulation. This paper presents a new methodology for modelling of
nonlinear soft tissue deformation from the physicochemical viewpoint of soft
tissues. This methodology converts soft tissue deformation into nonlinear chemical–
mechanical interaction. Based on this, chemical diffusion of mechanical load and
non-rigid mechanics of motion are combined to govern the dynamics of soft tissue
deformation. The mechanical load applied to a soft tissue to cause a deformation
is incorporated in chemical diffusion and distributed among mass points of the
soft tissue. A chemical diffusion model is developed to describe the distribution
of the mechanical load in the tissue. Methods are established for construction of
the diffusion model on a 3D tissue surface and derivation of internal forces from
the distribution of the mechanical load. Real-time interactive deformation of virtual
human organs with force feedback has been achieved by the proposed methodol-
ogy for surgery simulation. The proposed methodology not only accommodates
isotropic, anisotropic and inhomogeneous materials by simply modifying diffusion
coefficients, but it also accepts local and large-range deformation.
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9.1 Introduction

Simulation of soft tissues is a challenging research topic in surgery simulation.
Surgery simulation requires soft tissues react to the applied forces in a realistic
fashion and in real time. However, due to the complex nonlinear behaviours of soft
tissues, it is difficult to handle both of these conflicting requirements (Costa 2012;
Zhu and Gu 2012; Zhong et al. 2012). Currently, most of the existing deformation
methods are fully built on an elastic model. The common methods such as mass-
spring (San-Vicente et al. 2012; Patete et al. 2013; Omar et al. in press), FEM (Finite
Element Method) (Taylor et al. 2011; Zhang et al. 2014; Mafi and Sirouspour 2014)
and BEM (Boundary Element Method) (Zhu and Gu 2012; Duarte et al. 2011) are
mainly built on linear elasticity. Linear elastic models are simple and allow reduced
runtime computations. However, they only allow displacements to be less than 10 %
of the soft object size (Fung 1993), and thus cannot handle the nonlinear behaviours
of soft tissues. Although nonlinear elastic models can handle nonlinear material
properties, it is very difficult to satisfy the real-time requirement of soft tissue
deformation due to the complexity and extremely expensive computational nature of
nonlinear elastic models. So far, research on large-range nonlinear deformations of
soft tissues is insufficient owing to the complex soft tissue behaviour and insufficient
tissue response information (Taylor et al. 2011).

This paper presents a new methodology for modelling of nonlinear soft tissue
deformation by using chemical–mechanical interaction. This methodology com-
bines nonlinear chemical diffusion of mechanical load with non-rigid mechanics
of motion to govern the simulation dynamics of soft tissue deformation. The
mechanical load applied to a soft tissue to cause a deformation is incorporated
in chemical diffusion as a chemical load, and is further distributed among mass
points of the soft tissue. A chemical diffusion model is developed to describe
the distribution of the mechanical load in the soft tissue. Numerical methods are
presented for construction of the chemical diffusion model on a 3D tissue surface.
A gradient method is established for deriving internal forces from the distribution
of the mechanical load. Interactive deformation of anatomical models of human
body with force feedback has been achieved for surgery simulation. Examples are
presented to demonstrate the efficacy of the proposed methodology.

9.2 Related Work

A considerable amount of research efforts have been directed towards the area
of soft tissue simulation. The most popular method is the mass-spring model
(San-Vicente et al. 2012; Patete et al. 2013; Omar et al.), in which a deformable
object is discretized into a system of mass points connected by springs. The
advantage of the mass-spring model is that the computation is less time consuming
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and the algorithm is easier to implement. However, the mass-spring model does
not allow accurate modelling of material properties, and increasing the number of
springs leads to a stiffer system.

FEM (Taylor et al. 2011; Zhang et al. 2014; Mafi and Sirouspour 2014) and
BEM (Zhu and Gu 2012; Duarte et al. 2011) are the typical methods focused
on accurate modelling of soft tissue deformation. In FEM or BEM, rigorous
mathematical analysis based on continuum mechanics is applied to accurately
model the mechanical behaviours, namely the stress–strain relationship of a soft
tissue by decomposing it into a number of volume elements or boundary elements.
However, these methods are computationally expensive and only the simplest
variants such as linear shape functions have been used in soft tissue simulation.
Although the computational performance can be improved by the explicit FEM
(Zhang et al. 2014; Mafi and Sirouspour 2014) and pre-computation technique
(Peterlik et al. 2010), the use of linear elasticity cannot accommodate nonlinear
large-range deformation.

Studies were reported to handle large-range nonlinear deformation. These
methods are not built on real nonlinear elasticity, and they are mainly focused on
incorporation of nonlinear elements into linear elastic models to achieve large-range
deformation. Picinbono et al. reported an explicit nonlinear FEM to handle large-
range deformation by using nonlinear strains (Picinbono et al. 2003). However,
the use of quadric strains generally requires very expensive computations for
real-time simulation, and the runtime assembly of all the force terms for every
element limits the interactivity to only a few hundred elements. Although the
expensive computations caused by the use of the nonlinear strains can be handled
by utilizing a subspace integration method (Barbic and James 2005), the use
of nonlinear strains can only model geometric nonlinearity rather than nonlinear
material properties. Schwartz et al. reported a FEM model by introducing two
nonlinear Lame material constants for soft tissue simulation (Schwartz et al. 2005).
However, the improvement does not comply with the constitutive laws of materials,
since the Lame material constants are the inherent properties of materials and they
are not changeable constants. The stiffness warping method was also reported to
handle nonlinear large-range deformation (Etzmuss et al. 2003; Choi and Ko 2005;
Cakir and Yazici 2009). However, the warping method can only handle geometric
nonlinearity due to the use of the geometric improvement based on linear elasticity.
Liu et al. reported a method by incorporating nonlinear internal forces into the linear
mass-spring model to deal with nonlinear properties of soft tissues (Patete et al.
2013). Although it can handle large-range deformation, this method is still limited to
the linear strain–stress relationship. Zhu and Gu also reported a hybrid deformable
model, in which the traditional BEM was combined with the mass-spring model
to deal with large-range deformation (Zhu and Gu 2012). However, due to the use
of BEM, this method still replies on the pre-computation technique to achieve the
real-time performance.

Recently, the authors studied soft tissue deformation by using a physical
process, such as autowaves (Zhong et al. 2006a), cellular neural network (Zhong
et al. 2006b), heat conduction (Zhong et al. 2010) and reaction–diffusion process
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(Wu and Herzog 2002). These methods mainly rely on the analogies between
elastic deformation and the nonlinear physical processes. Although experiments
are conducted to verify the analogies, additional computational theoretical work is
required to further support the analogies.

9.3 Chemical Diffusion of Mechanical Load

Behaviours of soft tissues are not only mechanically governed, but they also depend
on physicochemical events (Lai et al. 1991). In fact, soft tissues form a system
consisting of different particles such as mobile ions, and the soft tissue behaviours
are associated with the ion concentration in the interstitium (Myers et al. 1984).
When a rise in ion concentration is imposed on a tissue previously at equilibrium,
ions diffuse into the tissue and move through the tissue matrix. The gradients of
the concentrations are the driving forces for ion movement, and the movement of
ions controls most of the compressive properties of soft tissues (Myers et al. 1984;
Chou and Pagano 1967). Therefore, from the physicochemical viewpoint, soft tissue
behaviours are an effect induced by ion diffusion activities.

According to the continuum theory, conservation of ions requires

@�

@t
C r � .�v/ D 0 (9.1)

where � is the ion density at time t, r� is the divergence operator and v is the average
velocity of ion diffusion.

Since

� D MC (9.2)

where C is the ion concentration and M is the ion mass.
Equation (9.1) becomes

@C

@t
C r � .Cv/ D 0 (9.3)

The ion diffusion may be described by Fick’s law

�!rC D Cv (9.4)

where ! is the diffusion coefficient and r is the gradient operator.
Combining Eq. (9.4) with Eq. (9.1) results in the governing equation of the

chemical diffusion process
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@C

@t
D r � .!rC/ (9.5)

If ions are generated by a chemical load, Eq. (9.5) becomes

@C

@t
C H D r � .!rC/ (9.6)

where H represents the ion density under a chemical load.
When a soft tissue is deformed under a mechanical force, work is done by

the mechanical force. The deformation is the consequence of applying the load
generated by the mechanical force to the soft tissue. The load is absorbed in the
soft tissue in the form of strain energy to deform the soft tissue away from its
natural state (Chou and Pagano 1967; Sadd 2005). According to the first law of
thermodynamics, the mechanical load applied to the soft tissue can be treated as an
equivalent chemical load to inject ions into the tissue. Therefore, the ion density H
can be defined as the strain energy density

H D
Z

¢d" (9.7)

where ¢ is the stress and © is the strain at the contact point.
Since the mechanical load is only applied at the contact point, the resultant ion

density is set only at the contact point where the mechanical load is applied, while
the values of the ion density at other points are set to zero. In addition, it is not
difficult to see from Eqs. (9.6) and (9.7) that soft tissue deformation is described as
chemical diffusion of the mechanical load, which is applied to a soft tissue to cause
a deformation.

To solve Eq. (9.6), it is necessary to determine the boundary conditions. The
boundary conditions determine the character of the ion interchange over the
boundary. Here, we choose the Neumann boundary condition as shown in Eq. (9.8),
which implies that there is no energy loss at the boundary.

@C

@N�

D 0 (9.8)

where N� is an outward normal vector at the boundary ¦.

9.4 Model Establishment

The chemical diffusion model can be constructed on a 3D surface or a 3D
volume. For the sake of simplicity and without loss of generality, we consider the
construction of the chemical diffusion model on a 3D surface.
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The construction of the chemical diffusion model on a regular grid such as a
rectangular grid is straightforward. The discrete chemical diffusion model on a
rectangular grid can be easily established by using a finite difference scheme. For
an internal point Pi,j in a rectangular grid, the discrete chemical diffusion model at
point Pi,j may be written as

Ci;j .tC�t/DCi;j.t/C 2!CiC1;j.t/�t��������!
Pi;jPiC1;j

���
���������!

Pi�1;jPi;j

��� C
��������!

Pi;jPiC1;j

���
� C 2!Ci�1;j.t/�t��������!

Pi�1;jPi;j

���
���������!

Pi�1;jPi;j

��� C
��������!

Pi;jPiC1;j

���
�

C 2!Ci;jC1.t/�t��������!
Pi;jPi;jC1

���
���������!

Pi;j�1Pi;j

��� C
��������!

Pi;jPi;jC1

���
� C 2!Ci;j�1.t/�t��������!

Pi;j�1Pi;j

���
���������!

Pi;j�1Pi;j

��� C
��������!

Pi;jPi;jC1

���
�

� 2!Ci;j.t/�t��������!
Pi�1;jPi;j

���
��������!

Pi;jPiC1;j

��� � 2!Ci;j.t/�t��������!
Pi;j�1Pi;j

���
��������!

Pi;jPi;jC1

��� � Hi;j�t (9.9)

where
��������!

Pi�1;jPi;j

��� and other similar terms represent the magnitudes of vector
�����!
Pi�1;jPi;j and other similar vectors, and �t is a constant time step.

To construct the chemical diffusion model on an irregular grid such as a triangular
grid, we subdivide the triangular grid into a finite number of non-overlapping control
volumes, over which energy conservation is enforced in a discrete sense. Therefore,
the construction of the chemical diffusion model on a triangular grid can be achieved
by discretizing the chemical diffusion model on each control volume. Figure 9.1
shows a control volume (surrounded by the dot lines) constructed around point Pi.
The control volume consists of the centroids of the triangles adjacent to point Pi and
the midpoints of the edges adjacent to point Pi.

Considering Eq. (9.6) over the control volume shown in Fig. 9.1, and applying
Gauss formula yield

Z
Si

�
@C

@t
C H

�
dS D

Z
Bi

.!rC/ � ndB (9.10)

where Si is the measure of the control volume at point Pi, Bi is the closed boundary
of Si, “•” represents the dot product of two vectors and n is the outward unit normal
vector at the boundary Bi.

The left side of Eq. (9.10) can be approximated as

Z
Si

�
@C

@t
C H

�
dS D

�
@Ci

@t
C Hi

�
Si (9.11)

Substituting Eq. (9.11) into Eq. (9.10) yields

�
@Ci

@t
C Hi

�
Si D

Z
Bi

.!rCi/ � ndB (9.12)

where Ci is the ion concentration at point Pi.
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Pk

Mik

Gijk

nijk

Mij
PjPi

Si

Fig. 9.1 A control volume over an irregular grid: the control volume consists of the centroids of
the triangles adjacent to point Pi and the midpoints of the edges adjacent to point Pi

By discretizing @Ci
@t , Eq. (9.12) may be rewritten as

Ci .t C �t/ D Ci.t/ C �t

Si

Z
Bi

�
!rCi.t/

�
� ndB � Hi�t (9.13)

By discretizing Bi, Eq. (9.13) becomes

Ci .t C �t/ D Ci.t/ C �t

Si

X
i2N.Pj/

X
k2N.Pj/\N.Pj/

Z
MijGijk

.!rCi.t// � nijkdB � Hi�t

(9.14)

where N(Pi) is the set of the neighbouring points of point Pi and N(Pj) is the set of
the neighbouring points of point Pj.

The gradient rCi.t/ over the small control volume defined by the triangle
�PiPjPk may be written as

rCi.t/D Cj.t/�Ci.t/�����!
PiPj���!

PiPk

���2

������!
PiPk

���2��!
PiPj �

���!
PiPj � ��!

PiPk

� ��!
PiPk

�

C Ck.t/�Ci.t/�����!
PiPj���!

PiPk

���2

������!
PiPj

���2��!
PiPk �

���!
PiPj � ��!

PiPk

� ��!
PiPj

� (9.15)

where “�” denotes the cross product of two vectors.
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Substituting (9.15) into (9.14), there is

Ci .tC�t/ DCi.t/C!�t

6Si

X
j2Ni

X
k2Ni\Nj

�ijk
�
Cj.t/�Ci.t/

� C�ijk .Ck.t/�Ci.t//�Hi�t

(9.16)

where

�ijk D
�����!

PiPkC��!
PjPk

��������!
PiPj���!

PiPk

���2

������!
PiPk

���2��!
PiPj �

���!
PiPj � ��!

PiPk

� ��!
PiPk

�
� nijk

�ijk D
�����!

PiPkC��!
PjPk

��������!
PiPj���!

PiPk

���2

������!
PiPj

���2��!
PiPk �

���!
PiPj � ��!

PiPk

� ��!
PiPj

�
� nijk

(9.17)

Finally, the unit normal vector at the boundary
����!
MijGijk of the small control volume

may be written as

nijk D
���!

PiPk C ��!
PjPk

�
�

h��!
PiPj �

���!
PiPj C ��!

PiPk

�i
���
���!

PiPk C ��!
PjPk

�
�

h��!
PiPj �

���!
PiPj C ��!

PiPk

�i���
(9.18)

9.5 Internal Forces and Deformation Dynamics

Since the gradient of the concentration is the driving force for ion movement, the
internal force can be described as

F D �!rPC (9.19)

where “rP” represents the gradient with respect to the change in position.
For a regular grid, the internal force at a point can be directly obtained by

discretizing the gradient operator at the point using a finite difference scheme.
Therefore, the internal force at point Pi on a regular grid is:

Fi D !
X

j2N.Pi/

ˇ̌
CPj � CPi

ˇ̌
�����!

PiPj

���
Uij (9.20)

where Uij D
��!
PiPj�����!
PiPj

��� and
ˇ̌
CPj � CPi

ˇ̌
is the magnitude of the concentration change

between point Pi and point Pj.
For an irregular grid such as a triangular grid, since the discretization of the

gradient operator is represented as Eq. (9.15), the internal force at point Pi is
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Fi D !
X

j2N.Pi/

X
k2N.Pi/\N.Pj/

Cj.t/ � Ci.t/�����!
PiPj � ��!

PiPk

���2

����!
PiPj � ��!

PiPk

� ��!
PiPk �

�����!
PiPk

���2��!
PiPj

�

C !
X

j2N.Pi/

X
k2N.Pi/\N.Pj/

Ck.t/ � Ci.t/�����!
PiPj � ��!

PiPk

���2

����!
PiPj � ��!

PiPk

� ��!
PiPj �

�����!
PiPj

���2��!
PiPk

�

(9.21)

During the simulation, after computing the internal forces for each node, the
Lagrange’s equation of motion is used to update the node positions, and thus the
following relationship may be written

mi
d2Pi

dt2
C �i

dPi

dt
C Fi D Gi (9.22)

where Pi is the position vector of node i at time t, mi and � i are the mass and damping
constants of node i, respectively, Fi is the net internal force applied to node i at time
t and Gi is the external force applied to node i at time t.

Equation (9.22) is solved by using an explicit integration scheme which does not
require matrix inversion for updating each vertex position, and also has a simple
implementation.

9.6 Implementation Results and Discussions

Experiments have been conducted to investigate the effect of isotropic, anisotropic
and inhomogeneous deformation as well as nonlinear load-deformation of soft
tissues. Interactive deformation of anatomical models of human body using a haptic
device for surgery simulation is studied, and the comparison with the existing
deformation methods is also discussed in this section.

9.6.1 Isotropic, Anisotropic, Inhomogeneous, Local
and Large-Range Deformations

Experiments have been conducted to investigate isotropic, anisotropic and inhomo-
geneous deformation. Figure 9.2 illustrates the deformation of the isotropic material
with 900 grid points (! D 0:08, mass D 10.0 and damping D 10.0). As shown in
Fig. 9.2a, b, the material has a cubic shape with round corners in its rest state.
Figure 9.2c, d are two different views of the material deformed under a compressive
force of 3 kg.

Anisotropic deformation can be achieved by setting different diffusion coeffi-
cients in different directions. Figure 9.3 illustrates the deformation of an anisotropic
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Fig. 9.2 Deformation of an isotropic material with a cubic and round-corner shape in its rest state:
the material has a common diffusion coefficient (! D 0:08) at each point

material under the same external force as Fig. 9.2. The material has the same
parameters as the material in Fig. 9.2 except that diffusion coefficients are different
in the different parametric directions (! in the latitudinal direction D 0.08 and
! in the longitudinal direction D 0.24). Compared to the isotropic deformation
shown in Fig. 9.2, Fig. 9.3 shows that the material is deformed more in the
longitudinal direction. This demonstrates the proposed methodology can simulate
anisotropic deformation by simply setting different diffusion coefficients in different
directions.

Inhomogeneous deformation can also be simulated by setting different diffusion
coefficients at different points. Figure 9.4 illustrates the deformation of an inho-
mogeneous material under the same external force as Fig. 9.2. The material has the
same parameters as the material in Fig. 9.2 except that the white portions (! D 0:08)
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Fig. 9.3 Deformation of an anisotropic material by setting different diffusion coefficients in
different directions (! in the latitudinal direction D 0.08 and ! in the longitudinal direction D
0.24)

Fig. 9.4 Deformation of an inhomogeneous material by setting different diffusion coefficients at
different points (! in the white portions D 0.08 and ! in the grey portion D 0.24)

have a different diffusion coefficient from the grey portion (! D 0:24). As shown
in Fig. 9.4, some of the white portions are deformed correspondingly during the
deformation, and they also highlight the difference from the isotropic deformation
shown in Fig. 9.2. Compared to the anisotropic deformation shown in Fig. 9.3,
Fig. 9.4 illustrates that the material is deformed differently at the different points
with different diffusion coefficients.

Local deformation can also be achieved with the proposed methodology by
setting a very low diffusion coefficient to the points where small deformation is
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Fig. 9.5 Local deformation by using a very low diffusion coefficient: the white portions with a
very low diffusion coefficient are not deformed

expected. Figure 9.5 illustrates an example of local deformation under the same
external force as Fig. 9.2, in which the white portions with a very low diffusion
coefficient are not deformed.

The proposed methodology has been further verified with real soft tissues.
Figure 9.6 illustrates the simulated deformation behaviours of the proposed method-
ology against the experimental deformation behaviours of a lamb kidney. It can be
seen that the simulation curve is in agreement with the experimental curve, and both
deformations vary nonlinearly with the applied forces. This demonstrates that the
proposed methodology can exhibit the mechanical behaviours of soft tissues. The
nonlinear load–deformation relationship also reveals that the proposed methodology
can accommodate large-range deformation.

9.6.2 Human Organ Deformation with Haptic Feedback

Laparoscopic surgery is much more difficult for surgeons than classical surgery.
Surgeons lose the third dimension and use two long special surgical tools instead of
their hands. Therefore, they must use all the clues provided to them to understand
and reconstruct the scene in their minds. Force feedback is one of such clues, and
its introduction in the surgery simulation greatly improves the overall realism of the
simulation.

Real-time soft tissue simulation with force feedback for use in surgery simulation
has been achieved by integration of a haptic device (PHANToM from Sensable
Technologies) into the proposed methodology. The graphical rendering is achieved
by the OpenGL graphics library, and the haptic rendering is achieved by the
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Fig. 9.6 Comparison between virtual and real soft tissue behaviours

Fig. 9.7 Deformations of a virtual human liver model with haptic feedback by using a virtual
probe

OpenHaptic toolkit from Sensable Technologies. Real-time interactive deformation
of virtual human organs with force feedback has been performed by the proposed
methodology. Figure 9.7 shows the deformation process of a virtual human liver
model with force feedback by using a virtual probe and the final deformation result.
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Table 9.1 Computational performance

Numbers of points 261 405 650 900 1100
Computational time (ms) 4.3 8.5 12.4 24.3 39.8
Frame rate (fps) 232.5 117.6 80.6 41.2 25.1

9.6.3 Computational Performance and Discussions

The proposed methodology has been implemented on an Intel Pentium (R) 2.8 GHz
and 1.0G memory PC. With one external stimulus, the graphical update rate utilizing
different numbers of mesh points is provided in Table 9.1. From Table 9.1, it can
be seen that the graphical update rate is decreased with the increment of the mesh
points. The visually satisfactory refresh rate of 30 Hz to maintain a realistic visual
feedback (Sadd 2005) is achieved by meshes with less than about 1000 grid points.
Since the correct visualization of an object such as the human liver requires at least
600 grid points (Zhang et al. 2014), this is sufficient to provide realistic visual
feedback with the proposed methodology.

The haptic device requires forces to be updated at the rate of at least 1000 Hz for
realistic force feedback (OpenHaptics ToolKit-Programmer’s and Sensable 2004).
It is observed that the force update rate is above 1000 Hz when the number of mesh
points is relatively small. When the computational speed cannot cope with the haptic
refresh rate any more, force extrapolation (Picinbono et al. 2002) is employed to
improve the realism of force feedback by generating the missing forces from the
previous time step.

The main difference of the proposed methodology from most of the existing
deformation methods is that soft tissue simulation is carried out from the physic-
ochemical viewpoint of soft tissues. It converts soft tissue deformation into a
chemical–mechanical interaction problem, and thus the complex and expensive
elastic computations are avoided. Compared with the common deformation methods
such as mass-spring, FEM and BEM, the proposed methodology can deal with
large-range deformation, while the common deformation methods can only handle
small deformation. Compared with the few methods based on nonlinear strains for
large-range deformations, such as explicit nonlinear FEM, large-range deformation
is achieved by the nonlinear load–deformation relationship rather than the use of
nonlinear strain in the explicit nonlinear FEM. The proposed methodology can
handle both local and large-range deformation. In contrast, local deformation is
difficult to achieve due to the use of nonlinear strain in the explicit nonlinear FEM.
Furthermore, the proposed methodology can easily accommodate anisotropic and
inhomogeneous deformation by simple modification of diffusion coefficients.
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9.7 Conclusions

This paper presents a new methodology to conduct simulation of nonlinear soft
tissue deformation from the physicochemical viewpoint of soft tissues. This method-
ology converts soft tissue deformation into chemical–mechanical interaction, and
thus the complex and expensive elastic computations are avoided. It features
chemical diffusion of mechanical load and non-rigid mechanics of motion to govern
the simulation dynamics of soft tissue deformation. The proposed methodology can
not only accommodate isotropic, anisotropic and inhomogeneous materials through
simple modification of diffusion coefficients, but it can also accommodate local and
large-range deformation.

Future research work will focus on the global validation of simulated deforma-
tion against real in vivo data of soft tissues. In fact, the validation should be based on
in vivo measurement data on the mechanical properties of living tissues, due to the
different behaviours between living tissues and non-living tissues. The measurement
of in vivo mechanical data of soft tissues would be of great value for a full validation
but is much more challenging to achieve experimentally. A minimally invasive in
vivo measurement method for acquisition of mechanical data of soft tissues will be
established for a full validation of deformation models.
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