
Chapter 12
Nonlinear Filtering Based on Model Prediction

Shesheng Gao, Yan Zhao, Yongmin Zhong, Aleksandar
Subic, and Rezar Jazar

Abstract Nonlinear filtering is of great importance in many applied areas. As
a typical nonlinear filtering algorithm, the unscented Kalman filter (UKF) has
the merits such as simplicity in realization, high filtering precision, and good
convergence. However, its filtering performance is very sensitive to system model
error. To overcome this limitation, this paper presents a new UKF for state
estimation in nonlinear systems. This algorithm integrates model prediction into the
process of the traditional UKF to improve the filtering robustness. This algorithm
incorporates system driving noise in system state by increasing the state space
dimension to expand the input of system state information to the system. The system
model error is constructed by model prediction to rectify the system estimation from
the traditional UKF. Simulation and experimental analyses have been conducted,
showing that the proposed filtering algorithm is superior to the existing nonlinear
filtering algorithms such as the EKF and traditional UKF in terms of accuracy.

Keywords Nonlinear filtering • Unscented Kalman filter • Model-error
prediction • Dimension increase

12.1 Introduction

The problem of nonlinear filtering has its origins in the areas of tracking and
signal processing. Nevertheless, the underlying setting is extremely general and is
ubiquitous in many applied areas such as integrated navigation system, geodetic
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positioning, and automatic control, where random processes are used to model
complex dynamical phenomenon. In essence, nonlinear filtering is to estimate the
state of a nonlinear and non-Gaussian stochastic system from noisy measurement
data. However, this process inevitably involves a gross error when there is a
deviation between the theoretical model and the practical model, leading to the
biased or even divergent filtering solution (Einicke 2012). The unscented Kalman
filter (UKF), which is a typical nonlinear filter, is such a particular case. It suffers
from the problem that the filtering performance is very sensitive to system model
error.

This paper presents a new UKF algorithm for nonlinear filtering. The algorithm
incorporates model prediction in the process of UKF. It augments system driving
noise to system state to increase the input information of system state. The proposed
algorithm overcomes the limitation of the traditional UKF that the filtering perfor-
mance is sensitive to system model error. It can effectively resist the disturbance of
model error on system state estimation and enhance the robustness of the filtering
process. Experiments and comparison analysis with the existing methods have been
conducted to comprehensively evaluate the performance of the proposed filtering
algorithm.

12.2 Related Work

The traditional Kalman filter uses statistical characteristics of the system model
to determine estimates recursively. However, the optimality of this filter heavily
depends on linearity. A significant amount of research efforts have been dedicated
to nonlinear filtering. The EKF is an approach to recursive nonlinear estimation. It is
obtained by first-order linearization of nonlinear models such that the traditional KF
can be applied. However, the EKF has the well-known drawbacks such as the large
linearization error, derivation of Jacobian matrices, and poor robustness against the
system model uncertainty (Boutayeb and Aubry 1999; Julier and Uhlmann 1997;
Julier et al. 1995; Doucet et al. 1998).

The particle filter is an optimal recursive Bayesian filtering method based on
Monte Carlo simulation, aiming to produce a sample of independent random
variables distributed according to the conditional probability distribution (Doucet
et al. 2001; Van der Merwe et al. 2000; Oppenheim et al. 2008). This method
provides a complete representation for the posterior distribution of the state,
enabling the easy calculation of any statistical estimate such as the mean, modes,
kurtosis, and variance. Consequently, it can deal with nonlinear system models and
non-Gaussian noise. However, the phenomenon of particle degeneracy may occur
in the approximation process, and the accuracy largely depends on the choice of the
importance sampling density and resampling scheme. The approximation process
may diverge if a dynamic system has very small noise or the measurement noise
has very small variance (Oppenheim et al. 2008; Wang 2006). The computational
complexity also depends on the number of samples in the process of state estimation.
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The UKF is a derivative-free filter. It combines the concept of unscented trans-
form with the linear update structure of the Kalman filtering. This method is based
on statistical approximations of system equations without requiring the calculation
of the Jacobian matrix (Julier and Uhlmann 2004). It can capture the posterior mean
and covariance accurately to the second order of Taylor series expansion for any
nonlinearity, leading to a superior performance with an equivalent computational
complexity (Pan et al. 2005). Further, the use of unscented transformation can avoid
random sampling error caused by any sampling method such as the Monte Carlo
simulation, thus dramatically reducing the number of points without the trade-off
of the filtering accuracy (Julier 1998). However, similar to the EKF, the UKF is
sensitive to system model uncertainty. In the presence of model uncertainties such
that the input data cannot reflect the real model, the filtering solution of the UKF
will be deteriorated or even divergent (Yang and Li 2011; Jwo and Lai 2009; Gao
et al. 2015).

In the recent years, the robust adaptive filter has been used in integrated
navigation system to control the influences due to both system state models and
measurement singularities. Yang et al. reported a robust adaptive filter by combining
the robust maximum likelihood estimation with the adaptive filtering process to
adaptively adjust the weight matrix of predicted parameters according to the
difference between system measurement and model information (Yang and Gao
2006; Yang et al. 2001). This filter can be adaptively converted into the classical
Kalman filter, adaptive Kalman filter, and Sage filter by modifying the weight
matrix and adaptive factor. However, the filtering method is difficult to estimate
state parameters at the epochs with insufficient measurement information. They
also developed a robust adaptive filter with multiple adaptive factors (Yang and Cui
2008). Although the robustness is improved by using multiple adaptive factors, the
use of multiple adaptive factors causes an extra computational load, as it requires the
number of measurements at all calculation epochs be larger than the number of state
components. Ding et al. reported a process noise scaling method to monitors the
filtering process using covariance matching for improving the robustness of adaptive
filtering (Ding et al. 2007). However, this method cannot optimally distribute
noises to each individual source. Gao et al. also reported a robust adaptive filter
for SINS/SAR (Strap-down Inertial Navigation System/Synthetic Aperture Radar)
integrated navigation system (Gao et al. 2011). However, this method may not
guarantee that the robust adaptive factor constructed from predicted residuals is
optimal for achieving the best filtering result. In general, the iterative process
involved in the robust adaptive filtering requires reliable state estimate to calculate
the covariance matrix of measurement noise. If the state estimate is disturbed
by kinematic model error and measurements, it is difficult to obtain the reliable
equivalent covariance matrix for describing the characteristics of measurement noise
(Sayed and Rupp 2010).

Model predictive is a method to determine the minimum model error during the
estimation process, where the model error is not limited to Gaussian noise charac-
teristics (Goldenstein 2004). Crassidis et al. reported a nonlinear model prediction
algorithm (Crassidis and Markley 1997). This algorithm estimates the model error
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by comparing predictions with measurements. Subsequently, it remedies the filter
conditions according to the model error to obtain the estimation of system state. Due
to the real-time estimation and correction of system error model, the MPF algorithm
is capable of handling large and dynamic errors of a nonlinear system model,
leading to a continuous model to avoid discrete jumps in system state estimate.
However, this algorithm requires the calculation of partial derivatives, leading to an
increased computational load. Fang et al. reported a method to estimate the model
error for an INS/GPS integrated navigation system by combining the EKF with
model prediction (Fang and Gong 2010). Huang et al. studied the closed-loop robust
stability of a nonlinear model predictive filter coupled with an extended Kalman
filter, showing that the estimation error dynamics of the EKF are input-to-state stable
in the presence of nonvanishing perturbations (Huang et al. 2013). However, due to
the use of the EKF, these two methods suffer from the problems of the EKF in
handling nonlinear systems, such as the requirement of calculating the Jacobian
matrix and the low accuracy due to the use of linear approximation.

12.3 Model Prediction Based UKF

12.3.1 Prediction of System Model Error

Consider the state and measurement equations of a nonlinear system

P
bx.t/ D f

�

bx.t/
� C G

�

bx.t/
�

d.t/ (12.1)

by.t/ D h
�

bx.t/
�

(12.2)

where both f .�/ and h .�/ are continuous and differentiable nonlinear functions, and
d.t/ 2 Rr represents the model-error vector. x.t/ 2 Rn is the state vector, bx.t/ the
state estimate vector of x(t), G

�

bx.t/
� 2 Rn�r the model-error distribution matrix,

y.t/ 2 Rm the measurement vector, and ŷ(t) the estimated output vector.
Equation (12.2) can be discretized as

Qz .tk/ D h
�

bx .tk/
� C vk (12.3)

where Qz .tk/ is the discrete expression of ŷ(t), and vk 2 Rm�1 is the measurement
noise vector of the system.

The cost function is constructed as by summing the weighted sum square of the
measurement-minus-estimate residuals and the weighted sum square of the model
correction term
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J .d.t// D 1
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fQz .t C�t/�by .t C�t/gTR�1 fQz .t C�t/ �by .t C�t/g

C 1

2
dT.t/Wd.t/ (12.4)

where W is the system weight matrix and R is measurement covariance matrix of vk.
By minimization of (12.4), we can obtain the system model error
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(12.5)

where the ith element of l
�

bx.t/;�t
�

is defined as

li
�
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� D

pi
X

kD1

�tk

kŠ
Lk

f .hi/ (12.6)

where Lk
f (hi) is the kth-order Lie derivative.

ƒ .�t/ 2 Rm�m is a diagonal matrix with elements defined by

�ii D �tpi

piŠ
; i D 1; 2; � � � ;m (12.7)

where pi .i D 1; 2; � � � ;m/ is the lowest order of the derivative of h
�

bx.t/
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.
S
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� 2 Rm�r is a matrix with each row defined by

si D
h

Lg1

�

Lpi�1
f .hi/

�

; � � � ;Lgr

�

Lpi�1
f .hi/

�i

; i D 1; 2; � � � ;m (12.8)

Letting A D ƒ .�t/ S
�

bx
�

, (12.5) can be simplified as

d.t/ D �˚

ATR�1A C W
��1

ATR�1 �

l
�

bx; �t
� � Qz .t C�t/Cby.t/

�

(12.9)

12.3.2 Expanded System State

Consider the discrete state equation and measurement equation of a navigation
system

Xk D f .Xk�1/C � k�1wk�1 (12.10)

Zk D h .Xk/C vk (12.11)
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where Xk is the estimated state vector, f .�/ and h .�/ are nonlinear functions of the
system state, � k�1 is the noise driving matrix, wk�1 is the state noise vector of the
system state model, Zk is the measurement vector, and vk is the measurement noise
vector.

Let us first consider the expansion of the space dimension of the system state
vector. In order to take into account the effect of system driving noise on the system
state model, the noise is added in the system state. Thus, the expanded system state
vector and covariance matrix can be expressed as

Xa
k D �

XT
k dT

k vT
k

�T
(12.12)

Pa
k D

2

4

Px
k

Qd
k

Rv
k

3

5 (12.13)

where the dimension of Xa
k is L D n C q C p, q is the dimension of Q, and p is the

dimension of R.
As mentioned previously, the UKF is very sensitive to system model error, thus

unable to deal with the problem of error estimation. In order to overcome this
limitation, this paper adopts model prediction to determine a reliable model error
d.t/ to improve the robustness of the UKF. Subsequently, by replacing wk�1 in
(12.10) with dk�1 and substituting the estimated value of the expanded state into
the state and measurement equations, we can get

Xa
k D f

�

Xa
k�1

� C � k�1dk�1 (12.14)

Za
k D h

�

Xa
k

� C vk (12.15)

where dk and vk can be assumed as a white noise process. This is because if the
random error is not a white noise process, it can be transformed into a white noise
process by decreasing the sampling rate.

Therefore, the following conditions hold for dk and vk

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ
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D Qkıkj
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h
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T
j
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D Rkıkj
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h

dk; v
T
j

i

D 0

(12.16)

12.3.3 Filtering Algorithm

The proposed model prediction based UKF includes the following steps:
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(1) Calculate the sigma point ¦k of the state vector
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(12.17)

(2) Calculate the system model error dk�1 from (12.9)

d.t/ D �˚

ATR�1A C W
��1

ATR�1 �
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�

(12.18)

(3) The time update equations are
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(4) The measurement update equations are

Za
k D h

�

¦
.z/
k;k�1

�

C ¦
.v/
k;k�1 (12.22)
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In (12.24), W (m)
i and W (c)

i are the weight matrices, which are represented as

8

ˆ
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<

ˆ

ˆ
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W.c/
0 D I

.LCI/ C �

1 � ˛2 � ˇ�

W.m/
i D W.c/

i D 0:5
.LCI/ i D 1; 2; � � � ; 2L

(12.30)

where L C I D 3. When I < 0, the semi-regularity of (12.30) cannot be guaranteed.
In this case, a scale correction (Gao et al. 2011) is applied to the obtained sigma
point set to make (12.30) semi-regular. In the most cases, 10�4 � ˛ � 1, and ˇ D 2

is optimal for Gaussian distribution (Julier et al. 1995).
In (12.26), � ii represents the main diagonal element of prior weight matrix � .

If the measurement information contains abnormality, the corresponding weighted
matrix is adjusted by the following IGG III weight function to improve the filtering
performance

�ii D

8

ˆ

ˆ

<

ˆ

ˆ

:

1
ˇ

ˇ QVi

ˇ

ˇ � k0
k0jQVij

�

k1�QVi
k1�k0

�2

k0 <
ˇ

ˇ QVi

ˇ

ˇ � k1

0
ˇ

ˇ QVi

ˇ

ˇ > k1

(12.31)

where QVi is standardized residuals, k0 and k1 are constants, k0 D 1:0 � 1:5 and
k1 D 3:5 � 8:0.

�ij D p
�ii

p
�jj (12.32)

12.4 Performance Evaluation and Discussions

Experiments have been conducted to comprehensively evaluate and analyze the per-
formance of the proposed filtering algorithm (named the MP-UKF). The comparison
analysis with the existing filtering algorithms such as the EKF and UKF is also
discussed in this section.

12.4.1 Simulations and Analysis

The univariate non-stationary growth model (UNGM) was adopted to evaluate the
performance of the proposed algorithm. The state and measurement equations of the
UNGM are described as
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x.t/ D 0:5x .t � 1/C 2:5x .t � 1/
1C Œx .t � 1/�2 C 8 cos Œ1:2 .t � 1/�C w.t/ (12.33)

Z.t/ D x.t/=20C v.t/ (12.34)

where both w(t) and v(t) are the zero-mean Gaussian noises, and their intensity
variances Q and R are

Q D cov
h

w.t/;w.�/T
i

D 10 (12.35)

R D cov
h

v.t/; v.�/T
i

D 1 (12.36)

The initial state and its variance are assumed as

x.0/ D 0:1 and P.0/ D 2 (12.37)

By expanding the state space dimension, we get

xa.0/ D �

0:1 d 0
�T

and Pa.0/ D
2

4

2

10

1

3

5

T

(12.38)

where d is calculated by (12.9).
It can be seen from Fig. 12.1 that the estimated values of the EKF are within

(�20, 10), leading to large deviations from the real values. The estimated values
of the UKF are within (�15, 5). Although the UKF improves the estimation
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Fig. 12.1 Estimation of the three filtering methods
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Fig. 12.2 Root mean square errors of the three algorithms for the estimation

performance of the EKF, there still are pronounced deviations between the estimated
and real values. In contrast, the proposed MP-UKF accurately captures the true
values, leading to the estimate error within (�5, 5). Figure 12.2 shows the root mean
square errors (RMSE) of the three filtering algorithms. The RMSE is within (1, 8)
for the EKF, (0.5, 2.5) for the UKF, and (0, 0.5) for the RMP-AUKF. Therefore, it
is evident that the MP-UKF outperforms the other two.

12.4.2 Experiments and Analysis

Practical experiments were conducted to evaluate the performance of the proposed
filtering algorithm for a SINS/CNS/SAR (Strap-down Inertial Navigation Sys-
tem/Celestial Navigation System/Synthetic Aperture Radar) integrated navigation
system. The navigation coordinate is E-N-U (East-North-Up) geography coordinate
system. The SINS/CNS/SAR integrated navigation system is

Xk D f .Xk�1/C � k�1dk�1 (12.39)

Zk D HkXk C vk (12.40)

where f .�/ is the nonlinear function of the state vector X and is described as
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The state variables are

X D �

�E �N �U ıvE ıvN ıvU ıL ı� ıh "bx "by "bz rx ry rz
�T

(12.42)

where (�E,�N ,�U) is the attitude error, (ıvE, ıvN , ıvU) is the velocity error,
(ıL, ı�, ıh) the position error, ("bx, "by, "bz) the gyro constant drift, and .rX ;rY ;rZ/

the accelerometer zero-bias.
The SINS and SAR are combined as sub-filter 1, and its measurement is

Z1 D
2

4

�E � �SE

.L � LS/RM

.� � �S/RN cos L

3

5 (12.43)

The SINS and CNS are combined as sub-filter 2, and its measurement is

Z2 D
2

4

�E � �CE

�N � �CN

�U � �CU

3

5 (12.44)

The measurement of the SINS/CNS/SAR integrated navigation system is
described as

Z D
	

Z1
Z2




(12.45)

The measurement matrix of the SINS/CNS/SAR integrated navigation system is

H D
	

H1

H2




6�10
(12.46)
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where
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3
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5 (12.48)

Suppose the Earth’s rotation angular velocity is !ie D 15ı=h, the radius of the Earth
is Re D 6378 km, and the acceleration of gravity is selected as g D 9:780 m=s2.
The initial position of the aircraft was at East longitude 109ı, North latitude 34ı,
and altitude 1000 m. The initial attitude angle error was �E D �N D �U D 0:50,
the velocity error ıVE D ıVN D ıVU D 0:1 m=s, and the position error
ı� D 100; ıL D 100; ıh D 10 m. The gyro’s random drift and walk were 0.01 ı/h
and 0:001ı=

p
h. The accelerometer’s zero offset and random walk were 10�4g and

10�5g=
p

s. The horizontal positioning accuracy of SAR was 25 m, the heading
angle of mean square error by SAR was 0.1ı, and the measurement accuracy of CCD
(Charge-Coupled Device) star sensor was 2000. The sampling cycles of SINS, SAR,
and CNS were 0.01, 1, and 0.5 s. The filtering period was 1 s. The measurement
noise was v D Œ0:5 0:2 0:2 0:5 0:5 0:5�T.

As shown in Figs. 12.3, 12.4, and 12.5, the EKF algorithm has the largest attitude
angle error with the heading error (–1.50, 1.250), roll angle error (�10, 1.50), and pitch
angle error (�1.250, 1.50). The portions of the curve, which are beyond (�10, 10),
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Fig. 12.3 Heading angle error of the SINS/CNS/SAR integrated navigation system



12 Nonlinear Filtering Based on Model Prediction 363

0 100 200 300 400 500 600 700 800 900 1000
-2

-1

0

1

2

3

4

5

t(s)

R
ol

l A
ng

le
 E

rr
or

(’)

EKF

UKF
MP-UKF
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Fig. 12.5 Pitch angle error of the SINS/CNS/SAR integrated navigation system

involve a significant change in amplitude. The attitude angle error is improved by
the UKF algorithm with all the heading, roll, and pitch angle errors within (�10, 10).
In contrast, the attitude angle error by the proposed filtering algorithm is reduced to
(�0.30, 0.40).

Figures 12.6 and 12.7 show the similar trend as Figs. 12.3, 12.4, and 12.5. With
the EKF, the velocity error is largest, which is within (�1.5 m/s, 1.5 m/s). With the
UKF, both the east and north velocity errors are within (�1 m/s, 0.9 m/s). However,



364 S. Gao et al.

0 100 200 300 400 500 600 700 800 900 1000
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

t(s)

E
-V

el
oc

ity
 E

rr
or

(m
/s

)

EKF

UKF
MP-UKF

Fig. 12.6 E-velocity error of the SINS/CNS/SAR integrated navigation system
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Fig. 12.7 N-velocity error of the SINS/CNS/SAR integrated navigation system

the proposed filter algorithm reduces the velocity error to (�0.2 m/s, 0.3 m/s). As
shown in Figs. 12.8 and 12.9, the velocity errors in latitude and longitude for the
EKF are gradually reduced by the UKF and proposed MP-UKF. The estimate errors
of the three filters are within (�0:900, 0. 800), (�0:500, 0. 500), and (�0:200, 0. 200),
respectively. Table 12.1 shows the detailed comparison for the position errors of
the three filters.
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Fig. 12.8 Latitude error of the SINS/CNS/SAR integrated navigation system
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Fig. 12.9 Longitude error of the SINS/CNS/SAR integrated navigation system

Table 12.1 Position error statistics of the SINS/CNS/SAR integrated
navigation system

Filtering methods Mean error Standard deviation Position error

EKF 0.538 1.143 �0:900 � 0:800

UKF 0.326 0.601 �0:500 � 0:500

MP-UKF 0.107 0.207 �0:200 � 0:200
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From the above results and analysis, it is evident that the proposed algorithm
can significantly reduce navigation error. The achieved navigation accuracy is much
higher than those of the EKF and UKF.

12.5 Conclusions

This paper presents a nonlinear filtering algorithm for state estimation in nonlinear
systems. By taking into account the effect of system driving noise on system
state, this algorithm adds system driving noise in system state to expand the input
of system state information to the system. Subsequently, it incorporates model
prediction in the UKF filtering process to overcome the UKF limitation that the
performance is sensitive to system model error. Simulation and experimental results
demonstrate that the proposed filtering algorithm can significantly reduce navigation
error. The achieved accuracy is much higher than those of the EKF and UKF.

Future work will focus on improving the computational performance of the
proposed algorithm. Despite the improved filtering accuracy, the increase of the state
space dimension in the proposed algorithm causes an extra computational load to the
filtering process. It is expected to establish a strategy to simplify the computational
process of the proposed algorithm by studying the relationship between the accuracy
and computational time in terms of the degree of nonlinearity.
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