
Top-k Distance-Based Outlier Detection
on Uncertain Data

Ying Zhang, Hongyuan Zheng(&), and Qiulin Ding

College of Computer Science and Technology, Nanjing University
of Aeronautics and Astronautics, Nanjing, China

984589338@qq.com, zixiayedu@126.com,

qlding@nuaa.edu.cn

Abstract. In recent years, more researchers are studying uncertain data with the
development of Internet of Things. The technique of outlier detection is one of
the significant branches of emerging uncertain database. In existing algorithms,
parameters are difficult to set, and expansibility is poor when used in large data
sets. Aimed at these shortcomings, a top-k distance-based outlier detection
algorithm on uncertain data is proposed. This algorithm applies dynamic pro-
gramming theory to calculate outlier possibility and greatly improves the effi-
ciency. Furthermore, an efficient virtual grid-based optimization approach is also
proposed to greatly improve our algorithm’s efficiency. The theoretical analysis
and experimental results fully prove that the algorithm is feasible and efficient.

Keywords: Uncertain data � Outlier detection � Dynamic programming
theory � Optimization approach

1 Introduction

In the real world, data contains uncertainty for reasons that include poor precision of
equipment, absence of data and transmission delay. The new data pattern has become a
new research hotspot, outliers detection is one of them. Outlier detection is a funda-
mental issue in data mining. It has been applied in lots of areas including network
intrusion detection [1], industrial sciences [2], environmental monitoring [3], credit
card fraud detection [4], etc. The outlier is data with abnormal behavior or charac-
teristic that obviously deviates from other sample data. The main task of outlier
detection is to find outlier from a large number of complex dataset [5].

The outlier detection comes from the statistics, and later it was introduced into the
data mining domain by Knorr [6, 7]. Some outlier detection algorithms are commonly
used at present, such as distance-based outlier detection and density-based outlier
detection. However, all these outlier detection algorithms mainly focus on deterministic
data and cannot directly process uncertain data, most existing outlier detection algo-
rithms on uncertain data are the improvement and innovation on the basis of the above
algorithms.

At present, the outlier detection technology of deterministic data has matured and is
used cosmically, but research about uncertain data is just beginning. The first definition
of outlier on uncertain data was given by Aggarwal C C, Yu P S, et al. [8]. According to

© Springer International Publishing Switzerland 2015
Z. Huang et al. (Eds.): ICCCS 2015, LNCS 9483, pp. 521–535, 2015.
DOI: 10.1007/978-3-319-27051-7_45

them, an uncertain data that can be represented by a probability density function
(PDF) is an outlier if its existential probability in some subspace with density at least η is
less than δ. But their works only can detect local outlier and cannot be well applied to
global outlier. Shaikh and S.A also proposed an outlier detection algorithm on uncertain
data of the Gaussian distribution in [9]. According to them, for an uncertain data, if its
expected number of neighbors that exist within its D-distance is less than or equal to
threshold, it is a density-based outlier. However, in practice, parameter p is hard to set.
Subsequently, aimed at the shortcomings of the proposed algorithms in [9], they pro-
posed a fast top-k outlier detection algorithm on uncertain data in [10] and an
approximate outlier detection algorithm in [11]. However, all of their works are based on
an uncertain data model that Gaussian probability density function is used to describe
uncertain data, which is different from the data model we will discuss in this paper.
Wang et al. first proposed the concept of distance-based outlier detection. In [12], the
definition of outliers is based on the possible world. They judge whether an object is an
outlier by calculating the sum of the probabilities of possible world instances that consist
of at least k objects. If the sum is less than a pre-defined value, the object is an outlier,
which is then extended to outlier detection on the uncertain data stream in [13].

Existing distance-based outlier detection algorithms need user to set up several
parameters in practical applications, but it is very difficult to set up reasonable
parameters for users who are not familiar with data distribution. In order to decrease
the difficulty of parameter setting, we use a constant parameter k that is independent of
the dataset features to instead of probability threshold value. In this paper, we redefine
the concept of outlier on uncertain data and propose a top-k distance-based outlier
detection algorithm on uncertain data. We sort all objects in descending order of its
probability of being outlier and the preceding k objects are our results. In order to
reduce the computational cost, we apply dynamic programming theory to compute the
possibility of being an outlier for an object and greatly improve the efficiency, then
present an efficient virtual grid-based optimization method to achieve better effect.

The remainder of this paper is organized as follows. In the next section, we propose
a basic algorithm of top-k distance-based outlier detection on uncertain data.
A grid-based optimization approach was presented to improve the efficiency of the
basic algorithm in Sect. 3. Section 4 contains experimental results that fully prove the
efficiency of the proposed algorithms and Sect. 5 concludes our paper.

2 Top-K Distance-Based Outlier Detection on Uncertain Data

2.1 Related Concepts

In this paper, our works focus on tuple-level uncertain data. Given an uncertain dataset
D ¼ x0; x1; . . .; xi; . . .f g; in which each tuple xi has the form of \xi; pi[, where xi is
uncertain record of xi, pi is existential probability of xi. |D| = N.

Definition 1 (ud-neighborhood [12]). ud is a distance parameter. An object is a
neighbor of xi if the distance between it and xi is less than ud. R(xi) is ud-neighborhood
of xi, RðxiÞ ¼ fxjjxj 2 D; distðxi; xjÞ� udg.

522 Y. Zhang et al.

The main difference between certain and uncertain data is that uncertain data
contain uncertain record and their existential probability. So any combination of tuples
in ud-neighborhood of the data needs to be unfolded. Then possible world model was
built. There are many models of uncertain data, but possible world model is the most
popular one [14].

Definition 2 (Probability of the possible world instance (PPW)). For uncertain data
xi, an arbitrary combination of tuples in R(xi) constitutes a possible world instance
(PW), all possible world instances constitute possible world of xi. We denote the
possibility of possible world instance by PPW, can be computed as follows:

PPW ¼
Y

xj2RðxiÞ^xj2PW
pj

Y
xk2RðxiÞ^xk 62PW

ð1� pkÞ ð1Þ

Where xj and xk are objects in R(xi), xj is in the possible world instance PW and xk is
not in PW, pj and pk are existential probability of xj and xk respectively.

When considering deterministic data, a distance-based outlier is a data who has not
enough neighbors within a given distance threshold [15]. For uncertain data, however,
existential probability needs to be taken into account in detection. We can only judge
whether an object is an outlier through calculating the probability of the object to
become an outlier.

Definition 3 (Outlier probability). For an uncertain data xi, we define the sum of the
probabilities of possible world instances that contain less than n tuples as its outlier
probability. Then,

PoutlierðxiÞ ¼
X

PWj2Snðxi;PWÞ
PPWj ð2Þ

Where Poutlier(xi) denotes the outlier probability of xi. Sn(xi, PW) is the set of
possible world instances that contain less than n tuples in possible world of xi.

Definition 4 (Top-k Outlier). We sort all uncertain data in descending order of their
outlier probability, and collect the preceding k objects as top-k outliers on uncertain
data.

2.2 Dynamic Programming Algorithm

The key computation of top-k outlier detection is calculating outlier probability of each
data. The basic method is to list all possible world instances, and calculates the sum of
the probabilities of possible world instances that contain less than n tuples. But the time
complexity of this method shows exponential growth with neighborhood scale.

A dynamic programming algorithm is proposed by Wang B in [12]. In this paper,
we improve the dynamic programming algorithm to calculate outlier probability, which
makes the time complexity of the probability calculation decrease to OðnNÞ from
Oðn � 2NÞ.

Top-k Distance-Based Outlier Detection on Uncertain Data 523

If R(xi) is ud-neighborhood of uncertain data xi, let R(xi) = {x0, x1,…,xm-1}. [R(xi), j]
denotes event that only occurs j tuples in R(xi). We find all events in [R(xi), j] are
exactly possible world instances that contain j tuples in R(xi). According to this, we can
use a meaningful equivalent conversion for computing the outlier probability of an
object. We list all the possible events. Then,

½RðxiÞ\n� ¼ ½RðxiÞ; 0�[½RðxiÞ; 1�[� � � [½RðxiÞ; n� 1� ð3Þ

Where [R(xi) < n] denotes all events that occur less than n tuples in R(xi), [R(xi), j]
(j = 0, 1, … ,n-1) denotes the event that only occurs j tuples in R(xi).

Then, the outlier probability of xi can be converted to another expression:

PoutlierðxiÞ ¼ P½RðxiÞ\n� ¼ P½RðxiÞ; 0� þP½RðxiÞ; 1� þ � � � þP½RðxiÞ; n� 1�

¼
Xn�1

j¼0

P½RðxiÞ; j� ð4Þ

Where P[R(xi) < n] denotes the probability of event [R(xi) < n]. P[R(xi), j] (j = 0, 1,
… ,n-1) denotes the probability of event [R(xi), j].

The problem becomes how to calculate P[R(xi), j] efficiently, R(xi) will be divided
into two parts based on the dynamic programming theory: the last tuple and the rest of
tuples. If the last tuple occurs, the next step is to calculate probability of the event that
only occurs j-1 tuples in the rest of tuples; if the last tuple doesn’t occur, the next step is
to calculate probability of the event that occurs j tuples in the rest of tuples.

The order of tuples in R(xi) remains unchanged during the calculation. |R(xi)| = m,
probabilities of tuples in R(xi) are represented p0, p1,…, pm-1 respectively. In this paper,
we use two-dimensional array to store the value of P[R(xi),j]. We need to create a
two-dimensional array T that contains m rows and n columns, T[i][j] denotes the
probability of event that only occurs j tuples in the dataset that consisted by the first
i tuples of R(xi). So P[R(xi) < n] is the sum of values of the last row in T, then,

PoutlierðxiÞ ¼ P½RðxiÞ\n� ¼
Xn�1

j¼0

T ½m�½j� ð5Þ

The row number of array starts with 1 because it is meaningless when the formula
i = 0. Solving formulas of two-dimensional array are as follows:

T ½i�½j� ¼

po if j ¼ 0; i ¼ 1
po if j ¼ 1; i ¼ 1

pi�1 � T½i� 1�½0� if j ¼ 0; i[1
pi�1 � T[i� 1�½j� 1� if j ¼ i; i[1

pi�1 � T[i� 1�½j� 1� þ pi�1 � T[i� 1�½j�
0

if j 6¼ 0; j\i

if j[i

8>>>>>><
>>>>>>:

ð6Þ

For instance, R1 is ud-neighborhood of an uncertain object, let
R1 ¼ x0; . . .; xm1�2; xm1�1f g. Figure 1 shows the storage situation in two-dimensional
array when calculating P[R1 < n] by formula(6).

524 Y. Zhang et al.

Where Ri′ (i = 1,…, m1) is a data set that consists of the first i tuples appear of R1.
And P[R1 < n] = T[m1][0] + … + T[m1][n-1].

In this paper, the above dynamic programming algorithm is represented by DPA.

2.3 Basic Algorithm

In this paper, k objects with maximum outlier probability in D are considered to be
outliers. We need a data container to store k objects. Threshold δ has been always the
minimum outlier probability in the data container. Considering that we need to find
the minimum outlier probability in k objects every time, the minimum heap is used as the
data container. The main idea of the algorithm is to search ud-neighborhood of each
uncertain object xi, and calculate the outlier probability of xi by DPA, if the number of
objects is less than k in the minimum heap, then insert xi into the minimum heap,
otherwise, assign outlier probability of the top object of the minimum heap to δ and
replace the top object of the minimum heap with xi if its outlier probability is greater than
δ. The pseudo code is as follows:

Fig. 1. Storage situation in two-dimensional array of R1

Top-k Distance-Based Outlier Detection on Uncertain Data 525

The above algorithm is called basic algorithm of top-k outlier detection or BA.
In the experiment, we find that BA needs to search ud-neighborhood and calculate

the outlier probability for each object, which inevitably brings high time complexity.
Then a virtual grid-based optimization algorithm is proposed to reduce the consump-
tion of the algorithm and optimize BA.

3 Virtual Grid-Based Optimization Approach

3.1 Dynamic Increasing Calculation

Through further study on DPA, we find the following properties:
Property1: Outlier probability isn’t affected by the order of tuples in R(xi).
Property2: Given two uncertain datasets U and U′ (|U| > n and |U′| > n),

P½U0\n� �P½U\n� holds, if U0�U.
Proof. We use [U� n] to denote the event that at least n elements appear in U.

Since U0�U, we get U ¼ U0[ðU � U0Þ. Therefore, ½U0 � n�h½ U� U0 � 0� is a
sub-event of ½U� n�, Since elements are mutually independent, thus
P½U0 � n �P� ½U � U0 � 0� �P½U� n�

, where ½U � U0 � 0� is a certain event and P½U � U0 � 0� ¼ 1.Therefore,
P½U0 � n� �P½U� n�

holds and 1� P½U0 � n� � 1� P½U� n�.Therefore, P½U0\n� �P½U\n�.
According to the above properties, For uncertain data xi, R′ is a partition of R(xi), xi

isn’t an outlier if the value of P[R′ < n] is less than or equal to the threshold δ. So we
needn’t find all ud-neighborhood of xi when detecting xi. A pruning rule is proposed
out of such point view in the next section.

In the process of judging whether uncertain data xi is an outlier, we need to
calculate P[R′ < n] many times. If we calculate P[R′ < n] by starting all over again, time
cost will be undoubtedly huge. So we propose the dynamic increasing calculation,
which doesn’t increase the total time regardless of the times to calculate when detecting
an object.

If R2 is an intersection of R1 (Sect. 2.2) and fx00; x10; . . .; xm2�10g
(R2 ¼ fx0; . . .; xm1�2; xm1�1; x00; x

0
1; . . .x

0
m2�1g). Figure 2 shows the storage situation in

array when calculating P[R2 < n].
Through comparison between Fig. 1 and Fig. 2, we don’t need to calculate P

[R2 < n] again from the very beginning, because the value of the first m1 rows of Fig. 2
and Fig. 1 is completely identical, so we just need to calculate from (m1 + 1)th row to
(m1 + m2)th row.

The above method is called dynamic increasing calculation (DIC) which is pro-
posed to reduce the amount of calculation of the pruning algorithm when used as an
auxiliary algorithm in the second stage in the next section.

526 Y. Zhang et al.

3.2 Virtual Grid-Based Optimization Algorithm

Wang B proposed a pruning strategy based on grid in [12], and the transformation is
speeded up. However, in the large data sets, the data distribution is relatively sparse,
empty cells account for a large proportion of the grid, which wastes a lot of storage
space and access time. In this paper, we introduce a virtual grid structure [16] that only
stores nonempty cell to effectively avoid the happening of this kind of situation.

In this section, the outlier detection process is divided into two stages. In the first
stage, dataset is simply clustered. In the second stage, detecting outlier for clustering
results by pruning rule.

(1) The First Stage. In the first stage, we realize relatively simple cluster analysis for
uncertain dataset. We needn’t to seek the optimal clustering effect, the key is efficiency
of the algorithm. In this paper, we only discuss and analyze uncertain data in a
two-dimensional space.

(1) Virtual grid structure

In order to avoid storing and searching empty cells, this paper introduces the virtual
grid structure (VG).

Cell structure: each cell structure consists of 5-tuple < X, checked, info, down,
right > , as shown in Fig. 3.

Where X is the coordinate value of the cell; checked denotes whether the cell is
checked; info denotes information of tuples in the cell, such as tuple set, the number of
tuples, the sum of probabilities of tuples; down point to the next cell in the same
column; right point to the next cell in the same row.

Fig. 2. Storage situation in two-dimensional array of R2

Fig. 3. Cell structure

Top-k Distance-Based Outlier Detection on Uncertain Data 527

For a given uncertain dataset D, we divide its domain into many mutual disjoint
square cells and calculate the number of cells in each dimension. According to the
number of cells in each dimension, we establish a total head node and two head nodes.
Sequentially reading tuple xi from uncertain dataset D, we add xi into the cell and
update information of the cell if the cell that contains xi is already in VG; otherwise, we
need to create a new cell node and insert it into cross list, then add xi into the cell and
update information of the cell. VG don’t finish until all tuples are read. Its structure is
shown in Fig. 4.

Each side of the cell is ud/2. Let Cx,y be a cell of 2-D space. L(Cx,y) = {Cu,v|u = x±2,
v = y±2,Cu,v ≠ Cx,y} denotes the neighbor cell set of Cx,y. Cell holds the following
natures: for 8xi 2 Cx;y, there is R(xi)2(Cx,y[L(Cx,y)), and Cx,y2R(xi). So we only need to
find ud-neighborhood of xi in L(Cx,y) when searching R(xi).

(2) Clustering

Once VG is constructed, we traverse the VG, and get a set of adjacent cells in the
first column (such as a and b in Fig. 4), then store them into a temporary list and cluster
set, then find adjacent cell in the same row (such as b and c in Fig. 4) of them and store
adjacent cell which does not exist in temporary list into cluster set, finally clear tem-
porary list. Repeat above steps until there is no cell in VG.

LC = {C1,…, Ci,…, CM} denotes the set of clusters after clustering. Let |Ci| is the
number of tuples in Ci, Counti is the number of cells in Ci. According to the properties
of the DPA, the outlier probability of an uncertain data is influenced by probability
distribution and tuple density. The probability of containing outliers in Ci is larger
when its sum of existential probability is smaller and the number of cells in Ci is larger.
Considering the aforementioned factors, we measure the probability of containing
outliers in Ci by the average probability of the cells in Ci. Let den be probability
threshold. Then,

Fig. 4. The structure of VG

528 Y. Zhang et al.

den ¼

PjCij

j¼1
pj

Counti
ð7Þ

Where pj is the existential probability of the object in Ci. The smaller den is, the
greater the probability of containing outliers in Ci becomes.

In the process of the algorithm, δ is gradually increasing, the greater δ is, the more
objects can be pruned. So, optimization algorithm prioritizes clusters whose den are
minimum, then cells in the cluster are sorted by the sum of probabilities in ascending
order, and detecting outlier from cell whose sum of probabilities is minimum, which
makes δ rapidly increase.

(2) The Second Stage. In the second stage, we need to detect outlier for each cluster
based on pruning rule.

In the process of neighbor search or calculation of a data, we can immediately
interrupt the search or calculation if we can judge the non-outlier as early as possible.
So the following pruning rule is presented. M is a dataset that stores neighbors of the
object in the process of the algorithm.

Pruning rule: If P[M < n] ≤ δ, and M only contains part of the neighborhood of a
query object, this query object can be pruned as non-outlier. A special case: If P
[M < n] ≤ δ, and M only contains all objects of a cell, all objects in this cell can be
pruned as non-outlier.

In the process of judging whether uncertain data xi is an outlier, firstly, if the
number of objects in the minimum heap is less than k, then calculate outlier probability
of xi and insert xi into the minimum heap. Otherwise, all tuples in the cell that contains
xi are stored into M, then we calculate P[M < n], if P[M < n] ≤ δ, all tuples in this cell
can be pruned as non-outlier, otherwise, find a neighbor cell in the cluster that contains
xi, and search neighbors in the neighbor cell and store them into M, then calculate P
[M < n] (by DIC) when a cell is finished. If P[M < n] ≤ δ, xi is not an outlier. If it still
does not meet the pruning condition and has undetected neighbor cells when all
neighbor cells in the cluster that contains xi are detected, we need to find neighbor cells
in VG, repeat above calculation and judgment. If all neighbor cells are evaluated, P
[M < n] is still greater than δ, then remove the top object in minimum heap and insert xi
into minimum heap, and outlier probability of the top object in minimum heap is
assigned to δ, continue to test the next object.

The whole algorithm flowchart is shown in Fig. 5.
In the process of the algorithm, δ is gradually increasing, the vast majority of

objects only need to search a small part of ud-neighborhood, which can judge whether
the object is an outlier, thus save a lot of time.

Neighbor cells of the vast majority of objects are practically clustered in a same
cluster, and only a few objects need to search VG when searching their
ud-neighborhood in the first stage of the optimization algorithm.

In this paper, the above algorithm is called top-k virtual grid-based outlier detection
algorithm on uncertain data (VGUOD for short).

Top-k Distance-Based Outlier Detection on Uncertain Data 529

4 Experiments

To evaluate the performance of the proposed algorithm objectively, in this chapter, the
experiment is taken on two synthetic datasets SynDS1 and SynDS2 and mainly focuses
on the influence of several parameters and comparisons in precision and running time
between VGUOD and GPA that proposed in [12]. Software environment: 2.93GHZ
CPU、2G main memory and Microsoft Windows7 Ultimate system. Experiment
platform: Microsoft Visual Studio 2010. Language: C ++.

Synthetic datasets are generated by Matlab. Each dataset has 100000 uncertain
records. Valued attributes are 2-dimensional and each dimension is floating point
number that distribute in [0, 1000], SynDS1 and SynDS2 are composed respectively of
several normal distributions and uniform distributions. Existential probability was
randomly generated in the range of (0, 1).

4.1 Influence from Parameters

In order to analyze the influence of parameters on the performance of the algorithms,
we evaluate the effectiveness of BA and VGUOD by using SynDS1. We need to set
values for parameters before the experiments begin. Let n = 4, ud = 20, k = 0.03*N,
|D| = N.

Fig. 5. Algorithm flowchart

530 Y. Zhang et al.

Firstly, we discussed the effect of the parameter k, we varied k from 0.01*N to
0.05*N with increment 0.01*N while keeping other parameters constant, then recorded
the running time. The running time of BA and VGUOD is shown in Fig. 6.

The number of outliers was increasing as k grew, and running time of two
approaches is increasing. However, as the Fig. 6 shows, the running time of VGUOD is
far less than running time of BA, because virtual grid structure can filter all empty cells
and find neighbors more easily, besides, pruning method based on virtual grid structure
can trim most non-outliers, so VGUOD can effectively save running time.

The relationship between ud and running time is illustrated in Fig. 7. The number of
ud-neighborhood of an object for different ud (ud is increasing from 10 to 28) is
increasing. BA needs to search the whole dataset and calculates the outlier probability
for each object, which inevitably costs more computation time. However, for VGUOD,
the value of P[M < n] in a cell is declining as ud grow. The smaller the value of P
[M < n] is, the greater the probability of meeting the pruning condition becomes.
So VGUOD needs less running time than BA.

Fig. 6. Running time vs. k

Fig. 7. Running time vs. ud

Top-k Distance-Based Outlier Detection on Uncertain Data 531

Then we analyzed the influence of parameter n on running time. The parameter
n varied from 4 to 20 to test BA and VGUOD. The cost of calculating outlier prob-
ability is increasing as n gets larger, which increases running time. Since BA is running
without any pruning strategy, it spends more time calculating outlier probability of all
objects in dataset. VGUOD effectively reduces the impact of parameter n on running
time by using pruning rule and DIC. As Fig. 8 shows, the running time of VGUOD is
far less than running time of BA.

Finally, the effects of the change of data size on the running time were discussed.
We used ten datasets that generated by Matlab and the number of records of them
varied from 20000 to 160000 to test BA and VGUOD. Figure 9. shows both the
running time of BA and VGUOD in different datasets. The more the number of records
in dataset, the more the amount of calculation and the running time consumption. BA
needs to calculate all objects, its computational effort remarkably increases with the
size of the dataset. The running time of VGUOD is far less than the time of BA because
of its pruning ability.

Fig. 8. Running time vs. n

Fig. 9. Running time vs. Number of Record

532 Y. Zhang et al.

4.2 Compared with Other Algorithm

In this section, we evaluate the precision and execution time cost of VGUOD compared
with GPA. We use the ratio of the right number of outliers found by the algorithm to
the total numbers of outliers found by the algorithm to evaluate the precision of the
algorithm. Apparently, the higher the ratio, the higher the precision of the algorithm. So
we run the GPA algorithm and the VGUOD algorithm on SynDS1 and SynDS2 and
calculate the ratio Z by Eq. (8).

Z ¼ b
B

ð8Þ

Where B denotes the total number of outliers found by the algorithm, and b is the
right number of outliers found by the algorithm.

Figures 10 and 11 respectively contrasts the precision and execution time cost of
GPA and VGUOD when they run in the same dataset to detect the same number of
outliers. Let ud = 20, n = 4.

Fig. 10. Precision

Fig. 11. Running time

Top-k Distance-Based Outlier Detection on Uncertain Data 533

By analyzing experimental results, we can observe that the VGUOD has advanced
performance in both running time and precision than GPA. VGUOD algorithm gets
top-k outliers, which guarantees it has a higher precision than GPA when detecting the
same number of outliers. In terms of running time, VGUOD algorithm filters empty
cells and judges whether an object is outlier by using less computation amounts, which
greatly saves running time.

5 Conclusions

As a new but important research field, Outlier detection on uncertain data has a good
extensive application prospect. In this paper, a new definition of outlier detection on
uncertain data is put forward, and then we introduce the dynamic programming idea to
efficiently calculate the outlier probability of the data, and propose an efficient virtual
grid-based optimization method. The algorithm adapts to detect outliers in large dataset
to a certain extent.

We will study more complex uncertain data model in the future work, and detecting
outlier on uncertain data in high dimensional data space.

References

1. Zhang, J., Zulkernine, M.: Anomaly based network intrusion detection with unsupervised
outlier detection. In: IEEE International Conference on Communications, ICC 2006,
pp. 2388–2393. IEEE (2006)

2. Alaydie, N., Fotouhi, F., Reddy, C.K., Soltanian-Zadeh, H.: Noise and outlier filtering in
heterogeneous medical data sources. In: 2012 23rd International Workshop on Database and
Expert Systems Applications, pp. 115–119. IEEE (2010)

3. Knorr, E.M., Ng, R.T.: Algorithms for mining distance-based outliers in large datasets. In:
Proceedings of the 24rd International Conference on Very Large Data Bases, pp. 392–403.
Morgan Kaufmann Publishers Inc. (1998)

4. Wang, L., Zou, L.: Research on algorithms for mining distance-based outliers. J. Electron.
14, 485–490 (2005)

5. Han, J., Kamber, M.: Data Mining–Concepts and Techniques 2nd ed. Data Mining Concepts
Models Methods & Algorithms Second Edition 10(9),1–18 (2006)

6. Knorr, E.M., Ng, R.T.: Finding intensional knowledge of distance-based outliers. In: VLDB,
pp. 211–222 (1999)

7. Knorr, E.M., Ng, R.T., Tucakov, V.: Distance-based outliers: algorithms and applications.
VLDB J. — Int. J. Very Large Data Bases 8(3–4), 237–253 (2000)

8. Aggarwal, C.C., Yu, P.S.: Outlier detection with uncertain data. In: SDM (2008)
9. Shaikh, S.A., Kitagawa, H.: Distance-based outlier detection on uncertain data of Gaussian

distribution. In: Sheng, Q.Z., Wang, G., Jensen, C.S., Xu, G. (eds.) APWeb 2012. LNCS,
vol. 7235, pp. 109–121. Springer, Heidelberg (2012)

10. Shaikh, S.A., Kitagawa, H.: Fast top-k distance-based outlier detection on uncertain data. In:
Wang, J., Xiong, H., Ishikawa, Y., Xu, J., Zhou, J. (eds.) WAIM 2013. LNCS, vol. 7923,
pp. 301–313. Springer, Heidelberg (2013)

534 Y. Zhang et al.

11. Shaikh, S.A., Kitagawa, H.: Top-k outlier detection from uncertain data. Int. J. Autom.
Comput. 11(2), 128–142 (2014)

12. Wang, B., Xiao, G., Yu, H., et al.: Distance-based outlier detection on uncertain data. In:
IEEE Ninth International Conference on Computer & Information Technology,
pp. 293–298. IEEE (2009)

13. Wang, B., Yang, X.-C., Wang, G.-R., Ge, Yu.: Outlier detection over sliding windows for
probabilistic data streams. J. Comput. Sci. Technol. 25(3), 389–400 (2010)

14. Abiteboul, S., Kanellakis, P., Grahne, G.: On the representation and querying of sets of
possible worlds. In: PODS 2001, pp. 34–48 (1991)

15. Angiulli, F., Pizzuti, C.: Fast outlier detection in high dimensional spaces. In: Elomaa, T.,
Mannila, H., Toivonen, H. (eds.) PKDD 2002. LNCS (LNAI), vol. 2431, pp. 15–27.
Springer, Heidelberg (2002)

16. Dong, J., Cao, M., Huang, G., Ren, J.: Virtual grid-based clustering of uncertain data on
vulnerability database. J. Convergence Inf. Technol. 7(20), 429–438 (2012)

Top-k Distance-Based Outlier Detection on Uncertain Data 535

	Top-k Distance-Based Outlier Detection on Uncertain Data
	Abstract
	1 Introduction
	2 Top-K Distance-Based Outlier Detection on Uncertain Data
	2.1 Related Concepts
	2.2 Dynamic Programming Algorithm
	2.3 Basic Algorithm

	3 Virtual Grid-Based Optimization Approach
	3.1 Dynamic Increasing Calculation
	3.2 Virtual Grid-Based Optimization Algorithm

	4 Experiments
	4.1 Influence from Parameters
	4.2 Compared with Other Algorithm

	5 Conclusions
	References

