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Abstract. As one of the important methods on prediction, data mining plays a
significant role specifically in the field of abnormal prediction to ensure security.
Based on the remote sensing data of the sun-synchronous polar orbit
EOS-AQUA satellite of USA, this paper proposes an abnormal pattern detection
method with sequential pattern mining and matching. First of all, based on the
selected observation area, abnormal sequential patterns are mined and frequent
abnormal sequential patterns are formed. Then, seismic sequential pattern is
generated, and the matching algorithm of earthquake is established. Finally, the
accuracy rate and the false positive rate of prediction are worked out. All
experiments are conducted with the remote sensing satellite from 2005 to 2014,
and the experimental results are interesting. According to the carbon monoxide
content, the accuracy rate is 65 % while the false positive rate is 15 % by using
the data of 30 days before earthquake for prediction.
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1 Introduction

It is widely concerned by international scholars to mine abnormal patterns by means of
observing the changes of the contents of chemical gases on earth through satellite [1].
More importantly, as a perspective of abnormal mining and detection [2], studies on the
changes of sequential pattern of chemical gases before the earthquake is a challenging
topic worth further researching. Time series is one of the most typical data represen-
tations. Sequential pattern mining algorithm is mainly divided into two broad cate-
gories. One is based on the discovering association rules algorithm called Apriori,
which was put forward by Agrawal R, Srikant R, et al. in 1995. And it includes not
only AprioriAll, AprioriSome and DynamicSome algorithms, but also the derived
Generalization algorithm for mining sequential patterns called Gsp, and SPADE [3]
algorithm with vertical data format, etc. The other one is based on pattern growth
proposed by Han, Pei, et al., including FreeSpan algorithm, PrefixSpan [4] algorithm,
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which is quite different from the Apriori based algorithm and proved to be much more
efficient.

In general, time series data has characteristics of high dimensions, and the choice of
methods which represent the sequential pattern [5] is of great importance. The fre-
quency domain representation maps time series to frequency domain space using the
Discrete Fourier Transform (DFT), while Singular Value Decomposition [6]
(SVD) represents the whole time series database integrally by dimensions reduction.
Symbolic representation [7] is to map time series discretely to character string.

Studies on the emissions of chemical gas before the earthquake, such as, carbonic
oxide (CO), methane (CH4), etc., are paid great attention to. Through the analysis of
large area CO gas escaping from Qinghai Tibet Plateau on April 30, 2000, the Earth
Observation System (EOS) reveals that there is anomalous layer structure in abnormal
high CO content areas [8]. Supervised instances show that abnormal phenomenon
before the earthquake exists objectively resulting from the increased emissions of
greenhouse gases. According to the analysis of the 18 dimensions attributes of
EOS-AQUA satellite data, it is shown through a large number of experiments that the
CO content results of the abnormal sequence mining trend to be relatively good.
Therefore, the experiments in the paper are based on the analysis CO content.

The rest of this paper is organized as follows. In Sect. 2, some related definitions
are introduced. Section 3 is devoted to present the abnormal findings method upon
sequence mining. The analysis of the experimental results is provided in Sect. 4. In
final, the summary of this paper and future work are discussed in Sect. 5.

2 Related Definitions

Sequential pattern is viewed as a new method of earthquake prediction. For a more
detailed understanding, some related definitions are given step by step as follows.

Definition 1 (Precursor time): We define precursor time as days before the day
earthquake happened. So, the period of days is the precursor period of earthquake
prediction. In order to find out the optimum prediction, precursor time of 30 days, 15
days and 7 days are adopted successively in this experiment.

Definition 2 (Precursor area): Precursor area is regarded as the region affected by
seismic activities. For the sake of simplicity, the EOS-AQUA satellite data adopted in
this experiment is partitioned into grids of 360 * 180. Besides, the distance between
two points of the longitude is named level unit distance. By contrast, the distance
between two points of the latitude is called vertical unit distance. Since there is no
unified view on the division of precursor area, taking the length of level unit distance
and level unit distance into consideration, we adopt two kinds of precursor area,
namely 1 °* 1° and 2° * 2°, so as to find out the best one.

Definition 3 (Sequential pattern): If the support of sequence α, namely support(α) is no
less than minsup, that is, α.sup ≥ minsup, sequence α is regarded as a sequential pattern
in the sequence database. Moreover, sequential pattern with length of L is recorded as
L-pattern.
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Definition 4 (Sequence class): Sequences which is partly similar to each other are
classified as a set, named sequence class. To be specific, Fig. 1 is the result of 10
seismic data sequential patterns, namely, the set of 10 sequential patterns. This
sequence class is represented as < S1, S2, S3, S4, S5, S6, S7, S8, S9, S10 > , where Si
stands for a mined frequent sequence of the data processed by symbolization.

Definition 5 (Sequence focus): The sequence, which gets the highest inclusive degree
among all the sequences, is the focus of the sequences, referred to as sequence focus.
Here, the inclusive degree of Si is defined to be the ratio reflecting the degree how far
the sequence Si contains the other sequences in the same sequence class. Take sequence
class in Fig. 1 for example, the sequence with the highest inclusive degree, which is
100 % here, is {a a c c c c c d d e d}, therefore we regard this sequence as the sequence
focus of the sequence class.

Definition 6 (Difference set of sequential pattern): In view that seismic precursory data
possibly contains non-seismic factors, we mine frequent sequences from both seismic
data and non-seismic data. Then, difference set of sequential pattern is generated by
subtracting the non-seismic sequence set from the seismic sequence set. That is, if one
sequence from the frequent seismic sequence set occurs in the frequent non-seismic
sequence set, the support of this sequence is subtracted and the sequence turns to be
saved or abandoned depending on whether the subtracted support is no less than the
initialized minimum support or not.

3 Sequential Pattern Mining and Matching Method

3.1 The Principle Diagram

In this paper, algorithms and experiments are proposed according to the following
steps, with the flow chart depicted in Fig. 2.

Step 1. First of all, abnormal sequences are mined respectively from the processed
seismic data and non-seismic data of the EOS-AQUA satellite. Meanwhile, frequent
abnormal sequential patterns are generated accordingly, and marked as QuakeFreSet
and NormalFreSet.

a  c  c  c  c  d

a  a  c  c  c  c  d  d

c  c  c  c  c  d

a  c  c  c  c  c  d  d

a  a  c  c  c  d  d  e

a  a  c  c  c  c  c  d  d  e  d

a  a  c  c  c  c  d

c  c  c  d  d

a  c  c  c  c  c  d  d  e

a  c  d  d  e  d

Fig. 1. A collection of similar sequence-sequence class
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Step 2. In such a way that the frequent sequential patterns are generated, the specific
sequential pattern before the earthquake is figured out. Moreover, sequence focuses
meeting the defined conditions are located among the sequence class, after which the
sets of sequence focus are formed as well as the matching algorithm.

Step 3. With the matching algorithm before the earthquake improved, the accuracy
rate, the missing report rate and the false positive rate are computed to confirm the
validity of this method.

3.2 Sequential Pattern Mining

In this experiment, PrefixSpan is adopted to mine frequent sequential patterns.

Algorithm PrefixSpan

.

Input :

Output :

S min_support

S min_sup

Sequence database    and the minimum support 

A set of complete sequence pattern

Read in the sequence database    and the minimum support threshould 

Set sequence length 1K

S K

min_sup

=   for the first time, and find out frequent sequence

 with length of     from mapped database, where frequent sequence is no less

than              in the database. 

By dividing the search space through S, respectively mine frequent sequnces,

1Prefix K

L

+which obtain the           and sequence length of         . If the result of the mining 

empty, step 3 is turned to step 5. 

Increase k to k+1,    founded in step 3 is assigned to   , and turn to step 2.S

1

2

3

4

5 Record and output all the mined frequet sequence. 

In addition, as a kind of depth first search algorithm, it maps the data to a smaller
database recursively in the process of projection. On account of no need to generate
candidate sequential patterns, the search space is shrunk as well as the scale of the
projection database. Thereby, the efficiency of mining is enhanced to a great extent.

Fig. 2. The flow chart of abnormal findings method before earthquake
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3.3 FreSeqMatching Algorithm

In this paper, we proposed a new matching algorithm named FreSeqMatching, which is
responding to the matching degree of time series. For the sake of describing the
matching algorithm clearly, a definition of matching function is provided as follows. To
describe the matching algorithm clearly, related definitions are provided as follows.

match funðFiÞ ¼ 0; isemptyðLCSða;FiÞÞ ¼ 1
1; isemptyðLCSða;FiÞÞ ¼ 0

�
ð1Þ

Where, α represents a time series like <S1, S2, S3 … Sn>, and F is the set of all the
sequence focus, namely, {F1, F2, F3 … Fi}. The function LCS(α, Fi) is used to get the
longest common subsequence between sequence α and sequence focus Fi. If the longest
common subsequence is empty, that is, isempty(LCS(α, Fi)) = 1, it means a failure
match. Furthermore, the matching function is set to be 0, otherwise, to be 1.

The factors that influences the matching algorithm contain precursor time, pre-
cursor area, sequence support and data segment. In the case that the above parameters
are set, matching degree can be further transformed to formula (2).

f degðaÞ ¼
Xn
i¼0

match funðFiÞ �
Xn
i¼0

Fi ð2Þ

Here, α and Fi play the same role as the above formula (1). By means of a large
number of experiments, it turns out that when the matching degree belongs to [0.4,
0.7], the predicting results trends to be better.

f validðFiÞ ¼ 1; f degðaÞ� supRatio
0; f degðaÞ\ supRatio

�
ð3Þ

It is indicated in Formula (3) that when the matching degree is no less than the
defined support, the data is valid, namely, f_valid(Fi) = 1.

match numðFÞ ¼
Xn
i¼0

f validðFiÞ ð4Þ

Formula (4) primarily aims to calculate the number of testing cases which is under
certain condition, so as to work out both the accuracy rate and missing report rate.

The core concept of FreSeqMatching algorithm firstly is to positively verify seismic
test set via the frequent sequence set, after which sequence matching degrees are
figured out. Furthermore, seismic test data and non-seismic test data are matched by the
mined frequent item sets.
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Algorithm PreSeqMatching

freqSeq quakeModel

quakeTest normalTest

matchRatio falseRatio

Input :

Output :

Frequent sequent set             , quake model data ,

quake test data                , normal test data  

Accuracy rate                   and missing report rate 

Read in frequent sequence set and data set of quakeModel, quakeTest, normalTest.

supRatio.

GetLFreq( ) freqSeq

quakeModel

Initialize and set support 

Call function                    to simplify              set. 

Work out the model matching ratio of 

modelMatchRatio

modelMatchRatio

supRatio

(freqSeq, quakeModel).MatchingDegree=
 set by the formula of 

If the result of  meets the conditions, then turn to step 7.

If not, reset the support  and 

quakeTest matchRatio

matchRatio = freqSeq, quakeTest

normalTest falseRatio

( ).MatchingDegree

turn to step 4.

For                 set, calculate the                   by the formula of 

1

2

3

4

5

6

7

8 While for                   set, calculate the                 through this formula 

falseRatio = (freqSeq, normalTest).MatchingDegree

Analysis:

(1) Step 1 and step 2 is for initialization. Step 3 aims at simplifying frequent sequence
sets by GetLFreq function. With the purpose of backward verification through the
modeling data, step 4 to 6 is in demand. What’s more, step 7 is to calculate the
prediction accuracy rate. Meanwhile, the false positive rate is worked out in step 8.

(2) The GetLFreq function above is used for simplifying frequent sequence sets.

Function GetLfreq
freqSeq

freqSeq m.

min_sup

Input :

Output :

Frequent sequence set 

Simplified frequent sequences

Read in the number of  

Initialize the               of freqent sequence.

For m frequent sequences, delete frequent sequences with support less 

min_sup               

m

comSeq = LCS(freqSeq[i],freqSeq[j])

than              , update m.

For     frequent sequences, figure out the longest common sequence between 

 every two sequences by , and finally turn to

comSeq

comSeq = freqSeq[i] freqSeq[i]

comSeq = freqSeq[j]

step 8.

If               is a intersection of the two sequences or empty, turn to step 4.

If , then mark                 as flag , turn to step 4.

If , mark                 as flag

flag

, turn to step 4 as well.

1

2

3

4

5

6

7

8 Delete sequences marked with        in step 4 to 7, and gain simplified 

frequent sequences.

freqSeq[j]

(3) As an important function of FreSeqMatching algorithm, MatchingDegree function
is repeatedly called in need, described as follows.
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Function MatchingDegree

quakeTest[i] freqSeq[i]

freqSeq quakeTest

matchRatioOutput :

Input : Frequent sequence set                and quake test data 

The accuracy rate 

For each                    , for each simplified                , find out the longest 

common sequenct by the LCS(quakeTest[i],freqSeq[j]).

match_fun(freqSeq[i])

freqSeq[i]

 function 

Calculate the value of                                   through formula (2) above.

For each earthquake case                 , figure out its matching degree based 

on formula (
00

f_deg(   )=                        (freqSeq[i])         freqSeq[i]

f_valid(quakeTest[i])

supRatio

.
nn

ii

match_ funα  
==

÷∑ ∑3), 

For each matching degree, calculate the value of  by 

formula (4).

According to given               and formula (5), get the value of 

0

match_num(normalTest).

matchRatio = match_num(quakeTest) [i].
n

i

quakeTest
=

÷ ∑

1

2

3

4

5

6 Figure out the accuracy rate on sequence matching by 

The LCS function in FreSeqMatching algorithm is a function with longest common
subsequence and the content of sequence class and focus. Additionally, it is no longer
described on this function in detail in this paper.

4 Experiments and Analysis

4.1 The Experimental Data Source

The experimental data covers EOS-AQUA satellite remote sensing data from the year
2005 to 2014, 217404000 data records in total. It contains 21 attributes, among which
18 attributes contribute to the seismic information.

Strong earthquake data with no less than 6.0 magnitudes is mainly adopted in this
paper. The longitude of the selected earthquake area is from 73.5°E to 108.5°E, with
the latitude from 20.5°N to 48.5°N. Mainly distributed in the western region in China,
it covers the Qinghai-Tibet plateau seismic zone, etc. Moreover, it involves not only all
or part of the Chinese provinces region, such as Tibet, Gansu, Yunnan, etc., and some
part of neighbor countries, like Afghan, Pakistan, India, Bangladesh, Laos, etc.

4.2 Data Preprocessing

The remote sensing data of the EOS-AQUA satellite from 2005 to 2014 is divided into
modeling data and test data. The classification of the satellite data is shown in Fig. 3.

As for the selection of test data, earthquakes with no less than 6 magnitudes are
chosen from 2011 to 2014 as testing cases within the scope of 73.5°E to 108.5°E,
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20.5°N to 48.5°N. On account of the lack of enough earthquake cases, precursor area of
2°*2° is applied to obtain more earthquake samples in the experiment.

The main steps about data preprocessing are as follows.

(1) Data interpolation: among the remote sensing original data, outliers are repre-
sented by −9999, standing for the missing of the data. Nevertheless, it can be
easily found that there is a certain amount of missing data. Therefore, data
recovery is extremely necessary, namely, data interpolation. In this experiment,
linear interpolation method is applied to take the place of the missing data
appropriately.

(2) Data normalization: as a result of the influence of regional factors, remote sensing
data are normalized in this paper. In view of the seasonal factors, the normal-
ization in this experiment is corresponding to each month. That is, the mean
values of all the historical data without earthquakes are computed in month, after
which the percentage values divided by the average are figured out around 1.
Hence, it can more effectively reflect the change trend of the data during the
precursor time.

(3) Data segment: with the purpose of effectively representing the change trend of
data, the linear segment method is applied on the basis of data normalization to
turn into character representation. Consequently, it turns to be more convenient
for mining sequential patterns. In order to gain better prediction results, different
segments are adopted, such as 5, 7, 10 segments, to conduct experiments
respectively.

4.3 Experimental Results and Analysis

Parameters Selection. The experiments are involved in a large number of parameters,
with inclusive precursor time, precursor area, sequence support and the number of data
segments, etc. Moreover, the selected parameters are briefly summarized in Table 1.

Fig. 3. Satellite data classification

Sequential Pattern Mining and Matching Method 487



It is known from Table 1 that we have conducted 72 experiments to find out the
better precursor time, precursor area, sequence support and data segments.

Analysis of Results. The prediction rate applied in the results is worked out as
follows.

(1) SeismicData_CorrectRate, which is short for the correct rate of applying seismic
data to predict earthquakes.

SeismicData CorrectRate ¼ TnumðSeismicDataTest TrueÞ
TnumðSeismicDataTest AllÞ ð5Þ

Where, Tnum(SeismicDataTest_True) refers to the number of correctly predicting
earthquakes by seismic data, and Tnum(SeismicDataTest_All) points to the total
number of the earthquake testing cases.

(2) SeismicData_FailureRate, standing for the failure rate of applying seismic data to
predict earthquakes.

SeismicData FailureRate ¼ 1� SeismicData CorrectRate ð6Þ

(3) NormalData_FalseRate, which represents the false rate of using the normal data to
predict earthquakes in this experiment

NormalData FalseRate ¼ TnumðNormalDataTest TrueÞ
TnumðNormalDataTest AllÞ ð7Þ

In formula (7), the number of correctly predicting earthquakes by non-seismic data
is defined as Tnum(NormalDataTest_True), with Tnum(NormalDataTest_All) instead
of the total number of the normal testing cases.

The accuracy rate, which comes from the carbon monoxide content (TOTCO_D)
attribute with seismic data 30 days before the earthquake employed, is 65 % and the
according missing report rate is 35 %. Meanwhile, non-seismic data 30 days before the
earthquake is used to verify the experiments, and the false positive rate turns out to be

Table 1. Explanation of the selected parameters

Parameter list Description of selected parameter

precursor
time

Considering the best prediction effect, the experiment respectively selected
30 days, 15 days, 7 days before the earthquake as precursor time

precursor
area

Taking the distance of level unit distance and vertical unit distance used in
this experiment into account, two kinds of precursor area, 1°*1° and 2°*2,
are adopted.

sequence
support

In view of less earthquake cases, support of 0.3, 0.4, 0.5, 0.6 are set
respectively.

data segment On the basis of the normalization of data by month, segment of 5, 7, 10 are
employed.
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15 %. By contrast, the results are shown in Fig. 4, with X-axis to be the number of
earthquake cases, and Y-axis to be the sequence matching support.

To explain Fig. 4 clearly, the sequence matching degree, which comes from the
matching algorithm with the use of frequent patterns obtained from sequential pattern
mining algorithm, reflects the similarity degrees between the testing cases and the
mined earthquake frequent patterns. For seismic test data, it can be seen from the Fig. 4
that, when the matching support is set to be 0.5, the matching degree of NO.1 case is
0.6, greater than 0.5, so it is predicted to be seismic data. Whereas the matching degree
of NO.2 case is 0.4, less than 0.5, it is conversely regarded as non-seismic data. As for
non-seismic test data, NO.3 case is classified as non-seismic data, with matching degree
of 0.24, obviously less than 0.5. Meanwhile, on account of the 0.63 matching degree,
greater than 0.5, No.6 case is forecasted to be seismic data.

Hereby, there exist 13 cases of data with matching degree no less than 0.5 and 7
opposite cases among 20 cases of seismic data. Therefore, the accuracy rate is figured
out to be 65 % based on Formula (5), with the missing report rate of 35 % on the basis
of Formula (6). Besides, in 20 cases of non-seismic data, the number of cases with no
less than 0.5 matching degree is 3, and the opposite is 17. Here comes the conclusive
result that the false positive rate of prediction is 15 % in accordance with Formula (7).

5 Conclusions

It is an emerging direction of prediction to capture the exception rule by taking
advantage of the technology of satellite for earth observation. From the perspective of
time series, a method of abnormal pattern matching based on pattern mining is pro-
posed in this paper, with the EOS-AQUA satellite data from 2005 to 2014. In final,
after 72 times of experiments, it turns out that the predicting results of CO content is
more satisfactory. Different from previous forecast model, it discovers abnormal

Fig. 4. Predicting results of the attribute of CO 30 days before earthquake
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regular pattern of remote sensing data from a new point of view. As a consequence,
effective abnormal patterns implied in the history are mined to realize the prediction
preferably by pattern matching.

The prediction before the earthquake upon sequential pattern matching still remains
several aspects to be improved as follows.

(1) If a better interpolation method is considered when replacing the invalid data, the
actual missing value could be reflected more precisely, which makes the mined
sequential pattern to be much more accurate to a certain extent.

(2) With time factor involved in discovered sequential patterns, a real-time prediction
could gain more actual application value.
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