
An Extreme Learning Approach to Fast
Prediction in the Reduce Phase

of a Cloud Platform

Qi Liu1, Weidong Cai1, Jian Shen1(&), Baowei Wang1, Zhangjie Fu1,
and Nigel Linge2

1 Nanjing University of Information Science and Technology,
219 Ningliu Road, Nanjing 210044, Jiangsu, China

S_shenjian@126.com
2 The University of Salford, Salford, Greater Manchester M5 4WT, UK

Abstract. As a widely used programming model for the purposes of processing
large data sets, MapReduce (MR) becomes inevitable in data clusters or grids,
e.g. a Hadoop environment. However, experienced programmers are needed to
decide the number of reducers used during the reduce phase of the MR, which
makes the quality of MR scripts differ. In this paper, an extreme learning method
is employed to recommend potential number of reducer a mapped task needs.
Execution time is also predicted for user to better arrange their tasks. According
to the results, our method can provide fast prediction than SVM with similar
accuracy maintained.

Keywords: MapReduce � Extreme learning � Fast prediction

1 Introduction

MapReduce (MR) [1] has become the most popular distributed computing model used
in a cloud environment, where large-scale datasets can be handled/processed using map
and reduce procedures in the cloud infrastructure transparently. Two types of nodes are
maintained in a cluster based on the MR framework; they are JobTracker and Task-
Tracker nodes. The Jobtracker, which runs on the data node, coordinates MapReduce
jobs.

The MR, as well as loud computing has become a hotspot in the academia [2].
Many people try to optimize it. Proposals in [3–6] may predict the execution states of
mapreduce, but they cannot precisely predict it. In this paper, a novel prediction model
based on the ELM algorithm is proposed to facilitate the execution of reduce operations
in a cloud environment.

The rest sections are organized as followed. Related work is given in Sect. 2,
followed by Sect. 3, where our prediction approach is detailed. In Sect. 4, testing
environment and corresponding scenarios are design for the verification and evaluation.
Finally, conclusion and future work are discussed in Sect. 5.

© Springer International Publishing Switzerland 2015
Z. Huang et al. (Eds.): ICCCS 2015, LNCS 9483, pp. 417–423, 2015.
DOI: 10.1007/978-3-319-27051-7_35



2 Related Work

Offline or online profiling has been proposed by previous work to predict application
resource requirements by using benchmarks or real application workloads. Wood et al.
[3] designed a general approach to estimate the resource requirements of applications
running in a virtualized environment. They profiled different types of virtualization
overhead and built a model to map file in the local system into the virtualized system.
Their model focused on relating the resource requirements of real hardware platform to
the virtual one. Islam et al. [4] studied the changing workload demands by starting new
VM instances, and proposed a prediction model for adaptively resource provisioning in
a cloud. Complex machine learning techniques were proposed in [5] to create accurate
performance models of applications. They estimated the usage state of resource by an
approach named PQR2. Jing et al. [6] presented a model that can predict the computing
resource consumption of MapReduce applications based on a Classified and Regres-
sion Tree.

3 A Prediction Model Based on NO-ELM

Artificial neural networks (ANNs), as an effective method have been widely applied in
applications involving classification or function approximation [7]. However, the
training speed of ANNs is much slower than what a practical application needs. In
order to overcome this drawback, the approximation capability of feed is employed to
advance neural networks, especially in a limited training set. One of the most important
achievement of this work is putting forward a novel learning algorithm in single hidden
layer feed forward neural network (SLFNs) [8], i.e. ELM [8–13].

3.1 Number of Hidden Neurons Optimized ELM (NO-ELM)

In the basic ELM algorithm, the number noted as L, is usually generated through
iterating. To find the min RMSE or R2 that is close to 1, L needs to be trained into the
best value. However, original method is has the disadvantage that the number may be
different through different experiments. An optimized algorithm is therefore introduced
to achieve the process, as shown in Algorithm 1.

418 Q. Liu et al.



In Algorithm 1, the size of training set, as well as the time of iteration and execution
is collected as input parameters. The number L is generated as the output.

3.2 The Process to Build the Prediction Model Based on NO-ELM

The building progresses of the prediction model for the number of reducers and the
execution time are as follows:

Step 1: Data preprocessing. First, samples that may contain great network congestion
need to be removed. Then, the refined datasets will be split into training samples and
test samples. The training samples are used for training prediction model and test
samples are used to check if the prediction model has been well trained.

Step 2: Model training. To build the prediction model, training parameters of the
model are obtained by using the training samples generated in Step1. The Specific
processes include:

An Extreme Learning Approach to Fast Prediction 419



(a) randomly generate the weights between input layer and hidden layer, where
hidden layer neurons w and the threshold b are set;

(b) calculate the output matrix H of hidden layer;
(c) work out output layer weights.

Step 3: Data validation. Use the data generated in Step 1 to validate the NO-ELM
prediction model. According to the parameters trained in step 2 to get the predictive
value of test set, and compare with the actual value to verify prediction performance of
the model.

For the model to predict the number of reducers, the data format is set as {re-
ducer_no, execution_time, input_data_vol}. Under the default circumstance, the pre-
diction model recommends the number of reducers that can complete the task as soon
as possible. The input format can then be simplified as {reducer_no, input_data_vol}.
If the complete time of a task needs to be specified, the prediction model will rec-
ommend corresponding number of reducers. For doing that, the input format is as
{execution_time, input_data_vol}.

4 Experiment and Analysis

In order to test the performance the new prediction model, a practical Hadoop envi-
ronment was built consisting of personal computers and a server. Each personal
computer has 12 GB of memory, a single 500 GB disk and dual-core processors. The
server is equipped with 288 GB of memory, a 10 TB SATA driver. Eight virtual
instances are therefore created in the server with same specification as personal com-
puters, i.e. the same amount of memory and storage space, as well as the same number
of processors. In terms of role configuration, the server suns as the name node, whilst
the virtual machines and personal computers run as the data nodes.

A shared open dataset [6] was manipulated as the input workload containing 26 GB
of text files. The dataset was further separated into 5 groups for testing purposes.
A K-means (KM) clustering algorithm provided by Purdue MR Benchmarks Suite was
used for partitioning operation in the cloud platform.

Before training the NO-ELM prediction model, the samples are prepared following
the equation below in order to meet the requirement of the model:

ht ¼ ðst � �sÞ=ð�sÞ ð1Þ

where �s is the mean value of sample series, st is the value of one sample. Here, we
remove st from the samples if ht is greater than 5 % and st is greater than �s considering
the cases where these samples may be affected by the network congestion.

The sample data are then normalized following the equation below:

st ¼ ðst � sminÞ=ðsmax � sminÞ ð2Þ

where smin is the minimum value of sample series, smax is the maximum value of
samples. After normalization, the variation range of sample data is [0, 1].

420 Q. Liu et al.



In order to keep the generality, experiments in all performance evaluation param-
eters were run 50 times to get the average value. All the experiments bellow were
operated under the circumstances that reduce tasks started when map tasks had finished
using “Sigmoidal Function” as activation function. To verify the performance of the
NO-ELM prediction model, we compare the predicted values of the NO-ELM pre-
diction model with the test set samples (real values) and the SVM model.

4.1 NO-ELM for Predicting the Number of Reducers

The input data size varies from 1 GB to 23.5 GB, while the number of reducers is
selected from 4 to 8. As seen in Fig. 1, the predicted values generated by NO-ELM
show a better trend following the real results than the SVM.

In Table 1, 12 groups of the training time are depicted running the application with
NO-ELM and SVM consumed, where the NO-ELM consumes less time than SVM in
the train stage.

4.2 NO-ELM for Predicting Execution Time

In this section, two samples are prepared in each group for training and testing pur-
poses, as shown in Table 2. The simulation results are depicted in Fig. 2.

Fig. 1. Experiment comparison for prediction model on the number of reducers

Table 1. Comparison between NO-ELM and SVM in training time

1 2 3 4 5 6 7 8 9 10 11 12

NO-ELM (ms) 32 47 36 45 54 32 33 43 47 40 41 39
SVM (ms) 384 446 415 394 363 347 407 396 341 387 471 468

An Extreme Learning Approach to Fast Prediction 421



5 Conclusion

In this paper, an extreme learning machine with the number of hidden neurons opti-
mized (NO-ELM) has been introduced to analyze and predict the data. The NO-ELM
method has been implemented in a real Hadoop environment, where the SVM algo-
rithm has also been replicated for comparison purposes. Through the results, the
NO-ELM has depicted better performance in the prediction of execution time and the
number of reducers to be used.

Acknowledgement. This work is supported by the NSFC (61300238, 61232016, U1405254,
61373133), Basic Research Programs (Natural Science Foundation) of Jiangsu Province
(BK20131004), Scientific Support Program of Jiangsu Province (BE2012473) and Suzhou City
(SYG201315), and the PAPD fund.

Table 2. Comparison between NO-ELM and SVM in training time

Group
no.

Input data
size

Number of split
datasets

Number of training
set

Number of test
set

1 1 GB 68 66 2
2 2 GB 5 3 2
3 5 GB 63 61 2
4 8.5 GB 56 54 2
5 10 GB 15 13 2
6 12.5 GB 57 55 2
7 16 GB 53 51 2
8 17 GB 16 14 2
9 19.5 GB 54 52 2
10 23.5 GB 62 60 2
11 25 GB 8 6 2
12 26.5 GB 67 65 2

Fig. 2. Experiment comparison for prediction model of execution time

422 Q. Liu et al.



References

1. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun.
ACM 51(1), 107–113 (2008)

2. Fu, Z., Sun, X., Liu, Q., Zhou, L., Shu, J.: Achieving efficient cloud search services:
multi-keyword ranked search over encrypted cloud data supporting parallel computing.
IEICE Trans. Commun. E98-B(1), 190–200 (2015)

3. Wood, T., Cherkasova, L., Ozonat, K., Shenoy, P.D.: Profiling and modeling resource usage
of virtualized applications. In: Issarny, V., Schantz, R. (eds.) Middleware 2008. LNCS, vol.
5346, pp. 366–387. Springer, Heidelberg (2008)

4. Islam, S., Keung, J., Lee, K., Liu, A.: Empirical prediction models for adaptive resource
provisioning in the cloud. Future Gener. Comput. Syst. 28(1), 155–162 (2012)

5. Matsunaga, A., Fortes, J.A.B.: On the use of machine learning to predict the time and
resources consumed by applications. In: Proceedings of the 2010 10th IEEE/ACM
International Conference on Cluster, Cloud and Grid Computing, pp. 495–504. IEEE
Computer Society (2010)

6. Piao, J.T., Yan, J.: Computing resource prediction for MapReduce applications using
decision tree. In: Sheng, Q.Z., Wang, G., Jensen, C.S., Xu, G. (eds.) APWeb 2012. LNCS,
vol. 7235, pp. 570–577. Springer, Heidelberg (2012)

7. Oong, T.H., Isa, N.A.: Adaptive evolutionary artificial neural networks for pattern
classification. IEEE Trans Neural Networks 22, 1823–1836 (2011)

8. Huang, B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications.
Neurocomputing 70, 489–501 (2006)

9. Samat, A., Du, P., Liu, S., Li, J., Cheng, L.: E2LMs: ensemble extreme learning machines
for hyperspectral image classification. IEEE J. Sel. Topics Appl. Earth Observ. Remote
Sens. 7(4), 1060–1069 (2014)

10. Bianchini, M., Scarselli, F.: On the complexity of neural network classifiers: a comparison
between shallow and deep architectures. IEEE Trans. Neural Netw. Learn. Syst. 1553–1565
(2013)

11. Wang, N., Er, M.J., Han, M.: Generalized single-hidden layer feedforward networks for
regression problems. IEEE Trans. Neural Netw. Learn. Syst. 26(6), 1161–1176 (2015)

12. Giusti, C., Itskov, V.: A no-go theorem for one-layer feedforward networks. IEEE Trans.
Neural Netw. 26(11), 2527–2540 (2014)

13. Huang, G., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for regression and
multiclass classification. IEEE Trans. Syst. Man Cybern. B Cybern. 42(2), 513–529 (2012)

An Extreme Learning Approach to Fast Prediction 423


	An Extreme Learning Approach to Fast Prediction in the Reduce Phase of a Cloud Platform
	Abstract
	1 Introduction
	2 Related Work
	3 A Prediction Model Based on NO-ELM
	3.1 Number of Hidden Neurons Optimized ELM (NO-ELM)
	3.2 The Process to Build the Prediction Model Based on NO-ELM

	4 Experiment and Analysis
	4.1 NO-ELM for Predicting the Number of Reducers
	4.2 NO-ELM for Predicting Execution Time

	5 Conclusion
	Acknowledgement
	References


