
OpenFlow-Based Load Balancing for Wireless
Mesh Network

Hanjie Yang1(&), Bing Chen1, and Ping Fu2

1 Institute of Computer Science and Technology,
Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, China

jane09-01@hotmail.com, cb_china@nuaa.edu.cn
2 Central Washington University, Washington, USA

pingfu@cwu.edu

Abstract. Wireless mesh network (WMN), an emerging network which is the
pivotal technology for the next generation networks, is intended to provide
reliable data transmission at low cost and high throughput. Load balancing is an
essential problem, which affects the performance of the network. OpenFlow, an
emerging technology, can effectively monitor and manage the network topology
as well as network traffic, via the separation of the data layer and the control
layer. This paper proposed an OpenFlow-based WMN and a channel related
solution to solve the load balance. Control of each node dynamically changes
while the network traffic changes, and the channel allocation along with the
establishing of data paths will be promptly adjusted. We have built our WMN
testbed with OpenFlow-based wireless mesh nodes. We carried out some
experiments to evaluate our solution. Our experiments confirm that OpenFlow
sets a good technology to solve wireless mesh network load imbalance.

Keywords: Wireless mesh network � OpenFlow � SDN � Load balancing

1 Introduction

Wireless mesh networks are intended for the last mile broadband Internet access to
extend or enhance Internet connectivity for mobile clients, which can provide high
network throughput, as well as optimal load balancing. In a typical mesh network,
mesh routers collect information from local mesh nodes, and the routing algorithm
decides the forwarding paths according to these information. Traditional wireless mesh
routing algorithms are usually distributed, so that the solution of the network is usually
deployed on each mesh nodes. It is difficult to increase the routing algorithm, and then
achieve the higher network throughput.

In wireless mesh networks, load balancing is critical. Load imbalance makes some
nodes become bottleneck nodes. Because the forwarding traffic of these nodes are too
much, the network performance will decline throughout the network. How to build
optimal mesh networks with load balancing has been studied theoretically. A variety of
routing algorithms have been put forward to solve the load balancing problem in mesh
networks. However, these algorithms can’t dynamically adapt to current network
topology and dataflow changes, avoid the bottleneck node, and select the most stable
link to establish a route.

© Springer International Publishing Switzerland 2015
Z. Huang et al. (Eds.): ICCCS 2015, LNCS 9483, pp. 368–379, 2015.
DOI: 10.1007/978-3-319-27051-7_31



OpenFlow is a new kind of protocol created initially for communication in a
programmable network, via the separation of the data layer and control layer. Using
OpenFlow in a wireless network has been put forward [1]. Hence, we are considering
that we can develop a wireless mesh network based-on OpenFlow to acquire infor-
mation from the whole network, then the controller decides the best data path, which
can ensure high throughput data transfer. In this paper, we propose an OpenFlow-based
wireless mesh network architecture. The object of our work is to present our
OpenFlow-based network design and the load balancing performance under practical
application scenarios.

In the following sections, we present related works about the solutions for load
balancing in wireless mesh networks in Sect. 2. Section 3 describes the background of
OpenFlow-based Mesh nodes, as well as our design of the OpenFlow-enabled mesh
nodes and controller. In Sect. 4, we describe something about the experimental envi-
ronment, how we implement our testbed. Section 5 describes the detailed setup of our
experiments. We considered several scenarios and the solution to solve the load
imbalance and the analyzing of the results.

2 Related Work

There has been significant prior works on load balancing strategies based on traditional
wireless mesh networks. Most prior works focus on distributed algorithms, where the
mesh nodes communicate only with their neighborhood [3, 4]. Routing protocols for
mesh networks can generally be divided into proactive routing, reactive routing, and
hybrid routing strategies [2]. Nevertheless, most of these protocols do not provide load
balancing strategy. Because of the put forwarding of OpenFlow, a centralized algo-
rithm in WMN is possible.

In the [5], the combination of the OpenFlow and the WMN has been proposed for
the first time. In that paper, OpenFlow and a distributed routing protocols (OLSR) are
combined in a Wireless Mesh Software Defined Network (wmSDN). Load balancing
using both wireless mesh network protocols and OpenFlow is discussed in [6]. The
experiments in the paper demonstrate the improved performance of OpenFlow over
traditional mesh routing protocols. As it shows that the OpenFlow controller is able to
make centralized decisions on how to optimally route traffic so that the computational
burden at each node is minimized. However, the study does not consider the link
quality between the mesh nodes and the topology of the network does not contain the
gateway nodes. In the [9], the author proposed a prototype mesh infrastructure where
flows from a source node can take multiple paths through the network based on
OpenFlow to solve the load balancing for wireless mesh network. However, the study
doesn’t adequately consider the multi radio interfaces of the mesh nodes. Therefore,
considering the characteristics of the wireless mesh network, we proposed a solution
for multi-interfaces wireless mesh networks. We also have implemented the
OpenFlow-enabled mesh network testbed which each node in the testbed has two radio
interfaces.

OpenFlow-Based Load Balancing for Wireless Mesh Network 369



3 The Wireless Mesh Network Based on OpenFlow

3.1 Wireless Mesh Network

A wireless mesh network (WMN) is a kind of ad hoc network, however it commu-
nicates in multi-hop fashion instead of communicating in one-hop fashion in typical ad
hoc network. All the links between the wireless mesh nodes are established by radio.
Akyildiz et al. [8] describes the wireless mesh network as dynamically selforganized
and selfconfigured networks, with the mesh nodes automatically establishing an ad hoc
network and maintaining the mesh connectivity.

Instead of being another type of ad hoc networking, WMNs diversify the capa-
bilities of ad hoc networks with many advantages such as low up-front cost, easy
network maintenance, robustness and reliable service coverage, etc. Nowadays, the
WMNs are undergoing rapid commercialization in many application scenarios such as
broadband home networks, community networks and high-speed metropolitan area
networks, etc. WMNs consist of two types of nodes: mesh router and mesh client.
Mesh routers conform the wireless backbone of the network, while the mesh clients are
connected to the network through them. Further, there are some mesh routers with a
gateway (GW) capabilities, which are connected to other communication networks
(including the Internet) through wired links.

In a general way, there are three types of the wireless mesh network, which is
classified through architecture: infrastructure WMN/Backbone WMNs, client WMNs
and hybrid WMNs. In the infrastructure WMN/Backbone WMNs, mesh routers form a
mesh of self-configuring, self-healing links among themselves, providing a backbone
for mesh clients. Client WMN is a kind of peer-to-peer network among clients. Thus, a
Client WMN is actually the same as a conventional ad hoc network. Hybrid WMN is
the combination of infrastructure and client WMNs. Hybrid WMNs offer the best
coverage area, as mesh clients can access to the network through mesh routers as well
as directly meshing with other mesh clients.

3.2 Software-Defined Networking

Software-defined networking (SDN) is a new kind of network architecture to enable
people build programmable networks as a way to reduce the complexity of network
configuration and management. It can facilitate the provisioning of network services in
a deterministic, dynamic, and scalable manner. SDN currently refers to approaches for
networking in which the control plane and the data plane are decoupled and is gov-
erned by a logically centralized controller. This characteristic reduces the complexity in
the network, managing the network as one entity. There will be an interface provided
by the controller in order to configure networks and the controller is responsible for
directing the configuration to the network. In this case, network operators are able to
dynamically adjust the network’s traffic flows to meet the changing needs while
optimizing the network resource usage.

However, under the circumstances of wireless mesh networks, SDN still faces
several challenges. Firstly, the centralized controller will cause a single point of failure:

370 H. Yang et al.



if a WMR loses communication with the controller, the new flows fail transmitting; if
the SDN controller fails, the whole network breaks down. Furthermore, centralized
control for WMN would require transferring a considerable amount of status infor-
mation and configuration commands between WMN nodes and the centralized control
entity, which will cause the longer delays. To deploy an appropriate SDN strategy, we
can make better use of SDN technologies.

3.3 OpenFlow

OpenFlow was originally designed for providing a real experiment platform to campus
network researchers designing innovation network architecture, then McKeown et al.
[10] started promoting SDN concept, and the concept aroused wide attention of aca-
demia and industry. It is a new switching protocol based on the concept of software
defined networking(SDN).

OpenFlow-enabled switches move packet forwarding intelligence to the OpenFlow
controller, while keeping the switches simple. In legacy switch structures, there is a
control domain and a forwarding domain. As there is no control domain residing at an
OpenFlow-based switch, the forwarding domain can be kept simple, and they do the
forwarding function based on the flow tables. The functionality of the control domain is
now moved to the control network, which was referred to as at least one OpenFlow
controller or more. The controller is connected to every switch by a secure channel,
using the OpenFlow protocol. OpenFlow makes packet forwarding and routing more
intelligent than legacy routing solutions, making it possible to develop more complex
routing protocols that further improve network performance. In our implementation, we
utilize the protocol OpenFlow 1.3 [7] to construct our OpenFlow-based wireless mesh
node.

3.4 OpenFlow-Based Wireless Mesh Node

In a typical mesh-based wireless network, there are generally three components: mesh
clients, mesh routers and Internet gateways. In this paper, each mesh node (including
Internet gateway) is based on OpenFlow and responsible for mesh connectivity and
traffic routing. Because of the OpenFlow, each node is divided into two virtual planes,
a data plane and a control plane. The control plane of the traditional mesh node resides
on the switch. Thus, the OpenFlow Based mesh node’s resides on the network-wide
controller. The data plane consists of a set of rules, which the flow tables are sent by the
controller. As shown in Fig. 1(a), we install OpenvSwitch for each device. The control
and the data interfaces of each mesh node are two different physical interfaces.

The OpenFlow defines a secure channel between the data plane and the controller
plane using a set of rules, properties, an expiration time and a list of actions. The
properties specify packet source, original header values, and switch ports. When a new
packet arrives at the switch network interface, while there is no match rule in the
switch, the switch will ask the controller and the controller will decide whether the
packet is dropped or forwarded.

OpenFlow-Based Load Balancing for Wireless Mesh Network 371



3.5 OpenFlow Controller

In our hypothesis, the OpenFlow controller does not only have the function of dis-
tributed flow table, also can change some of the configuration to the OpenFlow-based
switches. On this occasion, we have modified the POX controller, making the system
can identify the IP addresses of the connecting nodes, also can log on these mesh nodes
and configure them.

We consider the architecture of the OpenFlow controller is like the Fig. 1(b). The
controller consists of memory space, network performance measurement server, load
balancing server, and OpenFlow controller. The performance server queries informa-
tion from the OpenFlow-based switches/Internet Gateway and builds a data store used
to support the load balancing server. Network topology changes are sent to this con-
troller, then the controller will update the information including the channel usage
based on the new network graphs. The main purpose of the OpenFlow controller is to
perform basic load balancing tasks. The processing of the task is described as followed:
(1) the controller achieves the source and destination addresses by searching the
keyword of packet_in message from the source node, (2) the performance server may
do the strategic analysis according to the information from memory space, (3) load
balancing server firstly calculates a set of alternate paths using OLSR algorithm, and
selects a optimal path from them in accordance with the strategics, (4) OpenFlow
controller will send flow table and configuration information to ensure the data transmit
correctly.

There has been some simple strategics: Each data flow can be assigned to a separate
path and the assignments can change dynamically based on network state; High priority
traffic will get better service while the best effort traffic suffers most of the damage; The
‘fat’ non-realtime traffic flows can be split to multiple paths as long as the paths end at
the same gateway etc.

(a) OpenFlow-based Mesh Node (b) OpenFlow controller

Fig. 1. Architecture of mesh node and controller

372 H. Yang et al.



4 Testbed and Implementation

Our testbed was a small scale wireless mesh network consisted of at least four wireless
routers which was placed as depicted in Fig. 2. The experiments were conducted inside
our lab building.

All the wireless routers in our testbed are the PC Engines ALIX series of system
boards, alix2d2, and their features shown in Table 1. We use the Linux-based x86
platform due to the extensible memory, radio adaptability via miniPCI cards, low
power consumption, and low cost. Wireless routers have 2 Ethernet channels, 2
miniPCI slots which can use 802.11 a/n or 802.11 g/b wireless cards as wireless
interfaces. The firmware of the wireless routers was replaced with the custom
OpenWRT firmware [11], a system can be described as a very well-known embedded
Linux distribution.

For the firmware we used the OpenWRT trunk r43753, which is based on Linux
kernel version 3.14.26. This version of OpenWRT supports the OpenvSwitch 2.3. In
these experiments, we use a custom POX controller, which is a controller based on
NOX for rapid deployments of SDNs using Python as our OpenFlow controller.
Because the interface of the wireless radio is limited, we use out-of-band control
network with a wired connection.

5 Solution and Experiment

In this section we present our solution for load balancing in OpenFlow-based wireless
mesh network, and the results of our experiment are implemented in our testbed. We
make use of network measurement tool-iPerf for throughput and bandwidth
measurements.

Fig. 2. WMN testbed with OpenFlow controller

OpenFlow-Based Load Balancing for Wireless Mesh Network 373



We proposed a simple idea to solve the load imbalance problem in
OpenFlow-based wireless mesh network in our paper. The setting of the wireless link
of each mesh node is focused on in our solution. Figure 3 shows the basic topology of
our network, including the basic elements of the wireless, wireless mesh nodes, and
gateway nodes. Followed, we consider two load balancing scenarios: (1) the basic
setup of the data flow paths, (2) data flow path redirection between links. The goal of
this section is to provide load balancing configurations sample under different sce-
narios. Also, experiments are conducted to evaluate our OpenFlow-based wireless
mesh network.

5.1 Basic Setup of the Data Flow Paths

Basic setup of the data flow paths is the first step before the load balancing. OpenFlow
provides such a capability by sending flow table to establish the data path. Also, our
controller will remotely connect to the switches, so that the controller can change the
configuration in realtime. Figure 4 shows the schematic for setting up a data flow path.

Experimental Description. As shown in Fig. 4, both node a and node b are mesh
nodes, and node g is a gateway with a connection to the Internet or another network.

Table 1. Features of the system boards

Hardware features

Interface 2 10/100/1000 Mbps LAN Ports
2 USB 2.0 Port
2 miniPCI wireless interface
Wireless features

WLM200N2-26 2.4–2.4835 GHz
23 dBm output power(per chain)/26 dBm(aggregate)
802.11 b/g

WLM200N5-23 ESD 5.150–5.975 GHz
23 dBm output power(per chain)/26 dBm(aggregate)
802.11 a/n

Fig. 3. Basic topology of WMN

374 H. Yang et al.



All kinds of data servers are deployed in the Internet, from where the mesh networks
request data. To setup a connection between node a and node b is our goal in this
section. Assume node b already has a connection to node g. Now consider a scenario
where a new node a joins the network. It needs to find its next-hop neighbor so that
node a can communicate with the Internet. In this scenario, node b is the neighbor, and
a wireless link using channel 1 represents the added flow path.

Experimental Procedure. To implement this scenario, traditional solutions require
relatively high local computation capability. We show how to add the data path using
OpenFlow controller in this section. As shown in Table 2, controller addressed this by
sending flow tables and configuration instructions to mesh nodes, and no further action
is required at local mesh routers. This setup servers as the foundation for the flow
redirection.

When node a want to connect with node b, the controller will firstly establish an
available wireless link by sending configuration instructions to them, setting the same
channel and mesh_id. Thereafter, for node a, we identify the virtual OpenFlow switch
as id_node_a, and the ingress port where data packets origination from node a labeled
as port_node_a. When the OpenFlow switch receives data flow matching flow rules,
the header of the packet will be manipulated in case of following the flow actions. In
our scenario, the destination of node a’s packets is node b. Hence, packets form node
a must modify their destination IP and MAC addresses. The set_dst_ip and set_dst_-
mac fields are used to rewrite packet headers, so the node_b_ip and node_b_mac are
the IP and MAC addresses of node b, respectively. The modified packets must be
output through the wireless radio interface, defined as node_a_port. The node b’s
configuration is similar to node a, except the destination. According to the appropriate
rules, the gateway will forward the packets which the IP of the destination is out of this
network segment.

Flow tables are pushed by the controller, and after that the data path between node
a and gateway g is established. In this scenario, the host communicates with the
Internet with two hops link. The iPerf measurement tool shows the TCP throughput
averaging at 4.04 Mbits between node a and the Internet. The measurement was
maintained for 10 min and repeated five times.

Fig. 4. Basic setup of data flow paths

OpenFlow-Based Load Balancing for Wireless Mesh Network 375



5.2 Data Flow Path Redirection Between Links

Redirecting data traffic between links is an essential way for implementing network
load balancing. Figure 5 shows the schematic.

Experimental Description. Node a, b and c are mesh nodes, and node g is an Internet
gateway with a connection to the Internet. Assume a link is already established from
node a and to gateway g via node b, as described in last section. The target of this
section is to redirect data flows from node a to node c while node b experiences
unexpected conditions or a new data packet arrives. This is a simple sample for load
balancing.

Experimental Procedure. Flow tables and configuration instructions for this scenario
are shown in Table 3. When we want to redirect a new data path, we must remove the
old one. For node a, we remove the flow actions for a-b link, and send a new flow table
for a-c by modified the destination IP and MAC addresses with node c’s(node_c_ip and
node_c_mac). Node c modifies the packet headers to the destination.

Table 2. Flow tables and configuration instructions(basic setup of the data flow paths)

Node A Node B

Configuration Instructions mesh channel: 1
meshid: MeshTrain

mesh channel: 1
meshid: MeshTrain

Flow rule switch: id_node_a
port: port_node_a

switch: id_node_b
port: port_node_b

Flow actions (forward) set-dst-ip: node_b_ip
set-dst-mac: node_b_mac
output: node_a_port

set-dst-ip: destination_ip
set-dst-mac: destination_mac
output: node_b_port

Fig. 5. Data flow path redirection between links Fig. 6. Throughput before and after path
redirection

376 H. Yang et al.



In our experiment, node a sends data to gateway g via node b before data flow
redirection. Due to the reduction of the node b’s signal, the system decides to adjust the
data link. The new path offers higher average throughput because we use the 802.11 a/n
wireless radio card while the former uses 802.11 b/g wireless radio card. Figure 6
shows the TCP throughput performance results measured by iPerf before and after
redirection. It can be seen that throughput increases after flows are redirected to the new
path with stable wireless channels.

5.3 Some Results Analysis

Since we use the OpenFlow controller change the connecting channel dynamically
before the data transmitted. We need to consider the influence of the data path
establishment. We measured the response time at each hop at least 100 times in the
experiment. We compared the performance based-on our testbed with the traditional
mesh network. It can be seen that the response time increase along with the increase of
hops. As the Fig. 7(a) shown, there is only little difference between traditional networks
and our OpenFlow-based networks. Figure 7(b) shows the TCP performance measured
by iPerf at each hop. It can be seen that the throughput is about half of the prior hop’s
throughput. After three hops, traditional network averages at 4.26 Mbps throughput and
the network with OpenFlow averages at 3.21 Mbps. Nowadays, people have not taken
full advantage of the network bandwidth, we think the bandwidth consumption using
centralization OpenFlow control is only a small amount of. Instead, the network per-
formance will be improved, as well as improving the network bandwidth utilization.
The communication among the control plane has influenced the throughput of the data
plane. From the above, we confirmed that using OpenFlow in a wireless mesh network
is reasonable and feasible.

Table 3. Flow tables and configuration instructions(data flow path redirection between links)

Node A Node C

Configuration instructions mesh channel: 36 mesh channel: 36
meshid: MeshTrain meshid: MeshTrain

Flow rules switch: id_node_a switch: id_node_c
port: port_node_a port: port_node_c

Flow actions (remove) set-dst-ip: node_b_ip
set-dst-mac: node_b_mac
output:node_a_port

Flow actions (forward) set-dst-ip: node_c_ip set-dst-ip: destination_ip
set-dst-mac: node_c_mac set-dst-mac: destination_mac
output: node_a_port output: node_c_port

OpenFlow-Based Load Balancing for Wireless Mesh Network 377



6 Conclusion and Future Work

In this paper, we described an OpenFlow-based wireless mesh network, which allows
flexible control of OpenFlow-based switches, to solve the load balancing problem.
Regarding the network characteristics, the traditional solutions in a typical wireless
mesh network which requires compute-intensive routing algorithms running at each
mesh node are abandoned. The architecture of the network presented in our paper
combines a centralized OpenFlow controller and several OpenFlow-based mesh nodes
(or the Internet gateway). When the monitor server in the controller finds the con-
gestion over the network or a new arriving of the data flow, the controller will set up
the data path including the channel of each link if necessary. Our experiments confirm
that OpenFlow is an available technique to wireless mesh networks. As future work, we
plan to develop an adaptive load-aware routing algorithm for multi-interface wireless
mesh networks based-on OpenFlow, and plan to experimentally evaluate the approach.

Acknowledgment. This work was supported in part by the Industry-University-Research
Combination Innovation Foundation of Jiangsu Province (No. BY2013003-03) and the
Industry-University-Research Combination Innovation Foundation of Jiangsu Province
(No. BY2013095-2-10).

References

1. Jagadeesan, N.A., Krishnamachari, B: Software-defined networking paradigms in wireless
networks: a survey. ACM Comput. Surv. 47(2), 11 p. (2014). Article 27, doi:10.1145/
2655690

2. Alotaibi, E., Mukherjee, B.: A survey on routing algorithms for wireless ad-hoc and mesh
networks. Comput. Netw. 56(2), 940–965 (2012)

3. Hu, Y., Li, X.-Y., Chen, H.-M., Jia, X.-H.: Distributed call admission protocol for
multi-channel multi-radio wireless networks. In: Global Telecommunications Conference,
2007, GLOBECOM 2007, pp. 2509–2513. IEEE 26–30 November 2007

(a) Response time vs. Hops (b) Throughput vs. Hops

Fig. 7. Performance results comparison

378 H. Yang et al.

http://dx.doi.org/10.1145/2655690
http://dx.doi.org/10.1145/2655690


4. Brzezinski, A., Zussman, G., Modiano, E.: Distributed throughput maximization in wireless
mesh networks via pre-partitioning. IEEE/ACM Trans. Networking 16(6), 1406–1419
(2008)

5. Detti, A., Pisa, C., Salsano, S., Blefari-Melazzi, N.: Wireless mesh software defined
networks (wmSDN). In: 2013 IEEE 9th International Conference on Wireless and Mobile
Computing, Networking and Communications (WiMob), vol. 6983, pp. 89–95. IEEE (2013)

6. Chung, J., Gonzalez, G., Armuelles, I., Robles, T., Alcarria, R., Morales, A.: Characterizing
the multimedia service capacity of wireless mesh networks for rural communities. In: 2012
IEEE 8th International Conference on Wireless and Mobile Computing, Networking and
Communications (WiMob), pp. 628–635. IEEE (2012)

7. Open Networking Foundation. https://www.opennetworking.org/
8. Akyildiz, I.F., Wang, X.: A survey on wireless mesh networks. IEEE Commun. Mag. 43(9),

S23–S30 (2005)
9. Yang, F., Gondi, V., Hallstrom, J.O., Wang, K.C., Eidson, G.: OpenFlow-based load

balancing for wireless mesh infrastructure. 2014 IEEE 11th Consumer Communications and
Networking Conference (CCNC), pp. 444–449. IEEE (2014)

10. Parulkar, G.M., Rexford, J., Turner, J.S., Mckeown, N., Anderson, T., Balakrishnan, H.,
et al.: Openflow: enabling innovation in campus networks. ACM SIGCOMM Comput.
Commun. Rev. 38(2), 69–74 (2008)

11. OpenWrt. https://openwrt.org/

OpenFlow-Based Load Balancing for Wireless Mesh Network 379

https://www.opennetworking.org/
https://openwrt.org/

	OpenFlow-Based Load Balancing for Wireless Mesh Network
	Abstract
	1 Introduction
	2 Related Work
	3 The Wireless Mesh Network Based on OpenFlow
	3.1 Wireless Mesh Network
	3.2 Software-Defined Networking
	3.3 OpenFlow
	3.4 OpenFlow-Based Wireless Mesh Node
	3.5 OpenFlow Controller

	4 Testbed and Implementation
	5 Solution and Experiment
	5.1 Basic Setup of the Data Flow Paths
	5.2 Data Flow Path Redirection Between Links
	5.3 Some Results Analysis

	6 Conclusion and Future Work
	Acknowledgment
	References


