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Abstract. Z notation can accurately describe static structures and operation
specifications of software. Predicate calculus is used to perform validation and
verification of Z models. The existing validation tools of Z are aimed to check
the expected behavior of software model, while they cannot automatically verify
the correctness and safety of the software. This paper proposes a software model
named ZA (Z-Automata) to describe the behavior and data constraints of soft-
ware, by combining the elements of Z notation and FA (Finite Automata). An
extended temporal logic is defined, and a model checking algorithm ZAMC
(Z-Automata Model Checking) is designed to perform the verification of ZA’s
expected properties. For the practical usage of our ZA model and ZAMC
algorithm, we implement a prototype of Z Dynamic Verification System
(ZDVS), which can be used as a modeling and verification tool for Z models.
The illustration of the modeling and verification process of a case study shows
that our ZA model can describe data constraints within the software behavior,
and can automatically verify the expected properties of the Z model.
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1 Introduction

Software, as carrier of information technology, bears the mission of interactions
between human and computers. It has been widely used in people’s daily life, as well as
in industrial production, aviation, spaceflight and so on. The growing demand for
software has led to its greater complexity and larger scale. At the same time, ensuring
dependability of software is becoming a strong requirement in many fields. As a result,
the software designers face with new challenges at the stages of design, implementation
and maintenance of software development these years.

Z [1–5] is a formal specification language used for describing computer programs
and computer-based systems in general. Theorem proving [6–8] and animation [9–11]
are two main categories of analysis methods for Z notation. The former usually uses
predicate logic reasoning to prove the static properties of a Z model. The latter employs a
query approach to confirm the expected system behavior by accepting or denying the
manually input operations. The decisions are made depending on whether there is any
inconsistency between the specification of the operation input and the global constraints
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of the Z model. These two categories of analysis methods are both unable to automat-
ically verify the temporal properties of a given Z model.

Model checking [12], or property checking, is a technology dealing with the fol-
lowing problem: given a model of a state transition system, exhaustively and auto-
matically check whether this model meets a given formula. Usually, the formula
describes temporal properties such as safety and liveness [13]. Because of its con-
ciseness and efficiency, model checking technology has been widely adopted to verify
temporal properties of hardware and software systems for over three decades.

Because Z lacks the ability of describing system temporal behavior, building a
proper state transition system is the primary step to study the model checking method
on Z. A state transition system based on FA (Finite Automata) can describe the
run-time behavior of software, but it is insufficient in describing data constraints,
comparing with Z’s syntax based on set theory and first-order logic. Some of the
current studies on model checking Z are based on transforming Z to a middle language
that can be model checked by existing tools [14]. Other related works use new
structures such as ZIA [15, 16], which is a combination model of Z notation and
interface automata targeted at component based systems. By combining Z and state
transition structures, we can establish a more comprehensive system model, and study
its model checking method accordingly. However, the existing researches have not
implemented automatic model transformation between Z and those hybrid models,
which is insufficient for industrial usage.

In this paper, we design and implement a prototype system ZDVS. Firstly, we
define a formal model ZA (Z-Automata) combining Z and FA (Finite Automata). The
generation algorithm from the basic structures of Z to ZA is studied to enhance the
practical usage of our hybrid model. Further on, a model checking algorithm ZAMC is
proposed to automatically verify the temporal/data constraints within the structure and
behavior specified by ZA. Finally, a case study is used to illustrate the correctness and
feasibility of ZDVS.

2 ZA Model

To verify dynamic temporal behavior of a system, we take the advantages of the
predicate logic description ability of Z notation and the temporal description ability of
FA. In this section, we give the formal definition of ZA model and design a generation
algorithm to transform Z static model to ZA.

2.1 Formal Definition of ZA

In order to facilitate the study of model checking Z, and to establish a formal rela-
tionship between Z specification and ZA model, we present a formal definition of ZA.
First of all, we define some useful notations in Definition 1, to help the definition of
ZA. Secondly, we define a simplified structure of Z models as ZAstatic in Definition 2, to
delineate the element set we need to map to FA.
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Definition 1. Assume that a Z schema declaresas x1; . . .; xn its variables, the invariants
in the schema can be seen as an n-ary predicate. We use the form Spn to state the n-ary
prediction. In particular, we denote the pre-conditions of an operation schema Op as
preOp, and the post-conditions as postOp.

Definition 2. A ZA Static Model

ZAstatic ¼ ðState;OperationÞ ð1Þ

consists of the following elements:

• State is a finite set of state spaces. Its elements correspond to the state schemas in a
Z specification.

• Operation is a finite set of operations. Its elements correspond to the operation
schemas in a Z specification.

We has designed and implemented a Z notation parser as a crucial component of
ZDVS, to analyze an input Z model and transform it to a ZAstatic model written by C++.

The formal definition of ZA is given as follows.

Definition 3. A ZA Model

ZA ¼ ðS; S0;R; d;F;MÞ ð2Þ

consists of the following elements:

• S is a finite set of states.
• S0�S is a finite set of initial states.
• R is a finite set of operations.
• d�ðS� R� SÞ is a finite set of state transitions. A state transition ðs; a; s0Þ 2 d

represents that system transits from state s to s0.
• F is a finite set of end states.
• M denotes a binary relationship between S, R and the elements in ZAstatic, such that

M ¼ ðFs;FRÞ. The definitions of its tuples are as follows:
Fs is a mapping from S to State, i.e.,

Fs sð Þ ¼ state; where s 2 S; state 2 State ð3Þ

FR is a mapping from R to Operation, i.e.,

FR að Þ ¼ op; where a 2 R; op 2 Operation ð4Þ

According to Definition 3, the prerequisite of a state transition ðs; a; s0Þ 2 d is that
state s meets the pre-conditions, and s0 meets the post-conditions of operation a, that is,
sj ¼ preFRðaÞ and s0j ¼ postFRðaÞ hold.
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2.2 The Generation of ZA Model

After the formal definition of ZA model, we propose a generation algorithm which
builds a ZA model from the ZAstatic model. The input of the algorithm is
ZAstatic = (State, Operation), and the output is a ZA model.

The procedure of the generation is described as follows:

• Step 1. Initialization phase. Initialize s0 and a stack St;
• Step 2. Add s0 to S0 and S. Build the one-to-one relationship between Operation and

R, and the relationship between State and S.;
• Step 3. Push s0 onto St;
• Step 4. Get the top element s of St, while St is not empty;
• Step 5. For each operation ai in R, if s ¼ preFRðaiÞ

�� is true, perform ai on s and get a
new state s0;

• Step 6. If s0j ¼ postFRðaÞ is true and it meets the global constrains, add ðs; ai; s0Þ to d;
• Step 7. If s0 doesn’t exist, add s0 to S and push it onto St. If it’s an end state, add it to F;
• Step 8. Go to step 5, until all operations in R are considered;
• Step 9. Go to step 4, until St is empty;
• Step 10. Output the ZA model.

Figure 1 gives the pseudo code of ZA model generation algorithm according to the
above procedure.

3 Model Checking ZA

In this section, we define a set of temporal logic formulas called ZATL (Z-Automata
Temporal Logic) to describe the expected temporal properties of the system. Further
on, a model checking algorithm called ZAMC (Z-Automata Model Checking) is
proposed to perform the verification towards such properties.

3.1 Temporal Logic Formula Towards ZA

First of all, we define some useful notations in Definition 4, to help the definition of
ZATL.

Definition 4. A finite state sequence p ¼ ðs0; s1; . . .; snÞ is used to describe a state
transition path in a ZA model, where si 2 S and si; a; siþ 1ð Þ 2 dði 2 N, i\n). We
define that p and each state si in p satisfy the relation p i½ � ¼ si. We denote PðsÞ as a set
of paths starting from s, that is,

Q
sð Þ ¼ pjp 0½ � ¼ sf g. By ½½u��s we denote a set of

states where formula u holds. By ½½u��p we denote a set of paths in which all states
satisfy u.

ZATL compliances with the following elements:

• ⃞ is the always operator. ⃞φ means that φ is always true.
• � is the sometimes operator. �u means that φ is sometimes true.
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• A is the all quantifier.
• E is the exist quantifier.

Definition 5. The syntax of ZATL is defined as follows:

• The atomic proposition upn is a ZATL formula.
• If u and w are ZATL formulas, so are :u, u ^ w, u _ w.
• If u is a ZATL formula, so are A h u, E h u, A � u, E � u.
• If and only if the above rules are used for limited times, we get a ZATL formula.

Definition 6. The semantics of ZATL is defined as follows:

• ½½upn ��s ¼ s uj j ¼ FSðsÞqm
n o

, where p and q are predicates, n;m 2 N;

• ½½:u��s ¼ S� ½½u��s;

{( , , )}

input ZManalyzed=(State,Operation) , InitialInfo

output ΖΑ = ( , , , , , Μ)
Initialize ZAModel  InitialInfo; , , , , ; InitStack <Stack>St;

{ } , { }
for each 

Define ( ) = ; { }
end for

<Stack>St
while ! StackEmpty(St)

<Stack>St s

for each do
if  | = ( )

(s)
if ( ) (

if { }; <Stack>St ;

end if

if s ' is final state then { };

end if

end if
end if

end for
end while

Fig. 1. The pseudo code of ZA model generation algorithm
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• ½½u1 ^ u2��s ¼ ½½u1��s\½½u2��s;
• ½½u1 _ u2��s ¼ ½½u1��s[½½u2��s;
• A h u½ �½ �p¼ pj8p 2 Q

s0ð Þ � ð8s 2 p � ðspn j ¼ uÞÞ� �
• ½½A � u��p ¼ pj8p 2 Q

s0ð Þ � ð9s 2 p � ðspn j ¼ uÞÞ� �
;

• ½½E h u��p ¼ pj9p 2 Q
s0ð Þ � ð8s 2 p � ðspn j ¼ uÞÞ� �

• ½½E � u��p ¼ pj9p 2 Q
s0ð Þ � ð9s 2 p � ðspn j ¼ uÞÞ� �

.

The first four formulas represent the composition mode of u. The last four formulas
are temporal logic formulas used to describe properties of system.

A h / denotes that all the states in the system satisfy u. A � u denotes that there is
at least one state satisfying u in every path of the system. E h u denotes that there is at
least one path in which all the states satisfy u. And E � u denotes that there is at least
one state in the system satisfying u. These formulas can be used to describe the
dependability properties of system such as liveness and safety.

3.2 ZAMC Algorithm

In order to verify whether the given system satisfies the property described by a ZATL
formula, we propose a model checking algorithm based on counterexample searching
strategy. For each formula we design different searching strategies depending on its
semantics.

(1) Input formula 1: u0 ¼ A h u:

Formula 1 denotes that formula u holds for all the states in the system. If the given ZA
model meets this condition, the system satisfies formula u0. Otherwise, the system
doesn’t satisfy u0. The counterexample of formula 1 is a state on which formula u
doesn’t hold. The verification procedure of formula 1 is as follows.

Step 1.1. Get an unprocessed element s in set S;
Step 1.2. If s doesn’t satisfy u, the system doesn’t satisfy u0. Output current state
s as a counterexample, and the verification ends up with false;
Step 1.3. If s satisfies u, go to Step 1.1;
Step 1.4. Output true of this verification.

(2) Input formula 2: u0 ¼ A � u.
Formula 2 denotes that there is at least one state satisfying u in every path of the
system. If the given ZA model meets this condition, the system satisfies formula φ’.
Otherwise, the system doesn’t satisfy φ’. The counterexample of formula 2 is a path in
which none of the states satisfies u. The verification procedure of formula 2 is as
follows.

The Design and Implementation 349



Step 2.1. If initial state s0 satisfies u, the system satisfies formula φ’. Verification
process ends, and output true;
Step 2.2. Otherwise, put s0 into queue Q;
Step 2.3. While Q is not empty, get state s from Q;
Step 2.4. If s doesn’t satisfy u, update current searching path. If s 2 F, we find a
counterexample. So the verification ends up with false;
Step 2.5. If s satisfies u, put all unprocessed successor states of s into Q;
Step 2.6. Go to Step 2.3, until Q is empty;
Step 2.7. If we find a counterexample, output the counterexample according to
searching path. Otherwise, output true.

(3) Input formula 3: u0 ¼ E h u:

Formula 3 denotes that there is at least one path in which all the states satisfy u. If the
given ZA model meets this condition, the system satisfies formula φ’. Otherwise, the
system doesn’t satisfy φ′, that is, in every path of the system there is at least one state
that doesn’t satisfy u. As a result, we can formalize it as A � :u, thus the verification
of formula 3 can use the verification procedure of formula 2. Firstly, we verify whether
the system satisfy formula A � :u. Then, invert the result as output.

(4) Input formula 4: u0 ¼ E � u.
Formula 4 denotes that there is at least one state in the system satisfying u. If the given
ZA model meets this condition, the system satisfies formula u0. Otherwise, the system
doesn’t satisfy u0, that is, none of the states satisfies u. The verification procedure of
formula 4 is as follows.

Step 4.1. Get an unprocessed element s in set S;
Step 4.2. If s satisfies u, the system satisfy u0. And the verification ends up with
true;
Step 4.3. If s doesn’t satisfy u, go to Step 4.1;
Step 4.4. Output false of this verification. Any state can be used as a
counterexample.

Figure 2 gives the procedure of ZAMC.

4 Design and Application of ZDVS

Based on the ZA model and the ZAMC algorithm, we realize a prototype system called
ZDVS (Z Dynamic Verification System). In this section, we present its framework and
procedure. A case study is used to illustrate the correctness and effectiveness of our
method.
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input , where ,
output ?
Initialize checkpath 
for each 

case 
for each

if continue;
else result s; break;

end for
result

case 
if result
else result -1

<queue>
while !QueueEmpty(Q)

<queue> s
if then

if result ; break;
for each if is not visited then 

<queue>
           end while
end if
if (result = -1)  result

case 
if then  result ; break;
else result -1

<queue> ; update checkpath
while !QueueEmpty(Q)

<queue> s
if then

if result
for each 

if is not visited then <queue> ; update 
checkpath

           end while
end if
if (result = -1)  result counterexample according to

checkpath
case 

for each
if result
else continue;

result
return result;

Fig. 2. The procedure of ZAMC
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4.1 Framework of ZDVS

ZDVS has three main modules, including the modeling module, the verification
module and the user interface module. Figure 3 gives the flow diagram of ZDVS.

Firstly, we transform Z specification to ZAstatic model by implementing a parser in
the modeling module, to analyze Z notation and transform it to ZAstatic model written
by C++. Then, we implement the ZA model generation algorithm in the modeling
module to build the corresponding ZA model.

In the verification module, we design a command parser to obtain the input ZATL
formulas (through the user interface module), and implement the ZAMC algorithm to
verify the ZA model.

The user interface module provides the necessary interaction between user and
system, such as the input of ZATL formulas, and the display of the counterexamples if
the verification ends up with false.

4.2 A Case Study

In this section, we describe the modeling and analysis procedure of a case study to
illustrate the correctness and effectiveness of ZDVS. The inputs of ZDVS are Z
specification represented by LaTeX and ZATL formula u, while the output is the result
of model checking. If the result is false, it also gives a counterexample.

<statename>State

<op1>Op

<op2>Op

...

Z Specification ZAstatic Model ZA Model

int var1;
int var2;

void op1(int ,int )
{

;
}

...

state1

state2
state3

state4

op
1 op2

op2

op1

op1

void op2(int ,int )
{

;
}

Z notation 
parser

ZA model
generation
algorithm

ZATL formula 

ZA|=Φ? false

counterexample  -> state0:(0,0)-> state2:(0,1)-> state4:(0,2)-> state6:(0,3)-> state10:(0,5)-> state11:(1,5)-> 

state12:(2,5)-> state13:(3,5)-> state14:(4,5)

ZAMC  Algorithmϕ

Fig. 3. The flow diagram of ZDVS
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The case study contains 4 schemas as shown in Fig. 4, including a state schema and
3 operation schemas. The corresponding ZA model generated by ZDVS contains 30
states and 3 actions.

We use 4 temporal logic formulas as inputs of the model checking process, which
are listed as follows.

A h var1� 3, denotes that var1 in all the states of the system is equal or greater than 3.
A � var1[ 4, denotes that for every path of the system there is at least one state in
which var1 is greater than 4.
E h var1	 var2, denotes that there is at least one path in which all the states satisfy
var1 ≥ var2.
A� var1 ≥ var2 && var2 > 2, denotes that there is at least one state in the system
satisfying var1 ≥ var2 && var2 > 2.

Figure 5 shows the verification result of formula A� var1 > 4. Since the result is
false, the system outputs a counterexample.

Illustration on the case study shows that the proposed ZA model can enhance the
descriptive power by combining Z notation and FA. The prototype system ZDVS is
able to correctly parse the input Z specification and generate the corresponding ZA
model, accept and analyze the input ZATL formulas, and verify the system temporal
properties automatically and effectively.

5 Discussion and Conclusion

In order to verify the temporal properties of Z model, this paper designs and imple-
ments a prototype system ZDVS to perform the model transformation and model
checking on a proposed hybrid software model ZA. Our main contributions are as
follows:

1. A formal software model called ZA is defined by combining Z notation and FA. The
proposed ZAmodel can specify not only static structure and operation specifications,
but also temporal constraints of the targeted system. A generation algorithm is
designed to build ZA model from ZAstatic, a simplified structure of Z specification.

sysState
var1:

var2:

var1 0 var1 4

var2 0 var2 5

incVar1Op
sysState

var1 =var1+1

decVar1Op
sysState

var1 2

var1 =var1-1

incVar2Op
sysState

var2 =var2+1

Fig. 4. Z specification of the instance
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2. A model checking algorithm towards the ZA model is proposed. Firstly, a temporal
logic called ZATL is defined to describe the temporal properties of the ZA model.
Then, we propose a model checking algorithm called ZAMC to verify the ZATL
formulas.

3. A prototype system called ZDVS is realized to perform our proposed methods.
A case study is used to illustrate the correctness and effectiveness of ZDVS.

Future work of this paper includes further study on hybrid software models and
their temporal logic, and the performance enhancement of their model checking
algorithms.
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