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Applications of Coherent Potential
Approximation to HEAs
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Abstract This chapter details the coherent potential approximation (CPA) to

describe the chemically and magnetically disordered phases for systems of arbitrary

number of components. Two widely used CPA implementations, namely, the exact

muffin-tin orbitals (EMTO) and the Korringa–Kohn–Rostoker (KKR) methods, are

briefly reviewed. Applications to predict lattice stability, electronic and magnetic

structure, elasticity properties, and stacking fault energies of single-phase HEAs are

presented.
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9.1 The Coherent Potential Approximation

Ab initio density functional theory (DFT) [1, 2], as a powerful ground state theory,

has been widely applied to investigate the structural and electronic properties of

solids. In the case of the random solid solutions modeling, the coherent potential

approximation (CPA) represents the most efficient alloy theory for the electronic

structure calculations in multicomponent random solid solutions. The CPA was

introduced by Soven [3] for the electronic structure problem and by Taylor [4] for

phonons in random alloys. Later, Győrffy [5] formulated the CPA in the framework

of the multiple scattering theory using the Green function technique.

The CPA is based on the assumption that the alloy may be replaced by an

ordered effective medium, the parameters of which are determined self-

consistently. The impurity problem is treated within the single-site approximation.

This means that one single impurity is placed in an effective medium and no

information is provided about the individual potential and charge density beyond

the sphere or polyhedral around this impurity. Below, we illustrate the principal

idea of the CPA within the conventional muffin-tin formalism.

We consider a substitutional alloy AaBbCc. . ., where A, B, C, . . . are the

randomly distributed atoms on an underlying crystal lattice and a, b, c, . . . stand
for the corresponding atomic fractions. The system is characterized by the Green

function galloy and the alloy potential Palloy. In a real alloy, for a selected type of

atom, Palloy shows small variations due to the different local chemical environ-

ments. There are two main approximations within the CPA. First, it is assumed that

the local potentials around a certain type of atom from the alloy are the same, i.e.,

the effect of local environments is neglected. These local potentials are described

by the functions PA, PB, PC, .... Second, the system is replaced by a monoatomic

setup described by the site-independent coherent potential ~P . In terms of Green

functions, one approximates the real Green function galloy by a coherent Green

function ~g . For each alloy component i¼A, B, C, . . ., a single-site Green function

gi is introduced.
The main steps to construct the CPA effective medium are as follows. First, the

coherent Green function is calculated from the coherent potential using an elec-

tronic structure method. Within a multiple scattering method, we have

~g ¼ S� ~P
� ��1

; ð9:1Þ

where S denotes the structure constant matrix describing the underlying lattice

[6–9]. Next, the Green functions of the alloy components, gi, are determined by

substituting the coherent potential of the CPA medium by the real atomic potentials

Pi. Mathematically, this condition is expressed via the real-space Dyson equation

gi ¼ ~g þ ~g Pi � ~P
� �

gi ð9:2Þ
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for each i¼A, B, C, . . . Finally, the average of the individual Green functions

should reproduce the single-site part of the coherent Green function, i.e.,

~g ¼ agA þ agB þ cgC þ . . . : ð9:3Þ

Equations (9.1, 9.2, and 9.3) are solved iteratively, and the output ~g and gis are used
to determine the electronic structure, charge density, and total energy of the random

alloy. According to the single-site impurity equation (9.2), the impurity Green

function gi describes the single impurity (one single atom) with potential Pi as

embedded in the effective medium specified by the coherent potential ~P .

Nowadays, the CPA has become a state-of-the-art technique for electronic

structure calculations in random alloys. Numerous applications have shown that

within this approximation, one can calculate lattice parameter, bulk modulus,

mixing enthalpy, etc., with an accuracy similar to that obtained for ordered solids.

At the same time, the CPA, being a single-site approximation to the impurity

problem, has intrinsic limitations. For instance, within the CPA, one cannot take

into account the short-range order effects. Moreover, systems with large-size

mismatch between the alloy components are difficult to describe because of the

sizable local lattice relaxations. More specifically, the average lattice dilation is

well captured by CPA but not the element-specific local displacements of the lattice

sites.

Probably, the most important failure of the existing CPA methods happens in the

case of anisotropic lattice distortions in random alloys. This problem has errone-

ously been attributed to the inherent single-site approximation. However, one

should bear in mind that certain limitations of the CPA are not directly related to

the approximation itself. Rather, they originate from additional approximations

introduced by particular DFT implementations. The most common electronic

structure calculation methods used in combination with the CPA are based on the

Atomic Sphere Approximation (ASA). The associated shape approximation turned

out to be insufficient for the accurate description of the behavior of the total energy

upon anisotropic lattice distortions. Thus, one cannot calculate, for example, elastic

constants in random alloys or relax the axial ratio in alloys with a tetragonal,

hexagonal, or lower symmetry. In addition, such DFT methods do not give a proper

description of the open structures or structural energy differences between struc-

tures with different packing fractions, to the extent that even the energy difference

between the bcc and fcc structures of the late transition metals is often incorrectly

described. However, a recent reformulation of the CPA [10–12] demonstrates that

this approximation implemented within the framework of the exact muffin-tin

orbitals (EMTO) method, in contrast to several previous implementations, is

suitable to reproduce the structural energy differences and energy changes related

to small lattice distortions in random alloys with high accuracy.

In addition to the CPA, the virtual crystal approximation (VCA), the cluster

expansion method, and the supercell approach [13], in particular, the so-called

special quasi-random structure (SQS) [14], are often used to study random alloys.

Recently, the SQS was employed in describing the CoCrFeMnNi high-entropy
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alloys [15]. However, today, the SQS calculations for the paramagnetic state are

still very cumbersome. The reader is referred to Chap. 10 for more details about

SQS. Another important method to describe atomic structure of HEAs is through

hybrid Monte Carlo/Molecular Dynamic (MCMD) simulations as detailed in

Chap. 8. The advantages of SQS and MCMD are that they allow atomic relaxation

and render reliable prediction of temperature-dependent thermodynamic properties.

On the other hand, due to the constraint associated with the supercell, they cannot

account for small compositional changes as discussed, for example, in Ref. [15].

A brief comparison among the above methods in treating HEAs is presented in

Chap. 10 in this book.

In the present chapter, we describe two widely used CPA implementations,

namely, the EMTO-CPA and the Korringa–Kohn–Rostoker (KKR)-CPA methods,

and demonstrate them through several recent applications. The structure of the

chapter is as follows: in Sect. 9.2, we review the main features of the EMTO-CPA

method relevant for the HEAs and in Sect. 9.3, we assess it using supercell

calculations. In Sects. 9.4 and 9.5, we present results obtained for 3d and refractory
HEAs, respectively. Section 9.6 puts forward a first attempt to determine the

stacking fault energies of HEAs using a combined experimental–theoretical effort.

Finally, the KKR-CPA method is introduced and demonstrated in Sects. 9.7

and 9.8. The chapter ends with brief conclusions.

9.2 The EMTO-CPA Method

The EMTO theory belongs to the third-generation muffin-tin approximation family.

This theory is an improved KKR method, which uses large overlapping muffin-tin

potential spheres which can describe the exact one-electron potential rather accu-

rately. In the calculation of the total energy, the EMTO method employs the Full

Charge Density (FCD) technique, which not only improves the calculation efficiency

but also ensures total energies with accuracy similar to that of the full-potential

methods [12]. For numerical details of the present EMTO-CPA calculations, see

Refs. [16–18].

It should be mentioned that most of the present EMTO-CPA calculations of the

3d HEAs are based on the paramagnetic state. We employed the disordered local

magnetic moment (DLM) [19] picture to describe the paramagnetic state of these

HEAs. According to that model, an alloy component M of concentration m is

presented by its spin-up (") and spin-down (#) counterparts assumed to be distrib-

uted randomly on the underlying sublattice, i.e., each magnetic alloy component is

treated as Mm! M
"
m=2M

#
m=2. For example, CoCrFeNi is described as a quasi-eight-

component random solid solution, viz., Co
"
0:125Co

#
0:125Cr

"
0:125Cr

#
0:125Fe

"
0:125

Fe
#
0:125Ni

"
0:125Ni

#
0:125:
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9.3 Assessing the EMTO-CPA Method for HEAs

In order to assess the performance of EMTO-CPA in the case of HEAs, we select

CoCrFeNi and set up a simple supercell (SC) with fcc underlying lattice. To mimic

a homogeneous solid solution, we distribute the four alloying elements so that they

are neighbors to each other within a conventional fcc unit cell, as shown in Fig. 9.1.

We notice that CoCrFeNi is found to show no tendency for long-range chemical

ordering [20]. Taking into account that the long-range order has a rather small

effect on the elastic properties of alloys [21], it seems to be reasonable to assume

that one may directly compare the result from CPA with the SC results calculated

for the present ordered structure. In this test, ferromagnetic order was assumed in

both CPA and SC calculations. Table 9.1 lists the results obtained from the above

SC method and those calculated for the corresponding Co0.25Cr0.25Fe0.25Ni0.25
(equivalent to CoCrFeNi) random solid solution using the single-site CPA as

Fe

Fe
Fe

Co

Co

NiCr Cr

Fe
Fe

Fe
Fe

Fe

Ni

Fig. 9.1 The simple

supercell (SC) used to

model the CoCrFeNi high-

entropy alloy

Table 9.1 Theoretical bulk parameters for fcc CoCrFeNi HEA calculated using the CPA and SC

(see text) methods

Method w B c11 c12 c14 c0

CPA 2.607 207 271.0 175.0 189.3 48.0

SC 2.601 208 257.1 183.5 193.9 36.8

AZ (c12–c44) G E v AVR

CPA 3.9 �14.3 110 280 0.275 0.21

SC 5.2 �10.4 101 262 0.290 0.29

All data are from Ref. [16]. The Wigner–Seitz radius from experiment is 2.632 Bohr [22]

Listed are the equilibrium Wigner–Seitz radius w (Bohr); the bulk modulus B (GPa); three

independent elastic constants c11, c12, c44, and c0 ¼ (c11–c12)/2 (GPa); the Zener anisotropy AZ;

the Cauchy pressure (c12–c44) (GPa); the shear modulusG (GPa); the Young modulus E (GPa); the

Poisson ratio v; and the polycrystalline elastic anisotropy ratio AVR

9 Applications of Coherent Potential Approximation to HEAs 303



implemented in EMTO. More DFT calculations on the effect of the SC size to the

energy and elastic properties of HEAs are presented in Chap. 10.

The average SC equilibrium Wigner–Seitz (WS) radius is 2.601 Bohr, which is

rather close to 2.607 Bohr obtained for solid solution via CPA. The agreement

between the SC (207 GPa) and CPA (208 GPa) bulk moduli is also excellent. For

all theoretical parameters, we find a good consistency between the CPA and SC

results. In particular, the three cubic elastic constants, c11, c12 and c44, obtained
with the two methods differ on the average by ~4 %. The larger relative differences

in the Zener anisotropy (c44/c
0) and the Cauchy pressure (c12–c44) are still accept-

able, especially if we consider that the present SC is the simplest periodic

approximant of the four-component random alloy considered in the CPA calcula-

tions. The good agreement seen for the shear and Young’s modulus (G and E),
Poisson ratio (v), and polycrystalline anisotropy ratio AVR indicates that the CPA is

an efficient and accurate method to investigate the bulk properties of these

multicomponent alloys.

In order to further assess the performance of the calculations derived from the

mean-field CPA, we construct two 2� 2� 2 cubic supercells shown in Fig. 9.2. The

supercell formed by the bcc (fcc) unit cells is treated as simple cubic (body-centered

cubic), where we introduce one (two) Al atom per 16 (32) atomic sites. All other

sites are occupied by an equimolar four-component CoCrFeNi alloy. We note that

similar partially ordered solid solution has been reported in Al0.3CoCrFeNi HEA

[23]. The present supercells have the molar radio Al1Co15/4Cr15/4Fe15/4Ni15/4,

corresponding to Al0.2667CoCrFeNi HEA. The Wigner–Seitz radii obtained for

these supercells are 2.620 Bohr for fcc and 2.634 Bohr for bcc, which are practically

the same as those obtained in the corresponding CPA calculations (2.620 Bohr for

fcc and 2.635 for bcc). The corresponding bulk moduli are 197 and 193 GPa for the

fcc and bcc supercells, respectively, which are also close to the CPA results

(198 GPa for fcc and 193 GPa for bcc).
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M M M M

AI M M M

AI M MM M
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M M M
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Fig. 9.2 Schematic plot of the 2� 2� 2 bcc supercell (a) and the 2� 2� 2 fcc supercell (b) for
Al0.2667CoCrFeNi HEA. Label M represents an equimolar four-component CoCrFeNi alloy, and

label Al is aluminum at the center or vertex sites
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9.4 EMTO-CPA Applications to 3d HEAs

9.4.1 Equilibrium Volumes

In Table 9.2, we compare the EMTO-CPA Wigner–Seitz (WS) radii calculated for

CoCrFeNi, CoCrCuFeNi, CoCrFeMnNi, and CoCrFeNiTi with available experi-

mental values measured by x-ray diffraction. Using the Wigner–Seitz radii for the

alloy constituents, we may estimate the equilibrium volume of the HEAs via

Vegard’s rule. In Table 9.2, �wt stands for the estimated volume based on the

previous PBE-level theoretical data, and �we the one obtained from the experimental

data. It is found that the calculated average WS radii are smaller than the averaged

experimental data. The calculated WS radii are also slightly smaller than the

experimental values except for CoCrFeNiTi (we notice that the as-cast CoCrFeNiTi

is not a single fcc structure, but the main fcc matrix with two minor phases [27]).

The connection between the WS radius and the lattice parameter a is a3 ¼ 2*4
3
πw3

(a3 ¼ 4*4
3
πw3) for bcc (fcc) structure.

9.4.2 Magnetic Properties

Figure 9.3 shows the local magnetic moments ("or#) versus the Wigner–Seitz

radius for the magnetic sublattices in paramagnetic CoCrCuFeNi, CoCrFeNi, and

CoCrFeNiTi high-entropy alloys. According to the calculations, the local magnetic

moments vanish on the Cu, Ni, and Ti sites for all volumes and thus, they are not

shown in Fig. 9.3. We should note that thermal effects would eventually induce

local magnetic moments on the Ni sites as well at finite temperature. Such longi-

tudinal spin fluctuations have been neglected in the present study. For all alloys, Fe

possesses a significant (~1.8–2.0 μB) local magnetic moment around the equilib-

rium volume. Cobalt remains nonmagnetic in CoCrFeNi and CoCrFeNiTi but

shows a small (~0.6 μB) magnetic moment for CoCrCuFeNi.

We plot the paramagnetic total density of state (DOS) and partial density of

state (pDOS) for CoCrCuFeNi, CoCrFeNi, and CoCrFeNiTi in Fig. 9.4. For all

alloys, Fe has a moderate pDOS peak located very close to the Fermi level (EF). It

is found that the size of the DOS at EF (DFe(EF)) is the largest among all pDOS at

EF, followed by DCo(EF) and DCr(EF). This distinct Fe peak at EF leads to magnetic

instability in Fe sublattice. Indeed, as shown in Fig. 9.4, the spin-polarized pDOS

of Fe has two separate peaks: one above the Fermi level and one below the Fermi

level. These two Fe peaks hybridize with the Cr and Co peaks, respectively. As a

result of the magnetic splitting, the total D(EF) drops significantly in all three

alloys.
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9.4.3 Elastic Properties of 3d HEAs

The three cubic elastic constants c11, c12, c44 and c0 of CoCrFeNi, CoCrFeMnNi,

CoCrCuFeNiTix, and CoCrFeNiTi are listed in Table 9.2. The elastic constants and

elastic moduli for CoCrCuFeNiTix are also plotted in Fig. 9.5 as a function of

Ti content. As seen from Table 9.2, all 3d HEAs considered here are mechanically

stable. Titanium decreases the tetragonal elastic constant c0 both in CoCrFeNiTi

and CoCrCuFeNiTix, as compared to that of CoCrFeNi. This indicates that

Ti decreases the mechanical stability of the fcc phase, which is in line with the

expectation based on the effective number of d electrons.

Theory predicts a moderate elastic anisotropy and small negative Cauchy pres-

sure for CoCrFeNi. We recall that negative (c12–c44) has been associated with the

covalent nature of the metallic bond and is characteristic to brittle alloys. In the

absence of any experimental data, we compare the present results calculated for

paramagnetic CoCrFeNi with those obtained for paramagnetic austenitic stainless

steel alloys composed of ~18 % Cr, ~8 % Ni, and balance Fe [28]. The three cubic

elastic constants reported for this stainless steel are c11¼ 208.6 GPa,

c12¼ 143.5 GPa, and c44¼ 132.8 GPa, which yield 4.07 for the Zener anisotropy

ratio and 10.7 GPa for the Cauchy pressure. Therefore, compared to the austenitic

stainless steels, the paramagnetic CoCrFeNi is predicted to be more brittle. Equi-

molar Cu addition to CoCrFeNi is found to increase slightly the Cauchy pressure

Fig. 9.3 Local magnetic moments of Co, Cr, and Fe in paramagnetic fcc CoCrFeNi,

CoCrCuFeNi, and CoCrFeNiTi alloys as a function of the WS radius. For each HEA, the vertical

(green) line stands for the calculated equilibrium SW radius (Data taken from Ref. [16])
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from�14.3 GPa obtained for CoCrFeNi to�10.7 GPa calculated for CoCrCuFeNi.

For reference, fcc Ir has Cauchy pressure of �13 GPa and undergoes both

transgranular and intergranular fracture.

Before continuing our discussion, we mention that the validity of the correlation

between brittle–ductile behavior and the Cauchy pressure has not yet been con-

firmed in the case of HEAs, so the above theoretical prediction regarding the

brittleness of CoCrFeNi should be treated with precautions. On the other hand,

we should recall that the present calculations correspond to static conditions (0 K),

which substantially underestimates the equilibrium volume of the alloy. Computing

the elastic parameters close to the experimental volume (i.e., accounting for the

lattice expansion) leads to positive Cauchy pressures for both CoCrFeNi and

CoCrFeMnNi [15]. Employing the Vienna ab initio simulation packages (VASP)

in combination with special quasi-random structure (SQS) yields somewhat

Fig. 9.4 Total (upper panels) and Co, Cr, and Fe partial (lower panels) density of states (pDOS)

for the paramagnetic fcc CoCrCuFeNi, CoCrFeNi, and CoCrFeNiTi HEAs. In the lower panels,

only the Co, Cr, and Fe partial densities of state are shown (Ni, Cu, and Ti are no local magnetic

moments). Apart from the sign (spin up versus spin down) difference, the partial densities of states

for Co, Cr, and Fe are identical to those shown in the figure (Data taken from Ref. [16])
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different elastic parameters as compared to EMTO-CPA and positive (negative)

Cauchy pressure for CoCrFeNi (CoCrFeMnNi) [15]. Research focusing on the

above trends and differences is in progress. In the rest of this chapter, the discus-

sions related to the brittle–ductile behavior of HEAs should be considered in the

mirror of the above results.

Titanium is found to change the CoCrFeNi host into a more ductile but strongly

anisotropic material. Equimolar fcc CoCrFeNiTi has c44/c
0 ¼ 18.7 and (c12–c44)

¼43.9 GPa. Such high anisotropy ratio is rather unusual. For comparison, the Zener

anisotropy of paramagnetic bcc and fcc Fe was found to be around 8.6 and 3.6,

respectively. Considering the change of the Cauchy pressure upon equimolar

doping, we may conclude that although Cu also improves the ductility of the 3d
HEAs, Ti makes it especially ductile. Indeed, as seen in the case of

CoCrCuFeNiTix, Ti can substantially increase the Cauchy pressure of the host

alloy. It gradually increases the metallic character of the bonds turning the static

(0 K) Cauchy pressure positive somewhere between x¼ 0.3 and x¼ 0.4. We find

that all elastic parameters of CoCrCuFeNiTix change monotonously with the

amount of Ti in Fig. 9.5b. According to the present theoretical calculations, the bulk

parameters of single-crystal CoCrCuFeNiTi0.5 HEAs, which are still believed to be

Fig. 9.5 Panel (a): Three independent elastic constants c11, c12, and c44 as well as c
0 ((c11–c12)/2),

c44/c
0, and (c12–c44) for CoCrCuFeNiTix (x¼ 0–0.5,1.0) HEAs. Panel (b): Polycrystalline elastic

moduli B, G, and E as well as B/G, v, and AVR for CoCrCuFeNiTix (x¼ 0–0.5,1.0) HEAs (All data

are from Ref. [16])
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single-phase alloys, are surprisingly close to those reported for the Cr0.18
Fe0.74Ni0.08 austenitic stainless steel alloy [28].

Next, we compare the theoretical results with the available experimental data. It

is particularly surprising that for CoCrCuFeNi, our Young’s modulus of 234 GPa is

about four times larger than 55.6 GPa found in experiment [24]. This alloy shows

relatively low anisotropy and thus, the uncertainty associated with the Voigt–

Reuss–Hill averaging is expected to be small. Furthermore, as shown in Fig. 9.6,

the Young’s modulus of a single-crystal CoCrCuFeNi changes between 102.79 GPa

obtained for the <001> direction and 379.18 GPa calculated for the <111>
direction. Therefore, even for a highly textured material, theory would predict the

lowest E to be around 100 GPa, which is still almost double of the experimental

value. For the two Ti-containing CoCrCuFeNiTi0.5 and CoCrCuFeNiTi alloys, the

calculated Young’s moduli differ from the reported experimental values by ~ 90 %.

On the other hand, the agreement between theory and experiment is almost perfect

for CoCrFeNiTi. Such good agreement is rather unexpected since for this alloy, we

obtained very large anisotropy ratio. The single-crystal Young’s modulus of

CoCrFeNiTi changes significantly with direction (Fig. 9.6), the lowest value

being close to 20 GPa (for <001> direction) and the largest around 307 GPa (for

<111 >direction). One should also point out that the recent experiments show that

CoCrFeNiTi is not a single fcc phase alloy [27]. Finally, we note that the paramag-

netic CoCrFeNi and CoCrFeMnNi HEAs have very close Young’s moduli E as a

function of direction.

Regarding the difference between the theoretical and experimental Young’s
moduli for CoCrCuFeNi, one possible reason is that all present calculations were

carried out at static conditions (0 K) while the experimental measurements were

Fig. 9.6 Theoretical Young’s modulus for five HEAs (CoCrFeNi, CoCrCuFeNi, CoCrCuFeNiTi,

CoFeCrFeNiTi, and CoCrFeMnNi) as a function of direction including the three main cubic

directions
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performed at room temperature. In addition, our calculations assumed an ideal solid

solution phase with fcc underlying lattice in contrast to the real alloys having

complex microstructure. For instance, in CoCrCuFeNi, Cu segregation to the

interdendrite region was observed. More extensive experimental as well as theo-

retical studies are necessary to understand the large deviation between the theoret-

ical and experimental Young’s modulus for these important category of engineering

materials.

9.4.4 The fcc–bcc Phase Transformation in Al-Doped
3d HEAs

In Fig. 9.7, we show the theoretical equilibrium volume (V ) and structural energy

difference ΔE¼Et(bcc)-Et(fcc) for the AlxCoCrFeNi alloys as a function of Al

content. Experimental volumes are available for the single fcc phase for x� 0.5 and

for single bcc phase for x� 0.9 [29–31]. Aluminum addition is found to increase the

equilibrium volume of the solid solution, which is consistent with the fact that w of

Al is larger than those of the other alloy components. Using a cubic spline fit for the

calculated energy points, we find that the structural energy difference between ideal

bcc and fcc lattices vanishes at x¼ 1.11 Al fraction.

Because of the large atomic volume of Al, the interatomic distance between Al

and the other elements is larger than the average bulk value. We estimated the size

Fig. 9.7 Theoretical fcc and bcc equilibrium volumes and structural energy difference for

AlxCoCrFeNi (x¼ 0–2.5) HEAs
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of the local lattice relaxation (LLR) around the Al atoms in AlxCoCrFeNi alloys by

making use of the above 2� 2� 2 supercells, each of them containing one single Al

atom. We relaxed the first 12 nearest neighbor CoCrFeNi sites in the fcc supercell

and the first eight nearest neighbor CoCrFeNi sites in the bcc supercell. For the

energy gain upon the LLR, we obtained δEbcc¼ 0.17 mRy and δEfcc¼ 0.32 mRy.

The larger relaxation effect in the fcc lattice is in line with our previous observation

that the bcc lattice can accommodate the large substitutional Al more easily than the

fcc lattice. Then, we consider ΔE0 � x(δEbcc� δEfcc) as the measure of the LLR

effect on the structural energy difference per Al fraction. Adding ΔE0 to ΔE, we
obtain that the total structural energy difference vanishes around x¼ 1.2, i.e., at

only slightly larger Al content than the one predicted from the total energies

obtained for rigid underlying lattices.

Two phases arrive at equilibrium when their Gibbs free energies become equal.

Here, we consider the AlxCoCrFeNi system as a pseudo-binary Aly (CoCrFeNi)1-y
alloy (with y¼ x/(4 + x)) and compute the relative formation energy according to

Δ Gα(y)¼Gα(y)-(1-2y)Gfcc(0)-2yGfcc(0.5), where α stands for fcc or bcc and Gα

(y) is the Gibbs free energy per atom for Aly(CoCrFeNi)1-y in the α phase. This is

approximated as Gα(y) ~Eα(y)-TSmix(y)-TS
α
mag (y), where E

α(y) is the total energy

per atom for Aly(CoCrFeNi)1-y in the α phase and T is the temperature. The two

entropy terms are estimated within the mean-field approximation. Namely,

the mixture entropy of ideal solutions is Smix¼�kB
X5
i¼1

ciln ci, and the magnetic

entropy Smag¼ kB
X5
i¼1

ci ln 1þ μið Þ, where ci is the concentration and μi the mag-

netic moment of the ith alloying element. Accordingly, all chemical and magnetic

short-range order effects and the longitudinal spin fluctuations are neglected

(i.e., for each alloy composition, we assume constant local magnetic moments

with temperature). The above phenomenological approximation for the magnetic

entropy was previously used to estimate the free energy of paramagnetic Fe and

Fe-based alloys having non-integer magnetic moments.

The present Gibbs free energies at different temperature are plotted in Fig. 9.8.

According to the rule of common tangent line, we find that at room temperature,

AlxCoCrFeNi has single fcc phase for x� 0.597 (y� 0.130), single bcc phase for

x� 1.229 (y� 0.235), and two phases (duplex) between the above limits. In terms

of valence electron concentration, the present theory predicts that at 300 K, the fcc

phase is stable for valence electronic concentration (VEC) �7.57 and the bcc one

for VEC� 7.04. These theoretical solubility limits should be compared to 8.0 and

6.87 estimated by Guo et al. and 7.67–7.88 and 7.06–7.29 observed in

experiments [32].
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9.4.5 Elastic Properties of Al-Doped 3d HEAs

The calculated elastic parameters of AlxCoCrFeNi HEAs are listed in Table 9.3. We

notice that the elastic parameters obtained for the fcc and bcc phases around x¼ 1

are surprisingly close to each other. When considering the fcc or bcc structure

separately, it is found that the three cubic elastic constants (cij) and the polycrystal

elastic moduli (B, G, and E) decrease with increasing Al content. However, the

Cauchy pressure (c12–c44), the two anisotropy ratios (AZ and AVR), the Poisson’s
ratio (v), and the B/G ratio increase with x in the fcc phase.

Fig. 9.8 The Gibbs free energies as a function of the content of Al for bcc and fcc Aly
(CoCrFeNi)1-y (y¼ 0–0.5) at T¼ 0, 300, and 600 K. Note that y¼ x/(4 + x), where x is the atomic

fraction of Al in AlxCoCrFeNi HEAs (All data are from Ref. [17])
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From Table 9.3, we find that the somewhat different impact of Al on the elastic

parameters of fcc and bcc AlCoCrFeNi leads to local maxima in (c12–c44), v, and
B/G with increase of Al content. According to the calculated trend of c0(x), Al
strongly reduces the dynamical stability of the fcc lattice and slightly increases that

of the bcc lattice. At the same time, Al stabilizes thermodynamically the bcc

structure relative to the fcc one (Fig. 9.8). Combining these two effects, we obtain

that around the duplex region (x¼ 0.597–1.229), the AlxCoCrFeNi system has two

very similar distinct local minima within the Bain configurational space (described

by c/a and volume) with a clear barrier between them (Fig. 9.9). One local

minimum corresponds to the bcc phase (c/a¼ 1) and another to the fcc phase

(c/a ¼ ffiffiffi
2

p
). This situation is rather unusual for elemental cubic transition metals

and their alloys, for which the thermodynamically unstable cubic structure is

usually also dynamically unstable.

According to Pugh, materials with B/G ratio above 1.75 are ductile. For isotropic

materials, the Pugh criteria for ductility imply μ> 0.26, which has been confirmed

for bulk metallic glasses [33]. In the case of AlxCoCrFeNi, alloys close to x¼ 1 in

both phases have large positive Cauchy pressure, and large B/G and μ, indicating
strong metallic character and enhanced ductility for these systems. Our calculated

Young’s moduli are very close for the fcc (201 GPa) and bcc (204 GPa)

AlCoCrFeNi. The single-crystal Young’s modulus changes from 70 to 370 GPa

(77–355 GPa) for the fcc (bcc) AlCoCrFeNi along the different crystallographic

directions. We note that the reported experimental value of 127 GPa [34] is within

the range of our calculations.

Fig. 9.9 Energy contour (mRy) for paramagnetic AlCoCrFeNi as a function of the tetragonal ratio

(c/a) and the Wigner–Seitz radius (Bohr) (Data taken from Ref. [17])
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9.5 Refractory HEAs

9.5.1 Structural Properties

For NbTiVZr and MoNbTiVxZr (x¼ 0–1.5), the EMTO-CPA theory predicts the

bcc structure to be the most stable one among the three close-packed lattices,

namely, fcc, bcc, and hcp. The corresponding equilibrium Wigner–Seitz radii and

total energy difference compared to bcc structure are listed in Table 9.4. The

theoretical predictions are fully supported by experiments. At this point, we should

note that local lattice relaxation (neglected in the present study) could slightly alter

the structural energy difference. According to our previous estimation of the

influence of the lattice relaxation on the bcc–fcc energy difference [17], the effect

of relaxation is well below the energy differences from Table 9.4.

Experimentally, the HEAs composed of refractory elements were found to have

a single bcc structure. It should be noted that the present refractory elements Ti,

Zr, V, Nb, and Mo all adopt a bcc crystal structure below their melting temperature,

but Ti and Zr are stable in the hcp phase at ambient conditions (the allotropic

transition from hcp to bcc happens at temperatures of 1155 K and 1136 K for Ti and

Zr, respectively).

We show the calculated equilibrium WS radii for bcc NbTiVZr and

MoNbTiVxZr (x¼ 0–1.50) HEAs in Table 9.5. The only experimental equilibrium

radius we could find in the literature is 3.094 Bohr [35] reported for NbTiVZr. To

further assess the theoretical volumes predicted for the present HEAs, we make use

of Vegard’s rule and estimate the mean equilibrium WS radii for alloys using those

of the alloy components. First, we study the atomic radius of the refractory

elements. For the Wigner–Seitz radius of bcc Ti and Zr at 0 K, we extrapolate the

high-temperature data assuming a linear thermal expansion, i.e., w(T )¼w(0 K)(1

+ αT), where w(0 K) is the WS radius at 0 K and w(T ) at temperature T and α is

the linear thermal expansion coefficient. Using the experimental values

Table 9.4 Theoretical Wigner–Seitz radius w (Bohr) for HEAs with bcc, fcc, and hcp structures,

respectively

HEAs wbcc ΔHbcc wfcc ΔHfcc whcp ΔHhcp

NbTiVZr 3.054 10.94 3.083 33.23 3.085 34.60

MoNbTiZr 3.075 1.289 3.107 13.65 3.107 14.76

MoNbTiV0.25Zr 3.060 �12.99 3.092 9.394 3.092 11.10

MoNbTiV0.50Zr 3.046 �0.956 3.078 21.66 3.078 23.45

MoNbTiV0.75Zr 3.033 �2.098 3.065 20.55 3.066 22.54

MoNbTiV1.00Zr 3.023 5.728 3.055 28.07 3.054 29.65

MoNbTiV1.25Zr 3.011 12.73 3.044 35.50 3.045 37.51

MoNbTiV1.50Zr 3.002 23.36 3.034 46.29 3.035 48.43

All data are from Ref. [18]

The formation enthalpy ΔH of bcc, fcc, and hcp phases (kJ/mol) is relative to that of the bcc

structure
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wTi(1155 K)¼ 3.077 Bohr and wZr (1140 K)¼ 3.358 Bohr together with the

reported thermal expansion coefficients for bcc Ti (10.9� 10�6 K�1) and Zr

(9� 10�6 K�1) [36], we get 3.039 Bohr and 3.324 Bohr for w(0 K) of

the hypothetical bcc Ti and Zr, respectively. For bcc V, Nb, and Mo, the Wigner–

Seitz radii at 0 K were extrapolated by fitting the selected lattice parameters in

Ref.[37]. Considering the quoted estimated values in Table 9.5, we conclude that

the present theory correctly describes the equilibrium properties of all five refrac-

tory elements.

It is interesting to note that for all HEAs considered here, the calculated

equilibrium WS radius wt is slightly smaller than w̅t. Hence, all alloys show a

small but systematic negative deviation relative to Vegard’s rule. Similar to

CoCrCuFeNiTix, the WS radius of MoNbTiVxZr has a linear change as a function

of the content of Vanadium x (x¼ 0–1.50).

9.5.2 Electronic Structure

In the following, we discuss the electronic structure of the refractory HEAs. The

total and partial DOSs for the NbTiVZr, MoNbTiZr, and MoNbTiVZr HEAs are

shown in the middle and lower panels of Fig. 9.10, respectively. Although the

chemical disorder smears out most of the structure characteristic to the elemental

DOSs (upper panels), a weak peak survives in the vicinity of the Fermi level for all

three alloys (middle panels). This peak is located at the Fermi level for NbTiVZr

Table 9.5 Wigner–Seitz radius w (Bohr), bulk modulus B (GPa), and elastic constants c11, c12,
c44, and c0 (GPa) for NbTiVZr and MoNbTiVxZr (x¼ 0–1.5) HEAs

HEAs wt �wt �we B c11 c12 c44 c0

NbTiVZr 3.054 3.057 3.062 118.6 166.4 94.7 53.8 35.9

MoNbTiZr 3.075 3.100 3.090 137.3 209.9 101.0 52.6 54.4

MoNbTiV0.25Zr 3.060 3.083 3.074 137.4 211.0 100.6 52.1 55.7

MoNbTiV0.50Zr 3.046 3.068 3.059 137.6 212.2 100.3 51.6 55.9

MoNbTiV0.75Zr 3.033 3.054 3.046 138.0 213.2 100.3 51.2 56.4

MoNbTiV1.00Zr 3.023 3.042 3.035 138.5 213.7 100.7 50.9 56.5

MoNbTiV1.25Zr 3.011 3.031 3.024 140.6 218.0 101.9 50.0 58.0

MoNbTiV1.50Zr 3.002 3.022 3.015 141.2 219.3 102.2 49.8 58.5

Mo0.8NbTiZr 3.085 3.114 3.099 132.2 199.0 98.7 52.8 50.1

Mo0.8NbTiV0.2Zr 3.071 3.098 3.085 132.9 200.8 99.0 52.5 50.9

Mo0.9NbTiZr 3.080 3.111 3.094 134.4 204.3 99.5 52.6 52.5

Mo0.8NbTiV0.5Zr 3.054 3.101 3.066 134.6 203.7 100.0 51.9 51.9

All data are from Ref. [18]

wt represents the EMTO-CPA Wigner–Seitz radius and �wt (�we ) stands for the average

Wigner–Seitz radii of the HEAs estimated from EMTO calculated (experimental or extrapolated)

radius of bcc refractory elements (those for Ti, Zr, and Hf were extrapolated to 0 K), according to

Vegard’s rule
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and shifted toward the descending zone when equimolar Mo replaces V or is added

to the alloy. This feature may explain why NbTiVZr has smaller dynamical stability

against tetragonal deformation (smaller c0) as compared to the other alloys

(Table 9.5). We should notice that the aforementioned lattice distortion mechanism

is expected to be less effective in HEAs due to the disorder-driven smearing of the

DOS. Monitoring the total DOS curves (Fig. 9.10), one may conclude that the two

Mo-containing HEAs should exhibit similar anomalous temperature dependence as

found in V and Nb metals [38]. These theoretical predictions need to be verified by

future theoretical and experimental analysis.

The partial DOSs (Fig. 9.10, lower panels) are somewhat different from the

DOSs of the elemental metals (upper panels). In all three cases, Ti and Zr contribute

with a peak to the DOS at the Fermi level. The partial DOSs resemble the pure

metal DOSs the most in NbTiVZr. Here, the small charge redistribution between

the alloy components shifts slightly the peaks in V and Nb partial DOSs close to EF,

resulting in the global peak seen in the total DOS (left middle panel). The partial

DOS of Mo is strongly altered compared to that of pure Mo. However, the presence

of Mo makes the V and Nb partial DOSs more V- and Nb-like, respectively (having

EF in the descending zone). That is the reason why the Mo-containing alloys are

mechanically more stable than the Mo-free NbTiVZr alloy.

Fig. 9.10 Density of state (DOS) of bcc Ti, Zr, V, Nb, and Mo refractory metals (upper panels);
total (middle panels) and partial (lower panels) DOS for bcc NbTiVZr, MoNbTiZr, and

MoNbTiVZr high-entropy alloys. The vertical dashed lines stand for the positions of the Fermi

level (All data are from Ref. [18])
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9.5.3 Elastic Properties

The three cubic elastic constants c11, c12, and c44 and the tetragonal shear modulus

c0 are listed in Table 9.6. All HEAs considered here are predicted to be mechani-

cally stable. Adding equimolar V to MoNbTiZr-based alloy produces small changes

in the elastic parameters. The weak increase of the tetragonal elastic constant c0

with V content in MoNbTiVxZr alloys indicates that V slightly enhances the elastic

stability of the bcc phase against tetragonal deformation. At the same time, V

addition decreases c44, resulting in a small increases of the elastic anisotropy. In

Table 9.6, we also list the theoretical elastic constants, the Zener anisotropy AZ, and

Cauchy pressure (c12–c44) (GPa), as well as polycrystalline elastic moduli (B, G, E,
v, B/G, AVR) and VEC of the present refractory HEAs. One can see that the ductility

is slightly enhanced with increasing V content. However, these changes are too

small and the quoted correlation between the elastic parameters and ductility too

vague to be able to draw more solid conclusions here.

The VEC has often been used to classify the single solid solution phases (bcc,

fcc, or mixture of bcc and fcc). According to the experimental findings, HEAs

prefer to form bcc solid solution when VEC< 7.55. This correlation is fully

supported by the present theory and former experiments. In addition to the phase

stability, the VEC should also reflect the changes of the metallic bonds and thus the

changes of the polycrystalline elastic moduli. Indeed, as shown in Fig. 9.11, we find

a correlation between the bulk and shear moduli of MoNbTiVxZr and the VEC. The

increase in the VEC with V content (we should remember that HEAs are equimolar

systems) is followed by an increase (slightly decrease) of the bulk (shear) modulus.

The opposite trends in B and G explain the enhanced ductility of MoNbTiVxZr for

large x values.

Table 9.6 The Cauchy pressure (c12–c44) (GPa) and Zener anisotropy AZ (c44/c
0); polycrystalline

elastic moduli G and E (GPa) and Poisson’s ratio v; the B/G ratio, elastic anisotropy ratio AVR, and

VEC for selected refractory HEAs

HEAs c12–c44 AZ G E v B/G AVR VEC

NbTiVZr 41.0 1.500 45.70 121.1 0.33 2.60 0.0196 4.50

MoNbTiZr 48.4 0.966 53.33 141.7 0.33 2.58 0.0001 4.75

MoNbTiV0.25Zr 48.6 0.944 53.31 141.6 0.33 2.58 0.0004 4.76

MoNbTiV0.50Zr 48.7 0.923 53.30 141.7 0.33 2.58 0.0008 4.78

MoNbTiV0.75Zr 49.1 0.908 53.25 141.5 0.33 2.59 0.0011 4.79

MoNbTiV1.00Zr 49.8 0.900 53.17 141.1 0.33 2.61 0.0014 4.80

MoNbTiV1.25Zr 51.9 0.861 53.09 141.4 0.33 2.65 0.0027 4.81

MoNbTiV1.50Zr 52.1 0.850 53.10 141.6 0.33 2.66 0.0032 4.82

Mo0.8NbTiZr 45.9 1.054 51.71 137.2 0.33 2.57 0.0003 4.68

Mo0.8NbTiV0.2Zr 46.5 1.031 51.82 137.6 0.33 2.57 0.0001 4.70

Mo0.9NbTiZr 46.8 1.004 52.56 139.5 0.33 2.56 0 4.72

Mo0.8NbTiV0.5Zr 48.1 1.000 51.88 137.9 0.33 2.59 0 4.72

All data are from Ref. [18]
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In order to illustrate the effect of alloying on the elastic anisotropy of refractory

HEAs, in Fig. 9.12, we plot the three-dimensional E for NbTiVZr, MoNbTiZr, and

MoNbTiVZr. Here, E is the Young’s modulus along [hlk] crystallographic direc-

tion. For NbTiVZr alloy, the E exhibits rather strong orientation dependence, so this

system may be regarded as being anisotropic. The largest value of E is 140.2 GPa

realized along the [111] direction, whereas the smallest value of 97.7 GPa belongs

to the [100] direction.

In contrast to the Mo-free alloy, the Mo-containing alloys seem to be almost

isotropic. Namely, their three-dimensional E shown in Fig. 9.12 have almost

spherical shapes. The Young’s modulus changes between 136.0 and 149.2 GPa

for MoNbTiVZr and between 139.9 and 144.3 GPa for MoNbTiZr. Previous

theoretical calculations predicted nearly isotropic surface energies for bcc Mo

and, as a consequence, spherically shaped nanoparticles for this metal.

For a fully isotropic material, the tetragonal shear modulus c0 ¼ (c11–c12) equals
the cubic shear modulus c44, so we have AZ¼ 1 and AVR¼ 0. The latter condition

reflects the fact that all statistical averaging methods (in the present case, the Voigt

and Reuss methods) lead to the same polycrystalline shear modulus. According to

our calculations, V slightly enhances the anisotropy of MoNbTiVxZr, whereas

equimolar Mo addition to NbTiVZr turns the alloy almost isotropic. Based on

this information, we propose that one can optimize the content of Mo and V in

MoyNbTiVxZr so that the resulting alloy is fully isotropic. We demonstrate this by

performing calculations for MoyNbTiVxZr as a function of x and y (keeping the Ti,

Zr, and Nb atomic fractions to 1). Some of the results of this additional study are

Fig. 9.11 Correlation between the bulk moduli B and shear moduli G and Pugh ratio B/G of

MoNbTiVxZr (x¼ 0–1.5) and VEC (All data are from Ref. [18])
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shown in the lower part of Table 9.6. We find that MoyNbTiVxZr becomes almost

perfectly isotropic for (x, y)¼ (0, 0.9) or (x, y)¼ (0.5, 0.8). The Young’s modulus

for Mo0.8NbTiV0.5Zr is shown in Fig. 9.12.

Very interestingly, for both isotropic Mo0.9NbTiZr and Mo0.8NbTiV0.5Zr HEAs,

the VEC is about 4.72. On this ground, we suggest that VEC~ 4.72 (valid within the

present approximations) is an important criterion for the isotropic HEAs. For

comparison, Li et al. predicted that the Ti–V alloys (Gum Metals) become elasti-

cally isotropic for VEC~ 4.7 [39].

In addition to the above cases, we used the EMTO-CPA method to calculate

some other equimolar refractory HEAs reported in experiments. Table 9.7 lists the

Wigner–Seitz radii, elastic constants, and polycrystalline elastic moduli as well

as VEC of the HfNbTiXZr (X¼V, Cr, Ta), MoNbTaW, MoNbTaVW, as well as

HfNbTiZr and HfNbZr refractory HEAs. Like before, we used Vegard’s law to

estimate theWS radius of the solid solution, i.e., wmix. Our ab initio predications are

slightly smaller than wmix for these seven refractory HEAs. Hence, all alloys show a

small but systematic positive deviation relative to Vegard’s rule. We note that for

all HEAs considered here, the calculated lattice parameter wt is slightly larger than

the experiments we, except for HfNbTiZr and CrHfNbTiZr. It is very likely that this
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deviation is due to the employed frozen-core approximation, which is known to

yield somewhat larger lattice parameters as compared to all-electron calculations.

The seven refractory HEAs listed in Table 9.7 are predicted to be mechanically

stable according to the dynamical stability conditions c44> 0, c11> jc12j, and

c11 + 2c12> 0. For the HfNbTiXZr (X¼V, Cr, Ta) refractory HEAs, the polycrys-

talline elastic moduli are very similar. It is found that V has a small effect on B, G,
and E of MoNbTaW alloys.

The experimental Young’s modulus is 128 (112) GPa for HfNbTiVZr

(CrHfNbTiZr), whereas the ab initio E is 95 (104.4) GPa. We should note that

Hf20Nb20Ti20V20Zr20 is almost a single bcc phase, whereas CrHfNbTiZr consists of

a mixture of bcc and Laves phases. The theoretical results are expected to be valid

for the completely random and homogeneous bcc solid solutions.

The calculated large positive Cauchy pressure (c12�c14) suggests that these

refractory HEAs have strong metallic character and enhanced ductility. Keeping

in mind our previous discussion from Sect. 9.4.3, we find that all values in Table 9.7

would indicate enhanced ductility for these refractory alloys. Good ductility has

indeed been reported for the single-phase HfNbTaTiZr alloy, while limited ductility

at room temperature and extensive compressive plasticity above 873 K has been

found for the single-phase MoNbTaW and MoNbTaVW alloys. The reduced

ductility of CrHfNbTiZr alloy may result from the precipitation of Laves phase.

9.6 Stacking Fault Energy of HEAs

It has been established in this chapter that EMTO-CPA is a valuable tool to make

independent predictions on the structure and properties of HEAs. Beyond indepen-

dent calculation of properties of HEAs, this method can also be coupled to available

experimental measurements to aid in the extraction of physical properties. Here, we

review a recent example of the extraction of the stacking fault energy (SFE) from

multicomponent alloys, including HEAs, using this combined approach.

Determination of SFEs is important in alloy design because it indicates the

predominant plastic deformation mechanism to be expected in the alloys. High

SFE materials tend to deform via a dislocation glide mechanism with little splitting

into partial dislocations, while lower SFEs more readily split into partial dislocation

pairs and the stacking fault widths tend to increase as the SFE is reduced. Solid

solution alloying has been one route to engineer lower SFE alloys experimentally,

typically successful in Cu- or Mg- based where a wide range of solid solubility is

achievable. Although successful, these materials have not retained sufficient

strength to suit all potential applications. HEAs, however, provide a unique oppor-

tunity to tune the SFE as they form as solid solutions on fcc lattices in materials

typically known for having higher strength and over a wider compositional range.

The ability to extract trends in SFE from new alloys is essential as these provide a

means of evaluating success of experiment and also provide for comparison with

independent predictive simulation.
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One route to assess the SFE experimentally is accomplished through x-ray

diffraction (XRD) measurements. However, this approach is only possible if elastic

properties of the alloy are known ahead of the measurement. If this is not the case,

first principles methods, such as EMTO+CPA, can play a valuable role of

assessing the elastic constants of alloy as a function of their components and

concentrations and make the extraction of SFEs possible. From XRD (and

EMTO+CPA), the SFE is calculated by use of Eq. 9.4 for fcc materials

γ ¼ 6:6

π
ffiffiffi
3

p � G 111ð Þ
2c44

c11 � c12

� ��0:37

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Theory

� aoε2

α|{z}
Experiment

ð9:4Þ

In this expression, theoretical calculations provide values for the shear modulus

in (111) determined from the elastic constants, G(111), and the Zener elastic anisot-

ropy determined from the independent elastic constants for fcc (i.e., c11, c12, and
c44), and experiment provides information on the lattice parameter (ao), mean

square microstrain (ε2), and the stacking fault probability (α). The microstrain

can be extracted by fitting XRD peaks with a Lorentzian function. The width of

these fitted peaks yields the microstrain through the procedure of Williamson and

Hall [41] and can be converted to the mean square microstrain through the proce-

dure of Klug and Alexander [42]. The stacking fault probability can be extracted by

use of the PM2K software package [43]. The elastic constants can be extracted

through fits to both equations of state as well as quadratic fits to volume conserving

orthorhombic strains to the unit cell [12].

Using the XRD together with EMTO-CPA approach, Zaddach et al. recently

explored the SFE in equiatomic alloys as a function of the number of components

up to five-component HEAs [15]. The SFEs presented in this work are plotted in

Fig. 9.13. Each equiatomic alloy was found to be a single-phase random solid

solution on the fcc lattice. The data in Fig. 9.13 shows a clear trend of a reduction in

the SFE with the number of components.

Although the SFEs were able to be reduced as a function of the number of

components, the lowest achievable value still exceeds those of conventional low

SFE Cu alloys, which have been shown to exhibit an SFE in the range of 7–14mJ/m2

depending on composition [44–46]. To further explore the ability to tune the SFE,

Zaddach et al. relaxed the equiatomic constraint and explored non-equiatomic com-

positions for the five-component HEA. The authors added and removed Cr at the

expense of Ni, a typical high SFE material, and found that higher Cr content alloys

further reduced the SFE while retaining the single-phase solid solution fcc structure.

Ultimately, the authors found the Cr26Co20Fe20Mn20Ni14 non-equiatomic HEA, with

the subscripts representing atomic percent with unlabeled values fixed at 20 at.%, to

have an SFE slightly less than 4 mJ/m2, which is below current reported values of

Cu-based alloys.
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9.7 The KKR-CPA Method

In the previous sections, we have discussed theoretical studies of HEAs of four and

five elements using EMTO-CPA. In this section, we present a KKR-CPA approach

to the ab initio electronic structure calculation for AlxCrCoCuFeNi. In its conven-

tional implementation, the KKR-CPA takes muffin-tin approximation, in which the

one-electron potential in DFT is assumed to be spherically symmetric within a

nonoverlapping “muffin-tin” sphere centered at each atom and constant in the

interstitial region. In contrast, the EMTO-CPA method uses the optimized

overlapping muffin-tin potential, in order to employ the “best possible” spherical

representation of the one-electron potential. The KKR-CPA method is based on the

multiple scattering theory, where the single-site scattering and the scattering path

matrices are of fundamental interest. On the other hand, the EMTO-CPA method is

based on muffin-tin orbitals theory. Because of these differences, the CPA mediums

in these two methods are somewhat different. For the completeness of this chapter,

we present here the basic theoretical features of the KKR-CPAmethod adopting the

usual multiple scattering terminology.

The KKR-CPA method uses Green’s function technique within the framework

of multiple scattering theory and is uniquely designed for the theoretical

Fig. 9.13 Stacking fault energy for elements and alloys. Alloys without subscripts are equiatomic,

while alloys with subscripts are given in atomic percent. The all gray values are from the literature,

while the bar graphs with the patterned fill came from Ref. [15] using the combined XRD+EMTO

approach discussed in this section (All data are taken from Ref. [15])
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investigation of random alloys from the first principles. In multiple scattering

theory, the Green function in the vicinity of an impurity “i” at site 1, embedded

in the host with atoms “C”, is given by [47, 48]

gi ~r;~r
0
; ε


 �
¼

X
L, L0

Z i
L ~r<; εð Þ τ11i εð Þ� �

LL
0Zi�

L ~r<; εð Þ �
X
L

Z i
L ~r<; εð ÞJi�L ~r>; εð Þ; ð9:5Þ

where r< ¼ min r; r
0� �
and r> ¼ max r; r

0� �
; L and L0 are the index of the combi-

nation of angular momentum and magnetic quantum numbers l and m, and Z i
L ~r; εð Þ

and J i
L ~r; εð Þ are regular and irregular solutions, respectively, of single atom “i”

with appropriate boundary condition at the origin and at the bounding sphere of the

atomic cell. The symbol “•” in the superscript of the single-site solutions implies

that complex conjugate is applied to the complex spherical harmonic function in the

boundary condition. The scattering path matrix [49], τ11i εð Þ; describes multiple

scattering processes, starting from and ending at site 1 and is given by [5]

τ11i εð Þ ¼ τ11C εð Þ t�1
i εð Þ � t�1

C εð Þ� �þ 1
� ��1

τ11C εð Þ; ð9:6Þ

where ti εð Þ and tC εð Þ are the t-matrix of atoms i and C, respectively. If the host

atoms are on a periodic lattice, the scattering path matrix can be calculated using

Brillouin zone (BZ) integration technique as follows:

τ11C εð Þ ¼ 1

ΩBZ

ð
ΩBZ

t�1
C εð Þ � S ~k; ε


 �h i
d3~k; ð9:7Þ

where ΩBZ is the BZ volume and S ~k; ε

 �

is the KKR structure constant matrix.

For a random alloy made of N atomic species with contents ci, i¼ 1, 2, . . ., N, the

CPA condition is such that the average of τ11i (ε) is the scattering path matrix τ11C εð Þ
of the CPA medium, in which the “host” atom is described by tC εð Þ. In practice, it is
useful to define following matrices [50]

Xi εð Þ ¼ � τ11C εð Þ þ t�1
i εð Þ � t�1

C εð Þ� ��1
h i�1

, and XC εð Þ ¼
XN
i¼1

ciXi εð Þ; ð9:8Þ

and it is easy to verify that the CPA condition gives rise to XC εð Þ ¼ 0: To solve for

tC εð Þ, one may start with an initial guess of tC εð Þ, t 1ð Þ
C εð Þ ¼

XN
i¼1

citi εð Þ; and obtain

τ11, 1ð Þ
C εð Þ and X 1ð Þ

C εð Þ using (9.7) and (9.8), respectively. A better guess of tC εð Þ can
be obtained from the previous one by using
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t
nþ1ð Þ,�1
C εð Þ ¼ t

nð Þ,�1
C εð Þ � X

nð Þ
C εð Þ 1þ τ11, nð Þ

C εð ÞX nð Þ
C εð Þ

h i�1

: ð9:9Þ

This recursive procedure is iterated until the convergence is obtained. Once the

CPA medium tC εð Þ is determined, one is able to calculate τ11i (ε) and then the Green
function. If the system is in ferromagnetic state, the calculations described above

are carried out for each spin channel, which means there are CPA mediums for spin

up and spin down, respectively. The configurationally averaged electron density

ρ ~rð Þ and density of state n(ε) associated with each spin channel are given by the

imaginary part of the averaged Green function as follows:

ρ ~rð Þ ¼ � 1

π
Im

XN
i¼1

ci

ðεF
εB

gið~r,~r; εÞdε, and n εð Þ ¼ �1

π
Im

XN
i¼1

ð
Ω
gið~r,~r; εÞd3~r;

ð9:10Þ

where Ω is atomic cell volume, and the energy integration is usually carried out

along a contour, in the upper half of complex energy plane, from the bottom of the

valence bands εB to the Fermi energy εF.
Despite the fact that all of KKR-CPA calculations carried out so far have been

using the muffin-tin approximation, which is a reasonable approximation for most

metallic alloys, the formalism of the KKR-CPA method shown above is valid in

general. A full-potential KKR-CPA method is currently under development by one

of the authors.

9.8 Application of the KKR-CPA Approach

To investigate the phase stability and the mechanical and magnetic properties of

AlxCoCrCuFeNi high-entropy alloys, we performed ab initio, spin-polarized,

electronic structure calculation using KKR-CPA method described above. Like

many other HEAs, this category of six-element alloys exhibits a combination of

good material properties, including high hardness, high compressive strength, and

excellent resistance to softening, corrosion, oxidation, and wearing, especially at

elevated temperatures [51]. It has also been reported that this category of alloys

shows ferromagnetic behavior [52]. In the KKR-CPA calculation, we chose von

Barth-Hedin LSDA potential [53] and applied the muffin-tin approximation to the

potential. The angular momentum quantum number cutoff was chosen to be

lmax¼ 3, for which the size of the scattering matrices is 16� 16. We used an

adaptive method for the Brillouin zone integration and used 30 Gaussian points

for the integration of the Green function along the energy contour. To determine

the equilibrium state, we ran the calculation for both fcc and bcc structures for

x up to 0.3.
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The computational results are summarized in Table 9.8 in which the bulk

modulus and the lattice constant are obtained by fitting the calculated average

total energy versus the atomic volume to the Murnaghan equation of state. The

sizable average magnetic moment shows that the alloys are ferromagnetic for x
� 0:3:The average magnetic moment in the bcc structure is found to be higher than

that in fcc. While Cu and Al appear to be nonmagnetic in both fcc and bcc

structures, Cr exhibits antiferromagnetism, but its moment in bcc is few times

smaller than in fcc. For the fcc phase (x< 2.5), AlxCoCrCuFeNi shows significant

positive enthalpy of mixing as shown in Fig. 9.14.

Table 9.8 The calculated energetic, mechanical, and magnetic properties of AlxCoCrCuFeNi

high-entropy alloys

x

B

ΔE
w M

fcc bcc fcc bcc fcc bcc

0.00 156.921 219.264 �0.029 2.588 2.589 0.485 0.684

0.30 184.483 196.348 �0.023 2.601 2.599 0.440 0.627

0.80 175.083 156.453 �0.020 2.623 2.616 0.400 0.540

0.50 188.643 178.334 �0.023 2.611 2.602 0.422 0.589

3.00 170.852 207.826 0.024 2.685 2.692 0.262 0.360

Bulk modulus B (GPa), the energy difference between fcc and bcc structures ΔE¼E(fcc)–E(bcc)
(eV/atom), Wigner–Seitz radius w (Bohr), and magnetic moment M (μB) are obtained using

KKR-CPA method

Fig. 9.14 The calculated enthalpy of mixing of AlxCoCrCuFeNi high-entropy alloys in fcc (solid
circle) and bcc (solid square) structures. The data are obtained using KKR-CPA method
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9.9 Conclusions

In this chapter, we have introduced two CPA-based ab initio approaches,

EMTO-CPA and KKR-CPA, to the theoretical study of HEAs. We have investi-

gated 3d HEAs with magnetic elements both in paramagnetic and in ferromagnetic

states. For paramagnetic alloys, Fe remains magnetic due to its local moment

nature, while most of the other alloy components are essentially in the nonmagnetic

state. For ferromagnetic alloys, Cr moment appears to be antiferromagnetic or

suppressed at small Wigner–Seitz radius, which may be related to the fact that we

are only considering the collinear magnetic states in the spin-polarized calculations.

It is found that all the 3d HEAs under investigation are mechanically stable. As a

base alloy, CoCrFeNi is found to be brittle at static conditions (0 K). However,

when the calculations are performed at room temperature volume, CoCrFeNi is

predicted to be ductile, in line with the observations. This finding highlights the

importance of thermal effect in the case of HEAs. By adding Cu or Ti to CoCrFeNi,

the material becomes more ductile. On the other hand, addition of Al to CoCrFeNi

or CoCrCuFeNi is found to increase the equilibrium volume of the solid solution

and reduce the dynamical stability of the fcc lattice, and as the Al content increases,

the alloy undergoes phase changes from single fcc phase to fcc–bcc duplex phase

and to single bcc phase.

We have investigated HEAs with refractory elements. These HEAs show large

positive Cauchy pressure which suggests strong metallic character and enhanced

ductility. We also found that Mo tends to enhance the isotropic elasticity while V

tends to enhance the anisotropy. It is therefore possible to optimize the content of

Mo and V in MoNbTiVZr so that the resulting alloy is fully isotropic.

The stacking fault energy of CoCrFeNi-based alloys has been studied using a

combined theoretical–experimental approach. We have demonstrated that

non-equiatomic HEAs offer additional degrees of freedom for a precise optimiza-

tion of the deformation mechanism controlling the plasticity of this promising class

of engineering alloys.
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