
Chapter 6
Activity Prediction

Yu Kong and Yun Fu

1 Introduction

Human action recognition [8, 11, 18, 19] is one of the active topics in the computer
vision community, and has a broad range of applications, for example, video
retrieval, visual surveillance, and video understanding.

After fully observing the entire video, action recognition approaches will classify
the video observation into one of the action categories. It should be noted that
certain real-world applications (e.g., vehicle accident and criminal activity) do not
allow the luxury of waiting for the entire action to be executed. Reactions must be
performed in a prompt to the action. For instance, it is extremely important to predict
a dangerous driving situation before any vehicle crash occurs. Unfortunately, a
majority of the existing action recognition approaches are limited to such particular
scenarios since they must fully observe the action sequence extracted from the
video.

One of the major differences between action prediction and action recogni-
tion is that action video data arrive sequentially in action prediction. However,
action recognition takes the full observation as input. The key to perform early
classification accurately is to extract the most discriminative information from the
beginning segments in a temporal sequence. Furthermore, it is also important to
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Fig. 6.1 Our method predicts action label given a partially observed video. Action dynamics are
captured by both local templates (solid rectangles) and global templates (dashed rectangles)

effectively utilize history action information. The confidence of history observations
is expected to increase since action data are progressively arriving in action
prediction.

A novel multiple temporal scale support vector machine (MTSSVM) [9] is
proposed in this chapter for early classification of unfinished actions. In MTSSVM,
a human action is described at two different temporal granularities (Fig. 6.1). This
allows us to learn the evolution and dynamics of actions, and make prediction
from partially observed videos with temporally incomplete action executions. The
sequential nature of human actions is considered at the fine granularity by local
templates in the MTSSVM. The label consistency of temporal segments is enforced
in order to maximize the discriminative information extracted from the segments.
Note that the temporal orderings of inhomogeneous action segments is also captured
by the temporal arrangement of these local templates in an implicit manner.

MTSSVM also capture history action information using coarse global templates.
Different from local templates, the global templates characterize action evolutions
at various temporal length, ranging from the beginning of the action video to the
current frame. This global action information is effectively exploited in MTSSVM
to differentiate between action categories. For instance, the key feature for differ-
entiating action “push” from action “kick” is the motion “arm is up”. Our model
is learned for describing such increasing amount of information in order to capture
featured motion evolution of each action class.

A new convex learning formulation is proposed in this chapter to consider the
essence of the progressively arriving action data. The formulation is based on the
structured SVM (SSVM), with new constraints being added. The label consistency
is enforced between the full video and its containing temporal segments. This
allows us to extract the discriminative information as much as possible for action
prediction. Furthermore, a principled monotonic scoring function is modelled for
the global templates. This scoring function enables us to utilize the fact that useful
information is accumulating with the action data progressively arriving. We show
that our new learning formulation can be efficiently solved using a standard SSVM
solver. In addition, we demonstrate that the formulation essentially minimizes the
upper bound of the empirical risk of the training data.
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2 Related Work

Action Recognition A popular representation for human actions is called bag-
of-words approach, which characterizes the actions by a set of quantized local
spatiotemporal features [3, 16, 18, 27]. Bag-of-words approach can capture local
motion characteristics and insensitive to background noise. Nevertheless, it does not
build expressive representation when large appearance and pose variations occur
in videos. Researchers address this problem by integrating classification models
with human knowledge and representing complex human actions by semantic
descriptions or attributes [7, 8, 11]. Other solutions such as learning actions from
a set of key frames [13, 23] or from status images [25, 26] have also been studied as
well. Nevertheless, a majority of current action recognition algorithms are expected
to fully observe actions before making predictions. This assumption hinders these
algorithms from the task that human actions must be predicted when only partial of
the action videos is observed.

Human actions can also be modeled as temporal evolutions of appearance or
pose. This line of approaches generally utilize sequential state models [12, 20, 21,
24] to capture such evolutions, where a video is treated as an ordered temporal
segments. However, the relationship of temporal action evolution in reference to
observation ratios is not considered in these approaches, making them improper for
action prediction. In comparison, the progressive data arrival is simulated in our
approach. Large scale temporal templates are used to model action evolutions from
the first frame to the current observed one. Hence, unfinished actions at various
observation ratios can be accurately recognized using our approach.

Action Prediction The goal of action prediction is to recognize unfinished action
execution from partial videos. The integral bag-of-words (IBoW) and dynamic
bag-of-words (DBoW) approaches were proposed in [15] for action prediction.
These two approaches compute the mean of features in the same action category
at the same progress level, and use the mean as the model for each progress level.
Nevertheless, the constructed models are sensitive to outliers due to large intra-class
appearance variations. This problem was overcome by [1], in which representative
action models are built using the sparse coding technique. Results demonstrate that
the proposed method achieves superior performance over the IBoW and DBoW
approaches. All these method deal with short-duration action prediction problem,
while long-duration problem was explored in [10]. One limitation of [10] is that
the temporal segments are detected using motion velocity peaks that are very
difficult to obtain in real-world outdoor datasets. Different from existing work
[1, 10, 15], our prediction model integrates a crucial prior knowledge that the
amount of useful information is accumulating with the arriving of new observations.
This important prior information is not utilized in their methods. Furthermore, the
proposed approach takes label consistency of segments into account, but it is not
considered in their methods. Thanks to the label consistency, our approach is able to
extract discriminative information in local segments and captures temporal ordering
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information implicitly. In addition, our model captures action dynamics at multiple
scales while [1, 15] only capture the dynamics at one single scale.

Besides action prediction, [4] investigated early event detection problem. Their
method can localize the beginning and ending frames given an unfinished event
video. Kitani et al. [6] studied the problem of activity forecasting. The approach is
able to reason the optimal path for a person to go from location A to location B.

3 Our Method

The aim of this work is to predict the action class y of a partially observed action
video xŒ1; t� before the action ends. Here 1 and t in xŒ1; t� indicate the indices of the
starting frame and the last observed frame of the partial video xŒ1; t�, respectively.
Index t ranges from 1 to length T of a full video xŒ1;T�: t 2 f1; : : : ;Tg, to
generate different partial videos. An action video is usually composed of a set
of inhomogeneous temporal units, which are called segments. In this work, we
uniformly divide a full video xŒ1;T� into K segments xŒ T

K � .l � 1/ C 1; T
K � l�,

where l D 1; : : : ;K is the index of segment. The length of each segment is T
K . Note

that for different videos, their lengths T may be different. Therefore, the length
of segments of various videos may be different. For simplicity, let x.k/ be the kth
segment xŒ T

K �.k�1/C1; T
K �k� and x.1;k/ be the partially observed sequence xŒ1; T

K �k�
(see Fig. 6.2). The progress level k of a partially observed video is defined as the
number of observed segments that the video has. The observation ratio is the ratio
of the number of frames in a partially observed video xŒ1; t� to the number of frames
in the full video xŒ1;T�, which is t

T . For example, if T D 100, t D 30 and K D 10,
then the progress level of the partially observed video xŒ1; t� is 3 and its observation
ratio is 0:3.

t=1 

Segments 

t=T 

x(1) x(1,k )

Partially observed video.  
Progress level = k. 

x(2) x(k )

)1( ),,1( kxg g(x(1,k ),k) g(x(1,k ),1 : k)

Fig. 6.2 Example of video segments x.k/, partial video x.1;k/, feature representations g.x.1;k/; l/ of
segments (l D 1; : : : ; k), and the representation of the partial video g.x.1;k/; 1 W k/
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3.1 Action Representations

We use the bag-of-words models to represent segments and partial videos. The
procedure of learning the visual word dictionary for action videos is as follows.
Spatiotemporal interest points detector [3] and tracklet [14] are employed to extract
interest points and trajectories from a video, respectively. The dictionaries of visual
words are learned by clustering algorithms.

We denote the feature of the partial video x.1;k/ at progress level k by g.x.1;k/; 1Wk/,
which is the histogram of visual words contained in the entire partial video, starting
from the first segment to the kth segment (Fig. 6.2). The representation of the lth
(l 2 f1; : : : ; kg) segment x.l/ in the partial video is denoted by g.x.1;k/; l/, which is a
histogram of visual words whose temporal locations are within the lth segment.

3.2 Model Formulation

Let D D fxi; yigN
iD1 be the training data, where xi is the ith fully observed action

video and yi is the corresponding action label. The problem of action prediction is
to learn a function f W X ! Y , which maps a partially observed video x.1;k/ 2 X to
an action label y 2 Y (k 2 f1; : : : ;Kg).

We formulate the action prediction problem using the structured learning as
presented in [22]. Instead of searching for f , we aim at learning a discriminant
function F W X�Y ! R to score each training sample .x; y/. The score measures the
compatibility between a video x and an action label y. Note that, in action prediction,
videos of different observation ratios from the same class should be classified as the
same action category. Therefore, we use the function F to score the compatibility
between the videos of different observation ratios x.1;k/ and the action label y, where
k 2 f1; : : : ;Kg is the progress level.

We are interested in a linear function F.x.1;k/; yI w/ D hw; ˆ.x.1;k/; y/i, which is
a family of functions parameterized by w, and ˆ.x.1;k/; y/ is a joint feature map that
represents the spatio-temporal features of action label y given a partial video x.1;k/.
Once the optimal model parameter w� is learned, the prediction of the action label
y� is computed by

y� D arg max
y2Y

F.x.1;k/; yI w�/ D arg max
y2Y

hw�; ˆ.x.1;k/; y/i: (6.1)

We define wTˆ.x.1;k/; y/ as a summation of the following two components:

wTˆ.x.1;k/; y/ D ˛T
k 1.x.1;k/; y/C

KX

lD1

h
1.l 6 k/ � ˇT

l  2.x.1;k/; y/
i
; (6.2)
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where w D f˛1; : : : ˛K ; ˇ1; : : : ; ˇKg is model parameter, k is the progress level of
the partial video x.1;k/, l is the index of progress levels, and 1.�/ is the indicator
function. The two components in Eq. (6.2) are summarized as follows.

Global progress model (GPM) ˛T
k 1.x.1;k/; y/ indicates how likely the action

class of an unfinished action video x.1;k/ (at progress level k) is y. We define GPM as

˛T
k 1.x.1;k/; y/ D

X

a2Y
˛T

k 1.y D a/g.x.1;k/; 1 W k/: (6.3)

Here, feature vector g.x.1;k/; 1 W k/ of dimensionality D is an action representation
for the partial video x.1;k/, where features are extracted from the entire partial video,
from its beginning (i.e., progress level 1) to its current progress level k. Parameter
˛k of size D � jYj can be regarded as a progress level-specific template. Since the
partial video is at progress level k, we select the template ˛k at the same progress
level, from K parameter matrices f˛1; : : : ; ˛Kg. The selected template ˛k is used
to score the unfinished video x.1;k/. Define A D Œ˛1; : : : ; ˛K � as a vector of all the
parameter matrices in the GPM. Then A is a vector of size D � K � jYj encoding the
weights for the configurations between progress levels and action labels, with their
corresponding video evidence.

The GPM simulates the sequential segment-by-segment data arrival for training
action videos. Essentially, the GPM captures the action appearance changes as the
progress level increases, and characterizes the entire action evolution over time. In
contrast to the IBoW model [15], our GPM does not assume any distributions on the
data likelihood; while the IBoW model uses the Gaussian distribution. In addition,
the compatibility between observation and action label in our model is given by the
linear model of parameter and feature function, rather than using a Gaussian kernel
function [15].

Local progress model (LPM) 1.l 6 k/ � ˇT
l  2.x.1;k/; y/ indicates how likely the

action classes of all the temporal segments x.l/ (l D 1; : : : ; k) in an unfinished video
x.1;k/ are all y. Here, the progress level of the partial video is k and we consider all
the segments of the video whose temporal locations l are smaller than k. We define
LPM as

ˇT
l  2.x.1;k/; y/ D

X

a2Y
ˇT

l 1.y D a/g.x.1;k/; l/; (6.4)

where feature vector g.x.1;k/; l/ of dimensionality D extracts features from the lth
segment of the unfinished video x.1;k/. ˇl of size D � jYj is the weight matrix for
the lth segment. We use the indicator function 1.l 6 k/ to select all the segment
weight matrices, ˇ1; : : : ; ˇk, whose temporal locations are smaller than or equal
to the progress level k of the video. Then the selected weight matrices are used
to score the corresponding segments. Let B D Œˇ1; : : : ; ˇK � be a vector of all the
parameters in the LPM. Then B is a vector of size D � K � jYj encoding the weights
for the configurations between segments and action labels, with their corresponding
segment evidence.
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The LPM considers the sequential nature of a video. The model decomposes
a video of progress level k into segments and describes the temporal dynamics
of segments. Note that the action data preserve the temporal relationship between
the segments. Therefore, the discriminative power of segment x.k/ is critical to the
prediction of x.1;k/ given the prediction results of x.1;k�1/. In this work, the segment
score ˇT

k g.x.1;k/; k/ measures the compatibility between the segment x.k/ and all
the classes. To maximize the discriminability of the segment, the score difference
between the ground-truth class and all the other classes is maximized in our learning
formulation. Thus, accurate prediction can be achieved using the newly introduced
discriminative information in the segment x.k/.

3.3 Structured Learning Formulation

The MTSSVM is formulated based on the SSVM [5, 22]. The optimal model
parameter w� of MTSSVM in Eq. (6.1) is learned by solving the following convex
problem given training data fxi; yigN

iD1:

min
1

2
kwk2 C C

N

NX

iD1
.�1i C �2i C �3i/ (6.5)

s.t. wTˆ.xi.1;k/; yi/ > wTˆ.xi.1;k/; y/C Kı.y; yi/ � �1i

u.k=K/
; 8i;8k;8y; (6.6)

˛T
k 1.xi.1;k/; yi/ > ˛T

k�1 1.xi.1;k�1/; y/C Kı.y; yi/ � �2i

u.k=K/
;

8i; k D 2; : : : ;K;8y;
(6.7)

ˇT
k 2.xi.k/; yi/ > ˇT

k 2.xi.k/; y/C kKı.y; yi/ � �3i

u.1=K/
; 8i;8k;8y;

(6.8)

where C is the slack trade-off parameter similar to that in SVM. �1i, �2i, and �3i are
slack variables. u.�/ is a scaling factor function: u.p/ D p. ı.y; yi/ is the 0-1 loss
function.

The slack variables �1i and the Constraint (6.6) are usually used in SVM
constraints on the class labels. We enforce this constraint for all the progress
levels k since we are interested in learning a classifier that can correctly recognize
partially observed videos with different progress levels k. Therefore, we simulate
the segment-by-segment data arrival for training and augment the training data with
partial videos of different progress levels. The loss function ı.y; yi/ measures the
recognition error of a partial video and the scaling factor u. k

K / scales the loss based
on the length of the partial video.
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Temporal
action
evolution

beginning

handshake handshake handshake
Label consistency
of segments

≤
αT
k−1ψ1(xi(1,k−1), y)

αT
k ψ1(xi(1,k), yi)

Fig. 6.3 Graphical illustration of the temporal action evolution over time and the label consistency
of segments. Blue solid rectangles are LPMs, and purple and red dashed rectangles are GPMs

Constraint (6.7) considers temporal action evolution over time (Fig. 6.3). We
assume that the score ˛T 1.xi.1;k/; yi/ of the partial observation xi.1;k/ at progress
level k and ground truth label yi must be greater than the score ˛T 1.xi.1;k�1/; y/
of a previous observation xi.1;k�1/ at progress level k � 1 and all incorrect labels y.
This provides a monotonically increasing score function for partial observations and
elaborately characterizes the nature of sequentially arriving action data in action
prediction. The slack variable �2i allows us to model outliers.

The slack variables �3i and the Constraint (6.8) are used to maximize the
discriminability of segments x.k/. We encourage the label consistency between
segments and the corresponding full video due to the nature of sequential data
in action prediction (Fig. 6.3). Assume a partial video x.1;k�1/ has been correctly
recognized, then the segment x.k/ is the only newly introduced information and its
discriminative power is the key to recognizing the video x.1;k/. Moreover, context
information of segments is implicitly captured by enforcing the label consistency. It
is possible that some segments from different classes are visually similar and may
not be linearly separable. We use the slack variable �3i for each video to allow some
segments of a video to be treated as outliers.

Empirical Risk Minimization We define �.yi; y/ as the function that quantifies
the loss for a prediction y, if the ground-truth is yi. Therefore, the loss of a
classifier f .�/ for action prediction on a video-label pair .xi; yi/ can be quantified
as �.yi; f .xi//. Usually, the performance of f .�/ is given by the empirical risk
Remp.f / D 1

N

PN
iD1 �.yi; f .xi// on the training data .xi; yi/, assuming data samples

are generated i.i.d.
The nature of continual evaluation in action prediction requires aggregating the

values of loss quantities computed during the action sequence process. Define the
loss associated with a prediction y D f .xi.1;k// for an action xi at progress level
k as �.yi; y/u.

k
K /. Here �.yi; y/ denotes the misclassification error, and u. k

K / is the
scaling factor that depends on how many segments have been observed. In this work,
we use summation to aggregate the loss quantities. This leads to an empirical risk
for N training samples: Remp.f / D 1

N

PN
iD1

PK
kD1

˚
�.yi; y/u.

k
K /

�
.
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Denote by ��
1 , ��

2 and ��
3 the optimal solutions of the slack variables in Eq. (6.5)–

(6.8) for a given classifier f , we can prove that 1
N

PN
iD1.��

1i C ��
2i C ��

3i/ is an upper
bound on the empirical risk Remp.f / and the learning formulation given in Eq. (6.5)–
(6.8) minimizes the upper bound of the empirical risk Remp.f /.

3.4 Discussion

We highlight here some important properties of our model, and show some
differences from existing methods.

Multiple Temporal Scales Our method captures action dynamics in both local and
global temporal scales, while [1, 4, 15] only use a single temporal scale.

Temporal Evolution Over Time Our work uses the prior knowledge of temporal
action evolution over time. Inspired by [4], we introduce a principled monotonic
score function for the GPM to capture this prior knowledge. However, [4] aims at
finding the starting frame of an event while our goal is to predict action class of an
unfinished video. The methods in [1, 10, 15] do not use this prior.

Segment Label Consistency We effectively utilize the discriminative power of
local temporal segments by enforcing label consistency of segments. However,
[1, 4, 10, 15] do not consider the label consistency. The consistency also implicitly
models temporal segment context by enforcing the same label for segments while
[1, 4, 15] explicitly treat successive temporal segments independently.

Principled Empirical Risk Minimization We propose a principled empirical risk
minimization formulation for action prediction, which is not discussed in [1, 10, 15].

3.5 Model Learning and Testing

Learning We solve the optimization problem (6.5)–(6.8) using the regularized
bundle algorithm [2]. The basic idea of the algorithm is to iteratively approximate
the objective function by adding a new cutting plane to the piecewise quadratic
approximation.

The equivalent unconstrained problem of the optimization problem (6.5)–(6.8) is
minw

1
2
kwk2 C C

N � L.w/, where L.w/ D PN
iD1.Ui C Zi C Vi/ is the empirical loss.

Here, Ui, Zi, and Vi are given by

Ui D
KX

kD1
u

�
k

K

�
max

y

h
Kı.y; yi/C wTˆ.xi.1;k/; y/ � wTˆ.xi.1;k/; yi/

i
; (6.9)
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Zi D
KX

kD2
u

�
k

K

�
max

y

h
Kı.y; yi/C ˛T

k�1 1.xi.1;k�1/; y/ � ˛T
k 1.xi.1;k/; yi/

i
;

(6.10)

Vi D
KX

kD1
u

�
1

K

�
max

y

h
kKı.y; yi/C ˇT

k 2.xi.k/; y/ � ˇT
k 2.xi.k/; yi/

i
: (6.11)

The regularized bundle algorithm requires the subgradient of the training loss
with respect to the parameter, @L

@w D PN
iD1.

@Ui
@w C @Zi

@w C @Vi
@w /, in order to find a new

cutting plane to be added to the approximation.

Testing Given an unfinished action video with progress level k (k is known in
testing), our goal is to infer the class label y� using the learned model parameter
w�: y� D arg maxy2Yhw�; ˆ.x.1;k/; y/i. Note that testing phase does not require
sophisticated inference algorithms such as belief propagation or graph cut since we
do not explicitly capture segment interactions. However, the context information
between segments is implicitly captured in our model by the label consistency in
Constraint (6.8).

4 Experiments

We test the proposed MTSSVM approach on three datasets: the UT-Interaction
dataset (UTI) Set 1 (UTI #1) and Set 2 (UTI #2) [17], and the BIT-Interaction
dataset (BIT) [7]. UTI #1 were taken on a parking lot with mostly static background
and little camera jitters. UTI #2 were captured on a lawn with slight background
movements (e.g., tree moves) and camera jitters. Both of the two sets consist of
six types of human actions, with ten videos per class. We adopt the leave-one-
out training scheme on the two datasets. The BIT dataset consists of eight types
of human actions between two people, with 50 videos per class. For this dataset,
a random sample of 272 videos is chosen as training samples, and the remaining
128 videos are used for testing. The dictionary size for interest point descriptors is
set to 500, and the size for tracklet descriptors is automatically determined by the
clustering method in all the experiments.

MTSSVM is evaluated for classifying videos of incomplete action executions
using ten observation ratios, from 0:1 to 1, representing the increasing amount of
sequential data with time. For example, if a full video containing T frames is used
for testing at the observation ratio of 0:3, the accuracy of MTSSVM is evaluated
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by presenting it with the first 0:3 � T frames. At observation ratio of 1, the entire
video is used, at which point MTSSVM acts as a conventional action recognition
model. The progress level k of testing videos is known to all the methods in our
experiments.

4.1 Results

UTI #1 and UTI #2 Datasets The MTSSVM is compared with DBoW and IBoW
in [15], the MMED [4], the MSSC and the SC in [1], and the method in [13]. The
KNN-nonDynamic, the KNN-Dynamic, and the baseline method implemented in
[1] are also used in comparison. The same experiment settings in [1] are followed
in our experiments.

Figure 6.4a shows the prediction results on the UTI #1 dataset. Our MTSSVM
achieves better performance over all the other comparison approaches. Our method
outperforms the MSSC method because we not only model segment dynamics
but also characterize temporal evolutions of actions. Our method can achieve an
impressive 78:33% recognition accuracy when only the first 50% frames of testing
videos are observed. This result is even higher than the SC method with full
observations. Results of our method are significantly higher than the DBoW and
IBoW for all observation ratios. This is mainly due to the fact that the action models
in our work are discriminatively learned while the action models in the DBoW and
IBoW are computed by averaging feature vectors in a particular class. Therefore, the
action models in the DBoW and IBoW may not be the representative models and are
sensitive to outliers. MMED does not perform well as other prediction approaches
since it is optimized for early detection of the starting and ending frame of an action.
This is a different goal from this chapter, which is to classify unfinished actions. We
also compare with [13] on half and full video observations. Results in Table 6.1
show that our method achieves better performance over [13].
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Fig. 6.4 Prediction results on the (a) UTI #1, (b) UTI #2, and (c) BIT datasets
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Table 6.1 Prediction results compared with [13] on half and full videos

Observation ratio Accuracy with half videos (%) Accuracy with full videos (%)

Raptis and Sigal [13] 73.3 93.3

Our model 78.33 95

Comparison results on the UTI #2 datasets are shown in Fig. 6.4b. The MTSSVM
achieves better performance over all the other comparison approaches in all the
cases. At 0:3, 0:5, and 1 observation ratios, MSSC achieves 48:33%, 71:67%, and
81:67% prediction accuracy, respectively, and SC achieves 50%, 66:67%, and 80%
accuracy, respectively. By contrast, our MTSSVM achieves 60%, 75%, and 83:33%
prediction results, respectively, which is consistently higher than MSSC and SC.
Our MTSSVM achieves 75% accuracy when only the first 50% frames of testing
videos are observed. This accuracy is even higher than the DBoW and IBoW with
full observations.

To demonstrate that both the GPM and the LPM are important for action
prediction, we compare the performance of MTSSVM with the model that only
uses one of the two sources of information on the UTI #1 dataset. Figure 6.5 shows
the scores of the GPM and LPM (˛T

k 1.x.1;k/; y/ of the GPM and
PK

lD1 1.l 6
k/ � ˇT

l  2.x.1;k/; y/ of the LPM), and compare them to the scores of the full
MTSSVM model with respect to the observation ratio. Results show that the
LPM captures discriminative temporal segments for prediction. LPM characterizes
temporal dynamics of segments and discriminatively learns to differentiate segments
from different classes. In most cases, the score of LPM is monotonically increasing,
which indicates a discriminative temporal segment is used for prediction. However,
in some cases, segments from different classes are visually similar and thus are
difficult to discriminate. Therefore, in the middle of the “handshake” class and the
“hug” class in Fig. 6.5 (observation ratio from 0.3 to 0.7), adding more segment
observations does not increase LPM’s contribution to MTSSVM. Figure 6.6 shows
examples of visually similar segments of the two classes at k D 6. However, when
such situations arise, GPM can provide necessary appearance history information
and therefore increases the prediction performance of MTSSVM.

BIT-Interaction Dataset We also compare MTSSVM with the MSSC, SC, DBoW
and IBoW on the BIT-Interaction dataset. A BoW+SVM method is used as a
baseline. The parameter � in DBoW and IBoW is set to 36 and 2, respectively, which
are the optimal parameters on the BIT-Interaction dataset. Results shown in Fig. 6.4c
demonstrate that MTSSVM outperforms MSSC and SC in all cases due to the effect
of the GPM, which effectively captures temporal action evolution information.
MTSSVM also outperforms the DBoW and IBoW. Our method achieves 60:16%
recognition accuracy with only the first 50% frames of testing videos are observed,
which is better than the DBoW and IBoW at all observation ratios. Note that the
performance of DBoW and IBoW does not increase much when the observation
ratios are increased from 0:6 to 0:9. The IBoW performs even worse. This is due
to the fact that some video segments from different classes are visually similar;
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Fig. 6.5 Contributions of the global progress model and the local progress model to the prediction
task

Fig. 6.6 Examples of segments in “handshake” and “hug”. Segments k D 6; 8; 10 in the two
classes are visually similar

especially, the segments in the second half of the videos, where people return to
their starting positions (see Fig. 6.7). However, because MTSSVM models both the
segments and the entire observation, its performance increases with the increasing
of observation ratio even if the newly introduced segments contain only a small
amount of discriminative information.

We further investigate the sensitivity of MTSSVM to the parameters C in
Eq. (6.5). We set C to 0:5, 5, and 10, and test MTSSVM on all parameter
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Fig. 6.7 Examples of visually similar segments in the “boxing” action (Top) and the “pushing”
action (Bottom) with segment index k 2 f2; 4; 6; 8; 10g. Bounding boxes indicate the interest
regions of actions

Table 6.2 Recognition
accuracy of our model on
videos of observation ratio
0:3, 0:5, and 0:8 with
different C parameters

Observation ratio C D 0:5 (%) C D 5 (%) C D 10 (%)

0.3 42.97 39.84 38.28

0.5 54.69 57.03 51.56

0.8 66.41 61.72 55.47

combinations with observation ratios 0:3, 0:5, and 0:8. Results in Table 6.2 indicate
that MTSSVM is not sensitive to the parameters when the observation ratio
is low but the sensitivity increases when the observation ratio becomes large.
In the beginning of a video, the small number of features available does not
capture the variability of their class. Therefore, it does not help to use different
parameters, because MTSSVM cannot learn the appropriate class boundaries to
separate all the testing data. As observation ratio increases, the features become
more expressive. However, since structural features in MTSSVM are very complex,
appropriate parameters are required to capture the complexity of data.

Finally, we also evaluate the importance of each component in the MTSSVM,
including the Constraint (6.7), the Constraint (6.8), the local progress model [LPM
in Eq. (6.4)], and the global progress model [GPM in Eq. (6.3)]. We remove each of
these components from the MTSSVM, and obtain four variant models, the no-cons2
model [remove the Constraint (6.7) from MTSSVM], the no-cons3 model [remove
the Constraint (6.8)], the no-LPM model [remove the LPM and Constraint (6.8)],
and the no-GPM model [remove the GPM and Constraint (6.7)]. We compare
MTSSVM with these variants with parameter C of 1 and 100. Results in Fig. 6.8
show that the GPM is the key component in the MTSSVM. Without the GPM, the
performance of the no-GPM model degrades significantly compared with the full
MTSSVM model, especially with parameter C of 100. The performances of the no-
cons3 model and the no-LPM model are worse compared with the full method in
all cases. This is due to the lack of the segment label consistency in the two models.
The label consistency can help use the discriminative information in segments and
also implicitly model context information. In the ending part of videos in BIT
dataset, since most of the observations are visually similar (people return back to
their normal position), label consistency is of great importance for discriminating
classes. However, due to the lack of label consistency in the no-cons3 model and the
no-LPM model, they cannot capture useful information for differentiating action
classes.
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Fig. 6.8 Prediction results of each component in the full MTSSVM with C parameter (a) 1 and
(b) 100

5 Summary

We have proposed the MTSSVM for recognizing actions in incomplete videos.
MTSSVM captures the entire action evolution over time and also considers the
temporal nature of a video. We formulate the action prediction task as a SSVM
learning problem. The discriminability of segments is enforced in the learning
formulation. Experiments on two datasets show that MTSSVM outperforms state-
of-the-art approaches.
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