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Preface

Automatic human activity sensing has drawn much attention in the field of video
analysis technology due to the growing demands from many applications, such as
surveillance environments, entertainments, and healthcare systems. Human activity
recognition and prediction is closely related to other computer vision tasks such
as human gesture analysis, gait recognition, and event recognition. Very recently,
the US government funded many major research projects on this topic; in industry,
commercial products such as the Microsoft’s Kinect are good examples that make
use of human action recognition techniques. Many commercialized surveillance
systems seek to develop and exploit video-based detection, tracking and activity
recognition of persons, and vehicles in order to infer their threat potential and
provide automated alerts.

This book focuses on the recognition, prediction of individual activities and
interactions from videos that usually involves several people. This provides a
unique view of: human activity recognition, especially fine-grained human activity
structure learning, human interaction recognition, RGB-D data-based recognition
temporal decomposition, and casually learning in unconstrained human activity
videos. These techniques will significantly advance existing methodologies of video
content understanding by taking advantage of activity recognition. As a professional
reference and research monograph, this book includes several key chapters covering
multiple emerging topics in this new field. It links multiple popular research
fields in computer vision, machine learning, human-centered computing, human-
computer interaction, image classification, and pattern recognition. Contributed
by top experts and practitioners of the Synergetic Media Learning (SMILE) Lab
at Northeastern University, these chapters complement each other from different
angles and compose a solid overview of the human activity recognition and
prediction techniques. Well-balanced contents and cross-domain knowledge for
both methodology and real-world applications will benefit readers from different
level of expertise in broad fields of science and engineering.

There are in total eight chapters included in this book. The book will first
give an overview of recent studies for activity recognition and prediction in the
“Introduction” chapter, such as objectives, challenges, representations, classifiers,
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and datasets, and will then discuss several interesting topics of these fields in details.
Chapter 2 addresses the challenges of action recognition through interactions and
proposes semantic descriptions, namely, “interactive phrases,” to better describe
complex interactions, and discriminative spatiotemporal patches to provide cleaner
features for interaction recognition. Chapter 3 presents a sparse tensor subspace
learning method to select variables for high-dimensional visual representation of
action videos, which not only keeps the original structure of action but also
avoids the “curse of dimensionality.” Chapter 4 introduces a multiple mode-driven
discriminant analysis (MDA) in tensor subspace action recognition, which preserves
both discrete and continuous distribution information of action videos in lower
dimensional spaces to boost discriminant power. Chapter 5 presents a transfer
learning method that can transfer the knowledge from depth information of the
RGB-D data to the RGB data and use the additional source information to recognize
human actions in RGB videos. In particular, a novel cross-modality regularizer is
introduced that plays an important role in finding the correlation between RGB
and depth modalities, allowing more depth information from the source database
to be transferred to that of the target. Chapter 6 introduces a multiple temporal
scale support vector machine for early classification of unfinished actions; and a
convex learning formulation is proposed to consider the essence of the progressively
arriving action data. Chapter 7 discusses an approach for predicting long duration
complex activity by discovering the causal relationships between constituent actions
and predictable characteristics of the activities. Chapter 8 introduces an approach
to early classify human activities represented by multivariate time series data,
where the spatial structure of activities is encoded by the dimensions of predefined
human body model and the temporal structure of activities are modeled by temporal
dynamics and sequential cue.

This book can be used by broad groups of readers, such as professional
researchers, graduate students, and university faculties, especially those in the
background of computer science and computer engineering. I would like to sincerely
thank all the SMILE Lab contributors of this book for presenting their most recent
research advances in an easily accessible manner. I would also sincerely thank
editors Mary E. James and Rebecca R. Hytowitz from Springer for strong support
to this book project.

Boston, MA, USA Yun Fu
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Chapter 1
Introduction

Yu Kong and Yun Fu

The goal of human action recognition is to predict the label of the action of an
individual or a group of people from a video observation. This interesting topic is
inspired by a number of useful real-world applications, such as visual surveillance,
video understanding, etc. Considering that in a large square, an online visual
surveillance for understanding a group of people’s action will be of great importance
for public security; an automatic video understanding system will be very effective
to label millions of online videos.

However, in many real-world scenarios (e.g., vehicle accident and criminal
activity), intelligent systems do not have the luxury of waiting for the entire video
before having to react to the action contained in it. For example, being able to predict
a dangerous driving situation before it occurs; opposed to recognizing it thereafter.
This task is referred to as action prediction where approaches that can recognize
progressively observed video segments, different to action recognition approaches
that expect to see the entire set of action dynamics extracted from a full video.

Although conventional color videos contain rich motion and appearance infor-
mation, they do not provide structural information of the entire scene. In other
words, machines cannot tell which object in a video is more closer to the camera
and which is more far away. Due to the recent advent of the cost-effective Kinect
sensors, action recognition from RGB-D cameras is receiving increasing interests
in computer vision community. Compared with conventional RGB cameras, Kinect
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2 Y. Kong and Y. Fu

sensors provide depth information, which captures 3D structural information of the
entire scene. The 3D structural information can be used to facilitate the recognition
task by simplifying intra-class motion variation and removing cluttered background
noise.

In this chapter, we will first review recent studies in action recognition and
prediction that consist of action representations, action classifiers, and action
predictors. Approaches for recognizing RGB-D videos will also be discussed.
We then will describe several popular action recognition datasets, including ones
with individual actions, group actions, unconstrained datasets, and RGB-D action
datasets. Some of existing studies [106, 107] aim at learning actions from static
images, which is not the focus of this book.

1 Challenges of Human Activity Recognition and Prediction

Despite significant progress has been made in human activity recognition and
prediction, the most advanced algorithms still misclassify action videos due to
several major challenges in this task.

1.1 Intra- and Inter-Class Variations

As we all know, people behave differently for the same actions. For a given semantic
meaningful activity, for example, “running,” a person can run fast, slow, or even
jump and run. That is to say, one activity category may contain multiple different
styles of human motion. In addition, videos in the same action can be captured
from various viewpoints. They can be taken in front of the human subject, on the
side of the subject, or even on top of the subject. Furthermore, different people
may show different poses in executing the same activity. All these factors will
result in large intra-class appearance and pose variations, which confuse a lot of
existing activity recognition algorithms. These variations will be even larger on real-
world activity datasets. This triggers the investigation of more advanced activity
recognition algorithms that can be deployed in real-world.

Furthermore, similarities exist in different activity categories. For instance,
“running” and “walking” involve similar human motion patterns. These similarities
would also be challenging to differentiate for intelligent machines, and consequently
contribute to misclassifications.

In order to minimize intra-class variations and maximize inter-class variations,
lots of effort have been made to design discriminative activity features. In some
recent studies, researchers attempt to learn discriminative features using deep
learning techniques, in order to better describe complex human activities.
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1.2 Cluttered Background and Camera Motion

It is interesting to see that a number of human activity recognition algorithms work
very well in indoor environment but fail in outdoor environment. This is mainly due
to the background noise. In real-world, existing activity features will also encode
background noise and thus degrade the recognition performance.

Camera motion is another factor that should be considered in real-world appli-
cations. Due to significant camera motion, activity features cannot be accurately
extracted. In order to better extract activity features, camera motion should be
modeled and compensated.

Other environment-related issues such as illumination conditions, viewpoint
changes, dynamic background will also be the challenges that prohibit activity
recognition algorithms from being used in the real-world.

1.3 Insufficient Data

A robust and effective intelligent system normally requires large amount of training
data. Even though existing activity recognition systems [31, 55, 60] have shown
impressive performance on small-scale datasets in laboratory settings, it is really
challenging to generalize them to real-world applications due to the unavailability of
large action datasets. Most of existing activity datasets only contain about thousands
of videos (e.g., UCF Sports dataset [70]), which would not be enough to train a
sophisticated activity recognition algorithm.

Furthermore, it is labor intensive to annotate a large dataset. Some sophisticated
algorithms [10, 38, 67] require the bounding boxes of the person of interest to be
annotated. This is infeasible on large dataset. However, it is possible that some of
the data annotations are available, which would result in a training setting with a
mixture of labeled data and unlabeled data. Therefore, it is imperative to design an
activity recognition algorithm that can learn activities from both labeled data and
unlabeled data.

2 Video Representations

2.1 Global Features

Global features capture holistic information of the entire scene, including the
appearance feature, geometric structure, motion, etc. However, global features
are usually sensitive to noise and clutter background since they also bring in
some information that is irrelevant to activity recognition. Global features such as
histograms of oriented histograms (HOG) [11] and optical flow [15, 56] have been
successfully applied in activity recognition.
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HOG captures object appearance and shape information and has shown to be
invariant to illumination, shadowing, etc. It computes gradient in local image cells
and then aggregates the gradients by weighted voting into spatial and orientation
cells. Though popularly used in object detection, recent work uses a track of HOG
features for activity recognition [7, 27, 34], or adapts HOG to capture appearance
information within local spatiotemporal regions [31, 46, 90].

Optical flow [56] captures motion fields on successive frames. Under the
assumption that illumination conditions do not change on the frames, optical flow
computes the motion in horizontal and vertical axis. To better represent optical flow
fields, Efros et al. [15] further split the horizontal and vertical fields into positive
and negative channels, and concatenate the four channels to characterize human
motion in a distance. Optical flow feature is further aggregated in histograms, called
histograms of optical flow (HOF), and combined with HOG features to represent
complex human activities [31, 46, 90]. Researchers also compute gradients over
optical flow fields and build so-called the motion boundary histograms (MBH) for
describing trajectories [90].

2.2 Local Features

Local features such as spatial-temporal interest points by [5, 14, 31, 45] are very
popularly used in recent studies in action recognition due to their robustness to
translation, appearance variation, etc. Different from global features, local features
describe local motion of a person in space-time regions. These regions are detected
since the motion information within the regions are more informative and salient
than surrounding areas. After detection, the regions are described by extracting
features in the regions.

Laptev [44] extended the 2D Harris corner detector to space-time domain, and
validated its effectiveness in outdoor sequences. Dollar et al. [14] and Bregonzio
et al. [5] detected spatial-temporal interest points using Gabor filters. Spatiotemporal
interest points can also be detected by using the spatiotemporal Hessian matrix
[101]. Other detection algorithms detect spatiotemporal interest points by extending
their counterparts of 2D detectors to spatiotemporal domains, such as 3D SIFT
[76], HOG3D [31], local trinary patterns [108], etc. Several descriptors have been
proposed to describe the motion and appearance information within the small region
of the detected interest points. For example, gradient, histogram of oriented gradient,
histogram of optical flow, and motion boundary of histogram.

However, spatiotemporal interest points only capture information within a short
temporal duration and cannot capture long-term duration information. It would be
better to track these interest points and describe their changes of motion properties.
Feature trajectory is a straightforward way of capturing such long-duration informa-
tion [68, 91, 92]. To obtain features for trajectories, interest points are first detected
and tracked using KLT tracker [56] or pairwise SIFT matching [82].
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The point-level context is captured in [82] by averaging all trajectory features.
Trajectories are described by a concatenation of HOG, HOF, and MBH features
[24, 92, 96], intra- and inter-trajectory descriptors [82], or HOG/HOF and averaged
descriptors [68]. In order to reduce the side effect of camera motion, [89, 98] find
correspondences between two frames first and then use RANSAC to estimate the
homography.

All the above methods rely on hand-crafted features, which require expensive
human labor to fine-tune parameters. Recent work also shows that action features
can also be learned using deep learning techniques [26].

2.3 Deeply Learned Features

Although great success has been achieved by global and local features, these hand-
crafted features require heavy human labor and require domain expert knowledge
to design the feature extraction framework. In addition, they normally do not
generalize very well on large datasets.

In recent years, feature learning using deep learning techniques has been
receiving increasing attention due to their ability of designing power features that
can be generalized very well. In addition, these learning techniques are able to
perform semi-supervised feature abstraction, allowing us to use side information,
and hierarchical feature abstraction. Deep learning is a branch of machine learning,
which aims at modeling high-level abstractions in data by complex structured model
architectures composed of multiple non-linear transformations.

Action features learned using deep learning techniques have been popularly
investigated in recent years [2, 3, 21, 25, 26, 29, 47, 66, 79, 83, 86, 97, 99, 104].
Specifically, a 3D convolution operation in the convolutional neural network (CNN)
was proposed in [25, 26] to learn discriminative features from videos. Simonyan
and Zisserman [79] proposed a convolutional network that filters videos in two
separate streams, i.e. spatial and temporal, and then combines using a late fusion.
Wang et al. [97] treat an action video as a set of cubic-like temporal segments,
and discover temporal structures using CNN. Taylor et al. [86] generalized the
gated restricted Boltzmann machine to extracting features from sequences. Karpathy
et al. [29] complied a very large Sports-1M dataset for video classification, and
conducted extensive experiments of CNNs. An extension of independent component
analysis was proposed in [47] that employs the idea of convolution and stacking
in order to scale up to big datasets. The sparse Autoencoder is employed to
incrementally learning human activities in streaming videos [21]. An architecture
of hierarchical depth motion maps (HDMM) + 3 Channel Convolutional Neural
Network (3ConvNets) is proposed in [99] for recognizing human actions from depth
sequences.
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3 Action Classifiers

3.1 Individual Action Classifiers

A considerable amount of previous work in human action recognition focuses on
recognizing the actions of a single person in videos [1, 18, 40, 60, 77].

3.1.1 Space-Time Approaches

Conventional space-time action recognition methods mainly focus on learning
motion patterns from holistic or local space-time motion patterns. A global space-
time representation learning algorithm was proposed in [4, 18]. The proposed
method utilizes the properties of the solution to the Poisson equation to extract
space-time features such as local space-time saliency, action dynamics, shape
structure, and orientation. A holistic body shape feature was also used in [53] to
characterize the shape of human body during the execution of actions. Recent work
in [67] showed that representative key poses can be learned to better represent
human actions. This method discards a number of non-informative poses in a
temporal sequence, and builds a more compact pose sequence for classification.
Nevertheless, these global feature-based approaches are sensitive to background
noise and generally do not perform well on challenging datasets.

Local space-time approaches are receiving more attention recently. Spatiotempo-
ral interest points-based approaches [14, 31, 44, 75] were proposed to detect local
salient regions first, and then build a so-called dictionary to quantize the features
extracted from the local regions. An action video can be finally represented by a
histogram of these quantized features. Although these local features only capture
motion of body parts and fail to describe the holistic motion patterns, they have
been shown to be insensitive to appearance and pose variations, and achieved
promising results in activity recognition. A potential drawback of the above action
representation is that it does not consider structural information of the interest
points. To overcome this problem, [73] measured the spatiotemporal relationships
of interest points, and builds a new descriptor that embeds structural information.

3.1.2 Sequential Approaches

Another line of work captures temporal evolutions of appearance or pose using
sequential state models [60, 78, 85, 95]. These approaches treat a video as a
composition of temporal segments. However, they do not model temporal action
evolution with respect to observation ratios. Therefore, they cannot characterize
partially observed actions and are unsuitable for prediction. In addition, recognizing
human actions from a set of key frames [67, 87] has also been investigated in
previous studies. These approaches learn representative key frames to encode long
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duration action sequences, and thus reduce redundant features in classification. In
some cases, a long temporal sequence may contain a series of inhomogeneous action
units. Previous work [23, 51, 78] studied the problem of segmenting such long
sequences into multiple semantic coherent units by considering motion relationships
between successive frames.

3.1.3 Hierarchical Approaches

Bag-of-words models have shown to be robust to background noise but may not
be expressive enough to describe actions in the presence of large appearance and
pose variations. In addition, they may not well represent actions due to the large
semantic gap between low-level features and high-level actions. To address these
two problems, hierarchical approaches [10, 38, 55, 88] were proposed to learn
an additional layer of representations, and expect to better abstract the low-level
features for classification.

Hierarchical approaches learn mid-level features from low-level features, which
are then used in the recognition task. The learned mid-level features can be
considered as knowledge discovered from the same database used for training
or being specified by experts. Recently, semantic descriptions or attributes are
popularly investigated in activity recognition. These semantics are defined and
further introduced into the activity classifiers in order to characterize complex
human actions [36, 38, 55]. These approaches have shown superior performance
since they introduce human knowledge into classification models.

Other hierarchical approaches such as [67, 87] select key poses from observed
frames, which also learn better activity representations during model learning.

3.2 Classifiers for Group Actions
3.2.1 Human-Human Interactions

The recognition of human—human interactions from videos has been extensively
investigated in recent studies. In most of the previous studies [46, 54, 57, 73, 109],
interactions are recognized in the same way as single-person action recognition.
Specifically, interactions are represented as a motion descriptor including all the
people in a video, and then an action classifier such as linear support vector
machine is adopted to classify interactions. Although reasonable performance can
be achieved, these approaches do not utilize the intrinsic properties of interactions,
such as co-occurrence information between interacting people. In addition, they
treat people as a single entity and do not extract the motion of each person from
the group. Thus, their methods could not give the action label of each interacting
person in the video simultaneously.
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Exploiting rich contextual information in human interactions can help achieve
more accurate and robust recognition results. In [62], human interactions were
recognized using motion co-occurrence, which is achieved by coupling motion
state of one person with the other interacting person. Spatiotemporal crowd context
is captured in [10] to recognize human interactions. Human pose, velocity, and
spatiotemporal distribution of individuals are applied to represent the crowd context
information. They further developed a system that can simultaneously track multiple
people and recognize their interactions [8]. They capture co-occurrence between
interaction and atomic action, and interaction and collective action for interaction
recognition. The method in [43] studied the collective activity recognition problem
using crowd context. People in a collective activity have no close physical contact
with each other and perform similar action, e.g., “crossing the road,” “talking,” or
“waiting.” Individuals in interactions can also be represented by a set of key poses,
and their spatial and temporal relationships can be captured for recognition [87].
Odashima et al. [61] proposed the Contextual Spatial Pyramid to detect the action
of multiple people. In [36, 38], a semantic description-based approach was proposed
to better represent complex human interactions. A patch-aware model was proposed
in [33] to learn discriminative patches for interaction recognition. In these studies,
the contextual information is easy to capture since the human body size in their
datasets is not very small and thus a visual tracker for human body is performed
well. However, in [48, 58, 59], the size of human body can often be very small,
making them difficult or even impossible to track using tracker. Consequently, the
contextual information between interacting entities is difficult to extract.

Human interactions, e.g., “hug,” “push,” and “high-five,” usually involve frequent
close physical contact. Ryoo and Aggarwal [72] utilized body part tracker to extract
each individual in videos and then applied context-free grammar to describe spatial
and temporal relationships between people. Perez et al. [65] adopted a human
detector to extract individual in videos. They investigated interaction recognition
between two people in realistic scenarios. In their work, spatial relationships
between individuals are captured using the structured learning technique. However,
the ambiguities in feature-to-person assignments during close physical contact
remain a problem.

3.2.2 Human-Object Interactions

Contextual information has also been effectively exploited in human—object inter-
actions and object—object interactions. Human—object interactions in videos and
images are performed in [19] by fusing context from object reaction, object class,
and manipulation motion. They incorporated rich context derived from object class,
object reaction, and manipulation motion into Bayesian models for recognizing
human—object interaction from videos and static images.

Mutual context of objects and human poses was explored by Yao and Fei-
Fei [105]. Their work on human—object interaction recognition showed that using
mutual context, solving human pose estimation and object detection problems
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simultaneously can greatly benefit each other. In [17], temporal and casual rela-
tionships between object events are represented by the dynamically interconnected
multiple hidden Markov models, and are used for recognizing group actions
involving multiple objects. A contextual model is proposed to capture geometric
configurations of objects and human pose in contextual models for recognizing
human—object interactions (e.g., tennis-serve and tennis-forehand) [13]. The rela-
tionships between human and object are modeled by joint actor—object states [16].
A discriminative model is proposed to capture the spatial relationships (e.g., above,
below) between objects for multi-object detection [12].

3.3 Classifiers for RGB-D Videos

Recently, due to the advent of the cost-effective Kinect sensor, researchers pay a
lot of attentions to recognizing actions from RGB-D data [20, 52, 63, 93, 94, 102].
Compared with conventional RGB data, the additional depth information allows us
to capture 3D structural information, which is very useful in removing background
and simplifying intra-class motion variations. Compared with these methods, depth
information is not available in the target training and testing database in this
work. [27] used an additional RGB-D data as the source database, and learn the
correlations between RGB data and depth data. The learned correlation knowledge
is then transferred to the target database, in which the depth information does not
exist. With the learned depth information, the performance on the target RGB data
can be improved comparing with the performance when only the RGB data in the
target data are used.

3.4 Action Predictors

Most of existing action recognition methods [67, 87, 106, 107] were designed for
recognizing complete actions, assuming the action in each testing video has been
fully executed. This makes these approaches unsuitable for predicting action labels
in partial videos.

Action prediction approaches aim at recognizing unfinished action videos.
Ryoo [71] proposed the integral bag-of-words (IBoW) and dynamic bag-of-words
(DBoW) approaches for action prediction. The action model of each progress
level is computed by averaging features of a particular progress level in the same
category. However, the learned model may not be representative if the action videos
of the same class have large appearance variations, and it is sensitive to outliers.
To overcome these two problems, Cao et al. [6] built action models by learning
feature bases using sparse coding and used the reconstruction error in the likelihood
computation. Li et al. [50] explored long-duration action prediction problem.
However, their work detects segments by motion velocity peaks, which may not
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be applicable on complex outdoor datasets. Compared with [6, 35, 37, 50, 71], we
incorporate an important prior knowledge that informative action information is
increasing when new observations are available. In addition, the methods in [35, 37]
model label consistency of segments, which is not presented in their methods.

Additionally, an early event detector [22] was proposed to localize the starting
and ending frames of an incomplete event. Activity forecasting, which aims at
reasoning about the preferred path for people given a destination in a scene, has
been investigated in [30].

4 Datasets

An overview of popularly used datasets for activity recognition and prediction is
given in the following. These datasets differ in the number of human subjects,
background noise, appearance and pose variations, camera motion, etc., and have
been widely used for the comparison of various algorithms.

4.1 Individual Action Video Datasets

Weizmann Dataset The Weizmann human action dataset [4] is a popular video
dataset for human action recognition. The dataset contains ten action classes such
as “walking,” “jogging,” “waving” performed by nine different subjects, to provide
a total of 90 video sequences. The videos are taken with a static camera under a
simple background.

9 <«

KTH Dataset The KTH dataset [75] is a challenging dataset for human action
recognition which consists of six types of human actions (boxing, hand clapping,
hand waving, jogging, running, and walking) performed several times by 25 dif-
ferent subjects in four scenarios (outdoors, outdoors with scale variation, outdoors
with different clothes, and indoors). There are 599 action videos in total in the KTH
dataset.

INRIA XMAS Multi-View Dataset This dataset is a multi-view dataset for view-
invariant human action recognition [100]. It contains videos captured from five
views including a top-view camera. The dataset consists of 13 actions, each of which
is performed 3 times by 10 actors.

Multicamera Human Action Video Dataset The multicamera human action
video dataset [80] is composed of 17 action categories performed by 14 actors.
Videos in this dataset are captured by eight cameras around the human subject in a
constrained environment. Example actions are “walk and turn back,” “run and stop,”
“punch,” and “draw graffiti,” etc.
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IXMAS Actions Dataset This dataset is also a multi-view action dataset [100].
It consists of 11 actions, providing a total of 1148 videos captured by five cameras.
395 out of 1148 videos do not have occlusions and 698 videos contain objects that
are partially occluded the actors.

MSR Action Dataset I MSR action dataset I [111] was captured with clutter and
moving background. It consists of 63 videos, performed by ten subjects, in both
indoor and outdoor environments. Each sequence contains multiple types of actions.

MSR Action Dataset II It is an extended version of MSR action dataset I [112].
Fifty-four videos captured in a crowded environment are provided, where each video
contains multiple actions. Three action categories, hand waving, hand clapping, and
boxing, are included in this dataset.

Example images of these individual action datasets can be found in Fig. 1.1.

Fig. 1.1 Examples of individual action video datasets. (a) Weizmann dataset. (b) KTH dataset.
(¢) INRIA XMAS multi-view dataset. (d) Multicamera human action video dataset. (e) IXMAS
actions dataset. (f) MSR action dataset I. (g) MSR action dataset 11
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4.2 Group Action Datasets

UT-Interaction Dataset UT-interaction dataset [74] is comprised of two sets
with different environments. Each set consists of six types of human interactions:
handshake, hug, kick, point, punch, and push. Each type of interactions contains
10 videos, to provide 60 videos in total. Videos are captured at different scales and
illumination conditions. Moreover, some irrelevant pedestrians are present in the
videos.

BIT-Interaction Dataset BIT-interaction dataset [36] consists of eight classes of
human interactions (bow, boxing, handshake, high-five, hug, kick, pat, and push),
with 50 videos per class. Videos are captured in realistic scenes with cluttered
backgrounds, partial occluded body parts, moving objects, and variations in subject
appearance, scale, illumination condition, and viewpoint.

TV-Interaction Dataset The TV-interaction dataset [64] contains 300 video clips
with human interactions. These videos are categorized into four interaction cate-
gories: handshake, high five, hug, and kiss. The dataset is annotated with the upper
body of people, discrete head orientation, and interaction label.

Collective Activity Dataset Collective activity dataset [9] was used for multi-
person interaction recognition. This dataset consists of five group activities, cross-
ing, talking, waiting, walking, and queueing. Forty-four short video clips of group
action categories were recorded. Every tenth frame in every video is manually
labeled with pose, activity, and bounding box.

LIRIS Human Activities Dataset The LIRIS human activities dataset was used in
ICPR HARL 2012 contest. There are ten action classes in the dataset: discussion of
two or several people, a person gives an item to a second person, handshaking of
two people, a person types on a keyboard, a person talks on a telephone, etc.
Example images of these group action datasets are illustrated in Fig. 1.2.

4.3 Unconstrained Datasets

UCF Sports Action Dataset The UCF sports action dataset [70] contains a set
of sports actions that are typically featured on television channels. It contains ten
actions, providing a total of 150 videos. The actions are diving, golf swing, kicking,
lifting, riding horse, running, skate boarding, swing-bench, swing-side, and walking.

Olympic Sports Dataset The Olympic sports dataset [60] contains sports videos
of athletes in Olympic games. These videos were collected from YouTube and were
annotated with the help of Amazon Mechanical Turk. The dataset has 16 sport
actions, such as high-jump, triple-jump, shot-put, etc.
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Fig. 1.2 Example images of group action datasets. (a) UT-interaction dataset. (b) BIT-interaction
dataset. (¢) TV-interaction dataset. (d) Collective activity dataset. (e) LIRIS human activities
dataset

Hollywood Dataset The Hollywood dataset [46] contains video clips with human
actions from 32 movies. There are eight action classes in the dataset, such as answer
phone, sit up, and kiss.

Hollywood 2 Dataset The Hollywood 2 dataset [57] provides 12 classes of human
actions (e.g., answer phone, eat, and drive a car) and ten classes of scenes (e.g.,
in car, in office, and in restaurant). There are in total of 3669 video clips from 69
movies. The total length of these videos is approximately 20.1 h.

UCF11 Dataset UCF11 action dataset [28] contains 11 action categories such as
basketball shooting, biking, tennis swinging, etc. The videos are compiled from
YouTube, and are very challenging due to large variations in camera motion, object
appearance and scale, viewpoint, cluttered background, etc. For each category, the
videos are grouped into 25 groups with at least four videos in it.

UCFS50 Dataset The UCF50 dataset [69] contains 50 action types, such as biking,
push-ups, mixing batter, etc. It is an extension of the UCFI11 dataset. Videos in
this dataset are realistic videos downloaded from YouTube. This dataset is very
challenging due to large variations in camera motion, object appearance and pose,
object scale, viewpoint, cluttered background, illumination conditions, etc.

UCF101 Dataset The UCF101 dataset [81] is an extended version of UCF50
dataset. It comprises of realistic videos collected from YouTube. It contains 101
action categories, with 13,320 videos in total. UCF101 gives the largest diversity in
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terms of actions and with the presence of large variations in camera motion, object
appearance and pose, object scale, viewpoint, cluttered background, illumination
conditions, etc.

HMDBS51 Dataset The HMDBS51 dataset [41] contains a total of about 7000 video
clips distributed in a large set of 51 action categories. Each category contains a
minimum of 101 video clips. In addition to the label of the action category, each
clip is annotated with an action label as well as a meta-label describing the property
of the clip, such as visible body parts, camera motion, camera viewpoint, number of
people involved in the action, and video quality.

ASLAN Dataset The ASLAN dataset [32] is a full testing protocol for studying
action similarity from videos. It contains 3697 action videos sampled from 1571
YouTube videos, distributed in 432 action categories. The average number of
samples per class is 8.5. Three hundred and sixteen classes contain over one sample,
meaning that the other classes only contain one sample, making the dataset more
challenging.

Sports-1M Dataset The Sports-1M dataset [29] contains 1,133,158 video URLs,
which have been annotated automatically with 487 labels. It is one of the largest
video datasets. Very diverse sports videos are included in this dataset, such as tail,
Shaolin kung fu, wing chun, etc. The dataset is extremely challenging due to very
large appearance and pose variations, significant camera motion, noisy background
motion, etc.

Figure 1.3 shows example figures of these unconstrained datasets.

4.4 RGB-D Action Video Datasets

MSR Gesture Dataset MSR-Gesture3D dataset [42] is a hand gesture dataset
containing 336 depth sequences captured by a depth camera. There are 12 categories
of hand gestures in the dataset, “bathroom,” “blue,” “finish,” “green,” “hungry,”
“milk,” “past,” “pig,” “store,” “where,” “j,” and “z.” This is a challenging dataset
due to the self-occlusion issue and visually similarity.

MSR Action3D Dataset MSR-Action3D dataset [49] consists of 20 classes of
human actions: “bend,” “draw circle,” “draw tick,” “draw x,” “forward kick,”
“forward punch,” “golf swing,” “hammer,” “hand catch,” “hand clap,” “high arm
wave,” “high throw,” “horizontal arm wave,” “jogging,” “pick up & throw,” “side
boxing,” “side kick,” “tennis serve,” “tennis swing,” and “two hand wave.” A total
of 567 depth videos are contained in the dataset which are captured using a depth
camera.

EEINT3

9% ¢ 99 ¢

MSR Action Pairs Dataset In the MSR pair action database [63], there are six
pairs of actions: pick up a box/put down a box; lift a box/place a box, push a
chair/pull a chair, wear a hat/take off a hat, put on a backpack/takeoff a backpack,
stick a poster/remove a poster. There are total 360 RGB samples and 360 depth
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Fig. 1.3 Examples of unconstrained datasets. (a) UCF sports action dataset. (b) Olympic sports
dataset. (c) Hollywood dataset. (d) Hollywood 2 dataset. (e) UCF11 dataset. (f) UCF50 dataset.
(g) UCF101 dataset. (h) HMDBS51 dataset. (i) ASLAN dataset. (j) Sports-1M dataset

action samples. Each action is performed three times by ten different subjects, where
the actions of the first five subjects are used for testing and the rest for training.

MSR Daily Activity Dataset In the MSR daily action database [93], there are 16
categories of actions: drink, eat, read book, call cell phone, write on a paper, use
laptop, use vacuum cleaner, cheer up, sit still, toss paper, play game, lie down on
sofa, walk, play guitar, stand up, sit down. All these actions are performed by 10
subjects, each performs every action twice. There are 320 RGB samples and 320
depth samples available.
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3D Online Action Dataset The 3D online action dataset [110] was designed for
three evaluation tasks: same-environment action recognition, cross-environment
action recognition, and continuous action recognition. The dataset contains human
action or human—object interaction videos captured from RGB-D sensors. It con-
tains seven action categories, such as drinking, eating, using laptop, and reading
cell phone.

CAD-60 Dataset The CAD-60 dataset [84] comprises of RGB-D action videos that
are captured using the Kinect sensor. There are 60 action videos in total, which are
performed by four subjects in five different environments including office, kitchen,
bedroom, bathroom, and living room. The dataset consists of 12 action types, such
as rinsing mouth, talking on the phone, cooking, and writing on whiteboard. Tracked
skeletons, RGB images, and depth images are provided in the dataset.

CAD-120 Dataset The CAD-120 dataset [39] comprises of 120 RGB-D action
videos of long daily activities. It is also captured using the Kinect sensor. Action
videos are performed by four subjects. The dataset consists of ten action types, such
as rinsing mouth, talking on the phone, cooking, and writing on whiteboard. Tracked
skeletons, RGB images, and depth images are provided in the dataset.

UTKinect-Action Dataset The UTKinect-action dataset [103] was captured by a
Kinect device. There are ten high-level action categories contained in the dataset,
such as making cereal, taking medicine, stacking objects, and unstacking objects.
Each high-level action can be comprised of ten sub-activities such as reaching,
moving, eating, and opening. Twelve object affordable labels are also annotated
in the dataset, including pourable, drinkable, and openable.

Figure 1.4 displays example figures of these RGB-D action datasets.

4.5 Summary

Activity recognition is an important application in the computer vision community
due to broad applications, e.g., visual surveillance. However, it is really challenging
in real-world scenarios due to many factors, such as inter-class variations and
cluttered background, which have been discussed in this chapter. Activities can
be represented by different kinds of features, for example, trajectory features, spa-
tiotemporal features, etc. These features are further classified by activity classifiers
to obtain the activity labels. In this chapter, popularly used activity features are
reviewed and a series of recent activity classifiers are also discussed. Various activity
classifiers can be adopted for different classification goals, for instance, action
recognition, human interaction recognition, action prediction, etc. We have also
reviewed a group of activity datasets, including individual action video datasets,
group action datasets, unconstrained datasets, and RGB-D action video datasets.
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Fig. 1.4 RGB-D action video datasets. (a) MSR gesture dataset. (b) MSR Action3D dataset. (c)
MSR action pairs dataset. (d) MSR daily activity dataset. (e) 3D online action dataset. (f) CAD-
60 dataset. (g) CAD-120 dataset. (h) UTKinect-action dataset. (i) UTKinect-action dataset (depth
images)
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Chapter 2
Action Recognition and Human Interaction

Yu Kong and Yun Fu

1 Introduction

Recognizing human activities is a fundamental problem in the computer vision
community and is a key step toward the automatic understanding of scenes.
Compared with single-person action [28, 32, 48], human interaction is a typical
human activity in real world and has received much attention in the community
[2, 24, 35, 41].

As previous work [3, 6, 16, 24, 50] shows, integrating co-occurrence information
from various perceptual tasks such as object recognition, object location, and
human pose estimation is helpful for disambiguating visually similar interactions
and facilitating the recognition task. However, misclassifications remain in some
challenging situations. This suggests that the co-occurrence relationships are not
expressive enough to deal with interactions containing large variations. For example,
in “boxing” interaction, the defender can perform diverse semantic actions to protect
himself, e.g. step back, crouch, or even hit back. This requires us to define all
possible action co-occurrence relationships and provide sufficient training data for
each co-occurrence case, which is computationally expensive.

In addition to that, interaction videos often contain close interactions between
multiple people with physical contact (e.g., “hug” and “fight”). This raises two
major challenges in understanding this type of interaction videos: the body part
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occlusion and the ambiguity in feature assignments (features such as interest points
are difficult to be uniquely assigned to a particular person in close interactions).
Unfortunately, the aforementioned problems are not addressed in existing interac-
tion recognition methods [2, 24, 25, 51]. Methods in [2, 43] use trackers/detectors
to roughly extract people, and assume interactions do not contain close physical
contact (e.g., “walk” and “talk”). Their performance is limited in close interactions
since the feature of one single person may contain noises from background or
the other interacting people. Feature assignment problem is avoided in [25, 51]
by treating the interaction people as a group. However, they do not utilize the
intrinsic rich context of the interaction. Interest points have shown that they can
be mainly associated with foreground moving human bodies in conventional single-
person action recognition methods [28]. However, since multiple people present in
interactions, it is difficult to accurately assign interest points to a single person,
especially in close interactions. Therefore, action representations of people are
extremely noisy and consequently degrade the recognition performance.

In this chapter, we propose two approaches to address the two challenges
mentioned above. The first approach uses semantic descriptions, interactive phrases,
to better describe complex interactions. The second approach learns discriminative
spatiotemporal patches to better separate the interacting people, in order to provide
cleaner features for interaction recognition.

2 Approach I: Learning Semantic Descriptions
for Interaction Recognition

As suggested in [28], human action categories share a set of basic action components
or action primitives. These action primitives allow us to represent a variety of
human actions. Motivated by this idea, we present interactive phrases [18, 19] to
build primitives for representing human interactions. Essentially, these phrases’
are descriptive primitives shared by all interaction classes. They describe binary
motion relationships and characterize an interaction from different angles, e.g.
motion relationships between arms, legs, torsos, etc. (Fig.2.1). Consequently, we
can simply use compositions of phrases to describe interactions with variations
rather than considering all possible action co-occurrences in an interaction class.
The significance of interactive phrases is that they incorporate rich human
knowledge about motion relationships. The use of the knowledge allows us to better
represent complex human interactions and elegantly integrate the knowledge into
discriminative models. Moreover, we treat phrases as mid-level features to bridge
the gap between low-level features and high-level interaction classes, which can
improve recognition performance. In addition, phrases provide a novel type of
contextual information, i.e. phrase context, for human interaction recognition. Since

'In this chapter, we use interactive phrases and phrases interchangeably.
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Interactive phrases

4 1 » Arms:

a chest-level moving arm and
a free swinging arm

Torsos:

A leaning forward torso and a
leaning backward torso

Legs:

A stepping forward leg and a

stepping backward leg

Fig. 2.1 The learned phrases from a video. Phrases express semantic motion relationships between
interacting people. For example, the motion relationships between people’s arms (in blue boxes),
people’s torsos (in purple boxes), or people’s legs (in green boxes). The red dotted lines indicate
that there are some relationships between the two parts and yellow arrows show the directions of
motion

phrases describe all the important details of an interaction, they provide a strong
context for each other and are more expressive than the action context used in [24].
Interactive phrases allow us to build a more descriptive model, which can be used
to recognize human interactions with large variations (e.g., interactions with partial
occlusion).

Interactive phrases and attributes of objects [11, 22, 47] and actions [28]
share some similarities. They are all descriptive primitives and introduce high-
level semantic knowledge into predictive models. The main difference is that
attributes represent unary relationships of an object while phrases describe high-
order relationships between people. In this work, we focus on binary relationships
in human interactions. In other words, attributes of objects focus on the intrinsic
properties of an object (e.g. “furry,” “metal”), while phrases provide an effective
way to describe motion relationships between interacting people. Phrases can also
be regarded as activity primitives which allow us to recognize novel interaction
classes. The proposed phrases are philosophically similar to the bag-of-words model
in which several words can be treated as a primitive to represent an action. However,
our phrases naturally incorporate rich human knowledge into our model to better
represent human interactions. Moreover, phrases describe motion relationships
between people, and are used as mid-level features, which bridge the semantic gap
between low-level features and high-level interactions.

2.1 Related Work

A considerable amount of previous work in human action recognition focuses on
recognizing the actions of a single person in videos [1, 14, 20, 32, 43]. However,
in most of the previous studies [25, 27, 29, 39, 51], interactions are recognized in
the same way as single-person actions. Specifically, interactions are represented as a
motion descriptor including all the people in a video, and then an action classifier is
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adopted to classify interactions. Although reasonable performance can be achieved,
they do not utilize the intrinsic properties of interactions, such as co-occurrence
information between interacting people. In addition, they treat people as a single
entity and do not extract the motion of each person from the group. Thus, their
method could not give the action label of each interacting person in the video
simultaneously.

Exploiting rich contextual information in human interactions can help achieve
more accurate and robust results. In [34], human interactions are recognized using
motion co-occurrence, which is achieved by coupling motion state of one person
with the other interacting person. Spatiotemporal crowd context is captured in [3]
to recognize human interactions. These two studies are limited to the coherent
behavior of individuals in time and space. In [35], spatial relationships between
individuals is captured using the structured learning technique. Individuals in
interactions can also be represented by a set of key poses, and their spatial and
temporal relationships can be captured for recognition [45]. Co-occurrence between
interaction and atomic action, and interaction and collective action is captured for
interaction recognition [2]. In these studies, the contextual information is easy to
capture since the human body size in their datasets is not very small and thus a
visual tracker for human body is performed well. However, in [26, 30, 31], the size
of human body can often be very small, making them difficult or even impossible
to track using tracker. Consequently, the contextual information between interacting
entities is difficult to extract.

Contextual information has also been effectively exploited in human—object
interactions and object—object interactions. Human—object interactions in videos
and images are performed in [16] by fusing context from object reaction, object
class, and manipulation motion into a model. Mutual context of objects and human
poses is explored in [49] for human—object interaction recognition. In [13], temporal
and casual relationships between object events are represented by the interconnected
multiple hidden Markov models. A contextual model is proposed to capture the
relative locations of objects and human poses [6]. The relationships between human
and object are modeled by joint actor—object states [12]. A discriminative model is
proposed to capture the spatial relationships (e.g., above, below) between objects
for multi-object detection [5].

However, to the best of our knowledge, few attempts have been made to utilize
high-level descriptions for human interaction recognition. A related work to ours
is [41] in which the context-free grammar is applied to describe spatiotemporal
relationships between people. The key difference between our work and theirs is
that our method integrates high-level descriptions and interaction classes into a
unified model. In addition, these descriptions (interactive phrases) are treated as
latent variables to deal with intra-class variability. Our work is also different from
[24]. Our model depends on high-level descriptions (interactive phrases), while [24]
relies on action co-occurrence. Our work decomposes action co-occurrence into
phrase co-occurrence, which provides a more effective way to represent complex
interactions.
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The descriptive power of high-level description-based methods has been demon-
strated in object recognition [9, 22, 47], object detection [42], and action recognition
[28]. These approaches utilize attributes to describe intrinsic properties of an object
(e.g. color, shape) or spatial-temporal visual characteristics of an actor (e.g., single
leg motion). Our interactive phrases are different from attributes of objects [47]
and actions [28]. In their work, attributes represent unary relationships (intrinsic
properties of an object or an action), which are directly inferred from low-level
features. By contrast, interactive phrases describe binary motion relationships and
are built based on semantic motion attributes of each interacting person.

Our work is partially inspired by Gupta and Davis [15] which used language
constructs such as “prepositions” (e.g. above, below) and “comparative adjectives”
(e.g., brighter, smaller) to express relationships between objects. The difference
is that our interactive phrases describe motion relationships of people rather than
spatial relationships of static objects. Moreover, interactive phrases are built upon
semantic motion attributes rather than being inferred from object classes.

2.2  QOur Models

Our method consists of two main components, the attribute model and the interac-
tion model (Fig.2.2). The attribute model is utilized to jointly detect all attributes
for each person, and the interaction model is applied to recognize an interaction. In
this work, we mainly focus on recognizing interactions between two people.

Attribute model Interaction model
a @, e""Ts Interactive
ay) phrases

L &

; 2 a1y . Outstretched \
..... ; J e \ |
i ay O o hands? Yes \ Interaction

L
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----- Person2 "

8 a @ 4., Stlltorsos? No
| i 2 @ ap
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iy E!

> g -.a}_(zl =" ! Stepping forward
Leg stepping™ = | am legs? Yes J @ Yes
forward? Yes ==) H "PK

Person 2 Attribute model @ No

Fig. 2.2 Framework of our interactive phrase method
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Fig. 2.3 Framework of detecting motion attributes from videos

2.2.1 Attribute Model

We utilize motion attributes to describe individual actions [28], e.g. “arm raising
up motion,” “leg stepping backward motion,” etc. In interactions, both of the two
interacting people have the same attribute vocabulary but with different values.
Those motion attributes can be inferred from low-level motion features (Fig.2.3),
for example, spatiotemporal interest points [8]. We assume there are certain
interdependencies between attribute pairs (a;, ay). For instance, attributes “arm
stretching out motion” and “leg stepping forward motion” tend to appear together
in “handshake.” The interdependencies are greatly helpful in dealing with incorrect
attributes caused by motion ambiguity and partial occlusion.

We adopt a tree-structured undirected graph [21] G, = (V,, &,) to represent the
configurations of attributes. A vertex a,, € V, (m = 1,..., M) corresponds to the
mth attribute and an edge (a;,ax) € &, corresponds to the dependency between
the two attributes. We use a discriminative function g; : X x A — R to score
each training example (x,a): g1 (x,a) = AT®(x,a), where x denotes the feature
of a person in an interaction and a = (ay,...,ay) is a binary attribute vector.
ap, = 0 means the mth attribute is absent and a,, = 1 denotes the attribute is present.
We define AT®(x, a) as a summation of potential functions:

Aoxa)= Y Aldixa)+ Y. AL,daa ). 2.1
a4€V, (aj.ar)€Eq
where A = {4,444} is model parameter. In our work, graph structure &, is

learned by the Chow-Liu algorithm [4]. The potential functions in Eq.(2.1) are
summarized as follows.

Unary potential Ajjcpl (x, a;) provides the score for an attribute a; and is used to
indicate the presence of a; given the motion feature x. Parameter 4, is a template
for an attribute a;. The feature function ¢,(x, a;) models the agreement between
observation x and motion attribute a;, and is given by

¢1(x.a;) = 8(aj = u) - Yo (X). (2.2)
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Here, 8(-) denotes an indicator function, u € A denotes a state of the attribute a;,
where A is the attribute space. Instead of keeping ¥,(x) as a high-dimensional
feature vector, we represent it as the score output of a linear SVM trained with
attribute ;. Similar tricks have been used in [5, 47].

Pairwise potential Aziakqﬁz (aj, ar) captures the co-occurrence of a pair of
attributes a; and ay, for example, the co-occurrence relationships between attributes
“torso bending motion” and “still leg” in “bow.” Parameter A ., is a 4-dimensional
vector representing the weights for all configurations of a pair of attributes. The
feature function ¢, (a;, ar) models the co-occurrence relationships of two attributes.

We define ¢, (a;, ai) for a co-occurrence (u, v) as

$a(aj, ar) = 8(a; = u) - 8(ax = v). (2.3)

2.2.2 Interaction Model

Interactive phrases encode human knowledge about motion relationships between
people. The phrases are built on attributes of two interacting people and utilized
to describe their co-occurrence relationships. Let p; be the jth phrase associated
with two people’s attributes a;(1) and aj(2).* In the interaction model, we use ) to
denote the attribute of the ith person that links to the jth phrase. For example, phrase
p; “cooperative interaction” is associated with two people’s attributes aj1) and a;()
“friendly motion.” Note that a;; and a(; could be the same attribute but link to
different phrases. We also assume that there are certain interdependencies between
some phrase pairs (p;, px). For example, phrases “interaction between stretching out
hands” and “interaction between stepping forward legs” are highly correlated in
“handshake” (Fig.2.4).

We employ an undirected graph G, = (V,,&,) to encode the configurations
of phrases. A vertex pj € V, (j = 1,...,K) corresponds to the jth phrase and
an edge (pj,pr) € &, corresponds to the dependency between the two phrases.
Note that intra-class variability leads to different interactive phrase values in certain
interaction classes. For instance, in “handshake,” some examples have interactive
phrase p; “interaction between stepping forward legs” but some do not. In addition,
labeling attributes is a subjective process and thus would influence the values of
interactive phrases. We deal with this problem by treating phrases as latent variables
and formulating the classification problem based on the latent SVM framework
[10, 46].

Given training examples {X", y™}V_  we are interested in learning a discrim-
inative function fy(X,4,y) = max, W' ®(X,a,p,y). Here X = (x1,Xp) is raw
features of two interacting people, a = (a;,a;) denotes two people’s attributes,
p = (p1,-..,pk) is a binary vector of phrases, and y is an interaction class,

Please refer to the supplemental material to see details about the connectivity patterns of
interactive phrases and attributes.
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Fig. 2.4 The unary, pairwise, and global interaction potentials in the interaction model

where p, € P and y € ). To obtain a; and a,, we run the attribute model twice
with corresponding features. We define w! ®(X, 4, p, y) as a summation of potential
functions: (see Fig.2.4)

2
WORA DY) =) D W ds(pain) + Y Wi da(p.y)

ijVp i=1 ijVp
T T S
+ Y W bs(p i) + Wi de(X, ), (2.4)
(pj-Pr)EEY
where w = {ijaj(i),ijpk,ijy, w;} is model parameter. Similar to the attribute

model, we use the Chow-Liu algorithm [4] to learn graph structure &, in the
interaction model. The potential functions are enumerated as follows.

Unary potential W;;aj " ¢3(pj, aj;) models the semantic relationships between
an interactive phrase p; and its associated attribute a;;. Each interactive phrase in
this chapter is associated with one attribute of each interacting person. Parameter
Wpai, 18 @ 4-dimensional vector encoding the weights for all configurations between
a phrase and an attribute, and feature function ¢3(p;, aj;)) models the agreement
between them. The feature function ¢3(p;, gj;)) for a configuration (h, u), where
h e Pandu € A, is given by

$3(pj. aj)) = 8(p; = h) - 8(aj) = u). (2.5)

Unary potential ngyqfu (pj»y) indicates that how likely the interaction class is y
and the jth interactive phrase is p;. Feature function ¢4(p;, y) is used to encode the
semantic relationships between an interaction class y and a phrase p;. We define the
feature function for a relationship (%, b), where b € ), as

¢4(pj,y) = 8(pj = h) - 8(y = b). (2.6)
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Parameter w,,, indicates the weight encoding valid relationships between a phrase
p; and an interaction class y.

Pairwise potential W[fjpkqbs(pj,pk) captures the co-occurrence of a pair of
interactive phrases (pj,px). Parameter w,, is a 4-dimensional vector denoting
the weights of all possible configurations of a pair of phrases. Feature function
¢s(p;j, pr) in the pairwise potential captures the co-occurrence relationships between

two phrases. We define ¢s(p;, p) for a relationship (4, i) as
és5(pj,pr) = 8(pj = h1) - 8(prx = ha). 2.7

Global interaction potential w;(p() (X, y) provides the score measuring how well

the raw feature X matches the interaction class template wy,. The feature function
¢6(X, y) models the dependence between an interaction class with its corresponding
video evidence. The feature function for interaction class y = b is defined as

d6(X.y) = 8(y =Db) - X. (2.8)

2.3 Learning and Inference

Parameter learning in our work consists of two steps: learning parameters of the
attribute model and learning parameters of the interaction model.

The max-margin conditional random field formulation [44] is adopted to train
the attribute model given training examples D, = {x®, a}e .

1
in =|A|>+C ;
min Z[A [ + Xn:E
s.t. AT, a™) — ATd(x™, a) > A(a,a™) —&,, Vn, Va, (2.9)

where C is the trade-off parameter similar to that in SVMs, £, is the slack variable
for the nth training example to handle the case of soft margin, and A(a,a™) is the
0-1 loss function.

Next, the latent SVM formulation [10, 46] is employed to train the parameter w
of the interaction model given training examples D = {X™ a® yWINV_ " where
amn = (agn),a(;) ) is the attributes of interacting people inferred by the trained
attribute model:

1 2
min —||w||* + C
min I+ €06
s.t. max w! ®E™, 4" p,y™)
P

—maxw! &, a" p,y) = Ay, y™) — &, Vn, Vy. (2.10)
P
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This optimization problem can be solved by the coordinate descent [10]. We first
randomly initialize the model parameter w and then learn the parameter w by
iterating the following two steps:

1. Holding w fixed, find the best interactive phrase configuration p’ such that
wldE™, a® p,y™) is maximized.
2. Holding p fixed, optimize parameter w by solving the problem [Eq. (2.10)].

In testing, our aim is to infer the interaction class of an unknown example:
y* = argmaxcy fw(X,4,y). However, the attributes a of two interacting peo-
ple are unknown during testing. We solve this problem by finding the best attribute
configuration a; for the ith person by running Belief Propagation (BP) in the attribute
model: a;, = arg maxaiATdD(x,-,ai). Then attributes a = (a;, a,) is derived and
utilized as the input for inferring the interaction class y. BP is also applied to find the
best interactive phrase configuration p in the interaction model: f (X, a,y) = max,
wid(k,4a,p.y).

2.4 Experiments
2.4.1 Spatial-Temporal Features

The spatial-temporal interest points [8] are detected from videos of human inter-
action. The spatial-temporal volumes around the detected points are extracted and
represented by gradient descriptors. The dimensionality of gradient descriptors is
reduced by PCA. All descriptors are quantized to 1000 visual-words using the
k-means algorithm. Then videos are represented by histograms of visual-words.

2.4.2 Dataset

We compile a new dataset, BIT-Interaction dataset, to evaluate our method (see
Fig.2.5) and add a list of 23 interactive phrases based on 17 attributes for all the
videos. (Please refer to the supplemental material for details.) Videos are captured in
realistic scenes with cluttered background and bounding boxes of interacting people
are annotated. People in each interaction class behave totally different and thus
have diverse motion attributes (e.g., in some “boxing” videos, people step forward
but in some videos they do not). This dataset consists of eight classes of human

Fig. 2.5 Example frames of BIT-interaction dataset. This dataset consists of eight classes of
human interactions: bow, boxing, handshake, high-five, hug, kick, pat, and push
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interactions (bow, boxing, handshake, high-five, hug, kick, pat, and push), with 50
videos per class. The dataset contains a varied set of challenges including variations
in subject appearance, scale, illumination condition, and viewpoint. In addition, in
most of the videos, actors are partially occluded by body parts of the other person,
poles, bridges, pedestrians, etc. Moreover, in some videos, interacting people have
overlapping motion patterns with some irrelevant moving objects in the background
(e.g., cars, pedestrians). We randomly choose 272 videos to train the interaction
model and use the remaining 128 videos for testing. One hundred and forty-four
videos in the training data are utilized to train the attribute model.

2.4.3 Results

We conduct three experiments to evaluate our method. First, we test the proposed
method on the BIT-Interaction dataset and compare our method with action context
based method [23]. Next, we evaluate the effectiveness of components in the
proposed method.

In the first experiment, we test the proposed method on BIT-Interaction dataset.
The confusion matrix is shown in Fig. 2.6a. Our method achieves 85.16 % accuracy
in classifying human interactions. Some of the classification examples are displayed
in Fig.2.6b. Our method can recognize human interactions in some challenging
situations, e.g. partially occlusion and background clutter. This is mainly due to
the effect of interdependencies between interactive phrases. In such challenging
scenarios, the interdependencies provide a strong context for the incorrectly inferred
phrases and thus make them better fit in the context. As a result, human interaction
in challenging situations can be correctly recognized. As we show in the last row
in Fig. 2.6b, most of the misclassifications are due to visually similar movements in
different interaction classes (e.g., “boxing” and “pat”) and significant occlusion.

To further investigate the effect of the interdependencies between interactive
phrases, we remove the interdependencies ¢4(p;, px) from the full model and

boxing | 0.

handshake | 0.

high-five | 0. 0.00
hug| 000 0.00 0.00
kick| 0.00 0.06 0.00 o. 0.00

pat| 0.00 0.13 0.00 0.06 0.00 O.f

push| 000 0.06 000 0.06 0.0 O.

boy, M iy,
W P0x, Pany "oh. .
"ng ”Sha,ref/veg

Fig. 2.6 Results of our method on BIT-interaction dataset. In (b), correctly recognized examples
are in the first two rows and misclassifications are in the last row. (a) Confusion matrix.
(b) Classification examples of our method
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_— (a) ' (b, (c)
Phrase biw legs (id: 13) Phrase biw legs (id: 15) Phrase biw arms (id: 7) Phrase b/'w arms (1d: 4)
Full medel: y Full model: v Full model: v Full model: !
No-1PC model: X No-1PC model: X No-1PC model: X No-1PC model: X

Fig. 2.7 Classification examples in BIT-interaction dataset with occlusion and background noise.
Yellow boxes denote occlusion and red boxes represent background noise. Please refer to
supplemental material for the meaning of phrases according to their id (a) Phrase b/w legs (id: 13)
(b) Phrase b/w legs (id: 15) (c) Phrase b/w arms (id: 7) (d) Phrase b/w arms (id: 4)

1 Interaction s Interactive phrases p; id
2 7 b/w a bending torso and a still torso 17
2 bow b/w still arms 1
4 o b/w a chest-level moving arm and a free swinging arm 2
B, b/w a chest-level moving arm and a leaning backward torso 10
8 i boxing b/w a stepping forward leg and a stepping backward leg 13
z b/w a chest-level moving arm and a free swinging arm 2
4
1 b/w a bending torso and a still torso 17
§ 2 s handshake b/w outstretched hands 3
g" b/w a leaning forward torso and a leaning backward torso 18
'E,:; 2 b/w a stepping forward leg and a still leg 15
% high-five b/w raising up arms 4
17
e . 3 b/w outstretched hands 3
E - l b/w embracing arms 5
% o hug b/w a bending torso and a still torso 17
i b/w stepping forward legs 14
" a b/w still legs 12
® kick b/w leaning backward torsos 20
2 ‘w a kicking leg and a stepping backward leg
= | b/w a kicking I d ing backward I 16
7 | b/w a stepping forward leg and a still leg 15
= il a pat b/w a leaning forward torso and a still torso 21
3 d b/w still legs 12
b/w two chest-level moving arms and a free swinging arm 7
%Wj@ﬁ push b/w two chest-level moving arms and a leaning backward torso 11
L) b/w a leaning forward torso and a leaning backward torso 18

Fig. 2.8 (Left) The learned importance of different interactive phrases in eight interaction classes.
(Right) The learned top three important interactive phrases for eight interaction classes, where
phrases of significant importance (their weights are at least 10 times greater than the others) are in
blue and phrases never showed in the training data of an interaction class are in red. “b/w” is short
for the word “between”

compare the no-IPC model [the full model without ¢4(p;, px)] with the full model.
Results in Fig.2.7 demonstrate that, without the interdependencies, the no-IPC
model cannot accurately infer phrases from noisy motion attributes by the feature
function ¢3(p;, a;i;)). For example, in Fig.2.7a, b, the phrases of occluded legs
cannot be detected. However, the phrases of legs play key roles in recognizing
“boxing” and “pat” [see Fig. 2.8 (right)]. Without the key phrases, the interactions
cannot be recognized. By comparison, the full model can use the feature function
¢4(pj, pr) to learn the interdependencies of a pair of interactive phrases from training
data. Once some phrases cannot be inferred from the corresponding attributes, the
interdependencies will play a strong prior on the phrases and thus facilitate the
recognition task.
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Table 2.1 Accuracies of our method and
action co-occurrence based method [23]

Methods | Lan et al. [23] | Our method
Accuracy | 82.21% 85.16 %

Table 2.2 Comparison results of accuracy (%) on the BIT-interaction dataset

Methods Overall | Bow | Boxing | Handshake | High-five | Hug | Kick | Pat | Push
Bag-of-words 70.31 | 81.25|75 50 75 81.25/68.75/62.5 | 68.75
No-phrase method | 73.43 | 81.25|68.75 | 68.75 81.25 68.75|81.2562.5 |75

No-IPC method |80.47 |81.25/68.75 |81.25 87.5 81.25|81.25|75 87.5
No-AC method 81.25 |81.25|/62.5 81.25 87.5 93.75|81.25|81.25| 81.25
Our method 85.16 |81.25/81.25 |81.25 93.75 93.75|81.25|81.25| 87.5

Interactive phrases have different importance to an interaction class. We illustrate
the learned importance of interactive phrases to eight interaction classes in Fig. 2.8
(left). This figure demonstrates that our model learns some key interactive phrases
to an interaction class (e.g., “interaction between embracing arms” in ‘“hug”
interaction). As long as these key interactive phrases are correctly detected, an
interaction can be easily recognized. The learned top three key interactive phrases
in all interaction classes are displayed in Fig. 2.8 (right).

We also compare our description-based method with action co-occurrence based
method [23] for human interaction recognition. To conduct a fair comparison, we
use the same bag-of-words motion representation for the two methods. Results
in Table 2.1 indicate that our method outperforms the action co-occurrence based
method. The underlying reason is that our method decomposes action co-occurrence
relationships into a set of phrase co-occurrence relationships. The compositions of
binary phrase variables allow us to represent interaction classes with large variations
and thus make our method more expressive than [23].

Contributions of Components In this experiment, we evaluate the contributions of
components in the proposed method, including the interdependencies in the attribute
model and the interaction model, respectively, and the interactive phrases. We
remove these components from our method, respectively, and obtain three different
methods: the method without connections between attributes (no-AC method), the
method without connections between interactive phrases (no-IPC method), and the
interaction model without phrases (no-phrase method). Our method is compared
with these three methods as well as the baseline bag-of-words representation with a
linear SVM classifier.

Table 2.2 indicates that our method outperforms all the baseline methods.
Compared with the baseline bag-of-words method, the performance gain achieved
by our method is significant due to the use of high-level knowledge of human
interaction. Our method significantly outperforms the no-phrase method, which
demonstrates the effectiveness of the proposed interactive phrases. Our method
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hug | 0.00

kick| 0.00

point| 0.00

punch| 0.00

push| 0.00

“a"dmg,?g kick  Poing  Puncy, Push

Fig. 2.9 Results of our method on UT-interaction dataset. In (b), correctly recognized examples
are in the first three columns and misclassifications are in the last column. (a) Confusion matrix.
(b) Classification examples of our method

uses interactive phrases to better represent complex human interactions and thus
achieves superior results. As expected, the results of the proposed method are
higher than the no-IPC method and the no-AC method, which emphasize the
importance of the interdependencies between interactive phrases and attributes,
respectively. With the interdependencies, the proposed method can capture the
co-occurrences of interactive phrases and thus reduces the number of incorrect
interactive phrases. The interdependencies between individual attributes enable
to capture the important relationships between individual attributes and reduce
inaccurate attribute labels caused by noisy features and subjective attribute labeling.
With the interdependencies in both attribute pairs and interactive phrase pairs, our
method can recognize some challenging interaction videos and thus achieves higher
results.

2.5 Conclusion

We have proposed interactive phrases, semantic descriptions of motion relationships
between people, for human interaction recognition. Interactive phrases incorporate
rich human knowledge and thus provide an effective way to represent complex
interactions. We have presented a novel method to encode interactive phrases, which
is composed of the attribute model and the interaction model. Extensive experiments
have been conducted and showed the effectiveness of the proposed method.

The attributes and phrases rely on expert knowledge and are dataset specific.
Scaling up attributes and phrases to general datasets remains an open problem.
Possible solutions are: (1) cross-dataset techniques and (2) data-driven attributes.
Structure learning techniques can also be adopted to adaptively determine the
optimal connectivity pattern between attributes and phrases in new datasets. We plan
to explore these in future work.
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Patch-aware model Kick

: IR

Fig. 2.10 Example of the inference results of our patch-aware model. Our model recognizes
human interaction and discriminatively learns the supporting regions for each interacting people

3 Approach II: Human Interaction Recognition by Learning
Discriminative Spatiotemporal Patches

In this chapter, we propose a novel patch-aware model [17] for solving the afore-
mentioned problems in close human interaction recognition from videos (Fig. 2.10).
Our model learns discriminative supporting regions for each interacting person,
which accurately separate the target person from background. The learned sup-
porting regions also indicate the feature-to-person assignments, which consequently
help better represent individual actions. In addition, each interaction class associates
with a variety of supporting region configurations, thereby providing rich and robust
representations for different occlusion cases.

We propose a rich representation for close interaction recognition. Specifically,
we introduce a set of binary latent variables for 3D patches indicating which subject
the patch is associated with (background, person 1, or person 2), and encourage
consistency of the latent variables across all the training data. The appearance and
structural information of patches is jointly captured in our model, which captures
the motion and pose variations of interacting people. To address the challenge of an
exponentially large label space, we use a structured output framework, employing
a latent SVM [10]. During training, the model learns which patterns belong to
the foreground and background, allowing for better labeling of body parts and
identification of individual people. Results show that the learned supporting patches
significantly facilitate the recognition task.

3.1 Interaction Representation

Our approach takes advantage of 3D spatiotemporal local features to jointly
recognize interaction and segment people in the interaction. Given a video, a visual
tracker is applied to extract interacting people from each other, and also differentiate
them from the background at a patch-level. In each bounding box, spatiotemporal
interest points [8] and tracklet [36] are computed within each 3D patch, and
described using the bag-of-words model [8, 25, 28] (Fig.2.11). Spatiotemporal
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Fig. 2.11 Tllustration of feature representation. We extract both interest points and tracklet from
3D patches

patches are obtained by decomposing a video of size R x C x T into a set of non-
overlapping spatiotemporal 3D patches, each of which is of size » x ¢ x t. Similar to
action representation based on histograms of video words [8, 28, 37], we describe
each patch by the histogram of video words within the patch.

Noted that the detected interest points and tracklet are mainly associated with
salient regions in human body; few of them are associated with background. This
results in an inexpressive representation for background. Our aim in this chapter is to
extract each interacting people from the interactions and thus the background must
be described. In this chapter, we augment virtual video words (VVWSs) to describe
background.

The idea of VVWs is to build a discriminative feature for background so that
background and foreground can be well differentiated. Consider the features of
patches as data points in a high-dimensional space. Then patch features associated
with foreground are distributed subjecting to an unknown probability. We would like
to define some virtual data points for background and make them as far as possible
from those foreground data points in order to make these two-class data points well
separated. Since we use linear kernel in the model, the best choice for virtual data
points is the one that can be linearly separated from foreground data points. In our
work, we use origin point for virtual data points, i.e. all the bins in the histogram of
a 3D patch which have no video words in it are set to 0.

3.2 Patch-Aware Model

Given the representation of an interaction video, our goal is to determine the inter-
action class (e.g., “push”) as well as infer supporting regions for each interacting
person. These 3D regions in this work can be associated with background or one of
the interacting people.

Suppose we are given N training samples {x?,y?}¥  where x € R? denotes
the video feature and y € ) is the interaction class. Our purpose is to learn a
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discriminative function fi : X — y, which infers the interaction class for an
unknown interaction video. To model the supporting regions for each interacting
person, we introduce a set of auxiliary binary latent variables {hj}j}‘i L€ H (e
{0, 1}), each of which associates with one patch. #; = 0 denotes that the jth patch is
associated with the background and #; = 1 means it is with foreground. Note that
intra-class variability leads to different patch configurations in certain interaction
classes. For instance, in “handshake,” some people would like to pat the other people
while shaking hands with the people but some do not like that. We solve this problem
by treating regions as latent variables and inferring the most probable states of latent
variables in training. An undirected graph G = (V, £) is employed to encode the

configurations of these patches. A vertex h; € V (j = 1,..., M) corresponds to the
Jjth patch and an edge (/;, i) € £ corresponds to the dependency between the two
patches.

We define the discriminative function as
f(x; w) = arg max [mlfle(x, h,y; w):| , (2.11)
Y

where h is the vector of all latent variables. The scoring function F(x,h,y; w) is
used to measure the compatibility between the video data x, the interaction class y
and the latent patch labels h.

We model the scoring function F(-) as a linear function F(x,h,y;w) =
(w, ®(x,h,y)) with w being model parameter and ®(x,h,y) being a feature
vector. Specifically, the scoring function F(-) is defined as the summation of four
components:

Fxhy;w) =Y a"y(x. .9 + Y BT0(x;, hy)

JEV JEV
+ > ynhy.y) + ATr(x. ), (2.12)
JEV

where w = {«, 8, ¥, A} is the model parameter, X; is the feature extracted from the
Jjth patch.

Class-Specific Patch Model o™y (x;, h;,y) models the agreement between the
observed patch feature x;, the patch label /; and the interaction class y. The definition
of the feature vector ¥ (x;, h;, y) is given by

V(x;, ki y) =10y = a) - 1(; = b) - f(x)), (2.13)

where f(x;) denotes the local feature of the jth patch and 1(-) is an indicator function.
In our work, f(x;) encodes both appearance information and structural information
of the jth patch: f(x;) = [f.(X;).fs(X;)]. The appearance information f,(x;) is the
distribution of words in the patch, and the structural information f;(x;) is the location
of the patch. To compute the structural feature f;(X;), we discretize the bounding box
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into M patches and the spatial location feature of a patch x; can be represented as a
vector of all zeros with a single 1 for the bin occupied by x;. We apply a template o
of size (D + M) x H x Y on the feature function ¥ (x;, h;, y) to weigh the different
importance of elements in the feature function, where Y is the number of interaction
classes, and H is the number of patch labels. Each entry in oy, can be interpreted
as, for patch of state 4, how much the proposed model prefers to see a discriminative
word in the mth bin when the codeword is ¢ and the interaction label is y. The class-
specific patch model aTW(xj, h;, y) can be regarded as a linear classifier and scores
the feature vector v (x;, A, y).

The model encodes class-specific discriminative patch information which is of
great importance in recognition. Note that the patch label % is unobserved during
training and the feature function defined above models the implicit relationship
between an interaction class and supporting regions. During training, the model
automatically “aware” the supporting regions for an interaction class by maximizing
the score F(x, h, y; w).

Global Patch Model BT6(x;, h;) measures the compatibility between the observed
patch feature x; and the patch label ;. We define the feature function 0(x;, ;) as

0(x;, hj) = 1(h; = b) - f(x)), (2.14)

where f(x;) is the local feature of the jth patch used in the class-specific patch
model. This model encodes shared patch information across interaction classes. It
is a standard linear classifier trained to infer the label (0 or 1) of the jth patch given
patch feature x;. The parameter § is a template, which can be considered as the
parameter of a binary linear SVM trained with data {x;, hj}jﬂil.

Essentially, the global patch model encodes the shared patch information across
interaction classes. For example, since we use a tracker to obtain a bounding box
of an interacting person, this person tends to appear in the middle of the box and
thus the patches in the middle of the box are likely to be labeled as foreground. This
information is shared across all interaction classes and can be elegantly encoded by
our global patch model.

Class-Specific Structure Model ijr)(h-, y) encodes the structural information of
patches in one interaction class. Intuitively, human poses are different in various
interaction classes. Although this information are unobserved in training samples,
we treat them as latent variables so that they can be automatically discovered during
model training. The class-specific structure model is given by

n(h,y) = 1(h; = b) - 1(y = a). (2.15)

Clearly, the label of a patch is related to its location. Therefore, we use a set of
untied weights {y}jj‘il for the jth patch, each of which is of size H x Y, where M is
the number of patches. The class-specific structure model expresses the prior that,
without observing any feature, given an interaction class a, which state of the jth
patch is likely to be.
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The class-specific structure model expresses the idea that, without observing any
low-level feature, given an interaction class a, which state of the jth patch is likely
to be. The model shows its preference by scoring the feature vector n(h;, y) using a
weight vector y;. Since the feature vector is a 0 — 1 vector, if an entry in y;(b, a) is
positive, the model encourages labeling the jth patch as b when current interaction
class is a.

Global Interaction Model ATz (x,y) is used to differentiate different interaction
classes. We define this feature vector as

7 (Xp,y) = 1(y = a) - xo, (2.16)

where x, € R? is a feature vector extracted from the whole action video. Here we
use the bag-of-words representation for the whole video. This potential function is
essentially a standard linear model for interaction recognition if other components
are not considered. If other potential functions in Eq. (2.12) are ignored, and only the
global interaction potential function is considered, the parameter A can be learned
by a standard multi-class linear SVM.

Discussion The proposed patch-aware model is specifically designed for interac-
tion recognition with close physical contact. Compared with existing interaction
recognition methods [2, 3, 24, 33, 37-39, 45, 51], our model accounts for motion
at a fine-grain patch level using the three components, the class-specific patch
component, the global patch component, and the class-specific structure component.
These three components model the appearance and structural information of local
3D patches and allow us to accurately separate interacting people at patch-level. To
our best knowledge, our work is the first one that provides supporting patches for
close interaction recognition, which can be used to separate interacting people.

3.3 Model Learning and Testing

Learning The latent SVM formulation is employed to train our model given the
training examples D = {x™, y™}N_.:

LT
in — C " n 2.17
QggWH+ %(§+0) (2.17)
s.L. max w o™, hyw, y") — max wldx™ . h,y) (2.18)

= Ay, y") — £, V0, V,
(o, " by, y) < 0y, Vn, ¥y, (2.19)
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where w denotes model parameter, £ and o are slack variables that allow for
soft margin, and C is the soft-margin parameter. A(y,y"™) represents the 0-1
loss function. /J,(hy(n),y(”),hy,y) in Constraint (2.19) enforces the similarity over
latent regions for training videos. Our assumption is that, for videos in the same
category, they are likely to have the same latent variable values. We define

1y, Y™y, y) as

1
wlbyo. ™ By y) = d(byo. ) - 10y = ™), (2.20)

where d(:,-) computes the Hamming distance between the two vectors. The opti-
mization problem (2.17)—(2.19) can be solved using the latent SVM framework [10].

Computing Subgradient The above optimization problem can be efficiently
solved by the non-convex cutting plane algorithm [7]. The key idea of this algorithm
is that it iteratively approximates the objective function by increasingly adding new
cutting planes to the quadratic approximation. The two major steps of the algorithm
are to compute the empirical loss R(w) = > (£, + 0,,) and the subgradient g—f;.

The computation of a subgradient is relatively straightforward, assuming the
inference over h can be done. Denote the empirical loss R(w) as R(w) = > R"(W),
then the subgradient can be computed by

aR
i o(x", h*, y*) — o, 0, y™), (2.21)

where (h*, y*) and h’ are computed by
(h*,y*) = arg max wiox™ h,y) + A6™,y), (2.22)

h' = argmax w'@(x" . b, ) — p(hye, . b y). (2.23)

Testing Given an unknown interaction video, we assume that the interaction region
in the video is known. Our aim is to infer the optimal interaction label y* and the
optimal configurations of 3D patches h*:

max max wlid(x, h,y). (2.24)
y

To solve the above optimization problem, we enumerate all possible interaction
classes y € {J} and solve the following optimization problem:

h} = arg max wlid(x,h,y),Vy e ). (2.25)

Here, the latent variables h are connected by a lattice. In this work, we adopt loopy
belief propagation to solve the above optimization problem.



2 Action Recognition and Human Interaction 43

Given the latent variable vector h;, we then compute the score fy(x,h},y) =
wld(x, h;f, y) for all interaction classes y € ) and pick up the optimal interaction
class y* which maximizes the score F(x, h, y; w).

3.4 Experiments
34.1 Datasets

We test our method on the UT-Interaction dataset [40]. UT dataset consists of six
classes of human interactions: handshake, hug, kick, point, punch, and push. The
UT dataset was recorded for the human activity recognition contest (SDHA 2010)
[40], and it has been used by several state-of-the-art action recognition methods
[37, 39, 51].

3.4.2 Experiment Settings

We extract 300 interest points [8] from a video on the UT dataset. Gradient
descriptors are utilized to characterize the motion around interest points. Principal
component analysis algorithm is applied to reduce the dimensionality of descriptors
to 100 and build a visual word vocabulary of size 1000. We use a visual tracker to
obtain a bounding box for each interacting people. Then a 3D volume computed
by stacking bounding boxes along temporal axis is split into non-overlapping
spatiotemporal cuboids of size 15x 15x 15. We use the histogram of the video words
in a 3D patch as the patch feature. We adopt the leave-one-out training strategy on
the UT dataset.

3.4.3 Results on UT-Interaction Dataset

On UT dataset, we first evaluate the recognition accuracy of our method and report
supporting region results. Then we compare with state-of-the-art methods [19, 24,
28,37, 51].

Recognition Accuracy We test our method on UT dataset and show the confusion
matrix in Fig. 2.12. Our method achieves 88.33 % recognition accuracy. Confusions
are mainly due to visually similar movements in two classes (e.g., “push” and
“punch”) and the influence of moving objects in the background. Classification
examples are illustrated in Fig. 2.12.

Equation (2.15) defines a class-specific structure model for all classes. It would
be interesting to investigate the performance of a shared pose prior. We replace the
class-specific structure prior in Eq. (2.15) with a shared one which is defined as
n(hj,y) = 1(h; = b). Results are shown in Table 2.3. The accuracy difference
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Fig. 2.12 Confusion matrix and classification examples of our method on UT dataset. (a)
Confusion matrix. (b) Predicted examples

Table 2.3 Accuracies of
different pose prior on UT
dataset

Pose prior | Shared | Class-specific
Accuracy | 83.33% |88.33%

a b c d e f

Fig. 2.13 The learned supporting regions on the UT dataset. (a) Handshake. (b) Hug. (¢) Kick.
(d) Point. (e) Punch. (f) Push

between the two priors is 5 %. This is mainly due to that motion variations in
individual actions are significant. The model with class-specific prior is able to learn
pose under different classes, and benefits the recognition task.

Supporting Regions The learned supporting regions on the UT dataset are shown
in Fig.2.13. Our model can accurately discover supporting regions of interacting
people. This is achieved by finding the most discriminative regions (e.g. hand and
leg) that support an interaction class. Note that some videos in the UT dataset have
background motion, e.g.,“point,” which introduces noise in the video. However,
our model uses the structure prior component in Eq.(2.15) and the consistency
Constraint (2.19) to enforce a strong structure prior information on the patches, and
thus can determine which patches are unlikely to be associated with foreground.
This leads to accurate patch labeling results. Some of the patch labels are incorrect
mainly due to intra-class variations. People in an interaction class may behave
differently according to their personal habits. This increases the difficulty of learning
class-specific pose prior.

Comparison Results We evaluate the value of components in the proposed model,
including the global interaction model, the structure prior model, and the patch
models. We remove these from our patch-aware model respectively, and obtain
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Table 2.4 Recognition accuracy (%) of methods on the UT dataset

Methods Function Handshake | Hug | Kick | Point | Punch | Push | Overall
Bag-of-words Only rec. 70 70 80 | 90 |70 70 |75
No-GI method Rec. and seg. | 20 30 40 | 30 |10 20 |25
No-SP method Rec. and seg. | 70 80 70 | 70 |80 80 |75
No-CGP method Rec. and seg. | 80 90 70 | 90 |80 80 |81.67
Liu et al. [28] Only rec. 60 70 | 100 80 |60 70 73.33
Lan et al. [24] Only rec. 70 80 80 | 80 |90 70 | 7833
Yu et al. [51] Only rec. 100 65 75 | 100 |85 75 8333
Ryoo and Aggarwal [37] | Only rec. 80 90 90 | 80 |90 80 |85
Our method Rec. and seg. | 90 90 80 | 100 |80 90 | 88.33

three different methods: the no-GI method that removes global interaction potential
AT (x,y), the no-SP method that removes the structure prior potential ijn(h-, y),
and the no-CGP method which removes both class-specific and global patch model
oy (x;, hj,y) and BTO(x;, h;) from the full model.

We compare our full model with previous methods [24, 28, 37, 51], the no-GI
method, no-SP method, and no-CGP method, and adopt a bag-of-words representa-
tion with a linear SVM classifier as the baseline. Results in Table 2.4 show that our
method outperforms all the comparison methods. It should be noted that our method
learns supporting regions, which can be used to separate people while the methods
in [24, 28, 37, 51] cannot achieve this goal.

Results in Table 2.4 show that our method outperforms [24, 28, 37, 51]. The
baseline bag-of-words method simply uses low-level features for recognition.
By comparison, our method treats cuboid variables as mid-level features and
utilize them to describe local motion information. With rich representation of
interaction, our method achieves superior performance. Our method outperforms
the method proposed in [37]. Their method uses structural information between
interest points to aid recognition. In this work, we adopt a different scheme to
encode structure information of interest points. The information is encoded by
the location of spatiotemporal cuboids which contains the interest points. Besides,
the learned supporting regions in our model can also be used to separate people
in interactions while their method cannot. Lan et al. [24] utilized action context
to recognize interactions. We argue that action context may not able to capture
complex action co-occurrence since individual motion could be totally different in
an interaction class. Thus modeling the action context may not capture significant
motion variations in individual actions. We infer an interaction based on the mid-
level patch features. The mid-level features we build can provide detailed regional
motion information of interactions and thus improve recognition results. Compared
with [51], our method learns supporting regions to separate people while [51] treats
interacting people as a group and do not consider separation.
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3.5 Summary

We have proposed a novel model for jointly recognizing human interaction and
segmenting people in the interaction. Our model is built upon the latent structural
support vector machine in which the patches are treated as latent variables. The
consistency of latent variables is encouraged across all the training data. The learned
patch labels indicate the supporting regions for interacting people, and thus solve the
problems of feature assignment and occlusion. Experiments show that our method
achieves promising recognition results and can segment people at patch level during
an interaction, even in a close interaction.
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Chapter 3
Subspace Learning for Action Recognition

Chengcheng Jia and Yun Fu

1 Introduction

Recently human action recognition [4, 5, 8—10] has aroused widely attention for
public surveillance system, elder service system, etc. However, the data captured by
webcams are often high dimensional and usually contain noise and redundancy. So
it is crucial to extract the meaning information by mitigating uncertainties for higher
accuracy of recognition task. From this motivation, there are two topics we propose
in this chapter: (1) select key frames from a video to remove noise and redundancy
and (2) learn a subspace for dimensional reduction to reduce time complexity.

Sparse canonical correlation analysis (SCCA) selects some important variables
by setting some coefficients zero, which is generally used for high-dimensional
genetical selection [2, 12, 15, 20]. Inspired by this concept, we propose to employ
the dual shrinking method for dimensional reduction tasks on the high-dimensional
visual data, such as human action video, face with different factors and some textual
data. We aim to select some key frames/variates from the original high-dimensional
data while containing most useful information for recognition task. Nevertheless,
there are three limitations with the SCCA framework:
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(a) The image vectorization brings the dimensional disaster problem, i.e., the
number of variables is far larger than the number of samples, which is limited
for variable selection because the lasso selects at most the smaller number of
variables [23].

(b) The time complexity of vectorization is very high when calculating the variance
matrix, because of the large number of variables.

(c) The high correlations between variables brings the collinearity problem, which
leads to a large variance of the estimates and makes the solution devolutive.

We aim to find a sparse method that works well as SCCA, while overcoming the
above problems, i.e., it should improve the performance of variable selection limited
by (a) and (c) and save time against (b).

In order to alleviate the case of limitations (a) and (b), we employ a tensor repre-
sentation for the high-dimensional data and learn a tensor subspace for dimensional
reduction. A number of tensor subspace analysis methods [6, 11, 18, 19,21, 22] have
been presented for recognition-related tasks. In [18], they explore self-similarity of
human skeletons tensors for action recognition. In [22], they extract HOG feature
from an action tensor for recognition. In [11], the multi-linear PCA (MPCA) method
extracts the principle components and preserves most of the energy of the tensor.
The discriminant analysis with tensor representation (DATER) [21] and general
tensor discriminant analysis (GTDA) [19] were proposed by maximizing a discrimi-
nant criterion in tensor subspace for dimensional reduction. In [6], a tensor subspace
analysis-based CCA algorithm, i.e., TCCA, was introduced to efficiently learn the
maximum correlations between pairwise tensors iteratively, which is applied to
high-dimensional action data processing. Inspired by the tensorial representation,
we propose a tensor model to preprocess the high-dimensional data, in order to
save time and memory. Moreover, we employ the elastic net instead of lasso in
the traditional SCCA to overcome the limitation (c). The elastic net includes lasso
penalty and ridge penalty, which are used to control the degree of shrinkage and
overcome the collinearity by decorrelation, respectively.

In this chapter, a dual shrinking method is proposed using elastic net in tensor
subspace, which is called sparse tensor subspace learning (STSL), for dimensional
reduction. STSL is used to deal with high-dimensional data, like human action
video, face sequences, texture data for key frames/variates selection, and dimension
reduction.

We transform the original data set to a big tensor, which is illustrated in Fig. 3.1.
The STSL method performs alternating variable selection of the training and
testing tensors. We employ the elastic net to control the degree of shrinkage and
eliminate the collinearity caused by the high correlation. Then we boost STSL by
performing SVD on the covariance and sparse coefficient vector. We have analyzed
the properties of STSL, including the root mean squared error (RMSE), shrinkage
degree, explained variance, and time complexity. The aim of STSL is to calculate
the transformation matrices for dimensional reduction of tensor. The advantages of
our methods are stated as follows:



3 Subspace Learning for Action Recognition 51

+ (]

|
)
R
K
—N
N—N
N
)

SVD (XWXT gy — ¢,

SVD (YWY Tigy — s,

y ﬁiﬂlw Sjszw

N1

~—IN
_|_
o
AU

Sk

Fig. 3.1 Framework of dual shrinking in tensorial subspace. Firstly, the sparse loadings ;, a;, o
of each mode has been estimated by elastic net regression; then the transformation vectors #;, #,
t, has been calculated by performing SVD on the product of data covariance and sparse loadings;
finally, the transformation vectors are used for the iterative sparse solution.

1. It can process high-dimensional data by tensorial representation.

2. The time cost decreases in the step of calculating the covariance.

3. The lasso is replaced by the elastic net which can perform shrinkage procedure
and eliminate the collinearity problem through decorrelation.

4. The transformation matrices are not the ordinary linear combinations, but
obtained by SVD on the product of covariance and the sparse coefficient vector.

The rest of this chapter is organized as follows: Section?2 introduces tensor
and elastic net fundamentals. Section 3 presents the STSL algorithm and its
properties. Experiments on common datasets are demonstrated in Section 4. Finally,
the conclusion is given in Section 5.

2 Related Work and Motivation

2.1 Tensor Algebra

An N-order tensor can be represented as A € RN*2XxlixXIv where I, is the

mode-n unfolding of A is denoted as matrix A® € RIXUrl2l—1lt1IV) - where
x is used for measuring a matrix and - for scalar product. A is decomposed by
U, e R"" (1 <n < N)as

B=Ax, U x, U] ... xyUL, (3.1

where A = B x; U; x; Uy... xy Uy and X, indicates mode-n product. The
transformed tensor B € R/1*/2X" %N ig called the core tensor of A.
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2.2 Loss Function

We intend to give the loss function as the converge condition. Given tensor A, B as
mentioned above, the loss function is defined as follows:

L(A. B) = [|AI* = lIBI]’], (3.2)

which means the absolute value of L,-norm difference.

2.3 Regularized Objective Function

We employ lasso solution to select the important variates of data, and the trivial
variates are set to zeros. Given two image sets X and Y € R™*”, each of which has
m samples with p variables. Given nonnegative lasso penalty A;, the lasso model
[23] is obtained by

ﬁ=argmﬁin 1Y = X8>+ M8l (3.3)

where B € RP is a vector which consists of the lasso estimates, and

1Bl =221 1Bil-

2.4 Optimization

The lasso method can pick up the significant variates for better representation.
However, the lasso solution can bring in the singular problem, resulting in the
large variance. We take a bias-variance trade-off solution, which is performed by
combining ridge regression with lasso, to solve the problem. Given nonnegative
ridge penalty A,, the elastic net model [23] is obtained by

3=argngn 1Y —XBI> + Ai[1BI1 + AalIBll1, (3.4)

where B> = 5':1 |B;|>. The ridge solution has two advantages: (1) it can
overcome the collinearity which causes the singular problem, and the step is
called decorrelation; (2) it can avoid too sparse solution, by the rescaling factor
1/(1 4+ A,), which ensures the shrinkage step of the ridge is removed, maintaining
the decorrelation effect of the ridge and shrinkage effect of the lasso. The solution
of the elastic net is as follows:
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R ] XTX + Aol
ﬂ:argmlnﬁT(—z)ﬂ—2yTXﬂ + 11811, (3.5)
B 14+ A,
where y € R? is a sample. When A, = 0, the elastic net turns to lasso. When

Ay — 00, it results in the soft-thresholding [23, 24].

3 Sparse Tensor Subspace Learning

We represent each of the training and testing large data sets as a tensor and perform
the minimizing variance procedure alternatively by fixing the parameters of one
tensor while estimating those parameters of the other (Section 3.2). The selection of
parameters is discussed in Section 3.3, following the time efficient is demonstrated
in Section 4.5.3, respectively.

3.1 Motivation

We propose a sparse tensor-based method for high-dimensional data processing, to
reduce dimension for recognition task. We aim to solve two problems: (1) select
key frames by dual sparse learning to remove noise and redundancy and (2) learn a
tensor subspace for dimensional reduction. The details are listed as follows:

1. The vector data is transformed to tensor representation, in order to reduce the
dimension of data. Either the training or testing data set is represented to be a big
tensor, as well as the vectorial method.

2. We use elastic net for sparse regression to select the significant variates of data.
Lasso is used for sparsity, while ridge is used for overcoming the collinearity and
alleviating double sparsity.

3. We employ a dual sparsity strategy, considering the correlation of the two data
sets. However, it is not same to the traditional canonical correlation analysis.
Firstly, we calculate the sparse coefficient loadings; then we alternatively update
the transformation matrix by performing SVD on the product of data covariance
and sparse coefficient [24], for the reason of obtaining the invariance eigen-
structure of original data.

3.2 Learning Algorithm

In this part we detail the process of estimating the sparse loadings alternatively.
Given two N-order tensors X, ), we initialize the transformation matrices S,,, T, €
R"n (1 < n < N) by mode-n eigen-decomposition of X and ), respectively.
Firstly, X', ) are dimensional reduced by
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X(—XXSl...Xn_l Sn—l Xn+1 Sn+1...XSN, (36)
y < y X Tl oo X1 Tn—l Xn+1 Tn+l oo X TN~ (37)

Secondly, X and ) are mode-n unfolded to X and Y® e R*L» where L, =
(J1 2. . Ju_t - Jug1 ... Jy), both of which are centered. Initialized A® = {aj(") I
B® = {/3}”)}, S, = {s](.")}, T, = {t;")} (1 <j < J,), and the subscripts of S,
and T, are dropped for simplicity. We use variance of sample, e.g., X" X"™ to
calculate the sparse coefficients. There are two reasons for the solution: (1) when
L, > I,, it can reduce dimension to great extent using the covariance in the space
R for the sparse processing, resulting in lower time complexity; (2) the vectors
of transformation matrices s, 7™ have the same dimension as the sparse coefficient
vectors ™, B in the iteration; therefore, it is convenient to calculate the matrices
S,., T, we need.

Our dual shrinking model is obtained by learning the following optimization
problems alternately.

1. Given s™, the optimized @ is estimated as

@) = argmin s — XX a2 4 A1]a s + 2ol
o n

(3.8)
Isubjectto  Var (XWX ™Wa®) = 1.
We use the Lagrangian function to calculate the solution as
X®WXTmY2 4 A1
@™ = argmin o™ ( )+ o™ (3.9)
) 14+ A,
_zyT(n) (X(")XT(”))a(”) + Al |oz(”) Ik
2. We use Procrustes rotation [13] to update A™ and perform SVD as
XOXTMAM — U(”)D(")VT("), (3.10)
and then update T, = U®VT®,
3. Given ™, the optimized B is estimated as
Ié(n) —
argmin [/ — YOYTO B 4 44(|B7]) + Ao]|B7 2, (3.11)

B
subject to  Var (Y?Y'™ ﬁ(”))T =1.
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The solution is as follow:

P = argmin p" ((Y(”)siTi:));—l- M) g0 .12
_2xT(n)(Y(n)YT(n))'3(n) + Al|ﬂ(n)|lv
4. update B™, then perform SVD as
YOYTWR® — [/ mp/ey/ T (3.13)

then update S, = U'™V7T®,

After the iteration, we obtain the transformation matrices S,, T,,, which are used
for dimensional reduction. The projection process is shown in Fig.3.2. Then the
nearest neighborhood classification (NNC) is proposed. Algorithm 1 summarizes
the proposed STSL in steps.

3.3 Selection of Parameters

In this part we will discuss how to select the parameters in the proposed method. We
have defined (A1, A,) in Section 3.2, though it is not the only choice as parameters.
For each fixed A,, we can also set the number of nonzero elements (Card) in the final
sparse loadings as the lasso parameter, which is used to lighten the computational
burden for early stopping [23]. In this chapter we use Card as the shrinkage
parameter. The parameter Card is set initially and kept constant during the iterations.
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Algorithm 1 Sparse Tensor Subspace Learning

INPUT: N-order training tensor set X’ and testing tensor set ). Given matrices A B
OUTPUT: Transformation matrices S,,, T,, (1 < n < N).
Algorithm:
Initialize S,, T, € R (1 < n < N) by mode-n eigen-decomposition of X and ),
respectively.
repeat
forn = 1toN do
Dimensional reduction by Egs. (3.6) and (3.7), node-n unfolding to X™, Y™ and being
centered.
repeat
fori = 1toJ, do
Given a fixed s,(."), calculate a[(") by Eq. (3.8), update matrix T, by Eq. (3.10);
Given a fixed 1", calculate 8" by Eq. (3.11), update matrix S, by Eq. (3.13);
end for
Normalized updated A’™, B'®™,
until [/ — AD| < ¢, |B'" — B®| < ¢,
end for
until L(Y,Y’) = ||Y|> — |V'|?| < €, where )’ is the transformed tensor by the updated T,,.

4 Experiment

4.1 Datasets and Methods

We use the MovieLens dataset' and UCI dataset” to testify the performance of our
algorithm. We also employ LFW, AR face datasets, and KTH action dataset to show
that our method could work for high-dimensional visual recognition task.

We employ SPCA [24], SCCA [20], and SMPCA [17] to perform the compari-
son. SPCA sparse the transformation matrix by elastic net, while the intermediate
matrix used for iteration is updated by SVD of data and the transformation matrix.
SCCA performs the dual sparsity processing by elastic net either, which aims to
obtain both the sparse coefficient matrices, which is updated alternatively. SMPCA
intends to obtain the sparse transformation matrices via distilling main energy of
tensors. While STSL performs the dual sparsity for the coefficient transformation
in the multi-linear space, in order to calculate the transformation matrices by SVD
of the sparse coefficient and high-dimensional data. We also set A, = 0 in STSL to
testify the lasso performance.

Thttp://www.grouplens.org/node/73.

Zhttp://archive.ics.uci.edu/ml/datasets.html.
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Fig. 3.3 KTH action dataset; the actions (a) run, (b) wave, (¢) walk, and (d) clap are from Set 1,
while (e) jog is from Set 2 and (f) box is from Set 3
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4.2 Experiment on KTH Dataset

We acquire the KTH dataset [16] including six action classes: run (running), box
(boxing), wave (handwaving), jog (jogging), walk (walking), and clap (handclap-
ping), as shown in Fig.3.3. There are four different scenarios: outdoors (sl),
outdoors with changing view angles (s2), outdoors where the color of foreground
is similar with that of background (s3), and indoors with dim various lighting (s4).
We choose 60 samples containing the 6 classes of action from the four scenarios,
and fivefold cross validation (CV) is used in this experiment.

Figure 3.4 shows the silhouettes of the box action. Figure 3.5 shows the
classification results of different methods under different dimensions. The x-axis
displays the tensorial dimensions after projection in STSL, whose product indicates
the dimension of the vector-based methods, e.g., 40 x 10 x 10 = 4000. We can
see that the accuracy of STSL increases with the larger dimensions, and the number
of nonzero loadings (Card) also has to increase correspondingly to preserve more
information by selecting the variables. In SCCA and SPCA, the variables are far
more than the samples, so we set A, — 00, resulting in the soft-thresholding [23].
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We can see that the rate curves of SCCA and SPCA are stable throughout the x-axis
with different dimensions. This is because the action silhouettes contain 0/1 value
merely, the extracted information from which will not change significantly in SPCA
and SCCA. While in CCA, the damaged silhouettes are fragmented, resulting in the
more dimensions retained the less efficiency obtained. The curve of TCCA is not
stable, due to the projection matrices derived from the damaged silhouettes with
less information.

4.3 Experiment on LFW Face Dataset

We used the LFW RGB color face dataset [3] containing 1251 faces of 86
individuals with varying expression, view angles, and illuminations. Each face
image is normalized to be 32 x 32 pixels, as shown in Fig. 3.6. We choose ten face
images of each individual, and fivefold cross validation (CV) is employed in this
experiment.

Figure 3.7 shows the classification rates of different methods under different
dimensions. The x-axis displays the tensorial dimensions after projection in
STSL, whose product indicates the dimension of the vector-based methods, e.g.,

AN P S G e iy
SRSDS -

Fig. 3.6 RGB color faces of the LFW dataset
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Fig. 3.8 Convex characteristics under projection matrices T, on the LFW dataset. (a)—(c) show
the percentage of explained variance (PEV) of sparse loadings #; of each mode, respectively

20 x 20 x 2 = 800. We can see that the accuracy of STSL increases with the
larger dimensions, and the number of nonzero loadings (Card) also has to increase
correspondingly to preserve more information by selecting the variables. In SCCA
and SPCA, the variables are far more than the samples, so we set A, — o0,
resulting in the soft-thresholding [23]. We can see that the rate curves of SCCA,
SPCA, and CCA are stable throughout the x-axis with different dimensions, and
the corresponding rates are quite low. This is perhaps due to the soft-thresholding
rule performed in SCCA and SPCA, which depends on the lasso penalty irrespective
of the collinearity caused by the dependency between variables, resulting in large
variance of the estimates and devolution. The rather low curve of TCCA may
be caused by the projection matrices, which are affected by the changing illusions,
view angles, and expressions. Meanwhile CCA may contain more redundant
variables which are useless for the classification.

Figure 3.8 shows that STSL is convex irrespective of the original projection
matrix S, and T,. We took the dimension 20 x 20 x 2 for illustration. Figure 3.8a—c
shows the percentage of explained variance (PEV) by the first dimension of the
matrix T, against the number of nonzero loadings (Card) in each mode. It can be
seen that the PEV of #; has the similar trend along the number of nonzero loadings,
regardless of the initial T,.

4.4 Experiment on AR Face Dataset

We use the AR RGB color face dataset [14] of 100 individuals with varying expres-
sion, changing illumination, glass wearing, and chin occlusion. Each individual has
26 images captured under four conditions. Each image is normalized to be 32 x 32
pixels, which are shown in Fig. 3.9. We randomly choose ten people, each with ten
face images, respectively. Therefore there are total 100 images (samples) in this
experiment. We use fivefold cross validation (CV), which means that there are 80
samples for training while 20 for testing each time. A color face is represented as
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32 x 32 x 3 size tensor in our algorithm STSL, i.e., the color face is decomposed to
be three images, each of which indicates a channel of RGB color space.

The vector-based methods CCA [1], SCCA [12], SPCA [24], and TCCA [7]
are used for comparison. In these methods, a color face is represented as a high-
dimensional vector size 32 x 32 x 3 = 3072. In CCA, the maximal canonical
correlations of two image sets are calculated for classification. SCCA calculates
the canonical correlations of the pairwise linear combinations composed of sparse
loadings and image vectors. SPCA obtains the sparse principal components as
transformation matrix for testing image. TCCA calculates the maximum correlation
between two tensors, the combinations of which serve as the projection matrices and
perform iteratively. We evaluate the STSL method in terms of accuracy and some
other properties, such as shrinkage degree and ridge penalty.

Figure 3.10 shows the classification rates of different methods under various
dimensions. The x-axis displays the tensorial dimensions after projection in STSL,
whose product indicates the dimension of the vector-based methods, e.g., 20 x
20 x 3 = 1200. We can see that the accuracy of STSL increases with the
larger dimensions, and the number of nonzero loadings (Card) also has to increase
correspondingly to preserve more information by selecting the variables. In TCCA,
the curve of recognition rates is not stable along the various dimensions. Due to that
the performance is prone to the projection matrices, which contain the redundancy
in the iterative procedure. In SCCA and SPCA, the variables are far more than the
samples (p > m), so we set A, — oo, resulting in the soft-thresholding [23, 24].
We can see that the rate curve of SCCA is stable throughout the x-axis with different
dimensions while SPCA and CCA are both decreasing, which because that SCCA
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Fig. 3.11 AR dataset: percentage of explained variance (PEV) of the canonical vectors as the
function of the number of nonzero loadings. PEV reaches the maximum at the proper nonzero
number, and we choose as large the variance as possible under a small number. The vertical lines
indicate the choice of nonzero number

takes account of the correlations between different samples compared to SPCA and
deal well with the occluded or damaged of the original face images by eliminating
the redundant pixels different from CCA.

However, in our experiment, we set the parameter Card to fix the number of
nonzero variables in the sparse loadings. Because it’s much faster and can get
higher accuracy than setting s. Figure 3.11 shows the PEV in tensor X variables,
which demonstrates the sparsity performance using the number of nonzero loadings.
As displayed in PEV of mode-1,2, the PEV obtains its maximum at the proper
nonzero number. As few as 50.00-60.00 % of 60 pixels (after mode-n projection)
can adequately constitute the canonical vectors to bear with such a loss of explained
variance (about 0.01 % in v;), and 12.50 % of 400 pixels with less than 0.005 %
of loss in mode-3, as PEV of mode-3 shows. The x-axis indicates the unfolding
dimension after mode-n projection as preprocessing. The similar results are also
obtained for the other tensor ) variables.

Table 3.1 shows the classification results of different methods as well as the
setting dimension and feature. We select 20 x 20 x 2 as the feature of STSL while
800 in the vector-based methods. We also compare the rates under A; = 0 and
A, = 0 of STSL, which represent the cases of ridge regression and lasso regression,
respectively. Our result is shown in bold value result demonstrates that the elastic net
is more suitable as a regression method for recognition in pixel processing compared
to the ridge and the lasso.
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Table 3.1 The recognition rates (percent) of CCA, SCCA, SPCA, and STSL on a
subset of the AR dataset and the corresponding dimensions and feature
STSL |STSL STSL
Method CCA |SCCA |SPCA |TCCA |[Ours] |(A; =0) | (A, =0)

Accuracy |30 55 35 45 60 15 50
Dimension | 3072 32x32x3
Feature 800 20x20x%x 3

Table 3.2 Datasets

Dataset Objects | Variate | Size Dimensions | Class
MovieLens 100,000 4 7,121 |5%x2%x2 -
Breast-w 683 9 683 |3 %3 2
Vehicle 846 | 18 846 |3 x3x2 4
Heart-statlog 270 | 13 270 |3 x2x2 2
Letter 20,000 | 16 20,000 1 4x2x2 26
Sonar 208 | 60 208 |6x2X%x5 2
Ionosphere 351 | 34 351 |17 x2 2
Cleanl 476 | 166 475 120x2x 4 2
Diabetes 768 8 768 |2x2x2 2

4.5 MovieLens and UCI Datasets

The MovieLens dataset has five subsets, each of which contains 100,000 items,
including three variates: movie-ID, scores, and time. We employ the first two
variates, with ten items of each user ID as a tensor, so there are more than 1500
tensors excluding the users less than ten items to be used in each subset. We also
extracted eight real datasets from the UCI dataset for accuracy, run time, and other
performance. They are Breast-w, Vehicle, Heart-statlog, Letter, Sonar, Ionosphere,
Cleanl, and Diabetes, respectively. We transformed the number of variates into the
tensor dimensions, and the details of the datasets are shown in Table 3.2.

4.5.1 RMSE and Accuracy

Figure 3.12 shows the area under curve (AUC) value of different methods. The
upper left of the curve indicates its superiority, which means more accuracy with less
error. It shows that our algorithm performs better than SMPCA. SCCA and SPCA
runs litter better in some cases, such as Figs.3.12b, c; however, TFDS performs
competitive in most cases with larger AUC. Table 3.3 shows the RMSE of different
datasets. The RMSE and variance of STSL is less than those of others. Specifically,
STSL performs better with the elastic net constraint in most cases compared with
lasso. Table 3.4 demonstrates the accuracy under the original dimensions. The
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accuracy of STSL is comparative with those of others. Table 3.5 shows the run time
w.r.t. of different datasets, and the time complexity of STSL is obviously lower than
that of SMPCA. The time costing also decreases when lasso is replaced by elastic
net, which alleviates the sparse degree. All the tensorial solutions have reasonable
time efficiency compared to the vectorial methods, which indicates that the tensorial
representation can be used for high-dimensional data processing, for saving time and
memory.

4.5.2 Explained Variance Analysis

The explained variance [12] is used to compare the efficiency of sparsity. More
sparsity with larger explained variance (EVar) indicates that we eliminate the redun-
dance while keeping the significant variates, which is meaningful for processing
high-dimensional data and large dataset.

“Given a N-order tensor y with I, (n = 1,...,N), dimension in each mode, the
corresponding mode-n unfold matrix is denoted as ¥, which is rewritten as Y for
simplicity, I, is denoted as I as well.

“Initialize two mode-n transformation matrices 7, and S,,, which are denoted as
T and S for simpicity, here we only consider the first two projection vectors 77y, i,
T2 and Sz”.

EVar(Y|T)) = W = Lp(TLY)p(Y. T, (3.14)

where p is the correlation between two variates.
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Table 3.4 Recognition rate (%) w.r.t. Datasets

STSL
Dataset (Size, Dimension) SPCA | SCCA |SMPCA | (A, =0) |STSL
Breast-w 683 |3x3 97.67 198.25 196.50 97.67 98.25
Tonosphere | 351 |17 x2 93.14 | 64.57 |92.00 92.00 92.57
Heart 270 |3 x2x2 |5556 |56.30 |55.56 57.04 57.78
Sonar 208 |6 x2x5 |50.00 |59.26 |51.85 50.93 59.26
Cleanl 475 |20x2x4 |67.76 |55.51 |67.35 66.94 68.16

Diabetes 768 |2X2X2 |66.67 |56.77 |65.36 64.84 65.36

Table 3.5 Runtime (sec.) w.r.t. Datasets

STSL
Dataset (Size) SPCA |SCCA |SMPCA | (A, =0) |STSL
Breast-w 683 | 248 0.08 0.76 0.88 0.16
Ionosphere | 351 | 7.43 |0.25 0.72 1.03 0.92
Heart 270 | 1.66 |0.07 0.66 0.21 0.18
Sonar 208 | 949 0.37 2.79 0.52 1.50
Cleanl 475 16432 |2.29 15.89 1.64 3.46
Diabetes 768 | 220 | 0.37 0.98 0.20 0.19

The mode-2 explained that variance is computed by getting rid of the correlations
between mode-1 and mode-2 sample, as

tr[Var(E(Y — E(Y[S;, T1)|T>))]

EVar(Y|T,) = tr[Var(Y)]

(3.15)

1
(V. T) (T V)

where Y =Y — %p(Tl, Y)p(Y,S)).

In this part, we compute the explained variance of Y in the heart-statlog dataset,
the same as X. The variates selected and the explained variance of all the methods
are shown in Table 3.6, from which we can see that the EVar of STSL is competitive
with others in both the first and second dimensions of data, with the EVar of the
former larger than the latter. Especially, the number of selected variates of STSL
is obviously less than that of SMPCA, which indicates the superior performance of
STSL with larger EVar and less variates.

4.5.3 Computational Cost

Given m N-order tensor A € RN For simplicity, we suppose that I; =
.= Iy = (]2, 1)%” = I. The main complexity cost steps are computing
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the covariance matrix and constraint condition. Therefore the cost time for STSL
is O(N-I*-m+ 2N - 1), while for SMPCA is O (N -1 -m? + 2N -I) (m > I), and
for SPCA is O (I*Y - m + 2IV). We can see that the computational cost of STSL is
far less than that of SMPCA and SPCA.

4.5.4 Discussion

The RMSE of vectorial methods SPCA and SCCA are quite high; this is because
each data has ten items, each with movie-ID and a score. SPCA and SCCA calculate
the RMSE of all the ten items, while the tensorial solutions only compute the RMSE
of the score, which is the second mode of a tensor. The different processing means
that we can deal with the data with meaningful section, as long as it is in tensorial
representation. Because of the different computation of covariance matrix, STSL has
less time complexity than SMPCA. Compared with SPCA, the less dimensions of
variates in tensorial subspace of our method results in the less time consuming. ROC
curves illustrate that the accuracy of STSL is competitive with other methods in
different datasets. And the SPCA also performs good in many cases. The explained
variance of samples indicates that we eliminate the redundance, while selecting the
significant variates for data representation. The STSL is competitive with other
sparse methods according to the explained variance in tensorial subspace. STSL
does not resemble traditional canonical correlation analysis, because it performs
SVD on the product of data covariance and sparse coefficients alternatively, instead
of simply linear combination, to obtain the invariant structure of the data. By the
tensorial representation of the original data, we can deal with the high-dimensional
data not only to save time and memory but also to process the meaningful part we
need and obtain the solution pertinently.

5 Summary

We propose a novel STSL model, for dimensional reduction. The tensorial repre-
sentation of data has less dimensions then a vector, which is suitable for processing
high-dimensional data; and the different mode can indicate various meaning of
data. For high-dimensional data, like human action video with spatiotemporal
information, STSL can select the key frames to reduce noise and redundancy,
meanwhile learning a subspace for dimensional reduction. STSL has lower time
complexity and can save memory at the same time. The accuracy of STSL is
competitive with the art-of-the-state methods. The explained variance of sample
computed by STSL is competitive with other vectorial and tensorial methods
on the heart-statlog dataset and common face datasets, because STSL obtains
larger explained variance with less selected variates. STSL employs the elastic
net constraint instead of lasso, for two reasons: firstly, ridge regression is used
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for decorrelation, to avoid singular solution, and, secondly, the rescaling factor is
taken to eliminate double sparsity. The accuracy of different constraints shows the
optimization.

The direction of this work can add discriminant analysis in the updating step,

by performing SVD on the product of interclass, intra-class covariance and sparse
coefficient vector, to update the transformation matrices.
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Chapter 4
Multimodal Action Recognition

Chengcheng Jia, Wei Pang, and Yun Fu

1 Introduction

1.1 Tensor for Action Recognition

For many machine learning and pattern recognition tasks, most of the data are
high dimensional, such as human action videos. Vectorization of action video is
one common approach to dealing with the high dimensionality issue. However,
the vectorization process requires a huge amount of memory, and it is also very
time consuming. Recently, tensor decomposition analysis (TDA) [1, 9, 29] has been
successfully applied to various high-dimensional recognition related problems, such
as action recognition [7, 17, 20], face recognition [3, 8, 27], and gait recognition
[6, 15, 28]. TDA represents high-dimensional data as a multi-fold (mode) tensor,
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which could keep the original structure of data instead of vectorization. TDA is
essentially the extension of vector or matrix analysis to higher-order tensor analysis.
In the tensor subspace, the discriminant projection matrix of each mode [14] is
calculated alternately by fixing the other modes. Some TDA methods integrate
Fisher criteria on each mode, such as general tensor discriminant analysis (GTDA)
while some TDA methods find out the correlation of data from each mode, such as
multi-linear discriminant canonical correlation analysis (MDCC [11]).

Tensor discriminant analysis employed Fisher criteria on each mode of tensor,
e.g., GTDA [22] for gait recognition and DATER [26] for face recognition. GTDA
and DATER not only preserve the original high-dimensional structure of data, but
also avoid the “curse of dimensionality” caused by small datasets. Consequently,
they achieved good results on gait recognition and face recognition. However, most
tensor-based methods have been performed directly on samples [6, 8], which may
decrease the accuracy in situations where image occlusion or damage exists.

Considering the variations of an object due to different angles and illuminated
conditions, canonical correlation analysis (CCA) [5, 10, 19, 24] is often used for
computing the similarity of two datasets to overcome this problem. Kim et al.
[13] proposed the tensor canonical correlation analysis (TCCA) by calculating
the correlation of two tensor samples for action detection and recognition. TCCA
improves the accuracy compared with CCA and it is more time efficient for action
detection. In our previous work [11], a CCA-based discriminant analysis in multi-
linear subspace (MDCC) is proposed for action recognition. In that work, we took
an action image sequence as a 3-order tensor, and calculated the discriminant
projection matrices using canonical correlations between any pairwise of tensors.
MDCC with discriminant information obtained better accuracy than TCCA.

However, all the above mentioned methods perform Fisher criteria [2] or CCA on
an action tensor individually, irrespective of the different realistic meanings of each
mode, e.g., the pixel character of the image mode and the correlation of the sequence
mode. Since an action image sequence can be seen as a 3-order tensor, of which
mode-1 and mode-2 represent the action image information and mode-3 describes
the temporal information [13], in a similar way, an RGB object image can also be
represented as a 3-order tensor, of which the first and second modes stand for an
image, while the third mode indicates lateral illumination or RGB color. In general
case, Fisher criteria can be used to extract image features for classification. In addi-
tion, we also note that the correlations among the images can reflect the temporal
ordering of an action or among various RGB colors of an object caused by multi-
view and illumination, in this sense, by considering the correlations among images
we can improve the performance of the subsequent recognition task [4, 18, 25].

1.2  Our Contribution

In this chapter we explore a mode alignment method with different criteria which
employs Fisher criteria on the image modes and correlation analysis on the sequence
mode, and such mode alignment method is termed mode-driven discriminant
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Fig. 4.1 The framework of MDA. The left is mode-1, 2 aligned by Fisher criteria, while the right
is frame alignment along mode-3, containing /3 subsets (each is shown in red, blue, green boxes).
We update the action sequence by using the correlation between three adjacent subsets, then we
perform the Fisher criteria on mode-3

analysis (MDA) in this chapter [12]. The reason for using different criteria in
different modes is that different modes have different visual distributions, i.e., the
discrete distribution means the image subspaces in the first N — 1 modes, while the
continuous distribution means the sequential patterns in the Nth mode. The proposed
framework is shown in Fig. 4.1.

In this framework, there are m samples in the whole dataset, and we extract the
mode-1,2 spatial information of an action by discriminant criterion. Suppose an
action is composed of I3 frames, we re-organized the dataset to be /3 subsets, each of
which contains m frames. We call this frame-to-frame reconstruction of an action
sequence, i.e., we update the mode-3 tensor by calculating the correlation of their
adjacent frames, then, we use the correlation analysis on the updated mode-3. We
propose to make the best use of different representation of data, i.e., for the spatial
pattern, we extract the features directly from raw data represented by pixels, while
for the sequential pattern, we aim to extract the features by finding the intrinsic
correlation between the adjacent frames. This idea can be generalized to other
representation of data with various factors, such as pose, illumination, multi-view,
expression, color for face recognition, and multi-view, subject diversity, depth for
action recognition. We let the iterative learning subject to a plausible convergence
condition. The projection is both discriminant and canonical correlated, in contrast
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to traditional approaches [8, 13]. Hence we achieve good accuracy on action
and object recognition even with a simple nearest neighbor classifier (NNC). We
summarize the advantages of the proposed MDA as follows.

1. MDA employs a mode alignment method with specific discriminant criteria on
different modes of one tensor.

2. MDA considers the correlation between adjacent frames in the temporal
sequence or RGB pattern by a frame-to-frame reconstruction approach.

3. MDA converges as proved in Sect. 2.2 and discussed in Sect. 3.

The rest of this chapter is organized as follows: Sect.2.1 introduces the funda-
mentals of tensor and canonical correlation analysis. Section 2.2 describes in detail
the MDA algorithm for dimensional reduction. Experiments on action recognition
and object recognition using the proposed method and other compared methods are
reported in Sect. 3. Finally, conclusions are given in Sect. 4.

2 Proposed Method

In this section, we first introduce some fundamentals about tensor decomposition;
then we overview the framework; third we briefly introduce the Fisher analysis on
image mode; fourth, we give the details of correlation analysis of time series on the
temporal mode.

2.1 Fundamentals

In this part, we introduce some fundamentals about tensor decomposition and CCA.
A multi-dimensional array A € RNX*XXIv ig called an N-order tensor, where
I, is the dimension of mode-n. A;, _;, is an element of .A. A tensor can usually be
unfolded, which means one mode is fixed, while other modes are stretched to form
a huge matrix A® [14].

Definition 1 (Tucker Decomposition [14]). A € RIX"*V is an N-order tensor
and U, € R/""(1 < n < N) is used for decomposition, we have the following
equation:

S=Ax Ul x,U;...x, Ul ... xyUy. 4.1)
The above equation indicates the procedure of dimension reduction of a tensor, and

S is called the core tensor, X, is mode-n product.

Definition 2 (Canonical Correlation [19]). Given two vectors x € R, y € R”,
and two coefficient vectors « € R™, B € R”, the correlation of x and y is
calculated by
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(u,v) = argma Cov(u. v) 4.2)
u,v) = X ————, .
P gu,v v/ Var(u) /Var(v) (
subject to variance Var(u) = 1 and Var(v) = 1, where ¥ = a’x and v =

BTy, p(u,v) and Cov(u,v) are the canonical correlation and covariance matrix,
respectively.

2.2 Frame Workflow

In this subsection, we propose MDA which uses Fisher criteria to transform the
image information and uses CCA to transform the temporal information. It is
noted that the discriminant analysis on an action image sequence can extract more
effective information which reflects the properties of images [22, 26]. Also for
temporal space, correlations among the images can reflect the temporal ordering
of an action in subsequent recognition methods [4]. In our tensor based framework,
we first introduce the tensor Fisher analysis on image modes, then explain CCA on
the temporal mode, respectively.

In this subsection, we introduce the discriminant criteria of MDA for both image
and temporal modes. An action sample is represented as a 3-order tensor. The mode-
1,2 represent spatial dimension and the mode-3 represents temporal information.
Suppose there are m tensor samples in C classes, and A € R1*2*5 s a tensor
sample. Our goal is to find the transformed matrices U, € R (1 < n < 3)
for projection in tensor space to achieve dimension reduction. U, is calculated
alternately by fixing the other modes. U, is defined with the mode-n discriminant
function F, as shown below

U, = argmax F,

(4.3)
= argmax fr (UZ(SI(,") - anV”))Un>,

where #r is the sum of diagonal elements of matrix (UZ(S;,") —aSY )Un), and « is
a tuning parameter.

2.3 Fisher Analysis on Image Mode

In this subsection, we introduce the Fisher criteria on the image mode. Given a
tensor set with m samples, each of which A; € R/"™ /¥ indicates the jth sample
belonging the ith class.

Inthecaseof 1 <n <N -1, Sg") is the inter-class scatter matrix calculated by
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C

S = =Yy (A - AW) (A - &) (4.4)

i=1

and Sif) is the intra-class scatter matrix calculated as follows:

S0 = Z Z( AD _ (n)) ( AD - Algn))T, 4.5)

l—] j=1

where m; is the number of the ith class; A® is the mean of training samples of
mode-n; Af") is the mean of ith class (C;) of mode-n; and Agz) is the jth sample of
C;. In the end, U, is composed of the eigenvectors corresponding to the largest J,
eigenvalues of (S;)") —aS®).

In Fisher criteria, the discriminant function F, is calculated by the original data.
While in discriminant CCA, F, is calculated by the canonical tensor, which is
detailed in Sect. 2.4.

2.4 Correlation of Time Series

In this part, we introduce the correlation criteria on the image mode. An action
sequence is actually a time series of frames, ranking orderly. We aim to make better
use of the correlations between two adjacent frames, which can reflect the variation
of an action as time elapses. So, we choose to update the dataset by exploring the
correlations between the time series.

In the tensor set, we re-organized the new subsets by collecting the kth
(1 < k < Iy) frame of the samples, so there are Iy subsets in the dataset. Our strategy
is as follows: first update the new subsets, then re-organize these subsets to form a
new dataset, and finally perform the discriminant criterion.

We consider a sample A; as an action sequence {fi,....fi,....fiy}, and we
organized a new subset A, by extracting each kth frame from all the samples, then
we calculate the correlation between (k — 1)th, kth, and (k + 1)th subsets, which
is indicated as pg—1 xk+1, as shown in Fig.4.2. Our goal is to decompose the whole
tensor set into Iy subsets, then update the whole tensor sequence by the correlations
of the subsets. So, the new dataset has explored the correlation in the time series,
which is consistent with the real situation and can describe the time series more
precisely. The procedure is detailed as follows.
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Fig. 4.2 Tllustration of r}

correlation analysis on the
time series subspace A

(k+1)-th frame

k-th frame

r
r’d‘ (k-1)-th frame

In the case of mode n = N (here N = 3), we organized the kth subset by
collecting the kth frames of the dataset as A, € RU2" The singular value
decomposition (SVD) [14] is performed on AAT, as shown below:

AAT = PAPT, (4.6)

where A is the diagonal matrix and P € RU2>/V ig the matrix composed by the
eigenvectors of the Jy largest eigenvalues, and Jy is the subspace dimension. We
perform CCA on (k — 1)th, kth and (k + 1)th sets as follows:

PP = QuixAQr . PPt = Quit14Q, 4 4.7

where A is the diagonal matrix and Qx—1 k, Qxx+1 € R/¥*/V are orthogonal rotation
matrices. The kth subset Py is updated as follows:

Piiiit1 < SVDPQs 4y PiPcQri—1). (4.8)

Then, we update the dataset by the new subsets Ay = {Py—j jx+1lk = 1,...,Iy}.
Finally, we perform discriminant analysis on the mode-N samples by Eqgs. (4.4) and
4.5).

MDA is different from TCCA [13] when calculating the transformation
matrix (TM). In TCCA, all the TMs are composed of the coefficients vectors
of data by CCA, and there is no discriminant analysis, while in MDA, all the TMs
are calculated by performing discriminant analysis on data. What’s more, TCCA
calculates the TM by pairwise tensors, while MDA calculates the inter-class and
intra-class scatter matrices by making use of the correlation of multiple datasets.
The iterative procedure of the proposed method is detailed in Algorithm 1.

Definition 3 (Similarity). The similarity of two tensors, which is essentially the

mode-N correlation between two tensors, is defined as follows:

s =@M @M, (4.9)

1

where i, k indicate a pair of tensors. S is called the similarity matrix.
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Algorithm 1 Mode-Driven Discriminant Analysis (MDA)

INPUT: m N-order tensors [}, = {Aic’ }, with label {C;}, (1 < i < m), the tuning parameter «,
and the maximum iterations #,,,y.
OUTPUT: Updated U”, 1 <n <N.

1: Initialize U, by eigen-decomp of A,C I<ism.

2: fort = 1 t0 t,4, do

3 for n = 1to N do

4 AT — AT U)o, (U)X (U )T - X (U )T,
5: if » = N then

6: Update A; via Egs. (4.6), (4.7), and (4.8).

7 end if

8 Calculate S\ and 8% by Egs. (4.4) and (4.5).

9 Update U by eig-decomp (S,(,") —o if)).

N
10: Convergence condition: F(U,) = Y [(Ugf) )T[Sl(,”) —« 5:7)] ilt)],

n=1
11: if |[FO(U,) — F“=Y(U,)| < e, return.
12: end for
13: D g 1<n<N.
14: end for

3 Experiments

In this section, we report three experiments, including depth action recognition,
silhouette action recognition, and RGB object recognition. We test the performance
of discriminant correlation analysis in action sequence and RGB pattern, and
show the effectiveness of the proposed method. Besides, we show some important
properties of our method, such as convergence, training time, and similarity matrices
of classes.

3.1 Datasets and Compared Methods
3.1.1 MSR 3D Action Dataset

This dataset! contains 20 categories of depth actions, which are arm waving,
horizontal waving, hammer, hand catching, punching, throwing, drawing x, drawing
circle, clapping, two hands waving, sideboxing, bending, forward kicking, side
kicking, jogging, tennis swing, golf swing, and picking up and throwing.

There are total 567 samples from 10 subjects, and each sample is performed 2~3
trials. Each action is composed of a series of frames. In order to align the image

Uhttp://research.microsoft.com/en-us/um/people/zliu/ActionRecoRsrc/.
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Fig. 4.3 Actions of MSR 3D action dataset

Saband |

Fig. 4.4 ETH dataset. The objects from left to right are apple, car, cow, cup, dog, horse, pear, and
tomato, respectively

sequences with one another, we first cropped and resized each frame to be 80 x 80,
then we subsampled each action sequences to be in the size of 80 x 80 x 10. The
key frames are shown in Fig. 4.3.

3.1.2 KTH Action Dataset

KTH dataset [21] is employed in this experiment, and it contains action classes:
running, boxing, waving, jogging, walking, and clapping. There are 90 videos with
9 people, and each person performs 10 class actions. We took the outdoor scenario
in this experiment. From the videos 1,310 samples are distilled, and each sample is
in the size of 90 x 50 x 20 pixels. tenfold cross-validation is used for the dataset.
Each time 101 samples are used for training, and 30 for testing.

3.1.3 ETH Dataset

In this experiment, we use an RGB object dataset to testify the proposed method
by generalizing its application in addition to action sequence. In this experiment
we employed the ETH dataset [16], which is an ideal simple dataset, to test the
performance of our method. There are 3,280 RGB images belonging to 8 classes,
each of which has 10 subjects. Figure 4.4 shows the samples of each class. Leave-
one-out cross validation was used, and each time one subject was selected for
testing, and the rest for training.

3.14 Methods for Comparison

We used DATER [26], MDCC [11], DNTF [30], V-TensorFace [23] (renamed
as V-Tensor for simplicity) for comparison. All of them except V-tensor are
discriminant tensor methods. V-Tensor is a kind of mode-driven method, which
finds the mode-3 neighbors of tensor, while mode-1,2 do not. DATER applied Fisher
criteria on each mode of a tensor sample directly. MDCC performs discriminant
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Fig. 4.5 Recognition of different methods versus different dimensions on MSR 3D action dataset.
(a) Mode-3 dimension is changed. (b) Mode-3 dimension is not changed

CCA in the tensor subspace. DNTF employs discriminant non-negative matrix
factorization in tensor subspace, and the key is to iteratively calculated the non-
negative transformation matrices.

3.2 Results
3.2.1 MSR 3D Action Dataset

Here, the effect of dimensional reduction on the time series is tested. Figure 4.5a
indicates the accuracy under various mode-3 dimension while the dimension of
mode-1,2 are fixed to be 10. We can see the proposed MDA is comparable with
DATER, which reflects the less influence of mode-3 correlation of frame series.
Besides, the V-Tensor performs worse than both MDA and DATER, which also
indicates that mode-3 manifold does not work better than Fisher criterion. Here,
MDCC performs worse than MDA and V-Tensor, i.e., the similarity of mode-
1,2 plays a negative role because of different levels of distortion by the previous
cropping. Figure 4.5b shows the recognition accuracy of different methods under
various dimensions. As shown in Fig. 4.5b shows, we set the mode-3 dimension to
be 3, while the dimensions of mode-1,2 is increased from 1 to 20. We can see that
the results of our method are comparable to the accuracy of DATER in average,
which means the correlation analysis is feasible on the time series. All the results
do not improve much when the dimensions are small, which indicate the optimal
dimensions of subspace.

3.2.2 KTH Action Dataset

Figure 4.6a shows the effect of dimensional reduction on mode-3 data. We can
see the accuracy is increased along with the increase of dimensions. So, next step
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Fig. 4.6 Recognition rates w.r.t. dimension of different methods. (a) Mode-3 dimension is
changed. (b) Mode-3 dimension is not changed

we will test the effect of the mode-1,2 dimension by fixing the mode-3. In Fig. 4.6b,
the dimension of mode-3 is fixed to be 20, and we can see that MDA gets the
best result within dimensions of [15,15,20], which indicates the best subspace
dimension of mode-1,2. MDA performs better than DATER, which means the mode-
3 correlation plays an important role in the action silhouette sequence. V-Tensor
also performs better than DATER in this dataset, which indicates the effectiveness
of the action sequence by mode-3 manifold learning. MDCC gets better results than
DATER most of the time, which is another evidence for the effectiveness of mode-3
correlation. DNTF is suitable for dealing with images with rich information, like
face, etc. While for silhouette with 0 and 1 value, the preserved energy is too little
to perform well.

3.2.3 ETH Dataset

The recognition results are shown in Fig.4.7, in which the projected dimensions
are selected from [1,1,1] to [32,32,3]. MDA performs well even when the image
dimension is small, which demonstrates that the mode-1,2 rank is small, and
the discriminant correlations of mode-3 is effective. DNTF performs well in the
common ETH object dataset, while poorly in the KTH dataset. This is reasonable
because the pixel-based input data, the unoccluded and undamaged RGB object
contains much more information than an action silhouette, which contains 0 and 1
value only.
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Fig. 4.8 Convergence characteristics of the optimization in MDA. (a) is the F value of total modes
varies with the iterations. (b) shows the convergence to a unique maximum value with different
initial values of U. This sub-figure indicates that MDA is convex

3.3 Properties Analysis
3.3.1 Convergence and Training Time

We analyze the convergence property and training time on KTH action dataset. The
convergence character of MDA is demonstrated in Fig. 4.8 from which we can see
that each experiment for learning uses a different training data set and starts with the
initial value of U,,, which is composed of eigenvectors. The value of the discriminant
function F (calculated as the sum of F,,) becomes stable after the first few iterations.
This fast and stable convergence property is very suitable for keeping the learning
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Table 4.1 Training time (second) on the KTH dataset
Method | DATER [26] | MDCC [11] | DNTF [30] | V-tensor [23] | MDA [Ours]

Time () | ~10 ~10 ~5 ~5 ~5

Same class Same class
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Fig. 4.9 Similarity matrices for MDA on ETH dataset. The upper left upper part indicates
projected tensors from the same class, whose correlations illustrated in the similarity matrix shown
in the upper right. The lower part shows the situation from different class. It can be intuitively
seen the correlation on the second mode is smaller than that of the upper

cost low. Furthermore, as shown in Fig.4.8b, MDA converged to the same point
irrespective of different initial values of U,, which means that MDA is convex.

The training time of all the methods is shown in Table 4.1. The time complexity
of MDA is also competitive with others.

3.3.2 Similarity Analysis

We analyze the similarity property on ETH action dataset. Figure 4.9 shows the
similarity matrices of samples from the same and different classes. The mode-3
reduced dimension is 2. The corresponding correlations in the similarity matrices are
o1 and py, and diag(p;) = [1,0.9812], diag(p,) = [1,0.1372]. Figure 4.9 illustrates
that the correlation value of the same class is larger than that of different classes,
which indicates that the mode-3 discriminant performance of MDA is reliable.

4 Summary

In this chapter we proposed a novel mode alignment method with different
discriminant criteria in tensor subspace, and we name this method MDA. MDA is
used to perform the dimension reduction tasks on different tensorial modes; MDA
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employs Fisher criteria on the first (N — 1) feature modes of all the tensors to
extract image features, then it updates the whole tensor sequence by considering
the correlations of (k — 1)th, kth, and (k + 1)th subsets, and finally it performs
discriminant analysis on the Nth mode to calculate mode-3 projection matrix. The
proposed MDA outperforms other tensor-based methods in two commonly used
action datasets: MSR action 3D dataset, KTH action dataset, and one object ETH
dataset. The time complexity of MDA is lower than or equal to others, therefore
it is suitable for large-scale computing. MDA can deal well with damaged action
silhouettes and RGB object images in various view angles, which demonstrates its
robustness. Moreover, the alternating projection procedure of MDA converges, as
proved theoretically and confirmed by experiments, and finally, MDA is convex
with different initial values of the transformation matrices.
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Chapter 5
RGB-D Action Recognition

Chengcheng Jia, Yu Kong, Zhengming Ding, and Yun Fu

1 Introduction

1.1 RGB-D Action Recognition

For human action recognition task, the traditional methods are based on the RGB
data captured by webcam, while the popular RGB action databases' are like UT-
Interaction [34], UCF Sports [32], UCF 101 [38], KTH [35], and Hollywood
database [16]. Meanwhile, methods [1, 9, 17, 31, 48] that were designed for these
RGB action databases cannot utilize the rich 3D-structural information to reduce
large intra-class variations.

Conventional action recognition methods focused on RGB videos which can
roughly be divided into two categories: low-level feature-based methods and

©{Chengcheng Jia, Yu Kong, Zhengming Ding, Yun Fu | ACM}, {2014}. This is a minor revision
of the work published in {Proceedings of the ACM International Conference on Multimedia,
pp. 87-96. ACM, 2014}, http://dx.doi.org/10.1145/2647868.2654928.

'In this work, RGB action database means the one that is captured by a conventional RGB camera.
Only RGB data are available in the RGB action database; depth data are not available. RGB-D
action database is the one that is captured by a RGB-D camera. Both RGB data and depth data are
available in the RGB-D action database.
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mid-level knowledge-based methods. Low-level feature-based methods [4, 11, 15,
18, 35] use spatiotemporal interest points, body shape feature [23], structure
information [33], key poses [31], etc., to represent human actions. These methods
rely on hand-crafted features, where the actions directly learn from. Recent work
also shows that action features can be learned using deep learning techniques [9].
Mid-level features, such as attributes [25], optical flow [45], semantic descriptions
[13], context [2], and relations [40], are learned from low-level features and then
used for the recognition task. The learned mid-level features can be considered
as knowledge discovered from the same database used for training or having been
specified by experts.

Even with the state-of-the-art RGB action recognition methods having achieved
high performance on some action classes, they often fail to understand actions
in more challenging scenarios (e.g., occluded body parts) due to the lack of 3D
structural information. On the other hand, several methods [6, 20, 47, 49] have been
proposed to utilize 3D-structural information, but require real RGB-D databases,
and cannot be directly applied to RGB databases.

Due to the recent advent of the cost-effective Kinect sensors, action recognition
from RGB-D cameras has received an increasing interest throughout the computer
vision community. Compared with conventional RGB cameras, Kinect sensors
provide depth information, computing 3D-structural information of the entire scene.
The 3D-structural information can facilitate the recognition task by simplifying
intra-class motion variation and removing cluttered background noise. Recent work
[6, 46, 47, 49] has shown that the performance of recognition systems can be
improved by applying depth information to yield RGB-D databases (e.g., MSR
DailyAction3D database [48] and MSR PairAction3D database [27]).

For the human action representation, there are many previous studies that used
tensor for high-dimensional data representation [39], in order to distinguish their
various factors (e.g., identity, expression, illumination, color in face recognition
[29, 41], object classification [42], and action video recognition [10, 19, 43]).
Motivated by these methods, a tensor could be employed to represent an action
sequence. Specifically, a RGB or depth action video is represented as a third-order
tensor, while a RGB-D action video is composed of two third-order tensors. It can
also be constructed as a fourth-order tensor: when there is a “missing” modality
(e.g., RGB or depth), the fourth-order tensor can be truncated to a third-order tensor.

1.2  Our Contribution

In this chapter, we propose a novel action recognition method for learning the
“missing” depth information’ that is not included in conventional RGB action

2In this work, the missing depth data means that they are not included in the conventional RGB
action databases, or we intentionally remove them from a RGB-D database to build a RGB database
for evaluation.
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Fig. 5.1 Our method is able to transfer knowledge from the RGB-D dataset to the RGB dataset,
so missing depth information can be compensated for. Using a latent low-rank constraint U, Xs =
U,XtZ + LU,Xs + E, the missing depth information in the target is uncoverable. A novel cross-
modality regularizer is added to couple the RGB and depth modalities to properly align and transfer
more depth information to that of the target

databases (Fig. 5.1) to further improve the recognition performance. In the first step,
we utilize a RGB-D database as the source data and learn the knowledge about the
correlations between the two modalities: RGB data and depth data of the source
data. Second, this knowledge is then transferred to the target data, which only has
RGB information. Consequently, depth information can be compensated for in the
target data. Moreover, a cross-modality regularizer is added to the two modalities
of source data so that RGB and depth information can be well coupled and more
depth information can be transferred to the target database. Finally, on the target
database, our method can extract useful 3D-structural information, improving the
performance over methods that only uses the real RGB data.

There are several properties of our method worthy emphasizing here. First,
we incorporate the knowledge about the correlations between RGB and depth
data into our model. The use of this rich knowledge allows us to use additional
source of information for recognition. Even though this knowledge does not exist
in the target training and testing data, we can still learn this knowledge from an
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additional RGB-D source data and then transfer it to the RGB target data. Second,
we bridge the gap between RGB database and RGB-D database. Previous methods
treat them as different application subjects, i.e., action recognition [, 17, 48]
and RGB-D action recognition [6, 20, 47, 49]. By comparison, in this work,
we show that RGB-D database can be used as strong depth information for the
RGB database. Consequently, conventional RGB action databases can be reused
as “RGB-D” databases and provide action recognition methods with rich depth
information fused within. Third, compared with attribute-based methods [13, 14, 25]
for recovering missing training samples, the knowledge in our work is data driven
and is automatically discovered from data rather than being manually specified by
experts. This helps us mine useful knowledge and avoid subjective labeling in an
automated fashion.

2 Related Work

2.1 Action Recognition

The traditional action recognition task is based on RGB data, which has homo-
geneous knowledge in the same database, and achieved high performance on some
classes with low-level and mid-level features. However, they often fail to understand
actions in more challenging scenarios.

Recently, due to the advent of the cost-effective Kinect sensor, researchers have
put lots of attentions to the recognizing actions from RGB-D data [6, 22, 27, 46, 47,
49]. Compared with conventional RGB data, the additional depth information has
several advantages to handle complex scenarios. First, it allows us to capture 3D
structural information, which is very useful in removing background information
and simplifying intra-class motion variations. Second, it eliminates the effect of
illumination and color variation.

In our work, depth information is available in the target training and testing
databases. First, we use additional RGB-D data as the source database and then learn
the correlations between RGB data and depth data. Third, the learned correlation
knowledge is transferred to the target database where the depth information does
not exist. With the learned depth information, the performance on the target RGB
data improves from when only the RGB data in the target data are used.

2.2 Transfer Learning

In this chapter, we mainly focus on using RGB-D data to help to improve the
performance of recognizing RGB data; therefore, we introduce the widely used
transfer learning theory to help to understand our method.
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Transfer learning techniques attract lots of attention those recent years, which
aim to transfer existing, well-instituted knowledge to the new datasets or new
problems. Generally, transfer learning can be categorized by domains and tasks.
There are two categories of transfer learning: first, inductive transfer learning is
defined by the same data domain, but by different tasks. Second, transductive
transfer learning [8, 36] uses different data domains for the same task. In transfer
learning problems, target data and source data should share common properties, as
the information in the source domain is available for the target domain to reference.
Additional detailed references are available in the survey of transfer learning [28].

More recently, a low-rank constraint was introduced to transfer learning [8, 36].
Low-rank representation (LRR) [24, 26] can discover the structure information
of the data, especially the data coming from various subspaces. LRR has several
purposes: first, it finds the lowest-rank representation among all the data, which can
be represented as the linear combinations of the basis. Such a LRR can uncover
the dataset in its entire global structure, grouping the correlated candidates into one
cluster. Second, LRR handles more noise and gross corruption of data than other
traditional methods that only consider the Gaussian noise. Third, Liu et al. proposed
a latent low-rank representation (LatLRR) method to handle the limited observed
data problem [21]. LatLRR discovers the latent information of the unobserved data
from the observed, making the recovery more stable.

Even more recently, a low-rank constraint was used in transfer learning. LTSL
[36] and LRDAP [8] are two typical transfer learning methods that include the low-
rank constraint. LTSL aims to find a common subspace where the source data can
well represent the target in the low-rank framework. LRDAP aims to find a rotation
on source domain data to be represented by the target domain in the low-rank
framework. LRDAP considers that the rotated source data can be used to test the
target data when the rotated source data can be reconstructed in the target domain.

Different from the previous work, our method solve missing modality problem
by transferring depth, from RGB-D source data to the RGB target data in tensor
framework. By introducing a new cross-modality regularizer on the source data,
our method can couple the two RGB and depth modalities to transfer more depth
information into the target domain to compensate for the missing depth information
in the target data.

3 Proposed Method

In this section, we introduce a new RGB-D action transfer learning method for
recognition. First, we introduce the framework and then give the details of the
proposed method with three major parts: latent problem formulation, cross-modality
regularizer, and solving objective function. Third, complexity is analyzed in the
following, and more properties will be discussed in this section.
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3.1 Framework Overview

We overview the framework in this section. First, we introduce the data represen-
tation, and then we explain the workflow. Suppose both RGB and depth data is a
third-order tensor, and the whole dataset is taken as a fourth-order tensor. In the
source domain, there is RGB-D data used as auxiliary data. While in target domain,
there is only one modality (RGB/depth) data, whose performance is effected by the
auxiliary data.

We apply latent low-rank transfer learning on the fourth mode of the tensor data.
First, a cross-modality regularizer on the two modalities of source database is used
to properly align the two modalities. In this way, the correlation of RGB and depth
channels could be transferred to target domain, to help to discover depth information
in the target/test. Second, the latent low-rank constraint is used to recover the depth
information in the target domain from the source domain with complete modalities,
to help compensate for the missing modality in the target database.

3.2 Preliminary

We introduce the fundamental theory of tensor decomposition in this section. A
multidimensional array X € R/1*-*lnX-XIN i called an Nth-order tensor, where I,
is the size of n-th dimension. For example, a vector x € Rt can be taken as a first-
order tensor, and a matrix X € RI*%2 ig called a second-order tensor. Each element
The n-th mode of X is of size I, while each fiber x € R’ of n-th mode is a mode-n
vector [12].

Definition 1 (Mode-n Unfolding). An Nth-order tensor X can be stretched by
fixing the mode-n vectors to be a matrix X, € RI*(rlh—rlt1-IN) \where - is
used for scalar product.

Definition 2 (Tucker Decomposition). Given a tensor X € RN and projec-
tion matrices U, € R"*/*(1 < n < N), the decomposition is performed by

SIXXIU1X2U2...X,1Un...XNUN, (51)

where X = & x; Ul x, US ... x, Ur...

n
S e RIX2X XN g called the core tensor.

xn UY, x, indicates mode-n product.

The illustration of the mode-n unfolding of A" is shown in Fig. 5.2. By unfolding
along x-axis, we get a matrix ordered by images side by side, and along y-axis, all
the images are ordered in a column, while along z-axis, we put the cross section side
by side.
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3.3 Latent Problem Formulation

Given two action databases in fourth-order tensor representation, Xg € RU1>2x13)xIs
and Xy € RUXXI)XIT where [, and I, mean the row and column dimensions of
one frame, /3 indicates the number of frames in one action sample, and Ig, It are
the numbers of action samples in source and target databases, respectively. Each
database has two modalities, RGB and depth, which are combined in the fourth order
of the data tensor, i.e., Xs = [Xs.rgB, Xs-p] and Xt = [Xrras, X1.p]. Traditional
transfer learning methods would consider the transfer between modalities within one
database (e.g., Xs.rgs — As.p and Xr.rgg — Ar.p) or the transfer between two
databases in one modality (e.g., Xsrgs — Arrcs and Xs.p — Ar.p). However,
when one modality of the target is missing, both the kinds of traditional transfer
learning would fail. How can we uncover the information of the lost modality? In
this chapter, we propose a latent low-rank tensor transfer learning by introducing a
graph regularizer to couple RGB and depth information in the source database and
then transfer to the target database. We consider the transfer X5 — A, where the
source has two modalities, while the target contains only one modality.

Since X5 and Xt are two different databases lying in different spaces, Xs & Ar.
Suppose the source data Xs and target data X in the same space, both projected
with U, (n = 1,2, 3) on the first three modes of databases, i.e., U,Xs C U,Xr.
First, we assume Xt.p is known and unfold both the tensors in the fourth order
to get UnX§4) , UnX(T4); see Fig.5.2. As many previous researches have shown, LRR
in transfer learning helps preserve the locality in reconstruction and find the block
structure of the source data. We define the low-rank tensor transfer learning with
unfolded tensor data as

Mode-1 unfolding matrix Xm

i Fllii ;

Mode-3 unfoldlng matrix X(3)

NNy —

Mode-2 unfoldlng matrix X (2
| NN l| ,I‘it-x.

g
.

Unfoldjng

- IE g

Fig. 5.2 Illustration of tensor mode-n unfolding. An action sequence is represented as a 3D tensor
X, and we get mode-n unfolding matrix X along its x-, y-, and z-axis
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min || Z][,
V4

st. UxY = uxPz, (5.2)
UTU, =1, n=1,2,3,

where || - ||« is the nuclear norm and Z is called “low-rank representations” of source
data X§4) with respect to the target data X?). We focus on the unfolded tensor in the
fourth order, so we omit the superscript “-)” for simplicity, since the source and
target data are well aligned after projected by U, (n = 1, 2, 3).

We propose to find the relationship between Xs and Xt via SVD, i.e.,
U,[Xs,Xt] = HXVT, where V = [Vs; V1] by row partition. Therefore, U, [Xs, X1]
= HX[Vs;Vr]' = [HXV§; HXV]], and U,Xs = HXV], U,Xr = HXV]
can be derived. The above constraint can be written as HXVy = HXVIZ.
According to Theorem 3.1 [21], the optimal LRR Z, can be found as follows:
Zy = ViV§ = [Vrres: Vrp]Ve. where Vr has been row partitioned into Vr.res
and Vr.p. Then the constrained part can be rewritten as

UnXS = UnXTZ*
= U,[X1rGB: XT-D)Z4
= U,[Xrrae. Xrp][Vrras: Vrp]Ve
= U,XrreeVrroeVd + UpX1.pVrpVa (5.3)
= U,XTRrGB (~VT-RGB VH + Uz VI, VipVe
= U, XrrepZ + (UZ VI Vip Z1UT)U,Xs
= U,XrresZ + LU, Xs,

where Z indicates the low-rank structure of source data on the target data only with
RGB and L = UX V) Vrp XU should also be low rank, as VI Vr.p aims to
uncover the block structure of U, Xt.p.

In reality, the data is sometimes corrupted. So we need to add an error term as
done previously in [24, 26, 36]; then the general model in Eq. (5.2) is represented as

min [|Z[« 4+ L]« + AlE] 2.
ZLE

s.t. U Xs = U, XtZ + LU, Xs + E, (5.4)
Ulu, =1, n=1,2,3,

Is (I} Xy x1I3)
where ||E|.1 = ). >~ ([E]j? is L norm, which can make E sample
i=1 j=1
specific (column sparsity), resulting in the formula detecting some outliers. A > 0
is the parameter to balance the error.

As shown in [21], LatLRR provides a way to reconstruct the hidden data matrix
from two directions: column and row of the observed data. Our algorithm also has
such an advantage. The source data U, X5 is reconstructed from both the fourth order
of U,Xr and the first three orders of U,Xs. That is, when some data in the target
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domain is missing, U,Xs will make sense in reconstruction and uncover the latent
information of the missing data. When solving the previous problem, the objective
testing modality is the missing part of the target data. We can then uncover more
latent information from the source data in transfer subspace learning.

3.4 Cross-Modality Regularizer

The latent low-rank tensor model can uncover the lost modality of the target using
the source dataset. In this section, we introduce a cross-modality regularizer to
capture the modality information in the source data, so that more depth information
from the source dataset can be transferred to the target dataset. The learned Z can
be treated as a new LRR of the projected source data U,Xs, which is a combination
of RGB data Zrgp and depth data Zp. Our goal is to couple the different RGB and
depth modalities of the same class by the similar low-rank coefficients. We define z;
as the i-th column of Z, which correlates with the i-th sample x; of Xs. According to
this property, we introduce a novel regularization term.

Is Is
min 3 32 (z = 5)*wi,
W@ =1 j=1 (5.5)
Vi, j,wi €W,
where w;; = 1, if x; and x; have the same label; w; = 0 otherwise. From this

formulation, we saw that Eq.(5.5) enforces z; and z; to be similar if wy; is 1.
Mathematically, Eq. (5.5) can be rewritten as tr(ZT£Z), where £L = D — W and
D is a diagonal matrix with the rows sum of } as the element. It can be seen that
L is very similar to graph Laplacian, which has been extensively used in spectral
clustering [44] and graph embedding [50]. However, different from them, the
proposed term W, as it carries discriminative label information between modalities
for source data, where RGB and depth data with the same label are coupled. By
adding the regularization term tr(Z” £Z) to Eq. (5.5), our final objective function
results as follows:

min | Z]l + Ll + A El + §u(Z'£2),

s.t. U Xs = U, X1Z + LU, Xs + E, (5.6)
ulu, =1, n=1,2,3,

where 8 > 0 is the balanced parameter. When 8 = 0, there is no couple between
the two modalities in the source data.

With the above formula, two modalities of the source dataset can be well coupled
when reconstructed by the target data with a low-rank constraint. Therefore, the
information of the lost modality in target dataset can be more uncovered using the
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complete modality source dataset in transfer learning. In the experiment, we show
that the cross-modality regularizer can help with transferring the depth information
of source data to uncover the missing depth modality of the target data.

3.5 Solving Objective Function

To solve Eq. (5.6), we rewrite the objective function by introducing some auxiliary
matrices as

min ||K||« + [Wll« + 2t(ZTLZ) + Al|E]|2.1,
K.Z,W,
bE 5.7
st. UXs = UXrZ+ LU,Xs + E,
Z=K, L=W, UlU, =1, n=1,2,3.

Augmented Lagrangian multiplier [7, 30] is applied to achieve better conver-
gence of Eq. (5.7); the augmented Lagrangian function is

min K« 4 [W]l + AE]2.1

+ulY[ (U Xs — U, XrZ — LU, Xs — E)] 55
+tulYS(Z — K)] + u[Y] (L — W)] '

+2uw(Z"c2) + L2 - KIZ + |1L— W2
+|UuXs — UpXrZ — LU, Xs — E|12] .

where Yi,Y,, Y3 are Lagrange multipliers and ¢ > 0 is a penalty parameter.
All the variables in Eq. (5.8) are difficult to calculate jointly; however, we can
optimize them one by one in an iterative manner. We use the Augmented Lagrangian
Multiplier [7, 30] for the above problem, which converges well even when some of
the data is not smooth. The procedure can be found in [10].

3.6 Discussion

We discuss some advantages of our method in this section. By borrowing an
auxiliary dataset, with both RGB and depth data, our method can transfer the
complete modality information from the source domain to the target. We highlight
some important properties of our method and show the differences comparing with
existing methods.
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Uncover Missing Depth Information in the Target Data The latent low-rank
constraint assumes that the transformed RGB-D source data can be represented by
a transformed RGB target data plus latent information (missing depth information).
This allows us to discover the missing depth information and then use it as additional
cue for recognition.

Coupling Two Modalities We propose a cross-modality regularizer on the RGB
and depth of source data to couple the two modalities. Therefore, they can be well
aligned and transfer more depth information to the target.

Capturing Structure Information Our method captures both RGB and depth
information. In addition, our tensor-based method elegantly captures spatial geo-
metric information.

Compared with traditional transfer learning methods, such as LTSL and GFK,
they do not consider the missing information in the target, as they only consider
the transferring between modalities within one dataset and transfer between two
datasets in one modality. Compared with L2TSL [3], which also considers the
missing modality information, our method is tensor based; therefore, our method
can uncover more time spatial information from the action video. To the best
of our knowledge, we are the first to consider transfer learning to uncover the
depth information to help action recognition. Our novel cross-modality regularizer
to compensate for the diversity of the two modalities in source data would help
transfer more depth information to the target, so that our method can improve action
recognition with only RGB data.

4 Experiments

In this section, we first introduce the experimental database and setting and then
compare other transfer learning methods with our method; finally, we introduce
some properties of our method. We classify the test samples of various modalities
via borrowing the missing information from the source database. Both the source
and target databases are used for training, while the target database is used as
reference for testing. In the source database, the RGB-D data is used throughout
every experiment.

4.1 Databases

In the experimental section, we use two action databases to evaluate the proposed
method: MSR daily action 3D database and MSR pair action 3D database.’ Both
have two modalities, RGB images and depth images.

3 http://research.microsoft.com/en-us/um/people/zliu/ActionRecoRsrc/.
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Fig. 5.3 RGB sequence of (a) MSR daily action 3D database and (b) MSR pair action 3D database

In the MSR daily action database, there are 16 categories of actions: drinking,
eating, reading book, calling cell phone, writing on a chapter, using laptop, using
vacuum cleaner, cheering up, sitting still, tossing chapter, playing game, lying down
on sofa, walking, playing guitar, standing up, and sitting down. All these actions are
performed by ten subjects; each performs every action twice. There are 320 RGB
samples and 320 depth samples. Figures 5.3a and 5.4a show the RGB and depth
sequence of one sitting action.

In the MSR pair action database, there are six pairs of actions: picking up a
box/putting down a box, lifting a box/placing a box, pushing a chair/pulling a chair,
wearing a hat/taking off a hat, putting on a backpack/taking off a backpack, and
sticking/removing a poster. There are a total of 360 RGB samples and 360 depth
action samples. There are ten subjects performing three trails for each action, and
the first five subjects are for testing. Figure 5.3b shows the RGB sequence of pushing
a chair action.

To unify the tensor size, we extracted ten frames from each video sequence at
specific intervals. We use the whole frame to extract feature instead of tracking,
because (1) the background of the video is static and (2) we apply HOG descriptors
to extract feature. Thus, the background will not contribute to the feature too much
and human tracking is not necessary here.
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Fig. 5.4 MSR daily action 3D database, (a) is the depth sequence of sitting, (b) is the HOG feature
of RGB sequence

In both databases, RGB and depth action samples were subsampled to be 80 x
80x 10, whose HOG feature* was exacted to represent the action samples. The HOG
feature of source RGB data is shown in Fig. 5.4b.

4.2 Experimental Settings
4.2.1 MSR Pair/Daily Action Recognition

For MSR pair action recognition, Source database: MSR daily action 3D database,
which contains 16 action categories by 10 subjects with 640 samples, composed of
320 RGB samples and 320 corresponding depth samples. Target database: MSR
pair action 3D database, which includes 12 interaction categories by 10 subjects
with 720 samples, contains 360 RGB samples and 360 depth samples. We separate
the target database into two parts for training and testing, respectively. Therefore,
we can test each part reversely by alternating orders, as shown in Case 1 and Case 2.
For MSR daily action recognition, the source and databases are reversed, and the
corresponding training setting is shown in Case 3 and Case 4.

Case 1: The actions of the first five subjects are used for training in the target
database, while the last five subjects for testing.

Case 2: The actions by the last five subjects are employed for training, while the
rest for testing.

“http://www.vlfeat.org/overview/hog.html.
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Case 3: The actions of the first five subjects are used for training in the target
database, while the last five subjects for testing.

Case 4: The actions by the last five subjects are employed for training, while the
rest for testing.

4.3 Compared Results

In this section, we mainly use three compared methods: LTSL [37], GFK [5], and
HOG-KNN. LTSL learns a common subspace by transfer learning between two
domains for objective and face recognition, which is performed through a low-rank
constraint. GFK calculates a common subspace by finding the correlation of the
two subspaces of source and target domains, which is an unsupervised method for
objective classification. The HOG-KNN does not use transfer learning as a baseline,
i.e., the source database is not used in the training phase.

In this section, we first introduce five different settings and then give some
properties of our method, like convergence and training time.

4.3.1 Tests of Training Settings

In this section, LTSL [37], GFK [5], and HOG-KNN are used for comparison in
different test settings. We adopt five testing groups in the target database, while the
source domain and target domain are employed for training (the left three parts), and
the new samples in target database (the fourth part) are used for testing, as Table 5.1
shows.

Test 1 In target domain, we set Training—Testing data: RGB-RGB tensor samples,
to testify the performance of the depth information transferred from the source
database X5 on the RGB sample classification.

Left of Table 5.2 shows the accuracy results of all the methods. It can be seen
that our result is around 10 % higher than the original space, which indicates that
it works when transferring depth information for RGB action testing. While the
LTSL and GFK are lower than the HOG-KNN, meaning the two methods have

Table 5.1 Training and Tests
testing settings for source and
target domain

Source domain | Target domain
Test1 |RGB |Depth |RGB | RGB
Test2 |RGB | Depth | Depth | Depth
Test3 |RGB | Depth | RGB | Depth
Test4 | RGB | Depth | Depth | RGB
Test5 |RGB | Depth | RGB |RGB-D
Training Testing
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Table 5.2 Accuracy (%) of left: Test 1 and right: Test 2

Test 1: RGB-RGB Test 2: Depth—Depth
Methods Casel |Case2 |Case3 | Case4 Methods Casel |Case2 | Case3 | Case4
GFK [5] 64.46 | 61.67 20.63 20.63 GFK [5] 71.59 | 74.58 | 36.25 39.38

LTSL [37] |57.85 |46.67 6.88 5.63 LTSL [37] |60.80 | 69.49 5.63 5.63
HOG-KNN | 76.03 | 64.17 19.38 | 18.13 HOG-KNN | 90.91 89.27 3438 3875
Ours 86.78 | 90.00 |40.00 |33.75 Ours 91.48 |92.09 |40.00 4125

Table 5.3 Accuracy (%) of left: Test 3 and right: Test 4

Test 3: RGB-Depth Test 4: Depth-RGB
Methods Casel |Case2 |Case3 | Case4 Methods Casel |Case2 |Case3 | Case4
GFK [5] 18.18 11.86 | 22.50 16.25 GFK [5] 7.44 19.17 15.63 14.38

LTSL [37] 10.80 7.34 6.88 5.00 LTSL [37] 7.44 | 12.50 5.63 5.00
HOG-KNN | 2273 |24.29 2875 |2625 HOG-KNN | 1240 |22.50 |17.50 | 16.88
Ours 3523 |31.07 |2938 3438 Ours 2314 2333 |35.00 |31.88

transferred negative knowledge about depth and are not suitable for RGB-D action
recognition. The result is reasonable because (1) in the object/face recognition,
there is NO complex background in the data, so the environmental interference is
very low compared to the human action data; (2) in the action recognition, there is
much larger diversity between two categories, which is different from the object/face
recognition containing the similar knowledge between two subjects.

Test 2 We set Training—Testing data: Depth—Depth tensor samples. Conversely,
we also want to know if RGB knowledge is transferred from the source database;
would it be helpful to improve the accuracy of the depth image recognition? So we
use the depth samples as the target data for training and other depth samples for
testing.

Right of Table 5.2 shows the results of depth testing, from which we can see the
depth samples perform better than the RGB samples for recognition in Test 1. The
accuracies of our method are shown in bold values, which are higher than others,
And compared with the Test 1, the transferred RGB information had minimal impact
for improving the performance when compared with HOG-KNN.

Test 3 We set Training—Testing data: RGB-Depth tensor samples. As we know,
the RGB and depth images are two different modalities, and the matching degree
will be low between them. However, if we transfer the knowledge of one modality
to another, it makes sense that the matching degree between different modalities
will increase, as the sharing information is transferred from the other database.
Left of Table 5.3 shows the results of all the compared methods. We can see the
accuracy is not as high as Test 1 and 2, because of the matching between the different
modalities. However, it shows that the transferred depth knowledge helps to improve
the performance by more than 10 % compared with the original space.
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Test 4 We set Training—Testing data: Depth—-RGB tensor samples. Considering
Test 3, we transferred some RGB information from source database to compensate
for the existing depth samples and to see the performance on the RGB action testing.
Right of Table 5.3 shows the results of RGB classification by the depth images. The
accuracies of our method are shown in bold values, which are higher than others.
We can see the transferred RGB information helped improve by more than 10 %, but
it shows that compensating depth knowledge in Test 3 works better than transferring
RGB information, as done for this test.

Test 5 We set Training—Testing data: RGB-RGB & Depth (RGB-D) tensor
samples. With RGB samples in the target database, can it be employed for new
RGB-D samples classification? We suppose to generate the new samples containing
both RGB and depth knowledge in the subspace, which align them with the testing
RGB-D sample. All the compared results for the RGB-D action recognition are
shown in Table 5.4. The accuracies of our method are shown in bold values, which
are higher than others. It shows that we can make use of the existing RGB images
to classify the new RGB-D samples and achieve better performance by transferring
the depth knowledge from other known RGB-D databases.

According to the five tests presented, all the tables show that our method
performs better than the original space, which means the transfer learning between
the two modalities does work for action recognition. And some other transfer
methods, which work well on the RGB objective and face recognition, may transfer
the negative knowledge of the RGB or depth action samples (Fig.5.5).

Table 5.4 Accuracy (%) of Test 5: RGB-(RGB-D)
Methods Casel | Case2 |Case3 |Case4
GFK [5] 37.04 3199 |21.56 |18.44
LTSL [37] |23.23 |23.23 6.88 5.31
HOG-KNN 42.09 4040 |24.06 |22.19
Ours 5185 5152 (3438 |33.44

Test 5

Fig. 5.5 Illustration of mode-3 feature obtained by Us. Left: RGB samples; Medium: Correspond-
ing HOG feature; Right: mode-3 feature
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Fig. 5.6 Mode-n 1
(n =1, 2, 3) error with
different number of iterations sl
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Table 5.5 Training time cost Methods GFK [5] LTSL [37] Ours
of methods T : : :
Training time | 5 min 10 min 0.5 min

4.3.2 Convergence and Training Time

We use the [Test 1: Case 1] introduced in Sect. 4.2.1 to analyze the properties of the
convergence and constraint term. Figure 5.6 shows the error for a different number
of iterations. The convergence condition is given in Algorithm 1. We can see the
curves are stable within 50 iterations.

We also compare our method with GFK [5] and LTSL [37] on the training time.
We use MSR daily action 3D as source data and MSR pair action 3D as target data.
All the tests are run on a PC (Intel Xeon E5 2650 CPU at 2.00 GHz and 128 GB
memory). Results shown in Table 5.5 indicate that our method is significantly faster
than the GFK method and the LTSL method. Our method spent 0.5 min training,
which is 10 x faster than the GFK method and 20 x faster than the LTSL method.

4.4 Discussion

In this section, we discuss the results of the experiments. For action recognition
by transferring missing knowledge from an existing source database, we did some
experiments on the common RGB-D databases. MSR daily action 3D and MSR pair
action 3D got results compared with the state-of-the-art transfer methods, LTSL and
GFK. The experiments of different setting testified our previous expectation, and we
present a discussion to follow.

First, our method can outperform other compared algorithms. In this chapter, we
aim to improve the performance of recognition by transferring the depth information
from the source domain to the target, using a latent low-rank framework. Test 1 and 2
were not traditional transfer learning cases, so that LTSL and GFK perform worse
than the HOG-KNN method, as they would transfer more negative information from
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another database. Another reason, we consider, is that those traditional transfer
learning methods do not consider the latent information and the cross-modality
structure, so they would fail to transfer the depth information; on the contrary, they
add more negative RGB information from the source data.

Second, we use two databases made up of different action categories. Therefore,
there is a large difference between two action categories, for example, pushing
a chair and sitting on the sofa, which are very different from the object/face
recognition. For instance, two faces from various people contain more similar
information, as the location of eyes and mouth can match respectively easily. So
it makes sense that the state-of-the-art transfer methods do not work well in the
situation of limited common knowledge. Notice the source database is related to the
target database to some extent; they should have similar visual contents, e.g., limbs
moving. Besides, we can see results from different cases and find that our method
performs well on the action recognition, regardless of the complex background,
meaning it is more robust than the other transfer methods that mainly rely on simple
experimental situation.

5 Summary

We addressed the problem by transferring depth information to the target RGB
action data (depth data is not available in the target data) and used both RGB
data and the learned depth data for action recognition. A novel transfer learning
method was proposed to use a RGB-D dataset as the source data and to learn a
shared subspace for RGB and depth data. The learned knowledge about the depth
information was then effectively transferred to the target data to enrich action
representations. Extensive experiments shows that our method achieved superior
performance over existing methods.
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Chapter 6
Activity Prediction

Yu Kong and Yun Fu

1 Introduction

Human action recognition [8, 11, 18, 19] is one of the active topics in the computer
vision community, and has a broad range of applications, for example, video
retrieval, visual surveillance, and video understanding.

After fully observing the entire video, action recognition approaches will classify
the video observation into one of the action categories. It should be noted that
certain real-world applications (e.g., vehicle accident and criminal activity) do not
allow the luxury of waiting for the entire action to be executed. Reactions must be
performed in a prompt to the action. For instance, it is extremely important to predict
a dangerous driving situation before any vehicle crash occurs. Unfortunately, a
majority of the existing action recognition approaches are limited to such particular
scenarios since they must fully observe the action sequence extracted from the
video.

One of the major differences between action prediction and action recogni-
tion is that action video data arrive sequentially in action prediction. However,
action recognition takes the full observation as input. The key to perform early
classification accurately is to extract the most discriminative information from the
beginning segments in a temporal sequence. Furthermore, it is also important to
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Fig. 6.1 Our method predicts action label given a partially observed video. Action dynamics are
captured by both local templates (solid rectangles) and global templates (dashed rectangles)

effectively utilize history action information. The confidence of history observations
is expected to increase since action data are progressively arriving in action
prediction.

A novel multiple temporal scale support vector machine (MTSSVM) [9] is
proposed in this chapter for early classification of unfinished actions. In MTSSVM,
a human action is described at two different temporal granularities (Fig. 6.1). This
allows us to learn the evolution and dynamics of actions, and make prediction
from partially observed videos with temporally incomplete action executions. The
sequential nature of human actions is considered at the fine granularity by local
templates in the MTSSVM. The label consistency of temporal segments is enforced
in order to maximize the discriminative information extracted from the segments.
Note that the temporal orderings of inhomogeneous action segments is also captured
by the temporal arrangement of these local templates in an implicit manner.

MTSSVM also capture history action information using coarse global templates.
Different from local templates, the global templates characterize action evolutions
at various temporal length, ranging from the beginning of the action video to the
current frame. This global action information is effectively exploited in MTSSVM
to differentiate between action categories. For instance, the key feature for differ-
entiating action “push” from action “kick” is the motion “arm is up”. Our model
is learned for describing such increasing amount of information in order to capture
featured motion evolution of each action class.

A new convex learning formulation is proposed in this chapter to consider the
essence of the progressively arriving action data. The formulation is based on the
structured SVM (SSVM), with new constraints being added. The label consistency
is enforced between the full video and its containing temporal segments. This
allows us to extract the discriminative information as much as possible for action
prediction. Furthermore, a principled monotonic scoring function is modelled for
the global templates. This scoring function enables us to utilize the fact that useful
information is accumulating with the action data progressively arriving. We show
that our new learning formulation can be efficiently solved using a standard SSVM
solver. In addition, we demonstrate that the formulation essentially minimizes the
upper bound of the empirical risk of the training data.
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2 Related Work

Action Recognition A popular representation for human actions is called bag-
of-words approach, which characterizes the actions by a set of quantized local
spatiotemporal features [3, 16, 18, 27]. Bag-of-words approach can capture local
motion characteristics and insensitive to background noise. Nevertheless, it does not
build expressive representation when large appearance and pose variations occur
in videos. Researchers address this problem by integrating classification models
with human knowledge and representing complex human actions by semantic
descriptions or attributes [7, 8, 11]. Other solutions such as learning actions from
a set of key frames [13, 23] or from status images [25, 26] have also been studied as
well. Nevertheless, a majority of current action recognition algorithms are expected
to fully observe actions before making predictions. This assumption hinders these
algorithms from the task that human actions must be predicted when only partial of
the action videos is observed.

Human actions can also be modeled as temporal evolutions of appearance or
pose. This line of approaches generally utilize sequential state models [12, 20, 21,
24] to capture such evolutions, where a video is treated as an ordered temporal
segments. However, the relationship of temporal action evolution in reference to
observation ratios is not considered in these approaches, making them improper for
action prediction. In comparison, the progressive data arrival is simulated in our
approach. Large scale temporal templates are used to model action evolutions from
the first frame to the current observed one. Hence, unfinished actions at various
observation ratios can be accurately recognized using our approach.

Action Prediction The goal of action prediction is to recognize unfinished action
execution from partial videos. The integral bag-of-words (IBoW) and dynamic
bag-of-words (DBoW) approaches were proposed in [15] for action prediction.
These two approaches compute the mean of features in the same action category
at the same progress level, and use the mean as the model for each progress level.
Nevertheless, the constructed models are sensitive to outliers due to large intra-class
appearance variations. This problem was overcome by [1], in which representative
action models are built using the sparse coding technique. Results demonstrate that
the proposed method achieves superior performance over the IBoW and DBoW
approaches. All these method deal with short-duration action prediction problem,
while long-duration problem was explored in [10]. One limitation of [10] is that
the temporal segments are detected using motion velocity peaks that are very
difficult to obtain in real-world outdoor datasets. Different from existing work
[1, 10, 15], our prediction model integrates a crucial prior knowledge that the
amount of useful information is accumulating with the arriving of new observations.
This important prior information is not utilized in their methods. Furthermore, the
proposed approach takes label consistency of segments into account, but it is not
considered in their methods. Thanks to the label consistency, our approach is able to
extract discriminative information in local segments and captures temporal ordering
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information implicitly. In addition, our model captures action dynamics at multiple
scales while [1, 15] only capture the dynamics at one single scale.

Besides action prediction, [4] investigated early event detection problem. Their
method can localize the beginning and ending frames given an unfinished event
video. Kitani et al. [6] studied the problem of activity forecasting. The approach is
able to reason the optimal path for a person to go from location A to location B.

3 Our Method

The aim of this work is to predict the action class y of a partially observed action
video x[1, #] before the action ends. Here 1 and ¢ in x[1, ¢] indicate the indices of the
starting frame and the last observed frame of the partial video x[1, 7], respectively.
Index ¢ ranges from 1 to length T of a full video x[1,7]: t € {1,...,T}, to
generate different partial videos. An action video is usually composed of a set
of inhomogeneous temporal units, which are called segments. In this work, we
uniformly divide a full video x[1,7] into K segments x[% (=1 + 1,% -],
where [ = 1,..., K is the index of segment. The length of each segment is % Note
that for different videos, their lengths 7 may be different. Therefore, the length
of segments of various videos may be different. For simplicity, let x be the kth
segment x[% (k—1)+1, % -k] and x(; 1) be the partially observed sequence x[1, % -]
(see Fig. 6.2). The progress level k of a partially observed video is defined as the
number of observed segments that the video has. The observation ratio is the ratio
of the number of frames in a partially observed video x[1, f] to the number of frames
in the full video x[1, T, which is % For example, if T = 100, t = 30 and K = 10,
then the progress level of the partially observed video x[1, #] is 3 and its observation
ratio is 0.3.

Partially observed video.
t=1  Progress level = k. t=T

o " p
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8 ;{I- uh ( g(x“_k)’k) ﬁ] g(x(,,k),l )

Fig. 6.2 Example of video segments x, partial video x; 1), feature representations g(x(i x), /) of
segments (! = 1,..., k), and the representation of the partial video g(x(i x), 1 : k)
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3.1 Action Representations

We use the bag-of-words models to represent segments and partial videos. The
procedure of learning the visual word dictionary for action videos is as follows.
Spatiotemporal interest points detector [3] and tracklet [14] are employed to extract
interest points and trajectories from a video, respectively. The dictionaries of visual
words are learned by clustering algorithms.

We denote the feature of the partial video x(; x at progress level k by g(x(1 4, 1:k),
which is the histogram of visual words contained in the entire partial video, starting
from the first segment to the kth segment (Fig. 6.2). The representation of the /th
(I e{l,...,k}) segment x; in the partial video is denoted by g(x( 1), /), which is a
histogram of visual words whose temporal locations are within the /th segment.

3.2 Model Formulation

Let D = {x;,y:})_, be the training data, where x; is the ith fully observed action
video and y; is the corresponding action label. The problem of action prediction is
to learn a function f : X — ), which maps a partially observed video x(; x) € X to
an action label y € Y (k € {1, ...,K}).

We formulate the action prediction problem using the structured learning as
presented in [22]. Instead of searching for f, we aim at learning a discriminant
function F : Xx) — R to score each training sample (x, y). The score measures the
compatibility between a video x and an action label y. Note that, in action prediction,
videos of different observation ratios from the same class should be classified as the
same action category. Therefore, we use the function F' to score the compatibility
between the videos of different observation ratios x(; x) and the action label y, where
k € {1,...,K} is the progress level.

We are interested in a linear function F(x(j g, y; W) = (W, ®(x(14),y)), which is
a family of functions parameterized by w, and ®(x(; x), y) is a joint feature map that
represents the spatio-temporal features of action label y given a partial video xj k).
Once the optimal model parameter w* is learned, the prediction of the action label
y* is computed by

y* = argmax F(x( x),y; W*) = arg max(w*, ®(xq.x).)). 6.1)
yey yey

We define WTQD(x(Lk) ,y) as a summation of the following two components:

K

W O(x(.y) = a1 (xap.y) + Z [1(1 <k)- ﬂ;T%(x(Lk),y)], (6.2)
=1
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where w = {ay,...ax, B1,..., Bk} is model parameter, k is the progress level of
the partial video x(1 1), [ is the index of progress levels, and 1(-) is the indicator
function. The two components in Eq. (6.2) are summarized as follows.

Global progress model (GPM) a{wl (x(1 5. y) indicates how likely the action
class of an unfinished action video x(; 1) (at progress level k) is y. We define GPM as

Y1 (i, y) = Y a1y = a)g(xan, 1 k). (6.3)
acy

Here, feature vector g(x(ix), 1 : k) of dimensionality D is an action representation
for the partial video x(; 1), where features are extracted from the entire partial video,
from its beginning (i.e., progress level 1) to its current progress level k. Parameter
ay of size D x || can be regarded as a progress level-specific template. Since the
partial video is at progress level k, we select the template ¢, at the same progress
level, from K parameter matrices {1, ..., ak}. The selected template oy is used
to score the unfinished video x(; ). Define A = [o, ..., ak] as a vector of all the
parameter matrices in the GPM. Then A is a vector of size D x K x |)| encoding the
weights for the configurations between progress levels and action labels, with their
corresponding video evidence.

The GPM simulates the sequential segment-by-segment data arrival for training
action videos. Essentially, the GPM captures the action appearance changes as the
progress level increases, and characterizes the entire action evolution over time. In
contrast to the IBoW model [15], our GPM does not assume any distributions on the
data likelihood; while the IBoW model uses the Gaussian distribution. In addition,
the compatibility between observation and action label in our model is given by the
linear model of parameter and feature function, rather than using a Gaussian kernel
function [15].

Local progress model (LPM) 1(/ < k) - ﬂlTl//z (x(1,6),y) indicates how likely the
action classes of all the temporal segments x;) (I = 1, ..., k) in an unfinished video
X(1,k) are all y. Here, the progress level of the partial video is k and we consider all
the segments of the video whose temporal locations / are smaller than k. We define
LPM as

Bl V2 (x1i.y) = Y BIG = a)g(xan. D, (6.4)

acey

where feature vector g(x(i ), !) of dimensionality D extracts features from the /th
segment of the unfinished video x(; 1. B; of size D x || is the weight matrix for
the /th segment. We use the indicator function 1(! < k) to select all the segment
weight matrices, B, ..., Br, whose temporal locations are smaller than or equal
to the progress level k of the video. Then the selected weight matrices are used
to score the corresponding segments. Let B = [f1, ..., Bg] be a vector of all the
parameters in the LPM. Then B is a vector of size D x K x || encoding the weights
for the configurations between segments and action labels, with their corresponding
segment evidence.
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The LPM considers the sequential nature of a video. The model decomposes
a video of progress level k into segments and describes the temporal dynamics
of segments. Note that the action data preserve the temporal relationship between
the segments. Therefore, the discriminative power of segment x is critical to the
prediction of x(; x) given the prediction results of x(; x—1). In this work, the segment
score B g(x k), k) measures the compatibility between the segment x) and all
the classes. To maximize the discriminability of the segment, the score difference
between the ground-truth class and all the other classes is maximized in our learning
formulation. Thus, accurate prediction can be achieved using the newly introduced
discriminative information in the segment x.

3.3 Structured Learning Formulation

The MTSSVM is formulated based on the SSVM [5, 22]. The optimal model
parameter w* of MTSSVM in Eq. (6.1) is learned by solving the following convex

problem given training data {x;, y;}\_;:
N
min l||w||2 + ¢ Z(Eu + &+ &3) (6.5)
2 N pn
SL W Q. ) = W i . 3) + K80, 30) — - (,f}"K), Vi.Vk.Vy,  (6.6)
. : £
@ Y1 (Xiap, i) = @ Vi (Xia-1), y) + K80y, i) — u(k/K)’
Vi,k=2,...,K,VYy,
(6.7)
: i) = BL i kKS(y, yi) — S Vi, Vk, ¥V
ﬂk’ﬁz(x(k)»)’) ﬂkWZ(x(k)’y)"‘ (. i) u(l/K)’ LVKE VY,
(6.8)

where C is the slack trade-off parameter similar to that in SVM. &y;, &y;, and &;; are
slack variables. u(-) is a scaling factor function: u(p) = p. 8(y,y;) is the 0-1 loss
function.

The slack variables &;; and the Constraint (6.6) are usually used in SVM
constraints on the class labels. We enforce this constraint for all the progress
levels k since we are interested in learning a classifier that can correctly recognize
partially observed videos with different progress levels k. Therefore, we simulate
the segment-by-segment data arrival for training and augment the training data with
partial videos of different progress levels. The loss function §(y, y;) measures the
recognition error of a partial video and the scaling factor u(%) scales the loss based
on the length of the partial video.
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Fig. 6.3 Graphical illustration of the temporal action evolution over time and the label consistency
of segments. Blue solid rectangles are LPMs, and purple and red dashed rectangles are GPMs

Constraint (6.7) considers temporal action evolution over time (Fig. 6.3). We
assume that the score aTwl(xi(l,k), y;) of the partial observation x; x) at progress
level k and ground truth label y; must be greater than the score OtTwl(x,-(l‘k_l), y)
of a previous observation x;(; x—1) at progress level kK — 1 and all incorrect labels y.
This provides a monotonically increasing score function for partial observations and
elaborately characterizes the nature of sequentially arriving action data in action
prediction. The slack variable &; allows us to model outliers.

The slack variables &3; and the Constraint (6.8) are used to maximize the
discriminability of segments x(). We encourage the label consistency between
segments and the corresponding full video due to the nature of sequential data
in action prediction (Fig.6.3). Assume a partial video x(; -1y has been correctly
recognized, then the segment x( is the only newly introduced information and its
discriminative power is the key to recognizing the video x(; x). Moreover, context
information of segments is implicitly captured by enforcing the label consistency. It
is possible that some segments from different classes are visually similar and may
not be linearly separable. We use the slack variable &;; for each video to allow some
segments of a video to be treated as outliers.

Empirical Risk Minimization We define A(y;,y) as the function that quantifies
the loss for a prediction y, if the ground-truth is y;. Therefore, the loss of a
classifier f(-) for action prediction on a video-label pair (x;,y;) can be quantified
as A(y;,f(x;)). Usually, the performance of f(-) is given by the empirical risk
Remp(f) = % Zﬁy:l A(y;,f(x;)) on the training data (x;, y;), assuming data samples
are generated i.i.d.

The nature of continual evaluation in action prediction requires aggregating the
values of loss quantities computed during the action sequence process. Define the
loss associated with a prediction y = f(x1 ) for an action x; at progress level
k as A(y;, y)u(%). Here A(y;, y) denotes the misclassification error, and u(%) is the
scaling factor that depends on how many segments have been observed. In this work,
we use summation to aggregate the loss quantities. This leads to an empirical risk

for N training samples: Remp(f) = % Y ey > pey {AGH Y)u(£)}.
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Denote by &7, &5 and & the optimal solutions of the slack variables in Eq. (6.5)—
(6.8) for a given classifier f, we can prove that + P (&5 + &, + &5 is an upper
bound on the empirical risk Remp(f) and the learning formulation given in Eq. (6.5)—
(6.8) minimizes the upper bound of the empirical risk Remp (f).

3.4 Discussion

We highlight here some important properties of our model, and show some
differences from existing methods.

Multiple Temporal Scales Our method captures action dynamics in both local and
global temporal scales, while [1, 4, 15] only use a single temporal scale.

Temporal Evolution Over Time Our work uses the prior knowledge of temporal
action evolution over time. Inspired by [4], we introduce a principled monotonic
score function for the GPM to capture this prior knowledge. However, [4] aims at
finding the starting frame of an event while our goal is to predict action class of an
unfinished video. The methods in [1, 10, 15] do not use this prior.

Segment Label Consistency We effectively utilize the discriminative power of
local temporal segments by enforcing label consistency of segments. However,
[1, 4, 10, 15] do not consider the label consistency. The consistency also implicitly
models temporal segment context by enforcing the same label for segments while
[1, 4, 15] explicitly treat successive temporal segments independently.

Principled Empirical Risk Minimization We propose a principled empirical risk
minimization formulation for action prediction, which is not discussed in [1, 10, 15].

3.5 Model Learning and Testing

Learning We solve the optimization problem (6.5)-(6.8) using the regularized
bundle algorithm [2]. The basic idea of the algorithm is to iteratively approximate
the objective function by adding a new cutting plane to the piecewise quadratic
approximation.

The equivalent unconstrained problem of the optimization problem (6.5)—(6.8) is
miny %||w||2 + ]% - L(w), where L(w) = Zflzl(U[ + Z; + V;) is the empirical loss.
Here, U;, Z;, and V; are given by

K
k
U, = E u (}) max I:KS(Y»yi) + WD (i1 4y, y) — WTCD(xi(l.,k)J’i)ij (6.9)
=1
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K
k
Zi= Z u (}) max [KS(y,y,-) + o Y1 (i), ¥) — @ Y (xi(l.k)»yi):l»
(6.10)

Ko
Vi= Z u (g) max [kKS(%yz‘) + By (xiw), y) — ﬂzl/fZ(xi(k)sYi)]- (6.11)

The regularized bundle algorithm requires the subgradient of the training loss
with respect to the parameter, g—va = vazl (% + % + %), in order to find a new
cutting plane to be added to the approximation.

Testing Given an unfinished action video with progress level k (k is known in
testing), our goal is to infer the class label y* using the learned model parameter
w*y* = argmax; ey, (W*, @(x(14),y)). Note that testing phase does not require
sophisticated inference algorithms such as belief propagation or graph cut since we
do not explicitly capture segment interactions. However, the context information
between segments is implicitly captured in our model by the label consistency in
Constraint (6.8).

4 Experiments

We test the proposed MTSSVM approach on three datasets: the UT-Interaction
dataset (UTI) Set 1 (UTT #1) and Set 2 (UTI #2) [17], and the BIT-Interaction
dataset (BIT) [7]. UTI #1 were taken on a parking lot with mostly static background
and little camera jitters. UTI #2 were captured on a lawn with slight background
movements (e.g., tree moves) and camera jitters. Both of the two sets consist of
six types of human actions, with ten videos per class. We adopt the leave-one-
out training scheme on the two datasets. The BIT dataset consists of eight types
of human actions between two people, with 50 videos per class. For this dataset,
a random sample of 272 videos is chosen as training samples, and the remaining
128 videos are used for testing. The dictionary size for interest point descriptors is
set to 500, and the size for tracklet descriptors is automatically determined by the
clustering method in all the experiments.

MTSSVM is evaluated for classifying videos of incomplete action executions
using ten observation ratios, from 0.1 to 1, representing the increasing amount of
sequential data with time. For example, if a full video containing 7" frames is used
for testing at the observation ratio of 0.3, the accuracy of MTSSVM is evaluated
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by presenting it with the first 0.3 x T frames. At observation ratio of 1, the entire
video is used, at which point MTSSVM acts as a conventional action recognition
model. The progress level k of testing videos is known to all the methods in our
experiments.

4.1 Results

UTI #1 and UTI #2 Datasets The MTSSVM is compared with DBoW and IBoW
in [15], the MMED [4], the MSSC and the SC in [1], and the method in [13]. The
KNN-nonDynamic, the KNN-Dynamic, and the baseline method implemented in
[1] are also used in comparison. The same experiment settings in [1] are followed
in our experiments.

Figure 6.4a shows the prediction results on the UTI #1 dataset. Our MTSSVM
achieves better performance over all the other comparison approaches. Our method
outperforms the MSSC method because we not only model segment dynamics
but also characterize temporal evolutions of actions. Our method can achieve an
impressive 78.33 % recognition accuracy when only the first 50 % frames of testing
videos are observed. This result is even higher than the SC method with full
observations. Results of our method are significantly higher than the DBoW and
IBoW for all observation ratios. This is mainly due to the fact that the action models
in our work are discriminatively learned while the action models in the DBoW and
IBoW are computed by averaging feature vectors in a particular class. Therefore, the
action models in the DBoW and IBoW may not be the representative models and are
sensitive to outliers. MMED does not perform well as other prediction approaches
since it is optimized for early detection of the starting and ending frame of an action.
This is a different goal from this chapter, which is to classify unfinished actions. We
also compare with [13] on half and full video observations. Results in Table 6.1
show that our method achieves better performance over [13].
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Fig. 6.4 Prediction results on the (a) UTI #1, (b) UTI #2, and (c) BIT datasets
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Table 6.1 Prediction results compared with [13] on half and full videos

Observation ratio Accuracy with half videos (%) | Accuracy with full videos (%)
Raptis and Sigal [13] | 73.3 93.3
Our model 78.33 95

Comparison results on the UTI #2 datasets are shown in Fig. 6.4b. The MTSSVM
achieves better performance over all the other comparison approaches in all the
cases. At 0.3, 0.5, and 1 observation ratios, MSSC achieves 48.33 %, 71.67 %, and
81.67 % prediction accuracy, respectively, and SC achieves 50 %, 66.67 %, and 80 %
accuracy, respectively. By contrast, our MTSSVM achieves 60 %, 75%, and 83.33 %
prediction results, respectively, which is consistently higher than MSSC and SC.
Our MTSSVM achieves 75 % accuracy when only the first 50 % frames of testing
videos are observed. This accuracy is even higher than the DBoW and IBoW with
full observations.

To demonstrate that both the GPM and the LPM are important for action
prediction, we compare the performance of MTSSVM with the model that only
uses one of the two sources of information on the UTI #1 dataset. Figure 6.5 shows
the scores of the GPM and LPM (e} ¥, (x5, y) of the GPM and Y0 1(I <
k) - B ¥2(xax),y) of the LPM), and compare them to the scores of the full
MTSSVM model with respect to the observation ratio. Results show that the
LPM captures discriminative temporal segments for prediction. LPM characterizes
temporal dynamics of segments and discriminatively learns to differentiate segments
from different classes. In most cases, the score of LPM is monotonically increasing,
which indicates a discriminative temporal segment is used for prediction. However,
in some cases, segments from different classes are visually similar and thus are
difficult to discriminate. Therefore, in the middle of the “handshake” class and the
“hug” class in Fig. 6.5 (observation ratio from 0.3 to 0.7), adding more segment
observations does not increase LPM’s contribution to MTSSVM. Figure 6.6 shows
examples of visually similar segments of the two classes at k = 6. However, when
such situations arise, GPM can provide necessary appearance history information
and therefore increases the prediction performance of MTSSVM.

BIT-Interaction Dataset We also compare MTSSVM with the MSSC, SC, DBoW
and IBoW on the BIT-Interaction dataset. A BoW+SVM method is used as a
baseline. The parameter o in DBoW and IBoW is set to 36 and 2, respectively, which
are the optimal parameters on the BIT-Interaction dataset. Results shown in Fig. 6.4c
demonstrate that MTSSVM outperforms MSSC and SC in all cases due to the effect
of the GPM, which effectively captures temporal action evolution information.
MTSSVM also outperforms the DBoW and IBoW. Our method achieves 60.16 %
recognition accuracy with only the first 50 % frames of testing videos are observed,
which is better than the DBoW and IBoW at all observation ratios. Note that the
performance of DBoW and IBoW does not increase much when the observation
ratios are increased from 0.6 to 0.9. The IBoW performs even worse. This is due
to the fact that some video segments from different classes are visually similar;
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Fig. 6.6 Examples of segments in “handshake” and “hug”. Segments k = 6,8, 10 in the two

classes are visually similar

especially, the segments in the second half of the videos, where people return to
their starting positions (see Fig. 6.7). However, because MTSSVM models both the
segments and the entire observation, its performance increases with the increasing
of observation ratio even if the newly introduced segments contain only a small

amount of discriminative information.

We further investigate the sensitivity of MTSSVM to the parameters C in
Eq.(6.5). We set C to 0.5, 5, and 10, and test MTSSVM on all parameter
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Pushing

k=2 k=4 k=6 k=8 k=10

Fig. 6.7 Examples of visually similar segments in the “boxing” action (7op) and the “pushing”
action (Bottom) with segment index k € {2,4,6,8,10}. Bounding boxes indicate the interest
regions of actions

Table 6.2 fReCOg“Ei‘l’“ Observation ratio | C = 0.5 (%) | C=5(%) | C = 10 (%)
accuracy of our model on

videos of observation ratio 03 4297 39.84 38.28

0.3, 0.5, and 0.8 with 0.5 54.69 57.03 51.56
different C parameters 0.8 66.41 61.72 55.47

combinations with observation ratios 0.3, 0.5, and 0.8. Results in Table 6.2 indicate
that MTSSVM is not sensitive to the parameters when the observation ratio
is low but the sensitivity increases when the observation ratio becomes large.
In the beginning of a video, the small number of features available does not
capture the variability of their class. Therefore, it does not help to use different
parameters, because MTSSVM cannot learn the appropriate class boundaries to
separate all the testing data. As observation ratio increases, the features become
more expressive. However, since structural features in MTSSVM are very complex,
appropriate parameters are required to capture the complexity of data.

Finally, we also evaluate the importance of each component in the MTSSVM,
including the Constraint (6.7), the Constraint (6.8), the local progress model [LPM
in Eq. (6.4)], and the global progress model [GPM in Eq. (6.3)]. We remove each of
these components from the MTSSVM, and obtain four variant models, the no-cons2
model [remove the Constraint (6.7) from MTSSVM], the no-cons3 model [remove
the Constraint (6.8)], the no-LPM model [remove the LPM and Constraint (6.8)],
and the no-GPM model [remove the GPM and Constraint (6.7)]. We compare
MTSSVM with these variants with parameter C of 1 and 100. Results in Fig. 6.8
show that the GPM is the key component in the MTSSVM. Without the GPM, the
performance of the no-GPM model degrades significantly compared with the full
MTSSVM model, especially with parameter C of 100. The performances of the no-
cons3 model and the no-LPM model are worse compared with the full method in
all cases. This is due to the lack of the segment label consistency in the two models.
The label consistency can help use the discriminative information in segments and
also implicitly model context information. In the ending part of videos in BIT
dataset, since most of the observations are visually similar (people return back to
their normal position), label consistency is of great importance for discriminating
classes. However, due to the lack of label consistency in the no-cons3 model and the
no-LPM model, they cannot capture useful information for differentiating action
classes.
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Fig. 6.8 Prediction results of each component in the full MTSSVM with C parameter (a) 1 and
(b) 100

5 Summary

We have proposed the MTSSVM for recognizing actions in incomplete videos.
MTSSVM captures the entire action evolution over time and also considers the
temporal nature of a video. We formulate the action prediction task as a SSVM
learning problem. The discriminability of segments is enforced in the learning
formulation. Experiments on two datasets show that MTSSVM outperforms state-
of-the-art approaches.
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Chapter 7
Actionlets and Activity Prediction

Kang Li and Yun Fu

1 Introduction

The increasing ubiquitousness of multimedia information in today’s world has
positioned video as a favored information vehicle, and given rise to an astonishing
generation of social media and surveillance footage. One important problem that
will significantly enhance semantic-level video analysis is activity understanding,
which aims at accurately describing video contents using key semantic elements,
especially activities. We notice that in case a time-critical decision is needed, there is
a potential to utilize the temporal structure of videos for early prediction of ongoing
human activity.

In recent years, research shows that modeling temporal structure is a basic
methodology for recognition of complex human activity [6, 20, 42]. These studies
extend the types of human activity that can be understood by machine vision
systems. Advances in this field made an important application become real:
predicting activities or imminent events from observed actions or events in the video.
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Many intelligence systems can benefit from activity prediction. For instance, in the
sports video analysis, the capability of predicting the progress or results of a sports
game is highly desirable. In public areas, we want to equip a surveillance system
that can raise an alarm in advance of any potential dangerous activity happens.
In a smart room, people’s intention of activity can be predicted by a user-friendly
sensor—camera, so that the system will adaptively provide services, even help if
necessary.

Though activity prediction is a very interesting and important problem, it is quite
a new topic for the domain of computer vision. One well-known challenge is the
long-standing semantic gap between computable low-level features and semantic
information that they encode. To the best of our knowledge, the work in [46]
is the only one that explicitly focused on this problem. They identified activity
prediction with early detection of short-duration single action, such as “hugging,”
“pushing.” This assumption limits the types of activities that can be predicted as
well as how early the prediction can be made. We believe that activity prediction is
more desirable and valuable if it focuses on long-duration complex activities, such
as “making a sandwich.” The early detection problem can be solved in the classic
recognition paradigm by predicting directly on low-level feature representations.
Our approach aims to solve the long duration prediction problem with a completely
different framework, where semantic-level understanding and reasoning are our
focus.

Specifically, in this chapter, we present a novel approach for predicting long-
duration complex activity by discovering the causal relationships between con-
stituent actions and predictable characteristic of the activities. The key of our
approach is to utilize the observed action units as context to predict the next
possible action unit, or predict the intension and effect of the whole activity. It is
thus possible to make predictions with meaningful earliness and have the machine
vision system provide a time-critical reaction. We represent complex activities as
sequences of discrete action units, which have specific semantic meanings and clear
time boundaries. To ensure a good discretization, we propose a novel temporal
segmentation method for action units by discovering the regularity of motion
velocities. We argue that the causality of action units can be encoded as Markov
dependencies with various lengths, while the predictability can be characterized by
a predictive accumulative function (PAF) learned from information entropy changes
along every stage of activity progress.

Additionally, according to cognitive science, context information is critical for
understanding human activities [10, 21, 23, 25, 28, 35, 55], which typically occur
under particular scene settings with certain object interactions. So for activity
prediction, it needs to involve not only actions, but also objects and their spatial
temporal arrangement with actions. Such knowledge can provide valuable clues
for two questions ‘what is happening now?’ and ‘what is goanna happen next?’.
Therefore, a unified approach is expected to provide unexplored opportunities to
benefit from mutual contextual constraints among actions and objects. When a
particular {action, object) pair is observed, the whole plan of human behavior may
be inferred immediately. For example, as long as we observe ‘a person grabbing
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Fig. 7.1 Frameworks of long-duration complex activity prediction. Two scenarios: (1) Action-
only activity prediction. (2) Context-aware activity prediction. The particular activity shown in the
sample video is “making mashed potatoes.” The video data is from [44]. Our approach aims to
solve activity prediction problem in both cases

a cup,” we probably can tell s/he is going to drink a beverage. In this chapter, we
will introduce both an action-only model [33] and a context-aware model [32]. We
utilize sequential pattern mining (SPM) to incorporate the context information into
actions which together can be represented as enriched symbolic sequences.

Overall, we propose a generalized activity prediction framework, which has four
major components as shown in Fig. 7.1: (1) a visual concept detection module, (2) an
action-only causality model, (3) a context-aware causality model, and (4) a pre-
dictability model. In order to test the efficacy of our method, evaluations were done
on two experimental scenarios with two datasets for each: action-only prediction and
context-aware prediction. Our method achieved superior performance for predicting
global activity classes and local action units.

1.1 Related Work

In general, there are three categories of works that are mostly related to ours:
complex activity recognition, early detection of actions or events,'! and event
prediction in Al

Complex Activity Recognition Recently, there has been a surge in interest in
complex activity recognition by involving various structural information represented

Concepts “action” and “event” are always interchangeably used in computer vision and other Al
fields. In our discussion, we prefer to use “action” when referring human activity, and use “event”
to refer more general things, such as “stock rising.”
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by spatial or temporal logical arrangements of several activity patterns. Most
works aim to provide a good interpretation of complex activity. However, in
many cases, inferring the goal of agents and predicting their plausible intended
action are more desirable. Grammar based methods [24, 47] show effectiveness for
composite human activity recognition. Pei et al. [42] proposed to deal with goal
inference and intent prediction by parsing video events based on a stochastic context
sensitive grammar (SGSG) which is automatically learned according to [48]. The
construction of the hierarchical compositions of spatial and temporal relationships
between the sub-events is the key contribution of their work. Without a formal
differentiation between activity recognition and activity prediction, their system
is actually doing an online detection of interesting events. Two important aspects
for prediction, the earliness and the causality are missing in their discussion. The
syntactic model is a very powerful tool for representing activities with high-level
temporal logic complexity. Hamid et al. [20] proposed the idea that global structural
information of human activities can be encoded using a subset of their local event
sequences. They regarded discovering structure patterns of activity as a feature
selection process. Although rich temporal structure information was encoded, they
did not consider prediction possibility from that point.

Although not directly dealing with activity prediction, several notable works
present various ways to handle activity structure. Logic based methods are powerful
in incorporating human prior knowledge and have a simple inference mecha-
nism [7]. To model temporal structure of decomposable activities, Gaidon et al.
[17] and Niebles et al. [41] extended the classic bag-of-words model by including
segmentation and dynamic matching. Kwak et al. [29] and Fan et al. [16] regarded
complex activity recognition as a constrained optimization problem. Wang et al. [54]
introduced the actionlet ensemble model, in which spatial structures of the features
were encoded.

Early Detection of Action/Events It is important to distinguish between early
detection and prediction. Essentially they are dealing with prediction in different
semantic granularity. Early detection tries to recognize an ongoing atomic action
from observation of its early stage. For example, an action of “handshaking” can
be early detected by just observing “outstretched hand.” However, for activity
prediction, it tries to infer the intention or a higher level activity class with
observation of only a few action units.

Ryoo [46] argued that the goal of activity prediction is to recognize unfinished
single actions from observation of its early stage. Two extensions of bag-of-words
paradigm, dynamic BoW and integral BoW are proposed to handle the sequential
nature of human activities. Cao et al. [9] extended Ryoo’s work to recognize human
activities from partially observed videos, where an unobserved subsequence may
occur at any time by yielding a temporal gap in the video. Hoai and De la Torre
[22] proposed a max-margin early detector. They simulated the sequential frame-
by-frame data arrival for training time series and learned an event detector that
correctly classifies partially observed sequences. To deal with the sequential arrival
of data, they developed a new monotonicity of detection function and formulated the
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problem within the structural support vector machine framework. Davis and Tyagi
[12] addressed rapid recognition of human actions by the probability ratio test. This
is a passive method for early detection. It assumes that a generative hidden Markov
model for an event class, trained in a standard way, can also generate partial events.

Event Prediction in Other Fields While human activity prediction has received
little attention in the computer vision field, predicting events or agent behaviors
have been extensively studied in many other Al fields. Neill et al. [39] studied
disease outbreak prediction. Their approach, like online change-point detection [13],
is based on detecting the locations where abrupt statistical changes occur. Brown
et al. [8] used the n-gram model for predictive typing, i.e., predicting the next
word from previous words. Event prediction has also been studied in the context of
spam filtering, where immediate and irreversible decisions must be made whenever
an email arrives. Assuming spam messages were similar to one another, Haider
et al. [19] developed a method for detecting batches of spam messages based on
clustering. Financial forecasting [26] predicts the next day stock index based on the
current and past observations. This technique cannot be directly used for activity
prediction because it predicts the raw value of the next observation instead of
recognizing the higher level event class. Kitani et al. [27] formulated the prediction
task as a decision-making process [58] and proposed to forecast human behavior
by leveraging the recent advances in semantic scene labeling [36, 37] and inverse
optimal control [1, 4, 31, 57]. They predicted the destination of pedestrians and the
routes they will choose.

2 Activity Prediction

To allow for more clarity in understanding our activity prediction model, we want to
first provide an abstraction of activity prediction problem. Essentially, we transform
the activity prediction problem into the problem of early prediction on sequential
data representation. So the solution to this problem involves answering the
following two questions: (1) “how to represent activity as a sequential data, which
the way it is?”; (2) “how to do early prediction on such kind of representation?”’. We
call the first one representation phase, and the second one prediction phase.

In the representation phase, an observation of complex human activity (e.g., from
a camera, or from a rich networked sensor environments) is temporally segmented
into semantic units in terms of component atomic actions (we call them actionlets).
The boundaries between actionlets are detected by monitoring motion patterns
(Sect. 3.1.1). Inside each segment, observed actionlets and objects are detected and
quantized to symbolic labels which map to action and object classes.

In the prediction phase, the prediction problem becomes a sequence classification
problem, but given only partial observation of the sequence (the beginning part). In
data mining literature, sequence classification problem has three main categories
of approaches: (1) feature selection with traditional vector based classification.
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(e.g., K-grams as features); (2) distance function, which measures similarity of
two sequences. (KNN or SVM kernel can be used as classifier in this scenario.)
(3) model based method, which simulates a generative process to get a sequence.
A model trained on sequences in one class can assign a likelihood to a new sequence.
Specific models include K-order Markov model, variable order Markov model
(VMM), and HMM.

Our approach proposes the prediction model in two scenarios: action-only
and context-aware, which is characterized by what kind of information used for
prediction. In both cases, we adopt the third strategy to train a model for prediction.
The reasoning behind this choice is explained later. We formalize the representation
first.

¢ Given an alphabet of actionlet symbols X' = {ay,a, as,...,a,}, an observation
of activity is represented by a simple symbolic sequence, which is an ordered list
of the actionlet symbols from the alphabet. An action-only prediction model
takes this type of sequence of actionlets from an ongoing activity as input, and
predicts the high-level activity class. For example, the activity “marriage pro-
posal” is composed of four actionlets: (anold-hands: Pkneels Ckiss» dput-ring-on ) sShown
in Fig. 7.2 (top).

e Given an alphabet of semantic symbols (actionlet and object labels) ¥ =
{e1,e2,e3,...,e,}. In context-aware prediction model, an observation of activ-
ity is represented by a complex symbolic sequence, which is an ordered list of
vectors. Each vector is a subset of the alphabet. For example, the activity “cook
smashed potato dish” is composed of following itemsets: ((abc)(cbd)(ed)f), the
meaning of each symbol is shown in Fig. 7.2 (bottom).

Now we specifically talk about our prediction models, and the reasons we
chose them. For our action-only prediction model, we propose to use probabilistic
suffix tree (PST; an implementation of VMM) as our main causality model. The
reason for using this model is that the first two categories of approaches: feature-
selection-based and distance-function-based, cannot handle partial sequence as
input (i.e., useful patterns in the sequence that are highly dependent on the global
observation). And among approaches in the third category, HMM can only model
I-order dependency, so it will ignore a lot of long-term causality information
between activity components, which we believe is essential for prediction. K-order
Markov model restricts order number to a specific order, so it will lack flexibility,
making it unable to include small order and large order causalities at the same
time, or in an adaptive fashion. So VMM is the most suitable model for early
classification of sequence data, which models long-duration and short-duration
sequential dependency as causality, and requires no need to see the whole sequence.

For our context-aware prediction model, we propose to use SPM to include
objects cues for prediction. SPM is well suited for this problem because it uses
item sets as sequence unit, SO we can put co-occurrence of action and object as an
enriched observation unit in complex activity scenario. Also, it can be easily tuned
to fit into our whole prediction framework, which can be seen as an upgraded, rather
compatible version of our action-only model. Details will be discussed in the later
sections. Table 7.1 summarizes the capability of different methods.
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Fig. 7.2 Two scenarios of activity modeling: (Top) action-only model and (Bottom) context-aware
model

Table 7.1 Comparison of different methods in terms of capability for modeling activity prediction

Sequence Partial sequence
Models classification | classification (prediction) | Causality Context
Feature based + — — —
Distance function based + - — —
HMM + + + (of order 1)| —
Variable order Markov model| + + + —
Sequential pattern mining + + + +

2.1 Two Prediction Scenarios

To demonstrate the effectiveness of our proposed approach, we evaluate prediction
tasks on two datasets for two different scenarios. For the action-only prediction, we
test the ability of our approach to predict human daily activities, such as “making a
phone call,” which have middle-level temporal complexity. Next, we test our model
at high-level temporal complexity activities on a tennis game dataset collected by
the authors. For the context-aware prediction, first we test our approach on a cooking
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activity dataset, where the whole kitchen environment is observed from a static
camera. Second, we extend our data domain to a networked sensor environments,
where we want to predict several kinds of morning activities in an office lounge,
such as “coffee time.”

2.1.1 Action-Only Prediction Scenario

Our prediction model is applicable to a variety of human activities. The key require-
ment is that the activity should have multiple steps where each step constitutes a
meaningful action unit. Without loss of generality, we choose two datasets with
significant different temporal structure complexity. First, we collect real world
videos for tennis games between two top male players from YouTube. Each point
with an exchange of several strokes is considered as an activity instance, which
involves two agents. In total, we collected 160 video clips for 160 points from a
4-h game. The clips were then separated into two categories of activity, where 80
clips are winning points and 80 clips are losing points with respect to each specific
player. So our prediction problem on this dataset becomes the question: “Can we
predict who will win?”. The dataset and prediction task are illustrated in Fig.7.3.
Since each point consists of sequence of actionlets with length ranging from 1 to
more than 20, tennis game has a high-level temporal structure complexity in terms
of both variance and order.

Second, we choose the Maryland human-object interactions (MHOI) dataset
[18], which consists of six annotated activities: answering a phone call, making
a phone call, drinking water, lighting a flash, pouring water into container, and
spraying. These activities have about 3—5 action units each. Constituent action units
share similar human movements: (1) reaching for an object of interest, (2) grasping
the object, (3) manipulating the object, and (4) put back the object. For each activity,
we have 8-10 video samples. There are 54 video clips in total. Examples in this
dataset are shown in Fig. 7.5.

A A & t
el A4 K

Observation 7?

Activity Prediction: Who's gonna win this point?

Fig. 7.3 Left: tennis game dataset. Right: activity prediction task on this dataset
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High-Level Low-Level
Activity Actionlets & objects
Smashed Potatoes T \
Salad stir milk
Predict Pizza cut potato
smash bow!
Preparing
dishes Sandwich
Omelet pour egg
Relaxing stir bottle
Coffee time lock sugar
Predict | sandwich time close switch
Morning
activity Clean up reach door
Early morning open cup

Fig. 7.4 Two datasets for context-aware prediction scenario. Top: MPII-Cooking dataset [44],
where we want to predict the type of dish the subject is preparing. Bottom: UCI-OPPORTUNITY
dataset [43], where we want to predict current ongoing morning activity

2.1.2 Context-Aware Prediction Scenario

To verify our context-aware model, we perform experiments on two complex
activity datasets, where human actions involve a lot of interactions with various
objects. The first is a fine-grained cooking activity dataset, and the other is a complex
morning activity dataset in highly rich networked sensor environment.

The MPII Cooking Activities Dataset (MPII-Cooking) [44] contains 44 instances
of cooking activity, which are continuously recorded in a realistic setting, as shown
in Fig. 7.4 (top). Predictable high-level activities are about preparing 14 kinds of
dishes, including: making a sandwich, making a pizza, and making an omelet, etc.
There are overall 65 different actionlets as building blocks shared among various
cooking activities, such as cut, pour, shake, and peel.

The OPPORTUNITY Activity Recognition Dataset (UCI-OPPORTUNITY) [43]
was created in a sensor-rich environment for the machine recognition of human
activities, as shown in Fig. 7.4 (bottom). They deployed 72 sensors of 10 modalities
in 15 wireless and wired networked sensor systems in the environment, on the
objects, and on the human body. The data are acquired from 12 subjects performing
morning activities, yielding over 25h of sensor data. It contains 5 high-level
predictable activities (Relaxing, Coffee time, Early Morning, Cleanup, Sandwich
time), 13 low level actionlets (e.g., lock, stir, open, release), and 23 interactive
objects (e.g., bread, table, glass).
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3 Proposed Approach

3.1 Representation: Activity Encoding
3.1.1 Actionlets Detection by Motion Velocity

Temporal decomposition is the first key step for our representation of complex
activity. It is used to find the frame indices that can segment a long sequence of
human activity video into multiple meaningful atomic actions. Relevant work can
be found in [51]. We call these atomic actions actionlets. We found that the velocity
changes of human actions have similar periodic regularity. Figure 7.5 shows three
examples of actionlet segmentation and detection.

The specific method includes these steps: (1) use Harris corner detector to find
significant key points; (2) use Lucas-Kanade (LK) optical flow to generate the
trajectories for key points; (3) for each frame, accumulate the trajectories/tracks
at these points to get a velocity magnitude:

Vi= Z \/(x,-,t = Xi—1)* + iz = Yie—1)?, (7.1)

P(xi,r,yi,t)EFt

Actionlet; grab the object tobelly _, [ Actionlet: putback on table

Make phone call : Makr phom. call

e 20

Lightlng a flash

Fig. 7.5 Actionlet detection by motion velocity. Time series figures show motion velocity changes
over time (smoothed). The horizontal axis is the frame index, and the vertical axis is the velocity
strength computed according to formula (7.1) Red dots on each local peak indicate actionlets
centers, and green dots on each local valley indicate the segmentation points. A point is considered
an actionlet center only if it has the local maximal value, and was preceded (to the left) by a value
lower by a threshold. Actionlets are obtained by extracting segments between two consecutive
vertical dashed lines. Two actionlets shared by three different types of actions are shown as
examples: “grab the object to belly” (left) and “put back on the table” (right). Images on each
row are from the same video marked with frame indices



7 Actionlets and Activity Prediction 133

where V, represents the overall motion velocity at frame F;, p; is the ith interest
point found in frame F;. (x;,,yi,) is the position of point p; in the frame. We
observed that each hill in the graph represents a meaningful atomic action. For
each atomic action, the start frame and the end frame always have the lowest
movement velocity. The velocity reaches the peak at the intermediate stage of each
actionlet. To evaluate our temporal decomposition approach, a target window with
the size of 15 frames around the human labeled segmentation point is used as the
ground truth. We manually labeled 137 segmentation points for all 54 videos in
the MHOI dataset. The accuracy of automatic actionlets segmentation is 0.83. For
the tennis game dataset, we cut the video clips into top-half and bottom-half to
handle actionlets of two players. We labeled 40 videos with 253 actionlets in it. The
actionlet segmentation accuracy is 0.82.

3.1.2 Activity Encoding

Based on accurate temporal decomposition results, we can easily cluster actionlet
into meaningful groups so that each activity can be represented by a sequence of
actionlets in a syntactic way. A variety of video descriptors can be used here as long
as they can provide discriminative representations for the actionlets.

Due to different spatial extent of humans in the scene and different background
motion styles, two approaches are used to compute descriptors for tennis game
dataset and MHOI dataset, respectively. For the MHOI dataset which has a large
scale human in the scene and a static background, we use the 3-D Harris corner
detector to find sparse interest points. Each local area is described by HoG (His-
togram of Gradients) and HoF (Histogram of Flow) descriptors [30]. Furthermore,
we vector quantize the descriptors by computing memberships with respect to
a descriptor codebook of size 500, which is obtained by k-means clustering of
the descriptors. Then, actionlets categories are learned from histogram of spatial-
temporal words using an unsupervised algorithm [40]. To evaluate the actionlets
encoding results, human experts watch video segments corresponding to each
actionlet, and annotate them according to their semantic meanings, such as “reach
the object,” “grab the object to belly,” and “grab the object to head,” etc. The Rand
index? of clustering is 0.81.

For the tennis game dataset, the scale of player in the video is very small,
therefore it is difficult to get sufficient local features by using sparse sampling
methods. Here, we use dense trajectories [53] to encode actionlets. For every
actionlet, we sample the initial feature points every w pixels at multiple spatial
scales. All tracking points are obtained by a median filter in a dense optical flow
field from the points in the previous frame. For each trajectory, the descriptor is

2Rand index is a measure of the similarity between data clustering and ground truth. It has a value
between 0 and 1, with 0 indicating that the two data clusters do not agree on any pair of points and
1 indicating that the data clusters are exactly the same.
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calculated in a 3-D volume. Each such volume is divided into sub-volumes. HOG,
HOF, and MBH features are then computed for every sub-volume. In our approach,
we use the same parameters indicated in [53]. The codebook size we used is 1000.
In addition, to remove the noises caused by camera movements and shadows, a
human tracker [11] is used before extracting feature records. For evaluation, we
group 253 actionlets from 40 annotated videos into 10 categories, and the Rand
index of clustering is 0.73. For MPII-Cooking and UCI-OPPORTUNITY datasets,
we use pre-annotated actionlet boundaries provided by the dataset when we perform
activity encoding. Our focus on these two datasets is to evaluate context-aware
prediction model.

3.2 Action-Only Causality Model

Here we introduce the model of human activity prediction, which is illustrated in
Fig.7.1. Let X be the finite set of actionlets, which are learned from videos using
unsupervised segmentation and clustering methods. Let Digining = {rl, [ "}
be the training sample set of m sequences over the actionlet alphabet X', where the
length of the ith (i = 1,...,m) sequence is /; (i.e., = r‘i ré . rfi, where rJ‘ e X).
Based on Digining, the goal is to learn a model P that provides a probability
assignment p(f) for an ongoing actionlet sequence t = t, 1, . . ., #|. To realize this
design with maximum predictive power, we include two sources of information in
the model. One is the causality cue hidden in the actionlet sequences, which encodes
the knowledge about the activity. The other is the unique predictable characteristic
for each kind of human activity, which answers the questions why a particular
activity can be predicted and how early an activity can be predicted with satisfactory
accuracy.

Causality is an important cue for human activity prediction. Our goal is to
automatically acquire the causality relationships from sequential actionlets. VMM
[5] is a category of algorithms for prediction of discrete sequences. It suits the
activity prediction problem well, because it can capture both large and small order
Markov dependencies extracted from training data. Therefore, it can encode richer
and more flexible causal relationships. Here, we model complex human activity as
a PST [45] which implements the single best L-bounded VMM (VMMs of degree L
or less) in a fast and efficient way.

The goal of the PST learning algorithm is to generate a conditional probability
distribution y (o) to associate a “meaningful” context s € X'* with the next possible
actionlet 0 € X. We call the function y,(0) the next symbol probability function,
and denote the trained PST model as T, with corresponding suffix set as S consisting
of actionlets sequence of all the nodes. Algorithm 1 shows the detailed building
process of PST, where there are five user specified parameters. Figure 7.6 shows an
example PST constructed from a training sequence of actionlets.
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Algorithm 1 Construction of L-Bounded PST T (L, Poin, @, B, A)

1. Forming candidate suffix set S: Let Diraining = {r'. 7%, ..., r"} be the training set, and assume
s is a subsequence of ' (i = 1,...,m). If |s| < L and P(s) > Ppin, then put s in S. Prin is a
user specified minimal probability requirement for an eligible candidate. P(s) is computed from
frequency count.

2. Testing every candidate s € S: For any s € S, test following two conditions:

e (1) P(o|s) > «, which means the context subsequence s is meaningful for some actionlet o.
Here, « is defined by user to threshold a conditional appearance.

c (2) Pfl(:ul;l)) > B,or < 1/, which means the context s provides extra information in
predicting o relative to its longest suffix suf(s). § is a user specified threshold to measure the
difference between the candidate and its direct parent node.

e Then, if s passes above two tests, add s and its suffixes into T.

3. Smoothing the probability distributions to obtain y (o ):
For each s labeling a node in T, if P(c'|s) = 0, we assign a minimum probability A. In general,
the next symbol probability functioncan be written as:
ys(0) = (1 —|Z|A)P(c|s) + A. Here, A is the smoothing factor defined empirically.

A K bae X a

(.01, .01, .01, .96, .01) e (01 .01, .32, .65, .01)

t\ﬂ da ° o
(.01, .01, .96, .01, .01) (:96;.01, .01, 01, 0
(.01, .01, .01, .01, .96)
_ §.d
z_{ “ﬂ‘ A }\’ f A’} (.485, .01, .485, .01, .01)

a b ¢ d e e o
(.01, .96, .01, .01, .01)

(3,.2,.2,.2,.1)

Fig. 7.6 An example PST corresponding to the training sequence r = badacebadc over alphabet
Y = {a,b,c,d,e}. The vector under each node is the probability distribution over alphabet
associated with the actionlets subsequence (in red) (e.g., the probability to observe d after a
subsequence, whose largest suffix in the tree is ba, is 0.96)

3.3 Context-Aware Causality Model

The context-aware causality model embodies vocabularies of visual elements
including actionlets and objects as enriched symbolic sequences that specify
syntactic (compositional) relationships. We call each unit of the enriched symbolic
sequence eventlet.* SPM [34, 56] was first introduced in the area of data mining,

3In this chapter, we use eventlet to refer to observation of actionlet and objects co-occurrence.
An eventlet e = ({a*}|J{01.02,...,04}), where a™ represents a particular actionlet, and o;
represents a particular object interacting with @™ within its segment. In our case, n will always
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where a sequence database stores a set of records consisting of sequences of ordered
events, with or without concrete notions of time. SPM algorithm mines the sequence
database looking for repeating patterns (known as frequent sequences) that can be
used later by the end-users to find associations between different items or events in
their data for purposes such as marketing campaigns, web usage mining [15, 38, 50],
DNA sequences analysis [52], prediction and planning. There are two main reasons
we propose to use SPM as our context-aware model. First, our framework detects
a sequence of visual concepts, which are well quantized as semantical labels with
concrete time stamps. Essentially the data structure we are dealing with is quite
similar to the common data types in the sequential database, such as customer
transactions data or purchase sequences in a grocery store. Second, in our context-
aware scenario, actionlets have been enriched with co-occurred objects, so the newly
formed eventlet sequence has both the compositional and sequential nature, which
can be perfectly fitted into an SPM model.

We present two algorithms, which we call Mapping-based (Algorithm 2) and
SPM-based (Algorithm 3). The mapping-based algorithm is a simplified version
of our context-aware causality model, which transforms the complex symbolic
sequence (eventlets) into a simple symbolic sequence. Then a similar PST model
can be applied for the mapped simple symbolic sequences, as we used in the action-
only model.

The SPM-based algorithm is a relatively complex version of our context-
aware causality model, which finds frequent subsequence of itemsets as sequential
patterns. Then we utilize the mined sequential patterns to compute the conditional
probabilities y;(0), which associates a “meaningful” context s € X* with next
possible eventlet. In our context-aware model as shown in Fig.7.1, we have the
following definitions.

Algorithm 2 Mapping-Based Context-Aware Model

1. Frequent Itemsets Phase:
Given Ejemget, find the set of all frequent itemsets FI applying Apriori algorithms [3].
Notice: A small difference here is that the support of an itemset is defined as the fraction of
activity instances (the sequences of eventlets) rather the fraction of eventlets.

2. Mapping Phase:
f: FI — FI', where FI' C Z, frequent itemset i; € FI is mapped into an integer x € FI’.

3. Transformation Phase: FI’ is further broken down into individual interactions of frequent
itemsets along the time line, e.g. the examples in Table 7.2.
Notice: The reason for this mapping is that by treating frequent itemsets as single entities,
we can transform our context-aware observation, a complex symbolic sequence, into a simple
symbolic sequence representation. This transformed representation is called Diraining-

4. Construct Causality Model: Use the set Diraining to build the causality model by calling
Algorithm 1.

be 0, 1, or 2 with the meaning of none, one, or two co-occurrent interacting objects (we assume
one person at most can operate two different objects at the same time with two hands).
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Algorithm 3 SPM-Based Context-Aware Model

1.

2.

3.

Frequent Itemsets Phase:

Given Ejemset, find the set of all frequent itemsets FI applying Apriori algorithms [3].
Mapping Phase:

[ FI = FI', where FI' C Z, frequent itemset iy € FI is mapped into an integer x € FI’.
SPM Phase:

Initialize SP; = FI’. Use algorithm AprioriAll[2] to find SP», ..., SP, where k is the largest
length of frequent sequential pattern.

. Construct Causality Model: Based on mined SP;, . .., SP; and corresponding support for each

sequential pattern in it, causality model P(o |s) can be computed by Bayes rules P(o|s), assume
ls| =K.

. _ supp (so) _ supp (s) __ P(so)
It so € SPk/+l ? P(SU) - ZX,ESPk/j_] supp (x;) > P(S) - ZX,ESPA/DSUPI)(X!.) ’ P(UlS) T P()
¢ Otherwise, P(c|s) = 0.

. Smoothing the probability distributions to obtain ,4(ff):

For each s, if P(o|s) = 0, we assign a minimum probability A. In general, the next symbol
probability functioncan be written as:
ys(0) = (1 — | Z|A)P(o|s) + A. Here, A is the smoothing factor defined empirically.

Table 7.2 Transformed representation: mapping complex symbolic sequence into simple

symbolic sequence

Activity Original After

instance ID | sequence Frequent itemset and mapping transformation

1 {a, b) a—>1,b—>5 (1,5)

2 {(cd),a,(efg)) la—1l,e >2,g —>3,(eg) > 4 (1,2),(1,3),(1,4)

3 ((ahg)) a—>1g—>3 (1), (3)

4 (a, (eg), b) a—>1l,e—>2,g—>3,(eg) > 4,b—5 |(1,2,5),(1,3.,5),
(1,4,5)

5 (b) b—>5 (5)

A set of observations of human activity, saying activity archive D, is represented
as a set of sequential records of eventlets. Each eventlet is segmented according
to actionlet boundaries, and represented as an itemset of detected visual concepts.
An eventlet sequence is an ordered list of itemsets, for example, s =
(a(be)c(ad)). An itemset is a set drawn from items in X, and denoted
(i1, 12, ...,0x), such as a and (be) in the previous example. X' is a set of N
unique items X = iy, i,..., Iy, where each element in X' can be either an
actionlet label or an object label.

The support of itemset or eventlet, iy = (i1, i, . . . , i) is defined as the fraction of
activity instances (the sequences of eventlets) s € D that contains the itemset in
any one of its possibly many eventlets. Given a support threshold min_sup Ejemsets
an itemset is called frequent itemset on D if sup,(is) > Eiemset- The set of all
frequent itemsets is denoted as FI.

The support of a sequence s, is defined as the fraction of activity instances
s € D that contains s,, denoted by sup,(s,). Given a support threshold
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min_sup Esequence, @ sequence is called a frequent sequential pattern on D if
SUPD(Sa) = gsequence'

» The length of a sequence is the number of itemsets in the sequence. SP; denotes
the set of frequent sequential pattern with length k. So SP; = FI.

» FEither based on Algorithm 2 or Algorithm 3, we can now train a context-aware
causality model y,(0), as we did in the action-only case.

3.4 Predictive Accumulative Function

In this section, we want to answer “why a particular activity can be predicted,”
and how to make our model automatically adapted to activities with different
predictability. For example, “tennis game” is a late-predictable problem in the sense
that a long sequence of actionlets performed by two players was observed, the
last several strokes will strongly impact the winning or losing results. In contrast,
“drinking water” is an early predictable problem, since as long as we observed the
first actionlet “grabbing a cup,” we probably can guess the intention. To characterize
the predictability of activities, we formulate a PAF. Different activities usually
reflect very different PAFs. In our model, PAF can be learned automatically from
the training data. For activity prediction at a later stage, we use PAF to weight the
observed patterns in every stage of ongoing sequence.

Suppose k € [0, 1] indicates the fraction of beginning portion (prefix) of any
sequence. D is the training set. Let Dy, be the set of sequences, where each sequence
consists of the first k percentage of the corresponding r = (r1,r2,...,1) € D,
where r;(i = 1,2,...,1) € X, lis the length of r. We use rpr () to represent the
corresponding “prefix” sequence of r in Dy. Obviously |D| = |Dy|.

Given the first k percentage of the sequence observed, the information we gain
can be defined as follows:

_ HD) —H(D|Dy)

Ve = HD) (7.2)

Here the entropy H(D) evaluates the uncertainty of a whole sequence, when no
element is observed, and the conditional entropy H(D|Dy) evaluates the remaining
uncertainty of a sequence after first k percentage of sequence is checked.

H(D) = - p" () logp" (1.

r€D

H(D|Dk) = - Z ZPT(r7 rpre(k))long(r|rpre(k))-

rpre(k)eDk reD

(7.3)
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Since 7pre(x) is the “prefix” of r, we have

pT(r, Fpre(k)) = pT(r), and

T P ) T (74
p (r|rpre(k)) - T - 7 N
)4 (rpre(k)) P (rpre(k))
From trained PST model T, we write
B [l
p'() =[]y, (). and
j=1
(7.5)
. ”’pre(k)”
pT(rpre(k)) = 1_[ Vg1 (rpre(k)j)-
j=1

The nodes of T are labeled by pairs (s, y;), where s is the string associated with the
walk starting from that node and ending in tree root; and y, : X — [0, 1] is the next
symbol probability function related with s, Zuez ys(0) = 1.

Based on above discussions, we can have a sequence of data pair (k,y;) by
sampling k € [0, 1] evenly from O to 1. For example, by using 5% as interval,
we will collect 20 data pairs. Now we can fit a function f, between variable k and
v, which we call PAF: y = f,(k). Function f, depicts the predictable characteristic
of a particular activity. Figure 7.7 shows PAFs in two extreme cases. The curves
are generated on simulated data to represent an early predictable problem and a late
predictable problem, respectively.

a b
1 1
0.8 0.8
< 06 < 06
c —a
0 T
> 04 > 04
0.2 0.2
0 . . . . o . . . .
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
k k

Fig. 7.7 PAFs for depicting predictable characteristics of different activities. (a) Early predictable
problem. (b) Late predictable problem



140 K.Liand Y. Fu

3.5 Final Prediction Model

Given an ongoing sequence ¢ = f, 1, ..., |, W€ can now construct our prediction
function by using the knowledge learned from Sects. 3.2 and 3.3 (causality) and
Sect. 3.4 (predictability):

ll2ll

P = pr L 2” i 1 tog ygmn 4. (7.6)

which computes the weighted log-likelihood of ¢ as the prediction score with the
knowledge of trained PST model 7 and learned PAF I

Given an observed ongoing sequence of actionlets, our ultimate goal is to predict
the activity class it belongs to. This problem can fit into the context of supervised
classification where each class c(c = 1,...,C) is associated with a prediction
model p’<(¢) for which the empirical probablhtles are computed over the whole set
of sequences of this class belonging to the training set. Given an ongoing sequence
t = ti,t,..., 1. the sequence ¢ is assigned to the class cO corresponding to
the prediction model p”« for which maximal prediction score has been obtained:
pe(t) = Max{pTe(t),c=1,...,C}.

4 Experiments

We present experimental results on two scenarios of activity prediction: action-only
and context-aware.

4.1 Action-Only Activity Prediction
4.1.1 Middle-Level Complex Activity Prediction

Samples in MHOI dataset are about daily activities (e.g., “making phone call”’). This
type of activity usually consists of 3-5 actionlets and lasts about 5-8's, so we call it
middle-level complex activity. In this dataset, each category has 8—10 samples. We
evaluate the prediction accuracy by using the standard “leave-one-out” method, and
fit activity prediction in the context of multi-class classification problem. Different
from traditional classification task, for activity prediction, we focus on the predictive
power of each method. The goal is to use an observation ratio as small as possible to
make an accurate prediction. To train a prediction model, we constructed an order
5-bounded PST and fit a PAF, respectively. We compare our method of activity
prediction with existing alternatives, including: (1) Dynamic Bag-of-Words model
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Fig. 7.8 Activity prediction results on MHOI dataset. (a) shows PAF of daily activity. (b) shows
comparison of prediction accuracy of different methods. A higher graph suggests that the
corresponding method is able to recognize activities more accurately and earlier than the ones
below it. Our approach shows the best performance. (¢) shows the confusion matrix at 60 % of
observation

[46], (2) Integral Bag-of-Words model [46], and (3) a basic SVM-based approach.
All baseline methods are adopting the same bag-of-words representation with a
codebook size of 500, which is built from the local features HOG/HOF.

Figure 7.8a illustrates the process of fitting PAF from training data. It shows that
daily activities such as examples from MHOI dataset are early predictable. That
means the semantic information at early stage strongly exposes the intension of the
whole activity. Figure 7.8b illustrates the performance curves of the implemented
four methods. The results are averaged over six activities. Its horizontal axis corre-
sponds to the observed ratio of the testing videos, while the vertical axis corresponds
to the activity recognition accuracy. The figure confirms that the proposed method
has great advantages over other methods. For example, after half of the video is
observed (about 2 actionlets), our model is able to make a prediction with the
accuracy of 0.6.
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Actionlet A;: “Reach object” — Pr(4,14,4,) = .0006
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Fig. 7.9 Global and local prediction for a particular activity in MHOI dataset. (a) Prediction on
six activities. (b) Predict next actionlet

Figure 7.9a shows detailed performance of our approach over 6 different daily
activities in a binary classification setting. From the figure, we can see that the activ-
ity “Pouring water into container” has the best prediction accuracy and earliness. In
this dataset, after the actors reach the object, they usually grab the object and put
it close to the head. Three activities (“making a phone call,” “drinking water,” and
“answering a phone call”) share this process in the initial phase of the activity. So, in
the activity “pouring water into container,” after the first common actionlet “reach
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object,” the second and third constituent actionlets make the sequence pattern quite
distinctive. Besides predicting global activity classes, our model can also make local
predictions. That means given observed actionlet sequence as context, the model
can predict the most probable next actionlet. Figure 7.9b shows an example from
our experiment results.

4.1.2 High-Level Complex Activity Prediction

In this experiment, we aim to test the ability of our model to leverage the temporal
structure of human activity. Each sample video in the tennis game dataset is
corresponding to a point which consists of a sequence of actionlets (strokes). The
length of actionlet sequence of each point can vary from 1 to more than 20. So the
duration of some sample videos may be as long as 30 s. We group samples into two
categories, winning and losing, with respect to a specific player. Overall, we have
80 positive and 80 negative samples, respectively. Then a 6-bounded PST and a PAF
are trained from data to construct the prediction model. The same “leave-one-out”
method is used for evaluation.

Figure 7.10a illustrates the fitted PAF for tennis activity. It shows that tennis
games are late predictable. That means the semantic information at late stage
strongly impacts the results of classification. This is consistent with common sense
about tennis games. Figure 7.10b shows prediction performance of our method.
Here we compare two versions of our model to illustrate the improvement caused
by considering predictable characteristic of activity. Since all other three methods,
D-BoW, I-BoW and SVM, failed in prediction on this dataset, we did not show
comparisons. In short, our model is the only one that has the capability to predict
on high-level complex activity. Table 7.3 shows detailed comparisons of 7 methods
on two datasets, where we include 3 sequence classification methods with each one
representing a category of approaches. The details about other three methods will
be discussed in Sect. 3.2.

4.1.3 Model Parameters

Advantage of our approach is that there are very few model parameters need to
be tuned. Among them, the order L of PST is the most important one, since it
determines the order of causal relationships that we want to incorporate. Figure 7.11
shows the impact of parameter selections on prediction accuracy. We can see higher
order of PST performs better. This is because it includes long-term and short-term
Markov dependencies at the same time.
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Fig. 7.10 Activity prediction
results on tennis game
dataset. (a) shows PAF of
tennis game. (b) shows
prediction performance of our
model. We did not show
comparisons with the other
three methods because of
their inability to handle
high-level complex activity,
such as tennis game. Their
prediction curves are nearly
random, since Bag-of-Words
representation is not
discriminative anymore in
this situation
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4.2 Context-Aware Activity Prediction

In this section, we report experimental results on context-aware situations, which
demonstrate that presence of interactive objects may significantly improve activity
prediction performance by providing discriminative contextual cues often at very
early stage of the activity progress.

4.2.1 Experiments on Cooking Activity Dataset

Samples in MPII-Cooking dataset are about preparing various dishes (e.g., making
a sandwich). Because of the varying degrees of complexity of different dishes, the
length of eventlets sequence of each sample can vary from 20 to more than 150.
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Table 7.3 Performance comparisons on two datasets

Tennis game dataset MHOI dataset
Methods 20%)| 40 %| 60 %| 80 %| 100 %| 20 %| 40 %| 60 %| 80 %| 100 %
Integral BoW [46] 0.5210.49/0.47 |0.48 044 |0.32/0.41  0.42|0.50 | 0.52
Dynamic BoW [46] 0.530.510.47 049 1 0.53 |0.40 | 0.47 | 0.50 | 0.55|0.52
BoW+SVM 0.560.52|0.51 048 049 |0.30|0.41|0.41/0.39|0.39

Feature-based model (K-grams) [14]) 0.45 | 0.54 | 0.51 | 0.47 1 0.43 |0.33/0.38 | 0.40 | 0.47 | 0.49
Distance function base model [49] | 0.52 | 0.56 | 0.48 |0.49 | 0.48 |0.140.27 /1 0.51 | 0.530.53
HMM 0.43/0.46 |0.51 | 0.46 0.58 |0.23/0.380.56|0.47 |0.43
Our action-only model 0.59 1 0.64 | 0.65 0.65 0.70 | 0.37 0.57 |0.63 |0.65 | 0.65
Random guess for MHOI dataset and tennis game dataset are 0.167 and 0.5, respectively. Actually

comparison methods perform random guess on tennis game (Percentage as observation ratios).
The bold values indicate the best result (i.e., highest accuracy) in each setting.

The average sequence length is 67.* For a particular activity, similar to experimental
settings in action-only situation, we use all the samples in that category as the
set of positive examples, and randomly select equal number of samples from
remaining categories as the set of negative examples. Then we use the prediction
task in the context of supervised binary classification of sequence data with varying
observation ratios. To train an mapping-based context-aware model, we set &emset =
0.3, and put the transformed representation into a 11-order bounded PST to obtain
a causality model. The PAF is also generated from the transformed representation
according to the same method as before. To train a SPM-based context-aware model,
we set &jemset = 0.3 and &gequence = 0.2.

To show the advantages of the proposed method, we compare our results with
other three sequence classification methods, which may represent each of the three
main categories of approaches. The details of comparison methods are as follows.

e k-gram (k = 2) with linear-SVM [14] represents feature-base methods.
k-gram is the most popular feature selection approach in symbolic sequence
classification.

e The Smith-Waterman algorithm with KNN [49] represents sequence distance-
based methods. Since in our prediction task, for most cases, we want to utilize
partial sequence as observation. Then it always needs to compute distances
between a long sequence (from training set in a lazy learning style) and a
short sequence (from the beginning part of the sample to be predicted), so local
alignment based distance [49] is preferred.

* Discrete Hidden Markov Model (D-HMM) represents generative model based
methods.

“Notice that there are many situations that some periodical actions will be segmented to consecutive
duplicate eventlets, e.g. action “cut.”
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Fig. 7.11 Comparison of
different order
bounded-PSTs. Top:
prediction performance on

tennis game dataset. Bottom:

prediction performance on
MHOI dataset
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Figure 7.12a and Table 7.4 show comparison of prediction accuracy of different
methods. We can clearly see that the context information, such as interactive objects,
can perform as a strong cue for predicting activity type.

In HMM, high order dependencies between actionlets are lost. Though it still can
get satisfactory classification performance at full observation, in terms of prediction,
it has obvious limitations. In feature-based and distance-based approaches, the
sequential nature of human activity cannot be captured. The context information
cannot be added either. Therefore, without causality (sequential patterns) and
context (object cues), things become unpredictable. Because in MPII-Cooking
dataset, many actionlets, such as cut and take, are actually routines in preparing
different dishes, ignoring sequential patterns may result in confusion between

activity classes.
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4.2.2 Experiments on Sensor Dataset

In this experiment, we aim to test the ability of our model to leverage from visual
domain to sensor networking environment. Since this dataset has no pre-segmented
activity video clips, we first locate samples of each kind of high-level activity
based on their annotations, such as starting and ending time stamps. Then we
extract actionlets and objects labels from sensor data within the time interval of
each sample. For mapping-based context-aware model, we set Eemsee = 0.2 and
maximum PST order as 7. For SPM-based context-aware model, we set &jemset =
0.2 and £sequence = 0.2. We also compare our approaches with other three methods
mentioned above.

Figure 7.12b and Table 7.4 show comparison of prediction accuracy of different
methods. From the figure, we can see that the sensor dataset is relatively “easier”
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Table 7.4 Performance comparisons on two context-aware datasets

Cooking activity dataset Sensor dataset
Methods 20% | 40% | 60 % | 80% | 100% | 20 % | 40 % | 60 % | 80 % | 100 %
Feature-based model | 0.48 | 0.42 1 0.53 |0.56 | 0.55 |0.52 | 0.55 0.69 |0.77 | 0.79
(K-grams) [14]
Distance function base | 0.5 |0.49 | 0.51 |0.55 | 0.54 |0.55 0.59 0.63 |0.72 | 0.76
model [49]
HMM 0.49 10.53 10.60 |0.62 | 0.65 |0.49 0.54 0.59 |0.68 0.77
Action-only model 0.58 10.59 1 0.64 |0.64 1 0.66 |0.62  0.650.75|0.77 | 0.78
Context-aware model | 0.67 | 0.71 | 0.78 | 0.77 |0.79 |0.68 | 0.81 0.85 0.87 | 0.92
(Mapping)
Context-aware model | 0.69 | 0.77 | 0.79 0.86 0.88 | 0.72 1 0.84 0.85 092 | 0.95
(SPM)

Random guess is 0.5 (Percentage as observation ratios).
The bold values indicate the best result (i.e., highest accuracy) in each setting.

to be predicted than the cooking activity dataset. This is because the sensor dataset
detects actionlets and objects based on sensors, which generate less noise and can
mitigate occlusions.

5 Summary

In this chapter, we propose a novel approach to model complex temporal com-
position of actionlets for activity prediction. To build an effective representation
for prediction, human activities can be characterized by a complex temporal
composition of constituent simple actions and interacting objects. Different from
early detection on short-duration simple actions, we propose a novel framework
for long-duration complex activity prediction by discovering three key aspects of
activity: Causality, Context-cue, and Predictability. The major contributions of
our work include: (1) a general framework is proposed to systematically address
the problem of complex activity prediction by mining temporal sequence patterns;
(2) PST is introduced to model causal relationships between constituent actions,
where both large and small order Markov dependencies between action units are
captured; (3) the context-cue, especially interactive objects information, is modeled
through SPM, where a series of action and object co-occurrence are encoded as a
complex symbolic sequence; (4) we also present a PAF to depict the predictability
of each kind of activity. We have empirically shown that incorporating causality,
context-cue, and predictability is particularly beneficial for predicting various kinds
of human activity in diverse environments. Our approach is useful for activities with
deep hierarchical structure or repetitive structure.
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Chapter 8
Time Series Modeling for Activity Prediction

Kang Li, Sheng Li, and Yun Fu

1 Introduction

Human Motion Analysis (HMA) is a highly interdisciplinary research area which
attracts great interests from computer vision, machine learning, multimedia, and
medical research communities, due to the potential applications ranging from,
human—computer interaction, security (intelligent surveillance), health (assistive
clinical studies), information technology (content-based video retrieval), entertain-
ments (special effects in film production and somatosensory game) to all aspects of
our daily life. As an important research thread of HMA, action recognition builds
the basis for all of the above-mentioned applications.

Though action recognition has been well studied in the literature, activity predic-
tion is quite a new topic for the fields of multimedia and computer vision. Spatial and
temporal structures of activities bring new challenges as well as new opportunities
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for the research community. This chapter focuses on early recognition' of ongoing
activities, which is beneficial for a large variety of time-critical scenarios. For
example, in human—computer interaction, people’s intension can be predicted by
early recognizing human actions captured by sensors or depth cameras, which may
greatly reduce the system response time and provide a more natural experience
of communication. In many real-time somatosensory games, early recognition of
human actions can reduce the sense of delay and create richer, more enjoyable
gaming experiences.

In this chapter, we introduce a novel approach to early classify human activities
represented by multivariate time series (m.t.s.) data [23], where the spatial structure
of activities is encoded by the dimensions of predefined human body model,
and the temporal structure of activities is modeled by two types of time pattern:
(1) Temporal Dynamics and (2) Sequential Cue, shown in Fig. 8.1.

Our key idea is that m.t.s. activity observation can be modeled as an instantiation
of a Multivariate Marked Point-Process (Multi-MPP). Each dimension of Multi-
MPP characterizes the temporal dynamics of a particular body part of the activity,
where both timing and strength information are kept. Since a full parameter
estimation of Multi-MPP can easily become impractical with the increase of
the number of time instants, we introduce Multilevel-Discretized Marked Point-
Process Model (MD-MPP), which is a class of Multi-MPP that can ensure a good
piece-wise stationary property both in time-domain and mark-space while keeping

m.t.s. observation x;

" A Temporal Dynamics Sequential Cues
with 2 variables

1 1 1
1 1 1
1 A | 1 1
x1,! ] | L1 v LAN | |
1 1 1 1
1 1 1 1
| A VI O S L 1
X2 } | | |
1 1 H l 1 | 1
1 1 1
it . tm' ! Variable sequential !
x1;: event A Variable timing and pattern:
x2;: event B strength pattern A—B >A—>B

Fig. 8.1 Temporal Dynamics and Sequential Cues. Each dimension of x; is considered as an event,
whose timing and strength information are characterized by MPP. The temporal order of firing
patterns among events contains important sequential cue to early recognize the class of ongoing
observation. For example, assuming A — B pattern is discriminative for this class, then we can
make classification decision when we observed only half of the m.t.s. data

” <

'In our discussion, we use “early recognition,” “early classification,” or “prediction” interchange-
ably to refer to the same learning task: “identifying the class label of human activities with partial
observation of temporally incomplete executions.”
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dynamics as much as possible. Based on this representation, another important
temporal pattern of early classification, sequential cue, becomes formalizable. We
construct a probabilistic suffix tree (PST) to represent sequential patterns among
variables (feature dimensions) in terms of variable order Markov dependencies.
We use MD-MPP+TD to denote this extended version of our approach, in which
temporal dynamics and sequential cue are integrated. In order to test the efficacy
of our method, comprehensive evaluations are performed on two real-world human
activity datasets. The proposed algorithms achieve superior performance for activity
prediction with m.t.s. observation.

2 Related Work

In general, there are four categories of works that are related to ours.

Action/Activity Recognition A large number of methods have been proposed for
recognizing human actions. Here we focus on methods most related to 3D actions,
where observations captured both spatial and temporal information of activity.
Readers interested in 2D action can refer to some recent survey [1] on this topic.
Most of the existing work [20, 26, 27, 35] on 3D action recognition are extensions
from 2D case by either customizing the features to depth camera or adjusting 2D
action recognition algorithms so that it can handle new challenges introduced by
the depth sensor. Xia, Aggarwal [35] extends the classic 2D action feature to 3D
counterpart, Depth STIP, which is basically a filtering method to detect interest
points from RGB-D videos with noise reduction. Wang et al. [32] proposed to
represent 3D actions as a set of selected joints which are considered more relevant
and informative to the task. And they use a framework of multiple-kernel SVM,
where each kernel corresponds to an informative joint. Also, for a more standard
and comprehensive evaluation of this particular task, new dataset is also provided
recently [11].

Action/Activity Prediction Action/Activity Prediction is quite a new topic itself.
Only a few existing works specifically focus on this task, but limited to 2D. The
work of [31] first argued that the goal of activity prediction is to recognize unfinished
single actions from observation of its early stage. Two extensions of bag-of-words
paradigm, dynamic BoW and integral BoW are proposed to handle the sequential
nature of human activities. The work of [4] extended [31] to recognize human
actions from partially observed videos, where an unobserved subsequence may
occur at any time by yielding a temporal gap in the video. The work of [19] proposed
a discriminative model to enforce the label consistency between segments. The work
of [12] proposed a max-margin framework for early event detection, in which video
frames are simulated as sequential event streams. To implement the idea of action
prediction for long duration, more complex human activities, [21, 22] introduce the
concept of actionlets, where sequential nature of action units is explored for the
purpose of recognizing the activity class as early as possible.
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Time Series Early Classification While there is a vast amount of literature on
classification of time series (see reviews [8, 17], and recent work [7, 15, 33, 34, 38,
39]), early classification of ongoing time series is ignored until quite recently [9,
36, 37]. The unique and non-trivial challenge here is that either features or distance
metrics formulated in previous work for classification of time series might not be
robust, when whole time series is not available. Additionally, early classification
always makes stricter demands on time efficiency, because the algorithm will lose
its merit, if it unintentionally forces us to wait till the end of time series. To the
best of our knowledge, the work of [37] first explicitly proposed a solution of early
classification of time series to the community, though similar concepts have been
raised in other two works [3, 29]. They developed ECTS (Early Classification on
Time Series) algorithm, which is an extension of 1NN classification method. ECTS
evaluates neighbors both in full observation and prefixes of time series. But their
algorithm is only limited to u.t.s. data and assuming that all time series samples
have the same length. Following the spirit of the classic work in [38] on discovering
interpretable time series shapelets, [9] and [36] extend it to the early classification
scenarios. However all three methods are distance based approaches, the inherent
efficiency problem is not considered for earliness.

Though the problem of early classification arises in a wide variety of applica-
tions, it is quite a new topic for the domain of statistical learning. Existing works
are either focusing on Univariate Time Series (u.t.s.) [36, 37] or from application
perspectives by tuning on traditional time series classification models [9]. The
disadvantages of previous work are three folds. First, many approaches assume
that the time series observations from the same class will always have equal
durations, which reduced the problem into a significantly simplified one (simple
distance measuring between samples). In terms of early classification task, the equal
length assumption also implicitly means that we can exactly tell how much an
ongoing time series has progressed and when it will be finished. But in most of the
real-world applications, this assumption cannot hold. Second, an important factor,
temporal correlations among variables of m.t.s. are not fully considered, which can
be quite informative for identifying the object class at early stage of observation.
For instance, in human action recognition, a particular action is a combined motion
of multiple joints with temporal order. Third, all previous work [9, 36, 37] are
extensions of traditional distance based approach, which are computationally too
demanding. However, in many cases, the practical merit of early classification lies
in a quick and accurate recognition.

Point Process in Vision As a special type of stochastic process, point process
has gained a lot of attention recently in the statistical learning community because
of its powerful capability on modeling and analyzing rich dynamical phenomena
[10, 14, 18, 28]. Adopting a point process representation of random events in time
opens up pattern recognition to a large class of statistical models that have seen wide
applications in many fields.
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3 Preliminaries

3.1 Notation and Problem Definition

For better illustration, Table 8.1 summarizes the abbreviations and notations used
throughout the chapter. We begin by defining the key terms in the chapter. We
use lowercase letters to represent scalar values, lowercase bold letters to represent
vectors. We use uppercase letters to represent time series, uppercase bold letters to
represent sets.

Definition 1. Multivariate Time Series: A multivariate time series X = {x, : t € T}
is an ordered set of real-valued observations, where T is the index set consisting of
all possible time stamps. If x, € RY, where d > 1, for instance x, = (x},x?, ..., x{),

X is called a d-dimensional m.t.s..

Table 8.1 Symbol and abbreviation

Abbreviation | Description

u.t.s Univariate time series

m.t.s Multivariate time series

MPP Marked point process

MD-MPP Multilevel-discretized marked point-process
INN 1 Nearest neighbor

DTW Dynamic time warping

PST Probabilistic suffix tree

VMM Variable order Markov model

Symbol Description

X Observation of time series with full length
XY Ongoing time series

x4 Set of d-dimensional m.t.s.

D Time series training dataset

T Time (index set)

C Set of class labels

1X| Length of time series

F Classifier

N Multivariate point-process

N Multivariate marked point-process

N Number of segments by factoring time line
A Trained MD-MPP model

E Set of events

D, Set of sampled discrete event streams from model A
Dy Set of sampled discrete event streams from testing ¥’

a; Discrete event stream
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In this chapter, observations x, are always arranged by temporal order with equal
time intervals.

Definition 2. Classification of Multivariate Time Series: Anm.t.s. X = {x, : t € T}
may globally carry a class label. Given C as a set of class labels, and a training set
D={X;,C):C eC,i=1,...,n}, the task of classification of m.t.s. is to learn
a classifier, which is a function F : X? — C, where X? is the set of d-dimensional
m.t.s..

We use | X| to represent the length of time series, namely X = {X,, X, ..., Xy, }-
By default, X is considered as the full-length observed time series, while a
corresponding ongoing time series of X is denoted as X' = {x;,X,.. "X;\xq}’
where x; = x;, fori = 1,...,|X’|,and tjx| < t|x). The ratio p = |X'|/|X] is called
the progress level of X'. It’s obvious that the progress level of full-length observed
time series is always 1. We use XI’, to indicate an ongoing time series with progress

level p.

Definition 3. Early Classification of Multivariate Time Series: Given training set
D = {(Xj,Cj) : C; € C,j = 1,...,n} with n m.t.s. samples, the task of early
classification of m.t.s. is to learn a classifier, which is a function F : X’ — C, where
X' is the set of ongoing m.t.s..

Specifically, we can do classification along the progress of time series, and
predict the class label at different progress levels of X, generating a bunch of
decisions, {F (X}, ), F(X,), ..., F(X})}. In this chapter we use 5 % of full duration
as an interval of generating a new prediction result, which results in 20 rounds of
classification for different progress levels. Intuitively, the prediction accuracy should
go up with the increasing progress level, since we observed more information. But,
interestingly, through our evaluations at later sections, we found that, sometimes,
it is quite contradictory to our common sense. The reason is that observations
at different segments of time series may have different discriminativeness for
classification task, and how the discriminative segments distribute along the timeline
really depends on the data.

3.2 Multivariate Marked Point-Process

In probability theory, stochastic process is sequence of random variables indexed
by a totally ordered set T (“time”). Point process is a special type of stochastic
process which is frequently used as models for firing pattern of random events in
time. Specifically, the process counts the number of events and records the time that
these events occur in a given observation time interval.

Definition 4. A d-dimensional multivariate point-processis described by N =
(NI,NZ, e ,Nd), where N' = {#|,#,,...,1,} is a univariate point-process, and #;



8 Time Series Modeling for Activity Prediction 159

indicates the time stamps on which a particular “event” or “property”” x; has been

detected. Ni(f) is the total number of observed event x; in the interval (0, 1], for
instance, N'() = k. Then, N'(t + At) — N'(¢) represents the number of detections
in the small region At. Similarly, N(r) = (Nl(t),Nz(t), .. ,Nd(t)),

By letting At — 0, we can have the intensity function A(t) = {A(1)},
which indicates the expected occurrence rate of the event x' at time #: Ai(f) =
lim,—0 N'(t + At) — N'(¢) [6]. This is the key to identify a point process.

In many real world applications, the time landmarks of events arise not as the
only object of study but as a component of a more complex model, where each
landmark is associated with other random elements M = {xil,xé, . ,xﬁn}, called
marks, containing further information about the events. Each (t}'(,xfc) is a marked
point, and the sequence {(#;, x})} of marked points is referred to as a marked point
processes.

Definition 5. A d-dimensional multivariate marked point process is described as
follows:

N = (IN' M} N2 M2, AN M) (8.1)

where {N', M'} = {(#;,x})} on RT x R is a univariate marked point process.

4 Methodology

In this section, we describe the proposed early classification approach for m.t.s.
data. Our basic idea is to construct early classification function F(Y’) by using the
knowledge learned from a temporal dynamics model Pr(Y’|A) (Sect. 4.1) and a
sequential cue model Pr(Y'|®) (4.2). We use MD-MPP to denote the first model,
and MD-MPP+TD to denote the second model. Given an ongoing m.t.s. ¥’ in a
domain application with |C| classes, the final prediction functions can be written as:

MD-MPP:  F(Y') = arg maé({PrC(Y’|A)};
ce

MD-MPP+TD:  F(Y') = arg maé({PrC(Y’|<I>)}.
cE

The bases of our method are the following two insights: (1) m.t.s. can be interpreted
as an instantiation of a Multi-MPP. Each dimension of Multi-MPP characterizes the
temporal dynamics of a particular property of the object, where both timing and
strength information are kept; (2) The identification of sequential patterns among
multiple variables of m.t.s. allows us to utilize these sequential cues for early
classification.

2In this chapter, the concepts “variable,” “property,” or “event” are interchangeably used to refer to
a certain dimension of m.t.s.
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Specifically, our approach consists of two stages. The first stage encodes the
m.t.s. as a multi-level discretized marked point process, which not only characterizes
the temporal dynamics of m.t.s., but also provides discretized intensity map that
governs the generation of discrete events streams. The second stage analyzes these
discrete events streams to discover the temporal correlations. We will go to the
details of each component of our approach in the following subsections.

4.1 Temporal Dynamics

In this chapter, we focus on multivariate time series data. In our opinion, these
observations can be (1) adequately represented as a collection of perceptual events
that are tied to a common clock or constant frame rate, and (2) decoded according
to the temporal statistics of such events. The need therefore arises to formulate
and evaluate recognition strategies that can operate on representations based on the
firing patterns of various events. In the following, we will introduce our multilevel-

discretized marked point-process (MD-MPP) model Ny to achieve this.

. . . _ _ 1 2 d
Given a d-dimensional m.t.s. X = {X,,, Xy, ... Xy } where X, = (xt JXp e, X )
and t = t1,1,...,1x]. We consider each dimension x' as a noisy detector of

certain perceptual event. Those event detectors generate continuous values which
indicate the strength or the confidence about the detection. We call these continuous
value based observations as marks. Then the corresponding marked point process
representation of X is:

Ny = ({Ny. ML} ANy M2}, .. {Nx. M%}). (8.2)

where {Ny, Mj(} = {(t, xﬁk)}, andk = 1,...,|X|. We can see that different variables
shared a common clock Ny.

To allow for more clarity in understanding the approach, we will develop the
model step by step by relaxing assumptions from ideal case to the real case.
In computation dealing with time series, the number of time instants is often in
the hundreds or thousands. Dealing with so many variable density function is
cumbersome at best and often impractical. We need to think about special cases
which may simplify things. The first drastic simplification is to have an ideal case
with the following assumptions:

Assumption 1:  For each event x', the corresponding point process is an indepen-
dent stochastic sequence (to be relaxed in Sect. 4.1);

Assumption 2: We have a perfect detector for each event X, namely, x;' € {0, 1},
where a spiking (x! = 1) indicates occurrence of x', or there is no detection of x’
(x| = 0) (to be relaxed in Sect. 4.1);

Assumption 3: For m.t.s. X, events are independent from each other (to be
relaxed in Sect. 4.2).
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Based on above assumptions, we have first representation model for m.t.s.:
Stationary point process:

x|

AA Lyi () i
Pr(N') = ]_[( 1N,t()zk)' eHA (8.3)

— (AiAl)mle_)UT

where X is an m.ts., N' = {f|x] = 1.5 < 15} is the point process for event x’
of X. N'(1x)) = [{lxi, = 1.1 < t)}| = m' is the numbers of detection of event
x in X, At = ;4| — t; is the time interval between two consecutive observations.
Assuming the whole process is contained in interval (0, T], then T = (|X| — 1) At.
The indicator function 1,:(;) is 1 if #; € N’ and 0 otherwise.

Given training dataset D = {(X], Cj) : Cj e C,j = 1,...,n}, and point process
representation N = (N UN2 . ,Nd) and duration time 7, the data likelihood can
be computed as

d d
Pr(N|D) = [ [PrV' D) = [ J(X'() Any™ e+ ®)T (8.4)

i=1 i=1

where A/(D) depends both on the event and the training data.

Then training this model amounts to estimating A/(D) for each (i, D) pair. If
we are given n training sequences containing in D, and there are mj’ of landmarks
(spiking) of event x' in j-th training sample, then, we can estimate A’(D) by using
the maximum log-likelihood estimation, which is:

A™ (D) = arg max log(A/(D) An)™ e+ OT) (8.5)
Al

__Z=m
XL ArlX;|

Relax Assumption 1 Next, we will relax assumption 1 by adding dynamic
property in the point process representation. This follows the piece-wise stationary
global-wise dynamic point process:

Pr(N’ 1—[ A (s)AtAf) oM ArAT (8.6)

mi!

where assuming we evenly divide the time line into S pieces of equal length
segments. Inside each segment, the point process is assumed stationary. At =
[1X|/S] is the division length in terms of number of observations, so the progress
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level at the end of s-th time division is p = (sATAf)/(|X|At) = sAt/|X|. m' is the
number of detection of event x' in time division s.

Given training m.t.s. dataset D, and point process representation N, the data
likelihood can be computed as

Pr(N|D) = ]‘[ Pr(N'|D)

i=1

d S
_ 1_[1_[ (A (S D)AIAT) Ai(s',D)AtAr (8.7)

where the intensity function Ai(s,D) depends on the event, the time division
(progress level) and the training data.

Then training this model amounts to estimating A'(D) for each tuple {i, s, D). If
we are given n training sequences containing in D, and there are m;i,s of landmarks
(spiking) of event x' in j-th training sample’s s-th division, then, we can estimate
Ai(s, D) by using the maximum log-likelihood estimation, which is:

n i

m'
A (5. D) = — =L 8.8
D) = 8.8)

Relax Assumption 2 In practice, we always get a noisy detector for each event,
such as m.t.s. data. In the following, we will keep piece-wise stationary property
and relax assumption 2 by allowing event detectors generating continuous values
which may indicate the strength or the confidence about the detection. We call these
continuous value based observations as marks, then the whole m.t.s. can be extended
to a marked point process representation. To deal with this complexity, we introduce
the multilevel-discretized marked point-process (MD-MPP).

In this case, intensity parameter A will depend on both time and mark. In
this chapter, we assume all feature dimensions have been normalized to [0, 1]
respectively, which results in the mark space within [0, 1]. We build a multi-level
discretization of mark space by splitting it into L levels. Then the point process
factors into L levels of independent processes operating in each level of the mark
space for a particular event.

Pr({Nx. Mi}) (8.9)
L

_ 1—[1—[ (A (S l)AtAf)mVl —Ai(s.)AtAT
=1 s=1

Given training m.t.s. dataset D, and multivariate marked point process represen-
tation N, the data likelihood can be computed as
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. d
Pr(N[D) = [ [ Pr({N'. M'}|D)

i=1
d L S
— l_ll_[l—[ (A (S L D)AIAT) g A[(S,I,D)AfA‘L' (810)

i=11=1s=1

~

where the intensity function A(s,/, D) depends on the event, the time division
(progress level), the mark space level, and the training data. Now, we can formalize
our two key steps in early classification.

1. Learning MD-MPP Given rn training samples, the maximum log-likelihood
estimation of model parameters is:

. > oml
A" (s,1,D) = =Ll 8.11)
S AtA

where m 5.1 1s the number of landmarks of event x! in j-th training sample’s s-th time
d1v1s1on l th level of mark space.

2. Early Classification Given an ongoing testing m.t.s ¥/, and a trained model
A = {A;;|L, S, D} (for simplicity, we use A, to represent A% (s, 1,D)). First, we
construct a structure of ¥’ by factoring it over time line and mark space in the same
way as trained model, so that dynamics can be matched. Then, the likelihood of
Y'is:

L [p*s]

d
Pr(Y'|A) ocnl_[ ]‘[ (Ais ) AT®) o1~ His 1 AT (8.12)

i=11=1 s=1

where p* = |Y’'|/(At*S) is our best guessed progress level of Y’. Since the length
of m.t.s. can be different, given an ongoing testing m.t.s., we may not know when
it will be finished. Therefore, we need to ‘guess’ the ‘right’ progress level of it
first. Then we can apply our model appropriately. This is an important merit of our
approach. Algorithm 1 shows the detail of how we compute p*.

4.2 Sequential Cue (Relax Assumption 3)

Although MD-MPP provides a good modeling of temporal dynamics for m.t.s., the
unrealistic independency assumption between events (Assumption 3) is not relaxed
yet. In real applications, m.t.s. always has strong correlations among variables. For
instance, in the execution of a particular human action, a few joints will change
their angles immediately after other few joints rotated to some degree according
to the underlying cognitive “recipe” of that action. The identification of temporal
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Algorithm 1 Guess the progress level p*

1. Find the possible range from training set: Let Ary, = min{lX;|/S : j €
{1,....n}}, Atmax = max{|X;|/S :j € {L,...,n}, Then, tp = [Atmin, Atmax]-

2. Determine the minimum number of segments: S = min{[|Y’|/At] : At € 1p}, which
ensures different guesses of At will be evaluated with the same number of segments, so that
the likelihoods computed in step 3 will be comparable.

3. Evaluate the likelihood:

Az N my (At)
Ar* = argArrrlgg)]_[H 1_[ ( IA,T,)AII

i=11=1s=1

Sequential cue pattern 1: <a, a, b> g ) Temporal dynamic Sequential cue pattern
a | 98 |001| . matching matching
[ 0.8
0.8 0.9 0 [T %
0.2 0.8 00 09
2 (= +2%+22)=2.001 (53 % on 52 )=0011
~ c| o 0 0 oA o
b| %7 | 01 \ag
@ 51 52 S3

o

¢

firia al| 95 0.6 0

o o™ = =1.958 25 28 0.278
Sequential cue pattern 2: <b, ¢, > - ¢ BB B 5 (Getmta)1 (5s*5s x_)
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|
|
|
|
|
|
|
even
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Test sample 2

Fig. 8.2 Illustrations of Temporal Dynamics and Sequential Cue, based on our MD-MPP repre-
sentation. Numbers in the table constitute the model parameter, where each value indicates the
firing rate of a certain event within a particular time division. Based on a trained model A, we
can sample event streams according to these firing rates. For example, event stream {(a, a, b) and
(b, c, c) will have more chance to be sampled. With sufficient sampling, these type of Sequential
Cue patterns can be mined by using Algorithm 2

correlations among events allows us to utilize these sequential patterns for early
classification, which improves the reasoning capability of our model. As illustrated
in Fig. 8.2, if we only consider temporal dynamics, test sample 1 will have a better
match with the point process model. But in terms of sequential cue patterns, test
sample 2 results in a significantly better match. As a complement of MD-MPP
model, we introduce the sequential cue component of our approach.

Our basic idea is to formalize the notion of sequential cue by discovering
sequential structure that comes from the order in which events (m.t.s. variables)
occur over time. So we need to generate representative discrete event streams by
quantizing continuous m.t.s. observations. Since MD-MPP characterizes the rate of
occurrence (intensity function) of events at different time division (segments), then
we can easily sample event from each segment according to this rate, which results
in a discrete event stream. If we generate sufficient number of sample sequences,
then the sequential cue patterns will be preserved in the sampling set. Figure 8.2
gives an example showing how we sampled these representative sequences of events
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Algorithm 2 Construction of Sequential Cue model @ (O-order bounded PST)

1. Sampling event streams set: Let Dx = {ai....,a,} be the training set for learning model ®.

2. Creating candidate set U: Assume # is a subsequence of a,(r = 1,...,v). If |h] < O and
Pr(h) > n, then put 2 in U. 7 is a user specified minimal probability requirement for an eligible
candidate. Pr(%) is computed from frequency count.

3. Testing every candidate h € U: For any i € U, test following two conditions:

e (1) Pr(e|h) > o, which means the context subsequence 4 is meaningful for some event e.
Here, « is defined by user to threshold a conditional appearance.
e Pre|n)
Pr(e|suf(n))
predicting e relative to its longest suffix suf(k). f is a user specified threshold to measure the
difference.
* Then, if & passes above two tests, add £ and its suffixes into U.

> B,or < 1/B, which means the context & provides extra information in

4. Smoothing the probability to obtain ¢ (e|h):
For each h in U, if Pr(e|h) = 0, we assign a minimum probability y. In general, the next event
probability functioncan be written as:
¢(e|lh) = (1 — |E|y)Pr(e|h) + y. Here, y is the smoothing factor defined empirically.

from our trained MD-MPP model. Then the task of finding temporal correlations
among features (events) becomes a problem of mining sequential patterns.
Specifically, let E = {¢ : i = 1,...,d x L} be the set of events.> And

Dy = {ai,...,a,} consists of v times sampling according to A. For instance,
a, = {el f=1, r € {l,...,v} is a sampled event stream, which means at the j-th
segment, we sampled one event ¢/ € E. We can notice that a; € E*, |a;] = S.

Specific sampling probability of each event at a particular time (segment) can be
computed according to:

Ae S
Prsample(evem = e|segment = §) = Z—A (8.13)
¢/€E e’ s

Now the goal is to learn a model ® = {¢(e|h) : h € E*, e € E}, which associates
a history i with next possible event e. We call function ¢(e|h) the next event
probability function. If we define the history at j-th time segment of event stream
a as the subsequence /(@) = {ei|j < S}, then the log-likelihood of event stream

a, given a Sequential Cue model @, can be written as:

S
Pr(@|®) = ) log¢(¢jlh-1(@) (8.14)

J=1

3With multilevel-discretized representation, the total number of events becomes d X L. The MD-
MPP model can be rewritten as A = {1, |e € E,s € {1,...,S}} for convenience.
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Given an ongoing testing m.t.s. Y/, and a trained model ® = {¢(e|h)| D }. First,
we construct a structure of Y’ by factoring it over time line and mark space. We use
At* as the segment length of Y/, then we have $* = [|Y’|/ At segments. Similar
to the training process of A, we can build an MD-MPP representation for Y’ by

itself, Ayr = {A;»S’ L, S*, Y’}, from which a set of w representative event streams of

Y, ﬁAy/ = {by,...,b,}, can be sampled in the same way. Then, the likelihood of
Y’ is:
Pr(Y'|®) o< Y Pr(b;|®)) (8.15)

i=1

In terms of specific implementation of ®, we adopt the Variable order Markov
Model (VMM) [2], which is a category of algorithms for prediction of discrete
sequences. It can capture both large and small order Markov dependencies extracted
from D 5. Therefore, it can encode richer and more flexible Sequential Cue. This can
be done efficiently by constructing a probability suffix tree (PST) [22, 30], a fast
implementation algorithm of VMM. Algorithm 2 shows the detail of this process.

4.3 Final Early Classification Function

Given an ongoing m.t.s. Y’, we can now construct our final early classification
function F(Y’) by using the knowledge learned from Sects. 4.1 and 4.2, namely
time dynamics model Pr(Y’|A) and sequential cue model Pr(Y'|®). We use MD-
MPP to denote the first model, and MD-MPP+TD to denote the second model. The
early classification performances are evaluated on both of the two models. For a
domain application with |C| classes, our final prediction functions of two models
can be written as:

MD-MPP:  F(Y') = arg maCx{PrC(Y’|A)};
ce

MD-MPP+TD:  F(Y') = arg ma():({Pr”(Y'|<I>)}.
ce

5 Experimental Studies

In this section, we present a comprehensive evaluation of our methods (MD-
MPP and MD-MPP+TD) on modeling accuracy and time efficiency using two
real-world human activity data sets. We have compared with the state-of-the-art
methods including INN+DTW [16], ECTS [37], MSD [9], and HMM.* Table 8.2
summarizes the baselines.

“We used the following public available toolbox as our HMM implementation: http://www.cs.ubc.
ca/~murphyk/Software/HMM/hmm.html.


http://www.cs.ubc.ca/~murphyk/Software/HMM/hmm.html
http://www.cs.ubc.ca/~murphyk/Software/HMM/hmm.html
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Table 8.2 Summary of the four baselines used for quantitative comparison with our algorithm

Methods Rationale Description
INN+DTW | State-of-the-art | The dynamic time warping (DTW) based distance
[16] measurements between test and training time series are

computed for use in 1NN classifier. For m.t.s., the distance is
measured as the average of component u.t.s. distances
ECTS [37] | Extension of | The MPL (Minimum Prediction Length) for a cluster of similar
INN time series are computed first. At the testing phase, the learned
MPLs are used to select the nearest neighbor from only
“qualified” candidates in terms of MPL. For m.t.s., the distance
is measured as the average of component u.t.s. distances

MSD [9] Extension of | Multivariate shapelets are extracted using a sliding-window
shapelets based strategy.These shapelets are then pruned according to the
weighted information gain
HMM Common The HMM is selected as a representative of generative model
statistical based methods. A model is trained for each class. Decisions are
model based on likelihoods ranking

5.1 Datasets

We utilized two real-world datasets: CMU human motion capture dataset [5], UCI
Australian Sign Language (Auslan) dataset [25]. The following details the collection
and preprocessing of the two datasets.

Human Action Data The dataset was composed of dozens of synchronized motion
capture actions performed by more than one hundred subjects. In our experiment,
we select the MoCap data of nine common action classes performed by different
subjects, which consists of 10 samples per class on average (total 91 samples) with
average duration of 839 frames. The nine action classes include run, pick-up, walk,
jump, sitting on a motorcycle, boxing, cartwheel, chicken dance, and golf swing.
The human body model consists of 34 bones with hierarchical structures. Each
action is specified by m.t.s. observations on motion angles of body bones, which
describe both moving direction and magnitude of joints, as well as the dynamic
relationships between bones. Figure 8.3 shows the human body model with the
above-mentioned hierarchical structure. The original full body Degree of Freedoms
(DOFs) are 62. We discard some unimportant joint angles, such as fingers, toes,
thumb in the experiments. Finally, we select 19 body joints which cover the DoFs
of radius, humerus, tibia, femur, and the upper back.

Sign Language Data This dataset was composed of sample of Auslan (Australian
Sign Language) signs [13, 24], in which 27 samples of each of 95 Auslan signs
(in total 2565 signs) were captured from a native signer using high-quality position
trackers (two Fifth Dimension Technologies gloves). Each hand has 11 degrees of
freedom (i.e., roll, pitch and yaw as well as X, y and z), which results in a total
of 22 dimensional m.t.s. observations of signs. The average length of each sign is
approximately 57 frames, where the refresh rate is close to 100 frames per second.
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Fig. 8.3 Evaluation datasets. Top: CMU pose. Bottom: UCI sign language

5.2 Performance Comparison

We compare our algorithms of m.t.s. early classification in Sect. 4 (MD-MPP
and MD-MPP+TD) with existing alternatives that we discussed in Sect. 2 and
summarized in Table 8.2. We evaluate the classification accuracy by using the
standard “leave-one-out” method in both two datasets. Different from traditional
classification task, for early classification, we focus on the predictive power of each
method. An early classifier should use an observation ratio as small as possible to
make an accurate prediction. To evaluate this, we do classification along the progress
of time series, and predict the class label at different progress levels (observation
ratio) of time series. Specifically, we use 5 % of full m.t.s. duration as an interval of
generating a new prediction result.
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Fig. 8.4 Performance
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Model Construction For the Human Action Data, we construct an MD-MPP
model by splitting mark space into 10 levels (L = 10) and dividing the time line
into 20 pieces of equal length segments (S = 20). To construct an MD-MPP+TD
model, we train an order 3-bounded PST (O = 3) first, then do 100 times sampling
(w = 100) of event streams for each m.t.s. at testing phase. For the Sign Language
Data, we set L = 20, S = 10, O = 3, and w = 100.

Results Figure 8.4 summarizes the quantitative comparison between our methods
and four baselines. These graphs help us make the following observations:

(1) Our algorithms significantly outperform all the compared methods in most
cases, and achieve high prediction accuracy over different levels of observation
ratio. In terms of full-length classification (at observation ratio 100 %), 1NN-
DTW is the most comparable one to ours, which demonstrates its robustness
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Table 8.3 Performance comparisons on two datasets (percentage as observation ratios)

CMU pose dataset UCI signLanguage dataset
Methods 20,% | 40% |60 % 80% | 100% | 20 % 40 % | 60 % | 80 % | 100 %
INN+DTW [16] 0.34 10.44 10.80 090 |0.92 |0.26 |0.74 |0.80 | 0.79 | 0.78
ECTS [37] 0.67 |0.84 | 0.89 090 0.90 |0.52 |0.84 0.85 |0.82 |0.78
MSD [9] 0.58 |0.78 | 0.87 |0.85 0.88 |0.67 |0.61 0.60 |0.64 |0.65
HMM 0.76 |0.79 | 0.81 |0.80 ' 0.81 |0.87 [0.88 ' 0.80 |0.70 |0.64

MD-MPP (Ours) 0.78 [0.86 | 0.86 |0.84 0.85 |0.90 090 0.84 |0.78 |0.73
MD-MPP+TD (Ours) | 0.79 1091 090 090 091 |0.88 094 0.87 0.83 0.78

The bold values indicate the best result (i.e., highest accuracy) in each setting.

(@)

3)

“)

6

as the state-of-the-art method for time series classification. At early stages
of observation (< 30 %), MSD and ECTS can outperform INN-DTW to
accomplish better early classification due to their designs on utilizing early
cues. As a latent state model, HMM is relatively less dependent on full length
observation. Table 8.3 shows detailed comparisons of six methods on two
datasets.

Each dataset has different predictability, which means the discriminative seg-
ments of m.t.s. may appear at different stages of time series. As illustrated
in Fig. 8.4, we achieved near-optimal classification accuracy at the observation
ratio of 40 % in the Human Action Data, and 20 % in the Sign Language Data,
respectively. Figure 8.5 shows the corresponding detailed results in confusion
matrices, respectively. Interestingly, Fig. 8.4b shows that the prediction accu-
racy does not necessarily go up with the increasing of information observed,
which means more noise is introduced at the late stages of m.t.s.. It is probably
because that different signs end in the same way, such as open palms or fists.
Sequential cue patterns are contributing for better prediction, as shown
in Action and Sign Language datasets (Fig.8.4a,b). This is because
variables/events have strong correlations (for example, bones connected to
each other) in Action and Sign Language datasets.

In Fig. 8.6, we present detailed performance of our approach over nine different
action classes in the Human Action dataset. The action “pick-up” is difficult
to be recognized at early stages, because it is executed by first walking to the
object, then picking up it. The component sub-action “walking to object” makes
it confusing with the class “walk.” Another component sub-action “crouching
to pick up object” makes it confusing with the class “jump.”

Summary

Action recognition is an important research study of Human Motion Analysis
(HMA). This work takes one step further, focusing on early recognition of ongoing
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human actions, which is beneficial for a large variety of time-critical applications,
e.g. gesture based human machine interaction and somatosensory game, etc. Our
goal is to identify class label of human activities with partial observation of
temporally incomplete action executions. By considering action data as multivariate
time series (m.t.s.) synchronized to a shared common clock (frames), we introduced
a novel approach to early classify human activities (m.t.s. observation) by modeling
two types of time pattern: temporal dynamics and Sequential Cue. The major
contributions include a Multilevel-Discretized Marked Point Process (MD-MPP)
model for representing m.t.s.; and a sequential cue model (MD-MPP+TD) to
characterize the sequential patterns among multiple time series variables. We have
empirically shown that our approach is superior in the activity prediction task.
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