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Abstract Evolutionary algorithms have been extensively used to solve static and
dynamic single objective optimization problems, and static multiobjective optimiza-
tion problems. However, there has only been tepid interest to solve multiobjective
optimization problems in dynamic environments. It is only in the past few years that
evolutionary algorithms have been used to solve dynamic multiobjective optimiza-
tion problems and comprehensive benchmark suites have been proposed for testing
the performance of algorithms. Prediction based algorithms may be able to provide
information about the location of the changed optima and thereby assisting the evo-
lutionary algorithm in the non-trivial task of tracking the changing Pareto Optimal
Front or Set. Kalman filter is one of the widely used techniques in prediction sce-
narios for state estimation. A Dynamic Multi-objective Evolutionary algorithm was
proposed in which the Kalman Filter was applied to the whole population to direct
the search for Pareto Optimal Solutions in the decision space after a change in the
problem has occurred. In this work, the Kalman Filter assisted Evolutionary Algo-
rithm is tested on the IEEE CEC 2015 Benchmark problems set and the results are
presented. It is observed that while the proposed algorithm performs well on some
problems, more efficient strategies are required to supplement the algorithm in cases
of high change severity, isolated and deceptive fronts.
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1 Introduction

Optimization problems are aplenty and are found in various fields such as science, en-
gineering, economics, finance, management, scheduling, planning, design, control,
etc. The list is ever growing, and scientists and industrialists alike are in the lookout
for better and more efficient techniques to solve their problems. Optimization in gen-
eral refers to the process of finding one or more feasible solutions which correspond
to extreme values of one or more objectives. Many researchers have tend to focus
on optimization problems which consider a single objective, although most real-
world search and optimization problems involve more than one objective. Further,
the presence of conflict in the multiple objectives makes these optimization problems
(commonly termed as multiobjective optimization problems) more interesting and
challenging to solve. Since no single solution can satisfy the multiple conflicting
objectives simultaneously, the solution to a multiobjective optimization problem is a
set of trade-off optimal solutions. Classical optimization methods such as hill climb-
ing, simulated annealing can at best find one solution in a simulation run, thereby
deeming these methods inefficient to solve multiobjective optimization problems.

Evolutionary algorithms are inspired from biological evolution and mimic na-
ture’s evolutionary principles to drive the search towards optimal solution(s). These
algorithms use a population of solutions in each iteration, consequently making
them ideal candidates for solving multiobjective optimization problems. Numer-
ous Evolutionary Algorithms(EAs) have been developed in the past few decades
to solve multiobjective optimization problems such as NSGA-II [1], MOEA/D [2],
MOEA/D-DE [3], to name a few. The advances of EvolutionaryMultiobjective Opti-
mization(EMO) research has been drastic and has resulted inmany new paradigms to
be developed such as the Estimation of Distribution Algorithms(EDAs), decomposi-
tion based algorithms, and so on. Applications of EMO research have been observed
in a wide variety of problems [4–9]. However, there has only been lukewarm interest
in applying EvolutionaryAlgorithms to solve dynamic optimization problems,where
the optimum(or optima) changes with time. Furthermore, most of the EA researchers
in this area have tend to focus on dynamic single-objective optimization problems,
while most real-world problems are dynamic multiobjective optimization problems.

Using Evolutionary Algorithms to solve dynamic multiobjective optimization
problems has started gaining attention over the past few years. Nevertheless, there is
large scope for contribution and improvement in this field. In dynamicmultiobjective
optimization problems the fitness landscape is changing over time. Preliminary re-
search in solving proposed benchmark problems involved applying Multiobjective
Evolutionary Algorithm(MOEA) directly to solve them. However, the inherent char-
acteristic of an MOEA is that it takes significant amount of time to converge to the
Pareto Optimal Front(POF). This is an important issue in dynamic multiobjective
optimization where the POF and/or the Pareto Optimal Solution(s) (POS) are con-
tinuously changing with time. In the current literature, various approaches have
been proposed to solve dynamic multiobjective optimization problems. In this pa-
per, the focus is on employing prediction techniques to solve dynamic multiobjective
optimization problems. A novel Kalman Filter based dynamic multiobjective opti-
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mization algorithm was developed to solve dynamic multiobjective optimization
problems [10].

Based on the IEEE-CEC 2015 Dynamic Multi-objective Optimization Bench-
mark problems, this paper aims to examine and discuss the performance of the
Kalman Filter assisted MOEA/D-DE algorithm, MOEA/D-KF in solving the pro-
posed benchmark set. The outline of the paper is as follows: Section 2 provides
required background and outlines related work. Section 3 provides the algorithm de-
scription including a brief overview of MOEA/D-DE and Kalman Filter prediction
method. Section 4 provides the experimental setup, outlines the performance metric
used and the results are presented. Section 5 consists of anlaysis of the performance
based on the severity and frequency of change in the problems. Section 6 outlines
the discussion of the results and Section 7 concludes the work.

2 Background

This section provides the basic definitions used in the evolutionary multiobjective
community together with some key concepts which are essential for understanding
the work described in a more scientific manner.

2.1 Multiobjective Optimization Problem

A multiobjective problem can be expressed in its general form mathematically as

Minimize/Maximize fm(x), m = 1, 2, . . . , M;
subject to g j (x) ≥ 0, j = 1, 2, . . . , J ;

hk(x) = 0, k = 1, 2, . . . , K ;
x L

i ≤ xi ≤ xU
i , i = 1, 2, . . . , n.

where fi is the i-th objective function and M is the number of objectives.
The vector, f (x) = [ f1(x) f2(x) . . . fm(x)]T forms the objective vector, f (x) ∈

R
M . A solution x is a vector of n decision variables: x = [x1 x2 . . . xn]T . The above

general problem is associated with J inequality and K equality constraints. The last
set of constraints are called variable bounds, restricting each decision variable xi to
take a value within a lower x (L)

i and an upper x (U )
i bound. These variable bounds

constitute the decision variable space � ∈ R
n , or simply the decision space.

In the presence of constraints g j and hk , the entire decision variable space � may
not be feasible. The feasible region S is the set of all feasible solutions in the context
of optimization. The feasible search space can be divided into 2 sets of solutions -
pareto optimal and non pareto otpimal set. To define pareto optimality, first we need
to look into the concept of domination.
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Concept of Domination. There are M objective functions in a multiobjective prob-
lem. Say,we have 2 solutions, i and j . i < j implies i is better than j or i dominates j .
A solution x1 is said to dominate another solution x2, if both the following conditions
are true.

1. The solution x1 is no worse than x2 in all objectives, or fm(x1) is not better than
fm(x2) for all m = 1, 2, ..., M .

2. The solution x1 is strictly better than x2 in at least one objective.

Pareto Optimality. Among a set of solutions P , the non-dominated solutions, P∗ are
those that are not dominated by any member of the set P . When the set P comprises
the entire search space, the resulting non-dominated set P∗ is the Pareto Optimal
Set(POS in the decision space). Pareto optimal solutions joined together as a curve
form the Pareto Optimal Front(POF in the objective space). The front lies in the
bottom-left corner of the search space for problems where all objectives are to be
minimized.

Goals of an MOEA. The working principle for an ideal multiobjective procedure
consists of finding multiple trade-off optimal solutions with a wide range of values
for the objectives, and later choosing one of the obtained solutions using higher
level information. In such a case it is difficult to prefer one solution over the other
without any further information about the problem. If higher level information is
satisfactorily available, this can be used to make a biased search. However, in the
absence of any such information, all pareto optimal solutions are equally important.
Therefore, there are 2 goals:

1. To find a set of solutions as close as possible to the POF, i.e. Convergence
2. To find a set of solutions as diverse as possible, i.e. Diversity

For each of the M conflicting objectives, there exists one different optimal solu-
tion. An objective vector constructed with these individual optimal objective values
constitutes the ideal objective vector, z∗, which in general lies in the infeasible space.
For more detailed discussion of the concepts on multiobjective optimization , please
refer to [11].

2.2 Dynamic Multiobjective Optimization Problem

The various concepts discussed for multiobjective optimization are still essential
in dynamic multiobjective optimization together with some additional issues and
goal(s). In general, in a dynamic multiobjective optimization problem(DMOOP),
the optimum changes with time. Mathematically, a DMOOP can be described as

minimize
x

f(x, t) = [ f1(x, t) f2(x, t) . . . fm(x, t)]T

subject to x ∈ �
(1)
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where t represents time index, x ∈ R
n represents the decision vector, n is the

number of decision variables and � ⊂ R
n represents the decision space. m is the

number of objectives,Rm is the objective space and f (x, t) consists of m real-valued
objective functions, each of which is continuous with respect to x over �. Thus, the
POF and/or POS may change over time.

The goals of convergence and diversity apply to Dynamic Multiobjective Opti-
mization Evolutionary Algorithms (DMOEAs) as well. However, it is not restricted
to the above two and there is an additional goal of tracking the changing POF/POS
which plays an important role in determining the overall performance.

Classification of DMOOPs. [12] have classified dynamic multiobjective optimiza-
tion problems based on the possible ways a problem can demonstrate a time varying
change.

Table 1 Classification of DMOOPs

Type I POS changes, but POF does not change
Type II Both POS and POF change
Type III POS does not change, POF changes
Type IV Both POS and POF do not change,

although the problem can change

These four cases are summarized in the Table 1. There are other possible ways of
classifying DMOOPs as well such as based on severity, predictability and visibility
of change, among others [13].

3 Algorithm Description

3.1 MOEA/D-DE

The DMOEA used in this paper is built on the basis of Multiobjective Evolutionary
Algorithm with Decomposition based on Differential Evolution (MOEA/D-DE) [3].
MOEA/D-DE decomposes a problem into several sub-problems and simultaneously
optimizes them to find the pareto optimal solutions of theMultiobjective optimization
problem. Each solution is assigned with a weight vector and neighbourhood relations
are defined based on the weight vectors. In the context of dynamic multiobjective
optimization, the usage of weight vectors enables the tracking of individual solutions
in the decision space which are essential for prediction purposes. Decomposition into
sub-problems is performed using the Tchebycheff approach in this paper.

3.2 Change Detection

Sentry particles in the population are used to observe any changes in the system,
assuming there is no noise. These change detecter individuals’ objective values are
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recomputed at the beginning of each generation to check if there has been any change
since the last objective function evaluation. If there is a change in the objective
function values, it is assumed that a change has occured and the Kalman filter based
model is used to predict for the optimal values of solutions in the decision space.
Otherwise, the optimization process proceeds as in a static MOEA.

3.3 Kalman Filter Prediction Based DMOEA

Kalman Filter is an algorithm that uses a series of measurements observed over
time, containing noise and other inaccuracies, and produces statistically optimal
estimates of the underlying system state [14, 15]. The algorithm works in a two-step
process involving a prediction step and a measurement step. In the prediction step,
the Kalman filter produces estimates of the current state variables, along with their
uncertainties. Once the outcome of the next measurement is observed, these a priori
estimates are updated to obtain the a posteriori estimates. The Kalman filter operates
recursively in time series analysis. The fact that Kalman filter can run in real-time
makes it a good candidate for the prediction model in solving DMOOP. Thus, in our
study, Kalman filter is applied to the whole population to direct the search for Pareto
Optimal Solutions (POS) in the decision space after a change in the problem has
occured. Please refer to [10] for more details on the Kalman Filter assisted DMOEA.
The 2by2 variant of the Kalman filter based algorithm from [10] is used in this paper.

4 Empirical Study

4.1 Experimental Setup

The Kalman Filter prediction based DMOEA, MOEA/D-KF is tested on the bench-
mark problems proposed for the IEEE CEC 2015 Competition on Dynamic Multi-
objective optimization [16] in this paper. The benchmark set consists of functions
from FDA [12], dMOP [17] and HE [18–20] benchmark function suites and were
adapted to further test the capabilities of DMOEAs in a more comprehensible man-
ner than currently available in the evolutionary dynamic multiobjective optimization
literature. The parameter settings for the experiments are tabulated in Table 2.

4.2 Performance Metric - Modified Inverted Generational
Distance

A number of performance metrics are in use for evaluation of static MOEAs which
evaluate convergence and diversity quite effectively. These metrics have been modi-
fied for usage in evaluation of DMOEAs. The Inverted Generational Distance(IGD)
is a unary performance indicator which provides a quantitative measurement for the
proximity and diversity goal ofmultiobjective optimization [21]. It ismathematically
given by
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Table 2 Experiment Settings

Number of decision variables, n FDA:12, dMOP and HE:10, HE2:30
Population size 100 for 2 objective problems

200 for 3 objective problems.
Neighborhood Size: 20.

Probability that parents are selected from
the neighborhood is 0.9.

Decomposition method Tchebycheff
Differential Evolution CR = 1.0 and F = 0.5.
Polynomial Mutation η = 20, pm = 1/n.

The number of solutions replaced by any
child solution is at most 2.

Number of detectors 10
Percentage for RND model 20%

KF model Process noise: Gaussian of N(0, 0.04).
Observation noise: Gaussian of N(0, 0.01).

Number of changes 20

I G D(Pt∗, Pt ) =
∑

v∈Pt∗ d(v, Pt )

|Pt∗| (2)

where Pt∗ is a set of uniformly distributed Pareto optimal solutions in the POF at
time t(P O Ft ) and Pt is an approximation of the POF obtained by the algorithm in
consideration. d is a distance measure between Pt and Pt∗, given by

d(v, Pt ) = min
u∈Pt

‖F(v) − F(u)‖. (3)

A lower value of IGD implies that the algorithm has better optimization perfor-
mance. To obtain a low value of IGD, it can be seen from the above 2 equations that,
Pt must be very close to P O Ft and cannot miss any part of P O Ft , thus measuring
both convergence and diversity.

To adapt the IGD metric for dynamic multiobjective optimization, the average of
the IGD values in some time steps over a run is taken as the performance metric,
given by

M I G D = 1

|T |
∑

t∈T

I G D(Pt∗, Pt ) (4)

where T is a set of discrete time points(immediately before the change occurs) in
a run and |T | is the cardinality of T . A lower value of the MIGD metric described
above would also assist in evaluating the tracking ability, as the approximated pareto
front obtained from the algorithm with the changing pareto optimal front.

4.3 Results

TheMOEA/D-KFalgorithm is comparedwith a baseline of random immigrants strat-
egy where a percentage of the population is randomly reinitialized when a change
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Table 3 nt and τt values for the benchmark functions

nt 10 10 10 10 1 1 20 20

τt 5 10 25 50 10 50 10 50

τt 100 200 500 1000 200 1000 200 1000

occurs and this method is indicated by RND. The difficulty of a DMOOP is deter-
mined by the parameters nt and τt which denote the severity and frequency of change
respectively. The combination of parameter values used in the simulations are given
in Table 3. τT denotes the maximum number of iterations.

Table 4 MIGD mean and standard deviation statistics for nt = 10

Problem RND MOEA/D-KF

FDA4 0.257978 ± 0.202(+) 0.207295 ± 0.211

FDA5 0.538704 ± 0.222(-) 0.383436 ± 0.193

dMOP1 0.173554 ± 0.461 0.248594 ± 0.452(+)

dMOP2 0.882946 ± 0.682(+) 0.303540 ± 0.449

dMOP2iso 0.009556 ± 0.020 0.009895 ± 0.020(-)

dMOP2dec 2.739828 ± 6.218(-) 2.671837 ± 6.109

HE2 0.057582 ± 0.001 0.057710 ± 0.001(-)

HE7 0.223214 ± 0.030 0.333162 ± 0.073(+)

HE9 0.403658 ± 0.035 0.499466 ± 0.068(+)

(a) nt = 10, τt = 5

Problem RND MOEA/D-KF

FDA4 0.144859 ± 0.090(+) 0.122009 ± 0.090

FDA5 0.347302 ± 0.111(+) 0.227943 ± 0.094

dMOP1 0.037534 ± 0.103 0.047511 ± 0.101(+)

dMOP2 0.173277 ± 0.119(+) 0.078387 ± 0.107

dMOP2iso 0.004369 ± 0.002 0.004411 ± 0.002(-)

dMOP2dec 0.901509 ± 2.811(-) 0.859458 ± 2.824

HE2 0.057046 ± 0.001(-) 0.057030 ± 0.001

HE7 0.168585 ± 0.018 0.253887 ± 0.053(+)

HE9 0.377706 ± 0.039 0.478676 ± 0.085(+)

(b) nt = 10, τt = 10

Problem RND MOEA/D-KF

FDA4 0.085218 ± 0.016(+) 0.077284 ± 0.014

FDA5 0.226148 ± 0.083(+) 0.140106 ± 0.029

dMOP1 0.007402 ± 0.013 0.008307 ± 0.012(+)

dMOP2 0.022815 ± 0.013(+) 0.013347 ± 0.012

dMOP2iso 0.003743 ± 0.000 0.003747 ± 0.000(-)

dMOP2dec 0.099968 ± 0.335 0.106301 ± 0.337(-)

HE2 0.056916 ± 0.001(-) 0.056910 ± 0.001

HE7 0.153983 ± 0.030 0.206505 ± 0.054(+)

HE9 0.353986 ± 0.042 0.445529 ± 0.084(+)

(c) nt = 10, τt = 25

Problem RND MOEA/D-KF

FDA4 0.072128 ± 0.003(+) 0.069282 ± 0.001

FDA5 0.197262 ± 0.088(+) 0.130583 ± 0.038

dMOP1 0.004237 ± 0.001 0.004411 ± 0.001(+)

dMOP2 0.006455 ± 0.001(+) 0.005675 ± 0.001

dMOP2iso 0.003730 ± 0.000 0.003730 ± 0.000(-)

dMOP2dec 0.029316 ± 0.099 0.031941 ± 0.099(-)

HE2 0.056915 ± 0.001(+) 0.056909 ± 0.001

HE7 0.147688 ± 0.034 0.185881 ± 0.053(+)

HE9 0.330218 ± 0.032 0.420749 ± 0.083(+)

(d) nt = 10, τt = 50

Tables 4 and 5 provide the MIGD mean and standard deviation statistics for
the different combination of parameter values for the various benchmark problems.
Statistical t-test was conducted on the results at the 5% significance level and the
best value is denoted in bold. (+) (and (−)) indicates that the difference between
the marked entry and the best entry is statistically significant (and insignificant,
respectively).

FDA4 and FDA5 are 3-objective problems, while the rest of the problems are 2-
objective problems. It can be observed fromTables III-V thatMOEA/D-KF performs
significantly better than RND on FDA4, FDA5 and dMOP2 in all three parameter
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Table 5 MIGD mean and standard deviation statistics for nt = 1

Problem RND MOEA/D-KF

FDA4 0.390467 ± 0.089 0.602495 ± 0.128(+)

FDA5 1.058697 ± 0.455 1.193283 ± 0.450(+)

dMOP1 0.112298 ± 0.111(-) 0.110023 ± 0.110

dMOP2cec 7.429464 ± 7.310 17.893780 ± 15.640(+)

dMOP2iso 0.084172 ± 0.073 0.084333 ± 0.073(-)

dMOP2dec 30.214032 ± 39.352 31.296647 ± 39.384(-)

HE2 0.109764 ± 0.061 0.110784 ± 0.060(+)

HE7 0.191397 ± 0.026 0.237358 ± 0.046(+)

HE9 0.317087 ± 0.110 0.367213 ± 0.132(+)

(a) nt = 1, τt = 10

Problem RND MOEA/D-KF

FDA4 0.068035 ± 0.001 0.069631 ± 0.001(+)

FDA5 0.825898 ± 0.328 0.902508 ± 0.358(-)

dMOP1 0.083306 ± 0.073(+) 0.082921 ± 0.072

dMOP2cec 0.082403 ± 0.069(+) 0.076870 ± 0.061

dMOP2iso 0.083391 ± 0.073 0.083401 ± 0.073(-)

dMOP2dec 20.317731 ± 34.716 20.346623 ± 34.710(-)

HE2 0.107948 ± 0.060(-) 0.107937 ± 0.060

HE7 0.187327 ± 0.055 0.202417 ± 0.047(-)

HE9 0.276737 ± 0.086 0.349261 ± 0.123(+)

(b) nt = 1, τt = 50

settings. dMOP2 is a type II DMOOP and its time-varying POS is sinusoidal in
nature. The Kalman filter prediction can track the changing POS better than the
random immigrants strategy in this case. A similar explation for FDA5 applies as
well. Though FDA4 is a type I DMOOP, wherein its POF does not change with time,
its POS also follows a sinusoidal trajectory and MOEA/D-KF’s better performance
could be attributed to the more efficient POS tracking.

For dMOP1, the optimal values for all decision variables remain the same through-
out the iteration. RND performs better than MOEA/D-KF on this problem, as a
majority of RND’s population is retained without any modification after a change.
Once the EA converges on the POS, the RND method does not effectively disrupt
the POF/POS attained.

HE7 and HE9 are type III DMOOPs and their POS is not dependent on time.
This might result in the better performance of RND compared to the Kalman fil-
ter predictions. dMOP2iso and dMOP2dec consist of isolated and deceptive POF
respectively. Even though MOEA/D-KF performs better than RND on dMOP2, it
does not perform significantly better than RND on the isolated and deceptive POF
variants of dMOP2. This maybe a result of trapping into local optima for both the
algorithms.

HE2 is a type III DMOOP, similar to HE7 and HE9. However, it has discontin-
uous POF, with various disconnected continuous sub-regions [16]. This increases
the problem complexity significantly and may lead to similar performance on RND
andMOEA/D-KF as specific measures have not been taken to handle such scenarios
in the Kalman Filter prediction based DMOEA. Both the algorithms seem to give
similar performance on all three parameter settings for HE2.

More efficient strategies are required to enhance the performance of MOEA/D-
KF on the IEEE CEC 2015 Dynamic benchmark suite, especially in the problems
with isolated, deceptive and disconnected POF. Further, the state transition of the
model can be modified such that it is able to better model the movement of decision
variables to obtain efficient tracking performance.



248 A. Muruganantham et al.

5 Analysis

5.1 Effect of Severity of Change

The parameter nt , denotes the severity of change in the DMOOP. The parameter
settings for Table III-(b) and Table IV-(a) are τt = 10 and nt = 10, and 1 respectively.
It can be seen from the MIGD values on the table that as nt decreases, the severity of
change in the problem increases manyfold. This gets reflected in the MIGD values
obtained as high numbers as can be seen in Table IV.

Figures 1 and 2 depict the influence of severity of change on FDA4 and dMOP2
problems. The IGD box plots for RND and MOEA/D-KF are plotted for different
values of severity of change. From the range of IGD in the box plots, it can be seen
that in the higher nt setting both the algorithms perform better than in the lower
setting. It is also interesting to note that MOEA/D-KF performs better than RND for
nt = 10, 20, while it performs worser for the lowest nt setting.

(a) nt = 1 (b) nt = 10 (c) nt = 20

Fig. 1 Effect of severity of change: IGD box plots for FDA4 with τt = 10 and nt = 1, 10
and 20

(a) nt = 1 (b) nt = 10 (c) nt = 20

Fig. 2 Effect of severity of change: IGD box plots for dMOP2 with τt = 10 and nt = 1, 10
and 20

5.2 Effect of Frequency of Change

The parameter τt , denotes the frequency of change in the DMOOP. It determines
the number of generations for which the problem does not change. The smaller the
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frequency of change the problem changes quickly. Thus, as the frequency of change
increases with other parameters kept constant, the difficutly of the DMOOP would
be expected to decrease.

Figures 3 and 4 depict the trend of IGD with number of changes in the DMOOP
for FDA4, FDA5 and dMOP2 problems. The trends are plotted for a number of
values of τt : 5, 10, 25 and 50. It can be observed from the figures that theMOEA/D-
KF algorithm performs better than RND for the various values of τt . However, the
problem difficulty reduces for higher values of τt and therefore, the distance between
the trend curves of MOEA/D-KF and RND reduces as τt increases.

(a) τt = 5 (b) τt = 10 (c) τt = 25 (d) τt = 50

Fig. 3 Plots of IGD vs Number of Changes for FDA4 problem with nt = 10 and various
values of τt

(a) τt = 5 (b) τt = 10 (c) τt = 25 (d) τt = 50

Fig. 4 Plots of IGD vs Number of Changes for FDA4 problem with nt = 10 and various
values of τt

5.3 Initial Populations Obtained Before a Change

Figure 5 shows the initial populations obtained before a change by MOEA/D-KF
and RND algorithms for dMOP1, dMOP2 and dMOP2dec problems with nt = 10
and τt = 10. All three problems have similar POF. However, their Pareto Optimal
Sets are very different from each other. RND is able to obtain solutions close to the
POF as the problem’s POS does not change with time and the algorithm does not
reinitialize a major portion of the population. However, its performance is worser in
the dMOP2 and dMOP2dec problems.

In dMOP2, MOEA/D-KF is able to better approximate to the POF than RND.
This can be observed in Fig 5(b) as the solutions obtained by MOEA/D-KF are



250 A. Muruganantham et al.

closer to the POF than that of RND. In the case of dMOP2dec, the problem has
a deceptive POF. Further, in dMOP2dec, solutions obtained by MOEA/D-KF are
within the vicinity of POF whereas only few solutions of RND are visible.

(a) dMOP1 (b) dMOP2 (c) dMOP2dec

Fig. 5 Initial populations obtained before a change by MOEA/D-KF and RND for dMOP1,
dMOP2 and dMOP2dec problems with nt = 10 and τt = 10

6 Discussion

6.1 Type I DMOOPs

The POF remains static for these problems, while the POS keeps changing with
time. In the benchmark problems used in this study, FDA4 falls into this category.
MOEA/D-KF seems to perform quite well in these kind of problems in comparison
with the RND algorithm.

6.2 Type II DMOOPs

Both the POF and POS change with time in this class of problems. FDA5, dMOP2,
dMOP2iso and dMOP2dec come under this categorization.WhileMOEA/D-KF per-
forms quite well in FDA5 and dMOP2, its performance is much worse in the case
of dMOP2iso and dMOP2dec which have isolated POF and deceptive POF respec-
tively. While a generalization cannot be made in this case about the performance of
MOEA/D-KF or RND, it is to be noted that in problems with isolated and deceptive
POF, DMOEAs may have significant difficulty in tracking the changing POF/POS.

6.3 Type III DMOOPs

The POS remains static in these problems, while the POF keeps changing with time.
HE2, HE7 and HE9 problems come under this category. The discontinuous POF
characteristic of HE2 leads to similar performance on RND andMOEA/D-KF while
RND tends to be perform marginally better than MOEA/D-KF in the other problems
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as it does not disrupt the converged solutions in the decision space and thereby
maintaining the solutions to be close to the POS.

7 Conclusion

In this paper, a brief overview of evolutionary algorithms in the optimization context
was provided in general and the issues related to evolutionary dynamicmultiobjective
optimizationwere discussed in particular. AKalmanFilter prediction basedDMOEA
was also outlined. Subsequently, the algorithm was tested on the IEEE CEC 2015
Benchmark suite and its results were compared to the random immigrants strategy
also based on MOEA/D-DE. While MOEA/D-KF does perform significantly better
than RND in some of the problems, more effective strategies need to be observed
to effectively solve them. The effect of severity of change and frequency of change
was also analysed. The initial populations obtained by the two algorithms were also
visualized to get a better perspective about their optimization performance.
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