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Abstract Datamining has been successfully applied inmany businesses, thus aiding
managers to make informed decisions that are based on facts, rather than having to
rely on guesswork and incorrect extrapolations. Data mining algorithms equip insti-
tutions to predict the movements of financial indicators, enable companies to move
towards more energy-efficient buildings, as well as allow businesses to conduct tar-
geted marketing campaigns and forecast sales. Specific data mining success stories
include customer loyalty prediction, economic forecasting, and fraud detection. The
strength of data mining lies in the fact that it allows for not only predicting trends
and behaviors, but also for the discovery of previously unknown patterns. However, a
number of challenges remain, especially in this era of big data. These challenges are
brought forward due to the sheer Volume of today’s databases, as well as the Velocity
(in terms of speed of arrival) and the Variety, in terms of the various types of data col-
lected. This chapter focuses on techniques that address these issues. Specifically, we
turn our attention to the financial sector, which has become paramount to business.
Our discussion centers on issues such as considering data distributions with high
fluctuations, incorporating late arriving data, and handling the unknown. We review
the current state-of-the-art, mainly focusing on model-based approaches. We con-
clude the chapter by providing our perspective as to what the future holds, in terms
of building accurate models against today’s business, and specifically financial, data.
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1 Introduction

Data mining has been successfully applied to many businesses, thus aiding man-
agers to make informed decisions that are based on facts, rather than having to rely
on guesswork and incorrect extrapolations. Data mining algorithms allow companies
to explore the trends in terms of sales, to predict the movements of financial indica-
tors, and to construct energy-aware buildings, amongst others. Specific data mining
(or business analytics) success stories include customer loyalty prediction and sales
forecasting, fraud detection, estimating the correlations between stocks and predict-
ing the movements of financial markets. Case studies show that the strength of data
mining lies in the fact that it allows for not only predicting trends and behaviors, but
also for the discovery of previously unknown patterns in business data.

Making predictions and building trading models are central goals for financial
institutions. It is no surprise that this was one of the earliest areas of the application of
modern machine learning techniques to real world problems. In this sector, a number
of unique challenges need to be addressed. These challenges are brought forward due
to the sheer Volume, Velocity (in terms of speed of arrival) and the potential Variety,
of the data. In addition, another issue here is that we aim to build an accurate model
against uncertain, rapidly changing, and often rather unpredictable, data. That is,
the financial sector continuously processes millions, if not trillions, of transactions.
For example, the values of stocks are updated at regular intervals, typically every
few seconds. These markets require the use of advanced models in order to facilitate
trend spotting and to provide some financial trajectory. Ideally, in this scenario, we
require just-in-time adaptive models that are accurate even as the data changes, due
to concept drifts.

There are many unknowns associated with such financial data, which makes the
construction of data mining models a major challenge. Here, analyzing and under-
standing what attributes and parameters we do not know is crucial in order for us
to create accurate and meaningful predictions. This fact limits the application of
traditional data-driven algorithms, in that we often cannot make assumptions about
data distributions or types of relationships. The typical non-parametric way used by
most data mining algorithms, to search a large data set to see whether any patterns
are exhibited in that set, has limited applicability in a financial setting. Here, the data
are susceptible to drift, arrive at a fast rate, may contain late-arriving data, and have
parameters that are difficult to estimate. Thus, this type of traditional analysis and
model construction may not be ideal when aiming to construct models against big
data in finance, where the number of unknowns (and in essence the randomness) is
high. Rather, the use of stochastic, model-based approaches comes to mind.

This chapter addresses the above-mentioned issues associated with Volume,
Velocity and Variance in big data, while focusing on the financial sector. To this
end, we review the state-of-the-art in terms of techniques to mine stocks, bonds,
and interest rates. We note that Bayesian approaches have had some success, in
which unknown values are integrated out (marginalized) over their prior probability
of occurrence. We further describe the special considerations that need to be taken
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into account when building models against such a vast amount of uncertain and fast-
arrivingdata.Our discussion centers on issues such as handlingdata distributionswith
high fluctuations, modeling the unknown, handling potentially conflicting informa-
tion, and considering boundary conditions (i.e. the prices of the stocks when acquired
and sold or the initial and final interest rates) following a path integral approach. We
conclude the chapter by providing our perspective as to what the future holds.

We begin this chapter, in Sects. 2 and 3, by setting the stage and by discussing the
complexities associated with building predictive models for financial data that are
high in Volume and Variety. Section4 reviews the concepts of bonds and interests
rates, while Sect. 5 presents the Black-Scholes model for interest rates. In Sect. 6, we
explore the Heath-Jarrow-Molton model for predicting the forward-value of a bond.
Next, in Sect. 7, we turn our attention to this issue of Variety, and we discuss the
use of social media and non-traditional data sources during model building. Finally,
Sect. 8 concludes the chapter and presents our views on the way forward.

2 Business, Finance and Big Data

Our level of indebtedness is unprecedented in history. Whether we like it or not, the
finance sector, in general, and the debt sector, in particular, has become paramount
to business. In 1965, corporations in the United States of America (US) were earning
12.5% of their revenues from the financial sector while 50% of their revenues were
coming frommanufacturing. In 2007, just before the financial meltdown of 2008, this
tendency was completely inverted with 35% of US corporations’ revenues earned
from the financial sector, while only 12%were earned from domesticmanufacturing.
As a matter of fact, the fraction of corporate earnings from the financial sector has
grown more than 400% over the last 60years [1].

By all means, finance is big: big by the Volume, Velocity, and Variety of data
involved, big by the corresponding amount of money involved (trillions of $), and big
by its influence on our lives. Just to present an order of magnitude, on 13 November
2014, a normal trading day, 708,118,734 financial instruments were traded for a
total value of $26,847,016,206 at the New York Stock Exchange (NYSE) of which,
641,044 financial instruments were traded with algorithmic programs [2]. (Note that
a financial instrument may be defined as a trade-able asset of any kind; either cash,
evidence of an ownership interest in an entity, or a contractual right to receive or
deliver cash or another financial instrument. For each financial instrument, we keep
track of its value as it evolves over time. The market data for a particular instrument
would include the identifier of the instrument and where it was traded such as the
ticker symbol and exchange code plus the latest bid and ask price and the time of
the last trade. It may also include other information such as volume traded, bid and
offer sizes, and static data about the financial instrument that may have come from a
variety of sources. That is, thesemassive data streams are in essence time series data.)
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It follows thatmaking predictions and building tradingmodels are central goals for
financial institutions. For example, a number of researchers have studied the problem
of forecasting the volatility of stock markets, through the use of neural networks,
decision trees, cluster analysis, and so on [3]. In contrast to econometric approaches,
the data-driven modeling approach used in many data mining algorithms makes few
assumptions about data distributions or types of relationships. In this framework
few (if any) parameters need to be estimated. Neither is there an assumed model
form. Instead, the standard non-parametric approach proceeds by searching the data
set to see whether any patterns are exhibited in that set. If the patterns found meet
certain minimum requirements, then the pattern is recorded for further inspection.
The usefulness of the methodology is judged by looking at new data to see whether
these patterns also occur there. If so, we say that the data mining model is robust and
has found a pattern that holds over time.

However, following a data-driven only approach, as discussed above, may not
be ideal when aiming to construct models against big data in finance, in which the
number of unknowns, due to the essential randomness, is high. Also, this train-then-
test method does not work well for financial data streams that are susceptible to
concept drift. To this end, the focus of this chapter is on building models against big
data in finance, using a path integral approach. We primarily focus our attention on
stocks, bonds, and interest rates from a big data perspective. Stochastic models for
the stocks’ prices and for the forward rates are introduced. From the knowledge of
the probability distribution associated with the noise, it is possible to marginalize
our uncertainty about the prices and the rates and to make useful predictions. The
lack of knowledge may be leveraged through a framework rooted in the path integral
formalism. We show that a thorough understanding of what we don’t know is instru-
mental in such a process. In the next sections, we address stock prices, and we then
extend our previous analysis to bonds.

3 Finance and Data Mining: Diving into the Unknown

Stock prices and interest rates are time series data that arrive in massive volumes,
are fast changing and potentially infinite [3]. In the financial sector, researchers aim
to create just-in-time models in order to find similar or regular patterns, to identify
trends, to detect sudden concept drifts and to spot outliers, from such big data.

An important task is to find similar series, using either subsequence matching or
whole sequencematching [4]. For example, Selective MUSCLES as introduced in [5],
is an efficient and scalablemethod for on-linemining for co-evolving time sequences.
In their method, they use subset selection and exponential forgetting in order to scale
their system up. In addition, trend analysis is often used in order to both gain insights
into the underlying forces that generate time series and to predict the future [6].
Here, four main types of analysis are of importance [3]. Firstly, we are interested in
modeling long-term movements, e.g. the trend in the behavior of a stock or market
over a long period of time. Secondly, there is the study of cyclical movements, which
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Fig. 1 Boeing stock
movement over the last
10years on the NYSE

refers to long-term oscillations that may or may not be periodic. Thirdly, seasonal
drifts refer to variations that are typically calendar related. For example, there may be
an increase in food prices traded out of season. In this case, the seasonal movements
are typically very similar from year to year, and we are interested in utilizing this
knowledge. The fourth type ofmovement refers to sporadicmotions due to randomor
chance events, such as a volcanic eruption that disrupts air traffic or some unexpected
socio-economic turmoil. These type ofmovements are also known as sudden concept
drift, and the challenge here is to react fast, in order to update the models.

It is often said, in jest, that there are two certainties in life: death and taxes.
Finance, on the other hand, is the kingdomof uncertainty, whichmakes trend analysis
a challenge. If it would not be the case, risk-free and high-return investments, would
be common place. As we all know, this is far from being the case. In order to obtain
knowledge from this type of data stream, we often approach the problem by first
making a certain number of hypotheses that could be validated subsequently from
historical financial series. These hypotheses, once structured, constitute a model. A
question which needs to be thoroughly considered is the following: What do we
already know and what information may be utilized?

As an example, Fig. 1 shows the long term movement of the Boeing stocks on
the New York Stock Exchange (NYSE) in terms of the value at the time of closure,
from 1 January 2004 until 1 December 2014. In Fig. 2, we depict the behavior of
the Baskem stocks on the NYSE over the same period of time. The figures show the
difference in long term behavior between these two equities, with both experiencing
a downturn in the 2008–2009 period.

We further know that stock prices and interest rates are volatile. There may be
a function that characterizes such volatility, but its precise form is currently out
of reach. We also know that the statistical properties associated with stock prices
and interest rates are drifting. Such a concept drift could also be characterized by
a function of unknown nature. Furthermore, the fact that stock prices and interest
rates are intrinsically uncertain, points toward the existence of random fluctuations
(noise). These fluctuations may be characterized by a Gaussian, Lévy, or truncated
Lévy probability distribution according to the importance devolved to large fluctua-
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Fig. 2 Baskem stock
movement over the last
10years on the NYSE

tions [7, 8]. The multidimensional functional Gaussian distribution, for instance, is
entirely characterized by its mean and covariance. The model relates all these dis-
parate elements into a common and organic framework. As will be discussed below,
in the case of stock prices and interest rates, the model is either a differential or a
finite difference equation that relates the target variable (stock price or interest rate),
the drift function, the volatility function and the stochastic random fluctuations. For
instance, the stock prices may be described by the Black-Scholes model, while the
interest rates are depicted by the Heath-Jarrow-Morton model, as explained in the
following sections.

Nevertheless, the above-mentioned models are plagued with unknowns. The rea-
sons are threefold. Firstly, as we pointed out, the nature of the functions associated
to the drift and the volatility are unknown. Secondly, the boundary conditions are, in
all likelihood, unknown. Recall that, by boundary conditions, we mean the price of
the stock when acquired and sold or the initial and final interest rate. Finally, stocks
and interest rates follow a specific financial trajectory in the sense that the time series
associated with these financial instruments take precise values at every time t .

TheBayesian framework has beenwidely used to study such data. One of themain
reasons why Bayesian methods have been so successful is their ability to incorporate
information from different sources and also address complex estimation problems.
Bayesian methods are based on the principle that probability is subjective, in that the
degree of belief may be updated as new information, or data, are acquired [9]. Here,
the beliefs based on the current knowledge is referred to as the prior probabilities
and the posterior probability represents the updated beliefs. To this end, the Bayesian
framework has been used for portfolio allocation [10], asset pricing models [11], and
for volatility models [12].

That is, one of the best approaches for marginalizing the unknown functions,
boundary conditions and financial trajectories is to be found in the Bayesian frame-
work, as will be illustrated throughout this chapter. Here, unknown values are inte-
grated out (marginalized) over their prior probability of occurrence. Consequently,
a model associated with a financial instrument may be constructed as follow. Firstly,
unknown functions are associated with the instrument’s drift and volatility. The drift,
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the volatility, and the stochastic fluctuations are combined into a differential equation,
which characterized the temporal evolution of the underlying time series. Then, the
precise nature of the stochastic fluctuations is determined. For instance, the probabil-
ity distribution associated with the fluctuation may be a multidimensional Gaussian,
which means that it is entirely parameterized by its mean and its covariance. The
differential equation acts as a constraint on the probability distribution associated
with the noise. The constraint is imposed with a Dirac delta function, a generalized
function, or distribution, which is zero everywhere, except at the origin and for which
the integral over the entire integration domain is equal to one [13]. The unknown
noise and financial trajectory are then integrated out or marginalized. That means
that at each instant associated with the time series, the value of the financial instru-
ment and of the corresponding stochastic fluctuation are integrated. If unknown, the
boundary conditionsmust also bemarginalized. These calculations allow performing
predictions of statistical nature about financial instrument such as their expectation
and dispersion.

As will be explained below, if the financial process unfolds as a fair game (or
so-called Martingale), it is possible to express the drift as a function of the volatility.
In the following, we will analyze the computational aspect of models related to stock
prices and interest rates.

4 Finance: A Fair Game ... Most of the Time

A bond is an instrument of debt, while a treasury bond is an instrument of debt with
no risk of default. The money is lent in exchange of an interest over the capital,
which is the cost for borrowing money. An important concept associated with bonds
is the forward interest rate [1]. The forward interest rate, also called the forward rate,
f (t, τ ) is the agreed upon future interest rate, at time t < τ , for an instantaneous
loan at future time τ . It is typically calculated using a yield curve. For example, the
yield on a three-month treasury bill, six months from now, represent a forward rate.
The value of a bond is related to the forward interest by

B
(
Ti , T f

) ≡ e
−

T f∫

Ti

dτ f (t,τ )

, (1)

where B
(
Ti , T f

)
is the value of a bond at time Ti , maturing at time T f . Bonds have a

remarkable property that is shared by other financial instruments and which is called
the fundamental theorem of finance. The fundamental theorem of finance states that
financial processes follow a martingale [14]. A martingale is a model of a fair game
in which the knowledge of past events never helps predict the mean of the future
earnings. Mathematically, it may be formulated as follows:

E
[
B(k+1)

∣∣B(1), B(2), . . . , B(k)
] = B(k), (2)
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At first sight, it seems that the martingale is a rather mild condition. However, as
we shall see later, its importance is fundamental in constraining financial models.
That is, martingales exclude the possibility of winning strategies based on game
history, and thus they are a model of fair games. As will be seen in the next section,
the martingale is a strong condition which allows determining the deterministic drift
associated with a financial instrument [15]. For instance, in the case of the Black-
Scholes (BS) model, the drift is entirely determined by the spot rate, irrespectively of
the underlying data as a consequence of the martingale condition. This is something
that would be difficult to conclude when following a purely data-driven approach.
(Note that the spot rate refers to the price quoted for immediate settlement on a
commodity, a security or a currency. The spot rate, also called the spot price, is based
on the value of an asset at the moment of the quote.)

To this end, in the next section, we explain how to model evolving equities or
stocks. This discussion presents a first step towards the task of modeling interest
rates.

5 Black-Scholes Model and Path Integrals
or How to Handle the Unknown for Stocks

Before addressing the bond and the forward rate,we consider a rather simpler process,
namely the evolution of the price of a financial instrument representing a set of
equities or stocks {Si }N

i=1. As stated above, this topic has received much attention in
the area of time-series data mining [3]. Traditionally, the Black-Scholes model has
been used to construct a model of the price evolution of N stocks with a stochastic
process [16]:

d Si (t)

dt
= αi Si (t) + σi Si (t) Ri (t) , (3)

where Si (t) is the price of stock i at time t ,αi is the deterministic drift associatedwith
stock i , σi is the deterministic volatility associated with stock i , while the Gaussian
white noise R (t) has a mean and a variance given by

E [Ri (t)] = 0,

E
[
Ri (t) R j

(
t ′)] = ρi j δ

(
t − t ′) , (4)

Ti ≤ t, t ′ ≤ T f .

where ρi j is the estimated correlation in between the various stocks.We shall address
the evaluation of the drift and the volatility later in this chapter. For the time being,
we concentrate on the stocks per se, and we just mention here that the drift and
the volatility may be estimated from historical time series data. The BS model is
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rather intuitive. That is, we know that the prices of stocks tend to drift; we know that
the prices of equities are volatile and we know that the fluctuations associated with
financial instruments are of a stochastic nature. The BS model is one of the simplest
models that combine all these requirements.

Nevertheless, there are many unknowns associated with financial simulations.
For instance, given a financial instrument, the initial and the final value (boundary
conditions) of this instrument are unknown. As a matter of fact, this is true for any
intermediate state of the instrument. All the intermediate states form a so-called
financial trajectory. The only problem, so to say, is that the exact nature of this
trajectory is entirely unknown. As it stands, the situation seems rather insoluble.
Most of what we know is unknown, but the fact that we know what is unknown, shall
prove itself to be crucial. The real question is how should we leverage the unknown?
The best answer is that we should consider any possible evolution or path of the
stocks. We are not allowed to discard any trajectory, because we do not have any
information fromwhich such an action could be justified.What is required is amethod
to weight the various trajectories in order to extract the expected behaviour of the
underlying financial instrument. The weight of a given trajectory may be associated
to its probability of occurrence. The white noise, as defined by the previous equation,
has aGaussian distribution. This implies that the probability distribution, as Bayesian
prior, associated with a specific noise trajectory is given by:

DR Pr [R] = DR eS[R]

Z
, (5)

where S [R] is the time integral of the Lagrangian L [R]:

S [R] =
T f∫

Ti

dt L [R]. (6)

The latter is a functional that assigns probabilities for the occurrence of the various
realisations of the noise and is defined by the quadratic function:

L [R] = −1

2

N∑

i, j=1

Ri ρ−1
i j R j . (7)

Here, ρi j is the deterministic factor associated with the correlation in between the
various stocks. DR is the path integral measure, that is, the integration or Bayesian
marginalization over all unknown intermediate states along every possible trajectory

∫
DR =

T f∏

t=Ti

N∏

i=1

∞∫

−∞
d Ri (t) (8)

and Z is a normalization factor known as the partition function.
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The integral over every possible state or trajectory is known as a path integral [13].
The probability distribution associated with Eq. (7) is clearly Gaussian, although it
is somewhat different from the distribution we are familiar within the sense that it
does not involve a variable but a function: in occurrence the stochastic noise. This
is why we don’t refer to functions, but to functionals (function of a function). From
now on, we shall consider the logarithmic of the stock price

zi ≡ ln Si . (9)

As stated earlier, the financial trajectories associated with the stocks are governed
by Eq. (4). The Bayesian probability associated with a specific trajectory is given by

DzDR Pr [z, R] =
DzDR

T∏

t=0

N∏

i=1
δ
(

∂zi (t)
∂t + αi − 1

2ρi iσ
2
i + σi Ri (t)

)
eS[R]

Z
,

(10)

where theDirac delta distribution ensures that the stochastic equation ofmotion asso-
ciated with the equities, here the BSmodel, is always satisfied. The partition function
Z , or normalization factor, is obtained by integrating the probability distribution over
all possible values of the stocks and of the randomvariables. Themathematical expec-
tation (mean) of any financial instrumentO is obtained by weighing each occurrence
of the financial instrument by its corresponding probability

∫
DzDR O [z, R] Pr [z, R]. (11)

Because the probability distribution associatedwith the noise is quadratic, wemay
easily integrate or marginalize the noise out of the equation and obtain a closed-form
expression that depends only on the stocks. It follows that closed-form expressions
play an important role in the big data era. In finance, these expressions have been
successfully used for the pricing of especially exotic derivative products [17]. Indeed,
the integration measure typically involves thousands of dimensions. Consequently,
for the sake of computational stability and efficiency, numerical evaluation should be
strictly restricted to those dimensions that could not be treated analytically.Wefinally
obtained for the expectation value of a given functional of an underlying commodity

E [O [z]] = 1

Z BS

∫
Dz eSBS [z] O [z] , (12)

where the action, the Lagrangian, the partition function and the integration measure
are given respectively by [18]
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SBS [z] =
T f∫

Ti

dt LBS [z] ,

LBS [z] = − 1
2

N∑

i, j=1

[
∂zi (t)

∂t +αi − 1
2 ρi i σ

2
i

σi

]
ρ−1

i j

[
∂z j (t)

∂t +α j − 1
2 ρ j j σ

2
j

σ j

]
(13)

and

Z BS =
∫

Dz eSBS [z],

∫
Dz =

T f∏

t=Ti

N∏

i=1

∞∫

−∞
dzi (t) .

For instance, the functional O [·] in question may be an option. An option is
a contract that gives the buyer the right, but not the obligation, to buy or sell an
underlying asset or instrument at a specified strike price P on or before a specified
date. The seller has the corresponding obligation to fulfill the transaction if the buyer
(owner) exercises the option. The buyer pays a premium to the seller for this right.
For example, options are often used by electricity generators and retailers to protect
from price or cost volatility [19]. One type of option that is used in such a setting
is the so-called flexibility-of-delivery option, which permits the contract holder to
receive any amount of power within a certain range for defined time periods.

Options valuation is a topic of ongoing research in academic and practical finance,
due to its importance in financial markets, their complexity and the large Volume
of options being exercised. Options contracts have been known for many centuries,
however both trading activity and academic interest increased when, as from 1973,
optionswere issuedwith standardized terms and traded through a guaranteed clearing
house at the Chicago Board Options Exchange [16]. Today many options are created
in a standardized form and traded through clearing houses on regulated options
exchanges, while other over-the-counter options are written as bilateral, customized
contracts between a single buyer and seller, one or both of which may be a dealer or
market-maker. Options are part of a larger class of financial instruments known as
derivatives.

There are a number of ways to model an option. For example, if an investor
acquires an Asian option, then the pay-off function depends on the average price of
the stock during a given time interval:

OA [z] = max

⎛

⎝P,
1

�t

∫

�t

dt g [z (t)]

⎞

⎠ , (14)
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where g [·] is an agreed upon functional.
We can still further improve our model. We know (prior information), from the

fundamental theorem of finance [20], that stocks follow a martingale which was
defined earlier in Eq. (2–3). That is, it is known that knowledge of past events cannot
help us to predict hte mean of future yields. If we compute the mathematical expec-
tation associated with the martingale with Eq. (15) we obtain αi = r . This confirms
that, as stated earlier, the drift is entirely determined by the spot rate and is not an
independent parameter of the model as might have been expected earlier.

Still, the integration over all possible prices of the stock is not a trivial operation.
The value of a stock is a time series, which is updated at regular interval, typically
every few seconds. Let us assume that we want to calculate the expectation value of
a stock over a period of one week and that the price of the stock is updated every
15s with a typical trading session lasting from 9:30 until 16:00 local time. Thus the
integration measure consists of 7,800 dimensions! This is clearly a big data problem,
which is reminiscent of the curse of dimensionality. Nonetheless, such an integral
may be calculated efficiently with aMonte Carlo approach, known as theMetropolis-
Hasting (MH) algorithm [21]. Instead of systematically integrating over the whole
integration domain, the latter is explored with a Markovian process which randomly
samples the realizations of the stock. Given a value of the stock z(k), a new value is
randomly generated according to

z(k+1) = z(k) + R, (15)

where R is a Gaussian white noise. The new occurrence of the stock is accepted (or
rejected) with probability

A
(
z(k) → z(k+1)

) = min
(
1, exp

(
S

[
z(k)

] − S
[
z(k+1)

]))
, (16)

where the action S was defined earlier in Eq. (16). This means that the new value
is always accepted if its probability of occurrence is higher than the previous one.
However, it is nevertheless accepted with a probability that is otherwise equal to
exp

(
S

[
z(k)

] − S
[
z(k+1)

])
. The expectation of a function of the stock is then obtained

as the average of this function over the sampled values of the stock

E [O [z]] ≈ 1

(kmax − kmin)

∑

k

O
[
z(k)

]
. (17)

The MH algorithm allows for a more efficient sampling of the integration domain
and prevents from integrating over trajectories that have a negligible probability of
occurrence. These trajectories tend, generally speaking, to introduce a detrimental
numerical noise [21]. In the next section, we extend our previous analysis to the
modeling of forward interest rates and bonds based on thewell-knownHeath-Jarrow-
Morton model.
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6 Heath-Jarrow-Morton Model and Path Integrals
or How to Leverage Our Ignorance About Interest Rates

The case of a bond, and of the underlying forward rate, is slightly more complicated
than the case of a stock. As we saw earlier, the value of a bond is determined by
the forward interest rate (cf. Eq. (1)) which is unknown. The forward interest rate
depends on both the present time and the future time. Forward interest rates are
typically modeled with a stochastic process known as the Heath-Jarrow-Morton
(HJM) model [22]. The HJMmodel is very similar in nature to the BS model (Eq.4)
except that the drift and the volatility are not constant but depend on the current
(calendar) time t and on the future time τ :

α ⇒ α (t, τ ) (18)

σ ⇒ σ (t, τ ) .

It follows that the forward rate is governed by the following stochastic equation:

∂ f (t, τ )

∂t
= α (t, τ ) + σ (t, τ ) R (t) , (19)

where the white noise R (t) was defined earlier [23]. Following the same approach
as for the equities (or stocks), the Bayesian probability associated with a specific
trajectory of the forward rate is equal to

D f DR Pr [ f, R] =
D f DR

∏

(t,τ )∈T
δ
(

∂ f (t,τ )
∂t − α (t, τ ) − σ (t, τ ) R (t)

)
eS[R]

Z
,

(20)
where the temporal domain T is defined as

T ⇒ t ∈ [
Ti , T f

] ∩ τ ∈ [t, t + TH ] , (21)

where TH is the investment horizon: the time, during which an investment may be
performed. If the white noise is integrated out, one obtains, for the mathematical
expectation, a closed-form expression similar to Eqs. (15) and (16). As in the case of
the BS model, one may apply the fundamental theorem of finance and demonstrate
that the drift is not an independent quantity but is related to the volatility by [23]

α (t, τ ) = σ (t, τ )

τ∫

t

dτ ′ σ
(
t, τ ′). (22)

It then follows that the path integration may be performed with theMH algorithm.
This allows for the computation of the expected value of a bond and its standard
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deviation, together with other quantities of interest. In other words, this calculation
enables one to determine whether a specific investment is worthwhile, in addition to
evaluating the concomitant risk level and the level of uncertainty.

Note that historic investment data may further be extracted, for instance, from
historical yield curves. Consequently, financial institutions may choose to combine
model-driven and data-driven approaches. A data-driven approach is particularly
suitable when handling late arriving data [24], such as those which result from a
manipulation of the interest rates. In follows that the sheer Volume of data requires
greater sophistication of statistical techniques in order to obtain accurate results. In
particular, recent research has shown that the number of false correlations increases
as the data Volume and dimensionality increases [9]. The reader should further notice
that the state-of-the art algorithms based on economic theory typically point to long-
term investments opportunities as based on trends in historical data. The task to
produce efficient results supporting a short-term investment strategy still poses a
challenge for current predictive models [8]. Thus, a number of research challenges
remain, in this era where financial institutions are increasingly embracing big data
analytics.

7 A Word About Variety

In the above-mentioned discussions, we focused our attention on financial data that
is high in Volume and Velocity. However, in order to capitalize on the big data oppor-
tunity, enterprises should also embrace Variety, that is different types of data from a
wide range of fields, including documents, e-mail, web pages, social media forums
data, smart devices data, and sensor data, amongst others. This Variety characteristic
associated with big data presents rich information for knowledge discovery.

Such Variety may aid the learning processes from different observation angles,
and allows exploring correlation across domains and fields. The financial sector is
especially susceptible to changes due to socio-economic factors. It then follows that
the use of social media data may provide role-players with a competitive advance.
For example, recent studies have shown that the evaluation of large-scale Twitter
feeds may be used to accurately predict stock market indicators for markets such as
Dow Jones, NASDAQ, and S&P 500 [25, 26]. Specifically, the results in [25] indicate
that the accuracy of Dow Jones Industrial Average (DJIA) closing predictions can
be significantly improved by the inclusion of specific public mood dimensions.

As another example, we turn our attention to the case of Smart Cities, which
has increasingly become of importance in the financial sector [27]. Energy usage
costs accounts for approximately 19% of total expenditures for a typical building
in the US [28]. In the European Union (EU), buildings account for approximately
40% of final energy consumption in 2008 [29]. To this end, both governments as
well as the owners of commercial buildings have moved to time-of-use pricing and
are exploring ways to balance demand and response signals [27]. Smart energy
consumptionmodels, however, heavily relies on accurate short-term load predictions.
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In order to generate accurate energy load forecasts, a number of factors from a variety
fields need to be taken into account. For instance, the building’s routine schedules
such as the office hours and daily occupancy information present useful knowledge
on how the building is occupied. This knowledge thus provides basic energy usage
patterns. Also, the weather condition throughout a day (e.g. the hourly temperatures)
is strongly correlated to a building’s energy consumption curve [30]. Another factor
is the pricing fluctuations, which are further complicated by uncertain energy price
policies and uncertainty about fossil fuel prices. Real-time pricing quotes from power
grid utilities can force a building to dramatically change its energy consumption
behaviors. In addition, related social events (e.g. local sport activities and political
news) can significantly shift the energy usage and pricing patterns. Also, recall from
above, that electricity supplies and consumers increasingly make use of options in
order to optimize their financial gains [19].

Another important data source for accurate energy load prediction is the building’s
daily operations. For example, actions being taken to reshape energy usage curves
have a significant impact on the building’s short term energy load. Consider a building
with an energy storage unit. After having initial short-term predictions, the building
managers often aim to reduce buildings’ energy usage during peak energy demand
periods, which often impost high-energy usage rates for consumers and large load
demand for utility grids. In such scenarios, energy storages such as an ice bank,
chiller, boiler, and battery, etc., are often used. An ice bank, for instance, is typically
used to build ice in summer when the electricity is cheap, and the ice is then used to
cool the building, rather than using electricity, when the price of the energy load is
high. In order to have accurate short-term load forecasts, features or sensors related
to such reschedulable energy-intensive units have to be taken into account. In short,
integrating difference sources of data into the learning will allow theminingmethods
to figure out key components which impact the energy consumption. In particular,
it enables the learning algorithm to explore the multiple interconnected data so that
important data or attributes (factors) are not excluded [30].

8 Conclusions

This chapter focused on recent advances in data mining in the financial sector, within
the context of big data. The Volume and Verocity of such massive datasets, as well
as the large number of unknowns and volatility, led to the use of model-driven
approaches. To this end, this review mainly centred around model-based approaches
currently used when analyzing stocks, bonds, and interest rates. We also turned our
attention to the issue of Variety, and briefly reviewed current advances in terms of
using social media data to augment and strengthen current predictions.

When the amount of data is relatively small or when the framework in which
they evolve is either well understood or deterministic, it is legitimate to primarily
use our prior knowledge about the data and not to pay too much attention about
what we don’t know. In such a setting, the use of data-driven modeling approaches,
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following the standard training, testing, and validation model construction process
holds value. The situation is quite different in a big data framework in which our prior
knowledge about the data is often rather marginal and has to be supplemented with
an assumed model form. Another issue that needs mention is that we often also need
to handle late arriving data, i.e. there is a need to incorporate retroactive data as they
arrive. Many of these models must be stochastic in order to make allowance for the
random nature of the underlying data. As demonstrated, what should be determined
carefully is what we don’t know and how such drawbacks may be marginalized. The
path integral approach provides an efficient and coherent framework to marginalize
the unknown. This is possible since it considers every possibility and weighs them
according to their probability of occurrence, which may be determined from the
concomitant model. Despite the fact that the amount of data is big, it does not mean
that closed-form expressions are outdated. As amatter of fact, they aremore essential
than ever, especially in order to reduce the massive dimensionality associated with
the problem.

We further believe that the current surge in the area of data stream mining [31]
may hold the key to build accurate, just-in-time models to be used by the financial
sector. That is, adaptive learning algorithms that build incremental models from
asynchronous streams havemuch application in the financial sector [24]. Specifically,
techniques for building dynamic probabilistic models for streaming data [32] have
shown to produce high quality results against data that both contain temporal trends
and are susceptible to noise and unknowns. Indeed, these types of models may yet
prove to be ideal for exploring financial data.
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