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Abstract Big Data analytics present both opportunities and challenges for com-
panies. It is important that, before embarking on a Big Data project, companies
understand the value offered by Big Data and the processes needed to extract it. This
chapter discusses why companies should progressively increase their data volumes
and the process to follow for implementing a Big Data project. We present a vari-
ety of architectures, from in-memory servers to Hadoop, to handle Big Data. We
introduce the concept of Data Lake and discuss its benefits for companies and the
research still required to fully deploy it. We illustrate some of the points discussed
in the chapter through the presentation of various architectures available for running
Big Data initiatives, and discuss the expected evolution of hardware and software
tools in the near future.

1 Introduction

Big Data has become somewhat of a buzz word in recent years with countless news
items and scientific articles appearing in the general or scientific press. In 2007,
the IDC (International Data Corporation) analysts [13] reported the explosion of the
Digital Universe, creating the necessity to use newmeasurement units for big data: the
usualMegabyte andTerabytewould soon have to be replaced byExabyte or Zettabyte
(1,000,000 or 1,000,000,000 Terabytes), with the Digital Universe estimated at 161
Exabytes in 2006. This trend was made possible by the development of Internet,
digital devices (phones, cameras, sensors in the Internet of Things) and the sharp
decrease in prices for storage, computing power, memory, and network bandwidth.

In 2011, Mc Kinsey [26] said that a 40% growth was to be expected in the amount
of data generated each year. In the same report, Mc Kinsey showed that all economic
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sectors could profit from big data: for example, the US health care sector could
expect $300 billion potential annual value and the US retail sector could expect 60%
increase in operating margins. Reaping such additional value requires new tools and
talents, and this has created the new field of data science.

Following these reports and other publications, companies have been embarking
on Big Data initiatives, but finding many daunting issues on their way.

In this chapter, we want to describe, in as simple and pragmatic a way as possible,
what the difficulties are for companieswanting to runBigData projects. In Sect. 2, we
defineBigData; in Sect. 3,wedescribe the various stages in aBigData project process
and illustrate these in an example from credit-card fraud on Internet; in Sect. 4, we
show how companies should store their Big Data in a Data Lake if they want to
implement many Big Data projects; in Sect. 5, we introduce the various elements in
a Big Data platform and some of the most widely used analytics packages.

2 Big Data Value for Companies

In 2001, Doug Laney (from Meta Group, now Gartner) published a report [24]
in which he showed how the rise of e-commerce, in particular, was producing an
explosion in data volumes resulting in growing data management challenges. He
introduced three important dimensions: volume, velocity and variety (which have
come to be known since as the 3Vs) and discussed possible solutions to handle them.

• Volume: in e-commerce, at the time, lower costs of e-commerce channels started
to allow collecting increasing data volumes while, at the same time, enterprises
were realizing that such data represented an asset and thus wanted to keep it. The
costs of storage, however, would soon come to offset the marginal data value gain,
so Laney recommended sampling and limiting data collected.

• Velocity: the increased speed of interactions on e-commerce sites produced a
growing constraint on the speed atwhich data should be ingested and analyzed. The
proposed solution to this issue was to develop architectures with more bandwidth,
caches, and lower latency.

• Variety: the most challenging problem that was identified was the large variety
of heterogeneous data sources, incompatible data formats, non-integrated data
structures and inconsistent data semantics. Various solutions were proposed by
Laney, includingmetadata management solutions and indexing techniques. At that
time, data warehousing was deployed more and more widely, so that the solution
to variety was viewed in that framework.

Since then, Big Data has become a major news item and a big market for industry:
according to Vasanth [34], the market is expected to grow to $53 billion by 2017,
with hundreds of billions of dollars potential values in many domains according to
McKinsey report [26]. This shows that despite the risks and problems identified in
2001, Big Data has somehow emerged as a big value opportunity.
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What allowed this is two-fold: on the hardware side, the “attack of the exponen-
tials” as Driscoll [9] calls it, has seen the costs of storage, CPU and bandwidth over
the last decades exponentially dropping, and network access exponentially increas-
ing. What was not cost-effective, or at all possible in 2001, now is, so that all data
can actually be collected, stored, and accessed, at low cost [20]. On the software
side, tools to handle, store, distribute and mine Big Data have also rapidly developed
producing a very dense and complete set of tools [32].

Nowadays, almost 15years after his original report, Doug Laney, now at Gartner,
considers that “adoption of Big Data is simply inevitable” [23]. Today, many orga-
nizations are embarking on Big Data projects, but they find many questions on their
way. In the next section, we discuss a process for the implementation of projects to
derive value from big data.

3 The Process for Big Data Projects

3.1 Machine Learning for Value

Even though Big Data involves many different techniques, Machine Learning is the
major key success factor for delivering value, and this is because Big Data allows
producing better models.

To produce a Machine Learning model, one needs to assemble, from a variety of
data sources, a dataset containing a set of observations (for example: customers in
marketing applications, patients in health problems …) for which a certain number
of variables are available (see Fig. 1). This dataset, in a Big Data setting, will be
deep with applications involving millions of observations, and wide with potentially

Fig. 1 Dataset for machine
learning
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Fig. 2 Big Data process

hundreds of thousands of variables (we will indifferently use the words features or
variables). The depth might be large, for example, if observations are transactions,
but not always: for example, if observations are customers of a Bank, the depth will
be limited by the total number of customers, which cannot increase ad libitum. A
large width of course comes from the large variety of data sources included in the
dataset and we will see in the following section that width can be further increased
through various procedures. Finally, the dataset volume can be seen as the product
depth x width. In many applications, there is a target which we want to predict (for
example, whether this customer is going to defect next month to a competitor) and
the dataset includes the observations’ target values.

3.2 The Process

The process for a Big Data project involves a succession of stages (see Fig. 2):

Data collection: first, data needs to be collected from available data sources. The
more data there is at this stage, the best it will be for the final model. Increasingly,
open data is available, which can be integrated as very useful data sources.1

Data cleaning: data needs to be cleaned to improve quality and consistency. At this
stage, the various features must be checked for mistakes (for example, misspellings),
deduplicated, reconciled and integrated to produce a unique record (a line in the table
of Fig. 1) associated to each observation (see [29]).
Feature engineering aims at producing from existing variables additional com-
puted variables, which could be meaningful for the business domain but hard for
a model to learn (“hard” meaning: requiring lots of data, large computation time
and a more complex model). Such features could be aggregates on sliding win-
dows (for example, the number of claims for an insurance subscriber in the last
6months, in the last week …), on geographical areas (for example, the number of
accidents on a road segment, a town, a region …) or any variable which makes
sense for the particular business. Feature engineering is recognized as the most
important success factor for the performance of a Machine Learning model [8].
It usually helps producing models, which are simpler, easier and faster to train,
while also providing increased performances for a given algorithm as we will show
in an example below. In 2007, at a time when analytics Big Data was starting to
pick-up, [10] indicated that less than 5% of analytics projects were using more

1For example: https://www.data.gouv.fr/en/, http://open-data.europa.eu/en/data/, http://public
data.eu/, http://www.data.go.jp/, http://dataportals.org/.

https://www.data.gouv.fr/en/
http://open-data.europa.eu/en/data/
http://publicdata.eu/
http://publicdata.eu/
http://www.data.go.jp/
http://dataportals.org/


Implementing Big Data Analytics Projects in Business 145

than 1,000 features in their model, while about 50% used less than 40 features.
Since then, things have changed a lot. In the various projects we have seen, generat-
ing an additional 1,000 features is common, but some projects generate a lot more
(a few tens of thousands). Out of these features, about 80% will be standard (time or
space aggregates, ratios…), and 20% will be domain-specific. However, since this
stage is extremely time-consuming [3], it is interesting to invest in some systematic
way to engineer features. Most recent Machine Learning packages are investing in
that area (see section Architectures for Big Data below). Note that additional fea-
tures can also be obtained from outside sources, such as open data sources or private
data obtained from partners or data providers. Data from very different sources and
semantics will bring more additional value: this is what is reflected in the Variety
of data. Of course, increasing the number of features also increases the Variety, and
thus the Volume of the dataset.
Modelling: At this stage, we have assembled a dataset with many features (as shown
in Fig. 1). To generate a model, we will use one of the many existing Machine
Learning algorithms (see for example the book [16]). Choosing from this very large
collection of algorithms might seem hard. However, the problem is easier with Big
Data: all recent developments in Big Data, [8, 15], have shown that simple models
with lots of data are always better than complex models on less data. Hence, one
strategy is to choose one relatively simple algorithm, for example logistic regression,
and work at increasing data volumes: engineering features is the simple way for
that. Simpler algorithms are also easier to explain than more complex ones, so that
sometimes one will prefer a simple logistic regression model to a more performant
algorithm, such as, for example, random forests because interpretability is much
better for the former.
Note that feature engineering produces features which are usually correlated. Hence
the algorithm selected should not be sensitive to correlated variables.
Evaluation: Producing amodel from data is an iterative process: datasets will be pro-
gressively enriched to produce increasingly wider feature sets. Each time, a machine
learning algorithm will be trained to produce a model. Usually not all the available
dataset will be used, but only a representative sample drawn from it. Then the sample
is separated into two parts: the learning sample is used to produce the model and
the validation sample (the rest of the sample) is used to validate the model. In the
learning phase, one tries to produce the model which best fits the data in the learning
sample. In the validation phase, one verifies that the model properly generalizes to
new data it has not seen during training: if it does not, it is because it overfits (see
Fig. 3).
Producing a model which fits the data is (relatively) easy; producing one which
generalizes is much harder. However, generalization is actually what is required if
one wants to further use the model [8].
Vapnik’s Statistical Learning Theory [33], for example, provides a framework to
monitor the learning process so as to achieve generalization. The framework can be
summarized as follows:
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• Models are restricted to a given family, for example polynomials of degree d, trees
of a certain depth, ridge regression, regularized regression etc. The only constraint
on the models’ family is that it has finite capacity (or Vapnik—Chervonenkis
dimension: this is a measure of the complexity of the family).

• The models in the family are explored so as to select the best compromise between
learning error and generalization error (errors respectively on the learning and
validation samples).

• In the Structural Risk Minimization (SRM) framework, embedded model families
are explored, starting with low capacity and progressively increasing capacity,
until generalization error starts increasing.

The capacity of the final model is just large enough to produce a good compromise
between learning and generalization errors, but not too large, when it would produce
overfitting and a larger generalization error (Fig. 3).

In the course of the learning process, the number of features is increased until
no further performance increase can be obtained: Fig. 4 shows the typical behavior
expected when increasing the number of features. It could take thousands of features
before the performance flattening-out appears, depending on the problem. However,
not all the features will be retained in the final model: one will try and select the
features most significant for the model, sometimes trading a marginal performance
increase with a smaller number of features (i.e. a simpler model with lower capacity).
In [10], it was reported that while only about 25% projects used less than 20 features
in the original model, about 50% did in the final version. Explaining a model with
more than 20 features is hard and not very intuitive, which is why most final models
these days only incorporate a few dozens features.

It is important to note that one set of optimal features at one time might not be
optimal anymore later on, when the situation has changed. When retraining a model
in later periods, one should thus always start anew from the full set of features.

Fig. 3 Learning and
generalization error as
capacity increases

Fig. 4 Performance
increases with more features
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One should also note that the choice of the optimal features set is not done a
priori, or through “expert” knowledge:with big data, it is not reasonable to expect that
experts would look at thousands of features and manually evaluate their significance;
we need an automatic process for selection. The feature selection process is thus only
driven by the data and the algorithm used for producing themodel. One should expect
different models to produce—usually slightly—different features sets.

A very large number of features can be argued against on the basis of the curse
of dimensionality: with a fixed-size dataset, the observations occupy an increas-
ingly smaller portion of the input space and the space where the model will apply
is increasingly larger when the number of features increases. Generalization thus
becomes harder [8]. This issue is lessened in the Big Data situation, since, then, we
can increase the size of the sample dataset used for producing the model, while, as
always, controlling the capacity of the models’ family. However there is generally
still a trade-off between the number of additional features we want to use and the
increase in sample size necessary for producing themodel. At one point, this trade-off
will require to stop increasing the number of features, either because the maximum
size of the dataset has been reached, or because the performance gain will be too
small.

Note that, for many model families, capacity is directly related to the number
of features: for example, the family of polynomials of degree 1 in p variables has
capacity p + 1, while for polynomials of degree 2, capacity is in p2. So, in that case,
increasing capacity through SRM amounts to progressively increasing the number of
variables. If one wants to control capacity without restricting the number of features,
one would need a family of models for which capacity can be controlled otherwise.

For example, the following family FΘ :

FΘ = { f (x, W ) = sign

⎛
⎝

p∑
j=1

(W j × x j ) + 1

⎞
⎠ /||x || ≤ R, ||W ||2 =

p∑
j=1

W 2
j ≤ Θ}

has capacity CΘ : CΘ ≤ min(int (R2Θ2); p) + 1, which can be controlled through
a parameter Θ independently of the number of features p.

Thus, in BigData situations, one can increase the number of features, provided the
size of the training sample is large enough and the model capacity is systematically
controlled to avoid overfitting.
Deployment: When the final model is ready, with its reduced number of features,
it can be deployed to produce predictions on new data. For deployment, one will
always prefer simple models, especially when real-time is required. The example of
Netflix is famous: after paying 1M $ to the winners of a challenge2 which required to
improve Netflix algorithm’s performance by 10%, Netflix finally decided not to put
in production the solution delivered to them by the winners: “the additional accuracy
gains that we measured did not seem to justify the engineering effort needed to bring

2http://www.netflixprize.com/.

http://www.netflixprize.com/
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them into a production environment” [1]. Yet it was 10% additional accuracy! In
conclusion, at deployment time, simplicity should always be the goal.

3.3 An Example

Let us present an example from a concrete application to illustrate how feature
engineering, especially with different semantics, can increase performance. This
was a collaborative project [11] on credit-card fraud detection on Internet, funded
by the ANR (the French National Research Agency). Credit card fraud on Internet is
a massive, fast-growing phenomenon, in large part at the hands of organized crime.
Merchants and banks are faced with the need to implement solutions to detect it
as rapidly as possible. In France, GIE Cartes Bancaires is a Group which has been
commissioned by French banks to handle the payment process for all transactions
made by credit card holders (Visa, MasterCard) from French banks. In 2013 GIE
CB managed over 10 billion transactions (up 3.4% compared to 2012), with 584.5
million over the Internet, made by 61.7 million CB cards, totaling 524.3 billion
euros [14].

The available transaction data is not very rich: in particular, we do not have
information about the card holder (name, address, age, gender ...) or the purchased
product (product type, number of products purchased ...), information that only the
bank (card data) or merchant (product data) would possess. In contrast, we have all
the transactions made by the card-holders on Internet, which would not be the case
for a bank (which would only “see” the transactions made by the holders having a
card in that bank) or a merchant (who would only “see” the transactions made by the
card-holders buying at that merchant). This represented about 50 M transactions per
month, made with the card not present (internet or phone). For each transaction we
have:

• Information on the card: card number, expiration date, issuing bank ...
• Merchant information: username, SIRET, country, merchant business, merchant
bank (acquirer) and country of the bank, terminal used ...

• Transaction information: date of the transaction (local andGMT), amount (in local
currency and in euro).

Once a card is blocked, we obtain the blocking date and the reason for the blocking
(note that this label can come several months after the fraud occurred). The objective
of a model is then to classify a transaction as fraudulent or not fraudulent: this is
called fraud detection. Transactions classified as fraudulent will be transferred to
an investigation team, which will investigate all transactions recently made by the
corresponding cards.

From these transactions, we will compute various features, which are aggregates
characterizing the history of each card or merchant:
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• Cards Aggregates at date T: over a sliding window (of various lengths: day, week,
month) ending at T, features are computed for each card such as the number
and average number of transactions, total and average transaction amount, the
difference between the number of transactions at time T, respectively the amount,
and the average number of transactions in the window, respectively the average
amount etc.

• Merchants Aggregates at date T: over a sliding window (of various lengths: day,
week, month) ending at T, features are computed for each merchant such as the
number and average number of transactions, total and average transaction amount,
number of fraudulent transactions and total amount of fraud, difference between
the number of fraudulent transactions at time T, respectively the amount, and the
average number of fraudulent transactions in the window, respectively the average
amount.

We thus obtain 666 aggregates as shown in the first lines of Table1. We then
compute social features in the following way:

• We first compute the bipartite network made from cards and merchants nodes,
linked when there is a transaction by the card at the merchant (using all the trans-
actions in one month). Through the usual technique to project a bipartite network
into two unipartite networks [4, 35], we derive a Cards network and a Merchants
network: two cards (resp. merchants) are linked in the Cards (resp. Merchants)
network if they have purchased from at least k same merchants (resp. have been
visited by the same k ′ cards), where k and k ′ are some fixed parameters.

• Then, we compute, for each node (card or merchant), a number of variables in
the Cards or Merchants networks, such as the degree of the node, the index and
size of its community in the unipartite network (see [4]). For merchants, we also
compute the average amount and number of cases of fraud successful in his com-
munity/his first circle, the average number of distinct fraudulent cards in his com-
munity/his first circle, the average number of transactions accepted/rejected in his
community/his first circle etc. This gives 195 social variables for cards and 99 for
merchants, in addition to the already defined variables (as shown in Table1).

We now compute three models with an increasing number of features: the base-
line model uses the 37 original variables, the second model uses in addition the 666

Table 1 Number of features
used for the fraud detection
model

Variables Number

Original GIE variables 37

Card aggregates 300

Merchant aggregates 366

Card social variables 195

Merchant social variables 99

Total 997
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Table 2 Performance for fraud detection with an increasing number of variables

Model Recall (%) Precision (%) No variables

Baseline 1.40 8.18 37

Baseline, agg. 9.13 19.00 703

Baseline, agg., social var. 9.09 40.58 997

19 Seg. baseline 5.09 28.21 37

19 Seg. baseline, agg. 7.38 28.82 703

19 Seg. baseline, agg., social var. 16.46 60.89 997

aggregates and the final model uses all 997 variables. We evaluate the performance
obtained by these models using Recall and Precision, which have been extensively
used in the literature for evaluating classification, information retrieval or recom-
mender systems [17]. Recall represents here the portion of fraud captured by the
model at a certain threshold on score and Precision the proportion of truly fraudulent
transactions among those classified as such by the model. The threshold on the score
produced by the model is chosen so as to generate a number of cards declared fraud-
ulent compatible with the staff available to further investigate them. This threshold
cannot be disclosed for confidentiality reasons. The performances in terms of Recall
and Precision at that threshold on score are shown in Table2 (first three lines). The
algorithms used were ridge regressions, regularized through a Vapnik’s scheme [12].

As can be seen from the first three line of Table2, the increase in variety (produced
by the increase in the number of features) has a very large impact on Precision, which
is multiplied by a factor of about 2 with the addition of aggregates, and again with
the social variables. Recall is increased by a factor of about 6 with the addition of
aggregates, but slightly decreased with the social variables. So, depending upon the
objective of the user, the model with all features will be preferred to the model with
aggregates only if Precision is more important than Recall.

One can further increase performance by using a segmentedmodel: when datasets
are very large, and the analyzed phenomenon is heterogeneous, one can often improve
performance by first identifying homogeneous regions, and then performing a local
analysis on each. This will often be the case in Big Data problems. Note that segmen-
tation also has the consequence that each segment will be smaller than the original
dataset, which might shorten model computing time, while potentially preventing
using too many features (if the depth is too small).

• First we implement a segmentation of cards, supervised by the fraud label (using
a supervised k-means): we produced 19 segments.

• For each segment, we compute a model for the three feature sets described in
Table1. When a new transaction needs to be analyzed, we pass it through its card
segment model.

As can be shown in Table2 (last three lines), performances are significantly
improved. This time, aggregates and social variables increase Recall, while only
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social variables increase Precision. This is an illustration of a common finding: it is
not possible to tell a priori which feature is going to be significant and bring value.
The only way to know is to build a model and look at its performance.

As can be seen from this example, feature engineering can lead to very significant
performance increases. This is why, in any Big Data project, the time spent on feature
engineering is by far the most important, while the time spent actually producing the
model is short: [8] indeed noted that “very little time in a machine learning project
is spent actually doing machine learning”.

3.4 Big Data Skills

Another discussion branches out from this last remark, related to the importance of
statistics skills in Big Data. While it is obvious that Machine Learning relies heavily
on statistics, Big Data projects require a set of varied skills, which have come to be
known as data science [5]. These skills are three-fold: statistics indeed for building,
evaluating, analyzing the models; IT to collect data, produce features and deploy
models; and obviously business knowledge to correctly frame the problem, identify
business-critical features, evaluate the models’ performance, and, finally decide on
the value of putting the model in production.

As we have seen, the time spent in a project on feature engineering is, by far,
the most critical success factor for final performance, which is why IT skills are so
important for the success of a Big Data project. But as Fig. 5 shows, all three sorts
of skills are required and a total lack of statistics skills may put the IT specialist in
a danger zone of producing models which are not valid or which exhibit spurious
correlations: the discussion on the dangers of data mining in [21], for example,
suggests useful caveats on the uncareful use of data mining.

It should also be clear at this point that Machine Learning used for data science
is not the same as pure statistics. Some of the crucial elements necessary for Big
Data are just not part of the usual Statistics corpus: these include, for example, learn-

Fig. 5 Big Data skills (from
D. Conway’s Data Science
Venn diagram)
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ing and generalization, feature engineering, explainability and capacity for scalable
deployment. Another characteristic important in Statistics is absolutely missing in
Machine Learning: there is no reasonable assumption which can be made on the
data distribution and all the techniques implemented must be agnostic with respect
to such assumptions.

Because data science requires a new sort of assorted skills, data scientists are in
strong demand. Davenport et al. [6] said that data scientist would be “the sexiest job
of the 21st century” and Mc Kinsey [26] predicted that, in the US, demand for data
scientists would be 50 to 60% larger than supply in 2018.

4 The Data Lake

In this section, we will see how companies usually proceed when they want to
implement Big Data projects. Obviously, with large companies, that endeavor is
global: you do not want to do one project, but many. Companies want to become
an analytics competitor [7]: best data and best tools make for the best decisions.
Companies thus need to turn their data into an asset.

Of course, all large companies already have multiple data sources in-house to
begin with. These data are in silos, application and domain-dependent, and usually
contain duplicate, inconsistent versions of the same information. One of the main
reasons for this state of affairs is that many large corporations have grown through
multiple mergers and acquisitions where each organization merging-in brought its
own data system. When starting a Big Data initiative, a company thus has to face a
big data integration problem, starting with its internal data, continuing with external
data (Open Data, partners’ data, acquired data …), before finally getting to real Big
Data and the ability to exploit it.

Traditional enterprise integration techniques, such as data warehousing or, more
generally, Master Data Management (MDM) aim at linking all data files into one—
the master file—providing a unique version of the truth. This ensures consistency
throughout the various system architectures and applications enterprise-wide and
allows sharing data between the various entities in the corporation. However, obtain-
ing a master file requires Extracting, Transforming and Loading (ETL) data from the
various heterogeneous data sources; developing metadata to describe the data and
producing a general data model. Many ETL tools exist on the market (for example
Talend Master Data Management, Informatica MDM, IBM InfoSphere, DataStage
…). But ETL processes are known to be hard to implement, harder still to maintain
and altogether very expensive. Some authors [2] have claimed, for example, that
data warehousing projects fail in as much as 50–75% of the cases. One of the main
reasons for such failure is the inability to maintain a manageable scope for the data
warehouse, even more so when data sources dynamically change. With Big Data,
the problem is going to be even harder than for “simple” warehousing. So we could
expect failure rates of the same magnitude at best.
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However, MDM might be chasing the wrong rabbit: the master file and data
model are efficient for the activities existing or already defined in the organization at
the time: relational databases and data warehouses are structured in hierarchies and
dimensions adapted for the analysis planned at the time of their development. When
new needs come up, it is necessary to modify and sometimes completely rebuild the
structure to fit the new requirements. With the advent of Big Data, this will be the
typical situation: a very wide scope, no known-in-advance goals or analyses, and
very dynamic, constantly emerging data sources. A fixed static data structure cannot
do and data integration on a large scale will still need to be done.

It is to copewith this issue that the concept ofData Lake has appeared in the recent
years [31]. A Data Lake is a repository of all data collected by an organization, where
the data is stored in its original raw form. Because no a priori structure or data model
is imposed at collection time, all further usage should be possible without having to
modify a pre-existing model.

Of course, for any given project, the usual process (described in Sect. 3) will be
executed: data will be collected, primarily from the Data Lake and also from other
data sources if significant (open data for example). At the cleaning stage, the various
data returned by the Data Lake or other sources will need to be deduplicated and
reconciled. So this work on data sources reconciliation is not eliminated by the Data
Lake: it is postponed to project time when it is needed for a particular objective
and restricted to a limited set of data sources. Results of the reconciliation of two
data sources can be stored in the Data Lake, as metadata, for further projects which
use the same data sources. In this way, data models will emerge progressively from
projects developed over time, instead of being imposed at collection time. Hence,
data integration is no longer an issue. However, data access is still to be handled:
careful tagging and metadata management are required to allow the users to retrieve
data interesting for their project, maybe years after the data was collected.

However, more research will certainly be needed to fully exploit Data Lakes: as
described in [19], Data Lakes at the present time can only be used by data scientists
with significant programming skills. Retrieving data from a potentially enormous
(andgrowing)DataLakewill require adequate skills until adapted tools for navigating
the Data Lake are made available. At the present time, it is not possible to simply
query a Data Lake, as usual when using SQL for example, since it contains data
sources in all possible formats.

As a conclusion, we think that Data Lakes will be increasingly implemented
within organizations wishing to implement a succession of Big Data projects, but
that additional research will need to take place to help users really, and simply,
navigate the Data Lake.
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Fig. 6 Big Data platform

5 Architectures for Big Data

5.1 The Big Data Platform

We now turn in this section to a brief description of the possible architectures for
Big Data, on both the hardware and software sides. A Big Data platform has the
following layers (Fig. 6):

Infrastructure: this includes the hardware, the network, and security components.
Obviously, the major requirement for this layer is to allow handling Big Data vol-
umes. Historically, the solution has been to use bigger and bigger servers to handle
the increase in data and required processing speed: this is called the scaling-upmech-
anism. However, big servers are not cost-effective when compared to standard PC or
low-end commodity machines: a machine with four times the power of a PC costs
more than four times the cost of one PC. This is one of the reasons why Google,
Yahoo, Amazon,Microsoft and others started to hook together clusters of PC, distrib-
uting their data on the machines. With the introduction of Hadoop [27], distributed
file system (HDFS) and MapReduce, it became possible to store data in a distrib-
uted fashion and run large-scale distributed data processing applications with code
distributed where the data is [22]. A cluster of low-end servers with HDFS files is
thus very common for storing data, such as, for example a Data Lake. The added



Implementing Big Data Analytics Projects in Business 155

benefit of such an architecture is the scaling-out (or horizontal scaling) property:
one can elastically grow the cluster by adding new low-end servers, as data volumes
grow. This is a lot cheaper than buying up-front a big server, which will, at one point
anyway, become too small and will need to be replaced.
In-memory servers, with very large RAMs, have recently appeared on the market:
with 512 GB to a few TB RAM (for example, the Bullion machine3 has up to
24 TB RAM), it becomes possible to collect data, load it in memory and execute all
the modelling in-memory, thus very significantly reducing computing times. Apache
Spark is a new distributed computing framework which offers in-memory primitives
through its Resilient Distributed Datasets (RDDs). In a way, Spark brings a solution
with the better of two worlds: Hadoop and in-memory. Performances are much faster
than with Hadoop MapReduce.
Data Platform: this layer includes the various tools necessary to access and collect
data, to clean prepare and store it. As we have described in the previous section, data
is heterogeneous, comes from many sources and in multiple formats. Tools are thus
needed to collect data: the ETL family, as well as various data scraping mechanisms,
can be used to extract the data. As we have seen before, it is better not to transform
data at collection time, but maybe to only retrieve metadata and tags associated to
it. Data will be stored in a platform which allows scaling-out: when new data comes
in, we need to be able to elastically add to the storing solution to make room for it.
This is why, most of the time, data will be stored on a Hadoop cluster.
Very often, data will be stored in NoSQL data bases (Not Only SQL) which offer
different structures than relational databases, such as key-value, document, or graph.4

These databases offer horizontal scaling and may lead to much better performance
than relational databases depending on the domain.
Processing framework: this layer includes the tools necessary for visualizing the
data, developingmachine learningmodels, andbuilding reports.Wewill see that there
exist a wide range of software packages for running analytics projects on big data.
The main challenge, of course, is to be able to scale when handling the data volumes:
visualizing small data sets is relatively easy and one can play with many different
visualization styles. However, with increasing volume and variety, the requirement
for scalability will strongly restrict the visualization effects to the simplest cases.
Note that the Hadoop/MapReduce environment is more adapted to batch processes,
and not so much to the iterative development of machine learning algorithms. With
the release of Hadoop 2, new tools have been made available, more adapted to
machine learning. In particular, Spark allows building specialized Big Data tools
such as MLib for machine learning and GraphX for graph processing. Hadoop 1 and
2 are supported commercially by companies such as HortonWorks and Cloudera.

3http://www.bull.com/download/bullion/B-bullion-2014-enWeb.pdf.
4https://datafloq.com/big-data-open-source-tools/os-home/.

http://www.bull.com/download/bullion/B-bullion-2014-enWeb.pdf
https://datafloq.com/big-data-open-source-tools/os-home/
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5.2 Analytics Software Packages for Big Data

There exist many analytics software packages for big data, a lot being open-source
[25]. However, surveys [28, 30] show that most data scientists use but a limited
set of tools: R is by far the most wide-spread tool and language, while Python for
programming is picking up.

The first generation of tools, SAS and IBM-SPSS, tended to offer a wide range of
algorithms, in a proprietary framework. The second generation, such as, for example
SAP-KXEN, focused on helping automate the data mining process and opening
it to business users, through just one algorithm, a regularized regression [12]. As
discussed in Gartner’s report [18], SAS and IBM-SPSS still dominate the market
with a large installed base. Their position, however, will presumably erode as a new
generation of tools gets access to the market.

This last generation focuses on Big Data and attempts at covering the entire
Big Data project process described in Sect. 3.2. For example DataRobot5 focuses
on the modeling and deployment stages, automatically generating and comparing
thousands of models from various open source libraries (R, Spark MLlib, Python-
based scikit learn6); Dataiku (see footnote 5) offers through its Data Science Studio
tools to load and enrich data, then allows to run models from scikit learn, returning
the best performing one; Palantir (see footnote 5) offers tools to “Integrate, manage,
secure, and analyze all of the enterprise data’’, in particular, Palantir has a strong
feature engineering tool which helps automate the generation of standard features.

As can be seen, the new generation tools do not try to develop their own machine
learning algorithms (as did SAS and SPSS) but, instead, call upon open-source
libraries (such as MLlib and scikit learn6) which are very actively enriched by active
communities.7 Notice that these two libraries run on different architectures: scikit
learn, being based upon Python, runs best on an in-memory server; while MLlib
runs with Apache Spark, and thus can be executed on any Hadoop 2 cluster. With
the recent development of Spark, MLlib has developed very strongly, taking over the
Mahout8 librarywhichwas running onHadoopMapReduce. As a consequence, there
is an effort by the Mahout community to build future implementations on Spark.

It should be expected that more tools will appear in the near future to build upon
these healthily competing libraries.

5http://www.datarobot.com/, http://www.dataiku.com/, https://www.palantir.com/.
6https://spark.apache.org/mllib/ is Apache Spark’smachine learning library; http://scikit-learn.org/
is a machine learning library in Python.
7https://github.com/apache/spark; https://github.com/scikit-learn/scikit-learn.
8http://mahout.apache.org/.

http://www.datarobot.com/
http://www.dataiku.com/
https://www.palantir.com/
https://spark.apache.org/mllib/
http://scikit-learn.org/
https://github.com/apache/spark
https://github.com/scikit-learn/scikit-learn
http://mahout.apache.org/
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6 Conclusion

We have described in this chapter why and how companies implement Big Data
projects. The field calls upon a wide variety of techniques, tools and skills and is
very dynamically developing. Even though we tried to cover most of the practical
issues faced by companies, many topics are still missing here: most notably the
privacy and security issues, which would deserve a full chapter of their own.

It is our belief that, in the near future, companies will continue investing in Big
Data and the results will bring productivity growths in all sectors of the economy.
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