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Abstract Solving a regression problem is equivalent to finding a model that relates

the behavior of an output or response variable to a given set of input or explana-

tory variables. An example of such a problem would be that of a company that

wishes to evaluate how the demand for its product varies in accordance to its and

other competitors’ prices. Another example could be the assessment of an increase

in electricity consumption due to weather changes. In such problems, it is impor-

tant to obtain not only accurate predictions but also interpretable models that can

tell which features, and their relationship, are the most relevant. In order to meet

both requirements—linguistic interpretability and reasonable accuracy—this work

presents a novel Genetic Fuzzy System (GFS), called Genetic Programming Fuzzy

Inference System for Regression problems (GPFIS-Regress). This GFS makes use

of Multi-Gene Genetic Programming to build the premises of fuzzy rules, including

in it t-norms, negation and linguistic hedge operators. In a subsequent stage, GPFIS-

Regress defines a consequent term that is more compatible with a given premise and

makes use of aggregation operators to weigh fuzzy rules in accordance with their

influence on the problem. The system has been evaluated on a set of benchmarks

and has also been compared to other GFSs, showing competitive results in terms of

accuracy and interpretability issues.

1 Introduction

Regression problems are widely reported in the literature [1, 4, 17, 24, 30].

Generalized Linear Models [27], Neural Networks [18] and Genetic Programming

[23] tend to provide solutions with high accuracy. However, high precision is not
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always associated to a reasonable interpretability, that is, it may be difficult to iden-

tify, in linguistic terms, the relation between the response variable (output) and the

explanatory variables (inputs).

A GFS integrates a Fuzzy Inference System (FIS) and a Genetic Based Meta-

Heuristic (GBMH), which is based on Darwinian concepts of natural selection and

genetic recombination. Therefore, a GFS provides fair accuracy and linguistic inter-

pretability (FIS component) through the automatic learning of its parameters and

rules (GBMH component) by using information extracted from a dataset or a plant.

The number of works related to GFSs applied to regression problems has increased

over the years and are mostly based on improving the Genetic Based Meta-Heuristic

counterpart of GFSs by using Multi-Objective Evolutionary Algorithms [1, 5, 31].

In general most of these works do not explore linguistic hedges and negation oper-

ators. Procedures for the selection of consequent terms have not been reported and

few works weigh fuzzy rules. In addition GFSs based on Genetic Programming have

never been applied to regression problems.

This work presents a novel GFS called Genetic Programming Fuzzy Inference

System for Regression problems (GPFIS-Regress). The main characteristics of this

model are: (i) it makes use of Multi-Gene Genetic Programming [21, 34], a Genetic

Programming generalization that works on a single-objective framework, which can

be more reliable computationally in some situations than multi-objective approaches;

(ii) it employs aggregation, negation and linguistic hedge operators in a simplified

manner; (iii) it applies some heuristics to define the consequent term best suited to

a given antecedent term.

This work is organized as follows: Sect. 2.1 presents some related works on GFSs

applied to regression problems and Sect. 2.2. covers the main concepts of the GBMH

used in GPFIS-Regress: Multi-Gene Genetic Programming. Section 3 presents the

GPFIS-Regress model; case studies are dealt with in Sect. 4. Section 5 concludes the

work.

2 Background

2.1 Related Works

In general, GFSs designed for solving regression problems are similar to those

devised for classification. This is due to the similarity between those problems,

except for the output variable: in regression the consequent term is a fuzzy set, while

in classification it is a classical set. Nevertheless, in both cases interpretability is a

relevant requirement. Therefore, most works in this subject employ Multi-Objective

Evolutionary Algorithms (MOEAs) as the GBMH for rule base synthesis. One of

the few that does not follow this concept is that of Alcalá et al. [2], which presents

one of the first applications of 2-tuple fuzzy linguistic representation [20]. In this

work a GFS, based on a Genetic Algorithm (GA), learns both the granularity and
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the displacement of the membership functions for each variable. Wang and Mendel’s

algorithm [35] is used for rule generation. This model is applied to two real cases.

The work of Antonelli et al. [5] proposes a multi-objective GFS to generate a

Mamdani-type FIS, with reasonable accuracy and rule base compactness. This sys-

tem learns the granularity and the fuzzy rule set (a typical knowledge-base discovery

approach). It introduces the concept of virtual and concrete rule base: the virtual one

is based on the highest number of membership functions for each variable, while

the concrete one is based on the values observed in the individual of the MOEA

population. This algorithm was applied to two benchmarks for regression.

Pulkkinen and Koivisto [31] present a GFS that learns most of the FIS parameters.

A MOEA is employed for fine-tuning membership functions and for defining the

granularity and the fuzzy rule base. A feature selection procedure is performed before

initialization and an adaptable solution from Wang & Mendel’s algorithm is included

in an individual as an initial seed. This model performs equally or better than other

recent multi-objective and single-objective GFSs for six benchmark problems.

The recent work of Alcalá et al. [1] uses a MOEA for accuracy and comprehen-

sion maximization. It defines membership functions granularities for each variable

and uses Wang & Mendel’s algorithm for rule generation. During the evolutionary

process, membership functions are displaced following a 2-tuple fuzzy linguistic

representation, as stated earlier. In a post-processing stage fine-tuning of the mem-

bership functions is performed. The proposed approach compares favorably to four

other GFSs for 17 benchmark datasets.

Benítez and Casillas [8] present a novel multi-objective GFS to deal with high-

dimensional problems through a hierarchical structure. This model explores the con-

cept of Fuzzy Inference Subsystems, which compose the hierarchical structure of a

unique FIS. The MOEA has a 2-tuple fuzzy linguistic representation that indicates

the displacement degree of triangular membership functions and which variables

will belong to a subsystem. The fuzzy rule base is learned through Wang & Mendel’s

algorithm. This approach is compared to other GFSs for five benchmark problems.

Finally, Márquez et al. [26] employ a MOEA to adapt the conjunction operator

(a parametric t-norm) that combines the premise terms of each fuzzy rule in order

to maximize total accuracy and reduce the number of fuzzy rules. An initial rule

base is generated through Wang & Mendel’s approach [35], followed by a screening

mechanism for rule set reduction. The codification also includes a binary segment

that indicates which rules are considered in the system, as well as an integer value

that represents the parametric t-norm to be used in a specific rule. An experimental

study carried out with 17 datasets of different complexities attests the effectiveness

of the mechanism, despite the large number of fuzzy rules.

2.2 Multi-Gene Genetic Programming

Genetic Programming (GP) [23, 30] belongs to the Evolutionary Computation

field. Typically, it employs a population of individuals, each of them denoted by
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Fig. 1 Example of

multi-gene individual

a tree structure that codifies a mathematical equation that describes the relationship

between the output Y and a set of input variables Xj (j = 1,… , J). Based on these

ideas, Multi-Gene Genetic Programming (MGGP) [15, 17, 21, 34] generalizes GP

as it denotes an individual as a structure of trees, also called genes, that similarly

receives Xj and tries to predict Y (Fig. 1).

Each individual is composed of D trees or functions (d = 1,… ,D) that relate Xj
to Y through user-defined mathematical operations. It is easy to verify that MGGP

generates solutions similar to those of GP when D = 1. In GP terminology, the Xj
input variables are included in the Terminal Set, while the mathematical operations

(plus, minus, etc.) are part of the Function Set (or Mathematical Operations Set).

Fig. 2 Application example of MGGP operators: a mutation; b low level crossover; and c high

level crossover
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With respect to genetic operators, mutation in MGGP is similar to that in GP.

As for crossover, the level at which the operation is performed must be specified:

it is possible to apply crossover at high and low levels. Figure 2a presents a multi-

gene individual with five equations (D = 5) accomplishing a mutation, while Fig. 2b

shows the low level crossover operation.

The low level is the space where it is possible to manipulate structures (Terminals

and Mathematical Operations) of equations present in an individual. In this case, both

operations are similar to those performed in GP. The high level, on the other hand, is

the space where expressions can be manipulated in a macro way. An example of high

level crossover is shown in Fig. 2c. By observing the dashed lines it can be seen that

the equations were switched from an individual to the other. The cutting point can

be symmetric—the same number of equations is exchanged between individuals—or

asymmetric. Intuitively, high level crossover has a deeper effect on the output than

low level crossover and mutation have.

In general, the evolutionary process in MGGP differs from that in GP due to

the addition of two parameters: maximum number of trees per individual and high

level crossover rate. A high value is normally used for the first parameter to assure a

smooth evolutionary process. The high level crossover rate, similarly to other genetic

operators rates, needs to be adjusted.

3 GPFIS-Regress Model

GPFIS-Regress is a typical Pittsburgh-type GFS [19]. Its development begins with

the mapping of crisp values into membership degrees to fuzzy sets (Fuzzification).

Then, the fuzzy inference process is divided into three subsections: (i) genera-

tion of fuzzy rule premises (Formulation); (ii) assignment of a consequent term to

each premise (Premises Splitting) and (iii) aggregation of each activated fuzzy rule

(Aggregation). Finally, Defuzzification and Evaluation are performed.

3.1 Fuzzification

In regression problems, the main information for predicting the behavior of an

an output yi ∈ Y (i = 1,… , n) consists of its J attributes or features xij ∈ Xj (j =
1,… , J). A total of L fuzzy sets are associated to each jth feature and are given by

Alj = {(xij, 𝜇Alj
(xij))|xij ∈ Xj}, where 𝜇Alj

∶ Xj → [0, 1] is a membership function that

assigns to each observation xij a membership degree 𝜇Alj
(xij) to a fuzzy set Alj. Sim-

ilarly, for Y (output variable), K fuzzy sets Bk (k = 1,… ,K) are associated.

Three aspects are taken into account when defining membership functions: (i)
form (triangular, trapezoidal, etc.); (ii) support set of 𝜇Alj

(xij); (iii) an appropriate

linguistic term, qualifying the subspace constituted by 𝜇Alj
(xij) with a context-driven
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Fig. 3 Membership functions for xij ∈ Xj variables. For Y read Alj as Bk

adjective. Ideally, these tasks should be carried out by an expert, whose knowledge

would improve comprehensibility. In practice, it is not always easy to find a suitable

expert. Therefore it is very common [9, 19, 22] to define membership functions as

shown in Fig. 3.

3.2 Fuzzy Inference

3.2.1 Formulation

A fuzzy rule premise is commonly defined by:

“If X1 is Al1 and… and Xj is Alj and… and XJ is XlJ”

or, in mathematical terms:

𝜇Ad
(xi1,… , xiJ) = 𝜇Ad

(𝐱i) = 𝜇Al1
(xi1) ∗ … ∗ 𝜇AlJ

(xiJ) (1)

where 𝜇Ad
(xi1,… , xiJ) = 𝜇Ad

(𝐱i) is the joint membership degree of the ith pattern

𝐱i = [xi1,… , xiJ] with respect to the dth premise (d = 1,… ,D), computed by using

a t-norm ∗. A premise can be elaborated by using t-norms, t-conorms, linguistic

hedges and negation operators to combine the 𝜇Alj
(xij). As a consequence, the number

of possible combinations grows as the number of variables, operators and fuzzy sets

increase. Therefore, GPFIS-Regress employs MGGP to search for the most promis-

ing combinations, i.e., fuzzy rule premises. Figure 4 exemplifies a typical solution

provided by MGGP.

For example, premise 1 represents: 𝜇A1
(𝐱i) = 𝜇A21

(xi1) ∗ 𝜇A32
(xi2) and, in linguis-

tic terms, “If X1 is A21 and X2 is A32”. Let 𝜇Ad
(𝐱i) be the dth premise codified in the

dth tree of an MGGP individual. Table 1 presents the components used for reaching

the solutions shown in Fig. 4.
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Fig. 4 Example of fuzzy rule premises codified in an MGGP individual

Table 1 Input fuzzy sets and operators to generate solutions in Fig. 4

Input fuzzy sets (Terminals set) Fuzzy operators set (Functions set)

𝜇A11
(yt−1), . . . , 𝜇AL1

(yt−1), . . . , 𝜇Alp
(yt−p), . . . ,

𝜇ALP
(yt−P)

t-norm (∗), linguistic hedge (dilatation

operator—
√

) and classical negation operator

In GPFIS-Regress, the set of 𝜇Alj
(xij) represents the Input Fuzzy Sets or, in GP

terminology, the Terminal Set, while the Functions Set is replaced by the Fuzzy

Operators Set. Thus MGGP is used for obtaining a set of fuzzy rules premises𝜇Ad
(𝐱i).

In order to fully develop a fuzzy rule base, it is necessary to define the consequent

term best suited to each 𝜇Ad
(𝐱i).

3.2.2 Premises Splitting

There are two ways to define which consequent term is best suited to a fuzzy rule

premise: (i) allow a GBMH to perform this search (a common procedure in several

works); or (ii) employ methods that directly draw information from the dataset so as

to connect a premise to a consequent term. In GPFIS-Regress the second option has

been adopted in order to prevent a premise with a large coverage in the dataset, or able

to predict a certain region of the output, to be associated to an unsuitable consequent

term. Instead of searching for all elements of a fuzzy rule, as a GBMH does, GPFIS-

Regress measures the compatibility between 𝜇Ad
(𝐱i) and the consequent terms. This

also promotes reduction of the search space.

In this sense, the Similarity Degree (SDk) between the 𝜇Ad
(𝐱i) and the consequent

terms is employed:

SDk = min(1 −
∑n

i=1 |𝜇Ad
(𝐱i) − 𝜇Bk

(yi)|
n

, I{0,1}) ∈ [0, 1] (2)

where
∑n

i=1 |𝜇Ad
(𝐱i) − 𝜇Bk

(yi)| is the Manhattan distance between the dth premise

and the kth consequent term, while I{0,1} is an indicator variable, which takes value 0
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when 𝜇Ad
(𝐱i) = 0, ∀i, and 1 otherwise. When 𝜇Ad

(𝐱i) = 𝜇Bk
(yi) for all t, thenFCDk =

1, i.e., premise and consequent term are totally similar. A consequent term for 𝜇Ad
(𝐱i)

is selected as the kth consequent which maximize SDk. A premise with SDk = 0, for

all k, is not associated to any consequent term (and not considered as a fuzzy rule).

3.2.3 Aggregation

A premise associated to the kth consequent term (i.e. a fuzzy rule) is denoted by

𝜇Ad(k)
(𝐱i), which, in linguistic terms, means: “If X1 is Al1, and . . . , and XJ is AlJ , then

Y is Bk”. Therefore, the whole fuzzy rule base is given by 𝜇A1(k)
(𝐱i),. . . , 𝜇AD(k)

(𝐱i),
∀k = 1,… ,K. A new pattern x∗i may have a non-zero membership degree to several

premises, associated either to the same or to different consequent terms. In order

to generate a consensual value, the aggregation step tries to combine the activation

degrees of all fuzzy rules associated to the same consequent term.

Consider D(k)
as the number of fuzzy rules associated to kth consequent term

(d(k) = 1(k), 2(k) … ,D(k)
). Given an aggregation operator g ∶ [0, 1]D(k)

→ [0, 1] (see

[7, 10]), the predicted membership degree of 𝐱∗i to each kth consequent term—

�̂�Bk
(y∗i )—is computed by:

�̂�B1
(y∗i ) = g[𝜇A1(1)

(𝐱∗i ),… , 𝜇AD(1)
(𝐱∗i )] (3)

�̂�B2
(y∗i ) = g[𝜇A1(2)

(𝐱∗i ),… , 𝜇AD(2)
(𝐱∗i )] (4)

...

�̂�BK
(y∗i ) = g[𝜇A1(K)

(𝐱∗i ),… , 𝜇AD(K)
(𝐱∗i )] (5)

There are many aggregation operators available (e.g., see [6, 10, 36]), the Maximum

being the most widely used [29]. Nevertheless other operators such as arithmetic and

weighted averages may also be used. As for weighted arithmetic mean, it is necessary

to solve a Restricted Least Squares problem (RLS) in order to establish the weights:

min ∶
n∑

i=1
(�̂�Bk

(yi) −
D(k)
∑

d(k)=1
wd(k)𝜇Ad(k)

(𝐱i))2 (6)

s.t. ∶
D(k)
∑

d(k)=1
wd(k) = 1 and wd(k) ≥ 0

where wd(k) is the weight or the influence degree of 𝜇Ad(k)
(𝐱i) in the prediction of

elements related to the kth consequent term. This is a typical Quadratic Programming

problem, the solution of which is easily computed by using algorithms discussed in

[11, 33]. This aggregation procedure is called Weighted Average by Restricted Least

Squares (WARLS).
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3.3 Defuzzification

Proposition 1 Consider yi ∈ Y, with a ≤ yi ≤ b where a, b ∈ ℝ, and, associated to
Y, K triangular membership functions, normal, 2-overlapped1 and strongly parti-
tioned (identical to Fig. 3). Then yi can be rewritten as:

yi = c1𝜇B1
(yi) + c2𝜇B2

(yi) +⋯ + cJ𝜇BK
(yi) (7)

where c1, . . . , cK is the “center”—𝜇Bk
(ck) = 1—of each kth membership function.

The proof can be found in in [28]. This linear combination, which is a defuzzifi-

cation procedure, is usually known as the Height Method. From this proposition, the

following conclusions can be drawn:

1. If 𝜇Bk
(yi) is known, then yi is also known.

2. If only a prediction �̂�Bk
(yi) of 𝜇Bk

(yi) is known, such that supyt |𝜇Bk
(yi) −

�̂�Bk
(yi)| ≤ 𝜀, when 𝜀 → 0 the defuzzification output ŷi that approximates yi is

given by:

ŷi = c1�̂�B1
(yi) + c2�̂�B2

(yi) +⋯ + cK �̂�BK
(yt) (8)

When �̂�Bk
(yi) ≈ 𝜇Bk

(yi) is not verified, the Mean of Maximum or the Center of

Gravity [32] defuzzification methods may lead to a better performance. However,

due to the widespread use of strongly partitioned fuzzy sets in the experiments with

GPFIS-Regress, a normalized version of the Height Method (8) has been employed:

ŷi =
c1�̂�B1

(yi) +⋯ + cK �̂�BK
(yi)

�̂�B1
(yi) +⋯ + �̂�BK

(yi)
(9)

It is now possible to evaluate an individual of GPFIS-Regress by using ŷi.

3.4 Evaluation

The Evaluation procedure in GPFIS-Regress is defined by a primary objective—

error minimization—and a secondary objective—complexity reduction. The

primary objective is responsible for ranking individuals in the population, while the

secondary one is used as a tiebreaker criteria.

A simple fitness function for regression problems is the Mean Squared Error

(MSE):

MSE =
∑n

i=1(yi − ŷi)2

2 ∗ n
(10)

1
A fuzzy set is normal if it has some element with maximum membership equal to 1. Also, fuzzy

sets are 2-overlapped if min(𝜇Bu
(yi), 𝜇Bz

(yi), 𝜇Bv
(yi)) = 0,∀u, v, z ∈ k = 1,… ,K.
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The best individual in the population is the solution which minimizes (10).

GPFIS-Regress tries to reduce the complexity of the rule base by employing a simple

heuristic: Lexicographic Parsimony Pressure [25]. This technique is only used in the

selection phase: given two individuals with the same fitness, the best one is that with

fewer nodes. Fewer nodes indicate rules with fewer antecedent elements, linguistic

hedges and negation operators, as well as few premises (𝜇Ad
(𝐱i)), and, therefore, a

small fuzzy rule set. After evaluation, a set of individuals is selected (through a tour-

nament procedure) and recombined. This process is repeated until a stopping criteria

is met. When this occurs, the final population is returned.

4 Case Studies

4.1 Experiments Description

Among the SFGs designed for solving regression problems, the Fast and Scalable

Multi-Objective Genetic Fuzzy System (FS-MOGFS) [1] has been used in the exper-

iments. In contrast to other works [2, 5, 8, 26, 31], FS-MOGFS has been chosen

because:

1. it makes use of 17 regression datasets, where five of them are highly scalable and

high-dimensional;

2. it presents a comparison between three different GFSs;

3. it describes in detail the parameters used for each model and the number of evalu-

ations performed. Furthermore, the results show accuracy (training and test sets)

and rule base compactness (average number of rules and of antecedents elements

per rule).

In its basic version, FS-MOGFS consists of:

∙ Each chromosome (C) has two parts (C = C1 ∪ C2): C1 represents the number of

triangular and uniformly distributed membership functions and C2 = [𝛼1, 𝛼2,… ,

𝛼J], where each 𝛼j is a degree of displacement of the jth variable [2]. To obtain

the best possible values for C, the model incorporates a Multi-Objective Genetic

Algorithm (MOGA) based on SPEA2 [1]. The two objectives are: minimize the

Mean Squared Error and the number of rules.

∙ In order to build the complete knowledge base (rules and membership functions),

rule extraction via Wang & Mendel’s algorithm is performed for each chromosome

[35]. The Mamdani-type SIF employs the minimum for t-norm and implication,

and center of gravity for defuzzification.

Extensions of FS-MOGFS have resulted in two other models: (i) FS-MOGFSe–
identical to FS-MOGFS, but with fast error computation by leaving aside a portion of

the database; (ii) FS-MOGFS+TUN: similar to the previous one, but with fine tun-

ing of membership functions parameters [16]. This model provided the best results
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Table 2 Databases considered in experiments

Database Acronym J n Database Acronym J n
Electrical

mainte-

nance

ELE 4 1056 Mortgage MOR 15 1049

Auto

MPG6

MPG6 5 398 Treasury TRE 15 1049

Auto

MPG8

MPG8 7 398 Baseball BAS 16 337

Analcat ANA 7 4052 MV

artificial

domain

MV 10 40768

Abalone ABA 8 4177 Elevators ELV 18 16559

Stock STP 9 950 Computer-

activity

CA 21 8192

Weather

izmir

WIZ 9 1461 Ailerons AIL 40 13750

Weather

ankara

WAN 9 1609 The

insurance

company

TIC 85 9822

Forest

fires

FOR 12 51

and was therefore used for comparison with GPFIS-Regress. Databases shown in

Table 2 [1] have been considered in case studies.

Five of the 17 databases are of high dimensionality: ELV, AIL, MV, CA e TIC;

they have been obtained from the KEEL repository [1]. Similarly to the procedure

adopted in Alcalá et al. [1], 100,000 evaluations (population size = 100 and num-

ber of generations = 1000) have been carried out in each execution. The remaining

parameters are shown in Table 3. With six repeats of 5-fold cross-validation, GPFIS-

Regress was executed 30 times. The metrics shown for each database are the average

for the 30 trained models. The Mean Squared Error has been used as the fitness func-

tion [1].

It should be noted that preliminary tests considered three, five and seven fuzzy

sets. As the results did not show any relevant difference as far as accuracy was con-

cerned, five strongly partitioned fuzzy sets (Fig. 3) have been used throughout the

experiments, as stated in Table 3.

In addition to FS-MOGFS+TUN, three other SFGs were used for comparison:

∙ GR-MF [13]: employs an evolutionary algorithm to define granularity and mem-

bership functions parameters of a Mamdani-type SIF. The Wang & Mendel method

[35] is used for rule generation.
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Table 3 GPFIS-Regress

main configuration
Parameter Value

Population size 100

Number of generations 1000

Tree maximum depth 5

Tournament size 2

High level crossover rate 50 %

Low level crossover rate 85 %

Mutation rate 15 %

Elitism rate 1 %

Input fuzzy sets 5 fuzzy sets, displayed like

Fig. 3

Fuzzy operators Product, classical negation

and square-root

Partitioning method SD

Aggregation operator WARLS

Defuzzification Height method

∙ GA-WM [12]: a GA is used for synthesizing granularity and the support of trian-

gular membership functions, as well as for defining the universe of discourse. The

rule base is also obtained through Wang & Mendel’s algorithm.

∙ GLD-WM [2]: similar to FS-MOGFS+TUN with respect to granularity and mem-

bership functions displacement. Wang & Mendel’s algorithm is used for rule gen-

eration. Final tuning of membership functions is not performed.

Statistical analysis have followed recommendations from [1, 14] and have been

performed in the KEEL software [3], with a significance level of 0,1 (𝛼 = 0.10).

4.2 Results and Discussion

Table 4 shows the results obtained with GPFIS-Regress and their counterpart GFSs

for each database in terms of MSE, average number of rules and of antecedent ele-

ments per rule. Results for models other than GPFIS-Regress have been taken from

[1]. In general GPFIS-Regress has provided better results in 58 % of cases, followed

by FS-MOGFS+TUN with 23 %. GLD-WM has performed better for one single

database; the remaining SFGs performed below those three. In high-dimensional

problems, GPFIS-Regress as attained better results for three of the five databases.

Table 5 presents results for the Friedman test and Holm method for low-

dimensional databases, given a significance level of 10 % [1]. As GPFIS-Regress

presented the lowest rank (1.5417), it was chosen as the reference model. It can be

observed that GPFIS-Regress achieved higher accuracy than GR-MF, GA-WM and
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Table 5 Results for Friedman test and Holm method

i Model Rank

4 GR-MF 4.6667

3 GA-WM 4.1250

2 GLD-WM 2.8750

1 FS-MOGFS+TUN 1.7917

0 GPFIS 1.5417
Test p-value

Friedman <0.0001
Method z = (R0 − Ri)∕SE p-value Holm

GR-MF 4.8412 <0.0001 0.0250

GA-WM 4.0020 <0.0001 0.0333

GLD-WM 2.0655 0.0388 0.0500

FS-MOGFS+TUN 0.3872 0.6985 0.1000

GLD-WM have (p-value < 0.05). This has not been verified for GPFIS-Regress and

FS-MOGFS+TUN (p-value > 0.10).

If GPFIS-Regress and FS-MOGFS+TUN are singled out for comparison, it can

be observed that the former has achieved better results for 10 of the 17 databases, with

two ties. The signal test has shown that the differences in results were not significant

(S = 10, p-value = 0.3018). This may be due to the ties and to the small number

of databases considered. As for rule base complexity, it can be noted that GPFIS-

Regress obtained the most compact one in 53 % of cases.

As far as interpretability and implementation are concerned, GPFIS-Regress has

an advantage over FS-MOGFS+TUN in aspects such as: (i) makes no change to

membership functions parameters; (ii) employs a MHG with a single objective, while

FS-MOGFS+TUN does a multi-objective search.

5 Conclusion

This work has presented a novel Genetic Fuzzy System for solving regression

problems, called GPFIS-Regress, which makes use of Multi-Gene Genetic Program-

ming and a novel way to formulate the Fuzzy Reasoning Method (Formulation-

Splitting-Aggregation). GPFIS-Regress has been compared to four other Genetic

Fuzzy Systems for 17 datasets of low and high dimensionality. Results have shown

the potentialities of the proposed approach with respect to the state-of-art in the

Genetic Fuzzy Systems area.

Further developments and experiments shall include: (i) evaluation of other

t-norm, negation and linguistic hedges operators, as well as the use of t-conorms

in rules premises; (ii) new premises splitting methods (through other similarity



100 A.S. Koshiyama et al.

measures) and application of the Restricted Least Squares procedure with some

adaptation to associate a more suitable consequent term to a given premise; (iii) eval-

uation of other aggregation operators, such as nonlinear ones (weighted geometric

mean, etc.); this may provide better results mostly in terms of accuracy. A fine-tuning

of membership functions and Genetic Programming set-up parameters shall also be

considered.
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