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To Professor Christer Carlsson

This book is a token of appreciation to
Prof. Christer Carlsson for his long-time
service to the fuzzy logic community, for his
support and inspiration that have shaped
interests and careers of many people, for his
integrity and quest for scientific excellence,
and for his relentless and successful
promotion of the use of fuzzy logic in
business, technology, and everywhere.
Christer Carlsson is one of the most
prominent grand personalities in
decision-making research in Finland today,
what makes him special is the fact that he has
been able to combine cutting-edge research
with industrial collaboration to the benefit



of the researchers and the companies
involved. In many research projects
supported by the Finnish Funding Agency for
Innovation (TEKES), he and his research
team have solved many real-world problems
by creating new answers for old and new
problems.
The variety of problems Christer has been
involved in solving is impressive: ranging
from MCDM problems in the early days
of the WWW and using hypertext documents
in company intranets, to project evaluation by
using real option analysis and the creation of
the first fuzzy variants for real option
valuation, to using soft computing
methods in decision analytics.
Application areas have been diverse, many
times including the management of large
international corporations’ portfolios of
patents, R&D projects, prospective acquisi-
tion targets, etc., in a future-oriented way, by
integrating imprecise and scenario-based
numerical information with managerial
insight and tacit knowledge—and all this, in
the age before “big data,” and before the
ongoing revolution of data-based
management.
Christer has been strongly involved in
research in the field of information systems
and especially in the research of mobile
services from the very beginning of their
emergence. Today, mobile services, soft
computing, and decision-making are topics
that have converging paths; it is through
mobile devices that information is being
collected in many ways and this information
can be used in decision-making. It is not by
coincidence Christer and his research group



have a strong interest and experience in this
convergence.
The hallmark of a visionary is the immense
amount of time and energy spent in trying to
seriously understand what is going to happen
in the future and being able to put the pieces
together in an innovative way that adds
value. It is apparent to anyone that knows
Christer that he has never spared the effort in
finding out what is new, what is hot, and what
will be the next big thing—it is this persistent
curiosity that drives great scientists and is
what this book celebrates together with
Christer.



Preface

This volume is a result of a special project the purpose of which was twofold. First
of all, we wished to provide a bird’s eye view of some novel directions in the
broadly perceived “fuzzy logic,” starting from more philosophical and foundational
considerations, through a bunch of promising models for the analysis of data,
decision-making, and systems modeling, to a logical consequence in view of the
very topic covered by this volume, reflected in its title, that is, an account of some
successful experiences in using fuzzy technology in practice, in business, and in
technology. Second, from a more personal perspective, we wished this volume to be
a token of appreciation to Prof. Christer Carlsson, from the Institute for Advanced
Management Systems Research (IAMSR), Åbo Akademi University in Åbo
(Turku) in Finland; a very special person, a friend and a peer, to the entire fuzzy
logic community, who has managed for so many years to combine top-level the-
oretical research with applications, and finally implementations of various fuzzy
logic based models in business and technology. Of course, before entering the field
of fuzzy logic he was a prominent representative of the operations research com-
munity, notably that in multiple-criteria decision-making (MCDM).

What concerns the last two decades of his activities is that he has been a driving
force behind the foundation and an unprecedented growth of his large research
group, IAMSR, a rare research institution not only in Europe, but all over the world,
which has been able to, for many years, continuously collect funds from research
and development projects with business and industry. This should be considered as
a sign of Prof. Carlsson’s vision and far-sighted ideas on the fact that a close
collaboration with practice is crucial for the academic world. After many years of
personal success, this vision is today confirmed by the policies of both the European
Union and other governments around the world.

Christer was a visionary and a proponent of modern applications of fuzzy
technology, and—what has been rare and difficult—he has always been, and is, one
of those not so numerous people in our academic community who have been able to
secure substantial industrial grants for large research groups. It is worth mentioning
that in his works he has always been able to find a synergistic combination of high
scientific level with real-world applications.

ix



Over many years he has been an active member of the International Fuzzy
Systems Association (IFSA), its long-time Council member, Treasurer, and finally
President. His devotion and vision have certainly contributed to an extraordinary
success of IFSA and proliferation of fuzzy logic all over the world.

We are sure that this volume will be interesting to many people who deeply feel,
as Christer has always felt, that a synergistic combination of high-level theory with
real applications is not only possible, but also is necessary, and can certainly be
successful.

Following what has been said, we start our volume with Part I: Foundations, in
which some papers from a more general to some extent philosophical type are
included, which are important, because they clarify many aspects and issues that are
relevant both for the foundations and soundness of many applications. Enric Trillas
and Rudolf Seising in their “Turning Around the Ideas of Meaning and
Complement” consider an important problem that has been with fuzzy sets/logic
since its inception, namely the fact that though fuzzy sets have been viewed as
specifying the meaning of some linguistic terms. There has not been many works on
a deeper analysis of how the meaning should be meant so that those linguistic terms
could be subject of a scientific inquiry. In the paper the authors follow the path
rooted in the Wittgenstein’s ‘identification’ of meaning and linguistic use, in which
meaningful predicates can be seen as those represented by quantities, whose
measures are the membership functions. Unfortunately, fuzzy set theory is still
missing a complete study on the meaning of connectives that, in fuzzy logic, are not
universal, as they are in classical logic, but are context-dependent and
purpose-driven. This issue is discussed in depth, as well as issues related to a proper
definition of the negation. Deeper semantic analyses for concepts like negation or
antonym in general are usually not addressed, since they are often just applied
through the membership functions. In this paper, the idea of a linguistic concept of
‘complement,’ either meant as ‘not’ or is ‘opposite’ is analyzed. For a person
working in the theory of fuzzy logic, some ideas of the practice of natural language
are also included.

Jorma K. Mattila in “A Note on Fuzzy-Valued Inference” considers
fuzzy-valued inference, which is analyzed by using concepts and properties of a
theory of fuzzy-valued associative Kleene algebra. To be more specific, it is shown
that the tools and techniques presented can be used to develop a fuzzy screening
system as introduced by Yager.

Vesa A. Niskanen in “A Concept Map Approach to Approximate Reasoning
with Fuzzy Extended Logic” discusses the important problem of how to develop
computer models of approximate reasoning, notably in terms of modus ponens and
modus tolens. He proposes the use of Zadeh’s fuzzy extended logic and the idea of
a concept map which has been widely used in many areas. An application in
statistics is shown.

In Part II: Data Analysis, Decision-Making and Systems Modeling, we included
papers that have presented more specific models for solving various problems of
relevance. First, some problems related to broadly perceived data analysis are dealt
with. Christian Borgelt and David Picado-Muíno in “Significant Frequent Item Sets
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via Pattern Spectrum Filtering” deal with the important problem of the frequent
item set mining. Unfortunately, set mining is often plagued by the fact that the sets
of frequent items can be very large, in some cases the size of the output can even
exceed the size of the set of data involved. The authors propose new extensions to
some statistical approaches that produce only significant frequent item sets (or
association rules derived from them), which combines data randomization with a
so-called pattern spectrum filtering.

Adriano S. Koshiyama, Marley M.B.R. Vellasco, and Ricardo Tanscheit in “A
Novel Genetic Fuzzy System for Regression Problems” consider a regression
problem that is equivalent to finding a model that relates the behavior of an output
or response variable to a given set of input or explanatory variables, and has a
universal importance and applicability. To meet the requirements of linguistic
interpretability and reasonable accuracy, the authors present a novel genetic fuzzy
system (GFS), called genetic programming fuzzy inference system for regression
problems (GPFIS-Regress). The system utilizes multi-gene genetic programming to
build the premises of fuzzy rules, with various t-norms, negation, and linguistic
hedge operators. The system is tested on some relevant benchmark examples and
the results are promising.

Silvia Bortot, Mario Fedrizzi, Michele Fedrizzi, and Ricardo Alberto Marques
Pereira in “A Multidistance Approach to Consensus Modeling” investigate the
relationship between the soft measure of collective dissensus and the multidistance
approach to consensus evaluation previously introduced by them. They propose a
new approach in which a particular type of sum-based multidistance used as a
measure of dissensus is defined. This multidistance is characterized by the appli-
cation of a subadditive filtering function the effect of which is that small values of
distances are emphasized and large ones are attenuated. In an example, a com-
parison of the new dissensus measure with the OWA-based multidistance obtained
assuming that the weights are linearly decreasing with respect to increasing distance
values is performed.

Janusz Kacprzyk, Dominika Gołuńska, and Sławomir Zadrożny in “A
Consensus Reaching Support System Based on the Concepts of an Ideal and
Anti-Ideal Agent and Option” an extension of a series of previous works on a
moderator run consensus reaching process, and its related group decision-making
process in a small group of autonomous decision-makers (agents) is presented. The
approach proposed is based on fuzzy preferences, fuzzy majority represented as
linguistic quantifiers, and fuzzy majority based soft measure of the consensus, and
the emphasis is on the running of a consensus reaching process via a moderator. To
help the moderator to run the process, additional higher-level information, notably
in the form of linguistic data summaries is used. Specifically, a new concept of an
ideal and anti-ideal point and its related TOPSIS method based approach, is
proposed.

Elid Rubio, Oscar Castillo, and Patricia Melin in “Interval Type-2 Fuzzy System
Design Based on the Interval Type-2 Fuzzy C-Means Algorithm” use the interval
type-2 fuzzy C-means (IT2FCM) algorithm to develop an interval type-2 fuzzy
inference systems, using the centroids and fuzzy membership matrices for the lower
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and upper bound of the intervals obtained by the IT2FCM algorithm, in each data
clustering step that occurs in this algorithm. Using these tools and techniques, the
Mamdani, and Sugeno fuzzy inference systems for classification of data sets and
time series prediction are developed.

Pavel Holeček, Jana Talašová, and Jan Stoklasa in “Multiple-Criteria Evaluation
in the Fuzzy Environment Using the FuzzME Software” describe a software tool for
fuzzy multiple-criteria evaluation called “FuzzME,” and present how to apply the
software for solving a broad range of fuzzy MCDM problems. The mathematical
foundation on which the FuzzME software is built is also briefly described. An
interesting feature is that for the aggregation of partial scores, various aggregation
methods can be employed, notably fuzzy weighted average, fuzzy OWA operator,
and fuzzified WOWA operator. In the case of interacting criteria, the fuzzified
discrete Choquet integral, and also an aggregation function described by fuzzy rule
base, defined by the experts, can be used.

Part III: Fuzzy Logic in Business and Industrial Practice concerns very important
works related to the practical use of broadly perceived intelligent, notably fuzzy,
technologies, and experience gained. Mikael Collan and Pasi Luukka in “Strategic
R&D Project Analysis: Keeping It Simple and Smart” deal with strategic R&D
projects that are the core of virtually all high-scale undertakings in many areas of
human activities. They consider the situation, where forward-looking analysis is
required and assume that the decision-makers face structural uncertainty. Detailed,
precise information is very often, if not always, not available in the considered
situation. This implies a need for robust management systems that are capable of
handling imprecise and uncertain information, yet simple and comprehensive
enough for managerial use. The authors propose a set of new weighted averaging
operators that are able to consider interaction between variables and an approach
that is based on scorecards in which triangular fuzzy numbers are used. This gives a
simple, easy to understand, easy to visualize, low-cost, multi-expert analysis tool
for strategic R&D projects that can be implemented on a laptop using spreadsheet
software.

József Mezei and Matteo Brunelli in “Decision Analytics and Soft Computing
with Industrial Partners: A Personal Retrospective” consider methods in decision
analytics, which become essential tools to process an increasing amount of col-
lected data, while being capable of representing and utilizing the tacit knowledge of
experts. This boils down to a need from companies of methods that can make use of
imprecise information to deliver insights in real time. The authors provide a
summary of three closely related research projects within the area of knowledge
mobilization, and provide solutions for typical business analytical problems, orig-
inating mainly from the process industry. They use fuzzy ontologies, represented as
fuzzy relations. By analyzing the similarities among the three presented cases, they
discuss the main lessons learnt and provide some advice as what should be con-
sidered in future applications of soft computing in industrial applications.

J.M. Sánchez-Lozano, M.S. García-Cascales, M.T. Lamata, and J.L. Verdegay in
“Spatial Analysis Using GIS for Obtaining Optimal Locations for Solar Farms—A
Case Study: The Northwest of the Region of Murcia” consider an important
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problem of making decisions as to where to locate a photovoltaic solar farm, to
provide the energy generated into the grid. They consider, first, the legislative
factors involving a large number of restrictions with regards to protected areas,
streams, watercourses, etc., and then some criteria exemplified by the proximity to
power lines, slope, solar irradiation, etc., according to which an evaluation of the
suitability of the areas will be made. They use spatial visualization tools such as
geographic information systems (GIS). The main purpose is to show how the
aggregation of GIS with decision procedures in the field of renewable energy can
solve complex location problems. An example of determining suitable locations for
photovoltaic solar farms in the northwest region of Murcia in Spain is shown.

We wish to thank all the contributors to this volume. We hope that their papers,
which constitute a synergistic combination of foundational works, new data analysis
tools and techniques, new decision-theoretic and -analytic models, new method-
ologies and techniques for system modeling, and papers on relevant real-world
implementations, combined with an account of experience gained from various real
and successful practical projects will be interesting and useful for a large audience.

We also wish to thank Dr. Tom Ditzinger, Dr. Leontina di Cecco, and Mr.
Holger Schaepe from Springer for their dedication and help to implement and finish
this publication project on time, maintaining the highest publication standards.

August 2015 Mikael Collan
Mario Fedrizzi

Janusz Kacprzyk
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Part I
Foundations



Turning Around the Ideas of ‘Meaning’
and ‘Complement’

Enric Trillas and Rudolf Seising

Abstract Since the inception of fuzzy sets in 1965, Lotfi A. Zadeh viewed them

by specifying the meaning of their linguistic labels in a given universe of discourse.

Anyway, it lacked to clarify the same concept of meaning in a way able to separate

those words that can be submitted to scientific scrutiny from those that cannot, as

well as to show which it is, into meaning, the actual role of the membership func-

tion of a fuzzy set. Once rooted in the Wittgenstein’s ‘identification’ of meaning and

linguistic use, meaningful predicates can be seen as those represented by quantities

whose measures are the membership functions. Closed such question, it still lacks to

completely study the meaning of connectives that, in fuzzy logic, are not universal as

they are in classical logic, but context-dependent and purpose-driven; hence and like

fuzzy sets, should be carefully designed at each case. When fuzzy logic was theoret-

ically introduced, from the mid-sixties to the last eighties of the XX century, crisp

deductive logic ideas were prevalent over those of conjectural ordinary reasoning

to represent, for instance, what is ‘not properly covered under a linguistic label’ and

only the concept of pseudo-complement was considered, even if antonyms are essen-

tial for linguistic variables, a basic tool in the applications of fuzzy logic. Fifty years

later, when fuzzy logic comes to be surpassed by Zadeh’s ‘Computing with Words’,

perhaps some thoughts at the respect could be suitable towards its applicability to

represent complex linguistic statements in common sense reasoning. This paper just

tries to reflect on one of the subjects fuzzy logic perhaps manages in a too simplistic

way, almost uniquely by means of the strong negation 1-id, and from an analogous

point of view to that of logic that not always is close to ordinary reasoning. It refers to

a general concept of ‘complement’, a concept that tries to ‘collectivize’ all that does

not properly lay under a given concept but should not to be forgot since it completes

what is taken into account. In the, say traditional treatment of set’s complement, it

lacks the consideration of what actually happens in language, the true background

of what fuzzy logic tries to represent, where ‘opposites’ play a role that is, at least,

weakly but equal or more important that that played by ‘not’. Fuzzy logic’s praxis just

To Professor Christer Carlsson.

E. Trillas (✉) ⋅ R. Seising

European Centre for Soft Computing, Mieres, Asturias, Spain

e-mail: enric.trillas@softcomputing.es

© Springer International Publishing Switzerland 2016

M. Collan et al. (eds.), Fuzzy Technology, Studies in Fuzziness

and Soft Computing 335, DOI 10.1007/978-3-319-26986-3_1

3



4 E. Trillas and R. Seising

considers both negation and antonym through their membership functions, avoids a

deep semantic analysis of both concepts, has not criteria to decide when member-

ship functions should, or should not, be functionally expressed from the membership

function of the initial linguistic label, as well as how it can be done with the known

models of negation functions. The process followed by fuzzy logic’s practitioners for

designing opposites and negation is often too lose and quickly done for well adjust-

ing representation to what is been represented. The point of view taken in this paper

is not mathematical in nature, but is just a first trial to reflect on what can surround a

linguistic concept of ‘complement’, of what is either ‘not’, or is ‘opposite’, to what is

qualified by a predicate. The paper only tries to open the eyes of theoreticians towards

the true ground on which fuzzy logic is anchored, the natural language’s practice;

fuzzy logic cannot be neither a mathematical subject, nor one of just a computational

interest, but a discipline of the imprecise similar to an experimental science.

1 Introduction

1.1

If what can be qualified as ‘fuzzy’ is seen as a matter of degree, of gradation, the

practical use of fuzzy sets for computationally modeling fuzzy systems is actually

a matter of design, depending upon the context in which the linguistic labels cur-

rently apply to, the purpose for its use, as well as the mathematical and computa-

tional armamentarium available for its representation. The concept of a fuzzy set is

linked with that of measurable or gradable meaning, and its genetic roots lie in the

linguistic phenomenon of creating collectives named by a precise or imprecise pred-

icate, like the origin of thermodynamics lies in heat’s transmission, a phenomenon

that is based on a collective of molecules and their velocities. Fuzzy sets with the

same linguistic label are nothing else than the states in which collectives manifest

themselves with each contextual use of the linguistic label; particular fuzzy sets are

situation-dependent.

The representation of collectives by fuzzy sets cannot ignore how the use of lin-

guistic labels is learned and acquired in natural language; for instance, the meaning

of ‘John is tall’ is difficult to be captured without simultaneously capturing that of

‘Peter is short’, or the use of ‘less than five’ without that of ‘more than six’. Pairs like

tall/short, less/more, etc., should be taken into account for designing a membership

function for either tall or short, etc. Fuzzy logic is indeed rooted in the natural phe-

nomena of language and ordinary reasoning; hence it is not static at all, and should

be closer to experimental science than to what is understood by logic; in particular,

because logic is essentially discrete and shows no flexibility enough for taking into

account the conspicuous flexibility of language. Logic’s main worries turn around

formal deductive reasoning, and those of science with natural phenomena; natural

language and ordinary reasoning are, at the end, natural phenomena deeply rooted in

the functioning of the human brain. It is difficult to imagine how thermodynamics,
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for instance, could evolve from the old XVIII and XIX centuries problems on heat’s

transmission only by means of applying to them a purely logical treatment. Of course

a ‘logical control’ of the involved kinds of reasoning cannot be avoided; it is perhaps

thanks to this control that Fourier’s Transform is known.

Fuzzy set theory mainly deals with those linguistic concepts that are imprecise

and/or uncertain in a non-random or repetitive way, and most of which are linguistic

terms, that is, can be found in the dictionary. Fuzzy logic would better deserve to

be called the science of imprecision, and sooner or later it will need to escape from

the logical habit of studying the meaning of large sentences through its elemental

or atomic components as it is done in the case of classical/crisp logic; in ordinary

life the meaning of these components is often captured after capturing the meaning

of the full sentence through applying memory and ordinary reasoning to concepts

that are, almost always, imprecise and uncertain. It will take some time to escape

from such kind of atomism, and up to when the study of language can move to a true

experimental science in which computationally-assisted controlled observation and

mathematical models can play a basic role; towards a kind of physics of language and

reasoning. For instance, the currently done study of antonyms in linguistics avoids

taking into account the degrees in which the statements with these terms do hold,

and this fact seriously limits a study needing to move from one to two dimensions,

like Max Black tried to do a lot of years ago with his profile functions [1].

To cite something else, it is not the same negating an elemental statement ‘x is P’,

than negating a large sentence containing elemental statements but involving linguis-

tic hedges, connectives, quantifiers, etc., and if for some linguistic terms there exist

an antonym, it is not still clear if it there are actually antonyms of large statements, as

it is also not clear its inexistence for crisp linguistic terms. Thinking based on a lot of

intentional experimentation waits to be done, but the pervasiveness of imprecision

and non-repetitive uncertainty in language makes to think that a, perhaps renewed,

fuzzy logic can play a relevant role in it in the way towards an experimental sci-

ence of language and commonsense reasoning supplied with a measuring capability.

Currently it is actually difficult to imagine some experimental science without more

or less sophisticated systems of measuring what is involved in it.

1.2

Mathematics, Logic and philosophy of language are closely connected and in the

20th century it was Gottlob Frege who wrote the classic article “Über Sinn und

Bedeutung” (“On Sense and Reference”) [2]. “Sense” and “reference” denote in

Frege’s philosophy two aspects of the meaning of a term: its reference is the object

to which the term refers, while its sense is the way that the term refers to the object.

Frege also combined the subject of meaning with that of vagueness. In a lecture of

1891, he introduced concept as follows: “If ‘x + 1’ is meaningless for all arguments

x, then the function x + 1 = 10 has no value and no truth value either. Thus, the con-

cept “that which when increased by 1 yields 10” would have no sharp boundaries.

Accordingly, for functions the demand on sharp boundaries entails that they must
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have a value for every argument [3].
1

Few years later he published Grundgesetze
der Arithmetik (Foundations of Arithmetic), where he called for concepts with sharp

boundaries, because otherwise we could break logical rules and, moreover, the con-

clusions we draw could be false (Frege, 1893–1903): “A definition of a concept (of a

possible predicate) must be complete; it must unambiguously determine, as regards

any object, whether or not it falls under the concept (whether or not the predicate

is truly ascribable to it). [. . . ] We may express this metaphorically as follows: the

concept must have a sharp boundary” ([4], Sect. 56).
2

He also drew consequences if

we would fail to follow this rule:

To a concept without sharp boundary there would correspond an area that had not a sharp

boundary-line all round, but in places just vaguely faded away into the background. This

would not really be an area at all; and likewise a concept that is not sharply defined is wrongly

termed a concept” ([4], Sect. 56).
3

Frege’s specification of vagueness as a particular phenomenon influenced other

scholars, notably his British contemporary and counterpart the philosopher and

mathematician Bertrand Russell, who wrote in his article ‘Vagueness’ in 1923 [5].

Let us consider the various ways in which common words are vague, and let us begin with

such a word as ‘red’. It is perfectly obvious, since colours form a continuum, that there are

shades of color concerning which we shall be in doubt whether to call them red or not, not

because we are ignorant of the meaning of the word ‘red’, but because it is a word the extent

of whose application is essentially doubtful. This, of course, is the answer to the old puzzle

about the man who went bald. It is supposed that at first he was not bald, that he lost his

hairs one-by-one, and that in the end he was bald; therefore, it is argued, there must have

been one hair the loss of which converted him into a bald man. This, of course, is absurd.

Baldness is a vague conception; some men are certainly bald, some are certainly not bald,

while between them there are men of whom it is not true to say they must either be bald or

not bald ([5], p. 85).

Russell reasoned “that all words are attributable without doubt over a certain area,

but become questionable within a penumbra, outside which they are again certainly

not attributable” ([5], p. 86 f). Then he generalized that words of pure logic also

have no precise meanings, e.g. in classical logic the composed proposition ‘p or q’

is false only when p and q are false and true elsewhere. He went on to claim that the

truth values “‘true’ and ‘false’ can only have a precise meaning when the symbols

1
This is a mathematical verbalization of what is called the classical sorites paradox that can be

traced back to the old Greek word 𝜎o𝜌o𝜍 (for ‘heap’) used by Eubulid of Alexandria (4th century

BC).

2
“Eine Definition eines Begriffes (möglichen Prädikates) muss vollständig sein, sie muss für jeden

Gegenstand unzweideutig bestimmen, ob er unter den Begriff falle (ob das Prädikat mit Wahrheit

von ihm ausgesagt werden könne) oder nicht [. . . ]. Man kann das bildlich so ausdrücken: der Begriff

muss scharf begrenzt sein . . . ” ([3], p. 69).

3
“Einem unscharf begrenzten Begriffe würde [wenn man sich Begriffe ihrem Umfang nach als

Bezirke in der Ebene versinnlicht] ein Bezirk entsprechen, der nicht überall eine scharfe Grenzlinie

hätte, sondern stellenweise ganz verschwimmend in die Umgebung überginge. Das wäre eigentlich

gar kein Bezirk; und so wird ein unscharf definierter Begriff mit Unrecht Begriff genannt ([3],

p. 70).
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employed—words, perceptions, images . . .—are themselves precise”. As we have

seen above, this is not possible in practice, so he concludes “that every proposition

that can be framed in practice has a certain degree of vagueness; that is to say, there

is not one definite fact necessary and sufficient for its truth, but certain region of

possible facts, any one of which would make it true. And this region is itself ill-

defined: we cannot assign to it a definite boundary”. Russell emphasized that there

is a difference between what we can imagine in theory and what we can observe with

our senses in reality: “All traditional logic habitually assumes that precise symbols

are being employed. It is therefore not applicable to this terrestrial life, but only to an

imagined celestial existence” ([5] p. 88 f). He proposed the following definition of

accurate representations: “One system of terms related in various ways is an accurate

representation of another system of terms related in various other ways if there is a

one-one relation of the terms of the one to the terms of the other, and likewise a one-

one relation of the relations of the one to the relations of the other, such that, when

two or more terms in the one system have a relation belonging to that system, the

corresponding terms of the other system have the corresponding relation belonging

to the other system”. And in contrast to this, he stated that “a representation is vague

when the relation of the representing system to the represented system is not one-

one, but one-many” ([5], p. 89). He concluded that “Vagueness, clearly, is a matter

of degree, depending upon the extent of the possible differences between different

systems represented by the same representation. Accuracy, on the contrary, is an

ideal limit” ([5], p. 90).

In his Tractatus logico-philosophicus Wittgenstein distinguished between mean-

ingful, meaningless and nonsensical statements. The statements of logic, i.e. tau-

tologies and contradictions are senseless, because “Tautologies and contradictions

are not pictures of reality. They do not represent any possible situations. For the for-

mer admit all possible situations, and latter none” ([6], 4.462). By contrast, senseful

propositions may “they range within the truth-conditions drawn by the propositions

of logic. But the propositions of logic themselves are neither true nor false. [. . . ]

Other (non-logical) propositions can be senseless because they may apply to things

that “cannot be represented, such as mathematics or the pictorial form itself of the

pictures that do represent. These are, like tautologies and contradictions, literally

sense-less, they have no sense’. [. . . ] Nonsensical propositions cannot carry sense,

e.g. ‘Socrates is identical”. “While some nonsensical propositions are blatantly so,

others seem to be meaningful-and only analysis carried out in accordance with the

picture theory can expose their nonsensicality. Since only what is ‘in’ the world can

be described, anything that is ‘higher’ is excluded, including the notion of limit and

the limit points themselves. Traditional metaphysics, and the propositions of ethics

and aesthetics, which try to capture the world as a whole, are also excluded, as is the

truth in solipsism, the very notion of a subject, for it is also not ‘in’ the world but at

its limit” [1].

One of the best specialists on Frege’s, Russell’s and Wittgenstein’s philosophical

systems was Max Black who wrote A Companion to Wittgenstein’s Tractatus in 1964.

In 1937 Black published the article “Vagueness. An Exercise in Logical Analysis”

where he defended the thesis of the measurability of linguistic vagueness by using
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Fig. 1 Consistency of application of a typical vague symbol ([1], p. 443)

so-called consistency profiles. Black assumed that the vagueness of a word—as an

element of a language—involves variations in its application by different users of

that language. Furthermore he thought that these variations fulfill systematic and

statistical rules when one symbol has to be discriminated from another. A speaker

of a language has to decide whether to apply the word L or its negation ¬L to an

object x. “Such a situation arises, for instance, when an engine driver on a foggy

night is trying to decide whether the light in the signal box is really a red or a green

light” ([1], p. 442). He defined this discrimination of a symbol x with respect to a

symbol L by DxL (and he wrote that we obtain DxL = Dx¬L by definition). Then, he

claimed that most speakers of a language and the same observer in most situations

will determine that either L or ¬L is used. In both cases, among competent observers

there is a certain unanimity, a preponderance of correct decisions. For all DxL with

the same x but not necessarily the same observer, m is the number of L uses and

n the number of ¬L uses. On this basis, Black stated the following definition: “We

define the consistency of application of L to x as the limit to which the ratio m/n
tends when the number of DxL and the number of observers increase indefinitely.

[. . . ] Since the consistency of the application, C, is clearly a function of both L and

x, it can be written in the form C (L, x)” ([1], p. 442, Fig. 1).

Carl Gustav Hempel, who was associated with the Vienna Circle and immigrated

in 1937 to the US, criticized Black’s theory and pleaded for an extension of the

research of vagueness from linguistics to a much broader field: “To what scien-

tific discipline does the study of vagueness belong? No doubt, it is a task incum-

bent on a general theory of signs, or, to employ the term used by C.W. Morris, on

semiotic”. Referring to Charles Morris’ Foundation of the Theory of Signs, published

in the foregoing year [7], Hempel wrote that vagueness is ‘strictly semiotical term,

its determination requires reference to the symbols, to the users, and their designate’

[8], p. 166. Thus, he claimed that ‘complete statement on the vagueness of a symbol
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is of the following type: ‘The vagueness of the term T , as applied, by the group G
of persons, to the elements of the series S of objects, is v’. Thus, vagueness is what

may be called a three-place semiotic relation which may assume different degrees

(the values of v), or, in more technical terms: a strictly semiotic function of three

arguments (T ,G, S) being its arguments and v its value).

Differently to his opinion concerning the meaning of words and sentences in

the Tractatus Wittgenstein considered in his late philosophy the user of a language

important. In his Philosophical Investigations that Wittgenstein started writing in the

1930s, he let go the idea of a pure logical and therefore non-vague language. Thus, he

came to the important result on what is meaning in his philosophy of language: “For

a large class of cases—though not for all—in which we employ the word ‘meaning’

it can be defined thus: the meaning of a word is its use in the language” [9].

Our thesis in this book contribution is that meaning, vagueness and measurability

are interlinked concepts. ‘Measure what is measurable and make measurable what is

not so’ is a sentence attributed to Galileo. History of modern science shows the path

from perceptions and observations to measurable quantities and therefore also from

statements built up with perceptive predicates to statements built up with measur-

able predicates. In the following sections we will discuss the relationships of such

statements and their meanings. We will argue that the concept of the meaning of a

scientifically-fertile predicate lies in its measurability’s character.

However, before we will go into details we will recall the connection of meaning

and fuzziness in the early view of Lotfi Zadeh in the following subsection.

1.3

About 5 years after the appearance of “Fuzzy Sets” Lotfi Zadeh started studies on

Fuzziness and Meaning. He wondered ‘Can the fuzziness of meaning be treated

quantitatively, at least in principle?’ ([10], p. 160). In “Quantitative Fuzzy Seman-

tics” he wrote: ‘Few concepts are as basic to human thinking and yet as elusive of

precise definition as the concept of ‘meaning’. Innumerable papers and books in

the fields of philosophy, psychology, and linguistics have dealt at length with the

question of what is the meaning of meaning without coming up with any definitive

answers’
4

([10], p. 159]).

His studies on the ‘fuzziness of meaning in a quantitative way’ started as follows:

Consider two spaces: (a) a universe of discourse, U, and (b) a set of terms, T , which play the

roles of names of subsets of U. Let the generic elements of T and U be denoted by x and y,

respectively’. Then he started to define the meaning M(x) of a term x as a fuzzy subset of U
characterized by a membership function 𝜇(y ∣ x) which is conditioned on x ([10], p. 164f]).

He gave an example: “Let U be the universe of objects which we can see. Let T
be the set of terms white, grey, green, blue, yellow, red, black. Then each of these

terms, e.g., red, may be regarded as a name for a fuzzy subset of elements of U which

are red in color. Thus, the meaning of red, M (red), is a specified fuzzy subset of U”

([10], p. 164f).

4
In a footnote he named the works of 12 known philosophers, linguists or cognitive scientists.
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Fig. 2 The components of a fuzzy language: U = universe of discourse; T = term set; E = embed-

ding set for T; N = naming relation from E to U; x = term; y = object in U; 𝜇N (x, y) = strength of

the relation between x and y; 𝜇T (x) = grade of membership of x in T ([11], p. 136)

Zadeh then regarded a language L as a ‘fuzzy correspondence’, more explicitly,

a fuzzy binary relation, from the term set T = x to the universe of discourse U = y
that is characterized by the membership function 𝜇L ∶ T × U ⟶ [0; 1]. If a term x
of T is given, then the membership function 𝜇L(x, y) defines a set M(x) in U with the

following membership function: 𝜇M(x)(y) = 𝜇L(x, y). Zadeh called the fuzzy set M(x)
the meaning of the term x; x is thus the name of M(x).

With this framework Zadeh established in another article the basic aspects of a

theory of fuzzy languages ([11], p. 134]). In the following we quote his definitions

of fuzzy language, structured fuzzy language and meaning:

Definition: A fuzzy language L is a quadruple L = (U;T;E;N), in which U is

a non-fuzzy universe of discourse; T (called the term set) is a fuzzy set of terms

which serve as names of fuzzy subsets of U; E (called an embedding set for T) is a

collection of symbols and their combinations from which the terms are drawn, i.e.,

T is a fuzzy subset of E; and N is a fuzzy relation from E (or more specifically, the

support of T(= supp(T) =
{

x ∣ 𝜇A(x) > 0
}

that is a non-fuzzy subset, to U which

will be referred to as a naming relation (Fig. 2).

In the case that U and T are infinite large sets, there is no table of membership

values for 𝜇T (x) and 𝜇N(x, y) and therefore the values of these membership functions

have to be computed. To this end, universe of discourse U and term set T have to

be endowed with a structure and therefore Zadeh defined the concept of a structured

fuzzy language.

Definition: A structured fuzzy language L is a quadruple L = (U; ST ;E; SN), in

which U is a universe of discourse; E is an embedding set for term set T , ST is a

set of rules, called syntactic rules of L, which collectively provide an algorithm for

computing the membership function, 𝜇T , of the term set T; and SN is a set of rules,

called the semantic rules of L, which collectively provide an algorithm for comput-

ing the membership function, SN , of the fuzzy naming relation N. The collection of

syntactic and semantic rules of L constitute, respectively, the syntax and semantics

of L.

To define the concept of meaning, Zadeh characterized the membership function

𝜇N ∶ supp(T) × U ⟶ [0; 1] representing the strength of the relation between a term

x in T and an object y in U. He clarified:
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A language, whether structured or unstructured, will be said to be fuzzy if [term set] T or

[naming relation] N or both are fuzzy. Consequently, a non-fuzzy language is one in which

both T and N are non-fuzzy. In particular, a non-fuzzy structured language is a language

with both non-fuzzy syntax and non-fuzzy semantics ([11], p. 138).

Zadeh now identified these fuzzy subsets of the universe of discourse that corre-

spond to terms in natural languages with its ‘meaning’:

Definition: The meaning of a term x in T is a fuzzy subset M(x) of U in which

the grade of membership of an element y of U is given by 𝜇M(x)(y) = 𝜇N(x, y).
Thus, M(x) is a fuzzy subset of U which is conditioned on x as a parameter and

which is a section of N in the sense that its membership function, 𝜇M(x) ∶ U ⟶
[0; 1], is obtained by assigning a particular value, x, to the first argument in the mem-

bership function of N.

Zadeh concluded this paper mentioning that ‘the theory of fuzzy languages is in

an embryonic stage’ ([11], p. 163). In the next sections we will not nurture the field

of fuzzy languages but we will reflect and develop some aspects of Fuzziness and

Meaning.

1.4

Fuzzy sets’ theory basically deals with non-ambiguous statements build up with pre-

cise or imprecise predicates P that, through the elemental statements ‘x is P’, are

recognized as being measurable in a crisp universe of discourse X; that is, whose

meaning can be described by quantities (X,≤P,mP), where [12]:

1. ≤P is a binary relation induced in X reflecting the perception-based variation of

P in less or in more:

x ≤P y ⇔ x is less P than y.

It should be pointed out that in asserting ‘x is P’, in qualifying x by P, what is

actually said is that x shows a property named P; that x carries some information

on such property. Hence, x ≤P y tries to capture that x carries less information

on P than carries y. It is thanks to the relation ≤P that the use of P can appear as

being gradable in X.

Then, P is measurable in X if ≤P≠ ∅, and P is meaningless in X if ≤P= ∅. In

addition, it can be said that P is currently metaphysical in X when seen how such

a relation ≤P can be described [13].

2. A measure mP is a function X ⟶ [0, 1] verifying the three following rules,

2.1 If x ≤P y, then mP(x) ≤ mP(y), in the linear order ≤ of the unit interval.

2.2 There is not even If z minimal for ≤P, then m(z) = 0.
2.3 If z maximal for ≤P, then m(z) = 1.

The numerical values mP(x) ∈ [0, 1] try to reflect the amount of information x
carries on P. Like it happens, for instance, with the definition of a Kolmogorov’s

probability [16] the former three properties don’t suffice to specify a single mP; to

specify one of them either more information on the particular use of P in X, or some
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hypotheses on it, is needed. There is not a unique measure for the extent up to which

each x shows the property; meaning is not unique, and P is effectively measurable if

it is meaningful and at least one of its measures is known.

For instance, the measure of P = big in X = [0, 10], a case in which ≤big is easily

identified with the linear order < of this interval [12], it can be either mbig(x) =
x∕10, or mbig(x) = x2∕100, etc. Indeed the general form of this measure is mbig(x) =
f (x), with a function f ∶ [0, 10] ⟶ [0, 1] non-decreasing and verifying f (0) = 0 and

f (10) = 1, that should be specified at each contextual use of P in [0, 10]. Notice

that, for instance, if taking f (x) = 0, if 0 ≤ x < 3, and f (x) = 1 otherwise, ‘big’ could

be erroneously identified with ‘less than three’, a crisp predicate in [0, 10], whose

corresponding relation <less3 is not coincidental with the order of the interval since

‘less than three’ is a precise predicate for which, given two numbers x, y in [0, 10], it

only can happen that they are, or are not, less than three. Hence, for representing the

flexible, linguistic, ‘big’, function f should be strictly non-decreasing, continuous.

If defining =P as the relation ≤P ∩ ≤
−1
P , it is =less3 an equivalence relation with just

the two classes [0, 3) and [3, 10], but ≤big is the linear order of [0, 10]. These two

predicates are effectively measurable in [0, 10], but their qualitative meanings are

different and, consequently, they have different meanings.

As it is known, the nomenclature’s change given by:

(I) x ∈r P⇔ mP(x) = r, with r ∈ [0, 1], read ‘x belongs to P with degree of mem-

bership r’, jointly with

(II) If P is a precise predicate, then P is a crisp set, or mP(x) ∈ {0, 1} for all x ∈ X,

and the identity definition,

(III) P = Q ⇔ mP = mQ,

allow to consider new mathematical objects P, Q, etc., called fuzzy sets in X; they

specify a meaning of the predicate in the universe of discourse. A fuzzy set P is

called the fuzzy set with linguistic label P, and it is obvious that each fuzzy set is

completely characterized by its measure, also called its membership function [14].

For a given predicate P in X, the multiplicity of fuzzy sets P, its different repre-

sentations by membership functions mP, according to the contextual use of P in X,

reveals a hidden concept, that of the ‘linguistic collective’ P, of which each P is but

a manifestation. For instance, if P = young is applied in X = London, in the usual

linguistic expression ‘young Londoners’ is hidden the collective P = ‘young Lon-

doners’, of which each representation by a fuzzy set reflects but a particular state of

it. Although the idea of collective is well rooted in language, the fact that predicates

‘collectivize’ in the universe of discourse still deserves a deep study.

Property 1, does not specify how the values of the measure increase in the unit

interval when the elements of X ‘grow’ in the graph (X,≤P); for instance, in the

former case of ‘big’ the measure can increase in linear form (x∕10), in quadratic

form (x2∕100), etc. In the case of the measures of length, surface, volume, etc., and

also in that of probability, this growing is additive. But additivity is just a particular

form for such growing corresponding to those cases in which no any loss or gain

of information appears when joining two separate pieces of information. In general,

measures mP are not additive, that is, the measure of ‘(x is P) or (y is P)’ is not
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always the addition of the respective measures of ‘x is P’ and ‘y is P’, when both

statements are contradictory [15]. Notice that with probability measures applied to

elements a, b, c,…, in a Boolean algebra [16], it is a ≤ b′ (b is contradictory with

a) equivalent with a ⋅ b = 0 (a and b are incompatible) [17], or, with crisp sets A,

B,…, it is A ⊆ Bc ⇔ A ∩ B = ∅, and the additive law of probabilities p is stated by:

Provided A ∩ B = ∅, it is p(A ∪ B) = p(A) + p(B).
The action of P in X is immediately recognized by the given use, or current qual-

itative meaning, of the elemental, or atomic, statements ‘x is P’; it is through the

set {x is P; x ∈ X} and the relation ≤P⊆ X × X, that is possible to capture the pri-

mary or qualitative use of P in X; for this reason, the graph (X,≤P) is identified with

the primary or qualitative meaning of P in X. At its turn, each value mP(x) tries to

numerically evaluate the amount of information on the property named P carried by

the statement ‘x is P’. It is for this reason that the meanings of P in X are summa-

rized by the quantities (X,≤P,mP), each one corresponding to a full particular use or

meaning of P in X. In this way, the abstruse concept of meaning is ordine geometrico
domesticated, and it appears the possibility of scientifically considering it [18].

Properties 2 and 3 translate what in plain speech is said by ‘z is P’ is false, or

true, respectively. Actually, the qualified statements ‘z is P is false’ and ‘z is P is

true’, simply try to indicate that in the corresponding context there is no other x
showing P, respectively, less or more than z. In this sense the adjectives ‘false’ and

‘true’ can be viewed as scientifically superfluous; in addition, they are charged with a

dangerous history when are only ‘currently metaphysical’. The metaphysical ‘false’

and ‘true’, the mother-predicates of the also metaphysical concept ‘Truth’, deserve

to be seen as a kind of excessively ambiguous pseudo-concept that, probably, cannot

be easily expulsed from ordinary speech.

Zadeh’s fuzzy sets [14] try to add to the theory of classical sets, allowing the spec-

ification of precise terms, a way for mathematically representing imprecise linguis-

tic, but not ambiguous, terms. The important linguistic phenomenon of ambiguity is

not yet scientifically domesticated; if an imprecise term P can be domesticated from

empirically and perceptively capturing a single qualitative meaning exhibited by a

graph (X,≤P), domesticating ambiguous terms Q, those that show several meanings,

will require, perhaps, to start with more than one graph. It is an open problem.

It should be noticed that if just working with the measures m, as it is usual in the

applications of fuzzy sets, then instead of the relation ≤P only the relation defined by

x ≤m y ⇔ m(x) ≤ m(y),

can be taken into account. Since this new relation, called the working meaning of the

predicate, is a linear one (≤ is indeed a total order in the unit interval), but ≤P is not

always linear, both relations cannot always coincide. From the obvious implication:

x ≤P y ⇒ x ≤m y, it results ≤P⊆≤m: usually the working meaning is larger than the

primary meaning [12]. Provided ≤P is not a total, or linear, relation, the act of intro-

ducing a measure mP enlarges the qualitative meaning expressed by ≤P. The act of

effectively measuring a meaningful predicate enlarges its meaning. The why for this

is clear: to specify a particular measure, and further of knowing the qualitative use

of the predicate, information on its graded variation is necessarily required.
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1.5

In classical two-valued propositional logic, the concept of negation (also called the

‘logical complement’) that operates by taking a proposition p to another proposition

‘not p’ (we will note ¬p).

In predicate logic that is an extension of propositional logic by using quantors and

developed by Frege in his Begriffsschrift (1879) [19] and independent by Charles S.

Peirce (see [20]). In predicate logic two quantifiers are defined: the universal quan-

tifier, ∀, and the existential quantifier, ∃.

∀ is interpreted as ‘for all’. It expresses that a proposition can be satisfied by every

member of a domain of discourse.

∃ is interpreted as ‘there exists’. It expresses that a propositional function can be

satisfied by at least one member of a domain of discourse.

With these quantifications also the concept of opposition is much more interest-

ing because now we have to distinguish between three different logical relations of

opposition and negation is linked to the relation of contradiction which is one of

them:

(1) A contradictory statement of a statement has the opposite truth value, i.e. the

two statements cannot be true together and they cannot be false together.

(2) A contrary statement of a statement is a statement that cannot be true if the

original statement is true. However, we notice that they can both be false.

(3) A subcontrary statement of a statement is a statement that cannot be false if the

original statement is false.

Usually, these opposition-relations are shown in the traditional square of opposi-

tion. What is said in this figure we can find already in the writings of Aristotle (De
interpretatione) (however he never showed such a figure) and also Frege used it (see

Fig. 3):

Fig. 3 Logical square of

opposition
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We explain what is represented in that figure: Letters A, E, I, and O represent the

four classic forms of propositions (or statements) of predicate logic:

A: a general affirmative statement of the form: All S are P.

E: a general negative statement of the form: No S are P.

I: a particular affirmative statement of the form: Some S are P.

O: a particular negative statement of the form: Some S are not P.

Given the assumption made within classical (Aristotelian) categorical logic, that

every category contains at least one member, the following relationships, depicted

on the square, hold.

The square of opposition shows:

(1) Statements A and O are contradictory, and also statements E and I are contra-

dictory.

(2) Statements A and E are contrary.

(3) Statements I and O are subcontrary, and also statements I and O are subcontrary,

but they are not contrary or contradictory.

(4) The relation of subalternation says that the truth of the first statement implies

the truth of the second statement. Statement A stands in the subalternation rela-

tion with the corresponding I statement and statement E is in that relation with

statement O.

Furthermore, among these logical oppositions there is another opposition that we

have to consider from the linguistic point of view. This kind of opposition is what is

called antonym and with it also the concept of meaning comes into the play again:

An antonym is defined to be a word having a meaning opposite to that of another

word.
5

Following linguistic research [21] we identify three different types of antonyms:

∙ Gradable antonyms.
These antonyms are word pairs whose meanings are opposite and which lie on a

continuum, e.g.: (very) big, (very) small; hot, cold.

∙ Complementary antonyms.
These antonyms are word pairs whose meanings are opposite but whose meanings

do not lie on a continuous spectrum; they express an either/or relationship, e.g.:

dead or alive, male or female; push or pull.

∙ Converse or relational antonyms.
These antonyms are word pairs where opposite makes sense only in the context of

the relationship between the two meanings. They express reciprocity, e.g. borrow

or lend, buy or sell, wife or husband, teacher or pupil.

In the following subsections we only consider the first kind of antonyms: gradable

antonyms.

5
See for instance: Webster dictionary, URL: http://www.merriam-webster.com/dictionary/

antonym.

http://www.merriam-webster.com/dictionary/antonym
http://www.merriam-webster.com/dictionary/antonym
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1.6

In the learning of a natural language it is difficult, if not impossible, to capture the

meaning of ‘x is P’ without simultaneously capturing those of ‘x is n(P)’ and ‘x
is a(P)’, with n(P) the negation of P, and a(P) an antonym or opposite of P [22].

For instance, how to recognize that ‘John is tall’, without being able to recognize

that ‘Peter is short’? This is the reason for which it is important to know if being

P measurable, so are n(P) and a(P). Language shows these two ways, the second

weaker and more imprecise than the first, for separating what lies under P from what

is not under P in a given universe of discourse X. Language makes two different cuts

between ‘what is under P’ and ‘what is not under P’, the first by the particle ‘not’,

and the second by an antonym; think, for instance, with P = old, in a(P) = young

and n(P) = not old, where with old and young is created the mixed and common

term ‘middle aged’ as ‘neither old, nor young’, whereas ‘old and not old’ seems

to express a more strong separation. Language always tends to find a flexible use

of its terms, but logic is much more strict and inflexible; the use of words exhibits

a superposition of meanings with their antonyms and negation similar, up to some

extent, to the quantum phenomenon of state’s superposition.

If P is a linguistic term, in short, it is in the dictionary, also a(P) is so, but n(P) is

not. For instance both ‘tall’ and ‘short’ are in the dictionary, but neither ‘not tall’, nor

‘not short’ are in it. Hence it has no sense to search for ‘a(n(P))’, except if admitting

that it coincides with ‘n(a(P))’; that is, accepting the ‘commutation’ a◦n ∶= n◦a, of

the operators a and n. For instance, if P = full, a (not full) = n(a(P)) = n (empty) =
not empty ∶= a(n(P)). This is a subject deserving further analysis in language, sim-

ilar to that needed to know if to negate a statement like ‘Most rich people are avari-

cious’, in plain language it is either preferred ‘Few rich people are avaricious’, or

‘Most rich people are not avaricious’.

As it can be checked with the same predicate ‘full’, it is always ‘If x is a(P), then x
is n(P)’, but not reciprocally; symbolically, a(P) ⇒ n(P), that is, the negation can be

seen as a semantic and inaccessible upper limit of the opposites [22]. It is the same

with ‘If it is short, then it is not tall’, but it is not that ‘If it is not tall, it is short’,

short implies not tall, but not tall does not imply short. Only when the language

did not previously require to consider any opposite of P, as it happens with some

technical terms like, for instance, ‘normally distributed’, is when it can be irregularly

taken a(P) as artificially coincidental with n(P). For instance, there are dictionaries

of antonyms where the antonym of the term ‘probable’ appears as ‘not probable’,

instead of the ‘improbable’ appearing in other dictionaries that, nevertheless, just

describe it as ‘not probable’ (Webster’s dictionary, for instance).

Concerning the measures of a(P) and n(P), provided they exist, the inequality

ma(P) ≤ mn(P), can be stated and seen as a coherence condition [22]. Since, and con-

trarily to the non-uniqueness of the antonyms, there is just one linguistic negation n

(P), its measure can be seen as an upper limit of those of the antonyms. The opposite

affirms, but the negation denies and often deserves the question ‘why?’ typical of

children when receiving a ‘not’ command, but that is not always asked when receiv-

ing a command with an antonym. If such upper limit exists and is different from mP′ ,
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it can be seen as a ‘linguistic complement’ of P; an open problem that, if having

some algebra, it is yet unknown as it is its own existence.

Note
Fuzzy sets algebras are constructed over the set [0, 1]X , like the (naïve) theory of

classical sets is built on {0, 1}X
with the structure of Boolean algebra isomorphic to

that of the power-set (X) when endowed with intersection, union, and complement.

It should be pointed out that any algebra of fuzzy sets, like, for instance the general

concept of a Basic Fuzzy Algebra [23], should preserve, when restricted to {0, 1}X
,

the Boolean algebra of crisp sets. In the case of n (P) there is no problem, since if

P is a crisp set, that is, if mP(x) is in {0, 1} for all x in X, then also the values mP′ (x)
belong to {0, 1} and reproduce the classical complement 𝐏c

of P. Nevertheless, with

a (P) a problem arises since crisp algebras do not consider the antonym’s operation.

This is another subject deserving further analysis; for instance, in [0, 1], ‘one half’

represented by the singleton {0.5}, has the negation ‘not one half’, represented by the

union [0, 0.5) ∪ 0.5, 1], but the antonym of ‘one half’ is unknown in mathematical

language.

The algebras in [0, 1]X are constructed with an ‘intersection’, a ‘union’ and a ‘com-

plement’ of fuzzy sets, trying to translate into fuzzy sets the connectives ‘and’, ‘or’

and ‘not’ between elemental statements in such a form able to represent them in

many contexts; for this purpose the algebra should be submitted to a minimal num-

ber of laws [23] in comparison to the strongest Boolean algebra’s structure of crisp

sets, and adding more laws at each particular situation. The fact is that there is not a

unique algebra of fuzzy sets, like it is only one of crisp sets. At each case, an algebra

adapted to the corresponding context should be designed, and what is not yet known

is how to incorporate, and with which laws, the antonyms. There is not an speci-

fication axiom like that of naïve set theory [24]; to specify a fuzzy set for a given

linguistic label is more complicated since usually it also requires not only to specify

an antonym of it, but also a particular algebra of the fuzzy sets representing the other

involved linguistic labels. There is not an exact axiom of specification analogous to

that of set theory that assures the existence of a single crisp subset for each binary

(say, non gradable) predicate on a universe of discourse X; crisp sets can be seen as

rigid entities, but fuzzy sets as flexible ones. In the precise, rigid, case, the collective

has just a single state, but in the imprecise, flexible, it has many.

2 Measurability of a(P) and n(P)

Provided P is effectively measurable by a quantity (X,≤P,mP), what can be said on

the measurability of a(P) and n(P)? From now on let us shorten a(P) by aP, and n(P)
by P′

.

2.1

The idea of term’s opposition P∕aP refers to the existence of a symmetry in the

universe of discourse, s ∶ X → X, such that: ‘x is P’ if and only if ‘s(x) is aP’; s2 = s;

x ≤P y ⇔ s(y) ≤P s(x), and ≤aP=≤−1
P , that is [12],
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x ≤aP y ⇔ y ≤P x, or ≤aP=≤−1
P .

If z is a maximal (minimal) for ≤aP then s(z) is a maximal (minimal) for ≤P. Thus,

not only the graph (X,≤−1
P ) reflects the primary meaning of aP in X, but the mapping

maP = mP◦s, verifies:

1. x ≤aP y ⇔ y ≤P x ⇒ s(x) ≤P s(y) ⇒ m(s(x)) ≤ m(s(y)) ⇔ (mP◦s)(x) ≤ (mP◦s)
(y),

2. If z is a minimal for ≤aP∶ (mP◦s)(z) = mP(s((z)) = 0, since s(z) is also a minimal

for ≤P,

3. If z is a maximal for≤aP∶ (mP◦s)(z) = mP(s(z)) = 1, since s(z) is a also a maximal

for ≤P,

and the quantity (X,≤−1
P ,mP◦s) represents a meaning of aP in X directly following

from that of P. Each antonym requires its own symmetry.

It should be noticed that it has only been proven that the graph (X,≤−1
P ) expresses

the qualitative meaning of aP in X, and that there exists, at least, a kind of measures

depending on the symmetries s, actually giving measures for aP once a measure for P
is known. What it has not been proven at all is that any quantity reflecting a meaning

for aP should belong to this type; this remains an open problem.

To conclude, if P is measurable also aP is so, and particular measures can be

found for aP. Hence, from the effective measurability of P follows that of aP.

2.2
The idea of the negation P′

of P is more sophisticated than that of an opposite since

the only that can be surely asserted is that [12],

x ≤P y ⇒ y ≤P′ x, but not reciprocally,

that is: ≤
−1
P ⊆≤P′ , but what not always can be asserted is ≤P′⊆≤

−1
P . From this inclu-

sion what just follows is that ≤P′ is not empty, that is, provided P is measurable,

P′
is neither metaphysical, nor meaningless, but measurable. Of course, what is not

immediately clear is the relationship between minimals and maximals between both

relations ≤P and ≤P′ since, in general, the second has more ‘arcs’ that the first. It is

not always immediately sure that what is true for P should be false for P′
, and what

is false for P true for P′
.

Anyway, what can be stated, but only in some cases, is the existence of mappings

mP′ , from X into the unit interval, verifying the three properties of a measure; for

instance and provided ≤P′ coincides with ≤
−1
P , the definition mP′ = 1 − mP, verifies:

x ≤P′ y ⇔ y ≤P x ⇒ mP(y) ≤ mP(x) ⇔
⇔ 1 − mP(x) ≤ 1 − mP(y) ⇔ mP′ (x) ≤ mP′ (y),

and keeps the 0 and 1 values for minimals and maximals. Thus, in this case the quan-

tity (X,≤−1
P , 1 − mP) reflects a meaning of P′

, P′
is effectively measurable. Notwith-

standing, it seems that nothing can be asserted for the three properties when the two
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relations do not coincide, in which case the effective measurability of P′
is still an

open problem.

Being not the negation a linguistic term, it cannot be surprising at all to find diffi-

culties in founding measures for P′
in all cases; for instance, it is not clear when the

negation should depend on the particular x that is considered. Notice that when P′′

coincides with P, from ≤
−1
P′ ⊆≤P′′=≤P, it just follows the already accepted inclusion

≤
−1
P ⊆≤P.

Since aP is always measurable, each time in which also n(aP) is so, the mapping

1 − mP◦s, is a measure for it. Notice that, instead of the function 1 − id, it can be also

taken any order-reversing numerical function N ∶ [0, 1] → [0, 1] such that N(0) = 1
and N(1) = 0, giving the measure N◦mP for P′

. Such functions are called negation
functions [25, 26]. Notice also that provided it is accepted that n and a commute,

then the measures of a(nP)) and n(aP)) do coincide; for instance the measure of

a(not young) will coincide with that of not(old); nevertheless, this deserves a further

study anchored in language.

2.3

If it seems clear, from the linguistic experience, that it is always aaP = P (for

instance, aa empty = a full = empty), that is, that a2 = id; nevertheless, it is not

so clear if it can be always P′′ = nnP = P, that is n2 = id. There are well known

cases in which the only that can be accepted is that ‘If x is P, then x is P′′
’. Those

negations for which it is always P′′ = P, are called strong negations; in these cases

the former functions N obviously should verify N2 = id.

For what concerns the law a2 = id, notice that when symmetries sP and saP
exists giving maP = mP◦sP, and maaP = maP◦saP, it follows maP = (mP◦sP)◦saP =
mP◦(sP◦saP), and it suffices to have sP = saP. If a symmetry s gives a measure of aP,

then the same symmetry is giving that of aaP.

In the case of P′
, such that P′′ = P, and if there are two functions NP and

NP′ , such that mP′ = NP◦mP, and mP′′ = NP′◦mP′ , it follows mP′′ = NP′◦(NP◦mP) =
(NP′◦NP)◦mP, implying NP′ = NP′′ . If a strong negation gives a measure of P′

, then

the same strong negation is giving that of P′′
.

When P′
is effectively measurable with a measure mP′ , the above condition of

coherence is maP ≤ mP′ . If these measures are given by a symmetry sP, and a negation

function NP, such inequality is

mP◦sP ≤ NP◦mP ⇔ mP ≤ NP◦mP◦sP,

showing that the symmetry in X for aP, and the negation function in [0, 1] for P′
,

cannot be independently chosen the one from the other [22]. If sP(NP) is known,

NP(sP) must satisfy the former inequality.

2.4

Often language introduces the middle term m P = ‘n(p) and n(aP)’. For instance,

‘warm’ means ‘not-hot and not-cold’, with cold = a (hot). Provided P′
is effectively

measurable, ‘and’ is represented [23] by a continuous t-norm T , ‘not’ by a strong
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negation N, and the antonym by a symmetry s, the measure of the middle term m
(P) is given by mmP = T ◦ (mP′ × N(maP)) = T ◦ ((N ◦mP) × (NmP ◦ s)).

At each case, the functions T , N, and s should be taken accordingly with the

corresponding context, and the measure mP accordingly designed [22].

2.5

If from the measurable character in X of P follows that of P′
, and since it always

follows that of any antonym aP of P, the fuzzy setsP,P’ and a P, respectively defined

by the membership functions mP, mP′
and maP, can be considered when they exist;

namely, when P′
is effectively measurable.

In fuzzy set theory it is usually defined that a fuzzy set A in X is contained in

another B also in X, A ⊆ B, if and only if mA ≤ mB. Notice that from this defini-

tion follows A = B ⇔ A ⊆ B & B ⊆ A. Hence, it follows that a P ⊆ P’, from the

coherence condition maP ≤ mP′ , that allows to see each a P as a fuzzy subset of the

‘complement’ P’, provided P′
is effectively measurable.

From the coherence condition it follows the existence of the number,

Sup
{

maP(x) ; for all aP and all x ∈ X
}
= mc(P)(x) ≤ mP′ (x),

and the fuzzy set CP, defined, if it exists, by the membership function mc(P) can be

seen as a linguistic kernel of the complement that can have or have not a linguistic

term label. Such kernel can or cannot coincide with P’ and it appears the interesting

problems of studying when they can coincide, the differences between CP and P’
if they are not coincidental, and what happens if changing the theory of what is

known with the ‘classical’ complement P’ by the new fuzzy set CP. Another, but

still unexplored way, for arriving at a kind of core, or kernel, of what opposes P and

is comprised by P’ could consist, when there are a few number of known opposites

as it is usually the case, in defining a kind ‘envelope’ of these opposites included

in the fuzzy set labelled P′
. Notwithstanding, these are new open problems, as it is

that of knowing a suitable linguistic label CP for CP, and the existence of not of a

relation ≤CP for which the function mC(P) can be a measure.

3 Strong Negation Functions

3.1

Fuzzy logic mostly supposes that the negation always verifies P′′ = P, avoids the

problem around ≤P′ , presupposes the existence of a measure mP′ that considers is

functionally expressible in the form N ◦mP, with N a fixed strong negation function,

and just takes into account the working meaning given by mP′ = N ◦mP. To some

extent and currently in praxis, fuzzy logic avoids to do a deep semantic analysis of

the used negation that, if not actually important for many applications, can be of a

dubious effect when, in the way of Zadeh’s Computing with Words, more complex
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and larger pieces of words will need to be represented through capturing its contex-

tual and purpose-driven meaning.

One of the advantages of strong negations is their continuity; because of the prop-

erty N2 = id, or N = N−1
, implies that these functions are strictly non-decreasing and

continuous. Hence, they will never introduce more discontinuities in the membership

function of P′
than those that were already in the membership function of P. One of

the disadvantages of fixed strong negations is the usually not explained hypothesis

that mP′ should be functionally expressible from mP. This lack of explanation also

comes not only from a lack of analysis of the semantics of the negation, and from

the convenience of not adding new discontinuities, but from the easiness in manag-

ing strong negation functions. This easiness comes from the functional-parametric

characterization of these functions N given by the theorem [25]:

∙ A function N ∶ [0, 1] → [0, 1] is order-reversing, involutive, and verifies N(0) =
1, if and only if it exists an order-auto-morphism 𝜑 of the totally ordered unit

interval, such that N = N
𝜑
= 𝜑

−1 ◦ (1 − id)o𝜑, where function 𝜑 is the functional

parameter.

Thus, there are no other strong negation functions than those N
𝜑

belonging to the

family of the ‘basic’ strong negation Nid(x) = 1 − x. For instance,

∙ If 𝜑(x) = xp
, with p a real number, it follows Np(x) = (1 − xp)1∕p

, of which the

case p = 2 gives the ‘circular’ negation N2(x) =
√
(1 − x2).

∙ If 𝜑(x) = log(1 + xp)1∕q
, with q > −1 and p > 0, follows the bi-parametric family

of strong negations Np,q(x) = (1 − xp∕1 + qxp)1∕p
, that contains the only family

of rational strong negation functions given by p = 1 ∶ Nq(x) = 1 − x∕1 + qx, with

q > −1, and called the Sugeno’s family of strong negations. With q = 0 is obtained

the ‘basic’ strong negation N0(x) = 1 − x, that is the only strong negation that is a

linear function.

∙ It should be noticed that N
𝜑
= N

𝛿
does not imply 𝜑 = 𝛿. In general, each strong

negation function can be expressed by a family of order-auto-morphisms 𝜑, 𝛿, etc.,

of the ordered unit interval.

Notice that an auto-morphism 𝜑 is nothing else than a strictly non-decreasing

function [0, 1] → [0, 1], such that 𝜑(0) = 1 − 𝜑(1) = 0, and of which the functions

𝜑(x) = xn
, n a natural number, are typical examples.

3.2

The equation N(x) = x has a unique solution x = n, there is a single fix-point n of

N [23], since N is continuous; this point n is in the open interval (0, 1) since it is

N(0) = 1 and N(1) = 0. If N = N
𝜑

, It is n = 𝜑
−1(1∕2):

𝜑
−1(1 − (x)) = x ⇔ 1 − 𝜑(x) = 𝜑(x) ⇔ 𝜑(x) = 1∕2.

For instance, in the case of the Sugeno family with q > 0, the fix-point is nq =
(
√
(1 + q)) − 1)∕q. Obviously, it is
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x ≤ n ⇔ n ≤ N(x), and n ≤ x ⇔ x ≤ N(x).

A fuzzy set P is self-contradictory provided it is P ⊆ P’, that is, provided P′
is

effectively measurable and P’ functionally expressible by a strong negation function.

It holds

mP ≤ N
𝜑
◦mP ⇔ 𝜑 ◦mP ≤ 1 − 𝜑 ◦mP ⇔ mP(x) ≤−1

𝜑
(1∕2),

for all x in X. Self-contradictory fuzzy sets are those whose membership function

values are not over the fix-point of the strong negation function. For instance, if P is

a crisp set and since in this case it is mP(x) ∈ {0, 1} for all x in X, it is

mP(x) ≤ 𝜑
−1(1∕2) ∈ (0, 1), for all x in X ⇔ mP(x) = 0,

that is P = ∅: the only self-contradictory crisp set is the empty one, and perhaps for

this reason is not immediate to accept the empty set as a true set.

There is a multiplicity of strong negation functions with the same fix-point in

(0, 1) [26, 27]. For instance, the following family of strong negations is made of

piecewise linear functions Nr with the single parameter r ∈ (0, 1),

Nr(x) = ((r − 1)∕r)x + 1, if x ∈ [0, r];
Nr(x) = r(x − 1)∕(r − 1), if x ∈ [r, 1],

with which N0,5(x) = 1 − x, and for all r is Nr(r) = r.

Since all points in the unit open square (0, 1) × (0, 1) can be a fix-point for a mul-

tiplicity of negations, it is almost obvious that it does not exist neither a minimum

negation, nor a maximum one in the pointwise ordering of strong negations given

by N1 ≤ N2 ⇔ N1(x) ≤ N2(x), for all x in X.

There are, of course, negation functions that are continuous and strictly non-

decreasing, but not strong, for instance, N∗(x) = 1 − x2, for which it is N∗(N∗(x)) =
x2 ≤ x. These functions, are called strict [26] and have a doubtful theoretical interest

within the theory of fuzzy sets since they lack of a known characterization like it

happens with the strong ones.

If 𝛿 is an order auto-morphism of the unit interval, and N is a strict negation,

also N𝛿 = 𝛿
−1 ◦N◦𝛿, is a strict negation that is strong if and only if N is strong

[26]. In this case, if N is given by an auto-morphism 𝜑, N = N
𝜑

, from N𝛿 = 𝛿
−1 ◦

(𝜑−1 ◦ (1 − id) ◦𝜑)) ◦ 𝛿 = (𝛿−1 ◦𝜑−1) ◦ (1 − id) ◦ (𝛿o𝜑), and 𝛿
−1 ◦𝜑−1 = (𝜑 ◦ 𝛿)−1,

follows N𝛿 = N
𝜑 ◦ 𝛿 . There is easy to obtain strong negations through order auto-

morphisms; or instance, if N(x) = 1 − x∕1 + x, and 𝛿(x) = x3, it is N𝛿(x) = (1 −
x3∕1 + x3)1∕3, and if N(x) = 1 − x and 𝛿(x) = 2x∕1 + x, it is N𝛿(x) = 1 − x∕1 + 3x,

the negation N3 among those in the Sugeno’s family although given by a different

auto-morphism that the one, 𝜑(x) = log(1 + x)1∕3, with which these strong negations

were defined. This is, at its turn, an example showing that the automorphism defining

a strong negation is not unique.
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3.3

The most general form of obtaining a non-functionally expressible strong negation

[27] seems to be by means of an expression m′(x) = Nm,x(m(x)), with a family of

functions Nm,x ∶ [0, 1] → [0, 1], depending on both the membership function m in

[0, 1]X , and the point x in X. Nevertheless, not all these functions Nm,x can be strong

negations; it is not too difficult to prove that some of they cannot be so [27].

Anyway, given a family of strong negations Nx, x ∈ X, just depending on the

points x in X, but not on m, the transform given by

m′(x) = Nx(m(x)), for all membership functions m ∈ [0, 1]X ,

gives a strong negation:

(a) m1 ≤ m2 ⇔ m1(x) ≤ m2(x), for all x in X ⇒ NX(m2(x)) ≤ Nx(m1(x)) ⇔ m′
2 ≤ m′

1,

(b) If m(x) = 0, m′(x) = Nx(0) = 1; if m(x) = 1, m′(x) = Nx(1) = 0,

(c) m′′(x) = Nx(m′(x)) = Nx(Nx(m(x))) = m(x) ∶ m′′ = m.

Hence, it seems that it is only through families of strong negations Nx as non-

functionally expressible strong negation functions can be reached. It should be

noticed that the fix-point of a strong negation Nx is not a point but a function (0, 1) →
(0, 1), of x ∶ Nx(n) = n ⇔ N

𝜑x(n) = n ⇔ n = 𝜑
−1
x (x). For instance, the point-

dependent strong negation defined by,

Nx(x) = 1 − x, if x ∈ [0, 0.5),
Nx(x) = 1 − x∕1 + x, if x ∈ [0.5, 1],

has the family of fix-points following from the equation Nx(nx) = nx, and shown by

the graphic in the unit square with the two linear pieces:

nx = 0.5, if x ∈ [0, 0.5),
nx =

√
2 − 1, if x ∈ [0.5, 1].

Of course, the fuzzy sets in [0, 1][0,1], with membership function m that are self-

contradictory are, in this case, those verifying m(x) ≤ nx for all point x in [0, 1]. That

is, the membership functions that are below 0.5 in [0, 0.5), and below

√
2 − 1 ∼

0.4142 in [0.5, 1].

3.4

By mixing strong negations and symmetries, that is, by defining [28] Ovchinnikov’s

general negations m∗
P(x) = NX(mP(s(x)), with NX = NS(X), for all x in X, there is the

danger of non keeping the classical negation when m is in {0, 1}X
, that is, when m

represents a crisp set in X.

For example, the definition m∗(x) = 1 − m(1 − x), for m in [0, 1][0,1], in which it is

s = NX = 1 − id = Ns(X) for all x in [0, 1], gives a mapping
∗ ∶ [0, 1][0,1] → [0, 1][0,1],

that verifies all the properties of a strong negation and that if m is crisp also m∗
is

crisp, but that this m∗
not always coincides with the classical complement of m. For

instance, if m is the membership function of the crisp set A = [0.4, 0.5], it is m∗
the
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membership function of the crisp set A∗ = [0, 0.5) ∪ (0.6, 1], that is not the classical

complement Ac = [0.4, 0.5]c = [0, 0.4) ∪ (0.5, 1] but contains it.

Notice that what the above membership functions m∗
P = Nx ◦mP ◦ s represent is

the membership of n(a(P)), but not that of n(P). Hence it is not at all surprising that

some troubles concerning the preservation of the classical case can appear if m∗
P is

confused with mP′ .

The possibility of ‘losing the crisp case’ is a trouble paper [28], a mathematically

excellent one for another side, shows for the algebra of fuzzy sets in mixing negation

and antonym.

3.5

When the intersection and the union of fuzzy sets are expressed by families of con-

tinuous t-norms and t-conorms depending on the point, and the strong negation is

just given by families of point-dependent strong negations, the known results on the

principles of non-contradiction and excluded-middle in Standard algebras of fuzzy

sets, can be immediately generalized [27]. That is, if working in the Basic Fuzzy

Algebra ([0, 1]X , ⋅,+,′) given by:

(A ⋅ B)(x) = Tx(A(x),B(x)),
(A + B)(x) = Sx(A(x),B(x)), and

A′(x) = Nx(A(x)), for all x in X,

then,

Theorem 1 It is (A ⋅ A′)(x) = 0 for all x in X, if and only if

(1) All t-norms Tx are in the family of continuous t-norms of the form 𝜑
−1 ◦W◦(𝜑 ×

𝜑), where W is the Łukasiewicz t-norm W(a, b) = max(0, a + b − 1), and 𝜑 is an
order auto-morphism of the ordered unit interval,

(2) Nx ≤ N
𝜑x, provided Tx = 𝜑

−1
x vW◦(𝜑x × 𝜑x ).

Notice that when all t-norms are a fixed one T , and all negations are a fixed one N,

this theorem gives the well known one in the Standard algebras of fuzzy sets.

Theorem 2 It is (A + A′)(x) = 1 for all x in X, if and only if

(1) All t-conorms Sx are in the family of continuous t-conorms of the form𝜋
−1 ◦W∗ ◦

(𝜋 × 𝜋), where W∗ is the t-conorm W∗(a, b) = min(1, a + b), and 𝜋 is an order
automorphism of the ordered unit interval,

(2) N
𝜋x ≤ Nx, provided Sx = 𝜋x ◦W∗ ◦ (𝜋x × 𝜋x).

Analogously, when all t-conorms are a fixed one S, and all negations are a fixed

one N, this theorem gives the well known one in the Standard algebras of fuzzy sets

[29].

Corollary 1 The only algebras (Tx, Sx,Nx) in which the two principles of non-
contradiction and excluded-middle jointly hold, are those with all the t-norms and
t-conorms of the forms Tx = 𝜑x ◦W◦(𝜑x × 𝜑x), and Sx = 𝜋−1x ◦W∗ ◦ (𝜋x × 𝜋x), and
verifying the nesting inequality N

𝜋x ≤ Nx ≤ N
𝜑x, for all x in X.
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Of course, whenever both families of auto-morphisms are coincidental, that is,

when 𝜑x = 𝜋x, for all x in X, the last condition is reduced to: Nx = N
𝜑x.

Note
Some logically driven theoreticians [30], derive the negation for fuzzy sets from the

so-called residuated implication functions

JT (a, b) = Sup {z[0, 1];T(a, z) ≤ b} ,

where T is a continuous t-norm, and by defining NT (a) = JT (a, 0).
These operators come directly from the Boolean identity a′ + b = Sup {z ∈ B;

a ⋅ z ≤ b}, only valid in complete Boolean algebras (B, ⋅,+,′) as a consequence that

implication operations → in B, defined by verifying the so-called Modus Ponens

inequality a ⋅ (a → b) ≤ b, that holds if and only if a → b ≤ a′ + b. Of course, in

Boolean algebras it is a′ = a′ + 0 = a → b, as well as in Orthomodular lattices with

the Sasaki hook a → b = a′ + a ⋅ b, or the Dishkant hook a → b = b + a′ ⋅ b′, is also

a′ = a → 0.

∙ If T = min, it is Jmin(a.b) = 1, if a ≤ b; and Jmin(a, b) = b, if a > b. Hence, Nmin
(a) = Jmin(a, 0) = 1, if a = 0, and 0 if a > 0, that is a discontinuous strong negation.

∙ If T is in the family of product, T = 𝜑
−1 ◦Prodo(𝜑 × 𝜑), is JT (a, b) = 1, if a ≤

b; and JT (a, b) = 𝜑
−1(𝜑(b)∕𝜑(a)), if a > b. Hence, it is also NT (a) = JT (a, 0) =

Nmin(a).
∙ If T is in the family of Łukasiewicz, T = 𝜑

−1 ◦W◦(𝜑 × 𝜑), with the t-norm W
(a, b) = max(0, a + b − 1), is JT (a, b) = 𝜑

−1(min(1, 1 − 𝜑(a) + 𝜑(b)), and NT
(a) = JT (a, 0) = 𝜑

−1(1 − 𝜑(a)) = N𝜑(a).

All that shows that under this interpretation, that comes from classical Boolean

logic considering the material implication given by ‘not a or b’ (a′ + b), strong

negation functions are linked with a very particular form of representing the rules

‘If x is P, then y is Q’. It should be recalled that the residuated implications [31]

with the t-norm in the Łukasiewicz family, are the only that are simultaneously

residuated and S-implications J(a, b) = S(1 − a, b), with a t-conorm in the family of

W∗(a, b) = min(1, 1 − a + b). Of course, if representing the rules by an

S-implication, it is N(a) = S(1 − a, 0) = 1 − a; strong negations just appear in this

limited view as coming from t-norms in the Łukasiewicz family.

All that is but a typical reminiscence of classical logic. Notice, that if the rules

(conditional statements) were represented by a Mamdani-Larsen conditional,

J(a, b) = T(a, b) with T = min, or T = Prod, as it is usual in fuzzy control, it is

J(a, 0) = 0, and no negation is obtained. The interests of logic are mainly placed

in the field of formalized artificial languages, but are not in that of the natural one

in which there is no a universal representation of conditional statements in which, in

most cases, is not well known what is the negation of its antecedent.
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It should be finally noticed that the negation Nmin is strictly smaller than all strong

negations N
𝜑

, since Nmin(0) = 1 = N
𝜑
(0), and if a > 0, Nmin(a) = 0 ≤ N

𝜑
(a); that

is, Nmin ≤ N
𝜑

, and, since Nmin is discontinuous, it cannot coincide with N
𝜑

. Hence,

Nmin < N
𝜑

.

4 Conclusions

4.1

This paper, devoted to reflect around what is ‘not P’ and what is ‘opposite to P’,

comes from old worries of one of its authors inspired on a chain of three old papers,

published in the late seventies and early eighties of last XX century, that can be

considered as pioneers in the subject of strong negations in fuzzy set algebras. In

the first, Robert Lowen posed in 1978 [32] the problem of obtaining the negation

m′
of a fuzzy set m by means of numerical functions N ∶ [0, 1] → [0, 1] verifying

N(0) = 1, N(1) = 0, if a ≤ b, then N(b) ≤ N(a), and N2 = id, called strong negation

functions, in the form m′(x) = Nx(m(x)) with a family
{

Nx; x ∈ X
}

of such func-

tions. This paper influenced the second, in which Enric Trillas characterized in 1979

[25] the strong negation functions by means of order-auto-morphisms 𝜑 of the unit

interval as N = 𝜑
−1 ◦ (1 − id) ◦𝜑, showing that all of them are nothing else than con-

tinuous deformations of the strong negation 1 − id. At its turn, these two papers influ-

enced the third, in which Sergei Ovchinnikov finally gave in 1983 [28] the general

form of any (strong) negation in [0, 1]X by means of a family
{

NX; x ∈ X
}

of strong

negation functions and an involution (s2 = id), s ∶ X → X, provided Nx = NS(X) for

all x in X, but without imposing the condition of keeping the complement of crisp

sets.

Unfortunately, in the praxis of fuzzy sets only the negation N = 1 − id is almost

always used, and almost no practitioner (although not the theoreticians) never truly

placed his/her attention in those three papers. It seems as if for these people there

just were a unique form of negation; something that can be a bad working hypothesis

in the way of Computing with Words [33, 34], as soon as large pieces of language

should be represented and in which different forms of negation can appear, and,

also, in different parts of a same large piece of language. To consider the semantics

of these pieces will become strictly necessary, and, for instance, strong negations

depending on points can be useful in those cases in which the negation of a predicate

is not constant, but depends on the object to which the predicate is applied, and that

for different objects, different forms of ‘not’ should be used; for instance, when the

form of the negation is different in several parts of the universe of discourse, when

negation is local. These forms of obtaining a fuzzy set representing ‘not P’ given that

of ‘P’, can be also useful for the practitioners of fuzzy logic in the task of designing

a system whose linguistic description involves imprecise terms.
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4.2

What could not be taken into account in those old papers since it was unknown

at these times, was that although a(P) and n(P) are measurable if P is measur-

able, it is not always known which is the relation ≤P′ that, nevertheless, is not

empty by containing ≤
−1
P . That if P′

is always meaningful, it is not known in gen-

eral if it is effectively measurable. Without actually knowing ≤P′ it is neither pos-

sible (strictly speaking) to specify a measure mP′ , nor a suitable negation N, either

strict or strong. The problem of the effective measurability of the ‘not’, still remains

open and for whose solution, if it exists, some linguistic examples with a known

relation ≤P′ should be submitted to a careful analysis. Indeed, the full study of the

several varieties of the linguistic ‘not’ are yet open to study, and fuzzy practitioners

remain enchained, when designing fuzzy systems, to just use those negation func-

tions that are in the mathematical armamentarium of fuzzy logic, for instance, some

strict negations, some strong negations, and Nmin.

4.3

Concerning the complement’s kernel CP, in the case with X = [0, 1], and P = big

with mbig(x) = x, in which the symmetries sbig can be identified with the strong nega-

tions N𝜑, it should be noticed that mCP is the inaccessible supremum of all of them

that is just below the discontinuous negation Nmin. Hence, for the predicate ‘big’,

the complement’s kernel Cbig can be identified with the set with only the point 0
in [0, 1], that is Cbig = {0}, a set only allowing to assert ‘0 is not at all big’. At

least in this case, the kernel CP seems to be scarcely interesting. Anyway, and since

the predicate ‘big’ is a very simple example, more examples should be considered

and, specially, with predicates whose membership functions are non-monotonic, and

with symmetries not identifiable with the strong negations as it is, for instance, the

predicate ‘around 4’ in the interval [0, 10].

4.4

There is again a way that can be explored to have a crisp ‘core’ of negation, and one

of antonymy, for a predicate P [35].

Since mP(x) ≤ mP′ (x) = 𝜑
−1(1 − 𝜑(mP(x)), provided the negation is N

𝜑
, this

expression is equivalent with mP(x) ≤ 𝜑
−1(1∕2) = n, the fix point of N

𝜑
. Hence, the

set NP =
{

x ∈ X;mP(x) ≤ n
}

contains those x in X showing P less than not P, and

that if it is not empty and X is an interval [a, b] of the real line, no doubt it exists

its supremum 𝛼P = SupNP, that can be viewed as similar, but not identical, to the

‘separation point’ advocated by Max Black; the interval [a, 𝛼P] can be seen as the

‘core of negation’ consisting of those elements in X showing more not P than P. For

instance, in the interval [0, 10], with the predicate P = big with membership func-

tion mbig(x) = x∕10, and the negation N(x) = 1 − x∕1 + x, for which n =
√
2 − 1,

it is Nbig =
{

x ∈ [0, 10]; x∕10 ≤

√
2 − 1

}
=
{

x ∈ [0, 10]; x ≤ 10(
√
2 − 1)

}
, with

which it follows 𝛼big = 10(
√
2 − 1) ∼ 4.1421, and the ‘core of negation’ is the sub-

interval Nbig = [0, 10(
√
2 − 1)].
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Similarly, a crisp ‘core’ of antonymy can be reached once an antonym aP of P is

known, through the set AP =
{

x ∈ X;mP(x) ≤ maP(x)
}

that, since it is always maP ≤

mP′ , is contained in the set NP, provided the negation and the symmetry are coherent.

Hence, provided X is an interval [a, b] of the real line, it will exist a supremum 𝛽P of

this set AP, such that 𝛽P ≤ 𝛼P, and then the core of antonymy will be included in the

core of negation, [a, 𝛽P] ⊆ [a, 𝛼P]. For instance, with ‘big’ in [0, 10], mbig(x) = x∕10,

and the negation function N(x) = 1 − x, it is x∕10 ≤ 1 − x∕10 ⇔ x ≤ 5, and big = 5
gives the core of negation NP = [0, 5]. With the symmetry s1(x) = 10 − x, it is

obtained the same core of antonymy, since x∕10 < (10 − x)∕10 ⇔ x < 5. Neverthe-

less, with the symmetry s2(x) = 10(1 − 10x∕1 + 10x), from x∕10 < 10(1 − 10x∕1 +
10x)∕10) = 1 − x∕10∕1 + x∕10 ⇔ x2 + 20x − 100 < 0, follows that the supremum

big is 10
√
2 − 10∕4.1421, and the smaller core [0, 10

√
2 − 10] is obtained.

It should be noticed that the core of negation of a precise predicate P in X, always

coincides with its crisp complement since, in this case, and being mP(x) ∈ {0, 1},

mP′ (x) = 1 − mP(x), is n = 0.5, and mP(x) ≤ 0.5, that implies mP(x) = 0. Hence,

NP = Pc
. For what concerns the core of antonymy, it obviously depends on the exis-

tence of an antonym different from the negation.

Of course, if the membership function mP is not monotonic, as it is that of ‘big’,

the problem can be more difficult to solve. In any case, both cores depend, respec-

tively, on the chosen strong negation function and symmetry.

4.5

It does not seem absolutely clear the existence of some reasons for which a precise

predicate P should always verify the irregular coincidence P = P′
. Let us consider a

very simple example.

Take X = [0, 10], and P = smaller than five (shortened by 5). It is,

m5(x) = 1 ⇔ 0 ≤ x < 5,m5(x) = 0 otherwise, that is, P = [0, 5),

and

m5′ (x) = 1 − m5(x) = 1 ⇔ 5 ≤ x ≤ 10,m5′ (x) = 0 otherwise, or Pc = [5, 10],

corresponding to P′
= bigger than five. The possible antonyms a5, will be given by

membership functions

ma5(x) = m5(s(x)), for symmetries s ∶ [0, 10] → [0, 10],

verifying the coherence condition ma5 ≤ m5′ . Thus, since

ma5(x) = 1 ⇔ 0 ≤ s(x) < 5 ⇔ s(5) < x ≤ s(0),ma5(x) = 0 otherwise,

with only that s verifies s(5) ≠ 5 (it should be always s(0) = 10), a5 will be not

coincidental with 5’. There is coincidence, for instance, with the symmetry s1(x) =



Turning Around the Ideas of ‘Meaning’ and ‘Complement’ 29

10 − x, but it is not with the symmetry s2(x) = 10(10 − x∕10 + x), with which it is

s2(5) = 5∕3. The antonym obtained with s2 is given by

ma5(x) = 1 ⇔ 0 ≤ 10(10 − x∕10 + x) < 5 ⇔ 10∕3 < x ≤ 10, and ma5(x) = 0 otherwise;

that is the subinterval (10∕3, 10] corresponding to aP = bigger than 10∕3, that is

different from P′ = bigger than five. Since 10∕3 < 5, it is ‘If x is a5, then x is 5’, but

not reciprocally.

What seems reasonable is that, if existing in language, the antonym of a rigid

predicate is, at its turn, a rigid one, but not that it should be always coincidental with

the negation. Fuzzy methodology can open a door to newly looking at opposites.

4.6

To conclude, it seems that the concept of what can be seen as ‘not being P’, or

‘being opposite to P’, either from a fuzzy or a crisp point of view, still deserves

more study; the subject is neither closed by what is currently known on the negation

functions, either strong or just strict, nor with the use of symmetries for antonyms.

There is particularly a lack of knowledge in the case P’ is not known to be effectively

measurable. When, advancing towards Zadeh’s ‘Computing with Words’, the time of

considering large linguistic phrases will arrive, and with it the necessity of a deep

knowledge on the kind of linguistic separation between what ‘is P’, what ‘is not P’,

and ‘what is opposite to P’, the linguistic complements, will appear.

Very few things are truly new in this paper, but it is perhaps in its newly structured

presentation that some previously hidden hints could lie and can be found by those

who, in reading it, become interested by the truly intriguing subject ‘complement’.
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A Note on Fuzzy-Valued Inference

Jorma K. Mattila

Abstract Fuzzy-valued inference is discussed. For that purpose, a theory of fuzzy-

valued associative Kleene algebra is introduced. As an example, it is shown that

fuzzy-valued Kleene algebras give a mathematical model for some fuzzy screening

systems.

Keywords Fuzzy-Valued Inference ⋅ Fuzzy-Valued Kleene-Algebra ⋅ Screening

Systems

1 Introduction

In fuzzy decision making, there are a lot of cases where scales of linguistic scores

are used. For example, in fuzzy control linguistic expressions are generally used as

control values in control processes. In fuzzy logic truth values are usually linguistic

terms, like, for example, ‘true’, ‘almost true’, ‘not true and not false’, ‘almost false’,

‘false’. In fuzzy screening systems linguistic values are used, too, like for example

‘outstanding’, ‘very high’, ‘high’, ‘medium’, ‘low’, ‘very low’, ‘none’.

To be a scale, the scale values must have a reasonable order. For example, the

truth values mentioned above are already listed in the reasonable order. Based on

intuition, we ordered them using the relationship between a truth value and how

near to the truth it is. The biggest difference is between truth and falsity. Similarly,

the above mentioned scores for a screening system are ordered from the highest value

to the lowest one. Hence, we may say that these kinds of scales are totally ordered,

because the scales are finite and the ordering in any scale can be defined to be unique.

However, these kinds of orderings are actually not mathematical, because they are

based on intuition. Also, the use of these linguistic scores in calculations is based on

intuition, even though the calculation rules can be given based on the order of the

linguistic scores.
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If we want to have a formal theory for a system of this kind, we need a mathe-

matical counterpart to the system. Very often in many-valued logics, the truth values

are given as numbers. In fuzzy systems the scores can be given as fuzzy sets. These

kind of things serve the link between intuitive and formal systems. There are a lot

of research about algebras for numerical truth values of many-valued logics. This

research creates mathematical models for many-valued logics involved in fuzzy sys-

tems. Also, we may investigate some suitable sets of fuzzy numbers or fuzzy intervals

in order to find some algebraic models for systems with fuzzy scores. So, we have

the following basic questions:

Does there exist some mathematical models for inference systems using scales with linguistic

scores?

What are the logical and mathematical bases of this kind of systems?

We give an answer to these questions in the following sections.

2 A Mathematical Background

In this presentation we introduce an algebraic approach to cases where score values

are fuzzy numbers or fuzzy intervals.

We recall some earlier results for manipulating fuzzy numbers. The main things

are ways of representing, ordering, and defining meets and joins of a given set of

fuzzy numbers.

The representation theorem for considering fuzzy sets by means of 𝛼-cuts has

been given, for example, by V. Novák [9], p. 44. A. Kaufmann and M.M. Gupta [2]

(cf. pp. 19–35) consider interval arithmetics applied to triangular and trapezoidal

fuzzy numbers (or fuzzy intervals) presented by means of 𝛼-cuts. They also intro-

duced some criteria for ordering of fuzzy numbers.

Besides Kaufmaan and Gupta, also R. Fullér [1] (cf. pp. 35–36) has considered

ordering of fuzzy numbers by defining fuzzy max and fuzzy min operations by means

of 𝛼-cuts, and V. Novák [9] (cf. pp. 98–100) by defining join ‘⊔’ and meet ‘⊓’ by

means of Zadeh’s extension principle, as follows.

Let A, B be fuzzy numbers and x, y ∈ ℝ. Join A ⊔B is the fuzzy number

(A ⊔B)(z) =
⋁

z=x∨y
(A(x) ∧B(y)). (1)

Meet A ⊓B is the fuzzy number

(A ⊓B)(z) =
⋁

z=x∧y
(A(x) ∧B(y)). (2)

These operations appear to be the same as Fullér’s fuzzy max and fuzzy min.

Novák also present the following theorem.
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Theorem 1 (Novák) The fuzzy numbers form a distributive lattice with respect to
the operations ‘⊓’ and ‘⊔’. It means that

A ⊔A = A A ⊓A = A

A ⊔B = B ⊔A A ⊓B = B ⊓A

(A ⊔B) ⊔ C = A ⊔ (B ⊔ C) (A ⊓B) ⊓ C = A ⊓ (B ⊓ C)
A ⊔ (B ⊓ C) = (A ⊔B) ⊓ (A ⊔ C) A ⊓ (B ⊔ C) = (A ⊓B) ⊔ (A ⊓ C)

Then he defines the ordering relation ⊑ for fuzzy numbers A, B in the familiar

way:

A ⊑ B iff A ⊓B = A (A ⊔B = B respectively). (3)

In general, fuzzy numbers do not form a linearly ordered set, except in some special

cases. We will exploit some of these special cases in the following considerations.

Consider a finite set of fuzzy sets

Tn = {A1,A2,… ,An} (4)

of the interval [0, p], p ∈ ℝ, p > 0. The fuzzy sets Ai (i = 1,… , n) of Tn satisfy the

following properties:

(1◦) Ai is either a fuzzy number or a fuzzy interval for all 1 ≤ i ≤ n;

(2◦) Tn is ordered, such that Ai ⊑ Aj for all 1 ≤ i ≤ j ≤ n;

(3◦) for every Ai ∈ Tn there exists a unique fuzzy set ¬Ai ∈ Tn, such that the fol-

lowing condition holds:

¬Ai = An−i+1, if 1 ≤ i ≤ n. (5)

where for all i = 1,… , n

Ai(x) = ¬Ai(p − x), if x ∈ [0, p] (6)

The operation symbol ‘¬’ is a complementarity operation, and we use the name

negation for it.

The set Tn is linearly ordered, by the property (2◦).
The definition of negation, i.e., the formulas (5) and (6) gives some presupposi-

tions for the fuzzy sets in Tn. From the Eq. (6), it follows that the supports of Ai and

¬Ai satisfy the equivalency

suppAi = [a, b] ⟺ supp¬Ai = [p − b, p − a] (7)

There exist two special cases, namely 𝛼 = 0 and 𝛼 = 1. These conditions give the

closures of the support and core of a given fuzzy set A. Now, because
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[Ai]0 = cl(suppAi) and [Ai]1 = cl(coreAi) then the closures of the supports and

the cores of Ai and ¬Ai satisfy the equivalencies

cl(suppAi) = [a0, b0] ⟺ cl(supp ¬Ai) = [p − b0, p − a0] (8)

cl(coreAi) = [a1, b1] ⟺ cl(core ¬Ai) = [p − b1, p − a1] (9)

The lengths of the intervals [Ai]𝛼 and [¬Ai]𝛼 are the same for any 𝛼, because

if [Ai]𝛼 = [a
𝛼
, b

𝛼
] then its length is b

𝛼
− a

𝛼
, and the length of [¬Ai]𝛼 is p − a

𝛼
−

(p − b
𝛼
) = b

𝛼
− a

𝛼
, too.

By means of these considerations above, it is easy to see that the fuzzy sets Ai and

¬Ai are symmetric with respect to the vertical line x = p
2
. The value

p
2

is the centre

of the interval [0, p].
Our next purpose is to show that the set Tn (see (4)) forms a Kleene algebra of

fuzzy numbers belonging to the set Tn. First, we have to show that the set Tn forms

a DeMorgan algebra. About DeMorgan algebras, see Rasiowa [10]. (Rasiowa uses

the name quasi-Boolean algebra for DeMorgan algebra.) To do this, we prove the

following Lemmas.

Lemma 1 The system Tn = ⟨Tn, ⊔, ⊓⟩ is a distributive and complete lattice.

Proof Tn is a distributive lattice by means of Theorem 1. It is also complete because

for any two elements Ai,Aj ∈ Tn (1 ≤ i, j ≤ n) the expressions Ai ⊔Aj and Ai ⊓Aj
are defined and Tn is closed under the operations ⊔ and ⊓, i.e., Ai ⊔Aj equals to

either Ai or Aj, and Ai ⊓Aj equals to either Aj or Ai respectively. □

Lemma 2 The law of double negation

¬¬Ai = Ai (10)

for any Ai ∈ Tn holds in the lattice Tn.

Proof The result follows from the formula (5) by an easy calculation. □

Lemma 3 De Morgan Laws hold on Tn.

Proof Let Ai,Aj ∈ Tn be any two elements, such that Ai ⊑ Aj. Hence, i ≤ j, by

the property (2◦). Further, ¬Ai = An−i+1 and ¬Aj = An−j+1, by (5). Comparing

the subindices n − i + 1 and n − j + 1 we see that n − j + 1 ≤ n − i + 1 because

i ≤ j, by assumption. Hence, An−j+1 ⊑ An−i+1, i.e., ¬Aj ⊑ ¬Ai. So, the implication

Ai ⊑ Aj ⟹ ¬Aj ⊑ ¬Ai holds. It is easy to see that this implication holds to the

other direction, too. Hence, the equivalency

Ai ⊑ Aj ⟺ ¬Aj ⊑ ¬Ai (11)

holds for any Ai,Aj ∈ Tn. Further, ¬Aj ⊔ ¬Ai = ¬Ai, by (3), and hence,

¬(¬Aj ⊔ ¬Ai) = ¬¬Ai = Ai = Ai ⊓Aj
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by assumption and by (10). Hence, one of De Morgan Laws,

Ai ⊓Aj = ¬(¬Aj ⊔ ¬Ai) (12)

holds. The other De Morgan law, Ai ⊔Aj = ¬(¬Aj ⊓ ¬Ai), follows from (12) by

replacing Ai and Aj with ¬Ai and ¬Aj, respectively, and applying the law of double

negation. □

From the Lemmas 1, 2 and 3 it follows that the system Tn = ⟨Tn, ⊔, ⊓,¬,An⟩ is

De Morgan algebra, because Tn is a non-empty set, Tn = ⟨Tn, ⊔, ⊓⟩ is a distributive

lattice with top element An, ¬ is a unary operation on Tn, and Tn satisfies the law of

double negation and De Morgan laws.

The top and bottom elements exist in Tn because Tn is finite totally ordered

set. Now we also know that the complementarity ¬ is quasi-complementation. (See

closer considerations, for example, in Rasiowa [10], p. 44–45.) The top element An
is the neutral element of the operation ⊓. In Tn, there exists a bottom element, too,

namely A1, which is the neutral element of the operation ⊔. Especially, by the defin-

ition of negation, the conditions ¬A1 = An and ¬An = A1 hold in Tn. It is a general

case that any De Morgan algebra has top element and bottom element being the

negations of each other.

If a De Morgan algebra satisfies so-calledKleene condition, it is aKleene algebra.

So, the last thing before getting a fuzzy-valued Kleene algebra is to check whether

the Kleene condition

Ai ⊓ ¬Ai ⊑ Aj ⊔ ¬Aj , if 1 ≤ i, j ≤ n (K)

holds in our De Morgan algebra Tn = ⟨Tn, ⊔, ⊓,¬,An⟩. Here the condition (K) is

constructed for lattices where the elements are fuzzy numbers or fuzzy intervals.

Theorem 2 The algebra Tn = ⟨Tn, ⊔, ⊓,¬,An⟩ is a Kleene algebra.

Proof The algebra Tn is De Morgan algebra, as we have noticed above. So, we have

to show that the algebra Tn satisfies the Kleene condition (K).

Let Ai,Aj ∈ Tn be arbitrarily chosen, hence ¬Ai,¬Aj ∈ Tn, too, because Tn is

closed under negation. Suppose Ai ⊑ Aj whenever i ≤ j, for all Ai,Aj ∈ Tn.

If the number of fuzzy sets in Tn is n = 2k + 1 (i.e., n is odd) then the middle

element of Tn is Ak+1, and hence ¬Ak+1 = Ak+1, by the definition of negation.

If n = 2k (i.e., n is even) then ¬Ak = Ak+1 and ¬Ak+1 = Ak, by the definition of

negation.

We denote

A[ n2 ]
=

{
Ak+1 if n = 2k + 1
Ak if n = 2k



38 J.K. Mattila

Hence, for any Ai, if Ai ⊑ A[ n2 ]
then A[ n2 ]

⊑ ¬Ai, and vice versa. Hence, for any i,
Ai ⊓ ¬Ai ⊑ A[ n2 ]

and for any j, A[ n2 ]
⊑ Aj ⊓ ¬Aj. This completes the proof. □

Especially, Tn = ⟨Tk, ⊔, ⊓,¬,An⟩ is an associative Kleene algebra, by Theorem 1.

3 Construction of Applicable Kleene Algebras

Examples about easily manipulable fuzzy sets in applications based on Kleene

algebras of fuzzy sets are triangular fuzzy numbers, Gaussian fuzzy numbers, other

bell-shaped fuzzy numbers and fuzzy intervals.

As an example, consider a trapezoidal fuzzy interval

A(x) =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

0 if x < a1
x−a1
a2−a1

if a1 ≤ x < a2
1 if a2 ≤ x < a3
a4−x
a4−a3

if a3 ≤ x ≤ a4
0 if x > a4

(13)

on a closed real interval [0, p] (0 < p, p ∈ ℝ) and x, a1, a2, a3, a4 ∈ [0, p] and 0 ≤

a1 < a2 < a3 < a4. If a2 = a3 then A is a triangular fuzzy number. The support and

the core of A(x) are the intervals [a1, a4] and [a2, a3], respectively. The increasing

part on the left and the decreasing part on the right side of A have the membership

functions

AL(x) =

{
0 if x < a1, a2 < x
x−a1
a2−a1

if a1 ≤ x < a2
, AR(x) =

{ a4−x
a4−a3

if a3 ≤ x ≤ a4
0 if x < a3, a4 < x

(14)

If the supports supp(AL) = [a1, a2] and supp(AR) = [a3, a4] have the same size then

the membership function of the fuzzy interval A is symmetric with respect to the

vertical line x = a3+a2
2

.

Applying, for example, some considerations, due to Novák [9] and Kaufmann

and Gupta [2], A can be considered as an ordered 4-tuple A = (a1, a2, a3, a4) where

A(x) is increasing if x ∈ [a1, a2], A(x) = 1 if x ∈ [a2, a3], and A(x) is decreasing if

x ∈ [a3, a4]. Further, the negation for A on the interval [0, p] can be given as the

ordered 4-tuple

¬A = (p − a4, p − a3, p − a2, p − a1) (15)



A Note on Fuzzy-Valued Inference 39

which is a fuzzy interval on [0, p] of x-axis. This fuzzy interval can be given in the

form, similar to A in (13), as

¬A(x) =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

0 if x < p − a1
x−p+a3
a3−a2

if p − a3 ≤ x < p − a2
1 if p − a3 ≤ x < p − a2
p−a1−x
a2−a1

if p − a2 ≤ x ≤ p − a1
0 if x > p − a1

(16)

Consider a set of fuzzy trapezoidal intervals Tn = {A1,A2, . . . ,An} of the interval

[0, p]where the divisional points of [0, p] on x-axis, determined by the fuzzy intervals

Ai (i = 0,… , n) are a0, a1,… , ak, where k = 2n − 1. The fuzzy intervals

A1(x) =
⎧
⎪
⎨
⎪
⎩

1 if 0 ≤ x < a1
a2−x
a2−a1

if a1 ≤ x ≤ a2
0 if x > a2

, An(x) =
⎧
⎪
⎨
⎪
⎩

0 if x < ak−2
x−ak−2

ak−1−ak−2
if ak−2 ≤ x < ak−1

1 if ak−1 ≤ x < ak

(17)

are the first and the last fuzzy interval, respectively, which can be given by means of

the 4-tuples

A1 = (0, 0, a1, a2) and An = (ak−2, ak−1, ak, ak).

Here we agree that A1(x) = 1 if x ∈ [0, a1] and An(x) = 1 if x ∈ [ak−1, ak]. The other

fuzzy intervals between A1 and Ak can be given in the form

A2 = (a1, a2, a3, a4), A3 = (a3, a4, a5, a6), … , An−1 = (ak−4, ak−3, ak−2, ak−1).

Note that the first divisional point on the interval [0, p] is origo, and the last one

is ak = p. Hence, A1(0) = 1 and An(ak) = An(p) = 1.

Especially, on x-axis, the divisional points for the intervals being parts of the

supports of the fuzzy sets in Tn are as follows. The number of fuzzy sets in Tn is

n and the number of the divisional points is 2n. So, we have the divisional points

a0, a1, a2,… , ak, where k = 2n − 1. And the first divisional point is a0 = 0 and the

last one ak = a2n−1 = p.

The supports of all the fuzzy numbers form a cover to the interval [0, p], such that

the union of the covers of A1, A2 . . . , An is exactly the same as the interval itself,

i.e.,

[0, p] =
n⋃

i=1
suppAi. (18)



40 J.K. Mattila

Example 1 Consider a collection of fuzzy intervals on [0, p] where the fuzzy inter-

vals are of the form (16) and (17) where n = 7. Hence, the set T7 consists of the fuzzy

intervals

A1 = (0, 0, a1, a2), A2 = (a1, a2, a3, a4), A3 = (a3, a4, a5, a6),
A4 = (a5, a6, a7, a8), A5 = (a7, a8, a9, a10), A6 = (a9, a10, a11, a12),

and A7 = (a11, a12, a13, a13)

i.e.,

T7 = {A1,A2,A3,A4,A5,A6,A7}

The divisional points are

a0 = 0, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13 = p.

The algebra T7 = ⟨T7, ⊔, ⊓,¬,A7⟩ satisfies all the properties considered in Sect. 2.

4 An Application Example: Fuzzy Screening Systems

As a motivating example, we consider a case of a fuzzy screening system, a technique

suggested by R. Yager (for example, see Yager [11]). These systems contain fuzzy

data. The source material for this description about fuzzy screening systems in this

section is taken from Robert Fullér’s book [1] Introduction to Neuro-Fuzzy Systems.
A fuzzy screening system is a two stage process as follows:

∙ In the first stage, experts are asked to provide an evaluation of the alternatives.

This evaluation consists of a rating for each alternative on each of the criteria.

∙ In the second stage, the methodology is used to aggregate the individual experts

evaluations to obtain an overall linguistic value for each object.

The problem consists of three components.

(1) The first component is a collection

X = {X1,… ,Xp}

of alternative solutions from amongst which we desire to select some subset to

be investigated further.

(2) The second component is a group

A = {A1,… ,Ar}

of experts whose opinion solicited in screening the alternatives.
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Table 1 Scale of scores
Score name Label Score symbol

Outstanding OU S7
Very high VH S6
High H S5
Medium M S4
Low L S3
Very low VL S2
None N S1

(3) The third component is a collection

C = {C1,… ,Cm}

of criteriawhich are considered relevant in the choice of the objects to be further

considered.

For each alternative, each expert is required to provide his/her opinion. In par-

ticular, for each alternative an expert is asked to evaluate how well that alternative

satisfies each of the criteria in the set C. These evaluations of alternative satisfaction

to criteria will be given in terms of elements from the scale S in Table 1.

Based on intuition, the use of such a scale provides a natural ordering, Si > Sj, if

i > j, and the maximum and minimum of any two scores be defined by

max{Si, Sj} = Si , if Si ≥ Sj (19)

min{Si, Sj} = Sj , if Si ≤ Sj. (20)

where max and min are fuzzy max and min defined in [1], i.e., these operations are

the same as ⊔ and ⊓, respectively. Using our notation above, these conditions can be

expressed in the form

Si ⊔ Sj = Sj , if Si ⊑ Sj (21)

Si ⊓ Sj = Si , if Si ⊑ Sj. (22)

Thus for an alternative an expert provides a collection of n values

{P1,… ,Pn},

where Pj is the rating of the alternative on the jth criterion by the expert. Each Pj is

an element in the set of allowable scores S,

S = {S7, S6, S5, S4, S3, S2, S1}.
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Assuming n = 6, an example of a typical scoring for an alternative from one expert

would be

{S4, S3, S7, S6, S7, S1}

or, using the labels of the scores,

{M,L,OU,VH,OU,N}.

Independent of this evaluation of alternative satisfaction to criteria, each expert must

assign a measure of importance to each of the criteria. An expert uses the same scale,

S, to provide the importance associated with the criteria.

The next step in the process is to find the overall evaluation for an alternative by

a given expert. For this we use a methodology suggested by Yager [11]. A crucial

aspect of this approach is the taking of the negation of the importances as

Neg(Si) = Sq−i+1 (q is the number the scores in S).

For the scale S the negation operation provides the following:

Neg(OU) = N,Neg(VH) = VL,Neg(H) = L,Neg(M) = M,

Neg(L) = H,Neg(VL) = VH,Neg(N) = OU.

Then the unit score of each alternative by each expert, denoted by U, is calculated

as follows:

U = min
j
{Neg(Ij) ∨ Pj}, (23)

where Ij denotes the importance of the jth criterion.

Because in our algebra ¬Ij ⊔ Pj is the same as Neg(Ij) ∨ Pj in Yager’s system then,

using the notation of our algebra, the unit score formula is

U = (¬I1 ⊔ P1) ⊓… ⊓ (¬Im ⊔ Pm) (24)

If we think that the operations of the screening systems are logical connectives, we

note that the unit score formula (23) essentially is an anding of the criteria satisfac-

tions modified by the importance of the criteria. The formula (23) can be seen as a

measure of the degree to which an alternative satisfies the following statement:

All important criteria are satisfied.

The following example is considered the case where the experts A1,… ,Ar evalu-

ates his/her opinion about the importance of each criterion Ci (i = 1,… , 5) by using

the scores from the scale S. Then the experts evaluate how well each alternative Xi
(i = 1… , p) satisfies each criterion. So, for example, an alternative Xi gets the eval-

uation given in Table 2 from an expert Aj.
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Table 2 Evaluations for one alternative by one expert

Criterion C1 C2 C3 C4 C5

Importance VH VH M L VL

Satisfaction

score

M L OU VH OU

Example 2 Consider an alternative Xi with the following scores on five criteria in

the following Table 2. An expert Aj gives his/her scores to the importance of each

criterion and his/her scores to the alternative, how well the alternative meets each

criterion.

Using this evaluation, we apply the truth value evaluation based on the Kleene

algebra K7 = ⟨S, ⊓, ⊔,¬, S7⟩, and the unit evaluation for the alternative Xi from the

expert Aj is

Uij = (VL ⊔ M) ⊓ (VL ⊔ L) ⊓ (M ⊔ OU) ⊓ (H ⊔ VH) ⊓ (VH ⊔ OU)
= M ⊓ L ⊓ OU ⊓ VH ⊓ OU = L. (25)

We note that comparing this result with that in the original example
1

with the same

data we see that the results are identical.

The essential reason for the low performance of this objects is that it performed

low on the second criterion which has a very high importance. Linguistically, Eq. (23)

is saying that If a criterion is important then an alternative should score well on it.
The satisfaction scores Si (i = 1,… , 7) are interpreted by fuzzy numbers or fuzzy

intervals, for example, by the same fuzzy intervals as in Example 1 in Sect. 3, such

that the scale of satisfaction scores

S = {S1, S2, S3, S4, S5, S6, S7} (26)

forms an associative Kleene algebra K7 = ⟨S, ⊔, ⊓,¬, S7⟩. So, the calculation tools

of these inferences are based on this algebra. Hence, fuzzy screening systems serve

as a practical application example about fuzzy-valued Kleene algebras.

As a result of the first stage, we have for each alternative Xi a collection of eval-

uations

{Pi1,… ,Pir}, i = 1,… , p (27)

where Pik ∈ S is the unit evaluation of the ith alternative by the kth expert.

Example 2 shows how to aggregate the individual experts evaluations in order

to get an overall linguistic value for each object after the evaluations made by each

expert.

1
See Robert Fullér [1], Ex. 1.18.1., p. 111–112.
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5 Concluding Remarks

As a conclusion, we can answer in the affirmative to the questions we stated in the

end of Sect. 1.

The construction of the above presented Kleene algebra is a mathematical basis

for applications where fuzzy quantities are used as fuzzy scores in fuzzy inferences,

like fuzzy screening systems. Hence, we found a mathematical model for fuzzy

screening systems.

It must be noted that this kind of mathematical models work only if the linguistic

scores correspond to the fuzzy quantities, i.e., fuzzy numbers or fuzzy intervals,

in corresponding algebras. The linguistic interpretations of the fuzzy quantities are

subjective, i.e., they are based on personal opinions. Hence, we cannot totally get rid

of intuition. However, this thing is a strength in fuzzy systems, if we use it carefully.

Kleene algebras have a central role in fuzzy set theory. The author has shown that

Prof. Zadeh’s theory of standard fuzzy sets he presented in [12] is based on Kleene

algebras. First, in symposium “Fuzziness in Finland”, 2004, and in the paper [4] the

author showed that Zadeh’s theory in [12] forms a De Morgan algebra, and later on,

for example, in [7] it is shown that standard fuzzy set theory forms a Kleene algebra.

The author is calling this algebra by name Zadeh algebra.

Kleene algebras for fuzzy quantities serve an algebraic basis for many-fuzzy-
valued logics. Truth values of this kind of logics are fuzzy numbers. The author has

some ideas and sketches to create some fuzzy-many-valued logical systems. Some

preliminaries are already considered in Mattila [5, 6].
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A Concept Map Approach to Approximate
Reasoning with Fuzzy Extended Logic

Vesa A. Niskanen

Abstract Concept maps and Lotfi Zadeh’s fuzzy extended logic are applied to
such computerized approximate reasoning models as modus ponens and modus
tollens. A statistical application is also sketched. A pedagogical approach is mainly
adopted, but these ideas are also applicable to the conduct of inquiry in general.

1 Introduction

Approximate reasoning with fuzzy systems has already proven to be a plausible
method in various applications. In particular, Lotfi Zadeh’s recent studies on
establishing the principles of the extended fuzzy logic, FLe, which is a combination
of “traditional” provable and “precisiated” fuzzy logic, FLp, as well as a novel
meta-level “unprecisiated” fuzzy logic, Flu, opens various interesting prospects
[31–38]. He states that in the FLp the objects of discourse and analysis can be
imprecise, uncertain, unreliable, incomplete or partially true, whereas the results of
reasoning, deduction and computation are expected to be provably valid. In the Flu,
in turn, the membership functions and generalized constraints are not specified, and
they are a matter of perception rather than measurement. In addition, in the FLp we
use precise theorems, classical deducibility and formal logic, whereas the FLu
operates with informal and approximate reasoning [36]. The FLe stems from
Zadeh’s previous theories on information granulation, precisiated language and
computing with words, as well as on the theory of perceptions [32–35, 37, 38].

The Author has applied the ideas of the FLe to theory formation, hypothesis
verification and scientific explanation, inter alia [21–23]. These examinations, in
turn, are based on semantic validity of reasoning, and within the FLe this means
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that, instead of traditional p-validity, we use approximate reasoning and other
approximate entities, the f-entities. These f-entities are approximate counterparts of
the corresponding traditional constructions. For example, approximate theories are
approximate counterparts of the traditional theories [21].

However, the FLe approach is unable to provide us the big picture on the
complex phenomena of the real world in which everything usually depends upon
everything else. In the scientific theories and models this means that we have to
operate in such networks of variables in which various interconnections prevail
between them. Robert Axelrod and Bart Kosko have provided a partial resolution
within time series analysis to this problem with their ideas on the cognitive maps,
and quite many fuzzy applications are already available in this area [2, 7, 8, 15, 16,
18, 27]. The well-known examples of other applications are the Bayesian networks,
theory of networks, structural equation modelling, answer tree analysis, and even
factor analysis [5, 39].

Below we apply the concept maps when we examine the complex phenomena,
and this theory mainly stems from the ideas of Joseph Novak and certain peda-
gogical theories [1, 24]. These maps resemble the cognitive maps, but their
application areas are more diverse. Thanks for the concept maps, we may consider
and understand complex phenomena quite conveniently, and in particular the stu-
dents may find this type of modelling useful in their learning processes. Today we
meet various challenges in teaching because novel learning theories and tools are
available. Examples of these are deep learning, e-learning and intelligent learning
paths and materials.

To date the use of traditional concept maps has mainly based on manual work
and a priori models. We will, in turn, consider how the concept maps may be used
in a computer environment when the interrelationships between the variables or
concepts are specified with the FLe and approximate reasoning. We also consider a
posteriori models. In this manner we may construct and simulate complex models
by mimicking the human reasoning with computers, and hence we may utilize
better these maps. Our approach may enhance theory formation and model con-
struction in the conduct of inquiry as well as provide viable tools for future learning
environments for students.

2 Cognitive and Concept Maps

Cognitive and concept maps enable us to understand and examine complex phe-
nomena of the real world. Their computerized models, in turn, open new prospects
for understanding, simulating and forecasting these phenomena. Fuzzy systems are
already quite widely applied to the cognitive maps, whereas the concept maps are
still a quite new frontier. Below we consider first the essential features of these
maps.
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2.1 Cognitive Maps

The fuzzy numeric cognitive maps stem from the ideas of Robert Axelrod and Bart
Kosko [2, 16], and they are used for simulating and forecasting such phenomena of
the real world that consist of numerous variables and their interrelationships. They
may also include feedback operations, and hence in these systems everything may
depend upon everything else. We usually apply these maps to such simulations in
which we aim to forecast the complex phenomena on the time axis [7, 8, 15, 18,
27]. In statistics the structural equation models are used for this purpose (e.g.,
Mplus™, LISREL™, AMOS™) as well as time series analysis, but the fuzzy
cognitive maps are usually simpler and more robust in model construction.

The traditional Axelrod’s cognitive maps base on classical bivalent or trivalent
logic and mathematics and hence they can only model more or less roughly the
relationships. Kosko enhanced these maps by using variable values that usually
range from 0 to 1 and the corresponding values denote the degrees of activation of
the variables. The degrees of relationship between the variables, in turn, may range
from −1 to 1 in which case the benchmarks −1, 1 and 0 denote full negative effect,
full positive effect and no effect, respectively. Due to the mathematical properties of
the numeric cognitive maps, in iterations the values of its variables oscillate, are
chaotic or finally become stable.

If (empiric) data in a given period of time is unavailable, we only operate with a
priori maps, and thus we only use human intuition or expertise in our constructions,
otherwise we can also construct a posteriori maps and then we apply such methods
as statistics (e.g., regression and path analysis), neural networks or evolutionary
computing. Hence, appropriate data as well as such reasoning as abduction or
induction can yield usable cognitive maps in an automatic manner.

However, the numeric cognitive maps can only establish monotonic causal
interrelationships between the variables, whereas fuzzy linguistic cognitive maps
enable us to avoid this problem [7, 29]. The latter approach is also more
user-friendly due to its linguistic nature.

In the linguistic maps we can assign fuzzy linguistic values to our variables and
establish their interrelationships with linguistic expressions by using fuzzy lin-
guistic rule bases. Hence, we may operate with both quantitative and qualitative
linguistic variables, use more diverse variable values and interrelationships, and
apply nonlinear modeling. On the other hand, we are usually unable to apply them
if we operate with such dynamical systems that include a great number of variables.

2.2 Concept Maps

If we replace the cognitive maps with the concept maps, we may apply model
construction in a more diverse manner because then the time-dependent models are
not our only options. The concept maps generally enable us to consider and
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understand in a holistic manner the complex phenomena of the real world when we
specify the concepts or variables and their interrelationships in a given context or
framework [24] (Fig. 1). Hence, they may be applied to such tasks as
problem-setting, brainstorming, transformation of tacit knowledge, concept analy-
sis, simulation, decision-making, learning and even for therapeutic purposes when
we aim to represent our expertise, knowledge or data in a given context.

Effective and meaningful learning is one central application area, and we will
focus quite much on this issue below. In brief, from the standpoint of the behavioral
sciences, the human learning comprises cognitive, affective and psycho-motoric
factors. Their objects are facts, emotions and attitudes, and skills, respectively. The
meaningful learning attempts to give a broader perspective to the real world and,
unlike only applying the traditional passive rote learning, the pupil or student is
encouraged to be an active agent who is creative, seeks for new information, is able
to process the acquired information and can create his/her personal conceptual
constructions or frameworks. Today the cutting-edge learning methods also include
the diverse use of e-learning, information and communication technology, learning
games and simulations, intelligent individual learning paths and even intelligent
learning materials.

The concept maps aim to enhance and provide tools for meaningful cognitive
learning, and in this respect they stem from the learning theory known as con-
structivism as well as from Ausubel’s assimilation theory [1]. However, these maps
in their traditional form still lack their computerized models. Within fuzzy systems
some models are already available but they base on various background theories

Fig. 1 A simple concept map on approximate validity within the FLe
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(e.g., [3, 17, 28]). We apply the FLe because it provides us with a comprehensive
theory on approximate reasoning.

Sometimes there is only a thin red line between the cognitive and concept maps,
or they are even interchangeable. Below we construct concept maps by applying
fuzzy systems and approximate reasoning, and then we may examine our con-
structions at theoretical level and even run practical simulations with these systems,
if necessary. These models may thus open novel prospects for examining complex
phenomena in learning and even in the conduct of inquiry.

First we consider certain central aspects of approximate reasoning by using
concept maps. These maps illuminate well these tasks even for the beginners, but
we may also use their frameworks in our deeper methodological studies and
computer simulations.

3 Truth Valuation with Concept Maps

In approximate reasoning we should fulfill two conditions in truth valuation. First,
when scientific realism is adopted, our conception on truth should correspond well
with natural language, human reasoning and the real world. Second, we should
formulate simple and plausible mathematical and logical operations with fuzzy
systems for them. Below we consider these aspects by adopting a concept map
approach with linguistic variables and relationships.

It seems that in truth valuation the fuzzy community usually applies either
explicitly or implicitly the correspondence theory of truth, and Alfred Tarski sug-
gested the well-known definition that applied this idea [9, 10],

the expression 'x is P' is true, iff x is P ðin the real worldÞ ð1Þ

Hence, this means that truth manifests the relationship between the linguistic and
real world. For example, the linguistic expression ‘Christer Carlsson lives in Turku’
is true if and only if Christer lives in Turku (the Swedish name for Turku is Åbo,
both are used in Finland). Since this definition draws a distinction between the
object and meta languages, and thus avoids such classic paradoxes as the Liar, we
will also apply this idea below.

Within fuzzy systems and approximate reasoning we still seem to have some
bivalent commitments, and one of these problems is related to the exegesis on
antonyms and negations of expressions. In approximate reasoning we may usually
draw a clear distinction between these concepts, and hence, for example, such
expressions as ‘nontrue’ and ‘false’ or ‘nonyoung’ and ‘old’ have distinct meanings,
and we should bear this in mind when specifying our logical operations. Below we
assume that ‘nontrue’ and ‘nonfalse’ mean anything but true and false, respectively.

The Author has also applied the idea used in the theory of truthlikeness, in which
case we evaluate the truth vales of the basic or primitive expressions in the light of
their true counterparts [20–23]. Hence, we in fact apply fuzzy similarity relation to

A Concept Map Approach to Approximate Reasoning … 51



these expressions, and our truth values range from maximum (true) to minimum
(false) degrees of similarity. For example, the truth value of ‘John’s age is
25 years’, provided that he is actually 22, i.e., Truth(John is 25 // John is 22), is
close to true (high degree of similarity). Figure 2 depicts a simple concept map that
provides a basis for our truth valuation, and it also depicts the idea on finding other
values in a given context. Generally, if the values of two nodes are fixed, we may
obtain the third value (see also below).

Hence, we may now establish our basic metarules for truth valuation [23]:

1. 'x is P' is true, iff x is P

2. 'x is P' is false, iff x is the antonym of P

3. 'x is P' is not true, iff x is not P

4. 'x is P' is not false, iff x is not the antonym of P

ð2Þ

For example,

1. ‘John is young’ is true, iff John is young
2. ‘John is young’ is false, iff John is old
3. ‘John is young’ is not true, iff John is not young
4. ‘John is young’ is not false, iff X is not old

If we are unable to assign an appropriate antonym for the expression P, we may
use its negation. For the linguistic modifiers, such as ‘very’ and ‘fairly’, we usually
use Osgood’s or Likert’s scales because they are successfully applied to the human
sciences. The former scale is applied below and we use odd number of linguistic
values, for example,

P, fairly P, neither P nor Q ðneutral or middle valueÞ, fairly Q, Q,

in which P and Q are antonyms. This idea also concerns our truth values in which
case our antonyms are ‘false’ and ‘true’.

Table 1 presents now our meta rules for specifying the truth values for these
expressions, and these may also be used as the central fuzzy rules when the

Fig. 2 A concept map on assigning values for modified expressions
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corresponding fuzzy reasoning system is constructed (‘half true’ means neither false
nor true). For example, given the antonyms ‘young’ and ‘old’,

TruthðJohn is young ̸ ̸John is fairly youngÞ= fairly true.

When operating with fuzzy systems in a computer environment, we have to
specify the corresponding fuzzy sets, and within the truth values we use such sets as
depicted in Fig. 3 that are in fact fuzzy numbers from zero (false) to unity (true) [4].
We may also apply this “horizontal” method for the other values if the range of the
reference set is assigned properly.

Hence, we may construct a fuzzy reasoning system that applies such prevailing
reasoning as Mamdani or Takagi-Sugeno reasoning for truth valuation, and Figs. 4
and 5 depict examples on a rule set and fitting based on this idea.

Table 1 Fuzzy meta rules for assigning truth values with basic expressions

True counterpart

Expression P Fairly p Neither
p nor q

Fairly q Q

P True Fairly true Half true Fairly false False
Fairly p Fairly true True Fairly true Half true Fairly false
Neither
p nor q

Half true Fairly true True Fairly true Half true

Fairly q Fairly false Half true Fairly true True Fairly true
Q False Fairly false Half true Fairly true True

Fig. 3 Examples of fuzzy sets that represent our basic truth values
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Given an expression and its truth value, we may also apply indirectly the rules in
Table 1 when we assign the corresponding true counterpart. For example, if Truth
(John is fairly young) = fairly true, our fuzzy rules yield that John is actually either
young or middle-aged. Table 2 presents these rules directly.

In the case of negation Table 1 also yields indirectly plausible truth values in the
manner of if we assume that ‘not P’ means anything but P. For example,

Fig. 4 An example of a fuzzy rule set for assigning the basic truth values when an expression and
its true counterpart are given
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Fig. 5 An example of a fuzzy reasoning model fitting for assigning the basic truth values
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Truthðnot P ̸ ̸PÞ= from fairly true to false = not true ð3Þ

Hence, Fig. 6 depicts a modified version of our original concept map that applies
our considerations.

We may now apply the concept map in Fig. 6 as flowchart to simple computer
simulations within truth evaluations. These simulations are illuminating especially
for pedagogical purposes.

We may also construct concept maps for the compound expressions and quan-
tifiers with the foregoing methods but these considerations are precluded. Fuzzy
meta rules for these relationships are suggested in [23].

4 Approximate Syllogisms with Concept Maps

The modus ponens and modus tollens syllogisms are widely used in reasoning and
the conduct of inquiry. The approximate version of the former also plays an
essential role in fuzzy reasoning, whereas the latter is less studied even though it
opens interesting prospects for approximate hypothesis verification. The

Table 2 Fuzzy meta rules for assigning true counterparts with basic expressions

Truth value

Expression False Fairly false Half true Fairly true True
P Q Fairly Q Neither

P nor Q
Fairly P P

Fairly P Q Fairly Q P or neither
P nor Q

Fairly P

Neither
P nor Q

P or Q Fairly P or fairly Q Neither
P nor Q

Fairly Q P Fairly P Q or neither P nor Q Fairly Q
Q P Fairly P Neither

P nor Q
Fairly Q Q

Fig. 6 A concept map with fuzzy rules on assigning values for modified expressions
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approximate versions of these syllogisms also gain various advantages over their
traditional counterparts, and these aspects are considered below.

At a general level in reasoning, we may thus start from the framework depicted
in Fig. 7, if we focus on the relationship between the premises and the conclusion.
[10, 19, 25, 26]. Hence, according to Charles Peirce, we may perform deduction,
induction or even abduction [19].

For example, given the classic example by Aristotle [19],

1. All swans are white, ðAll S are WÞ,
2. a is a swan, ða is SÞ,
3. a is white, ða is WÞ,

ð4Þ

in our framework the reasoning from the items 1 and 2 to 3 apply deduction, from 2
and 3 to 1 induction, and from 1 and 3 to 2 abduction. Our syllogisms enable us to
consider all these approaches.

4.1 Modus Ponens

With an approximate modus ponens, we may apply the framework depicted in
Fig. 8, when the truth values of implication are established. From the logical
standpoint, we usually presuppose that the implication is true whenever the truth
value of its antecedent is less than or equal with its consequent. Below we also
adopt this approach, and in fact, we apply the linguistic version of the well-known
Lukasiewicz’s implication,

Truthðif A, then BÞ=minðtrue, true−TruthðAÞ+Truth(B)Þ, ð5Þ

when our truth values denote the above-mentioned fuzzy numbers. It also holds that
the greater the positive difference between the truth values of the consequent and
antecedent, the lower is the truth value of implication (Table 3). We may also
construct the corresponding fuzzy rule-based system (Figs. 9 and 10).

Fig. 7 Concept map on the
three basic types of
relationships between the
premises and the conclusion
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Fig. 8 A concept map on the
general framework for an
approximate modus ponens

Table 3 Fuzzy meta rules for assigning the truth values for implication

Consequent

Antecedent False Fairly false Half true Hairly true True
False True True True True True
Fairly false Fairly true True True True True
Half true Half true Fairly true True True True
Fairly true Fairly false Half true Fairly true True True
True False Fairly false Half true Fairly true True

Fig. 9 An example of a fuzzy rule set for assigning the truth values for implication
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Our concept map also depicts the approximate modus ponens reasoning,

A,

If B, then C,

Hence, D

ð6Þ

in which A and C are more or less similar to B and D, respectively, and in the
bivalent case A = B and C = D. For example, given that Truth(A) = fairly true and
the implication is true, our meta rules in Table 3 yield Truth(D) = from fairly true to
true.

Since we have also taken into account the nontrue implications, our modus
ponens may be applied to resolve the Sorites paradox in which case the implication
is nontrue, but it is nevertheless recommendable that it is more or less close to true.
As we know, given now such premises as

A person aged 20 is young ðtrue),
If a person aged 20 is young, then a person aged 21 is young ð< trueÞ,

our reasoning draws the conclusion Truth(a person aged 21 is young) < true
(Table 4, Fig. 11). Hence, in the next iteration the both premises are nontrue, and
the conclusion will be less true than in the previous round, and so forth. Finally, we
only obtain false conclusions and we may thus avoid the Sorites paradox.

Once again, the relationships in our concept map may base on our fuzzy rules in
Table 4, and then we may perform simulations.

1
0.8

0.6

Antecedent

0.4
0.2

00
0.2

0.4

Consequent

0.6
0.8

0

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

1
Im

pl
ic

at
io

n

Fig. 10 An example of a
fuzzy-reasoning model fitting
for assigning the truth values
of implication
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Figure 12 depicts one simulation for our Sorites reasoning. In this context a
fuzzy cognitive map may also be used.

Here again our original concept map may be modified when the fuzzy rela-
tionships are included in it (Fig. 13).

Modus ponens is already widely used within approximate reasoning, whereas
our next syllogism, the modus tollens, still expects further examination. Below we
consider its role in hypothesis verification by also taking into account the peda-
gogical aspects.

Table 4 Fuzzy meta rules for assigning the truth values for modus ponens reasoning

Implication

Antecedent False Fairly false Half true Fairly true True
False False to true
Fairly false False Fairly false

to true
Half true False Fairly false Half true

to true
Fairly true False Fairly false Half true Fairly true

to true
True False Fairly false Half true Fairly true True
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Fig. 11 An example of a fuzzy-reasoning model fitting for assigning the truth values for the
conclusions in modus ponens
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4.2 Modus Tollens

The bivalent version of the modus tollens is in the form,

If A, then B,

not B,

Hence, not A.

ð7Þ

In modus ponens the antecedent of implication usually determines the conclu-
sion, whereas now the consequent plays an essential role. However, since in the
bivalent reasoning the negation of an expression and its antonym are usually

Fig. 12 An example of approximate modus ponens reasoning when implication is nontrue

Fig. 13 A concept map with
fuzzy rules on the general
framework for an
approximate modus ponens
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identical concepts, we should modify this syllogism for our purposes. Hence, its
approximate form might be [22],

If A, then B,

C,

Hence, D,

ð8Þ

in which C and D are more or less similar to B and A, respectively (Fig. 14). If C is
now the antonym of B, we conclude that D is the antonym of A, and this reasoning
is analogous to the classic bivalent case (Table 5, Fig. 15).

As in the case of the approximate modus ponens, we may also operate here with
nontrue implications in which case we have more dispersion or fuzziness in our
conclusions. Table 5 also provides guidelines for this type of reasoning, but in
practice the truth values close to true only seem plausible for implication. Figure 16,
in turn, depicts our concept map with fuzzy relationships.

Fig. 14 A concept map on
the general framework for an
approximate modus tollens

Table 5 Fuzzy meta rules for assigning the truth values for modus tollens reasoning

Implication

Consequent False Fairly false Half true Fairly true True
False True Fairly true Half true Fairly false False
Fairly false True Fairly true Half true False to

fairly false
Half true True Fairly true False to

half true
Fairly true True False to

fairly true
True False to true
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The modus tollens, in turn, plays an essential role in the hypothesis verification,
in particular within the widely-used hypothetico-deductive method [11, 12, 19, 22,
25, 26] (Fig. 17). From the logical standpoint, the hypotheses may be singular,
general or probabilistic statements, i.e., they can refer to singular objects or
occurrences, regularities or more or less uncertain events. Hence, they may deal
with observational statements but also with the phenomena at a general level or
even include purely theoretical concepts.

To date, the hypothesis verification has mainly based on bivalent reasoning, but
we can also apply the FLe and our approximate reasoning in this context. In fact,
the conventional hypothesis verification in the quantitative research usually com-
prises three reasoning methods, John Stuart Mill’s method of difference, the dis-
junctive syllogism and the modus tollens syllogism [19].

The hypothetico-deductive method with the traditional modus tollens assumes
that we first establish our hypothesis, H, in a given test or experiment, and then we
deduce the effects or consequences, C, according to H. If C does not correspond to
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Fig. 15 An example of a fuzzy reasoning truth-value fitting for modus tollens inference

Fig. 16 A concept map with
fuzzy rules on the general
framework for an
approximate modus tollens
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our evidence, such as theories or observations, we will reject our hypothesis. If, in
turn, C is derived by using induction or probabilistic methods, this approach is
known as hypothetico-inductive method.

For example, when deduction is performed, given the hypothesis that Christer is
10 years old,

If Christer is 10, then he is still a bachelor. ðdeductionÞ
Christer is married. (evidence)

Hence, our hypothesis is false and we reject it.

ð9Þ

If, on the other hand, C corresponds to our evidence, we are unable to apply (6),
and then one resolution is only to consider the degree of confirmation of H, i.e., in
this context we actually apply induction [19, 25, 26]:

If Christer is 10, then he is still at school.

Christer is a schoolboy.

Hence, our hypothesis is more or less confirmed.

ð10Þ

This idea, in turn, is closely related to such approach to epistemic probability in
which we assess the degree of confirmation according to the relationship between
the hypothesis and its evidence [6, 13, 14, 30]. By applying the FLe, we may adopt
this approach in our approximate reasoning. Hence, given the implication, if H, then
C, and the truth of C, we obtain the truth of H (Table 5). If C is false, H is also false,
and this is analogous to the bivalent case. On the other hand. the closer C is to truth,
the closer H is also to truth, in other words, the higher is the degree of confirmation
of our hypothesis. It follows that,

If Christer is 10, then he is still a bachelor. ðtrue implicationÞ
Christer is married. ðTruth(Christer is a bachelor) = false according to the evidenceÞ
Hence, Truth(John is 10Þ= false, and we reject this hypothesis.

ð11Þ

Fig. 17 A concept map on the general framework for hypothesis verification with
hypothetico-deductive reasoning
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If Christer is 10, then he is still at school. ðtrue implicationÞ
Christer is a schoolboy. ðTruth(Christer is a schoolboy) = true according to the evidenceÞ
Hence, Truth(Christer is 10Þ≥ false, and our hypothesis is more or less confirmed.

ð12Þ

Since we usually carry out several experiments or tests for accepting our
hypotheses, our final resolutions are aggregations of these procedures. The two
widely-used presuppositions are that, first, in our experiments the obtained degrees
of confirmation should be sufficiently high, and, second, our experiments should
increase the previous probabilities or degrees of confirmation of our hypotheses [13,
14, 19]. The former criterion expresses the idea on high degree of confirmation, and
the latter is known as positive relevance.

In our approach the former criterion might be that our hypothesis should be at
least half true in each experiment. Hence, those experiments that yield low truth
values to hypotheses will either be ignored or they will decrease our final degree of
confirmation. The latter option is more recommendable in the conduct of inquiry.

The positive relevance may also be specified when an appropriate aggregation
operation for the degrees of confirmation, DC, are used. For example, given the DC
according to the hypothesis H and evidence E, DC(H, E)now, in our present
experiment and DC(H)total based on the aggregation of our previous experiments,
the traditional methods basically assess the difference DC(H, E)now − DC(H)total
that should be positive [13, 14, 19]. We may also apply this idea by specifying the
new aggregation value, DC(H)newtotal,

DCðHÞnewtotal =AggregationðDCðHÞtotal, DCðH, EÞnowÞ. ð13Þ

The acceptance of our hypothesis then depends upon the final value of DC
(H)total, and this procedure is analogous to the statistical tests when the levels of
significance are calculated.

Figure 18 depicts an example on 20 more or less successful experiments by
applying iteration to the concept map in Fig. 16. In this case the cumulative mean
was used for aggregation because it is sufficiently simple for demonstrating our
idea,

DC(H)newtotal = MeanðDC(H)i, DC(H, E)nowÞ, i = 1, 2, . . . , n, ð14Þ

in which DC(H)1,…, DC(H)n refer to the aggregations of the previous experiments.
If the values of DC(H)i are monotonically increasing, we maintain the idea on the
positive relevance. A fuzzy reasoning system may also replace (14). In Fig. 18 the
positive relevance was not fulfilled.

In practice we also aim at maximally informative hypotheses even though the
higher the truth value or probability of a hypothesis, the lower its semantic infor-
mation content, and vice versa [13]. For example, given the hypotheses,
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Christer Carlsson lives in Turku.

Christer Carlsson lives in Europe.

The former has higher information content because it excludes more alternatives
than the latter, whereas the latter is more likely true. Hence, in this sense the scientists
are “gambling with truth” in hypothesis verification. In our framework this means that
the positively relevant experiments also increase the information content.

The foregoing considerations have more or less orientated to pedagogical
aspects, but below we adopt a more scientific approach when we apply the concept
maps and approximate reasoning to statistical analysis.

5 Concept Maps in Statistical Modeling

We may also apply concept maps to statistical analysis when we study the inter-
relationships between the variables. Hence, we may, to some extent at least, replace
such conventional methods as regression analysis, canonical correlation analysis,
structural equation modeling and answer tree analysis with our approximate rea-
soning models in a given concept map. In time series analysis we may also use the
cognitive maps.

Fig. 18 An example on simulation when the final degree of confirmation of a hypothesis is
assessed according to 20 experiments
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As a simple example, we consider briefly below the Voter data that is included in
the SPSS™ statistical software. This data contains 1847 observations on the
Presidential election in the USA in 1992. We use four node variables, viz.,

1. Voting: respondent’s vote for Presidential election (Bush, Perot or Clinton).
2. Age: respondent’s age in years.
3. Education (degree): respondent’s highest degree (0 = less than high school,

1 = high school, 2 = junior college, 3 = Bachelor or 4 = graduate degree).
4. Gender.

The concept map in Fig. 19 depicts some conventional analyses that may be
carried out in this context [39]. If approximate reasoning is applied instead, we may
specify these interrelationships with fuzzy rule sets and the corresponding fuzzy
reasoning models. We adopt both of these approaches below.

First, the contingency table tests (e.g., Fisher’s test, Goodman’s and Kruskal’s
tau, Cramer’s V, Bonferroni tests) showed that there was no relationship (con-
nection) between gender and education.

Second, the contingency table tests with gender and voting seem predict that the
males principally favored Bush or Perot and females supported Clinton (Fig. 20).

In a fuzzy reasoning model for this relationship we may thus use such rules as

1. If gender was male, then the vote fairly likely went for Bush or Perot.
2. If gender was female, then the vote fairly likely went for Clinton.

Third, the respondent’s education also seemed to affect on his/her voting
behavior to some extent when the contingency table was analyzed (Fig. 21).

With the fuzzy rules this meant that

1. If the highest degree was from high school to Bachelor’s degree, the vote fairly
likely went for Bush or Perot.

2. If the highest degree was less than high school or graduate degree, the vote fairly
likely went for Clinton.

Fig. 19 Some
interrelationships according to
the Voter data
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Fourth, according to the tests of the two-way ANOVA with age as the test
variable and education and gender as the factors, we may conclude that sex has no
effect and the interaction term a slight effect at most, whereas between the degrees

Fig. 20 The voting behavior according to gender in the Voter data

Fig. 21 The voting behavior according to education in the Voter data
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on education some differences in ages are found (Figs. 22 and 23). The corre-
sponding fuzzy rules for this relationship would be,

1. If education is less than high school, then respondent’s age is approximately
63 years.

2. If education is high school or graduate degree, then respondent’s age is
approximately 48 years.

3. If education is junior college or Bachelor’s degree, then respondent’s age is
approximately 43 years.

Finally, in turn, the multinomial logistic regression analysis, as well as the
corresponding fuzzy reasoning model, did not yield any plausible models for

Fig. 22 Group means of age among gender and the degrees of education with two-way ANOVA

Fig. 23 Group means of age among the degrees of education with with a fuzzy systems of three
rules
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predicting the voting behavior when age, gender and education were the inde-
pendent variables.

These statistical analyses and their approximate reasoning counterparts illumi-
nate the potentials for using the concept maps when empiric data sets are examined.
In particular, our maps seem promising for pedagogical purposes, because then the
students may understand conveniently the interrelationships between the concepts
or variables under study. This problem area naturally expects further studies in the
future.

6 Conclusions

We applied the concept maps and Zadeh’s fuzzy extended logic to model con-
struction. The concept maps enable us to consider such phenomena in which var-
ious interrelationships prevail between the concepts or variables. By virtue of the
fuzzy extended logic, we may use both linguistic variables and interrelationships in
this context as well as computerize them fluently.

We may use our maps for theory formation and model construction when we aim
to understand, explain or forecast the phenomena under study. In particular they are
usable for pedagogical purposes in the novel learning environments that base on
e-learning and intelligent learning paths and materials.

We considered briefly applications on approximate truth valuation as well as on
modus ponens and modus tollens syllogisms. These quite simple concept maps may
already be used for various reasoning simulations. We also sketched some possi-
bilities for using the concept maps in statistical analysis. All these applications
support our assumption that the concept maps with approximate reasoning seem
promising methods in particular in education. However, more studies in this area
are expected in the future.
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Significant Frequent Item Sets Via Pattern
Spectrum Filtering

Christian Borgelt and David Picado-Muiño

Abstract Frequent item set mining often suffers from the grave problem that the

number of frequent item sets can be huge, even if they are restricted to closed or

maximal item sets: in some cases the size of the output can even exceed the size

of the transaction database to analyze. In order to overcome this problem, several

approaches have been suggested that try to reduce the output by statistical assess-

ments so that only significant frequent item sets (or association rules derived from

them) are reported. In this paper we propose a new method along these lines, which

combines data randomization with so-called pattern spectrum filtering, as it has been

developed for neural spike train analysis. The former serves the purpose to implicitly

represent the null hypothesis of independent items, while the latter helps to cope with

the multiple testing problem resulting from a statistical evaluation of found patterns.

1 Introduction

Frequent item set mining (see, e.g., [6, 11] for an overview) has been an area of

intense research in data mining since the mid 1990s. Up to the early 2000s the main

focus was on developing algorithms that can find all frequent, all closed or all max-

imal item sets as fast as possible. The substantial efforts devoted to this task led to

a variety of very sophisticated algorithms, the best-known of which are Apriori [2],

Eclat [28, 29], FP-Growth [12–14], and LCM [21–23]. Since the efficiency problem

can be considered solved with these algorithms, the focus has shifted since then to

the grave problem that the number of found frequent item sets can be huge, even if

they are restricted to closed or maximal item sets: in some cases the size of the output
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can even exceed the size of the transaction database to analyze. As a consequence,

relevant frequent item sets (or association rules derived from them) can drown in a

sea of irrelevant patterns.

In order to overcome this problem, several approaches have been suggested, which

fall mainly into two categories: in the first place, it is tried to reduce the output by

statistical assessments so that only significant patterns are reported. Such approaches

include mining only part of the data and statistically validating the results on a hold-

out subset [25] or executing statistical tests directly in the search [26], corrected by

Bonferroni [1, 5], Bonferroni-Holm [15], Benjamini-Hochberg [3] or similar meth-

ods for multiple testing. A related approach in the spirit of closed item sets are self-

sufficient item sets [27]: item sets the support of which is within expectation (under

independence assumptions) are removed. A second line in this category consists in

randomization approaches (like [9]), which create surrogate data sets that implicitly

encode the null hypothesis.

The second category is the selection of so-called pattern sets, for example, a

(small) pattern set that covers the data well or exhibits little overlap between its

member patterns (low redundancy). Such approaches include finding pattern sets

with which the data can be compressed well [19, 24] or in which all patterns con-

tribute to partitioning the data [7]. A general framework for this task, which has

become known as constraint based pattern mining, has been suggested in [8]. Note

that in this second category pattern sets are selected, with an emphasis on the inter-

action between the patterns, while the approaches in the first category rather try to

find patterns that are significant individually.

In this paper we propose an approach that falls into the first category and is closest

in spirit to [9], mainly because we also use swap randomization to generate surrogate

data sets. However, we consider other randomization methods as well, in particular

if the transactional data is derived from a table, that is, if the individual items are

actually attribute-value pairs. Our method also goes beyond [9] by considering the

significance of individual patterns, while [9] only considered the total number of

patterns. Finally, we discuss pattern spectrum filtering as a simple, yet effective way

to cope with the multiple testing problem.

The remainder of this paper is organized as follows: in Sect. 2 we briefly review

frequent item set mining to introduce notation as well as core concepts. In Sect. 3

we discuss randomization or surrogate data generation methods, with which the null

hypothesis of independent items is represented implicitly. Section 4 introduces the

notion of a pattern spectrum (adapted from [18]) as a way to handle the multiple test-

ing problem that results from the combinatorial explosion of potential patterns. In

Sect. 5 we report about experiments that we carried out with several publicly avail-

able data sets that are commonly used for benchmarks. Finally, in Sect. 6, we draw

conclusions from our discussion.
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2 Mining Frequent Item Sets

Formally, frequent item set mining is the following task: we are given a set B =
{i1,… , in} of items, called the item base, and a database T = (t1,… , tm) of trans-
actions. An item may, for example, represent a product offered by a shop. In this

case the item base represents the set of all products offered by, for example, a super-

market or an online shop. The term item set refers to any subset of the item base B.

Each transaction is an item set and may represent, in the supermarket setting, a set

of products that has been bought by a customer. Since several customers may have

bought the exact same set of products, the total of all transactions must be repre-

sented as a vector (as above) or as a multiset (or bag). Alternatively, each transaction

may be enhanced by a transaction identifier (tid). Note that the item base B is usu-

ally not given explicitly, but only implicitly as the union of all transactions, that is,

B = ∪k∈{1,…,m}tk.

The cover KT (I) = {k ∈ {1,… ,m} ∣ I ⊆ tk} of an item set I ⊆ B indicates the

transactions it is contained in. The support sT (I) of I is the number of these transac-

tions and hence sT (I) = |KT (I)|. Given a user-specified minimum support smin ∈ ℕ,

an item set I is called frequent (in T) iff sT (I) ≥ smin. The goal of frequent item

set mining is to find all item sets I ⊆ B that are frequent in the database T and

thus, in the supermarket setting, to identify all sets of products that are frequently

bought together. Note that frequent item set mining may be defined equivalently

based on the (relative) frequency 𝜎T (I) = sT (I)∕m of an item set I and a correspond-

ing lower bound 𝜎min ∈ (0, 1].
A typical problem in frequent item set mining is that the number of patterns is

often huge and thus the output can easily exceed the size of the transaction database

to mine. In order to mitigate this problem, several restrictions of the set of frequent

item sets have been suggested. The two most common are closed and maximal item

sets: a frequent item set I ∈ T (smin) is called

∙ a maximal (frequent) item set iff ∀J ⊃ I ∶ sT (J) < smin;

∙ a closed (frequent) item set iff ∀J ⊃ I ∶ sT (J) < sT (I).

In this paper we mainly consider closed item sets, because they not only preserve

knowledge of what item sets are frequent, but also allow us to compute the support

of non-closed frequent item sets with a simple formula (see, e.g., [6]).

Frequent item set mining usually follows a simple divide-and-conquer scheme

that can also be seen as a depth-first search (essentially only Apriori uses a breadth-
first search): for a chosen item i, the problem to find all frequent item sets is split

into two subproblems: (1) find all frequent item sets containing i and (2) find all

frequent item sets not containing i. Each subproblem is then further split based on

another item j: find all frequent item sets containing (1.1) both i and j, (1.2) i, but

not j, (2.1) j, but not i, (2.2) neither i nor j etc.

All subproblems occurring in this recursion can be defined by a conditional trans-
action database and a prefix. The prefix is a set of items that has to be added to all fre-

quent item sets that are discovered in the conditional transaction database. Formally,

all subproblems are pairs S = (C,P), where C is a conditional database and P ⊆ B is
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a prefix. The initial problem, with which the recursion is started, is S = (T , ∅), where

T is the given transaction database.

A subproblem S0 = (C0,P0) is processed as follows: choose an item i ∈ B0, where

B0 is the set of items occurring in C0. This choice is, in principle, arbitrary, but

often follows some predefined order of the items. If sC0
({i}) ≥ smin, then report the

item set P0 ∪ {i} as frequent with the support sC0
({i}), and form the subproblem

S1 = (C1,P1) with P1 = P0 ∪ {i}. The conditional database C1 comprises all trans-

actions in C0 that contain the item i, but with the item i removed. This also implies

that transactions that contain no other item than i are entirely removed: no empty

transactions are ever kept. If C1 is not empty, process S1 recursively. In any case (that

is, regardless of whether sC0
({i}) ≥ smin or not), form the subproblem S2 = (C2,P2),

where P2 = P0. The conditional database C2 comprises all transactions in C0 (includ-

ing those that do not contain the item i), but again with the item i (and resulting empty

transactions) removed. If the database C2 is not empty, process S2 recursively.

Concrete algorithms following this scheme differ mainly in how they represent

the conditional transaction databases and how they derive a conditional transaction

database for a split item from a given database. Details about such algorithms (like

Eclat, FP-Growth, or LCM) can be found, for example, in [6, 11].

3 Surrogate Data Generation

The general idea of data randomization or surrogate data generation is to represent

the null hypothesis (usually an independence hypothesis; here: independence of the

items) not explicitly by a data model, but implicitly by data sets that are generated in

such a way that their occurrence probability is (approximately) equal to their occur-

rence probability under the null hypothesis. Such an approach has the advantage that

it needs no explicit data model, which in many cases may be difficult to specify, but

can start from the given data. This data is modified in random ways to obtain data

that are at least analogous to those that could be sampled under conditions in which

the null hypothesis holds.

A randomization or surrogate data approach also makes it usually easier to pre-

serve certain frame conditions and properties of the data to analyze that one may

want to keep, in order not to taint the test result by having destroyed features that the

data possess, but in which one is not directly interested. In the case of transactional

data, such features are the number of items, the number of transactions, the size of

the transactions and the (relative) frequency of the items. That is, for standard trans-

actional data, we want a randomization method that only changes the composition of

the given transactions, but keeps their sizes and the overall occurrence frequencies

of the individual items.

A very simple method satisfying these constraints is swap randomization [9],

which is best explained with the help of how it modifies a binary matrix representa-

tion of a transaction database. In such a representation each column refers to an item,

each row to a transaction, and a matrix element is 1 iff the item corresponding to the
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Fig. 1 A single swap of

swap randomization in a

matrix representation

element’s column is contained in the transaction corresponding to the element’s row.

Otherwise the element is 0. Swap randomization consists in executing a large num-

ber of swaps like the one depicted in Fig. 1. Each swap affects two items and two

transactions. Each of the transactions contains one item, but not the other; the swap

exchanges the items between the transactions.

In a set representation, as we used it in Sect. 2, a swap can be described as

follows: let tj and tk be two transactions with tj − tk ≠ ∅ and tk − tj ≠ ∅, that is,

each transaction contains at least one item not contained in the other. Then we

choose ij ∈ tj − tk and ik ∈ tk − tj and replace tj and tk with t′j = (tj − {ij}) ∪ {ik} and

t′k = (tk − {ik}) ∪ {ij} thus exchanging the items between the transactions. Such a

swap has the clear advantage that it obviously maintains the sizes of the transactions

as well as the (exact) occurrence frequencies of the items.

If a sufficiently large number of swaps is carried out (in [9] it is recommended to

use a number in the order of the 1 s in a binary matrix representation of the data), the

resulting transaction database can be seen as being sampled from the null hypothesis

of independent items, because all (systematic, non-random) co-occurrences of items

have been sufficiently destroyed. Note that it is advisable to apply swap randomiza-

tion to already generated surrogates to further randomize the data, rather than to start

always from the original data. In this way the number of swaps may also be reduced

for later surrogates. In our implementation we execute as many swaps as there are

1 s in a binary matrix representation only for the first surrogate, but only half that

number for every later surrogate. This provides a good trade-off between speed and

independence of the data sets.

An obvious alternative consists in retrieving the (overall) item probability distri-

bution and randomly sampling from it to fill the given transactions with new items

(taking care, of course, that no item is sampled more than once for the same transac-

tion). This methods looks simpler (because one need not find transactions first that

satisfy the conditions stated above), but has the drawback that it preserves the item

frequencies only in expectation. However, this can be corrected (to some degree) by

checking the item distribution in a generated surrogate and then adapting the trans-

actions as follows: if there is a transaction (selected randomly) in which an item i
occurs that is over-represented relative to the original data, while it lacks an item j
that is under-represented, item i is replaced by item j. This procedure is repeated until

the item distribution meets, or is at least sufficiently close to the distribution in the

original data. In our experiments we found that it was always possible, with fairly

little effort in this direction, to meet the actual item frequency distribution exactly.
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While these methods work well for actual transactional data, we also have to take

care of the fact that many data sets that might be submitted to frequent item set mining

(including many common benchmark data sets) are actually derived from tabular

data. That is, the items are actually attribute-value pairs, and thus the transactions

are sets tk = {A1 = a1k,… ,An = ank}, where the Aj, j = 1,… , n, are attributes and

ajk is the value that attribute Aj has in the kth transaction, k = 1,… ,m. For such data

the methods described above are not applicable, because we have to ensure that each

transaction contains exactly one item for each attribute, which is not guaranteed with

the above methods.

To randomize such data we use a column shuffling scheme. That is, we generate

r permutations 𝜋j, j = 1,… , r, of the numbers {1,… ,m} (one permutation for each

attribute), where m is the number of transactions. Then we replace each transac-

tion tk, k = 1,… ,m, with t′k = {A1 = a1𝜋1(k),… ,An = an𝜋n(k)}. This guarantees that

each transaction contains one item for each attribute. It only shuffles the attribute

values, respecting the domains of the attributes.

Other surrogate data generation methods, which are designed for data over an

underlying continuous domain (like a time domain), from which the transactions

are derived by (time) binning, are discussed in [17]. Unfortunately, they cannot be

transferred directly to the transactional setting, because most of them require the

possibility to dither/displace items on a continuous (time) scale.

4 Pattern Spectrum Filtering and Pattern Set Reduction

Trying to single out significant patterns proves to be less simple than it may appear at

first sight, since one has to cope with the following two problems: in the first place,

one has to find a proper statistic that captures how (un)likely it is to observe a cer-

tain pattern under the null hypothesis that items occur independently. Secondly, the

huge number of potential patterns causes a severe multiple testing problem, which is

not easy to overcome with standard methods. In [18] we provided a fairly extensive

discussion in the framework of spike train analysis (trying to find patterns of syn-

chronous activity) and concluded that an approach different to evaluating specific

patterns with statistics is needed.

As a solution, pattern spectrum filtering was proposed in [18, 20] based on the

following insight: even if it is highly unlikely that a specific group of z items co-

occurs s times, it may still be likely that some group of z items co-occurs s times, even

if items occur independently. The reason is simply that there are so many possible

groups of z items (unless the item base B as well as z are tiny) that even though each

group has only a tiny probability of co-occurring s times, it may be almost certain that

one of them co-occurs s times. As a consequence, since there is no a-priori reason

to prefer certain sets of z items over others (even though a refined analysis, on which

we are working, may take individual item frequencies into account), we should not

declare a pattern significant if the occurrence of a counterpart (same size z and same



Significant Frequent Item Sets Via Pattern Spectrum Filtering 79

or higher support s) can be explained as a chance event under the null hypothesis of

independent items.

Hence we pool patterns with the same pattern signature ⟨z, c⟩, and collect for

each signature the (average) number of patterns that we observe in a sufficiently

large number of surrogate data sets. This yields what is called a pattern spectrum
in [18, 20]. Pattern spectrum filtering keeps only such patterns found in the original

data for which no counterpart with the same signature (or a signature with the same z,

but larger s) was observed in surrogate data, as such a counterpart would show that

the pattern can be explained as a chance event.

While in [18, 20] a pattern spectrum is represented as a bar chart with one bar

per signature, this is not feasible for the data sets we consider in this paper, due to

the usually much larger support values. Rather we depict a pattern spectrum as a

bar chart with one bar per pattern size z, the height of which represents the largest

support smax(z) that we observed for patterns of this size in surrogate data sets. An

example of such a pattern spectrum is shown in the top part of Fig. 2 (mind the

logarithmic scale). Note that this reduced representation, although less rich in infor-

mation, still contains all that is relevant, namely the support border, below which we

discard patterns found in the original data.

Note also that pattern spectrum filtering still suffers from a certain amount of

multiple testing: every pair ⟨z, c⟩ that is found in the original data gives rise to one

Fig. 2 Pattern spectrum (top) and filtered patterns (bottom) of the census data. Note the logarith-

mic scale in the top diagram. The red line marks the end of the pattern spectrum: no larger patterns

were observed in surrogate data sets. The horizontal position of the dots representing the patterns

in each size bin of the bottom diagram is random (to reduce the dot overlap). Reduced patterns are

marked in red
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test. However, the pairs ⟨z, c⟩ are much fewer than the number of specific item sets. As

a consequence, simple approaches like Bonferroni correction [1, 5] become feasible,

with which the number of needed surrogate data sets can be computed [18]: given a

desired overall significance level 𝛼 and the number k of pattern signatures to test, at

least k∕𝛼 surrogate data sets have to be analyzed.

As a further filtering step, pattern set reduction was proposed in [20] to take care

of the fact that an actual pattern induces other, spurious patterns that are subsets,

supersets or overlap patterns. These patterns are reduced with the help of a prefer-

ence relation between patterns and the principle that only patterns are kept to which

no other pattern is preferred. Here we adopt the following preference relation: let

X,Y ⊆ B be two patterns with Y ⊆ X and let zX = |X| and zY = |Y| be their sizes and

sX and sy their support values. Finally, let smax(z) be the largest support of a pattern

of size z observed in surrogate data. Then the excess support of Y (relative to X)

can be explained as a chance event if 𝜙1 = (sY − sX + 1 ≤ smax(zY )) holds and the

excess items in X (relative to Y) can be explained as a chance event if 𝜙2 = (sX ≤

smax(zX − zY + 2)) holds. Finally, we use𝜙3 = ((zX − 1)sX ≥ (zY − 1)sY )) as a heuris-

tic tie-breaker if both 𝜙1 and 𝜙2 hold. As a consequence, the set X is preferred to the

set Y iff 𝜙1 ∧ (¬𝜙2 ∨ 𝜙3) and the set Y is preferred to the set X iff 𝜙2 ∧ (¬𝜙1 ∨ ¬𝜙3).
Otherwise X and Y are not comparable. More details, especially the reasoning under-

lying the conditions 𝜙1 and 𝜙2, can be found in [20].

5 Experiments

We implemented the described surrogate data generation methods as well as pat-

tern spectrum filtering in C and made the essential functions available as a Python

extension library, which simplifies setting up scripts for the experiments. Pattern set

reduction was then implemented on top of this library in Python.

As data sets we chose common benchmark data sets, like the census, chess,

mushroom, and breast data sets from the UCI machine learning repository [4],

the BMS-Webview-1 data set (or webview1 for short) from the KDD cup 2000

[16], as well as the retail, accidents and kosarak data sets from the FIMI

repository [10]. However, due to reasons of space we can only present some of the

results, for which we selected census, breast, webview1 and retail. The

first two of these data sets are actually tabular data, and therefore we applied the col-

umn shuffling scheme described above, while the last two are genuinely transactional

data, which we processed with swap randomization.

For all data sets we generated and analyzed 10,000 surrogate data sets and ranked

the filtered item sets by how far they are from the support border of the pattern spec-

trum (using the ratio sT (I)∕smax(|I|), where sT (I) is the support of I in the transac-

tional database T). A summary of the number of transactions, minimum (absolute)

support values, and discovered closed frequent patterns before and after pattern spec-

trum filtering is shown in Table 1.
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Table 1 Data sets for which we present results in this paper together with their sizes, the minimum

support used for mining and the number of found patterns

Closed patterns

Data set Trans. smin Unfiltered Filtered Reduced

Census 48842 40 850932 779 17

Breast 350 20 965 323 1

Webview1 59602 60 3974 259 42

Retail 88162 45 19242 3 1

Table 2 Top-ranked closed frequent item sets in the census data

On the census data (see Fig. 2), our filtering methods reduce the huge number

of 850932 closed frequent patterns that are found with minimum support smin = 40 to

merely 17 statistically significant patterns. The top 3 patterns are shown in Table 2,

which are nicely interpretable. The first two capture the children of a family that

work directly after finishing college, the third pattern captures upper middle class

husbands or family fathers. The differences of the first two patterns, which are high-

lighted in blue, are interesting to observe (Fig. 3).

On the webview1 data (see Fig. 4) the 3974 closed frequent item sets that are

found with minimum support smin = 60 are reduced to merely 42. The top ranked

of these patterns are shown in Table 3. Due to the numerical encoding of the items,

they are difficult to interpret without any data dictionary, though.

On the retail data (see Fig. 5) the large number of 19242 closed frequent

item sets found with minimum support smin = 45 is reduced to the single pattern

I = {39, 41, 48} with sI = 7366 and sI∕smax(3) = 1.12133. Again an interpretation

is difficult, due to the numeric encoding of the items.
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Fig. 3 Pattern spectrum (left) and filtered patterns (right) of the breast data

Fig. 4 Pattern spectrum (left) and filtered patterns (right) of the webview1 data

Table 3 Top-ranked closed frequent item sets in the webview1 data

z s q Items

3 417 2.780 10295 10307 10311

4 205 2.562 10295 10307 10311 10315

2 1204 2.561 33449 33469

4 200 2.500 10311 12487 12703 32213

Fig. 5 Pattern spectrum (left) and filtered patterns (right) of the retail data
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6 Conclusions and Future Work

We demonstrated how data randomization or surrogate data generation together with

pattern spectrum filtering and pattern set reduction can effectively reduce found

(closed) frequent item sets to statistically significant ones. The reduction is often

tremendous and leaves a user with a manageable number of patterns that is feasible

to check manually. A shortcoming of our current method is, however, that it treats all

item sets alike, regardless of the frequency of the individual items. We are currently

working on an extension that allows for different support borders depending on the

expected support of an item set as computed from the individual item frequencies

under an independence assumption. Although this is likely to increase the number of

filtered patterns, it may enable the method to detect significant item sets consisting

of less frequent items.

Software and Source Code

Python and C implementations of the described surrogate data generation and fre-

quent item set filtering procedures can be found at this URL: www.borgelt.net/pyfim.

html.
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A Novel Genetic Fuzzy System
for Regression Problems

Adriano S. Koshiyama, Marley M.B.R. Vellasco
and Ricardo Tanscheit

Abstract Solving a regression problem is equivalent to finding a model that relates

the behavior of an output or response variable to a given set of input or explana-

tory variables. An example of such a problem would be that of a company that

wishes to evaluate how the demand for its product varies in accordance to its and

other competitors’ prices. Another example could be the assessment of an increase

in electricity consumption due to weather changes. In such problems, it is impor-

tant to obtain not only accurate predictions but also interpretable models that can

tell which features, and their relationship, are the most relevant. In order to meet

both requirements—linguistic interpretability and reasonable accuracy—this work

presents a novel Genetic Fuzzy System (GFS), called Genetic Programming Fuzzy

Inference System for Regression problems (GPFIS-Regress). This GFS makes use

of Multi-Gene Genetic Programming to build the premises of fuzzy rules, including

in it t-norms, negation and linguistic hedge operators. In a subsequent stage, GPFIS-

Regress defines a consequent term that is more compatible with a given premise and

makes use of aggregation operators to weigh fuzzy rules in accordance with their

influence on the problem. The system has been evaluated on a set of benchmarks

and has also been compared to other GFSs, showing competitive results in terms of

accuracy and interpretability issues.

1 Introduction

Regression problems are widely reported in the literature [1, 4, 17, 24, 30].

Generalized Linear Models [27], Neural Networks [18] and Genetic Programming

[23] tend to provide solutions with high accuracy. However, high precision is not
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always associated to a reasonable interpretability, that is, it may be difficult to iden-

tify, in linguistic terms, the relation between the response variable (output) and the

explanatory variables (inputs).

A GFS integrates a Fuzzy Inference System (FIS) and a Genetic Based Meta-

Heuristic (GBMH), which is based on Darwinian concepts of natural selection and

genetic recombination. Therefore, a GFS provides fair accuracy and linguistic inter-

pretability (FIS component) through the automatic learning of its parameters and

rules (GBMH component) by using information extracted from a dataset or a plant.

The number of works related to GFSs applied to regression problems has increased

over the years and are mostly based on improving the Genetic Based Meta-Heuristic

counterpart of GFSs by using Multi-Objective Evolutionary Algorithms [1, 5, 31].

In general most of these works do not explore linguistic hedges and negation oper-

ators. Procedures for the selection of consequent terms have not been reported and

few works weigh fuzzy rules. In addition GFSs based on Genetic Programming have

never been applied to regression problems.

This work presents a novel GFS called Genetic Programming Fuzzy Inference

System for Regression problems (GPFIS-Regress). The main characteristics of this

model are: (i) it makes use of Multi-Gene Genetic Programming [21, 34], a Genetic

Programming generalization that works on a single-objective framework, which can

be more reliable computationally in some situations than multi-objective approaches;

(ii) it employs aggregation, negation and linguistic hedge operators in a simplified

manner; (iii) it applies some heuristics to define the consequent term best suited to

a given antecedent term.

This work is organized as follows: Sect. 2.1 presents some related works on GFSs

applied to regression problems and Sect. 2.2. covers the main concepts of the GBMH

used in GPFIS-Regress: Multi-Gene Genetic Programming. Section 3 presents the

GPFIS-Regress model; case studies are dealt with in Sect. 4. Section 5 concludes the

work.

2 Background

2.1 Related Works

In general, GFSs designed for solving regression problems are similar to those

devised for classification. This is due to the similarity between those problems,

except for the output variable: in regression the consequent term is a fuzzy set, while

in classification it is a classical set. Nevertheless, in both cases interpretability is a

relevant requirement. Therefore, most works in this subject employ Multi-Objective

Evolutionary Algorithms (MOEAs) as the GBMH for rule base synthesis. One of

the few that does not follow this concept is that of Alcalá et al. [2], which presents

one of the first applications of 2-tuple fuzzy linguistic representation [20]. In this

work a GFS, based on a Genetic Algorithm (GA), learns both the granularity and
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the displacement of the membership functions for each variable. Wang and Mendel’s

algorithm [35] is used for rule generation. This model is applied to two real cases.

The work of Antonelli et al. [5] proposes a multi-objective GFS to generate a

Mamdani-type FIS, with reasonable accuracy and rule base compactness. This sys-

tem learns the granularity and the fuzzy rule set (a typical knowledge-base discovery

approach). It introduces the concept of virtual and concrete rule base: the virtual one

is based on the highest number of membership functions for each variable, while

the concrete one is based on the values observed in the individual of the MOEA

population. This algorithm was applied to two benchmarks for regression.

Pulkkinen and Koivisto [31] present a GFS that learns most of the FIS parameters.

A MOEA is employed for fine-tuning membership functions and for defining the

granularity and the fuzzy rule base. A feature selection procedure is performed before

initialization and an adaptable solution from Wang & Mendel’s algorithm is included

in an individual as an initial seed. This model performs equally or better than other

recent multi-objective and single-objective GFSs for six benchmark problems.

The recent work of Alcalá et al. [1] uses a MOEA for accuracy and comprehen-

sion maximization. It defines membership functions granularities for each variable

and uses Wang & Mendel’s algorithm for rule generation. During the evolutionary

process, membership functions are displaced following a 2-tuple fuzzy linguistic

representation, as stated earlier. In a post-processing stage fine-tuning of the mem-

bership functions is performed. The proposed approach compares favorably to four

other GFSs for 17 benchmark datasets.

Benítez and Casillas [8] present a novel multi-objective GFS to deal with high-

dimensional problems through a hierarchical structure. This model explores the con-

cept of Fuzzy Inference Subsystems, which compose the hierarchical structure of a

unique FIS. The MOEA has a 2-tuple fuzzy linguistic representation that indicates

the displacement degree of triangular membership functions and which variables

will belong to a subsystem. The fuzzy rule base is learned through Wang & Mendel’s

algorithm. This approach is compared to other GFSs for five benchmark problems.

Finally, Márquez et al. [26] employ a MOEA to adapt the conjunction operator

(a parametric t-norm) that combines the premise terms of each fuzzy rule in order

to maximize total accuracy and reduce the number of fuzzy rules. An initial rule

base is generated through Wang & Mendel’s approach [35], followed by a screening

mechanism for rule set reduction. The codification also includes a binary segment

that indicates which rules are considered in the system, as well as an integer value

that represents the parametric t-norm to be used in a specific rule. An experimental

study carried out with 17 datasets of different complexities attests the effectiveness

of the mechanism, despite the large number of fuzzy rules.

2.2 Multi-Gene Genetic Programming

Genetic Programming (GP) [23, 30] belongs to the Evolutionary Computation

field. Typically, it employs a population of individuals, each of them denoted by
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Fig. 1 Example of

multi-gene individual

a tree structure that codifies a mathematical equation that describes the relationship

between the output Y and a set of input variables Xj (j = 1,… , J). Based on these

ideas, Multi-Gene Genetic Programming (MGGP) [15, 17, 21, 34] generalizes GP

as it denotes an individual as a structure of trees, also called genes, that similarly

receives Xj and tries to predict Y (Fig. 1).

Each individual is composed of D trees or functions (d = 1,… ,D) that relate Xj
to Y through user-defined mathematical operations. It is easy to verify that MGGP

generates solutions similar to those of GP when D = 1. In GP terminology, the Xj
input variables are included in the Terminal Set, while the mathematical operations

(plus, minus, etc.) are part of the Function Set (or Mathematical Operations Set).

Fig. 2 Application example of MGGP operators: a mutation; b low level crossover; and c high

level crossover
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With respect to genetic operators, mutation in MGGP is similar to that in GP.

As for crossover, the level at which the operation is performed must be specified:

it is possible to apply crossover at high and low levels. Figure 2a presents a multi-

gene individual with five equations (D = 5) accomplishing a mutation, while Fig. 2b

shows the low level crossover operation.

The low level is the space where it is possible to manipulate structures (Terminals

and Mathematical Operations) of equations present in an individual. In this case, both

operations are similar to those performed in GP. The high level, on the other hand, is

the space where expressions can be manipulated in a macro way. An example of high

level crossover is shown in Fig. 2c. By observing the dashed lines it can be seen that

the equations were switched from an individual to the other. The cutting point can

be symmetric—the same number of equations is exchanged between individuals—or

asymmetric. Intuitively, high level crossover has a deeper effect on the output than

low level crossover and mutation have.

In general, the evolutionary process in MGGP differs from that in GP due to

the addition of two parameters: maximum number of trees per individual and high

level crossover rate. A high value is normally used for the first parameter to assure a

smooth evolutionary process. The high level crossover rate, similarly to other genetic

operators rates, needs to be adjusted.

3 GPFIS-Regress Model

GPFIS-Regress is a typical Pittsburgh-type GFS [19]. Its development begins with

the mapping of crisp values into membership degrees to fuzzy sets (Fuzzification).

Then, the fuzzy inference process is divided into three subsections: (i) genera-

tion of fuzzy rule premises (Formulation); (ii) assignment of a consequent term to

each premise (Premises Splitting) and (iii) aggregation of each activated fuzzy rule

(Aggregation). Finally, Defuzzification and Evaluation are performed.

3.1 Fuzzification

In regression problems, the main information for predicting the behavior of an

an output yi ∈ Y (i = 1,… , n) consists of its J attributes or features xij ∈ Xj (j =
1,… , J). A total of L fuzzy sets are associated to each jth feature and are given by

Alj = {(xij, 𝜇Alj
(xij))|xij ∈ Xj}, where 𝜇Alj

∶ Xj → [0, 1] is a membership function that

assigns to each observation xij a membership degree 𝜇Alj
(xij) to a fuzzy set Alj. Sim-

ilarly, for Y (output variable), K fuzzy sets Bk (k = 1,… ,K) are associated.

Three aspects are taken into account when defining membership functions: (i)
form (triangular, trapezoidal, etc.); (ii) support set of 𝜇Alj

(xij); (iii) an appropriate

linguistic term, qualifying the subspace constituted by 𝜇Alj
(xij) with a context-driven
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Fig. 3 Membership functions for xij ∈ Xj variables. For Y read Alj as Bk

adjective. Ideally, these tasks should be carried out by an expert, whose knowledge

would improve comprehensibility. In practice, it is not always easy to find a suitable

expert. Therefore it is very common [9, 19, 22] to define membership functions as

shown in Fig. 3.

3.2 Fuzzy Inference

3.2.1 Formulation

A fuzzy rule premise is commonly defined by:

“If X1 is Al1 and… and Xj is Alj and… and XJ is XlJ”

or, in mathematical terms:

𝜇Ad
(xi1,… , xiJ) = 𝜇Ad

(𝐱i) = 𝜇Al1
(xi1) ∗ … ∗ 𝜇AlJ

(xiJ) (1)

where 𝜇Ad
(xi1,… , xiJ) = 𝜇Ad

(𝐱i) is the joint membership degree of the ith pattern

𝐱i = [xi1,… , xiJ] with respect to the dth premise (d = 1,… ,D), computed by using

a t-norm ∗. A premise can be elaborated by using t-norms, t-conorms, linguistic

hedges and negation operators to combine the 𝜇Alj
(xij). As a consequence, the number

of possible combinations grows as the number of variables, operators and fuzzy sets

increase. Therefore, GPFIS-Regress employs MGGP to search for the most promis-

ing combinations, i.e., fuzzy rule premises. Figure 4 exemplifies a typical solution

provided by MGGP.

For example, premise 1 represents: 𝜇A1
(𝐱i) = 𝜇A21

(xi1) ∗ 𝜇A32
(xi2) and, in linguis-

tic terms, “If X1 is A21 and X2 is A32”. Let 𝜇Ad
(𝐱i) be the dth premise codified in the

dth tree of an MGGP individual. Table 1 presents the components used for reaching

the solutions shown in Fig. 4.
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Fig. 4 Example of fuzzy rule premises codified in an MGGP individual

Table 1 Input fuzzy sets and operators to generate solutions in Fig. 4

Input fuzzy sets (Terminals set) Fuzzy operators set (Functions set)

𝜇A11
(yt−1), . . . , 𝜇AL1

(yt−1), . . . , 𝜇Alp
(yt−p), . . . ,

𝜇ALP
(yt−P)

t-norm (∗), linguistic hedge (dilatation

operator—
√

) and classical negation operator

In GPFIS-Regress, the set of 𝜇Alj
(xij) represents the Input Fuzzy Sets or, in GP

terminology, the Terminal Set, while the Functions Set is replaced by the Fuzzy

Operators Set. Thus MGGP is used for obtaining a set of fuzzy rules premises𝜇Ad
(𝐱i).

In order to fully develop a fuzzy rule base, it is necessary to define the consequent

term best suited to each 𝜇Ad
(𝐱i).

3.2.2 Premises Splitting

There are two ways to define which consequent term is best suited to a fuzzy rule

premise: (i) allow a GBMH to perform this search (a common procedure in several

works); or (ii) employ methods that directly draw information from the dataset so as

to connect a premise to a consequent term. In GPFIS-Regress the second option has

been adopted in order to prevent a premise with a large coverage in the dataset, or able

to predict a certain region of the output, to be associated to an unsuitable consequent

term. Instead of searching for all elements of a fuzzy rule, as a GBMH does, GPFIS-

Regress measures the compatibility between 𝜇Ad
(𝐱i) and the consequent terms. This

also promotes reduction of the search space.

In this sense, the Similarity Degree (SDk) between the 𝜇Ad
(𝐱i) and the consequent

terms is employed:

SDk = min(1 −
∑n

i=1 |𝜇Ad
(𝐱i) − 𝜇Bk

(yi)|
n

, I{0,1}) ∈ [0, 1] (2)

where
∑n

i=1 |𝜇Ad
(𝐱i) − 𝜇Bk

(yi)| is the Manhattan distance between the dth premise

and the kth consequent term, while I{0,1} is an indicator variable, which takes value 0
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when 𝜇Ad
(𝐱i) = 0, ∀i, and 1 otherwise. When 𝜇Ad

(𝐱i) = 𝜇Bk
(yi) for all t, thenFCDk =

1, i.e., premise and consequent term are totally similar. A consequent term for 𝜇Ad
(𝐱i)

is selected as the kth consequent which maximize SDk. A premise with SDk = 0, for

all k, is not associated to any consequent term (and not considered as a fuzzy rule).

3.2.3 Aggregation

A premise associated to the kth consequent term (i.e. a fuzzy rule) is denoted by

𝜇Ad(k)
(𝐱i), which, in linguistic terms, means: “If X1 is Al1, and . . . , and XJ is AlJ , then

Y is Bk”. Therefore, the whole fuzzy rule base is given by 𝜇A1(k)
(𝐱i),. . . , 𝜇AD(k)

(𝐱i),
∀k = 1,… ,K. A new pattern x∗i may have a non-zero membership degree to several

premises, associated either to the same or to different consequent terms. In order

to generate a consensual value, the aggregation step tries to combine the activation

degrees of all fuzzy rules associated to the same consequent term.

Consider D(k)
as the number of fuzzy rules associated to kth consequent term

(d(k) = 1(k), 2(k) … ,D(k)
). Given an aggregation operator g ∶ [0, 1]D(k)

→ [0, 1] (see

[7, 10]), the predicted membership degree of 𝐱∗i to each kth consequent term—

𝜇̂Bk
(y∗i )—is computed by:

𝜇̂B1
(y∗i ) = g[𝜇A1(1)

(𝐱∗i ),… , 𝜇AD(1)
(𝐱∗i )] (3)

𝜇̂B2
(y∗i ) = g[𝜇A1(2)

(𝐱∗i ),… , 𝜇AD(2)
(𝐱∗i )] (4)

...

𝜇̂BK
(y∗i ) = g[𝜇A1(K)

(𝐱∗i ),… , 𝜇AD(K)
(𝐱∗i )] (5)

There are many aggregation operators available (e.g., see [6, 10, 36]), the Maximum

being the most widely used [29]. Nevertheless other operators such as arithmetic and

weighted averages may also be used. As for weighted arithmetic mean, it is necessary

to solve a Restricted Least Squares problem (RLS) in order to establish the weights:

min ∶
n∑

i=1
(𝜇̂Bk

(yi) −
D(k)∑

d(k)=1
wd(k)𝜇Ad(k)

(𝐱i))2 (6)

s.t. ∶
D(k)∑

d(k)=1
wd(k) = 1 and wd(k) ≥ 0

where wd(k) is the weight or the influence degree of 𝜇Ad(k)
(𝐱i) in the prediction of

elements related to the kth consequent term. This is a typical Quadratic Programming

problem, the solution of which is easily computed by using algorithms discussed in

[11, 33]. This aggregation procedure is called Weighted Average by Restricted Least

Squares (WARLS).
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3.3 Defuzzification

Proposition 1 Consider yi ∈ Y, with a ≤ yi ≤ b where a, b ∈ ℝ, and, associated to
Y, K triangular membership functions, normal, 2-overlapped1 and strongly parti-
tioned (identical to Fig. 3). Then yi can be rewritten as:

yi = c1𝜇B1
(yi) + c2𝜇B2

(yi) +⋯ + cJ𝜇BK
(yi) (7)

where c1, . . . , cK is the “center”—𝜇Bk
(ck) = 1—of each kth membership function.

The proof can be found in in [28]. This linear combination, which is a defuzzifi-

cation procedure, is usually known as the Height Method. From this proposition, the

following conclusions can be drawn:

1. If 𝜇Bk
(yi) is known, then yi is also known.

2. If only a prediction 𝜇̂Bk
(yi) of 𝜇Bk

(yi) is known, such that supyt |𝜇Bk
(yi) −

𝜇̂Bk
(yi)| ≤ 𝜀, when 𝜀 → 0 the defuzzification output ŷi that approximates yi is

given by:

ŷi = c1𝜇̂B1
(yi) + c2𝜇̂B2

(yi) +⋯ + cK 𝜇̂BK
(yt) (8)

When 𝜇̂Bk
(yi) ≈ 𝜇Bk

(yi) is not verified, the Mean of Maximum or the Center of

Gravity [32] defuzzification methods may lead to a better performance. However,

due to the widespread use of strongly partitioned fuzzy sets in the experiments with

GPFIS-Regress, a normalized version of the Height Method (8) has been employed:

ŷi =
c1𝜇̂B1

(yi) +⋯ + cK 𝜇̂BK
(yi)

𝜇̂B1
(yi) +⋯ + 𝜇̂BK

(yi)
(9)

It is now possible to evaluate an individual of GPFIS-Regress by using ŷi.

3.4 Evaluation

The Evaluation procedure in GPFIS-Regress is defined by a primary objective—

error minimization—and a secondary objective—complexity reduction. The

primary objective is responsible for ranking individuals in the population, while the

secondary one is used as a tiebreaker criteria.

A simple fitness function for regression problems is the Mean Squared Error

(MSE):

MSE =
∑n

i=1(yi − ŷi)2

2 ∗ n
(10)

1
A fuzzy set is normal if it has some element with maximum membership equal to 1. Also, fuzzy

sets are 2-overlapped if min(𝜇Bu
(yi), 𝜇Bz

(yi), 𝜇Bv
(yi)) = 0,∀u, v, z ∈ k = 1,… ,K.
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The best individual in the population is the solution which minimizes (10).

GPFIS-Regress tries to reduce the complexity of the rule base by employing a simple

heuristic: Lexicographic Parsimony Pressure [25]. This technique is only used in the

selection phase: given two individuals with the same fitness, the best one is that with

fewer nodes. Fewer nodes indicate rules with fewer antecedent elements, linguistic

hedges and negation operators, as well as few premises (𝜇Ad
(𝐱i)), and, therefore, a

small fuzzy rule set. After evaluation, a set of individuals is selected (through a tour-

nament procedure) and recombined. This process is repeated until a stopping criteria

is met. When this occurs, the final population is returned.

4 Case Studies

4.1 Experiments Description

Among the SFGs designed for solving regression problems, the Fast and Scalable

Multi-Objective Genetic Fuzzy System (FS-MOGFS) [1] has been used in the exper-

iments. In contrast to other works [2, 5, 8, 26, 31], FS-MOGFS has been chosen

because:

1. it makes use of 17 regression datasets, where five of them are highly scalable and

high-dimensional;

2. it presents a comparison between three different GFSs;

3. it describes in detail the parameters used for each model and the number of evalu-

ations performed. Furthermore, the results show accuracy (training and test sets)

and rule base compactness (average number of rules and of antecedents elements

per rule).

In its basic version, FS-MOGFS consists of:

∙ Each chromosome (C) has two parts (C = C1 ∪ C2): C1 represents the number of

triangular and uniformly distributed membership functions and C2 = [𝛼1, 𝛼2,… ,

𝛼J], where each 𝛼j is a degree of displacement of the jth variable [2]. To obtain

the best possible values for C, the model incorporates a Multi-Objective Genetic

Algorithm (MOGA) based on SPEA2 [1]. The two objectives are: minimize the

Mean Squared Error and the number of rules.

∙ In order to build the complete knowledge base (rules and membership functions),

rule extraction via Wang & Mendel’s algorithm is performed for each chromosome

[35]. The Mamdani-type SIF employs the minimum for t-norm and implication,

and center of gravity for defuzzification.

Extensions of FS-MOGFS have resulted in two other models: (i) FS-MOGFSe–
identical to FS-MOGFS, but with fast error computation by leaving aside a portion of

the database; (ii) FS-MOGFS+TUN: similar to the previous one, but with fine tun-

ing of membership functions parameters [16]. This model provided the best results
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Table 2 Databases considered in experiments

Database Acronym J n Database Acronym J n
Electrical

mainte-

nance

ELE 4 1056 Mortgage MOR 15 1049

Auto

MPG6

MPG6 5 398 Treasury TRE 15 1049

Auto

MPG8

MPG8 7 398 Baseball BAS 16 337

Analcat ANA 7 4052 MV

artificial

domain

MV 10 40768

Abalone ABA 8 4177 Elevators ELV 18 16559

Stock STP 9 950 Computer-

activity

CA 21 8192

Weather

izmir

WIZ 9 1461 Ailerons AIL 40 13750

Weather

ankara

WAN 9 1609 The

insurance

company

TIC 85 9822

Forest

fires

FOR 12 51

and was therefore used for comparison with GPFIS-Regress. Databases shown in

Table 2 [1] have been considered in case studies.

Five of the 17 databases are of high dimensionality: ELV, AIL, MV, CA e TIC;

they have been obtained from the KEEL repository [1]. Similarly to the procedure

adopted in Alcalá et al. [1], 100,000 evaluations (population size = 100 and num-

ber of generations = 1000) have been carried out in each execution. The remaining

parameters are shown in Table 3. With six repeats of 5-fold cross-validation, GPFIS-

Regress was executed 30 times. The metrics shown for each database are the average

for the 30 trained models. The Mean Squared Error has been used as the fitness func-

tion [1].

It should be noted that preliminary tests considered three, five and seven fuzzy

sets. As the results did not show any relevant difference as far as accuracy was con-

cerned, five strongly partitioned fuzzy sets (Fig. 3) have been used throughout the

experiments, as stated in Table 3.

In addition to FS-MOGFS+TUN, three other SFGs were used for comparison:

∙ GR-MF [13]: employs an evolutionary algorithm to define granularity and mem-

bership functions parameters of a Mamdani-type SIF. The Wang & Mendel method

[35] is used for rule generation.
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Table 3 GPFIS-Regress

main configuration
Parameter Value

Population size 100

Number of generations 1000

Tree maximum depth 5

Tournament size 2

High level crossover rate 50 %

Low level crossover rate 85 %

Mutation rate 15 %

Elitism rate 1 %

Input fuzzy sets 5 fuzzy sets, displayed like

Fig. 3

Fuzzy operators Product, classical negation

and square-root

Partitioning method SD

Aggregation operator WARLS

Defuzzification Height method

∙ GA-WM [12]: a GA is used for synthesizing granularity and the support of trian-

gular membership functions, as well as for defining the universe of discourse. The

rule base is also obtained through Wang & Mendel’s algorithm.

∙ GLD-WM [2]: similar to FS-MOGFS+TUN with respect to granularity and mem-

bership functions displacement. Wang & Mendel’s algorithm is used for rule gen-

eration. Final tuning of membership functions is not performed.

Statistical analysis have followed recommendations from [1, 14] and have been

performed in the KEEL software [3], with a significance level of 0,1 (𝛼 = 0.10).

4.2 Results and Discussion

Table 4 shows the results obtained with GPFIS-Regress and their counterpart GFSs

for each database in terms of MSE, average number of rules and of antecedent ele-

ments per rule. Results for models other than GPFIS-Regress have been taken from

[1]. In general GPFIS-Regress has provided better results in 58 % of cases, followed

by FS-MOGFS+TUN with 23 %. GLD-WM has performed better for one single

database; the remaining SFGs performed below those three. In high-dimensional

problems, GPFIS-Regress as attained better results for three of the five databases.

Table 5 presents results for the Friedman test and Holm method for low-

dimensional databases, given a significance level of 10 % [1]. As GPFIS-Regress

presented the lowest rank (1.5417), it was chosen as the reference model. It can be

observed that GPFIS-Regress achieved higher accuracy than GR-MF, GA-WM and
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Table 5 Results for Friedman test and Holm method

i Model Rank

4 GR-MF 4.6667

3 GA-WM 4.1250

2 GLD-WM 2.8750

1 FS-MOGFS+TUN 1.7917

0 GPFIS 1.5417
Test p-value

Friedman <0.0001
Method z = (R0 − Ri)∕SE p-value Holm

GR-MF 4.8412 <0.0001 0.0250

GA-WM 4.0020 <0.0001 0.0333

GLD-WM 2.0655 0.0388 0.0500

FS-MOGFS+TUN 0.3872 0.6985 0.1000

GLD-WM have (p-value < 0.05). This has not been verified for GPFIS-Regress and

FS-MOGFS+TUN (p-value > 0.10).

If GPFIS-Regress and FS-MOGFS+TUN are singled out for comparison, it can

be observed that the former has achieved better results for 10 of the 17 databases, with

two ties. The signal test has shown that the differences in results were not significant

(S = 10, p-value = 0.3018). This may be due to the ties and to the small number

of databases considered. As for rule base complexity, it can be noted that GPFIS-

Regress obtained the most compact one in 53 % of cases.

As far as interpretability and implementation are concerned, GPFIS-Regress has

an advantage over FS-MOGFS+TUN in aspects such as: (i) makes no change to

membership functions parameters; (ii) employs a MHG with a single objective, while

FS-MOGFS+TUN does a multi-objective search.

5 Conclusion

This work has presented a novel Genetic Fuzzy System for solving regression

problems, called GPFIS-Regress, which makes use of Multi-Gene Genetic Program-

ming and a novel way to formulate the Fuzzy Reasoning Method (Formulation-

Splitting-Aggregation). GPFIS-Regress has been compared to four other Genetic

Fuzzy Systems for 17 datasets of low and high dimensionality. Results have shown

the potentialities of the proposed approach with respect to the state-of-art in the

Genetic Fuzzy Systems area.

Further developments and experiments shall include: (i) evaluation of other

t-norm, negation and linguistic hedges operators, as well as the use of t-conorms

in rules premises; (ii) new premises splitting methods (through other similarity
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measures) and application of the Restricted Least Squares procedure with some

adaptation to associate a more suitable consequent term to a given premise; (iii) eval-

uation of other aggregation operators, such as nonlinear ones (weighted geometric

mean, etc.); this may provide better results mostly in terms of accuracy. A fine-tuning

of membership functions and Genetic Programming set-up parameters shall also be

considered.
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AMultidistance Approach to Consensus
Modeling

Silvia Bortot, Mario Fedrizzi, Michele Fedrizzi
and Ricardo Alberto Marques Pereira

Abstract We investigate the relationship between the soft measure of collective

dissensus introduced in (Fedrizzi et al. Int J Intell Syst 14:63–77, 1999; Fedrizzi

et al. New Math Nat Comput 3:219–237, 2007; Preferences and Decisions: Mod-

els and Applications, Springer, Heidelberg, 2010) and the multidistance approach to

consensus evaluation described in (Brunelli et al. IPMU 2012, Part I, CCIS, Springer,

Berlin, 2012). The novelty of the contribution consists in the introduction of a partic-

ular type of sum-based multidistance used as a measure of dissensus, closely related

with the one introduced in (Fedrizzi et al. New Math Nat Comput 3:219–237, 2007).

This multidistance is characterized by the application of a subadditive filtering func-

tion whose effect is that of emphasizing small distances and attenuating large ones.

An illustrative example is then developed in order to compare the new dissensus

measure with the OWA-based multidistance obtained assuming that the weights are

linearly decreasing with respect to increasing distance values.

Keywords Multidistances ⋅ OWA aggregation ⋅ Dissensus measures

1 Introduction

Distance-based consensus starting from individual ordinal preference relations was

studied first in [25], assuming that the distance measures the sum for all the individu-

als of the number of pairs of alternatives for which the relative position is different in

the individual’s and in the group’s ordinal preferences. The conditions under which

the various methods yield the same consensus ranking have been discussed in [11],

in combination with the presentation of the related mathematical programming for-

mulations. Then, an overview of distance minimizing methods introducing a way
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of measuring the degree of disagreement prevailing in the profile has been intro-

duced in [30]. Under the same theoretical framework, in [10] a further extension

was proposed generating a consensual collective order by solving a goal program-

ming problem. Other approaches to distance-based consensus reaching have been

developed assuming that individuals are expected to modify their opinions in order to

increase the consensus level using mediation process such as Delphi (see [26]). Since

during this kind of consensus processes a significant amount of time and resources is

used in order to move the individuals’ opinions towards a shared group opinion, the

problem of minimization of costs becomes relevant. The minimum cost consensus

has been addressed in [1] assuming that individuals with a linear cost of changing

their opinions are involved, and then extended in [2] for finding the group opinion

that minimizes a quadratic cost function.

In the classical social choice-based approach, the notion of consensus has been

usually understood in terms of strict and unanimous agreement. However, since deci-

sion makers typically have different and conflicting opinions to a lesser or greater

extent, the traditional strict meaning of consensus is often unrealistic. The human

perception of consensus is typically ‘softer’, and people are generally willing to

accept that consensus has been reached when most actors agree on the preferences

associated to the most relevant alternatives.

Combining the fuzzy notion of consensus with the expressive power of linguistic

quantifiers, the so-called soft consensus measure in the context of fuzzy preference

relations has been introduced in [22, 23].

The soft consensus paradigm proposed in [22] was then reformulated in [14–16].

The linguistic quantifiers in the original soft consensus measure were substituted

by smooth scaling functions with an analogous role, and a dynamical model was

obtained from the gradient descent optimization of a soft consensus cost function,

combining a soft measure of collective dissensus with an individual mechanism of

opinion changing aversion. The resulting soft consensus dynamics acts on the net-

work of single preference structures by a combination of a collective process of dif-

fusion and an individual mechanism of inertia.

Introduced as an extension of the crisp model of consensus dynamics described in

[14], the fuzzy soft consensus model in [15] substitutes the standard crisp preferences

by fuzzy triangular preferences. The fuzzy extension of the soft consensus model is

based on the use of a distance measure between triangular fuzzy numbers. In analogy

with the standard crisp model, the fuzzy dynamics of preference change towards

consensus derives from the gradient descent optimization of the new cost function

of the fuzzy soft consensus model. Comprehensive reviews can be found in [8, 17,

18, 20, 21, 24].

In the applications related to group decision making, the ordered weighted averag-

ing (OWA) operator as introduced in [34, 35] has been extensively experienced and

then extended to the modeling of consensus. In the approach adopted in [3] a con-

sensus degree is computed for each alternative, under the assumption of alternative

independency on each expert. The novelty of the proposed procedure consists in the

direct computation of “soft” linguistic degrees of consensus based on a topological

approach [13].
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An OWA-based consensus operator under the 2-tuple fuzzy linguistic representa-

tion model is proposed in [12], and it’s shown that it provides an alternative consen-

sus model for group decision making preserving the original preference information

and supporting consensus reaching process without moderator. In [19] some linguis-

tic OWA operators are presented to compute consensus measures under unbalanced

linguistic preferences, assuming that the consensus model is based on two types

of consensus measures, consensus degree and proximity measures. On the basis of

OWA aggregation the authors in [32] introduce a type of ordered weighted distance

(OWD), whose main characteristic is to relieve or intensify the influence of devi-

ations on the aggregation results by an appropriate assignment of weights. In [33]

the OWD measures are used to model a consensus reaching process with linguistic,

interval, triangular or trapezoidal fuzzy preference information.

It’s well known that the classical notion of distance has been extended to that

of multidistance in [27, 28] in order to axiomatically measure how separated the

members of a collection of more than two elements are [27, 28]. Consequently, the

definition of multidistance aims at measuring the distance for more than two entities

and can be used to evaluate the dissensus of preferences expressed by a group of

decision makers [9]. A further extension has been introduced in [7] establishing a

relationship between multidistances and m-ary adjacency relations through the use

of OWA operators. Starting from the results obtained in [4–6], in [7] some connec-

tions between valued m-ary relations and multidistances were highlighted leading to

the conclusion that the two approaches to measure how m entities of a collection are

separated are mutually supportive. Accordingly, it has been shown how m-ary adja-

cency relations can be modeled on the basis of OWA-based multidistances, and some

consensus related optimization problems on m-ary adjacency relations are equiva-

lent to corresponding multidistance minimization problems.

In this paper, a multidistance dissensus measure is introduced as an extension of

the relationship between the soft measure of collective dissensus firstly proposed in

[14] and the consensus model developed in [7] and based on multidistances. This

measure is based on a pairwise distance defined through a subadditive function

whose effect is that of emphasizing small distances and attenuating large distances.

The remainder of the paper is organized as follows. In Sect. 2, after introducing

the definition of multidistance and a subclass characterized by the sum of pairwise

distances, the so-called OWA-based multidistances are defined. In Sect. 3, a particu-

lar type of sum-based multidistance is proposed as characterized by the application

of a filtering function and it’s shown how it can be used as a measure of dissensus

closely related with the one introduced in [14] . In Sect. 4 an illustrative example is

developed where the new dissensus measure is compared with the OWA-based mul-

tidistance where the weighting vector has linearly decreasing entries. The example

demonstrates how the choice of this vector is hierarchically propagated in the aggre-

gation process starting from the 2-argument distances until the n-argument multi-

distances. As a consequence, the resulting dissensus measure takes gradually more

into account similar preferences and gives less importance to very discording pref-

erences. In Sect. 5 some concluding remarks are presented.
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2 Multidistances as Dissensus Measures

In this section we briefly review the notion of Multidistance and its use in construct-

ing measures of disagreement among a group of decision makers. Let us first describe

the problem we are considering. Given n decision makers, let xj ∈ [0, 1] represent

the preference degree elicited by decision maker j, with j = 1,… , n, for instance in

comparing two possible alternatives. The degree of disagreement between decision

maker i and decision maker j is given by the usual distance d(xi, xj) = |xi − xj| ∈
[0, 1]. In this paper we use multidistances in order to extend this notion and measure

the overall disagreement among n decision makers.

Multidistances were introduced by Martin and Mayor in [27, 28]. An important

class of multidistances, i.e. functionally expressible multidistances, are studied in

[29, 31]. Applications of multidistances in the problem of consensus measuring can

be found in [7, 9].

The definition of ‘multidistance’ aims at extending the usual notion of distance to

the case of more than two points. As the distance between two points measure ‘how

separated’ two points of a space are, analogously a multidistance aims to measure

‘how separated’ the members of a collection of more than two elements are. The

definition given in [28] is as follows.

Given a domain X ⊆ ℝ, a multidistance is a function

D ∶
⋃

n≥1
Xn → [0,∞[

with the following properties, for all n = 1, 2,… and x1,… , xn ∈ X:

(P1) D(x1,… , xn) = 0 if and only if xi = xj for all i, j = 1,… , n
(P2) D(x1,… , xn) = D(x

𝜋(1),… , x
𝜋(n)) for any permutation 𝜋 of 1,… , n

(P3) D(x1,… , xn) ≤ D(x1, y) +⋯ + D(xn, y) for all y ∈ X.

Note that (P1), (P2) and (P3) extend the usual three distance axioms. In particular,

(P2) refers to symmetry and (P3) extends the triangle inequality.

There are several methods to construct multidistances, each one leading to differ-

ent properties [7, 9, 28, 29]. In order to evaluate the disagreement among decision

makers in a group, in what follows we focus on two methods that we consider par-

ticularly interesting and suitable for our framework.

2.1 Sum-Based Multidistances

The first method aimed at evaluating the disagreement among the decision makers

is based on a multidistance belonging to the class of the ‘sum-based multidistances’.

As suggested in [28], given a usual definition of distance d(xi, xj), a multidistance

may be defined on the basis of the sum of the pairwise distances, by multiplying this
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sum by a sufficiently small value 𝜆(n) depending on n. This type of multidistance is

called ‘sum-based multidistance’ and the following result holds:

Given a domain X ⊆ ℝ, the function D
𝜆
∶
⋃

n≥1 Xn → [0,∞[ defined by

⎧
⎪
⎨
⎪
⎩

D
𝜆
(x1) = 0

D
𝜆
(x1,… , xn) = 𝜆(n)

n∑

i,j=1
d(xi, xj) , n ≥ 2 (1)

is a multidistance if and only if

(i) 𝜆(2) = 1
2

(ii) 0 < 𝜆(n) ≤ 1
2(n−1)

for n ≥ 3.

In Sect. 3 we define a particular type of sum-based multidistance which is charac-

terized by the application of a filtering function f playing a crucial role in emulating

a previously introduced dissensus measure [14, 15, 18]. More precisely, we first

define a pairwise distance df by applying a suitable function f to the usual distance

d(x, y) = |x − y| ∈ [0, 1], for x, y ∈ X = [0, 1]. Then, we define a multidistance Df
by averaging pairwise distances df . This sum-based multidistance can be used as a

measure of dissensusDf ∶ [0, 1]n → [0, 1]which is closely related with the dissensus

measure introduced in [14, 15, 18].

In the next subsection we briefly describe another type of multidistances and

define the second method we propose to evaluate the disagreement among the deci-

sion makers.

2.2 OWA-Based Multidistances

Another relevant class of multidistances, the so-called ‘OWA-based multidistances’

[28], is based on OWA aggregation functions [34].

We recall that OWA (ordered weighted averaging) functions were introduced by

Yager [34] and form a class of flexible averaging functions. They are defined as

follows. An OWA function A is a mapping A ∶ Xn → X, with associated a weighting

vector 𝐰 = (w1,… ,wn), such that

A𝐰(x1,… , xn) =
n∑

j=1
wjx(j)

where x(1) ≤ ⋯ ≤ x(n) ∈ X and wj ≥ 0 for j = 1,… , n and
∑n

j=1 wj = 1.

Martin and Mayor [28] used OWA functions in order to define a particular

class of multidistances. The underlying idea is a sort of hierarchical aggregation.

First, a ‘ternary’ multidistance D(x1, x2, x3) is defined by averaging the usual three

‘binary’ distances D(x1, x2) , D(x1, x3) , D(x2, x3) using an OWA function A𝐰 with a

3-dimensional weighting vector 𝐰,
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D(x1, x2, x3) = A𝐰(D(x1, x2),D(x1, x3),D(x2, x3)).

Analogously, multidistanceD(x1, x2, x3, x4) is defined by averaging the four multidis-

tances D(x1, x2, x3), D(x1, x2, x4) , D(x1, x3, x4) , D(x2, x3, x4) using an OWA function

A𝐰 with a 4-dimensional weighting vector 𝐰,

D(x1, x2, x3, x4) = A𝐰(D(x1, x2, x3),D(x1, x2, x4),D(x1, x3, x4),D(x2, x3, x4)).

Multidistances with n-argument D(x1,… , xn) are defined similarly, by means of

(n − 1)-argument multidistances. More formally, the general definition of OWA-

based multidistance is as follows. An OWA-based multidistance D is a multiargu-

ment function D ∶
⋃

n≥1 Xn → [0,∞[ such that

⎧
⎪
⎨
⎪
⎩

D(x1) = 0
D(x1, x2) = d(x1, x2)
D(x1,… , xn) = A𝐰(D(𝐚1),… ,D(𝐚n)), for n ≥ 3,

(2)

where d(x1, x2) is a usual distance,𝐰 = (w1,… ,wn) is a weighting vector withwj ≥ 0
for j = 1,… , n and

∑n
j=1 wj = 1, and 𝐚j is the (n − 1)-dimensional vector obtained

from (x1,… , xn) by removing the jth component.

The properties of an OWA-based multidistance are clearly induced by the weight-

ing vector 𝐰 = (w1,… ,wn). We propose to use a vector with linearly decreasing

entries,

𝐰 = (w1,… ,wn) =
1
sn
(n, n − 1,… , 3, 2, 1) (3)

where sn =
∑n

j=1 j = n(n+1)
2

. The choice of𝐰 as in (3) defines a multidistance which

is comparable with the multidistance Df defined in Sect. 2.1 and is also closely

related with the dissensus measure introduced in [14, 15, 18]. In Sect. 4 we pro-

pose an illustrative example where we numerically compare the multidistance Df
with the OWA-based multidistance (2) with 𝐰 given by (3). The effect of the choice

of vector 𝐰 as in (3) is motivated by the goal of emphasizing small multidistance

values and simultaneously giving less relevance to large multidistance values. This

effect is hierarchically propagated in the aggregation process starting from usual

2-argument distances D(xi, xj) until the n-argument multidistance D(x1,… , xn). As

a consequence, the obtained multidistance (2) with 𝐰 given by (3) defines a mea-

sure of dissensus which takes gradually more into account similar preferences and

gives less importance to very discordant preferences. Interestingly, this measure is

closely related to the dissensus measure defined in the framework of the so called

‘soft consensus model’ [14, 15, 18] where this effect was induced by a suitable scal-

ing function. Note that this type of dissensus measure is able to detect whether there

is a good agreement at least between some decision makers, even if some other deci-

sion makers strongly disagree.
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3 A Multidistance Approach to Soft Consensus

Consider the domain X = [0, 1] equipped with the usual distance d(x, y) = |x − y| ∈
[0, 1], for x, y ∈ [0, 1], with the usual triangular inequalities |x + y| ≤ |x| + |y| and

d(x, y) ≤ d(x, z) + d(y, z), for all x, y, z ∈ [0, 1].
Consider now the function f ∶ [0, 1] → [0, 1] defined as

f (u) = 2
𝛼

ln
(

1 + e𝛼𝛽

1 + e−𝛼(u−𝛽)

)
𝛼 ≠ 0 (4)

and f (u) = u for 𝛼 = 0, for u ∈ [0, 1]. The two parameters are 𝛼 ∈ [0,∞) and 𝛽 ∈
[0, 1∕2]. Notice that f (0) = 0 for any choice of the parameters 𝛼, 𝛽 and

f (1) = 2
𝛼

ln
(

1 + e𝛼𝛽

1 + e−𝛼(1−𝛽)

)
. (5)

We obtain f (1) = 1 when 𝛽 = 1∕2 for any choice of the parameter 𝛼. In Fig. 1 we

plot the function f (u) with various choices for the parameters 𝛼 and 𝛽. In each plot

the diagonal line is associated with 𝛼 = 0.

The function f is strictly increasing and concave for any choice of the parameter,

it is strictly concave for 𝛼 ∈ (0,∞). These properties follow straightforwardly from

the first and second derivatives of f .
The function f is subadditive, in the sense that f (u + v) ≤ f (u) + f (v). The proof

is as follows: assuming u, v ∈ [0, 1] and u + v ≠ 0, concavity of f implies

f (u) ≥ v
u + v

f (0) + u
u + v

f (u + v) = u
u + v

f (u + v) (6)

f (v) ≥ u
u + v

f (0) + v
u + v

f (u + v) = v
u + v

f (u + v) (7)

and therefore we obtain f (u) + f (v) ≥ f (u + v) for u, v ∈ [0, 1].
Given that f is subadditive, the composition of the distance d and the function f

yields a new distance function denoted df (x, y) = f (d(x, y)), with the triangle inequal-

ity df (x, y) ≤ df (x, z) + df (y, z). This triangle inequality is due to the subadditivity of

f and is obtained as follows,

d(x, y) ≤ d(x, z) + d(y, z) (8)

f (d(x, y)) ≤ f (d(x, z) + d(y, z)) ≤ f (d(x, z)) + f (d(y, z)) (9)

where the first inequality is due to the increasingness of f and the second inequality

is due to the subadditivity of f . Finally, we obtain

df (x, y) ≤ df (x, z) + df (y, z) . (10)
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Fig. 1 The function f (u) for u ∈ [0, 1]. Each plot is associated with a choice of the parameter 𝛽

and depicts the graph of f (u) for various choices of the parameter 𝛼. a f (u) with 𝛼 = 0, 1, 2, 4 and

𝛽 = 0. b f (u) with 𝛼 = 0, 1, 2, 4 and 𝛽 = 0.125. c f (u) with 𝛼 = 0, 1, 2, 4 and 𝛽 = 0.25. d f (u) with

𝛼 = 0, 1, 2, 4 and 𝛽 = 0.5

We consider the construction of multidistances based on the distance df , in partic-

ular by averaging pairwise distances df . In this way we build a measure of dissensus

Df ∶ [0, 1]n → [0, 1] which is closely related with the dissensus measure in the soft

consensus model. There is essentially a single difference: the basic pairwise distance

df (x, y) involves |x − y| and not (x − y)2, because the latter is not a distance function.

In this way we can obtain a multidistance dissensus measure.
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4 An Illustrative Example

We now illustrate with an example the way in which the multidistances constructed

by means of the function f can emulate the multidistance construction by means of

aggregation with an OWA function A for each dimensionality level.

Assume n = 4 and x1 = 0.2, x2 = 0.4, x3 = 0.6, x4 = 0.8. The multidistance con-

structed by means of the function f is given by

Df (x) =
1

n(n − 1)

n∑

i,j=1
df (xi, xj) (11)

= 1
6

(
df (x1, x2) + df (x1, x3) + df (x1, x4) + df (x2, x3) + df (x2, x4) + df (x3, x4)

)

= 1
6

(
f (d(x1, x2)) + f (d(x1, x3)) + f (d(x1, x4)) + f (d(x2, x3)) + f (d(x2, x4)) + f (d(x3, x4))

)

= 1
6

(
f (|x1 − x2|) + f (|x1 − x3|) + f (|x1 − x4|) + f (|x2 − x3|) + f (|x2 − x4|) + f (|x3 − x4|)

)
.

On the other hand, the multidistance construction by means of aggregation with

an OWA function A is given by

DA(x) = DA(x1, x2, x3, x4) (12)

= A
(
DA(x1, x2, x3),DA(x1, x2, x4),DA(x1, x3, x4),DA(x2, x3, x4)

)

= A
(
A
(
d(x1, x2), d(x1, x3), d(x2, x3)

)
,A

(
d(x1, x2), d(x1, x4), d(x2, x4)

)
,

A
(
d(x1, x3), d(x1, x4), d(x3, x4)

)
,A

(
d(x2, x3), d(x2, x4), d(x3, x4)

))

= 4
10

(3
6
|x1 − x2| +

2
6
|x2 − x3| +

1
6
|x1 − x3|

)

+ 3
10

(3
6
|x2 − x3| +

2
6
|x3 − x4| +

1
6
|x2 − x4|

)

+ 2
10

(3
6
|x1 − x2| +

2
6
|x2 − x4| +

1
6
|x1 − x4|

)

+ 1
10

(3
6
|x3 − x4| +

2
6
|x1 − x3| +

1
6
|x1 − x4|

)

where the n-dimensional weighting vectors of the OWA functions are as in (3).
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Fig. 2 The multidistance

Df (x) as a function of the

paramether 𝛼 with 𝛽 = 0,

against the multidistance

DA(x) = 0.26 ̄3
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The value Df (x) depends on the parameters 𝛼, 𝛽 whereas DA(x) = 0.26 ̄3. In Fig. 2

we plot Df (x) as a function of the parameter 𝛼 with 𝛽 = 0 against the constant value

DA(x) = 0.26 ̄3 and we see that Df (x) and DA(x) coincide for 𝛼 ≈ 2.19335.

5 Conclusions

We introduce a multidistance measure of dissensus within a group of decision

makers. The multidistance dissensus measure is based on a fundamental pairwise

distance df associated with a subadditive function f over the domain X = [0, 1],
df (x, y) = f (|x − y|). This subadditive function has the effect of emphasizing small

distances and attenuating large distances, in analogy with the scaling function which

plays a central role in the soft consensus model [14, 15, 18]. Finally, in the con-

text of an illustrative example, the multidistance dissensus measure based on df is

compared with the dissensus measure obtained through hierarchical aggregation by

means of an OWA function with linearly decreasing weights with respect to increas-

ing distance values.
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A Consensus Reaching Support System
Based on the Concepts of an Ideal
and Anti-Ideal Agent and Option

Janusz Kacprzyk, Dominika Gołuńska and Sławomir Zadrożny

Abstract We present an extension of our previous works on a moderator run
consensus reaching process in a small group of autonomous decision makers
(agents). Our approach is based on fuzzy preferences meant as the testimonies
provided by agents, fuzzy majority represented as linguistic quantifiers in Kacpr-
zyk’s sense, some fuzzy majority based soft measure of the consensus, proposed by
Kacprzyk and Fedrizzi, that is the degree to which: “most of agents agree with their
preferences to the most of options”, and Kacprzyk and Zadrożny’s ideas of a
decision support system for consensus reaching, and the use of additional infor-
mation expressed as linguistic summaries equated with linguistically quantified
propositions. Emphasis is on the running of a consensus reaching process by a
moderator. To help the moderator run the process in an effective and efficient way,
we apply some additional higher-level information, notably in the form of linguistic
data summaries as proposed by Kacprzyk and Zadrożny. Here, we extend our
approach with a new concept of an ideal and anti-ideal agent and option, though we
will concentrate of the case of the ideal and anti-ideal agent as it is more intuitively
appealing than that of the ideal and anti-ideal option. The, we use a TOPSIS method
based approach that was first outlined in our context by Gołuńska, Kacprzyk and
Zadrożny and which boils down to the determination of a solution with the longest
distance from the anti-ideal solution and the shortest distance to the ideal one. The
improvement of obtaining a higher degree of consensus within the group of agents
by using the enhanced moderated consensus reaching support system is illustrated
with a numerical example.
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1 Introduction

We deal with decision making in a multiperson setting: we have a set of options, i.e.
possible choices, and a set of individuals, called here agents, who can play a role of
experts, decision makers, … The agents present their testimonies as to some aspect,
criterion, … which are here assumed in a general and convenient form of fuzzy
preference relations that may adequately and easily represent preferences of a
particular agent with respect to a pair of options, represented by some degrees of
preference from [0,1]—cf. [2, 3, 8, 11, 13, 14, 26, 27].

Though there are many aspects of group decision making, in this paper we deal
with the reaching of a consensus in a group of agents as the first, indispensable (pre)
stage of the determination of a group decision which is basically meant as the
determination of an option or a set of options that is best accepted by the group. In
virtually all cases when the group in question is at some sort of a consensus, then
this may usually speed up the reaching of a final group decision and its quality that
is usually meant in terms of its acceptance by the group of agents as a whole.

To be more specific, we are concerned with a consensus reaching process in a
(small) group of (human) autonomous agents (decision makers, experts) who pre-
sent their testimonies assumed to be in a general form of a fuzzy (graded) prefer-
ence relation defined in a set of options. We do not consider problems of reaching
consensus in society or similar large groups.

Usually, the testimonies of agents significantly differ at the beginning, and the
consensus reaching process is run on a step-by-step basis by updating the testi-
monies of the particular agents, with respect to particular pairs of options, until they
become close enough, that is, until the group arrives at some sufficient agreement
expressed through a degree of consensus in the sense of Kacprzyk and Fedrizzi
[15–17]. Of course, we have to assume the willingness to change testimonies by
agents which may involve some psychological apprehension.

The above process is implemented using a specialized group decision support
system with an interactive user-friendly interface to view and collect data, share
information and opinions between agents and with the moderator, suggest some
issues and courses of action, etc. all that meant to facilitate and help effectively and
efficiently run the process [28, 29].

In this paper we use such a moderated (moderator run) consensus reaching
system the architecture of which was proposed in our previous papers—cf.
Gołuńska and Kacprzyk [6], Gołuńska et al. [7], and Gołuńska et al. [8, 9]. Here it
is enhanced, first, with some novel concepts and techniques (Kacprzyk and
Zadrożny [18–23], Kacprzyk et al. [25]) that are based on the use of some addi-
tional information and insight as to the structure of testimonies of agents, and their
temporal evolution with respect to changes across the set of agents and options. All
those indicators basically point out to those agents, options, and their related aspects
which are critical for the effectiveness in the sense of their high impact on a positive
change of the degree of consensus.
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This is clearly an efficiency-oriented strategy in which only a few of the most
promising agents and options are taken into account since this implies the highest
effect. Such an approach is commonly employed in almost all works on group
decision making and consensus reaching, and will also be assumed here though
some new paradigm, based on fairness and equity orientation has also been pro-
posed by Gołuńska and Kacprzyk [6, 7] in which agents and their testimonies with
respect to options are treated more fairly, i.e. are taken into account to some extent
even if this may not imply the best effect in terms of an increase of the degree of
consensus.

In this paper we extend our previous paper (cf. Gołuńska et al. [6]) in which we
have employed the idea of the TOPSIS method based on the aggregation of the
“closeness to the ideal” and “farness from the anti-ideal” [1, 17]. The latter method
was successfully implemented in multicriteria optimization problems [1, 2, 16, 15].
In this paper we employ this technique to find and then effectively and efficiently
use the concept of an ideal and anti-ideal agent, and to a lesser extent option, and a
TOPSIS method based approach that was first outlined in our context by Gołuńska
et al. [6] and which boils down to the determination of a solution with the longest
distance from the anti-ideal solution and the shortest distance to the ideal one. The
improvement of obtaining a higher degree of consensus within the group of agents
by using the enhanced moderated consensus reaching support system is illustrated
with a numerical example. We augment this method with more metainformation
type additional insights into the very essence of the problem given as linguistic
summaries as proposed by Kacprzyk and Zadrożny [22], notably the measures
expressing linguistically: for the agents—the response to the omission of an agent
and so-called personal consensus degree, and for the options—the response to
exclusion and so-called option consensus degree.

In Sect. 2 we present the general scheme of the moderated consensus reaching
process considered, in Sect. 3—the basic concepts and properties of the proposed
fuzzy-logic-based consensus reaching process, and some additional discussion
guiding linguistic summaries, in Sect. 4—the basic definitions of an ideal and
anti-deal point as meant in our context, followed by a description of the new
approach in Sect. 5 which combines those linguistic summaries mentioned above
and meant for the determination of the ideal and anti-ideal agent and option, with
elements of TOPSIS [17]. Then, in Sect. 6 we show an example, and in Sect. 7—
some concluding remarks and suggestions for future works.

2 The Essence of the Consensus Reaching Process

We basically employ a general framework for supporting consensus reaching in a
group of agents due to Kacprzyk et al. [4], and Kacprzyk and Zadrożny [19] which
is moderator run with a special “super-agent”, a moderator, and its essence is shown
in Fig. 1.
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We are here mainly concerned with some additional clues, hints, suggestions,
etc. that are expressed as some additional indicators to support the moderator—who
may use persuasion, suggestions, etc.—to effectively and efficiently change the
preferences of some agents with respects to some pairs of options to attain a
(sufficient) degree of consensus.

As suggested in our previous works [4, 5] our main concern is to enhance and
accelerate the consensus reaching process within the framework mentioned above.
Here, we employ in a synergistic way concepts of natural language based knowl-
edge representation and the TOPSIS method [19] based on the aggregation of the
“closeness to the ideal” and “farness from the anti-ideal”—cf. [2, 15, 16]. Basically,
we define the very concepts of the ideal and anti-ideal with respect to some agents
that, roughly speaking, then serve as some reference points, and then proceed to the
analysis of what is the best choice of pairs of options the preferences between which
should be changed to increase the degree of consensus. The choice of those options
is guided by some indicators proposed by Kacprzyk and Zadrożny [22], represented
in a human consistent way as linguistic summaries.

3 A Fuzzy Majority Based Concept of a Degree
of Consensus

We have a finite set of m≥ 2 agents (individuals, decision makers, experts, …),
E= e1, e2, . . . , emf g, and a set of n≥ 2 options (alternatives, issues, …),
S= s1, s2, . . . , snf g. Each agent ek ∈E expresses his/her testimony as to the par-
ticular pairs of options from S as an individual fuzzy preference relation Rk defined
in S× S [11] which is given by its membership function μRk

: S× S→ ½0, 1� such that
μRk

ðsi, sjÞ∈ ½0, 1� expresses the preference degree of option si over option sj; usu-
ally, it is assumed that μRk

ðsi, sjÞ>0.5 denotes that option si is preferred over option

Fig. 1 The essence of a
moderator run consensus
reaching process with the use
of an additional feedback
information
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sj while μRk
ðsi, sjÞ<0.5 denotes that option sj is preferred over si, with a corre-

sponding degree, and μRk
ðsi, sjÞ=0.5 means the indifference; this membership

function may be conveniently represented as a preference matrix ½rkij�, and it is
usually assumed that rkij + rkji =1, rkii =0, for all i, j, k.

The concept of a consensus degree employed is based on a fuzzy majority due to
Kacprzyk [12] which is equated with a fuzzy linguistic quantifier (dealt with using
Zadeh’s calculus of linguistically quantified propositions [29]). The linguistic
quantifier, e.g. most, at least half; almost all, is assumed to be a fuzzy set in [0, 1],
and we use the relative fuzzy quantifiers as they are better suited for the fuzzy
majority representation.

A linguistically quantified proposition, such as “most individuals are satisfied”,
can be written as [29]:

Qy0s are F ð1Þ

where Q is a linguistic quantifier (e.g., most), Y = yf g is a set of objects (e.g., agents)
and F is a property (e.g., satisfied).

The fuzzy linguistically quantifier Q is assumed to be a fuzzy set in [0, 1] as,
e.g., Q = “most”, given by

μ
“most”ðxÞ=

1 for
2x− 0.6 for

0 for

x>0.8
0.3≤ x≤ 0.8

x<0.3.

8<
: ð2Þ

Property F is defined as a fuzzy set in the set of objects Y, and if
Y = fy1, . . . , ypg, then the truth value (degree of truth) of the proposition yi is F is
truth yi is Fð Þ= μFðyiÞ, i=1, . . . , p. The degree of truth of the linguistically quan-
tified proposition (1), Qy’s are F, is now calculated in two steps:

z=
1
p
∑
p

i=1
μFðyiÞ ð3Þ

truth Qy0s are Fð Þ = μQðzÞ ð4Þ

A soft degree of consensus introduced by Kacprzyk and Fedrizzi [15, 16] is
meant as the degree to which, for instance: “most of agents agree with their
preferences to most of the options”. Traditionally, consensus is meant to occur only
when “all the agents agree with their preferences to all of the options” but such a
“full and unanimous agreement” is unrealistic in practice, because agents usually
reveal significant differences in their viewpoints, flexibility, aversion to change
opinions, etc. [5].

This soft degree of consensus, which is employed here, is derived in three steps
[10, 15, 16]:

(1) for each pair of agents we find a degree of agreement as to their preferences
between all the pairs of options,
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(2) we aggregate these degrees to derive a degree of agreement of each pair of
individuals as to their preferences between Q1 (a linguistic quantifier as, e.g.,
“most”) pairs of options,

(3) we aggregate these degrees to obtain a degree of agreement of Q2 (a linguistic
quantifier similar to Q1) pairs of individuals as to their preferences between Q1

pairs of options, and this is meant to be the degree of consensus.

Specifically, the degree of a strict agreement between agents ek1 and ek2 as to
their preferences between options si and sj, is

vijðk1, k2Þ= 1 if rk1ij = rk2ij
0 otherwise

�
ð5Þ

where, k1 = 1, . . . ,m− 1, k2 = k1 + 1, . . . ,m, i=1, . . . , n− 1, j= i+1, . . . , n.
The agreement in preferences concerning some options may be more important

for the consensus than in case of some other options. Here, the relevance of options
is assumed to be a fuzzy set in the set of options, B, such that μBðsiÞ∈ ½0, 1� is a
degree of relevance of option si ∈ S, from 0 for fully irrelevant to 1 for fully
relevant, through all intermediate values. The relevance bij of a pair of options,
ðsi, sjÞ∈ S× S, may be defined, for instance, as

bBij =
1
2
½μBðsiÞ+ μBðsjÞ� ð6Þ

for each i, j, where i≠ j. Evidently bBij = bBji , for each i, j.
Then, the degree of agreement between agents ek1 and ek2 as to their preferences

between all pairs of relevant options is:

vBðk1, k2Þ=
∑
n− 1

i=1
∑
n

j= i+1
vijðk1, k2Þ � bBij

∑
n− 1

i=1
∑
n

j= i=1
bBij

ð7Þ

where * denotes a t-norm, for instance the minimum.
Next, the degree of agreement between agents ek1 and ek2 as to their preferences

between Q1 pairs of relevant options is:

vBQ1
ðk1, k2Þ= μQ1

ðvBðk1, k2ÞÞ ð8Þ
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The degree of agreement of all pairs of agents as to their preferences between Q1

pairs of relevant options is:

vBQ1
=

2
mðm− 1Þ ∑

m− 1

k1 = 1
∑
m

k2 = k1 + 1
vBQ1

ðk1, k2Þ ð9Þ

Finally, according to the third step, the degree of agreement of Q2 pairs of agents
as to their preferences between Q1 pairs of relevant options, called the degree of
(strict) consensus, is:

conBE, SðQ1,Q2Þ= μQ2
ðvBQ1

Þ ð10Þ

We can relax the strict agreement (5) by a sufficient agreement (at least to a
degree α∈ ½0, 1�) of agents ek1 and ek2 as to their preferences between options si and
sj, defined by:

vαijðk1, k2Þ= 1 if jrk1ij − rk2ij j≤ 1− α
0 otherwise

�
ð11Þ

and then, following the same steps as for the strict consensus, we obtain the degree
of sufficient agreement of Q2 pairs of individuals as to their preferences between Q1

pairs of relevant options, i.e. a degree of sufficient consensus, denoted by

conB, αE, SðQ1,Q2Þ= μQ2
ðvB, αQ1

Þ ð12Þ

For some other possible extensions of (5), which lead to other versions of a
degree of consensus, cf. [15, 16]. In what follows, we will sometimes drop the
relevance B for the sake of the simplicity of the notation.

4 Some Additional Meta-Information for Helping to Run
the Consensus Reaching Session

Obviously, as in the case of decision support in general, it might be important that
the moderator be supported by some additional information measuring the current
state of the agreement, pointing out some difficulties in reaching consensus,
showing which preference matrix/matrices are promising as possible candidates for
consensus, etc. Clearly, since the process of consensus reaching is heavily human
centered and involves human beings in our context, it would be good to have that
additional information, hints, clues, etc. expressed in natural language, notably as
linguistic data summaries as proposed in a series of papers by Kacprzyk and
Zadrożny [19–22, 24].
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Among many possible linguistic summaries proposed for that purpose by
Kacprzyk and Zadrożny [19–22, 24], we employ here the following ones which
have been suggested by Gołuńska et al. [9] as intuitively appealing and which can
contribute to an effective and efficient running of the consensus reaching process:

(1) The response to omission of an agent ek ∈E, RTOðkÞ∈ ½− 1, 1�,which is the
difference between the consensus degree for the whole group (10) and the
consensus degree for the group without agent ek:

RTOðkÞ= conE, SðQ1,Q2Þ− conE− fekg, SðQ1,Q2Þ ð13Þ

so that it yields a degree of influence of a specific agent, ek, on the degree of
agreement of the group, from −1, for a totally negative influence, through 0 for a
lack of influence, to 1 for a totally positive influence; these values are theoretically
possible but do not happen in practice.

(2) The personal consensus degree of an agent ek ∈E, PCDðkÞ∈ ½0, 1�, is the truth
value of the following proposition:

Preferences of agent ek as to the Q1 (e.g. most) pairs of options are
in agreement with the preferences of Q2 (e.g. most) agents

which may be written as:

PCDðk1Þ= μQ2
½ 1
ðm− 1Þ ∑

m

k1 = 1, k2 ≠ k1
vBQ1

ðk1, k2Þ� ð14Þ

where vBQ1
ðk1, k2Þ is given by (8), which takes values from 0 for an agent who is the

most isolated with his opinion, to 1 for an agent whose preference is shared by most
of agents; through all intermediate values.

(3) The option consensus degree for option si ∈ S, OCDðsiÞ∈ ½0, 1�, is the degree
of truth value of the statement:

Q (e.g., most) pairs of agents agree in their preferences
with respect to option si

which may be written as follows: we first calculate:

siðk1, k2Þ= 1
n− 1

∑
n− 1

j=1, j≠ i
vijðk1, k2Þ ð15Þ

for all k1 = 1, . . . ,m− 1, k2 = k1 + 1, . . . ,m, where vijðk1, k2Þ is given as (5) and
(11) or any other suitable version, cf. [15, 16]; basically, siðk1, k2Þ may be viewed as
the mean agreement in preferences of the pair of individuals k1 and k2 with respect
to option si in their testimonies (preferences between options); then we obtain
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OCDðsiÞ= μQ½
2

mðm− 1Þ ∑
m− 1

k1 = 1
∑
m

k2 = k1 + 1
siðk1, k2Þ� ð16Þ

which takes values from 0, for substantially different preferences with respect to
option si in the testimonies (preferences between pairs of options) of most agents; to
1 for the opposite case, i.e. their agreement as to the preferences with respect to
option si; notice that in the latter case some options, on which there is the above
agreement, can be omitted from a further discussion.

(4) The response to exclusion of option si ∈ S, RTEðsiÞ∈ ½− 1, 1�, is the difference
between the consensus degree for the whole set of options (10) and for the set
without option si:

RTEðsiÞ= conE, SðQ1,Q2Þ− conE, S− fsigðQ1,Q2gÞ ð17Þ

so that it determines the influence of a given option on the consensus degree.
These are the discussion guidance indicators which will be used in this paper, for

many other ones, cf. Kacprzyk and Zadrożny [17–22, 24], Kacprzyk et al. [25],
Herrera-Viedma et al. [9] or Gołuńska et al. [8], etc. All of them can help support
the moderator to properly choose the most promising agents and pairs of options to
work on.

5 The Use of the Concept of an Ideal and an Anti-Ideal

In this paper we present an extension of our proposal (cf. Gołuńska et al. [8]) of
using the concepts of an ideal and an anti-ideal, and then to use them in the context
of TOPSIS [19], to improve the running of the process of consensus reaching. The
ideal and anti-ideal may concern both the agents and options.

The idea is as follows. The process of consensus reaching usually starts with the
agents’ preference relations on the set of options S which are different, and should
be made possibly similar (reach a consensus) step by step by changes of preferences
by particular agents. Since it is obvious that human agents may be reluctant to
change their opinions (though they should to do so to be able to reach consensus),
any change involves some “cost” which should be taken into account as proposed
by Gołuńska and Kacprzyk [6], and Gołuńska et al. [8, 9]. To be more specific, for
simplicity and making the approach operational, the preferences over the set of
options are assumed to be quantified using the values of 0, 0.1, 0.2, …, 0.9, 1, and
each change of preferences by 0.1 is assumed to imply a unit cost.

A simple and intuitively appealing reasoning, in the context of our additional
indicators (13)–(17), can be as follows. We assume as the ideal agent the one the
testimonies (preferences over the set of options) of whom are in the highest possible
agreement with those of other agents. That is, a natural choice can here be that
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agent, ek ∈E, for whom the personal consensus degree, PCDðkÞ, i.e. the truth value
(14) of “Preferences of agent ek as to the Q¬¬1 (e.g. most) pairs of options are in
agreement with the preferences of Q¬¬2 (e.g. most) agents” is the highest. Such an
agent would usually best contribute to the consensus, as he or she has the highest
agreement with the group with respect to testimonies. On the other hand, since the
very definition of the PCD(.) does not exclude some differences of the particular
agent’s testimonies with other members of the group, in the consensus reaching
process there may occur some changes of opinions, including those of the ideal
agent defined as above, but one can naturally expect that—since that agent’s tes-
timonies are the closest to other members of the group—the number of those
changes will be the minimal, and therefore the cost of them will be the lowest one
among all agents.

And, analogously, an agent with the minimum value of the PCD indicator is
assumed to be an anti-ideal agent as the degree of truth of the statement “his or her
preferences as to the Q¬¬1 (e.g. most) pairs of options are in agreement with the
preferences of Q¬¬2 (e.g. most) agents” is the lowest. Therefore, to arrive at a
consensus (or, more generally, a better agreement with the entire group) more
changes of preferences are needed and the corresponding cost is higher.

Formally, the ideal and anti-ideal agents, denoted by ek* ∈E and ek − ∈E,
respectively, can be therefore written as:

ek* : = arg max
ek ∈E

ðPCDðkÞÞ ð18Þ

ek − : = arg min
ek ∈E

ðPCDðkÞÞ ð19Þ

Then, the individual fuzzy preference relation matrices of the ideal agent, ek*,
and the anti-ideal agent, ek −, are denoted as ½r*ij�, and ½r −ij �, respectively. Notice that
the ideal and anti-ideal agents are real agents from within the group though there
also exist some approaches in which a non-existing agent is assumed as the ideal
and/or anti-ideal agent.

The above reasoning was performed at the level of agents, using the PCD (14)
indicator. Now, we will show how to employ the other indicators.

Now, since usually, there exist a discrepancy of testimonies between the agents,
it might be good to attain such a change of testimonies that they be closer to the
ideal agent which somehow epitomizes the consensus as his or her testimonies best
reflect what the entire group of agents think.

A plausible approach might here be as follows. Having found the ideal and
anti-ideal agent, we should make a further step since the testimonies of the agents
may differ from those of the ideal and anti-ideal agent. Namely, we should find
options to be presented by the moderator to the group of agents in question which
should be most effective and efficient in terms of a possible increase of the degree of
consensus. There are two possibilities: first, to present to each agent a different
option such that his or her testimonies (preferences) with respect to that option
should be individually changed. It is easy to imagine that this may be not efficient
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enough and it would be better to determine such an option from the point of view of
the whole group, in the spirit of the option consensus degree, OCDðsiÞ∈ ½0, 1�, for
each option si ∈ S, which stands for the degree of truth of the statement: “Q (e.g.,
most) pairs of agents agree in their preferences with respect to option si”. Clearly, it
makes sense to take into account such an option if we go for the taking into account
of one option for the entire group, that is we somehow extend the softly defined
group of agents in question expressed by “most” to the entire group of agents; this
is done for making the approach operational because it would be much more
difficult and less intuitively appealing to try to apply the above very plausible rule to
some imprecisely defined group of agents exemplified by “most”, “almost all”, etc.
The option for which the truth value of that statement, i.e. “Q (e.g., most) pairs of
agents agree in their preferences with respect to option si”, will be the highest will
be our ideal option while the one for which the truth value will be the lowest, will
be the anti-ideal option. It is easy to see that the concept of an ideal option reflects
the fact that preference of most agents with respect to that option are the closest, on
the average to those of the ideal agent, and analogously for the anti-ideal option.

We implement the above plausible reasoning in the following simple way, which
corresponds to the very essence of the well-known TOPSIS [19] method of mul-
ticriteria decision making that has proven to work well in our case.

For each agent ek , k = 1,…, m, and each option, si, = 1, 2,…, n, we calculate the
distance of the agent’s preference matrix from, first, that of the ideal agent, and
second, from that of the anti-ideal agent. That is, using for simplicity the Euclidean
distance, we compute for the ideal agent and for all agents ek∈E and all options si∈ S:

d*siðekÞ=
1

n− 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

j=1, j≠ i
ðrkij − r*ijÞ2

s

and then for each option si ∈ S we obtain:

d*si =
1
m

∑
m

k=1
d*siðekÞ=

1
m

∑
m

k=1
ð1
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

j=1
ðrkij − r*ijÞ2

s
Þ ð20Þ

which yields the goodness of option si as a candidate for proposing it to the whole
group for possibly changing its preferences of other options with respect to si so
that the particular agents could get closer in their preferences to the ideal agent, and
hence possibly increasing the consensus degree. The higher the value of d*si the
better candidate for the discussion si is.

And similarly, for the to the anti-ideal agents we compute for all agents ek ∈
E and all options si ∈ S:

d −
si ðekÞ=

1
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

j=1
ðrkij − r −ij Þ2

s
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and

d −
si =

1
m

∑
m

k=1
d −
si ðekÞ=

1
m

∑
m

k=1
ð1
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

j=1
ðrkij − r −ij Þ2

s
Þ ð21Þ

which yields the goodness of option si as a candidate for proposing it to the whole
group for possibly changing its preferences of other options with respect to si so
that the particular agents could get closer in their preferences to the anti-ideal agent,
and hence possibly increasing the consensus degree. This time, the lower the value
of d −

si the better candidate for the discussion si is.
Finally, following the idea of TOPSIS, we compute, for each option si, with

respect to the ideal agent, ek*, and the anti-ideal agent, ek −:

C*
si =

d −
si

d*si + d −
si

; i=1, . . . , n ð22Þ

which is an aggregation of the “closeness to the ideal” and “farness from the
anti-ideal”.

Therefore, if option si is the ideal option, in the sense that for it (22) takes on the
highest value, denoted by s*i , then C*

si =1, while if s−i is the anti-ideal solution, in
the sense that for it (22) takes on the lowest value, then C*

si =0. Therefore, the closer
the value of C*

si to 1, the closer option si to the ideal solution s*i .
In this paper, in the definitions given, we have practically used the ideas behind

the two additional pieces of information only, i.e. PCD (14) and OCD (16). but the
additional measures mentioned, i.e. the response to omission RTO (13) and the
response to exclusion RTE (17) can be employed as additional terms in (18) and
(19). One can also use other additional measures proposed by Kacprzyk and
Zadrożny [22] or Kacprzyk et al. [25].

Finally, let us mention that the method of using additional information proposed
may essentially be meant as to provide an enhanced feedback mechanism that
should help the moderator as shown in Fig. 2.

Fig. 2 An extension of the feedback mechanism
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6 A Numerical Example

We will now solve the simple example given in Gołuńska et al. [9]. We have a
group of 5 agents and 4 options considered, and their initial individual fuzzy
preference relations matrices (the irrelevant left lower triangles are omitted as the
reciprocity of the preference relations is assumed) are:

½r1ij�=
− 0.9 0.9 1.0

− 0.8 0.7
− 0.7

−

2
664

3
775½r2ij�=

− 0.7 1.0 1.0
− 0.8 0.9

− 0.5
−

2
664

3
775½r3ij�=

− 0.9 0.8 0.6
− 0.6 0.3

− 0.3
−

2
664

3
775

½r4ij�=
− 0.9 0.5 1.0

− 0.0 0.4
− 1.0

−

2
664

3
775½r5ij�=

− 0.9 0.8 0.9
− 0.2 0.5

− 0.9
−

2
664

3
775

The degree of the sufficient consensus (11), with Q1 = Q2 = “most’ given by
(12), and with α=0.8 is (the relevance of all options, B, is assumed to be equal 1
and thus B is not mentioned in the following notation):

conαðQ1,Q2Þ=0.43

This value is considered too low to be acceptable and we resort to the method
proposed in this paper.

The ideal agent corresponds to the agent with the highest PCD value. The values
of PCDðkÞ, k = 1, 2, …, 5, for the particular agents, are shown rank ordered in
Table 1. It can be seen that agent e5 is the ideal agent, because it has the highest
PCD value, while agent e4 is the anti-ideal one because it has the lowest one.

From (22) we obtain the values of of C*
si , i = 1, 2, …, 4, as given in Table 2.

Option s1 is therefore the best one, and option s4 is the worst one.
The moderator suggests that the preferences of all agents as to the preferences

with respect to the ideal option s1 should be changed to be equal to the preferences
expressed by the ideal agent e5. There are 8 changes needed, i.e. it costs 8 cost
units.

Table 1 Values of PCD for
each agent

PCD(k) Value

PCD(5) 0.8
PCD(1) 0.6
PCD(2) 0.5
PCD(3) 0.2
PCD(4) 0
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The newly obtained degree of consensus is now equal to:

conαðQ1,Q2Þ=0.88.

and suppose that it is still considered not high enough and the second round is run
as before.

Table 3 shows that now agent e3 is the ideal agent, while agent e4 is still the
anti-ideal one.

Then, for a lack of space, the respective table, similar to Table 2, will not be
shown, but the average closeness the respective preferences of the ideal agent
indicates option s2 as the one which should be used now. Because of a high degree
of consensus the moderator starts to persuade now the anti-ideal agent to change
his preferences concerning the ideal option s2. The new values of his or her pref-
erences should be the same as those expressed by the ideal agent e3. It turns out that
the change in the anti-ideal agents’ preferences:

r −23 = 0.0→ 0.6

cause the acceptable value of the group consensus degree, which is now:

conαðQ1,Q2Þ=0.93.

with the cost equal to 6.
As it can be seen the use of the concept of an ideal and anti-ideal agent and

option can considerably help attain a higher value of consensus by better supporting
the moderator. Moreover, a possible inclusion of the response to omission RTO
(13) and the response to exclusion RTE (17) can be employed for a further
improvement but this will be considered in next works.

Table 2 Average closeness
to the preferences of the ideal
agent

C*
si

Value

C*
s1 0.62

C*
s3 0.58

C*
s2 0.57

C*
s4 0.55

Table 3 Values of PCD for
each agent

PCD(k) Value

PCD(3) 1
PCD(1) 0.97
PCD(5) 0.97
PCD(2) 0.8
PCD(4) 0.67
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7 Concluding Remarks

In the paper we have extended our moderator run consensus reaching model (cf.
proposed by Gołuńska et al. [8]) by including, first, some new information that may
be useful for the moderator to run the consensus reaching session which is given as
linguistic summaries, in the sense of Yager, i.e. represented by linguistically
quantified propositions with their associated degrees of truth, and second, a novel
synergistic combination of the ideal and anti-ideal point (agents and options) which
are then used in a TOPSIS like procedure as proposed in a simpler setting by
Gołuńska et al. [8]. The results are promising in terms of both the value of a
consensus degree obtained and the speed and cost of attaining that value, i.e. the
number of necessary changes of preferences of individuals.

As a promising direction for a further research, the use of more sophisticated
discussion guiding linguistic summaries can be considered as proposed by
Kacprzyk and Zadrożny [22], Kacprzyk et al. [25], etc.
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Interval Type-2 Fuzzy System Design
Based on the Interval Type-2 Fuzzy
C-Means Algorithm

Elid Rubio, Oscar Castillo and Patricia Melin

Abstract In this work, the Interval Type-2 Fuzzy C-Means (IT2FCM) algorithm is
used for the design of Interval Type-2 Fuzzy Inference Systems using the centroids
and fuzzy membership matrices for the lower and upper bound of the intervals
obtained by the IT2FCM algorithm in each data clustering realized by this algo-
rithm, and with these elements obtained by IT2FCM algorithm we design the
Mamdani, and Sugeno Fuzzy Inference systems for classification of data sets and
time series prediction.

1 Introduction

Due to need of finding interesting patterns or groups of data with similar charac-
teristics in a given data set, Clustering algorithms [1, 3, 5, 11, 12, 15] have been
proposed to satisfy this need. Currently there are various fuzzy clustering algo-
rithms. The Fuzzy C-Means (FCM) algorithm [1, 12] has been the foundation to
developing other clustering algorithms, which have been widely used successfully
in pattern recognition [1], data mining [6], classification [8], image segmentation
[16, 25], data analysis and modeling [3]. The popularity of the fuzzy clustering
algorithms is due to the fact that allow a datum belong to different data clusters into
a given data set.

However this method is not able to handle the uncertainty found in a given
dataset during the process of data clustering; because of this the FCM was extended
to IT2FCM using Type-2 Fuzzy Logic Techniques [10, 14]. This extension of the
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FCM algorithm has been applied to the formation of membership functions [4, 7,
20, 21], and classification [2]. In this work the creation of fuzzy systems are
presented using the IT2FCM algorithm using the centroids matrices and fuzzy
partition for the lower and upper limits of the range, with these matrices obtained
using IT2FCM the membership functions for each input and output variable of the
fuzzy system and its rules of inference are created.

2 Overview of Interval Type-2 Fuzzy Sets

Type-2 Fuzzy Sets are an extension of the Type-1 Fuzzy Sets proposed by Zadeh in
1975, this extension was designed with the aim of mathematically representing the
vagueness and uncertainty of linguistic problems and this way overcome limitations
of Type-1 Fuzzy Sets and thereby provide formal tools to work with intrinsic
imprecision in different type of problems. Type-2 Fuzzy Sets are able to describe
uncertainty and vagueness in information, usually are used to solve problems where
the available information is uncertain. These Fuzzy Sets include a secondary
membership function to model the uncertainty of Type-1 Fuzzy Sets [10, 14].

A Type-2 Fuzzy set in the universal set X, is denoted as Ã, and can be char-
acterized by a Type-2 fuzzy membership function μÃ = ðx, uÞ as:

Ã=
Z

x∈X

μA ̃ðxÞ x̸=
Z

x∈X

Z
u∈ J x

fxðuÞ u̸

2
64

3
75 x̸, Jx⊆ 0, 1½ � ð1Þ

where Jx is the primary membership function of x which is the domain of the
secondary membership function fxðuÞ.

The shaded region shown in Fig. 1a is usually called footprint of uncertainty
(FOU). The FOU of Ã is the union of all primary membership that are within the
lower and upper limit of the interval of membership functions and can be expressed
as:

FOUðÃÞ=⋃∀x∈XJx = ðx, uÞju∈ Jx ⊆ 0, 1½ �f g ð2Þ

The lower membership function (LMF) and upper membership function
(UMF) are denoted by μ

A ̃ðxÞ and μÃðxÞ are associated with the lower and upper

bound of FOUðA ̃Þ respectively, i.e. The UMF and LMF of Ã are two Type-1
membership functions that bound the FOU as shown in Fig. 1a. By definition they
can be represented as:
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μ
A ̃ðxÞ=FOUðÃÞ∀x∈X ð3Þ

μA ̃ðxÞ=FOUðÃÞ∀x∈X ð4Þ

The secondary membership function is a vertical slice of μÃ = ðx, uÞ as shown in
Fig. 1b. The Type-2 Fuzzy Sets are capable modeling uncertainty, where Type-1
fuzzy sets cannot. The computation operations required by Type-2 fuzzy systems
are considerably and, undesirably large, this is due these operations involve
numerous embedded Type-2 fuzzy sets which consider all possible combinations of
the secondary membership values [10, 14]. However with the aim of reduce the
computational complexity was proposed Interval Type-2 Fuzzy Sets, where the
secondary membership functions are interval sets expressed as:

Ã=
Z

x∈X

Z
u∈ J x

1 u̸

2
64

3
75 x̸ ð5Þ

Fig. 1 a Type-2 membership function, b Secondary membership function and, c Interval
secondary membership function
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Figure 1c shows the membership function of an Interval Type-2 Fuzzy Sets. The
secondary memberships are all uniformly weighted for each primary membership of
x. Therefore Jx can be expressed as:

Jx = ðx, uÞju∈ μ
Ã
ðxÞ, μÃðxÞ

h in o
ð6Þ

Moreover, FOUðA ̃Þ in (2) can be expressed as:

FOUðA ̃Þ=⋃∀x∈X ðx, uÞju∈ μ
Ã
ðxÞ, μÃðxÞ

h in o
ð7Þ

As a result of whole this, the computational complexity using Interval Type-2
Fuzzy Sets is reduced only to calculate simple interval arithmetic.

3 Interval Type-2 Fuzzy C-Means Algorithm

The Interval Type-2 Fuzzy C-Means (IT2FCM) algorithm [4, 7, 20] is an extension
of the Fuzzy C-Means (FCM) algorithm, this extension use Type-2 Fuzzy Tech-
niques in combination with the C-Means algorithm, and improvement the tradi-
tional FCM, which uses Type-1 Fuzzy Logic [26, 27]. This method is able to handle
uncertainty found in a given dataset during the process of data clustering and
thereby makes data clustering less susceptible to noise to achieve the goal that data
can be clustered more appropriately and more accurately.

The weighting (fuzzification) exponent m in the IT2FCM algorithm is repre-
sented by an interval rather than a precise numerical value, i.e. m= m1,m2½ �, where
m1 and m2 represent the lower and upper limit of the weighting (fuzzification)
exponent respectively.

Because the m value is represented by an interval, the fuzzy partition matrix μij
must be calculated to the interval m1,m2½ �, per this reason μij would be given by a
membership interval[μ

i
ðxjÞ,μiðxjÞ] where μ

i
ðxjÞ and μiðxjÞ represents the lower and

upper limit of the belonging interval of datum xj to a clustering vi, updating the
lower an upper limit of the range of the fuzzy membership matrices can be
expressed as:

μ
i
ðxjÞ=min ∑

c

k=1

d2ij
d2ij

 ! 2
m1 − 1

2
4

3
5

− 1

, ∑
c

k=1

d2ij
d2ij

 ! 2
m2 − 1

2
4

3
5

− 18<
:

9=
; ð8Þ

μiðxjÞ=max ∑
c

k=1

d2ij
d2ij

 ! 2
m1 − 1

2
4

3
5

− 1

, ∑
c

k=1

d2ij
d2ij

 ! 2
m2 − 1

2
4

3
5

− 18<
:

9=
; ð9Þ
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The procedure for updating the cluster prototypes in the IT2 FCM algorithm
should take into account the degree of belonging interval to calculate the centroids
of the fuzzy membership matrix for the lower and upper limit these centroids will
be given by the following equations:

vi =

∑
n

j=1
μ
i
ðxjÞ

� �m1

xj

∑
n

j=1
μ
i
ðxjÞ

� �m1
ð10Þ

vi =

∑
n

j=1
μiðxjÞ
� �m1xj

∑
n

j=1
μiðxjÞ
� �m1

ð11Þ

The resulting interval of the coordinates of the centroids positions of the clusters.
Type-reduction and defuzzification use Type-2 fuzzy operations. The centroids
matrix and the fuzzy partition matrix are obtained by the type-reduction as shown in
the following equations:

vj =
vj + vj
2

ð12Þ

μiðxjÞ=
μ
i
ðxjÞ+ μiðxjÞ

2
ð13Þ

Based on all this description, the IT2 FCM algorithm consists of the following
steps:

1. Establish c, m1, m2.
2. Initialize fuzzy partition matrices μ

i
ðxjÞ and μiðxjÞ, such that with restriction in:

∑
c

i=1
μ
i
ðxjÞ=1 ð14Þ

∑
c

i=1
μiðxjÞ=1 ð15Þ

3. Calculate the centroids for the lower and upper fuzzy partition matrix using the
Eqs. (10) and (11) respectively.

4. Calculating the update of the fuzzy partition matrices for lower and upper bound
of the interval using the Eqs. (8) and (9) respectively.

5. Type reduction of the fuzzy partition matrix and centroid, if the problem
requires using the Eqs. (12) and (13) respectively.

6. Repeat steps 3 to 5 until jJm̃ðtÞ− Jm̃ðt− 1Þj< ε.
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This extension on the FCM algorithm is intended to realize that this algorithm is
capable of handling uncertainty and is less susceptible noise.

4 Designing Type-2 Fuzzy Inference Systems Using
Interval Type-2 Fuzzy C-Means Algorithm

The design of Type-2 Inference Systems is performed taking into account the lower
and upper centroid matrices and the lower and upper fuzzy membership matrices
generated by the Interval Type-2 Fuzzy C-Means.

But for designing a Fuzzy Inference System is necessary to define input and
output variables and rules of inference, the number of input and output variables
will be given for the number of dimensions or characteristics of the data input and
data output respectively. The number of membership functions for each input and
output variable, is given by the number of clusters specified to IT2FCM algorithm
for the input and output data clustering.

In creating the membership functions of the input and output variables, the
centroid matrices and the fuzzy membership matrices of the lower and upper
bounds of the interval are used, in this particular case Type-2 Gaussian membership
functions are created this is because that the parameter for this membership func-
tions are center and standard deviation.

The centers for the Gaussian membership functions for the lower and upper
bound of the interval are provided by the IT2FCM algorithm. The standard devi-
ation for the lower and upper Gaussian membership functions can be found using
the following equations:

σi =
1
n
∑
n

j=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−

xj − vi
� �2
2 ln μ

i
ðxjÞ

vuut ð16Þ

σi =
1
n
∑
n

j=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−

xj − vi
� �2
2 ln μiðxjÞ

s
ð17Þ

As shown in Fig. 2, the calculation of the standard deviation is performed using
the matrices of centroids, the fuzzy membership matrices and the dataset to which
applied the IT2FCM algorithm to find the above matrices. Once the standard
deviation is calculated for each centroid found in the matrices of the lower and
upper centroids, one proceeds to create the functions for the lower and upper limit
of the interval as shown in Fig. 2, with the following equations:
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gauss=minðgauss1, gauss2Þ ð18Þ

gauss=
1 ifminðvi, viÞ< x<maxðvi, viÞ

maxðgauss1, gauss2Þ otherwise

�
ð19Þ

where

gauss1ðx, σi, viÞ= e
− 1

2
x− vi
σi

� �2

ð20Þ

gauss2ðx, σi, viÞ= e
− 1

2
x− vi
σi

� �2

ð21Þ

Once the input and output variables are established with their respective mem-
bership functions are performed the creation of rules as shown in Fig. 2. In this

Fig. 2 Block diagram for designing Type-2 fuzzy inference systems using IT2FCM algorithm
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particular case the amount of rules created will depend on the number of functions
of membership, that is, if we have a fuzzy system with an input variable and an
output variable with three functions of membership in each variable rules would
formed as follows, see Table 1.

4.1 Type-2 Fuzzy Systems Designed for Time Series
Prediction

In this section we present the structure of the Mamdani and Sugeno T2 FIS
designed by the IT2FCM algorithm for the Mackey-Glass time series prediction and
the results obtained by T2 FIS designed. In Figs. 3 and 5, the structure of Mamdani
and Sugeno are shown respectively of the T2FIS designed for the prediction of time
series Mackey- Glass using IT2 FCM algorithm.

From the Mackey-Glass time series 800 pairs of data points were extracted
[9, 13, 17–19, 22, 23, 24]. The work of the T2FIS consist in predict x(t) from to a

Table 1 Example of rule
creation with IT2FCM

if input1 is mf1 then output1 is mf1
if input1 is mf2 then output1 is mf2

⋮
if input1 is mfn then output1 is mfn

Fig. 3 T2 FIS Mamdani designed by IT2FCM for mackey-glass time series forecast
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Fig. 4 Results of the Mackey-Glass time series prediction using the Mamdani Type-2 Fuzzy
inference system designed by IT2FCM

Fig. 5 T2 FIS Sugeno designed by IT2FCM for time series forecast Mackey-Glass
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data set created with three column vectors with 6 periods of delay in each vector of
the time series, that is, x(t − 18), x(t − 12), and x(t − 6). Therefore the format of the
training data is:

x t− 18ð Þ, x t− 12ð Þ, x t− 6ð Þ ; x tð Þ½ � ð22Þ

where t = 19 to 818 and x(t) is the desired prediction of the time series. The first
400 pairs of data are used to create the T2 FIS, while the other 400 pairs of data are
used to test the T2 FIS designing. In Figs. 4 and 6, one can observe the result of the
prediction of the time series Mackey-Glass using Type-2 Fuzzy Systems designed
by IT2FCM algorithm.

4.2 Type-2 Fuzzy Systems Designed for the Classification
of the Dataset Iris Flower

In this section we present the structure of Mamdani and Sugeno T2 FIS designed by
IT2FCM algorithm for classification of the dataset iris flower and the result
obtained by T2 FIS designed. In Figs. 7 and 9, are shown the Mamdani and Sugeno
structure respectively of the T2FIS designed for classification of the dataset iris
flower using IT2 FCM algorithm.

The iris flower dataset consists of 150 samples in each of the 4 characteristics
and 3 classes of flowers, i.e., 50 samples per class. To create the T2 FIS, 50 % of the
samples are used and the other 50 % of the samples are used to test the fuzzy system
created using the IT2FCM algorithm.

In Figs. 8 and 10, one can observe the result of the classification of the iris flower
dataset using Type-2 Fuzzy Systems designed by IT2FCM algorithm.

Fig. 6 Result of the
Mackey-Glass time series
prediction using the Sugeno
Type-2 Fuzzy inference
system designed by IT2FCM
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Fig. 7 Mamdani T2 FIS designed by IT2FCM for classification of Iris data set

Fig. 8 Classification results
for Iris data set using
Mamdani T2 FIS designed by
IT2FCM
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5 Conclusions

The IT2FCM algorithm allows us to design FIS from clusters found in a data set,
allowing us to create FIS for classification or time series prediction problems from
clusters found in input and output data, given to the algorithm.

Fig. 9 Sugeno T2 FIS designed by IT2FCM for classification of the Iris data set

Fig. 10 Classification results
for Iris data set using the
sugenot2 FIS designed by
IT2FCM
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The results obtained by the Sugeno FIS designed by the IT2FCM algorithm for
the problem of classification of iris flower was good achieving a 94.67 % of correct
classification, but the result obtained by Mamdani FIS designed by IT2FCM
algorithm for the above problem was not as good as expected getting a 65.33 % of
correct classification.

The results obtained by the Sugeno FIS designed by the IT2FCM algorithm for
the problem of time series prediction was 0.1133 of error prediction, but the results
obtained by the Mamdani FIS designed by the IT2FCM algorithm for the above
problem was 0.1646 of error prediction.
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Multiple-Criteria Evaluation in the Fuzzy
Environment Using the FuzzME Software

Pavel Holeček, Jana Talašová and Jan Stoklasa

Abstract This chapter describes a software tool for fuzzy multiple-criteria

evaluation called FuzzME. The chapter will show the reader in an easy-to-read style

how to apply the software for solving a broad range of fuzzy MCDM problems. The

mathematical foundation on which the FuzzME software is built will be described

and demonstrated on an example. The FuzzME implements a complete system of

fuzzy methods. A common feature of all these methods is the type of evaluation that

is well-suited to the paradigm of fuzzy set theory. All evaluations in the presented

models are in the form of fuzzy numbers expressing the extent to which goals of eval-

uation have been fulfilled. The system of fuzzy methods can deal with different types

of interaction among criteria of evaluation. If there is no interaction among criteria,

then either fuzzy weighted average, fuzzy OWA operator, or fuzzified WOWA oper-

ator is used to aggregate partial evaluations (depending on evaluator’s requirements

on the type of evaluation). If interactions among criteria are in the form of redun-

dancy or complementarity, then fuzzified discrete Choquet integral is an appropriate

aggregation operator. In case of more complex interactions, the aggregation function

is described by an expertly defined base of fuzzy rules. The FuzzME also contains

additional tools which make it possible to perform analysis of the designed evalua-

tion model and to adjust it easily.
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1 Introduction

Multiple-criteria evaluation problems are very common in the practice. For example

a bank needs to evaluate the credibility of a company in order to decide if it should

be granted a credit or not; or a company hiring new employees has to evaluate all

the candidates for the job to determine who of them is the best one. Because the

values of the qualitative criteria are given expertly, they contain some uncertainty.

Moreover, the values of the quantitative criteria are not always known precisely, too.

Therefore, it is reasonable to use fuzzy models of multiple-criteria evaluation, which

can take this uncertainty into account.

There are plenty of MCDM software tools. However, only few of them employ

fuzzy sets. One of them, the FuzzME software, will be presented in this chapter. The

mathematical methods used in the software will be summarized and the possibilities

of the software tool will be demonstrated on an example.

2 Example

The theory will be shown on the following simplified example, which is designed

so that the possibilities of the FuzzME software could be demonstrated easily. Later,

we will mention three real applications.

Let us assume that a software company wants to hire a new programmer. Many

candidates applied for this vacancy. The company has to evaluate the candidates and

choose the best of them. The HR-manager has listed the following criteria that have

importance for the company: language skills, C# programming language knowledge,

Java programming language knowledge, ability to work in teams, motivation, length
of practice in years and the references from the previous employers.

The given problem contains many obstacles: (1) there are both qualitative and

quantitative criteria, (2) some of the criteria values can be very uncertain (for exam-

ple the motivation is evaluated just by the impression of the candidate on the HR-

manager), (3) some criteria values could not be known at all, and, finally, (4) the

evaluation criteria are not fully independent. We will show that all of these difficul-

ties can be overcome with the presented model.

3 The Used Evaluation Model

3.1 The Basic Notions of the Fuzzy Set Theory

In this section, we will mention briefly some of the notions that will be used through-

out this chapter. More detailed information on the fuzzy set theory can be found for

example in [4].
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A fuzzy set A on a universal set X is characterized by its membership function A ∶
X → [0, 1]. Ker A denotes a kernel of A, Ker A = {x ∈ X ∣ A(x) = 1}. For any 𝛼 ∈
[0, 1], A

𝛼
denotes an 𝛼-cut of A, A

𝛼
= {x ∈ X ∣ A(x) ≥ 𝛼}. A support of A is defined

as Supp A = {x ∈ X ∣ A(x) > 0}. The height of the fuzzy set A, hgt A, is defined as

hgt A = sup {A(x) ∣ x ∈ X} .
The symbol ̃0 will denote the crisp 0 in form of a fuzzy singleton, i.e. ̃0(0) = 1

and ̃0(x) = 0, for x ∈ ℜ, x ≠ 0. Similarly, the fuzzy set ̃1 will be a fuzzy singleton

representing the crisp 1, i.e. ̃1(1) = 1 and ̃1(x) = 0, for x ∈ ℜ, x ≠ 1.

A fuzzy number is a fuzzy set C on the set of all real numbers ℜ which satisfies

the following conditions: (a) the kernel of C, Ker C, is not empty, (b) the 𝛼-cuts of C,

C
𝛼
, are closed intervals for all 𝛼 ∈ (0, 1], (c) the support of C, Supp C, is bounded.

Real numbers c1 ≤ c2 ≤ c3 ≤ c4 are called significant values of the fuzzy number

C if the following holds: [c1, c4] = Cl(Supp C), [c2, c3] = Ker C, where Cl(Supp C)
denotes a closure of Supp C. A fuzzy number C is said to be linear, if its member-

ship function between each pair of the neighboring significant values is linear. The

linear fuzzy number C is called triangular if c2 = c3, otherwise it is called trape-

zoidal. In the examples, linear fuzzy numbers will be described by their significant

values. Therefore, we will write such a fuzzy number as C = (c1, c2, c3, c4) if C is

trapezoidal, or simply C = (c1, c2, c4) if C is a triangular fuzzy number.

Any fuzzy numbers C can be described, beside its membership function, in an

alternative way by a pair of functions c ∶ [0, 1] → ℜ, c ∶ [0, 1] → ℜ defined as fol-

lows

C
𝛼
= [c(𝛼), c(𝛼)] for all 𝛼 ∈ (0, 1], and (1)

Cl(Supp C) = [c(0), c(0)]. (2)

Then, the fuzzy number C can be written in the form C =
{[
c(𝛼), c(𝛼)

]
, 𝛼 ∈

[0, 1]
}
.

Let A be a fuzzy number, A = {[a(𝛼), a(𝛼)], 𝛼 ∈ [0, 1]}. Let a constant c ∈ ℜ
be given. Multiplying the fuzzy number A by the real number c we obtain a fuzzy

number c ⋅ A defined as follows

c ⋅ A =
{{[

c ⋅ a(𝛼), c ⋅ a(𝛼)
]
, 𝛼 ∈ [0, 1]

}
for c ≥ 0{[

c ⋅ a(𝛼), c ⋅ a(𝛼)
]
, 𝛼 ∈ [0, 1]

}
for c < 0. (3)

Let A and B be fuzzy numbers, A = {[a(𝛼), a(𝛼)], 𝛼 ∈ [0, 1]}, B = {[b(𝛼), b(𝛼)],
𝛼 ∈ [0, 1]}. Their sum, A + B, is a fuzzy numbers given as follows:

A + B =
{[
a(𝛼) + b(𝛼), a(𝛼) + b(𝛼)

]
, 𝛼 ∈ [0, 1]

}
(4)

Similarly, a subtraction, multiplication and division of fuzzy numbers could be

defined (see e.g. [4, 8]). They, however, will not be needed in the further text.

A linguistic variable [15] is defined as a quintuple ( ,  (),X, G,M), where 

is a name of the variable,  () is a set of its linguistic values, X is a universal set
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on which the meanings of the linguistic values are defined, G is a syntactic rule for

generating values in  (), andM is a semantic rule which maps each linguistic value

 ∈  () to its mathematical meaning, C = M(), which is a fuzzy set on X.

An ordering of fuzzy numbers is defined as follows: a fuzzy number C is greater

than or equal to a fuzzy number D, C ≥ D, if C
𝛼
≥ D

𝛼
for all 𝛼 ∈ (0, 1]. The

inequality of the 𝛼-cuts C
𝛼
≥ D

𝛼
is the inequality of intervals C

𝛼
= [c(𝛼), c(𝛼)],

D
𝛼
= [d(𝛼), d(𝛼)] which is defined as

[c(𝛼), c(𝛼)] ≥ [d(𝛼), d(𝛼)] if, and only if, c(𝛼) ≥ d(𝛼) and c(𝛼) ≥ d(𝛼).

This relation is only a partial ordering and many fuzzy numbers can be incomparable

this way. However, it is possible to order any fuzzy numbers according to their centers

of gravity [4].

3.2 The Basic Structure of the Evaluation

The basic structure used for the evaluation is called a goals tree. The root of the tree

represents the main goal. The main goal is consecutively divided into partial goals

of lower level. The partial goals at the end of the branches are connected with either

qualitative or quantitative criteria.

All evaluations in the presented models are in the form of fuzzy numbers on the

interval [0, 1]. They express how much have the particular partial goals been fulfilled.

The evaluation ̃0 means that the particular alternative does not fulfill our goal at all,

while the evaluation ̃1 means that we are fully satisfied with the alternative with

respect to the particular partial goal.

When an alternative is evaluated, the evaluations with respect to the criteria at

the end of the goals tree branches are calculated first. Those evaluations are, as it has

already been said, fuzzy numbers on [0, 1]. These evaluations are then aggregated

together to obtain the evaluation of the partial goal on the higher level in the goals

tree. For the aggregation, we can use one of the supported aggregation operators

(fuzzy weighted average, fuzzy OWA operator, fuzzified WOWA, or fuzzy Choquet

integral) or a fuzzy expert system. The process of aggregation is repeated until the

root of the goals tree is reached. The evaluation in the root of the tree is the overall

evaluation of the alternative.

The resulting evaluations are fuzzy numbers. The FuzzME software presents the

result in several forms and thus ensuring that they will be easy to interpret for the

decision-maker. The results are provided not only in the numerical (e.g. center of

gravity, kernel) form, but they are also described verbally by a linguistic approxima-

tion (for more information see [8]) and they are presented in a graphical form. The

alternatives can be also ordered by the centers of gravity of their evaluations.

The goals tree for our example is depicted in the Fig. 1. The next sections will

describe each part of the evaluation process in more detail.
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Fig. 1 A goals tree for evaluation of the candidates by the company

3.3 Evaluation Criteria

Two types of criteria can be used—qualitative and quantitative ones. Each of them

is evaluated in a different way.

For qualitative criteria, a linguistic variable has to be defined in advance. When

an alternative is evaluated according to a qualitative criterion, the decision-maker

selects the value from the linguistic variable, which is the best-fitting for the alterna-

tive. Let us assume, the linguistic variable from the Fig. 2 is used for all qualitative

criteria in our example. Language skills are an example of such a criterion. When a

candidate is evaluated, the expert chooses the best fitting term for his/her language

skills. The expert can asses them for example to be very good. As an evaluation of

the alternative (candidate) according to this criterion, the fuzzy number that models

meaning of the term very good will be taken, i.e. the trapezoidal fuzzy number with

the significant values (0.78, 0.89, 1, 1).
For quantitative criteria, an evaluating function has to be defined first. An example

of a quantitative criterion is the length of practice of the candidate measured in years.

Fig. 2 A linguistic variable

for the qualitative criteria
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Fig. 3 An evaluating

function for Length of
practice (in years)

The evaluation function for this criterion is depicted in the Fig. 3. By this function,

the expert expresses that the candidates, who do not have more than one year of

practice, are completely unsatisfactory, whereas the candidates with 5 or more years

of practice are fully satisfactory for the company. For example, a candidate with 3

years of practice fulfills the goal in the degree 0.5. If the number of year is not known

precisely, it could be given by a fuzzy number and the resulting evaluation is then

calculated according to the extension principle. For example, if a candidate has 1 year

of experiences with the software and methods used in the company, another year of

experience with the a similar software and methods and, finally, two years, when

he/she worked with something completely different, which can however turn out to

be helpful, we could model the length of practice by a triangular fuzzy number with

the significant values (2, 3, 4). Using the extension principle, we obtain the fuzzy

evaluation of this criterion as a triangular fuzzy number (0.25, 0.5, 0.75).

3.4 Aggregation

The evaluations of the partial goals on the lower level are aggregated together so that

the evaluation of the partial goal on the higher level would be obtained. For this, the

decision-maker can employ multiple methods. Most of them are fuzzified versions

of well-known aggregation operators. Because of the space limitation, we will not

be able to describe all of them in detail. For their full description, please see [8].

It is possible to use different aggregation methods in the same goals tree. More-

over, the FuzzME contains algorithms to make a subsequent change of one aggre-

gation method to another one really easy. If the expert used the fuzzy weighted

average originally and then he/she would like to change the method to, for example,

the fuzzified Choquet integral, the corresponding FNV-fuzzy measure is generated

in the FuzzME automatically. The detailed description how is this done can be found

in [7].

The choice of the aggregation method depends on the relationship among the

partial goals and on the requirements of the decision-maker on the behavior of the

evaluating function.
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We will show all of the supported methods on the partial evaluation of Program-
ming, which is obtained by the aggregation of the candidate’s knowledge evaluations

of C# and Java programming languages.

3.5 Fuzzy Weighted Average

The weighted average is probably the most commonly used aggregation operator.

One of its fuzzified versions, which is used in the FuzzME, has been proposed in

[10]. It uses the structure of normalized fuzzy weights, which represent an uncertain

division of the whole into parts.

Definition 1 Fuzzy numbers W1,… ,Wm defined on [0, 1] form normalized fuzzy

weights [10] if for any i ∈ {1,… ,m} and any 𝛼 ∈ (0, 1] it holds that for anywi ∈ Wi𝛼
there exist wj ∈ Wj𝛼, j = 1,… ,m, j ≠ i, such that

wi +
m∑

j=1,j≠i
wj = 1. (5)

Definition 2 The fuzzy weighted average of the partial fuzzy evaluations, i.e., of

fuzzy numbers U1,… ,Um defined on [0, 1], with the normalized fuzzy weights

W1,… ,Wm is a fuzzy number U on [0, 1] whose membership function is defined

for any u ∈ [0, 1] as follows

U(u) = max{min{W1(w1),… ,Wm(wm),U1(u1),… ,Um(um)}

∣
m∑

i=1
wi ⋅ ui = u,

m∑

i=1
wi = 1, wi, ui ∈ [0, 1], i = 1,… ,m}. (6)

If the company from our example prefers the candidates to have knowledge of

Java, they could use the fuzzy weighted average with the following normalized fuzzy

weights for both of the criteria: WC# = (0.2, 0.3, 0.4), WJava = (0.6, 0.7, 0.8).
Figure 4 shows the graph of the evaluation function. Because the result is, in our

case, a triangular fuzzy number, three surfaces are plotted in the graph. Each of

them represents one significant value of the resulting fuzzy number. This way, we

are able to visualize the entire information about the result, and not just some of

its characteristics (such as the center of gravity). This will help to understand the

behavior of the evaluation function better. On the x-axis, there is an evaluation of the

C# knowledge, on the y-axis, there is an evaluation of the Java knowledge. In order

to be able to construct the graph, we assume only crisp values of those two partial

evaluations (i.e. fuzzy singletons on [0, 1]). For the comparison, Fig. 4a shows the

result with the crisp weights WC# = 0.3, WJava = 0.7.

When we study the Fig. 4, we can see that if both of the partial evaluations are

equal, the result is a fuzzy singleton. The more the two evaluations differ, the more
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Fig. 4 Evaluation by fuzzy weighted average. a In the crisp case. b In the fuzzy case

uncertainty is contained in the overall evaluation. This is an important property of the

fuzzy weighted average, which is very beneficial for the multiple-criteria decision-

making.

To make this behavior clearer, let us consider a fuzzy weighted average of 4 par-

tial evaluationsU1, U2, U3, U4 with uniform normalized fuzzy weights (W1 = W2 =
W3 = W4 = (0.05, 0.25, 0.45)). The partial evaluations can represent evaluations of

various aspects of a bank client. Let us consider the situation when the client eval-

uation is average according to all of the four aspects and another situations, when

the client is evaluated as excellent according the half of the aspects and completely

unsatisfactory according to the rest of them. Then evaluation with the regular

weighted average using uniform non-fuzzy weights average would make no differ-

ence between those two cases and evaluate the client as average (0.5). If the fuzzy

weighted average is used the two fuzzy evaluations will have the same center of

gravity, however, the latter one will be much more uncertain. The fuzzy weighted

average takes into consideration also the dispersion of the aggregated values. This is

shown in the Fig. 5a, b. In the Fig. 5a, the aggregated values are closer to each other

and therefore the result is less uncertain. On the other hand, in Fig. 5b, the aggregated

values differ more so the resulting fuzzy evaluation is more uncertain.

Fig. 5 Comparison of results of the fuzzy weighted average when the aggregated values are

a close to each other, b further apart
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3.6 Fuzzy OWA Operator

Sometimes it is not necessary to set the importances directly for the individual partial

goals (programming languages in this case). Instead, the importances should be set

according to the order of the evaluation (in which programming language is the pro-

grammer more skilled). This can be done by the OWA operator [14]. The FuzzME

implements its fuzzified version that has been introduced in [12]. Similarly to the

fuzzy weighted average mentioned before, it also uses the structure of normalized

fuzzy weights.

Definition 3 The fuzzy OWA of the partial fuzzy evaluations, i.e., of fuzzy num-

bers U1,… ,Um defined on [0, 1], with normalized fuzzy weights W1,… ,Wm is a

fuzzy number U on [0, 1] whose membership function is defined for any u ∈ [0, 1]
as follows

U(u) = max{min{W1(w1),… ,Wm(wm),U1(u1),… ,Um(um)}

∣
m∑

i=1
wi ⋅ u𝜙(i) = u,

m∑

i=1
wi = 1, wi, ui ∈ [0, 1], i = 1,… ,m}, (7)

where 𝜙 denotes such a permutation of the set of indices {1,… ,m} that u
𝜙(1) ≥

u
𝜙(2) ≥ … ≥ u

𝜙(m).

If the company prefers neither of the programming languages but wants the can-

didate to be good at least in one of them, a fuzzy OWA operator with the follow-

ing normalized fuzzy weights can be used: W1 = (0.7, 0.8, 0.9), W2 = (0.1, 0.2, 0.3).
This way, the higher importance will be attached to the programming language that

the candidate knows better. However, the evaluation of knowledge of the other pro-

gramming language will be taken into account, too. The behavior of the evaluation

function can be seen in the Fig. 6b. It can be compared with the crisp OWA operator

(using weights W1 = 0.8, W2 = 0.2) whose graph is depicted in the Fig. 6a. It can be
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Fig. 6 Evaluation by OWA operator. a In the crisp case. b In the fuzzy case
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seen that the behavior when normalized fuzzy weights are used is similar as in case

of the fuzzy weighted average. The more dispersion between the aggregated partial

evaluations, the more uncertain result.

3.7 Fuzzifed WOWA Operator

The WOWA operator, which combines advantages of both weighted average and the

OWA, has been proposed by Torra in [13]. In this case, two m-tuples of weights are

used. The first one, (w1,… ,wm), corresponds to the individual partial goals (as in

case of the weighted average), the latter one, (p1,… , pm), is connected with the order

of the evaluation (as in OWA operator).

The FuzzME uses the fuzzified WOWA operator defined in [8]. In this case, the

input variables are fuzzy numbers but the weights are crisp. Otherwise, all the other

aggregation methods in FuzzME accept both the input variables and the importances

expressed in the form of fuzzy numbers. The implementation of the fuzzified WOWA

with fuzzy weights will be the topic of the future research.

Definition 4 Let Ui, i = 1,… ,m, be fuzzy numbers and let wi and pi, i = 1,… ,m,

be two set of normalized (real) weights. Then the result of the aggregation by a

fuzzified WOWA operator is a fuzzy number U = {[u(𝛼), u(𝛼)], 𝛼 ∈ [0, 1]} defined

for any 𝛼 ∈ [0, 1] as follows

u(𝛼) =
m∑

i=1
𝜔
L
i ⋅ u𝜎(i)(𝛼), (8)

u(𝛼) =
m∑

i=1
𝜔
R
i ⋅ u𝜒(i)(𝛼), (9)

where 𝜎, and 𝜒 are permutations of the set of indices {1,… ,m} such that u
𝜎(1)(𝛼) ≥

⋯ ≥ u
𝜎(m)(𝛼) and u

𝜒(1)(𝛼) ≥ ⋯ ≥ u
𝜒(m)(𝛼). The weights 𝜔

L
i and 𝜔

R
i , i = 1,… ,m, are

defined for the given 𝛼 as

𝜔
L
i = z(

∑

j≤i
w
𝜎(j)) − z(

∑

j<i
w
𝜎(j)), (10)

𝜔
R
i = z(

∑

j≤i
w
𝜒(j)) − z(

∑

j<i
w
𝜒(j)), (11)

where z is a nondecreasing piece-wise linear function interpolating the following

points

{(0, 0)} ∪ {(i∕m,
∑

j≤i
pj)}i=1,…,m. (12)
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Fig. 7 Evaluation by

fuzzified WOWA operator

(only version with crisp

weights is implemented in

FuzzME)
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As it has been mentioned, the fuzzified WOWA requires two set of normalized

(real) weights—one, which is connected to the individual partial goals as in case

of the weighted average, and another one, which is connected to the order of their

evaluations as in the case of OWA. The company could therefore use the following

sets of weights to combine the previous two approaches: wC# = 0.3, wJava = 0.7, and

p1 = 0.8, p2 = 0.2.

The evaluating function is depicted in the Fig. 7. As this version of fuzzified

WOWA uses crisp weights only (and therefore, if evaluations of the C# and Java

are crisp, the result will be also crisp), the graph coincides with the graph of the

crisp WOWA.

3.8 Fuzzified Choquet Integral

The aggregation methods mentioned so far assumed that there are no interactions

among the aggregated partial goals. Otherwise, their result could be misleading. If

the interactions are present and they have the character of redundancy or comple-

mentarity, the discrete Choquet integral [3] can be used for the evaluation.

The FuzzME provides the possibility to aggregate the partial evaluations by the

fuzzified Choquet integral that has been introduced in [2]. This fuzzification uses a

FNV-fuzzy measure (whose values are fuzzy numbers) instead of a fuzzy measure

(whose values are, despite its name, crisp numbers). The FNV-fuzzy measure and

the fuzzified Choquet integral are defined as follows.

Definition 5 Let G = {G1,… ,Gm} be a nonempty finite set, ℘(G) be the family

of all its subsets. Then, a FNV-fuzzy measure on G is a set function 𝜇̃ ∶ ℘(G) →
N([0, 1]) satisfying the following conditions:
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∙ 𝜇̃(∅) = ̃0, 𝜇̃(G) = ̃1, and

∙ C ⊆ D implies 𝜇̃(C) ≤ 𝜇̃(D) for any C,D ∈ ℘(G).

Definition 6 The fuzzified Choquet integral of a FNV-function F with respect to the

FNV-fuzzy measure 𝜇̃ is defined as a fuzzy number U with a membership function

given for any u ∈ [0, 1] as

U(u) = max
{
min

{
U1(u1),… ,Um(um), 𝜇̃(B𝜌(1))(𝜇1),… , 𝜇̃(B

𝜌(m))(𝜇m)
}
∣ (13)

u = (C)
∫G

fd𝜇, where f ∶ G → [0, 1] such that f (Gi) = ui, i = 1,… ,m,

𝜇 is a fuzzy measure on G such that 𝜇(B
𝜌(i)) = 𝜇i, i = 1,… ,m

}
,

where 𝜌 denotes such a permutation of the set of indices {1,… ,m} that

u
𝜌(1) ≤ u

𝜌(2) ≤ ⋯ ≤ u
𝜌(m) and B

𝜌(i) = {G
𝜌(i),… ,G

𝜌(m)}. By definition, we will set

B
𝜌(m+1) = ∅.

The C# and Java programming languages have lots in common. If a programmer

excels in one of them, he/she can learn the other one quite quickly. We can see that

there is a relationship of redundancy among these criteria and the Choquet integral

is ideal for these cases. In the FuzzME, its fuzzified version is available, where not

only the aggregated values, but also the measure values are represented by fuzzy

numbers. The following FNV-fuzzy measure can be used for this case: 𝜇̃(∅) = ̃0,

𝜇̃(C#) = (0.4, 0.5, 0.6), 𝜇̃(Java) = (0.7, 0.8, 0.9), 𝜇̃(C#, Java) = ̃1.

The graph of the resulting evaluation function can be seen in the Fig. 8b. For

comparison, the graph of the crisp Choquet integral is in the Fig. 8a (the used fuzzy

measure is 𝜇(∅) = 0, 𝜇(C#) = 0.5, 𝜇(Java) = 0.8, 𝜇(C#, Java) = 1).
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Fig. 8 Evaluation by the Choquet integral. a The crisp case (a fuzzy measure is used) b The fuzzy

case (a FNV-fuzzy measure is used)
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3.9 Fuzzy Expert System

If there are complex relationships among the aggregated partial goals that cannot be

handled even by the fuzzified Choquet integral, a fuzzy expert system can be always

used. The evaluation function is expressed in form of the fuzzy rule base, which has

the following form.

If 1 is 1,1 and … and m is 1,m, then  is 1,

If 1 is 2,1 and … and m is 2,m, then  is 2,

…………………………………………
If 1 is n,1 and … and m is n,m, then  is n,

where for i = 1, 2,… , n, j = 1, 2,… ,m:

∙ (j,  (j), [0, 1],Mj,Gj) are linguistic variables representing partial evaluations,

∙ ij ∈  (j) are their linguistic values and Uij = Mj(ij) are fuzzy numbers on

[0, 1] representing their meanings,

∙ ( ,  (), [0, 1],M,G) is a linguistic variable representing the overall evaluation,

∙ i ∈  () are its linguistic values and Ui = M(i) are fuzzy numbers on [0, 1]
representing their meanings.

Then, one of many inference algorithms can be used to calculate the resulting

evaluations. For evaluation, the FuzzME supports the well-known Mamdani infer-

ence [9], Sugeno-WA [11], and Sugeno-WOWA [6] inference. For better description

of the latter two methods, see [8].

From the supported inference methods, the Sugeno-WA will be shown as an exam-

ple. Its advantage is its simplicity (the result is obtained as a weighted average of

fuzzy numbers). Another benefit is that the method guarantees that its result is again

a fuzzy number (which generally does not hold for the Mamdani inference).

The result of the Sugeno-WA inference [8] is obtained by the following two steps.

1. First, the degree hi of correspondence between the given m-tuple of fuzzy values

(U′
1,U

′
2,… ,U′

m) of partial evaluations and the mathematical meaning of the left-

hand side of the i-th rule is calculated for any i = 1,… , n in the following way

(the minimum operator is used to model the intersection of fuzzy sets)

hi = min{hgt(U′
1 ∩ Ui,1),… , hgt(U′

m ∩ Ui,m)}. (14)

2. The resulting fuzzy evaluation U is then computed as a weighted average of the

fuzzy evaluations Ui, i = 1,… , n, which model mathematical meanings of lin-

guistic evaluations on the right-hand sides of the rules, with the weights hi. This

is done by the formula

U =
∑n

i=1 hi ⋅ Ui
∑n

i=1 hi
, (15)
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Fig. 9 Evaluation by fuzzy expert system using the SugenoWA inference. a Center of gravity.

b Full visualization of the result

where the multiplication and addition are performed by the standard fuzzy num-

bers arithmetic operations (i.e. by the Formulas 3 and 4).

The company can also use a fuzzy expert system and describe the relationship

between the two aggregated partial evaluations and the resulting evaluation by a set

of if-then rules. An example of such a rule might be: If Java knowledge = good and
C# knowledge = very good, then programming knowledge = very good. Then the

resulting evaluation can be calculated using the well-known Mamdani inference, or

by the Sugeno-WA inference algorithm.

The Fig. 9b shows the result of the SugenoWA with a sample fuzzy rule base for

this example. The information, which fuzzy rules have been used, is not relevant for

this chapter. Instead, the figure should show the reader how this evaluating function

typically looks like in general. For comparison, only the center of gravity is plotted

in the Fig. 9a.

3.10 Interpretation of the Results

The process of aggregation stops when we reach the root of the goals tree. Its

evaluation is also the overall evaluation of the given alternative. This evaluation is

expressed by a fuzzy number on [0, 1].
The decision-maker is provided with several forms of the final evaluation. All

evaluations are presented graphically by means of the graph of the membership func-

tion of the evaluation (which is a fuzzy number). Various numerical characteristics

are calculated for the evaluations: the center of gravity [4], or the uncertainty measure

[8]. Finally, the evaluations are also described verbally by a linguistic approximation

on a linguistic variable defined by the decision-maker. This makes the results easy

to interpret.
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The alternatives can be ordered by the FuzzME software. The centers of gravity

of their evaluations are used for this comparison.

The reader is invited to try this simple application in the FuzzME on his/her own.

On the http://www.FuzzME.net, the demo-version of FuzzME can be downloaded

and the file with this example can be found.

4 FuzzME Software

The software makes it possible to design the fuzzy models of multiple-criteria eval-

uation based on the described methods. As soon as any change is done in the model,

the results are recalculated automatically, so the decision-maker can study the impact

of the changes in the model easily. The FuzzME is ideal in situations when a large

number of alternatives (even a few thousands) have to be evaluated and when many

criteria have to be taken into account. The Fig. 10 shows the main window of the

software. On the left-hand side, there is a goals tree editor. The right-hand side dif-

fers according to the selected goals tree node. In this case, the figure shows the user

interface for setting the normalized fuzzy weights.

The linguistic variables can be designed in the linguistic variable editor (Fig. 11).

The user can design the desired linguistic variable easily—when the dialog is opened

the number of values and the type of fuzzy numbers (triangular, trapezoidal, etc.) that

should model the terms’ meanings is chosen. Then the linguistic variable is generated

automatically. The user only needs to set the names of the terms. The fuzzy numbers

that model the terms’ meaning can be of course adjusted by the user.

Fig. 10 The main window of the FuzzME software

http://www.FuzzME.net
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Fig. 11 Designing the linguistic variable in the FuzzME

The results of the evaluation are presented in a comprehensible way (Fig. 12).

Next to the alternative name, its fuzzy evaluation (fuzzy number) is plotted. The

expert has thus the full information for his/her decision. Below the alternative name,

its linguistic description is present. The alternatives can be ordered by their names

or by the centers of gravity of their evaluations.

Besides the summary of the results, the expert can view the resulting evaluation of

any alternative (which is a fuzzy number on [0, 1]) in the fuzzy number editor. There,

the overall evaluation and its characteristics (such as center of gravity, uncertainty

measure, etc.) can be studied in detail to make a qualified decision (Fig. 13).

Fig. 12 The summary of the evaluated alternatives in the FuzzME
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Fig. 13 The alternative’s overall evaluation can be viewed in the fuzzy number editor in FuzzME

for the more detailed insight into the alternative evaluation

Additional information and the demo-version of the software can be found at the

FuzzME website http://www.FuzzME.net.

5 Real-World Applications

Three real-world applications of the FuzzME software will be described. The first

one is a soft-fact rating problem of one of the Austrian banks [5]. The results can

be then used by the bank in deciding whether a company should be granted a credit

or not. The second application concerns with a real programmer evaluation in an IT

company [16]. And, finally, the third application presents an assessment of safety for

agri-food buildings [1].

5.1 Companies Rating by a Bank

The first application of the FuzzME software was a soft-fact-rating problem of one of

the Austrian banks. The problem itself, the way how it has been solved with FuzzME

and the conclusions that has been made are described in [5]. This problem was solved

in co-operation with the Technical University in Vienna.

The model designed in the FuzzME represented the evaluation of companies

according to the soft (qualitative) data. This evaluation, together with evaluation of

the companies according to the hard (numerical) data, could be used as one of the

materials for deciding on grating a credit by the bank to the company.

http://www.FuzzME.net
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The goals tree contained altogether 27 qualitative criteria. First, only the fuzzy

weighted average has been used for the aggregation of the partial evaluations.

Multiple settings have been tested and compared (crisp weights, or normalized fuzzy

weights; simple fuzzification of the scales used by the bank, or more complex lin-

guistic variables that tried to model the meaning of the individual terms as precise

as possible). The more detailed description can be found in [5, 8].

In the subsequent analysis and discussion of the results, it has shown out that there

are some combinations of criteria that indicate a significant danger that the company

will go bankrupt or will have problems acquitting its debt. Therefore, another eval-

uation has been performed by a fuzzy expert system. Each rule in the fuzzy expert

system represented one of those dangerous criteria combinations and assigned it a

risk rate.

The two evaluation were put together by the fuzzified OWA operator with the

weights W1 = ̃0,W2 = ̃1. This corresponds to the infimum of the fuzzy numbers rep-

resenting the both of the partial evaluations.

Altogether, 62 companies were evaluated. This problem clearly showed the advan-

tages of the methodology on which the FuzzME is built—it is possible to use multiple

aggregation methods in the same model, the changes in the model can be done easily

and, finally, the evaluation of a large number of alternatives is possible. In fact, the

subsequent load testing showed that the FuzzME is prepared for much larger set of

alternatives than the provided sample. The FuzzME was able to evaluate thousands

of companies (generated randomly for purpose of the load test) in a reasonable time.

5.2 Employees Evaluation in an IT Company

The FuzzME was used in the area of HR management for periodic evaluation of

employees in the IT company AXIOM SW Ltd [16]. The company has taken a

methodology of Microsoft as a base and adjusted it to fit their needs.

The evaluation is based on the so-called competency model, which reflects the

competency composition necessary for each of the working roles. The following

working roles were identified in the company: senior executive, head of the project,

analyst, consultant, software engineer, dealer, and marketing agent. Each of the work-

ing roles have different (fuzzy) weights assigned to the particular competencies (such

as creative thinking, stress resistance, etc.).

The competencies of individual employees are evaluated by several evaluators—

by the employees themselves in the first place, by their direct supervisor, their subor-

dinates (only in case of mangers), and their colleagues working on the same project.

The linguistic variables are used, so the evaluation is verbal. The evaluations of the

individual evaluators (the fuzzy numbers modeling the meanings of the linguistic

variable values) are aggregated by a fuzzy weighted average. Then, the aggregated

evaluations of the competencies are again aggregated by a fuzzy weighted average.

The evaluation of specific groups of competencies can be also used to determine

the type of the employee. For each of the types, a motivation strategy exists. So the



Multiple-Criteria Evaluation in the Fuzzy Environment . . . 165

results from the FuzzME need not to be used only for a direct assessment of the

employee, but they can be also used to choose the proper motivation strategy for the

particular employee.

5.3 Assessment of Safety in Agri-Food Buildings

The third example is an assessment of the safety in agri-food buildings described in

the paper [1]. The authors of that paper used FuzzME to assess two main aspects

of agri-food buildings—the hygienic safety and the workers’ safety. Various areas of

the buildings are evaluated according to multiple qualitative and quantitative criteria.

For aggregation of the evaluations, a fuzzy expert system is used for some of the

partial goals and a fuzzy weighted average for the others. The model has been tested

on the manufacturing area of a dairy farm located in Italy.

6 Conclusion

In this chapter, a model of multiple-criteria evaluation that is used in the FuzzME

software has been described. The theory has been illustrated on a sample application

of evaluation of new programmers in a company. The main aim was to show the

possibilities of the described methods and the software that implements them. The

readers have the possibility to download the described example from the FuzzME

website and try it on their own. Finally, three real-world applications of the software

have been described.
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Fuzzy Logic in Business
and Industrial Practice



Strategic R&D Project Analysis: Keeping
It Simple and Smart

Mikael Collan and Pasi Luukka

Abstract Strategic R&D projects require forward-looking analysis and face
structural uncertainty, which means that most often precise and detailed information
about them is unavailable. This means that any systems that are used in managing
them must be robust enough to handle the available imprecise information, while at
the same time being simple enough to convey a good-enough overall understanding
of these projects. Fuzzy numbers are a precise way of representing imprecise
information. Triangular fuzzy numbers are simple to use and have an intuitively
understandable graphical presentation. Scorecards are a well-known simple struc-
tured tool for the collection and analysis of information. This chapter proposes
using triangular fuzzy numbers with scorecards to create a simple, easy to under-
stand, easy to visualize, low-cost, multi-expert analysis tools for strategic R&D
projects that can be created by anyone with a laptop computer and spread-sheet
software. New weighted averaging operators that are able to handle interdepen-
dence between criteria are presented. A numerical example is used to illustrate how
a system based on the above-mentioned components works, and how it may offer
smart decision-support for the management of strategic R&D projects, under
structural uncertainty.
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1 Introduction and Background

Making decisions with regards to choosing, continuing, and shutting down strategic
research and development (R&D) projects is a difficult task and sometimes as much
of an art as it is a science. Strategic R&D projects may generate cash-flow only
sometime in the future, but do not necessarily hold any operational or intrinsic
value at the moment. Information available for the analysis of strategic R&D
projects is most often imprecise [18]. Imprecision is also present when “near future”
R&D projects are considered, but it is of a less dramatic nature. In both these cases
having imprecise information makes decision-making more difficult. Yet, still we
must make decisions about these projects!

When classifying the type of uncertainty with regards to R&D projects, we can
most often talk about two relevant categories, depending on how deep the
knowledge (or the lack thereof) is [30, 32]: we can speak about parametric
uncertainty or about structural uncertainty. We face parametric uncertainty, when
we understand the possible future states of the world and know the consequences of
these states. Parametric uncertainty is what typically faces the decision-maker when
decisions are made about R&D projects that will soon be or already could be in
operational use. We face structural uncertainty, when the “structure of the future” is
uncertain, making structural uncertainty a deeper type of uncertainty (than para-
metric uncertainty). The problem with structural uncertainty is that traditional
cash-flow based analysis and single number analysis methods often fail. Structural
uncertainty is what most often faces strategic R&D projects and strategic intel-
lectual property rights (IPR) [12].

Potential is something that is usually connected to uncertainty and inaccuracy in
estimation that it causes by an inverse relationship—where there is a lot of
uncertainty, there is also a possibility that a more positive than the most likely or the
“expected” outcome will take place. It is important from the point of view of a
strategic R&D decision maker to highlight potential and this is not achieved if
estimation inaccuracy is not considered. Single numbers that is, the “normal”
numbers that we use every day, do not consider inaccuracy sufficiently. They are
“precise” in their representation of information, and do not carry knowledge about
the perceived inaccuracy that may, or may not surround them. It is likely that most
strategic R&D projects are evaluated by using single numbers, even if simulation
and other advanced methods are becoming more popular; this means that important
information about the estimation inaccuracy and the negative and the positive
potential of strategic R&D projects may be lost. We don’t want that to happen,
because we lose important information that “we already had” in the first place.

One way to consider and to carry imprecision in analysis is to use fuzzy logic to
give a precise expression to the estimation imprecision. Using fuzzy logic [45–47]
and fuzzy numbers, a subset of fuzzy sets, is widespread in many industries, and
used in many applications ranging from embedded systems within vacuum cleaners
to computerized control systems in high speed monorails. For a good overview on
applications of fuzzy sets see the Springer book series “Studies on Fuzziness and
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Soft Computing” with more than 150 volumes on the subject. Fuzzy sets and fuzzy
numbers can also be used in analysis and decision support applications. The “in-
ventor” of fuzzy logic, Lotfi Zadeh thought that decision support and financial
applications in general would be among the first of its application areas, it is
surprisingly only recently that these areas have widely started to adopt and embrace
fuzzy logic. For the purposes of this research we use triangular fuzzy numbers,
defined below:

Definition 1 A triangular fuzzy number a ̂ can be defined by a triplet a ̂= (a1, a2,
a3). The membership function μâðxÞ is defined as [22]

μa ̂ðxÞ=

0, x< a1
x− a1
a2 − a1

, a1 ≤ x≤ a2

x− a3
a2 − a3

, a2 ≤ x≤ a3

0, x> a3

8>>>>>>><
>>>>>>>:

ð1Þ

For arithmetic operations for triangular fuzzy numbers we refer to [22].
Fuzzy numbers are the counterpart of fuzzy logic to the “crisp” single numbers

that we normally like to use to represent, for example, scorecard scores. Fuzzy
numbers are “possibility distributions” that represent information and that illustrate
imprecision by the width of the distribution—more imprecision, more width. Our
“normal” numbers can be considered special cases of fuzzy numbers—cases with no
uncertainty. Triangular fuzzy numbers that are suggested to be used here, due to their
simplicity, are a subset of fuzzy numbers and of fuzzy sets in general, and they can be
defined with three values (three normal numbers); a1, a2, and a3, where “a2” is the
peak (or center) of the fuzzy number and where a1 and a2 represent the minimum
possible and the maximum possible values. We use the notation (a1, a2, a3) for this
kind of numbers. When the distance from a1 and a3 to a2 > 0, the membership
function (the function that determines the shape) of the triangular fuzzy number has
the form defined in Definition 1 and shown graphically in Fig. 1.

It seems to be a good idea to use fuzzy numbers to not lose the information about
estimation uncertainty in our analysis. The next thing is to come up with a simple

Fig. 1 Graphical presentation of a triangular fuzzy number. X-axis represents the score that, e.g.,
a criterion receives
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and easy to use method to help in the analysis of the strategic R&D projects. Why
simple? Well, the main reason for why we don’t need a very detail oriented
mathematically precise representation is that we don’t have the data to support such
a model, when we deal with strategic R&D projects that face “close to” structural
uncertainty about the future: the detailed information to support and justify the use
of such methods just does not exist! It is also most often a good idea not to try to
invent (often very complex mathematical) methods that create detailed information
for one’s purposes (one wonders if that ever happened in academia?). Most often
our best bet is to go with more robust information that is available and a simple
method that can handle the information as it is, and that at the same time is easy to
understand; a common sense requirement for any system that is really put to into
production use. For this task we suggest the use of the scorecard. Scorecards have
also previously been used in connection with management of R&D, see, e.g. [24, 6]
and are likely to be already understood by managers.

From a decision-making science point-of-view the basic form of a scorecard is a
simple multiple-criteria decision analysis (MCDA) tool, an elementary weighted, or
non-weighted scoring system that uses a numerical scale in scoring a “project” on
several given criteria. By scoring parts and adding up the results gives us an idea of
the overall situation—“the higher the aggregate score the better the outcome (or the
project)”. The commonly used scorecards are usually constructed by selecting
accurately measurable items as criteria, and they are used by scoring based on
measurement results of past performance (facts). A simple scorecard can be used
with a pen, while the scorecard is on a piece of paper: just think about writing down
your golf round results after each hole on the golf scorecard. The classical scorecard
is a backward-looking instrument of performance measurement and it is based on
past observed performance. In this environment using crisp numbers, to represent
factual history, is not a problem, because the past is most often quite precisely
known.

In some cases and especially, when strategic R&D projects are concerned, we
are more often than not looking forward and not backward. The information
available will be imprecise and no precise measurement is, on many occasions
realistically possible, thus the classical scorecard is not a good match, and needs to
undergo changes that allow for measurement imprecision in the form of imprecise
estimates to be taken into consideration [3]. One can think about how one would
need to change a golf scorecard in the case that one would want to beforehand
estimate the hole-by-hole score in a way that it would reflect the estimation inac-
curacy involved, versus just recording the observed results, and while still keeping
things very simple. In this vein a non-trivial observation is that it is very likely that
it is the simplicity of the scorecard that has made it such a widespread tool in
management: any enhancements should strive to preserve simplicity! One would
probably want to include also information in addition to the most expected end
result for each hole (number of strokes), such as the best possible score one could
play and the worst case score, to show the imprecision of the estimation.
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In golf there are many issues that affect the result for each hole, for example,
wind, humidity, temperature, condition of the greens, number of hazards, distance
to the flag, if one slept well the night before, one’s skill in golf, and so on. It is a
good bet that we can find dozens of factors that can contribute to the end-result.
Now, if we put all of these in a logical order and systematically study their effect
and cause relationships, perhaps their joint effect, and make a model and feed
estimates of these factors in… then the model would give us an estimate of the
end-result for each hole and of subsequently for the whole round. If we start in
15 min we may have a “fresh set of data” to work with—we know how we will feel
in 15 min, because we will most likely feel like we feel now, and the weather will
most likely remain similar, so we are able to come up with estimates for each factor
and we may be satisfied with our estimation accuracy. If the model dependencies
and joint effects are correctly set, then we may get a good result from the model that
has a low error that is, the difference between the estimated final score for the round
and the actual score is small. Still no-one in their right mind expects the model to
perform without error. In case the round starts in 3 months from now, estimating the
conditions on the course and of the player is more difficult, but perhaps the model
can still give us some indication of what to expect.

Now, if the round of golf will take place far away in the future and we don’t know
what will happen between now and the round, the problem becomes a much more
difficult one. Also what becomes under question is the usability of our complex
system that is “tuned” for the present day settings. In, for example, 5 years the
linkages between factors that now seem logical to us may have changed, or ceased to
exist. Perhaps there are new factors that play a role we don’t yet know about and
maybe… maybe we just don’t have a whole lot of precise information overall. It
becomes so increasingly difficult to believe in our ability to go into a detailed
analysis of the round being played in 5 years from today that we may lose our faith in
the model altogether. The reason for this being that the model is too accurate for the
job. Does this mean that we cannot systematically estimate the end result of the
round? No, it does not, but it means that we need a different tool for the job—a robust
one, one that allows us to feel comfortable about the fact that we do not know very
accurately. “Not knowing very accurately” does not mean “not knowing at all”, we
do know a whole lot—but with great inaccuracy present many “small” issues
become unimportant and it is the broad picture that we must concentrate on. We
must see the forest from the trees! This means that we can use a simple tool and
concentrate on estimating only the most important factors to the end result—for
example, just the number of strokes played for each hole and as discussed above,
perhaps by simply estimating the most expected, the maximum possible and the
minimum possible outcomes (scores). Actually, in this way we are even able to
roughly estimate our round of golf result far away in the future, on courses we have
never played on before… and just based on the course plan that may actually be the
only good information we have available at the moment. Interestingly, replacing
“round of golf” with “strategic R&D project”, “hole” with “criterion affecting the
project” tells us a story about estimation of a strategic R&D project.
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It is quite clear that the type of scorecard presented, with three scenarios for the
future score is highly compatible with using triangular fuzzy numbers. Mapping
three different scenarios (a minimum possible-, a most expected-, and a maximum
possible outcome) for an input variable with a1, a2, and a3 allows us to create fuzzy
number inputs for our strategic R&D project scorecard that we incidentally propose
here as a simple tool for the data collection for strategic R&D projects.

Now this may sound as if it is nothing new under the sun, and indeed many have
written about fuzzy logic, about scorecards, and about the selection and evaluation
of R&D projects. Yet there are not so many out there who talk about fuzzy
scorecards for strategic R&D evaluation, and to the best of our knowledge no
intelligent systems have been reported built, based on the use of fuzzy scorecards
for strategic R&D evaluation. There are many advanced methods, models, and
systems for handling R&D project selection and optimizing R&D portfolios that
use complex and ingenuous mathematics, see, e.g., [13] for references. The problem
with many of the most advanced models, methods, and systems is that unfortu-
nately they are not a good fit with, or at all usable for strategic R&D projects,
because they are not robust enough to handle structural uncertainty.

One of the contributions of this chapter, in addition to the aforementioned
cross-disciplinary combination of methods, is to show how we do not need a very
complicated system with high complexity and incredible mathematics to be able to
come up with smart, usable, and intuitively understandable analysis that helps us
choose new and manage our existing strategic R&D projects.

Yet another contribution of this chapter is to present new weighted averaging
operators: the Fuzzy Heavy Weighted Averaging (FHWA), the Fuzzy Super Heavy
Weighted Averaging (FSHWA), and the Fuzzy Super Heavy Ordered Weighted
Averaging (FSHOWA) operators. FHWA is an operator that is able to take into
account the interdependence, or overlapping, of criteria in the aggregation of
(context dependent) fuzzy numbers, and builds on previously introduced Fuzzy
Weighted Average (FWA) operator, see e.g. [4] and on Fuzzy Scorecard
(FSC) operator [10], treating them as special cases. FSHWA is an operator designed
for capturing the type of interdependency that is commonly referred to as synergy
between two variables, where the sum of two variables is larger than their single
weights alone. FSHOWA is an operator that is designed to extend the well known
fuzzy OWA into situations that include synergy. We also present the crisp version
Super Heavy OWA (SHOWA).

This chapter continues in the next section, by presenting a fuzzy scorecard for
strategic R&D project data collection, and showing how such a scorecard is able to
accommodate also changed information. Section three presents the new FHWA,
FSHWA, and FSHOWA weighted averaging operators. In section four a system,
based on fuzzy scorecards, FHWA, and FSHWA, for the analysis of strategic R&D
projects is presented, and illustrated with a numerical example. Finally the chapter
closes with a discussion and some conclusions.
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2 Fuzzy Scorecard for Strategic R&D Project Data
Collection

Above we have described the simple elements of the tool that we are about to
introduce, the scorecard and triangular fuzzy numbers. Together these offer a
synergy of simplicity and capacity to express imprecision that can, as we show later
on, be leveraged to create a rather advanced system for the analysis of strategic
R&D projects. Still the scorecard itself is, more than anything else, a platform for
collecting information—what comes on top of that is analytical elements that use
the information from the scorecard as a starting point. So there is actually a long
way from the scorecard to a system that actually optimizes a portfolio of strategic
R&D projects.

We start with shortly comparing the classical single number scorecard with the
proposed fuzzy “three scenario” scorecard, both visible in Fig. 2. The scorecards
shown in Fig. 2 are simplifications of “real world” scorecards, but the simplification
does not affect any of their essential characteristics. We can see that the scores
given in the classical scorecard are the same as the most expected scores in the
fuzzy scorecard—this is not a trivial observation as it means that both include at
least the information that is contained in the classical scorecard. Among the benefits
of the simple fuzzy scorecard approach is the possibility to offer decision-makers
with intuitively understandable graphical presentation of the inputted scores and the
imprecision as it is perceived. As a matter of fact, using the triangular fuzzy
numbers in scoring allows us to see the connected estimation uncertainty with one

Fig. 2 A single number “classical” scorecard and a “three scenario” fuzzy scorecard
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glance. We can see that on many occasions the estimations for the different criteria
are asymmetrically distributed around the most expected score. Again this is not a
trivial observation, because in the real world a perfectly symmetrical estimation is a
rare beast, even if for some reason it is what one “always” finds from the text books.
This piece of misinformation about the existence of symmetrical expectations and
estimations (and the near non-existence of asymmetric ones) comes from having
used such simplifications of reality as “plus-minus ten percent” that are often the
basis of methods such as sensitivity analysis, or being a tad too comfortable with
the symmetric bell curve of the Gaussian (or normal) distribution, perhaps resulting
from using stochastic processes. The bottom line is that the fuzzy scorecard can
present symmetric or asymmetric distributions of the scores on equal terms and very
simply. This information allows us to see, which criteria have been estimated as
having positive potential, and which ones have a downside. The width of the
aggregate of the fuzzy estimates shows the overall imprecision in the estimation.
The aggregation of the fuzzy scorecard is discussed more in detail below in section
three.

It is clear that the “true” relationship of the extreme scenarios (max. and min.
possible) with the most expected scenario is most likely different from the linear
relationship of the triangular fuzzy number, however for the purposes of most
analyses it not so different or “wrong” that it could not be used, and most impor-
tantly the reliability of the results will remain at a “good enough” acceptable level.
Remembering that under structural uncertainty we may not be able to realistically
add a lot of detail into the inputs, as we may not have enough detailed information
to support it, makes it easier to accept the use of a simple three scenario based
scorecard approach.

Markets for products and services and the development of technology are in a
state of constant change, which means that also the evaluations of strategic R&D
projects should change with the markets. Projects that are important may become
less important, new information may be revealed and imprecision becomes smaller,
old information may become compromised and imprecision may increase. What
this means in practice is that strategic R&D projects should be and in practice are
evaluated not once, but many times during their life.

As they are revisited the changes in the information should be visible in the
estimates that is, the estimates should follow the evolution of the information. In
Fig. 3 we can see the evolution of the score of “Criterion A”, where the best
estimate scenario remains unchanged, but as information quality increases the
imprecision is gradually lifted and when no imprecision remains (at time 2) the
estimate reduces to a single number estimate.

This shows how a simple triangular estimate can convey information about the
direction of the evolution of a score. It is important to note that if one uses a single
number estimate, none of this information is visible, as the most expected score
remains unchanged (the single number remains unchanged). The direction into
which different criteria, on which a strategic R&D project is estimated, are evolving
may be very important information from the point of view of decision-making.
Especially a change in direction/trend may be important. Power of graphical

176 M. Collan and P. Luukka



presentation in understanding the change intuitively cannot be emphasized too
much. The most expected score can naturally also change, but above it did not, to
illustrate the point made.

By using the above explained simplistic approach, we can very easily build a
structured way of collecting estimates of strategic R&D projects and for keeping
track of the evolution of the estimates, on a criterion-by-criterion-level and naturally
also on the aggregate score-level. Collecting data and looking at the way it is
evolving is one thing, using the data further to create advanced analysis for
managing strategic R&D projects is another. Next we turn to presenting new
weighted averaging operators, FHWA, FSHWA, SHOWA, and FSHOWA that are
able to handle scorecards with weighted criteria for considering overlap between
information that cause them to have a joint weight that is lower than their weight
separately, and synergy between criteria that cause their joint weight to be higher
than the sum of their separate weights.

3 New Weighted Averaging Operators for Handling
Redundant and Interdependent Information

Research that is based on aggregating information based on the notion of weighted
averaging (WA) has blossomed with an impressive number of academic research
published on a number of variants of weighted averaging operators, and on a
myriad of applications of information aggregation. For introduction to aggregation
functions and operators for aggregating information we refer suggest the interested
reader see [2, 39]. As already discussed above, we are mostly interested in weighted
averaging of values represented as fuzzy numbers. Fuzzy weighted averaging
operator can be found from many sources in the literature, but for a definition we
refer here to [4]. Earlier work on applying fuzzy weighted averaging includes, for
example, [17, 21, 33, 35]. Also alternative approaches for the fuzzy weighted
average have been presented, see [36].

Fig. 3 Evolution of the score of criterion A through time from t = 0 to t = 2

Strategic R&D Project Analysis … 177



An active area of research within the field of weighted averaging operators are
Ordered Weighted Averaging (OWA) operators, introduced by [40]. Several dif-
ferent types of versions of the original OWA have been introduced, and include, for
example, generalized OWA (GOWA) [31, 42], Ordered Weighted Geometric
Averaging operator (OWGA) [26, 39], Induced Ordered Weighted Averaging
Operator (IOWA) [9, 41], linguistic OWA operators [19, 38], Fuzzy OWA
(FOWA) [7, 27], and Heavy OWA [44]. There are also many others who have
contributed to the literature on OWA operators with a variety of extensions.

Besides the different versions of OWA, emphasis has also been given to the
determination of the weights used in connection with OWA operators. Here some
of the more popular approaches include quantifier guided aggregation presented in
[40] and a procedure to generate OWA weights that have a predefined degree of
orness and that maximize the entropy (of the OWA weights) presented in [28, 29].
An analytical solution for O’Hagan’s procedure by using Lagrange multipliers was
presented by [15]. Filev and Yager [14] developed two procedures based on
exponential smoothing to obtain the OWA weights. Fullér and Majlender [16]
introduced a minimum variance method (MVM) that follows a concept similar to
the O’Hagan’s procedure. Wang, Luo, and Liu proposed a chi-square method
(CSM) [37] for generating the OWA weights by minimizing dispersion. Obtaining
the weights for OWA can be considered to be a mixed integer linear programming
problem, solvable by algorithms as was done, for example, by Carlsson and others
[8]. OWA operators have also attracted a wide range of applications, see for
example [39, 43].

Of the above mentioned works on weighted averaging operators only one
addresses the problem of overlapping/redundant information (or fusion of infor-
mation): the paper by Yager that presents the Heavy OWA operator [44]. This
means that this subject of “interaction between variables” in the context of weighted
averaging operators merits more study and this is the angle from which we
approach the subject. We assume that the aggregated (averaged) elements are
predominantly fuzzy numbers, and secondly we assume that situations, where
information contained in variable values can be overlapping or interdependent exist.

3.1 Fuzzy Heavy and Super Heavy Weighted Averaging

We go about introducing the new operators by way of first introducing two “old”
known operators for reference, and then we introduce our new Fuzzy Heavy
Weighted Averaging (FHWA) operator, that considers the two presented old
operators as special cases. We start by introducing the first previously presented
operator, the Fuzzy Weighted Averaging (FWA) and give the definition for it in the
following:
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Definition 2 Let U be the set of fuzzy numbers. A Fuzzy Weighted Averaging
(FWA) operator of dimension n is a mapping FWA: Un → U that has an associated
weighting vector W of dimension n given as

FWA a1̂, a2̂, . . . , a ̂nð Þ= α1a1̂ + α2a2̂ + . . . + αnan̂
α1 + α2 + . . . + αn

= ∑
n

i=1
wiaî ð2Þ

where wi = αi
α1 + α2 + ...+ αn

, i = 1,…,n and ∑
n

i=1
wi =1.

The FWA operator is usable, when different criteria are used to analyze a single
object, and when each criterion is assumed to partially explain the object (score). In
such a case the criteria are averaged by using the weights to characterize the relative
importance of each criterion.

Another previously introduced operator, relevant here and already discussed
above, is the Fuzzy Score Card (FSC) operator that can be defined as:

Definition 3 Let U be the set of fuzzy numbers. A Fuzzy Score Card (FSC) oper-
ator of dimension n is a mapping: Un → U such that:

FSCða1̂, a2̂, . . . , a ̂nÞ= ∑
n

i=1
aî ð3Þ

When using the classical scorecard or the fuzzy scorecard, presented above, the
aggregation over the criteria is made by assuming the independence of the criteria
from each other. In other words, this means that the information that each estimated
criteria carries is believed to be distinct and non-redundant. We refer to [10] for
more information about the fuzzy score card.

Next we turn to the new fuzzy aggregation operator and present the definition for
the Fuzzy Heavy Weighted Averaging (FHWA) operator:

Definition 4 Let U be the set of fuzzy numbers. A Fuzzy Heavy Weighted
Averaging (FHWA) operator of dimension n is a mapping FHWA: Un → U that has
an associated weighting vectorW of dimension n such that the sum of the weights is
between [1,n] and wi ∈ 0, 1½ �, then:

FHWAða1̂, a2̂, . . . , a ̂nÞ= ∑
n

i=1
wiaî ð4Þ

where (a1̂, a2̂, . . . , a ̂n), are now fuzzy triangular numbers of form given in Defini-
tion 1. This leads to our proposition:

Proposition 1 The FWA and FSC operators are special cases of the FHWA
operator, when we are at the boundaries of the FHWA weighting vector.
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We get the FSC operator in the case, when ∑n
i=1 wi = n, since we have

wi =1 ∀i, because wi ∈ 0, 1½ �. In the case of the other boundary, ∑n
i=1 wi = n, and

the requirement of FWA are met because wi ∈ 0, 1½ �.
Definition 5 Let U be the set of fuzzy numbers as in Definition 1. A Fuzzy Super
Heavy Weighted Averaging (FSHWA) operator of dimension n is a mapping
FSHWA: Un → U that has an associated weighting vector W of dimension n such
that the sum of the weights is between [1, kn] and wi ∈ 0, k½ �, then:

FSHWAða1̂, a2̂, . . . , a ̂nÞ= ∑
n

i=1
wiaî ð5Þ

In the above definition we can see that the size (weight) of the positive synergy
has been limited at the size of the added weight of the independent criteria involved
that is, the joint weight can be at maximum k times the size of the added weight of
the independent criteria involved. The limitation can be relaxed and the positive
synergy can be expected to grow infinitely, which leads to the following definition:

Definition 6 Let U be the set of fuzzy numbers as in Definition 1. A Fuzzy Super
Heavy Weighted Averaging (FSHWA) operator of dimension n is a mapping
FSHWA: Un → U that has an associated weighting vector W of dimension n such
that ∑n

i=1 wi >1 and wi ≥ 0, then:

FSHWAða1̂, a2̂, . . . , a ̂nÞ= ∑
n

i=1
wiaî ð6Þ

As with the FHWA operator, assigning the weights correctly can play an
important role with FSHWA.

We have above seen the types of situations, where the FWA and the FSC
operators are useful, now we explain the intuition behind the case, when the sum of
weights is between [1,n], and that can be considered with FHWA. Consider, for
example, a case presented in [25], where a summer trainee is evaluated, based on
five criteria (needs of the department): (1) Statistical data-analysis skills; (2) Internet
data collection skills; (3) Written English language reporting capability;
(4) Assisting skills in interviews, and (5) Conference organization skills. When we
analyze the five criteria, we can quite safely assume that statistical data-analysis
skills do not depend on the other criteria and thus gives distinct information about
the candidates; we can assign this criterion the weight of one, reflecting the criteria
independence. Criteria 3 and 4, on the other hand, both depend on how well the
candidate masters the English language, while at the same time having excellent
English language skills does not guarantee a high evaluation for these two criteria.
In fact, we have a case of partially overlapping information, where we cannot
assume that the two criteria are fully distinct and non-redundant, while we cannot
use an averaging operator to combine the two criteria into one criterion, because the
criteria are partially distinct. It is in this kind of real world context that the FHWA
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shows its usefulness, since by setting the sum of the weights between [1,n] and
requiring that wi ∈ 0, 1½ � we can consider partially overlapping information.

In the case of strategic R&D projects there may be several similarly overlapping
issues that may simultaneously affect many criteria used in the evaluation. Such
issues may include availability of expert workforce, former experiences with a
certain type of projects, or other firm specific underlying factors. Competencies and
other factors with regards to R&D projects may also create synergies, for example,
a high level of staff competence together with high quality equipment may render
better possibilities for success than either one of these properties separately can
contribute to success. Synergies are known to exist in mergers and acquisitions
(M&A) and grow from the joint strengths of adjoining companies, who become
more powerful together than as separate parts, for references about M&A synergies
see, for example, [5, 11, 20].

3.2 New Ordered Weighted Aggregation Operators

Based on the original work of Yager [40] on ordered weighted averaging operators
(OWA) and discussed further, e.g., in [34] and based on Yager’s later work [44] on
heavy ordered weighted averaging operators (HOWA), we introduce two new
operators that extend the HOWA operator to consider the situation, where positive
synergy among criteria exists. Thus, we define the new Super Heavy Ordered
Weighted Averaging (SHOWA) operator, where we also consider the ordering
component included in the OWA based aggregation operators:

Definition 8 Let U be the set of crisp numbers. A Super Heavy Ordered Weighted
Averaging (SHOWA) operator of dimension n is a mapping SHOWA: Un → U that
has an associated weighting vector W of dimension n such that ∑n

i=1 wi >1 and
wi ≥ 0, then:

SHOWAða1, a2, . . . , anÞ= ∑
n

i=1
wibi ð7Þ

where bi is the ith largest element in the collection a1, a2, . . . , an.
The SHOWA operator is monotonic and commutative operator. It is monotonic,

because if ai ≥ ei∀i then SHOWA a1, . . . , anð Þ≥ SHOWA e1, . . . , enð Þ. It is also
commutative, because any permutation of the arguments has the same evaluation.
Meaning here that SHOWA a1, . . . , anð Þ= SHOWA e1, . . . , enð Þ, where ðe1, . . . , enÞ
is any permutation of the arguments ða1, . . . , anÞ. It is also bounded by the open
interval ðmin a1, . . . , anð Þ,∞Þ.

For the SHOWA we can also analyze the magnitude, (a term used and defined
by Yager in [44] for the sum elements in the weighting vector W), of the weighting
vector Wj j= ∑n

i=1 wi. In order to normalize this feature of the W a characterizing
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parameter β value of the vector W is introduced. For SHOWA operator this can be
defined as β Wð Þ= ð Wj j− 1Þ ð̸n− 1Þ. Now, if Wj j= n, then we have the same
magnitude that we would have for the (fuzzy) scorecard operator, but we will not
necessarily obtain the same aggregated value. Following [44], and after having
analyzed the magnitude of Wj j, we can further examine the character of the weight
vector with four characterization measures. The first characterization measure, the
“attitudinal character”, can be defined as:

α Wð Þ= 1
Wj jðn− 1Þ∑

n
i=1 n− ið Þwi ð8Þ

where we have α Wð Þ∈ ½0, 1�. The second characterization measure, the “entropy of
dispersion”, can be defined as:

E Wð Þ= −
1
Wj j∑

n
i=1 wiln

wi

Wj j
� �

ð9Þ

The third characterization measure, which is often called “divergence” of W,
would similarly be:

Div Wð Þ= 1
Wj j∑

n
i=1 wi

n− i
n− 1

− α Wð Þ
� �2

ð10Þ

The fourth characterization measure, also often used with the OWA-operators, is
the “balance” operator which is defined as:

BAL Wð Þ= 1
Wj j∑

n
i=1 wi

n+1− 2i
n− 1

� �
ð11Þ

What can be noted is that all these four characterization measures are reduced to
the usual definitions for the OWA operator, when Wj j→ 1.

Furthermore, Yager [44] defined a measure for redundancy ρ in HOWA as
follows:

ρ=1− β=
n− Wj j
n− 1

ð12Þ

For a scorecard type operator, with W = [1,1], we get the redundancy ρ = 0 (no
redundancy), at the other extreme, when we are dealing with a weighted averaging
operator, withW = [α,1 − α], we get the redundancy ρ = 1(total redundancy). For a
case of partial redundancy, for example with W = [1,0.5], we get the redundancy
ρ = 0.5.

The redundancy measure can be also used in connection with the SHOWA oper-
ator, but in the event of synergy the redundancy measure may exhibit “unintuitive
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behavior”: in the case of synergy and weight values over one we can have, for
example,W = [1.5,1.5], and we get redundancy of ρ = −1. The redundancy measure
can be also used as ameasure of synergy, where negative values of redundancywould
indicate the existence of synergy, however, for reaching a more intuitive represen-
tation “larger the synergy—larger the value”we introduce a synergymeasure S that is
defined as:

S=
Wj j− n
n− 1

ð13Þ

For a weighted averaging operator W = [α,1 − α] we get a synergy value
S = −1, for a case of partial redundancy, with W = [1,0.5] we get S = −0.5, and for
a scorecard type aggregation, with no synergy, but with zero redundancy, with
W = [1,1] we get S = 0. In the previously shown case with synergy, with
W = [1.5,1.5] we get S = 1.

Next, we define a new super heavy OWA operator for fuzzy numbers:

Definition 9 Let U be the set of fuzzy numbers as in Definition 1. A Fuzzy Super
Heavy Ordered Weighted Averaging (FSHOWA) operator of dimension n is a
mapping FSHOWA: Un → U that has an associated weighting vector W of
dimension n, such that ∑n

i=1 wi >1 and wi ≥ 0, then:

FSHOWAða1̂, a2̂, . . . , a ̂nÞ= ∑
n

i=1
wibî ð14Þ

where bî is the ith largest element in the collection a ̂1, a2̂, . . . , a ̂n

Proposition 2 In the case that positive synergy exists among criteria, there has to
be at least one individual weight wi > 1 in the super heavy operators.

Now, since the weighting vector W does not change from the previous defini-
tion, we can see that magnitude Wj j stays the same as with the SHOWA. This also
indicates that the four attitudinal characters do not change. Also the monotonicity,
the commutativity, and the boundedness are the same for FSHOWA and for
SHOWA. If Wj j= n we get the same magnitude as for the fuzzy scorecard
(FSC) operator, but not necessarily the same aggregated value.

In the next section, we turn to building an advanced system to handle infor-
mation gathered with fuzzy scorecards, from multiple experts simultaneously.
Gathering information from multiple experts for the same R&D projects will most
likely contribute to the reliability and the consistency of the estimates, while at the
same time requiring a method to consolidate the estimates into joint estimates. This
may also mean finding consensus of estimates, however, consensual dynamics is a
topic left outside of the scope of this chapter. We use the FHWA operator in the
aggregation of the information over the used criteria. Furthermore, the numerical
illustration of the SHOWA and the FSHOWA operators are left as “food for
thought” for further research.
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4 Simple Multi-Expert System for Strategic R&D Project
Ranking that Uses Fuzzy Scorecards, FHWA,
and FSHWA

Based on the above discussion about the usability of fuzzy scorecards as a basis for
creating intelligent systems for analysis and evaluation of strategic R&D projects,
we propose a system that is able to integrate multiple experts’ evaluations of a set of
projects (using a fuzzy scorecard), and that aggregates their scores with the new
FHWA and FSHWA operators, to yield fuzzy scores for the projects. The fuzzy
scores are ordered to create a ranking of the projects that can be used, e.g., when
portfolio selection is made.

4.1 General Description of the Method

We consider the following general situation, where a finite set of alternatives
A= Aiji=1, . . . ,mf g needs to be evaluated by a committee of decision-makers
D= Dljl=1, 2, . . . , kf g, by considering a finite set of given criteria
C= Cjjj=1, 2, . . . , n

� �
. A decision matrix representation of performance rating of

each alternative Ai is considered, with respect to each criterion Cj as follows:

X =
x11 . . . x1n
⋮ ⋱ ⋮
xm1 . . . xmn

2
4

3
5 ð15Þ

where m rows represent m possible candidates, n columns represent n relevant
criteria, and xij represents the performance rating of the ith alternative, with respect
to jth criterion Cj. These ratings are obtained by using fuzzy score cards, and are
triangular fuzzy numbers. We use the FWA operator to aggregate the fuzzy decision
matrixes from each decision maker to one single decision matrix, and simply cal-
culate an average evaluation over the decision makers, with the weighting vector
wl = 1

k ,∀l. After the creation of the joint triangular ratings for each criterion, the
next step is to form a linear scale transformation of the decision matrix, to transform
the various criteria scales into comparable scales. If necessary, the criteria set can be
divided into benefit criteria (larger the rating, the greater the preference) and into a
cost criteria (the smaller the rating, the greater the preference). The resulting nor-
malized fuzzy decision matrix can be represented as:

R= ðrijÞm× n ð16Þ
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where B and C are the sets of benefit criteria and cost criteria, respectively, and

rij =
aij
c⊕j

,
bij
c⊕j

,
cij
c⊕j

 !
j∈B

rij =
a⊖j
cij

,
a⊖j
bij

,
a⊖j
aij

 !
j∈C

where c⊕j = maxi cij
� �

, j∈B and a⊖j = mini aij
� �

, j∈C.
This normalized decision matrix is then aggregated with regards to the criteria by

using FHWA:

Ri =FHWAðri1, ri2, . . . , rinÞ= ∑
n

j=1
wjrij ð17Þ

wj ∈ 0, 1½ � and ∑
n

j=1
wj ∈ 1, n½ �. The selection of weight now needs to be done by

considering how much each individual criterion has overlapping information with
other criteria, and by this way getting a weight wj ∈ 0, 1½ �, where a weight of 1
means fully distinct non-redundant information, and the further the obtained weight
is from 1, the more overlap the criterion has with other criteria. The weighting is
context dependent, and must be done separately, case by case. The result from the
aggregation is a triangular fuzzy number score for each alternative.

The final step in the proposed system is the ordering of the fuzzy scores. There
are a number of methods for the ordering of fuzzy numbers, but we refer here to the
method introduced by Kaufmann and Gupta [23]. Next, we illustrate the proposed
system with a numerical example.

4.2 Numerical Example

Suppose that a company has funding to start one strategic R&D project for a certain
field of business; after a preliminary screening six competing projects A1, A2,…, A6

remain. Five selected benefit criteria are considered for each project:

(1) C1—Intellectual capital potentially emanating from the project
(2) C2—Fit with market strategy
(3) C3—Expected competitive advantage
(4) C4—Technological familiarity (to us)
(5) C5—Fit with technology strategy
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Evaluations have been made by three experts. The proposed method is applied to
solve the problem and the computational procedure is summarized as follows:

Step 1: Each expert uses a fuzzy scorecard to evaluate the projects with respect to
the five criteria. Separate multiple experts can also be used for each
criterion, if that is deemed necessary. The ratings for all criteria are
presented in Table 1.

Step 2: Calculating the average evaluations of the experts by using FWA. Results
given in Table 2.

Step 3: Construction of the normalized fuzzy decision matrix, visible in Table 3.
Step 4: Selection of the weights for each criterion, based on how much

overlapping information they contain. Here the weighting vector used is
w= ½1, 1, 0.7, 0.6, 0.6�; we assume that the first two criteria provide fully
distinct, non-redundant information and the three remaining criteria are
partly overlapping. Here the technology focus of the firm serves the
market focus. Then the decision matrix is aggregated using the FHWA
over all criteria, with the chosen weighting vector. The resulting
aggregated values are visible in Table 4.

Step 5: Finding a linear order of the resulting fuzzy numbers. This is done by
using the method introduced by Kaufmann and Gupta [23]; results can be
found in Table 5.

Table 1 Project ratings from decision makers; summary for all criteria

DM1 C1 C2 C3 C4 C5

A1 (4, 7, 9) (7, 9, 10) (3, 5, 8) (9, 10, 10) (3, 5, 6)
A2 (7, 9, 10) (9, 10, 10) (7, 8, 10) (9, 10, 10) (8, 9, 10)
A3 (9, 10, 10) (5, 7, 8) (7, 8, 10) (5, 8, 10) (7, 9, 10)
A4 (4, 7, 9) (3, 5, 8) (7, 9, 10) (9, 10, 10) (3, 5, 6)
A5 (4, 7, 9) (9, 10, 10) (7, 9, 10) (9, 10, 10) (7, 9, 10)
A6 (3, 5, 8) (9, 10, 10) (9, 10, 10) (4, 7, 9) (4, 7, 9)
DM2 C1 C2 C3 C4 C5

A1 (5, 6, 7) (4, 5, 6) (5, 6, 8) (6, 8, 9) (5, 6, 7)
A2 (8, 9,10) (3, 5, 7) (7, 8, 9) (8, 9, 10) (6, 7, 9)
A3 (5, 6, 7) (7, 9, 10) (6, 7, 8) (9, 10, 10) (8, 9, 10)
A4 (5, 6, 8) (6, 7, 8) (8, 9, 10) (6, 8, 9) (6, 7, 8)
A5 (6, 7, 8) (3, 4, 5) (7, 8, 9) (7, 8, 9) (8, 9, 10)
A6 (5, 7, 8) (5, 6, 8) (8, 9, 10) (7, 8, 9) (3, 5, 7)
DM3 C1 C2 C3 C4 C5

A1 (4, 5, 7) (5, 6, 7) (4, 6, 7) (5, 7, 8) (4, 6, 8)
A2 (5, 6, 7) (4, 5, 6) (6, 7, 9) (9, 10, 10) (6, 9, 10)
A3 (3, 5, 6) (9, 9, 10) (5, 6, 9) (6, 7, 9) (7, 8, 9)
A4 (6, 7, 9) (5, 7, 9) (7, 8, 9) (6, 7, 8) (5, 6, 7)
A5 (5, 8, 9) (4, 5, 7) (6, 7, 8) (6, 8, 10) (7, 8, 9)
A6 (6, 7, 8) (6, 7, 8) (7, 9, 10) (6, 8, 10) (4, 5, 6)
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We find that based on the experts’ evaluations the best project is project A2.
Next, we consider the synergy effect in our computations; criteria one and two

have a clear synergy. This changes the used weighting vector into
w= ½2, 2, 0.7, 0.6, 0.6�. For considering the synergy, we apply the Fuzzy Super
Heavy Weighted Average (FSHWA) operator. Now re-doing steps 4 and 5 of the
process gives us the results presented in Tables 6 and 7.

Table 2 Decision matrix

C1 C2 C3 C4 C5

A1 (4.3, 6, 7.7) (5.3, 6.7, 7.7) (4, 5.7, 8) (6.7, 8.3, 9) (4, 5.7, 7)
A2 (6.7, 8, 9) (5.3, 6.7, 7.7) (6.7, 7.6, 9.3) (8.7, 9.7, 10) (6.7, 8.3, 9.7)
A3 (5.7, 7, 7.7) (7, 8.3, 9.3) (6, 7, 9) (6.7, 8.3, 9.7) (7.3, 8.7, 9.7)
A4 (4.7, 6, 7.7) (5, 7, 8.7) (6, 7.3, 9) (6.3, 8, 9) (6.7, 7.7, 8.3)
A5 (6, 8, 9) (3.7, 5.3, 7) (7.3, 8.3, 9) (6.7, 8.3, 9.7) (8, 9, 9.7)
A6 (5, 7, 8.3) (4.7, 6, 8) (8, 9.3, 10) (7.3, 8.7, 9.7) (3.7, 5.7, 7.3)

Table 3 The normalized decision matrix

C1 C2 C3 C4 C5

A1 (0.43, 0.6, 0.77) (0.53, 0.67, 0.77) (0.4, 0.57, 0.8) (0.67, 0.83, 0.9) (0.4, 0.57, 0.7)

A2 (0.67, 0.8, 0.9) (0.53, 0.67, 0.77) (0.67, 0.77, 0.93) (0.87, 0.97, 1) (0.67, 0.83, 0.97)

A3 (0.57, 0.7, 0.77) (0.7, 0.83, 0.93) (0.6, 0.7, 0.9) (0.67, 0.83, 0.97) (0.73, 0.87, 0.97)

A4 (0.47, 0.6, 0.77) (0.5, 0.7, 0.87) (0.6, 0.73, 0.9) (0.63, 0.8, 0.9) (0.67, 0.77, 0.83)

A5 (0.6, 0.8, 0.9) (0.37, 0.53, 0.7) (0.73, 0.83, 0.9) (0.67, 0.83, 0.97) (0.8, 0.9, 0.97)

A6 (0.5, 0.7, 0.83) (0.47, 0.6, 0.8) (0.8, 0.93, 1) (0.73, 0.87, 0.97) (0.37, 0.57, 0.73)

Table 4 Aggregated values
for the candidates by using
FHWA

Project FHWA(C1, C2, C3, C4, C5)

A1 (1.89, 2.50, 3.05)
A2 (2.59, 3.08, 3.50)
A3 (2.53, 3.04, 3.49)
A4 (2.17, 2.75, 3.30)
A5 (2.36, 2.96, 3.39)
A6 (2.19, 2.81, 3.35)

Table 5 Ordering of the
resulting fuzzy scores

Project Removal Divergence Mode Order

A1 2.49 1.17 2.50 6
A2 3.06 0.91 3.08 1
A3 3.03 0.96 3.04 2
A4 2.74 1.13 2.75 5
A5 2.92 1.03 2.96 3
A6 2.79 1.17 2.81 4
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Applying the FHWA in the aggregation results in the order
A2≺A3≺A5≺A6≺A4≺A1, where A2 is the best project. When we apply the FSHWA,
and take the synergy into consideration, the resulting order is
A3≺A2≺A5≺A6≺A4≺A1, where A3 is the best project.

The difference in the result can be attributed to the “synergy” effect. Obviously
we want to stress that the proper selection of weights is paramount in obtaining
credible and usable results.

5 Discussion and Conclusions

Strategic R&D projects often face structural, or near-structural, uncertainty that
causes detailed or precise information about the future to be unavailable. This
means that tools that we employ in analyzing these projects must built in a way that
they can handle imprecision that is omnipresent in forward-looking estimation, and
that commonly comes from experts and managers. At the same time management
tools should be robust, simple to use and easy to understand. For these reasons we
have suggested the joint use of scorecards, a simple method for a structured col-
lection of estimates and triangular fuzzy numbers, a way to include expert esti-
mation imprecision in the analysis. This combo seems to offer a good fit with the
analysis of strategic R&D projects. We illustrated the construct of the classical and
the simple fuzzy scorecards.

Aggregating the scorecard information is an important issue, because different
ways of aggregating the collected information have different effects on the type of
results one gets, and that are later used as decision-support. One way of aggregating
information, and we feel a suitable way for information gathered through the use of

Table 6 Aggregated values
for the candidates by using
FSHWA

Project FSHWA(C1, C2, C3, C4, C5)

A1 (3.79, 4.58, 5.19)
A2 (3.79, 4.55, 5.17)
A3 (3.32, 4.29, 4.99)
A4 (3.15, 4.11, 4.99)
A5 (3.13, 4.05, 4.94)
A6 (2.85, 3.77, 4.59)

Table 7 Ordering of the
resulting fuzzy scores

Project Removal Divergence Mode Order

A1 3.74 1.73 3.77 6
A2 4.51 1.38 4.55 2
A3 4.53 1.40 4.58 1
A4 4.04 1.80 4.05 5
A5 4.22 1.66 4.29 3
A6 4.09 1.83 4.11 4
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scorecards, is the use of weighted averaging based operators. For this reason we
have presented new weighted averaging operators, the fuzzy heavy weighted
averaging (FHWA), super heavy weighted averaging (SHWA), fuzzy super heavy
weighted averaging (FSHWA), and crisp and fuzzy versions of super heavy ordered
weighted averaging (SHOWA, FSHOWA) operators that are able to consider the
interaction between variable values (two pieces of information): overlap of infor-
mation and information that exhibits synergy effects.

We have proposed that the previously known operators, fuzzy weighted aver-
aging (FWA) and fuzzy scorecard (FSC) operator are special cases of the FHWA.
The FHWA operator and the four “super heavy” weighted averaging operators are
theoretically new contributions, and we feel that there are many avenues of further
research especially within researching the scope of applications of these operators.

Under structural uncertainty we do not often have information that would justify
the use of complex systems that require detailed information, hence we need
simpler more robust systems. Based on this observation and on the available data,
collected with fuzzy scorecards, we have proposed a rather robust system for the
multi-expert multiple-criteria ranking of strategic R&D projects that is able to
accommodate existing information about overlapping information that underlies the
evaluation criteria used by using the FHWA operator. The proposed method was
numerically illustrated to show that starting from imprecise information collected
with fuzzy scorecards, a rather intelligent ranking system can be easily built.
Furthermore, a numerical illustration of using the FSHOWA operator showed that
including the synergy effect may have benefits for such problems that truly exhibit
synergy. It is important to note that the proper selection of weights is paramount in
obtaining credible and usable results, when using any weighted averaging based
aggregation methods. Weight selection is an interesting avenue for further research.

As a final thought we observe that intuitively understandable systems probably
have an advantage over less intuitive, more complex, and more mathematically
advanced systems, as far as acceptance of the systems goes. It is our duty as
researchers and model-builders to keep things as simple as possible, while still
providing good-enough tools. Sometimes it is quite evident that over-modeling
occurs and may create problems, even with the credibility of the results from the
used systems. One remedy for these problems could be to re-read some classics that
discuss our relationship with tools we create for management, such as “Manage-
ment misinformation systems” by Russell Ackoff [1], a paper that is extremely
up-to-date even today, almost fifty-years after its publication.
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Decision Analytics and Soft Computing
with Industrial Partners: A Personal
Retrospective

József Mezei and Matteo Brunelli

Abstract Methods in decision analytics are becoming essential tools for

organizations to process the increasing amount of collected data. At the same time,

these models should be capable of representing and utilizing the tacit knowledge of

experts. In other words, companies require methods that can make use of imprecise

information to deliver insights in real time. In this chapter, we provide a summary of

three closely related research projects designed by building on the concept of knowl-

edge mobilization. In these three cases, we provide solutions for typical business

analytical problems originating mainly form the process industry. Fuzzy ontology

represented as a fuzzy relation provides the basis for every application. By looking

at the similarities among the three cases, we discuss the main lessons learnt and pro-

vide some important factors to be considered in future applications of soft computing

in industrial applications.

1 Introduction

In a world of ever increasing complexity making informed decisions becomes a more

and more demanding task. The old problem of not having enough data has often

become the opposite problem of having an over-abundance of data. With such an

increasing amount of data, new challenges emerge. Among them, there are the fol-

lowing three: (i) find and isolate relevant data in the ocean of all data (finding the

needle in the haystack), (ii) transform data into information and ultimately knowl-

edge, (iii) capture the tacit knowledge of experts into a structured form and make

use of it. In this context, and facing these problems, we have been involved in three
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consecutive research projects in cooperation with the Finnish Funding Agency for

Technology and Innovation (Tekes) and various industrial partners.

In this book chapter we would like to offer an account of how we used techniques

borrowed from soft computing (mainly fuzzy set theory) to build analytical tools

in cooperation with industrial partners. The remaining of the chapter is organized as

follows. In the next section we discuss the emerging role of decision analytic tools. In

Sects. 3, 4, and 5 we discuss the problems posed by industrial companies and briefly

describe the proposed solutions to their needs. Each section corresponds to a different

research project. Furthermore, for sake of relevance, in each section, we decided to

spell out, in an ad hoc created environment, the real-world research question coming

from the industrial partners. In Sect. 6, on the ground of the experience gained in the

aforementioned projects, we reflect on our experiences of research in cooperation

with industrial partners bringing real-world research problems. In Sect. 7 we draw

some conclusions.

2 Decision Analytics and Soft Computing

As more data is available than ever before, the main task faced by industrial decision

makers is to transform the massive amount of information into insights that create

value and offer an advantage over competitors [15]. In contrast to previous decades in

which many organizations were lacking sufficient data, the situation is transformed

into the case when the organizations have more data than they can use effectively.

Decision analytics emerged in the previous decade as a collection of analytical tools

that can provide an efficient mean to cope with different data-sets.

A formal definition of analytics was given by Davenport and Harris (2007, p. 7)

[6] as “the extensive use of data, statistical and quantitative analysis, explanatory

and predictive models, and fact-based management to drive decisions and actions”.

Recent surveys indicate that more than 60 % of organizational decisions are based

on analytic inputs and most of the managers believe that they will need to increase

their analytic resources [16].

Based on these positive developments, the rapid evolution of analytic tools, and

the processing power of computers, one would expect that more and more companies

implement analytics solutions to leverage the potential benefits. On the other hand,

according to research by the analyst firm Gartner [7], 70–80 % of corporate analytics

projects fail and, according to a survey focusing on specifically big data, 55 % of big

data projects do not get completed and many others fall short of their objectives.

The main context of our present research is the manufacturing industry which is

the second most important sector of the Finnish economy, after services, and the key

sector considering foreign trades (16.7 % of the GDP in 2013 [19]). The key branches

[19] include pulp and paper industry (8.6 %), machinery and equipment (13.1 %),

and chemicals and chemical products (4.8 %). There exist numerous applications of

different analytic techniques in process industry applications: statistical methods (for
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example Bayesian predictions [13]), artificial neural networks (for process emission

monitoring [10]), or optimization (process industry supply chains [1]).

In these industries, with the rapid development of sensor technology, the amount

of data collected from complex machines and equipment is even higher than in other

contexts [11], and they become essential to effective operations. On the other hand,

a different type of information, namely expert (tacit) knowledge, is available and

used on the individual level in daily operational decision making problems. This

type of information is difficult to capture and utilize in decision making problems.

In theory, one of the most crucial differences between analytics and its predecessors

lies in the role of experts: they are active participants from the development to the

deployment processes. In practice, as a consequence of the difficulties related to

making use of expert knowledge, this aspect is usually neglected. This can be one of

the possible reasons for the failure of analytics projects: companies focus mainly on

the technology and methods rather than considering the attributes of the problem at

hand by capturing the tacit knowledge of experts. The developed models in theory

are ideal, but the development process loses sight of the practical contexts of the

projects which is mainly a consequence of the lack of communication between data

people and decision people [8].

Our proposal as one possible solution for this problem is to combine analytics

technologies, specifically soft computing, with task-specific knowledge in order to

transform data into insights and insights into value. We will describe the features

of the general process that we followed in developing analytical tools for manag-

ing knowledge through three cases. The common starting point and problem for all

the cases is that in many practical situations, experts cannot describe their knowl-

edge in precise terms or formulate their knowledge in a directly reusable way for

future applications. To overcome this, we propose to use soft computing method-

ologies, more specifically fuzzy logic, to capture, represent, and make use of expert

knowledge. We found that fuzzy ontologies, which in our case are represented by

fuzzy relations, provide a tool that can be appropriate to solve the above mentioned

problems.

There exists several soft computing methodologies that are closely connected to

analytics and appear frequently in analytics related literature, such as neural networks

and metaheuristic optimization methods. Although we can also observe a slightly

increasing presence of fuzzy logic based models, frequently it is still not mentioned

as an important methodology. In this paper, we show the usefulness of fuzzy logic

in problems that are typical in decision analytics and are approached from the point

of view of expert knowledge. An important feature of the projects described in the

following sections is that they are the outcome of university-industry cooperation.

We will also shortly reflect on the best practices proposed by Pertuze et al. [18]

for these types of collaboration and the main differences compared to cases when

everybody involved in a project comes from the same organization.
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3 Knowledge Mobilisation (2008–2010)

One of the foremost problems in industrial processes is that of choosing among dif-

ferent alternatives and courses of action. In many real world situations, alternatives

and courses of action can be described by means of their characteristics. One exam-

ple of set of alternatives is that of wines, since each wine can be described by means

of a large number of characteristics as, for example, ‘percentage of alcohol’, ‘acid-

ity’, ‘color’, and so forth. The situation described by wines can be transposed to

real industrial problems where, for instance, different chemicals used in production

processes can be described by their chemical properties like ‘pH’, ‘melting temper-

ature’, ‘solvability’, and many others. Hence, although for sake of clarity here we

shall speak of wines, the reader should bear in mind that the underlying idea can be

extended to be used with other alternatives.

It is in this context that an expert might want to inquiry a database of wines and

ask for a ‘mildly alcoholic’ wine which goes well with ‘chicken’ or ‘beef’. From

the basic assumption that queries can be stated in logical form using only and, or
and complement operators, the following research question was posed to us when

cooperating with industrial partners.

Question 1 Given the description of alternatives, e.g. wines or chemicals, by means

of their characteristics, how can we select the most suitable alternative to a logical

query?

Before the database can be used to answer users’ queries, it is fundamental to popu-

late and model it in a compatible way. The first step for the formal representation of

the database of a set of wines was the creation of a fuzzy ontology which could cap-

ture their characteristics in an homogeneous form. The fuzzy ontology was expressed

in the form of a fuzzy relation R associated to the membership function

𝜇R ∶ A × C → [0, 1]

where A and C are the sets of alternatives and their characteristics, respectively. For

convenience in the modeling of the query, the set C comprehends different levels

for the characteristics. For instance, C does not include ‘alcoholic’ but, instead, ‘low

alcohol’, ‘medium alcohol’, and ‘high alcohol’. This also allows the user to express

his queries in a linguistic way. Table 1 contains an excerpt from the fuzzy ontology

of wines.

One of the most delicate steps was the definition of the membership function 𝜇R.

Three methods were used to estimate it:

∙ Some values of the relation were given subjectively by experts. For instance, in

the case of wines, the experts might state how well a wine fits with a certain type

of occasion.

∙ When the characteristic can be expressed on a numerical scale, fuzzy numbers

can be used to estimate the relation between a wine and a given characteristic.

Consider, for example, the relative amount of alcohol in the wine. The value of
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Fig. 1 Representations of the membership functions of the sets ‘low alcohol’, ‘medium alcohol’,

and ‘high alcohol’ where x is the alcohol percentage. According to the figure, a wine with the 10.5 %

of alcohol belongs to the set of low alcoholic and medium alcoholic wines with degrees 0.8 and

0.2, respectively

the membership function of a given wine can be established thanks to some fuzzy

numbers. The fuzzy numbers for ‘low alcohol’, ‘medium alcohol’, and ‘high alco-

hol’ are plotted in Fig. 1.

∙ Rules can be defined to estimate unknown values of the relation starting from

known ones. For example, the value of the relation between a given wine and the

type of food to be served with could be a function of the color of the wine, its

acidity, its alcoholic level and so on.

Once the ontology is complete we have a formal representation of the knowledge

on the wines, which ranges from their acidity to their suitability to certain occasions

or certain drinkers. The second phase is therefore that of exploitation of this knowl-

edge base to make decisions. As mentioned before, when choosing the most suitable

wine, it is customary to ask logical queries as, for instance “I would like a wine

which goes well for chicken or beef, and to be enjoyed with friends, but it should

not be highly alcoholic”. Also in this case, fuzzy sets theory provides tools to solve

this problem.

Triangular norms (t-norms), triangular conorms (t-conorms), and fuzzy comple-

ment operations have been used in fuzzy set theory to generalize the operations of

intersection, union and complement, respectively [14]. One could consider the prod-

uct operation (a ⋅ b) to be used as t-norm and its dual t-conorm (a + b − a ⋅ b) to

model and and or logical connectors, respectively. Consider the query of someone

seeking for “a wine with medium alcohol and suitable for fish or chicken”. Then, this

query, which we can call Q, defines a fuzzy subset of the set of all wines. Referring

to Table 1, the membership value of the various wines in Q is calculated as follows:

𝜇Q(Tommasi Crearo) = 0.8 ⋅ (0.43 + 0.75 − 0.43 ⋅ 0.75) = 0.686
𝜇Q(Trimbach) = 0.8 ⋅ (0.66 + 0.08 − 0.66 ⋅ 0.08) = 0.54976
𝜇Q(Morada) = 0.5 ⋅ (0.37 + 0.5 − 0.37 ⋅ 0.5) = 0.3425

⋯ = ⋯

𝜇Q(El Tiempo) = 0.6 ⋅ (0.49 + 0.1 − 0.49 ⋅ 0.1) = 0.2976
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Hence, Tomasi Crearo is the wine which best fits the query Q and shall be recom-

mended to the end user of the system. The name of the project, Knowledge Mobiliza-

tion, evokes the fact that knowledge shall not only exist, but also be readily available.

Hence, part of the project involved the realization of an online platform for decision

making based on fuzzy ontology [3]. Besides the research described in the next two

sections, Knowledge Mobilisation has inspired some other extensions [17].

4 Dyscotec (2010–2012)

Another problem faced by industries operating large and complex machines is to

understand the possible causes of failure of the machines and having a prompt sug-

gestion for their solution. In fact, although industries accept that, in spite of preven-

tive maintenance, from time to time machines can fail, they want to keep the length

of the disruption of the production line as short as possible.

Often, when problems are encountered and machines are very complex, e.g.

industrial paper machines, technicians are required to write short reports indicat-

ing the causes of the failure and a description of how they eventually solved the

problem at issue. Usually, these reports are written in a textual form, each of them

is associated to some keywords, and they are all electronically stored in a database.

Such reports become useful when new technicians face old problems.

The answer to the following question can help technicians of industrial machines

to retrieve a report where perhaps the problem and its solution were already

described.

Question 2 Given a database of past reports, how can we retrieve the report which

most likely contains the solution of the problem?

First of all, each report is associated with a list of keywords. Therefore, the data-

base can be described as a 0-1 table where the cell (i, j) has value 1 if the ith docu-

ment (di) contains the jth keyword (kj), and 0 otherwise. Table 2 is a toy example of

a database with only three documents and four keywords.

One problem related with the search with keywords is that they cannot be con-

sidered as strings of letters. If they were considered so, then the word ‘car’ would

appear very similar to ‘cat’, and very dissimilar to ‘automobile’, although they are

synonyms. On the contrary, it is auspicable that, if the expert is looking for ‘car’, the

reports containing ‘automobile’, and not ‘cat’, be retrieved by the system.

Table 2 Excerpt from a report database

k1 k2 k3 k4
d1 0 1 0 1

d2 0 0 1 0

d3 1 0 0 1

For example, document 1 contains keywords 2 and 4
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Considering the set of possible keywords (or a subset of them), which we call

K = {k1,… , kn}, we proposed [5] to build a fuzzy relation with membership function

𝜇S ∶ K × K → F [0, 1]whereF is the set of trapezoidal fuzzy numbers with support

in [0, 1]. The fuzzy number 𝜇S(ki, kj) reflects the degree of semantic similarity of the

keyword ki to the keyword kj. That is, the greater the fuzzy number, the more similar

the keywords. The following is an example of fuzzy relation for the keywords in

Table 2. Note that the similarity between a keyword and itself is always equal to 1.

𝐒 =
⎛
⎜
⎜
⎜
⎝

(1, 1, 1, 1) (0, 0, 0.25, 0.5) (0.5, 0.5, 0.5, 0.5) (0, 0.25, 0.5, 0.75)
(0, 0, 0.25, 0.5) (1, 1, 1, 1) (0.2, 0.2, 0.2, 0.2) (0.2, 0.2, 0.3, 0.3)
(0.4, 0.4, 0.4, 0.4) (0.3, 0.3, 0.5, 0.5) (1, 1, 1, 1) (0.6, 0.6, 0.8, 0.8)
(0.3, 0.3, 0.3, 0.3) (0.1, 0.1, 0.4, 0.4) (0.25, 0.5, 0.75, 1) (1, 1, 1, 1)

⎞
⎟
⎟
⎟
⎠
(1)

Trapezoidal fuzzy numbers have been chosen to represent degrees of similarity

since they are more general than real numbers and real intervals and they have been

often used to represent linguistic expressions; in this sense they provide a general

enough representation.

Now consider the two keywords ‘car’ and ‘automobile’. If the document explicitly
contains ‘car’ as a keyword, but not ‘automobile’, then it is safe to assume that, when

it comes to the meaning of the document, probably it implicitly contains also the

keyword ‘automobile’, to the extent to which this is similar to ‘car’.

Our strategy to account for the fact that similar concepts can be expressed by

means of different words is that of replacing the generic original value for the pair

(i, j) in Table 2 with the greatest value of similarity to any other keyword present

in the document. Consider, for instance, the cell (1, 3) in Table 2. It has value

0 since d1 does not contain k3. However, d1 contains some keywords which, to

some extent, are similar to k3. Hence, we replace the value 0 with the greatest

among the degrees of similarity of k3 with the keywords used in the document, i.e.

max{𝜇S(k3, k2), 𝜇S(k3, k4)}, which is 𝜇S(k3, k4) = (0.6, 0.6, 0.8, 0.8).
At this stage, we have a set of keywords as an input from the expert who is seeking

for helpful reports. Such a set can be represented as a binary vector of length n, where

n is the number of keywords. The ith component of the vector is equal to 1 if and

only if the keyword is searched for, and 0 otherwise. The real numbers 0 and 1 can

be interpreted as special cases of fuzzy numbers and therefore distance measures

between fuzzy numbers can be used to rank the reports—which are here described

as the rows of Table 3—from the most to the least likely to include those keywords

(or their synonyms).

Table 3 Excerpt from a report database

k1 k2 k3 k4
d1 (0, 0.25, 0.5, 0.75) (1, 1, 1, 1) (0.6, 0.6, 0.8, 0.8) (1, 1, 1, 1)
d2 (0.5, 0.5, 0.5, 0.5) (0.2, 0.2, 0.2, 0.2) (1, 1, 1, 1) (0.25, 0.5, 0.75, 1)
d3 (1, 1, 1, 1) (0, 0, 0.25, 0.5) (0.6, 0.6, 0.8, 0.8) (1, 1, 1, 1)
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5 Data to Intelligence (D2I, 2012–)

Continuing the work done in the previous two projects, we employed the fuzzy

ontology (fuzzy relation) to tackle a general situation: optimizing the operations

of a complex machine modeled in terms of input and output variables. Specifi-

cally, the main motivation was to understand the processes taking place in a paper

machine by making use of the knowledge of experts who have been working with the

machines for decades [4]. As a result of mainly market-related issues, e.g. the con-

tinuously decreasing demand for paper products globally, companies in the paper

industry started to hire young engineers without extensive work experience with

paper machines. To cope with this situation, companies aim at creating decision

support tools that can partially automate the calibration of paper machines by cap-

turing the knowledge of retiring, knowledgeable experts. Hence, the following was

the question that we were asked to answer.

Question 3 How can we reuse the expertise of retiring engineers and help the new

engineers to calibrate industrial paper machines?

As a starting point of creating a tool for this purpose, the expert is asked to

represent his/her knowledge in a way that s/he thinks is the most appropriate as a rep-

resentation. The paper machine expert involved in the project described his knowl-

edge in terms of a heat map: a graphical representation of the relationship between

an identified set of inputs to the paper machine, termed as factors, and a set of output

indicators of the produced paper, termed as characteristics. In practice, an engineer

can change the value of a characteristic of a paper to a required level by changing

the value of a subset of the factors. A change in a factor can positively or negatively

effect a characteristic or in some cases it does not have any effect. The intensity of

this effect is indicated in the heat map by different shades of colors. As in the pre-

vious two applications, also in this case a fuzzy relation can provide a quantitative

representation of the relationships between the set of factors F = {f1,… , fn} and the

set of characteristics C = {c1,… , cm} as:

𝜇R( fi, cj) =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

1, if fi strongly positively affects cj
𝛼 ∈]0, 1[, if fi to some extent positively affects cj
0, if fi does not affect cj
𝛽 ∈] − 1, 0[, if fi to some extent negatively affects cj
−1, if fi strongly negatively affects cj.

(2)

By relying on this relation as a representation, different optimization models can

be proposed for “tuning” a paper machine. In practical problems, it is hardly ever the

case that there is a single characteristic of the paper to be changed; an improvement in

the quality of the paper usually requires several characteristics to be optimized at the

same time. The general task consists of specifying a partition of the characteristics
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(to be decreased, increased, left unaltered or do not care) and finding a partition of

factors (to increase, decrease or do not change) that corresponds to each other to an

acceptable extent based on the fuzzy relation.

The basic optimization model can be extended in different ways to provide a

more accurate and reliable presentation of the context and a more customizable

tool for the intended users, the engineers with limited practical experience with the

paper machines. The first improvement concerns the imprecision present in the color

selection of the heat map and consequently in the values of the fuzzy relation. As

an attempt to overcome this problem, the real number indicating the relationship

between a factor and characteristic can be represented using a (triangular) fuzzy

number. This would also allow for using the possibilistic version of chance con-

strained programming in the optimization model: according to the preferences of

the paper machine engineer, an acceptable degree of satisfaction regarding the par-

tition of characteristics can be defined in the form of a possibilistic constraint. For

example, we accept a solution as satisfactory if the possibility that the identified

setting of factors increases the brightness of the paper is at least 0.9.

A different extension aims at incorporating additional information about paper

machines. This includes, for example, the cost of changing the value of different

factors. As companies have limited resources in terms of time and money, it is very

important to incorporate this aspect of the decision process in the optimization model

to obtain a reasonable solution, not only a theoretically correct one. We can also

refine the partitions based on detailed empirical information of the range of the val-

ues of the factors and how the relationship with a given characteristic may vary in

different intervals of the range.

6 Discussion

In this section, we will summarize the lessons learnt during the research process in

the three discussed cases. In our opinion, the most important points are the following

ones.

∙ We demonstrated how to make use of expert knowledge captured in three differ-

ent ways (rules, reports, heat-map). Our approach reflected several of the points

raised by Kaisler et al. [12] concerning advanced analytics. Most importantly, from

the beginning the goal was to create knowledge-centric systems with the help

of the knowledge mobilization approach. The main features of this approach

include the following characteristics: (i) the system should be user-centric, regard-

less on whether it is about mobile phone users in a restaurant choosing a wine or

engineers tuning a paper machine; (ii) it should be context-adaptive and be easy

to fit the model to the problem description automatically; and (iii) it should per-

form smart operations in the sense that the reasoning behind the models tries to

approximate the reasoning of human experts.
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∙ All the different representations can be formulated as a fuzzy ontology/fuzzy rela-

tion. There exists several definitions of fuzzy ontology and numerous theoretical

contributions with only a very few practical case studies and applications. Bobillo

[2] defined fuzzy ontology as “an ontology which uses fuzzy logic to provide a

natural representation of imprecise and vague knowledge and eases reasoning over

it”. This definition does not stress any necessary condition on the complexity of

the reasoning system; accordingly, for us, the main goal was to use a concept that

can be easily operationalized. We found that a representation as a fuzzy relation

provides sufficient rigor and at the same time helps in creating applications that

solve important real-life problems.

∙ The problems that we approached belong to the core of decision analytics. Accord-

ing to the classification of Holsapple et al. [9], we considered developing and

implementing analytics as a transformation process to drive organizational deci-

sions, in our examples on the operational level. The knowledge of experts with

many years of experience is a crucial success factor of the transformation sup-

ported by analytics. In the discussed cases, we illustrated how soft computing

methods, specifically fuzzy logic, can be seen as an essential component of an

analytic transformation by providing a tool to capture, represent and utilize tacit

knowledge.

∙ Prescriptive analytics cases are not documented in large numbers in the literature;

here we illustrated three cases. Analytics methods are usually classified into three

main groups: descriptive, predictive, and prescriptive. Descriptive and predictive

methods are widely used and present in every organization and used on a daily

basis as they provide answers for the question what happened (and why) and what

will happen in the future, respectively. Prescriptive analytics, the most advanced

class of analytics, is not only concerned with estimating possible future events but

also at the same time tries to identify the best possible course of action (decision)

to react to predicted events. Although this approach could offer the most potential

advantages for organizations, presently only 3 % of companies employ prescrip-

tive analytics. From this perspective we contributed to research by describing the

process of designing and creating prescriptive analytics systems.

Additionally, the 5-years long process of working on these problems continu-

ously in close cooperation with industrial partners supports most of the observations

described by Pertuze et al. [18]. In our opinion, the first of several main reasons for

the success was that the approached problems are rooted in and motivated by actual

problems of the companies that are necessary to be solved in order to keep up the

existing effectiveness in different processes when facing the rapidly changing global

market and continuously changing customers’ needs. Secondly, the duration of the

research projects, and the way the three cases build on each other, allowed for contin-

uous improvements in the methodologies while at the same time frequently reflecting

back on the original concepts. Thirdly, the extensive involvement of company experts

in improving the models and providing the contextual knowledge resulted in insights

that would have been hardly achievable without the use of domain knowledge.
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7 Conclusions

In this chapter, we recalled three closely connected research projects taking place

between 2008 and 2014 as a collaboration between industrial companies, funding

agencies, and University. All the three described cases involved analytical methods

and aimed at capturing expert knowledge and creating new insights. This general

problem description classifies our cases as belonging to the problems of decision

analytics. Based on the experience learnt in the three projects, we highlight the

commonalities that we think should be taken into consideration when developing

analytics research projects in the future. We illustrate the important role that soft

computing, and specifically fuzzy logic, can play in creating prescriptive analytics

solutions.

Every case contributes to the general concept of knowledge mobilization: cre-

ating advanced analytical tools that can provide context adaptive knowledge to the

end-users in real time. In the described cases, the imprecision of the experts’ knowl-

edge and their linguistic expressions in different reports were modeled using fuzzy

ontologies/relations. Fuzzy relations/ontologies provided an appropriate tool to cap-

ture and manipulate imprecise information in the different industrial contexts.
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Spatial Analysis Using GIS for Obtaining
Optimal Locations for Solar Farms—
A Case Study: The Northwest
of the Region of Murcia
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and J.L. Verdegay

Abstract One of the first decisions that must be taken when hosting a photovoltaic
solar farm to pour the energy generated into the grid is to choose a proper location
(towns, existing infrastructure, etc.). The legislative framework that is applicable
must also be considered since it involves a large number of restrictions (protected
areas, streams and watercourses, etc.) that will provide us with the guidelines to
eliminate those unsuitable areas, as well as certain criteria (proximity to power
lines, slope, solar irradiation, etc.) according to which an evaluation of the suitable
areas that condition any facility will be made. It is precisely for these reasons why
the management of spatial visualization tools such as Geographic Information
Systems (GIS) is particularly useful. The objective of this paper is to demonstrate
how the aggregation of GIS to decision procedures in the field of renewable energy
can solve complex location problems. In the present case a GIS (called gvSIG) will
be employed in order to obtain suitable locations to host photovoltaic solar farms in
the Northwest of the Region of Murcia, in Spain.
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1 Introduction

More and more frequently, the Earth is warning us of the dangers involved in
carrying out uncontrolled and disproportionate industrial development. The planet’s
response is manifested in the form of an increased number of forest fires, rising
levels of seas and oceans, more droughts, extreme storms, as well as constant and
frequent heat waves. These are just some of the most significant effects that are
being caused by increased temperatures on our planet as a result of the increase in
emissions of greenhouse gases [1]. From an energy point of view, in addition to the
problem of global warming we must add a continuous rise in the prices of fossil
fuels such as petroleum and natural gas [2]. Therefore, the human being must find
alternatives that take advantage of the multitude of resources available and which
will mitigate these significant negative effects.

In the last century, policies were developed globally [3–7] and at European level
[8, 9] which promoted sustainable development strategies [10] and encouraged the
implementation of renewable energy (RE) installations, with the objective that such
technologies should play an important role in the generation of electrical energy in
the future (Fig. 1).

In Spain, the fulfillment of the objectives set by the European Union was the
main reason why different energy plans were developed [11, 12]. The objective was
to reach at least 20 % of final energy consumption for 2020 using renewable
technologies. As a result of this favourable legislative framework, in Spain the
implantation of this type of facility was extended, with solar photovoltaics being
one of those with the highest growth. This positioned Spain as the second world
photovoltaic power in 2009 [13]. Recent analyses [14] have demonstrated that solar
technologies, and in particular photovoltaic technology, have a stable learning
curve, allowing to reach very high yields in regions where there is high solar
radiation.

Fig. 1 Forecast for the
generation of electrical energy
by fuel in the European
countries belonging to OECD,
(trillions kWh) [2]
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The objective of this work is to find the best location to install a solar photo-
voltaic farm. To do this, it will be necessary to find an area where solar radiation is
high. On the other hand, it is necessary to define a number of attributes (slope, area,
field orientation, distance to main roads, distance to power lines, distance to towns
or villages, distance to electricity transformer substations, solar irradiation and
average temperature) that will be important to evaluate the most favourable suitable
location for the implementation of the solar farm.

The Region of Murcia is situated in the southeast of Spain, and has one of the
highest levels of solar radiation in the country [15]. Therefore, it has become one of
the areas with greater appeal to deploy photovoltaic solar farms. However, on its
territory there are inland areas (Northwest region) which for various reasons (land
less appropriate for the development of agriculture, low land prices, lower urban
and residential occupation, etc.) present greater suitability than others to implement
such facilities. So, an in-depth analysis, enabling to locate the best areas to deploy
photovoltaic solar farms is of notable interest.

To carry out studies of this nature, it is evident that management tools such as
geographic information systems (GIS) are very useful [16] since they are able to
provide extensive databases, in the form of thematic layers and tables, which can be
very useful to solve complex location problems [17].

2 GIS Methodology in Obtaining Suitable Surfaces
to Deploy Installations of RE in the Northwest
of the Region of Murcia

GIS are tools that manage geo referenced information and allow us to digitally
represent the real world based on discrete objects. The information of these objects
is expressed numerically and provides a collection of referenced data that acts as a
reality model. The space data in a GIS is a set of maps that represent a portion of the
actual surface, so that each one of these maps is defined by means of a thematic
variable and when it is introduced in a GIS it receives the name of thematic layer.

2.1 The gvSIG Software

Although commercial GIS are widespread nowadays (ArcGIS, IDRISI, etc.), this
paper will use an open source version called gvSIG (www.gvSIG.org); this was
developed in 2004 by the Ministry of infrastructure and transport of the Valencian
Community and is available to any user for its use and development.

In the proposed study, thematic layers that represent and define the surface
covering the study area will be introduced in gvSIG, as will the restrictions i.e.,
areas in which it is already impossible to implement photovoltaic solar farms,
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because the current state of the terrain prevents it or it is prohibited by the legis-
lation in force. Through the operations of edition of gvSIG, it will be possible to
reduce the initial zone of study, taking into account the restrictions that affect it until
the locations that are feasible to implement this type of facility are obtained.

2.2 Stage 1: Search for Viable Locations

The first stage will consist in selecting and refining the study area. In the proposed
problem the zone will correspond to the Northwest of the Region of Murcia, which
consists of five municipalities (Moratalla, Caravaca de la Cruz, Bullas, Calasparra,
and Cehegin) and has an area of 2,379.62 km2 (Fig. 2). Once the area of study is
known, then the restrictions to apply will be described. These are the areas in which
due to the current status of the territory (roads, railway, urban lands, etc.) and
legislation, (European, national and regional regulations) it is not possible to deploy
photovoltaic solar farms.

Each one of the seven constraints (Table 1) will be defined on the basis of the
legislative framework that may apply so that, according to the current regulations

Fig. 2 Northwest of Murcia region
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[18–21], photovoltaic solar farms may not be implanted in any urban lands or lands
suitable for urban development (restriction 1).

According to the law 42/2007 and law 3/1995 of 23 March, areas of high
landscape value and earmarked for water supply infrastructures, military zones and
cattle trails (restriction 2) are also protected areas. In Runways and watercourses
and streams (restriction 3) and in their bands of buffer it is not possible to implant
an installation [19]. In addition, law 16/1985 of 25 June, and the Legislative Decree
1/2005, establishes measures for the conservation of scheduled areas such as
archaeological, paleontological and cultural heritage (restriction 4). The road and
rail networks (restriction 5) are also protected by the regulations in force [24], as
well as places of LICs (restriction 6) and areas of special protection for birds
(restriction 7) which are protected by the Directive 92/43/EEC of 21 May 2009
[25].

In addition to the above restrictions, we must consider a further two factors,
since those areas having any construction or installation of importance in its interior
(marsh, agricultural construction, etc.), or that its area is less than that which experts
consider to be the minimum to implement this type of installations (less than
1000 m2 surface area) will be necessary to be discarded. Each of the restrictions will
be introduced in the software gvSIG in the form of thematic layers. The thematic
layer of the Northwest of the Region of Murcia will be initially introduced in gvSIG
(Fig. 2). This layer will not only serve to delimit the study area but also to classify it
by means of municipalities (which in turn divide their territory into polygons, plots
and cadaster subplots). The thematic layers of restrictions will subsequently be
added in a way which, with the commands of gvSIG (area of influence, difference,
filter, etc.) they will be discounting, from the initial surface of the study area, the
surface occupied by the restrictions to produce a new thematic layer that will
contain the feasible locations (Fig. 3).

The feasible locations occupy an area of 1,036.11 km2. Their surface is com-
posed of 17,740 cadastral parcels according to the Cadaster General Directorate and
these constitute the alternatives under analysis in the later stages. The following
steps consist of selecting, from among the above alternatives, which are the best to
implement this type of facilities, based on a number of criteria.

Table 1 Legal restrictions

Nº Name of restrictions

1 Suitable for urban development and urban lands
2 Landscape value, water infrastructure, military areas and cattle trails
3 Runways and watercourses and streams
4 Archaeological paleontological and cultural heritage
5 Road and railway network
6 Sites of community importance (LICs)
7 Special protection areas for birds (ZEPAs)

Spatial Analysis Using GIS … 211



2.3 Stage 2: Optimal Locations Analysis

Criteria
In implementing renewable energy facilities, not only must it be taken into account
that the analyzed zone is not affected by any legal restrictions, but we also have to
rely on a series of criteria that influence the selection of the best location. Although
research and studies have been conducted that define characteristics which these
criteria must contain [16, 17], the choice of these criteria will depend mainly on the
area of study. Therefore, following the guidelines indicated in Aran Carrion et al.
[26], for the particular case, three groups of general criteria (location, orographic,
and climatological) that are defined, will be broken down into a number of specific
criteria which constitute the set of criteria which will influence the location, i.e.,
those that will opt for one location rather than another. Below we describe briefly
each of the above-mentioned specific criteria:

C1: Slope (%): Land slope, the higher percentage of having a surface inclination,
the worse aptitude to hold a solar plant

C2: Area (m2): surface contained within a perimeter of land that can accommodate
an RE installation

C3: Field Orientation (degrees): Position or direction of the ground to a cardinal
point. The most focused point is land oriented to the geographic South (270 °)

Fig. 3 Feasible locations to install photovoltaic solar farms
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C4: Distance to main roads (m): space or interval between the (Highway) road
network and the different possible locations

C5: Distance to power lines (m): space or interval between the nearest power line
and the different possible locations

C6: Distance to towns or villages (m): space or interval between centers of
population and the different possible locations

C7: Distance to electricity transformer substations (m): Space or interval between
transformer substations of electric power and the different possible locations

C8: Solar irradiation (kJ/m2 day): value of the amount of solar irradiation that a
field receives per unit area (m2)

C9: Average temperature (°C): corresponds with the average annual temperature
in the different possible locations

Database
In order to create a database containing all alternatives and criteria, we followed a
similar process to that followed in the definition of constraints. Thus, there were a
total of 17,740 alternatives object of analysis, displayed by thematic information
represented in rows and columns, so that rows constitute geographical objects
which in this case will be alternatives to select linked (plots), and the columns will
define named attributes or thematic variables (cadastral information and criteria)
constituting an array with data relating to each plot for each of the nine criteria
above. The attribute table is the database that will be used in the third stage.

2.4 Stage 3: Selection of Optimal Locations

The database created with gvSIG allows to obtain the numeric values of all the
criteria for each of the alternatives. These values will be used to carry out a process
of filtering according to a classification of alternatives by categories. To do so, an
expert in photovoltaics will state not only the number of categories in which the
alternatives based on the nine criteria should be classified, but he also establishes
the limits of such categories for each of the criteria. According to the expert, it is
possible to classify the alternatives into four categories (Cat 1, Cat 2, Cat 3, Cat 4)
depending on the fitness or capacity for a solar farm (regular, good, very good, and
excellent capacity, respectively), and the limits set (Table 2) of these categories
based on the domains of the criteria that influence the decision.

Initially, the expert considers that the worst classification should only be regular
(category 1) because, when determining in stage 1 areas in which a solar farm
cannot be implanted, there is no alternative that can be termed as poor. Similarly,
there should be a category defined as excellent (category 4) with the objective of
being restrictive when making the selection process.

The selection process will consist in gradually, and using screening techniques,
eliminating those choices that are lower, and thus obtain the sites located in the top
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categories. Therefore, the first step will consist of deleting those alternatives that
have values in some of their criteria in category 1 in order to reduce the number of
alternatives to those whose capacities of reception are good, very good or excellent
(categories 2, 3 and 4, respectively). Once this first filtering has been completed, a
new thematic layer (Fig. 4a) will have reduced the number of alternatives, so from

Table 2 Boundaries of categories of alternatives Ai for each of the criteria

Criteria Cat 1 Cat 2 Cat 3 Cat 4

Slope (%) Ai > 30 30 ≥ Ai > 20 20 ≥ Ai > 10 Ai ≤ 10

Area (m2) Ai < 1500 1500 ≤ Ai < 3500 3500 ≤ Ai < 10000 Ai ≥ 10000

Field
orientation (°)

45 ≤ Ai < 135 135 ≤ Ai < 225 0 ≤ Ai < 45 225 ≤ Ai < 360

Distance to main
roads (m)

Ai > 10000 10000 ≥ Ai > 5000 5000 ≥ Ai > 100 Ai ≤ 100

Distance to
power lines (m)

Ai > 10000 10000 ≥ Ai > 3000 3000 ≥ Ai > 100 Ai ≤ 100

Distance to town
or villages (m)

Ai < 100 100 ≤ Ai < 500 500 ≤ Ai < 1000 Ai ≥ 1000

Distance to
electricity
transformer
substations (m)

Ai > 15000 15000 ≥ Ai > 10000 10000 ≥ Ai > 7500 Ai ≤ 7500

Solar irradiation
(kJ/m2 day)

Ai < 1200 1200 ≤ Ai < 1700 1700 ≤ Ai < 2000 Ai ≥ 2000

Average
temperature (°C)

Ai < 12 12 ≤ Ai < 15 15 ≤ Ai < 17 Ai ≥ 17

Fig. 4 a, b Alternatives resulting after removing those alternatives with criteria in category 1
(filtering nº1) and category 2 (filtering nº2)
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17,740 possible initial locations it this case they will have been reduced to 8,961, all
placed in categories 2, 3 and 4.

Continuing with the process of selection, the previous thematic layer (Fig. 4a)
will be taken as a starting point and out a new filter will be carried out that removes
those alternatives with values in some of their criteria in category 2. By so doing,
the 8,961 will be reduced to 3,496 alternatives (Fig. 4b), all in categories 3 and 4.

Once this second filtering has been done, we will proceed analogously per-
forming a third filter in order to obtain the best alternatives; that is those with all
their criteria situated in the best category (Category 4), reapplying the gvSIG filter
command to the 3,496 alternative obtained in the second filtering it is reduced to
only seven. The location and identification of these alternatives are shown in Fig. 5.

Figure 5 shows that there is no optimal alternative located in the municipalities
of Moratalla, Cehegín and Bullas. Most of the optimal alternatives are located in the
municipality of Calasparra (specifically six of the seven best alternatives are located
in it) and the remaining optimal alternative is located in the municipality of Car-
avaca de la Cruz.

Analyzing the criteria values for optimal alternatives it is observed that the
criteria C4 (Distance to main roads), C5 (Distance to power lines) and C9 (Average
temperature) have the same values. Therefore they have no influence on the choice
of the best alternative. It is also noticeable (Table 3) that certain criteria such as
slope C1, field orientation C3 and solar irradiation C8 have very similar values to

Fig. 5 Alternatives resulting after removing those alternatives with criteria in category 3 (filtering
nº3)
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each other which means that these values are not very influential in the decision.
Only criteria such as the area of the plot C2, Distance to town or villages C6 and
distance to electricity transformer substations C7 have variable values, therefore
choosing the best location is determined by the weight or importance coefficient of
these last criteria.

3 Conclusions

With this study it was found that the GIS software are not only excellent tools able
to solve and visualize complex location problems, but also that they can generate
important databases which provide an ideal starting point to address any problems
of territorial nature.

In the proposed particular case different conclusions have been reached: In
relation to obtaining suitable surfaces for locating photovoltaic solar farms (Fig. 3),
it is concluded that the Northwest Region of Murcia is an optimal place to
implement such facilities because, once all the restrictions have been considered,
we have obtained a high percentage of suitable area available (43.54 %).

With the tools of GIS software and using the information provided by experts, it
has been possible to perform a search and selection of the best places to locate such
facilities, successfully reducing the initial alternatives to only a very small and
manageable number of alternatives (Fig. 5).

Among the limitations of this study which could be included in possible future
work one might mention extending the case study to the whole national territory or
other areas where there is a desire to implement solar farms, as well as to increase
the number of renewable technologies to be implemented (wind, solar thermal,
biomass, biogas, etc.). It would also be interesting to combine GIS with other
decision support tools such as multicriteria decision methods with the aim of
establishing a comparison of methodologies for evaluating the different locations
available.

Table 3 Values of criteria for optimal alternatives

Alternatives C1 C2 C3 C6 C7 C8

Min. Max. Max. Max. Min. Max.

A1 0.26 89298.37 360.00 6028.68 5793.66 2086
A2 0.34 43903.39 360.00 6400.45 6192.66 2081
A3 0.25 76262.28 360.00 6376.42 6174.85 2081
A4 0.29 44092.23 360.00 7225.17 6989.63 2062
A5 0.48 106290.92 360.00 7547.42 7319.09 2070
A6 0.77 61831.30 359,57 1120.08 2002.35 2031
A7 0.30 54748.54 360.00 5847.85 5624.50 2084
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