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    Chapter 6   
 Phospholipase A 2  as a Molecular Determinant 
of Store-Operated Calcium Entry                     

       Tarik     Smani     ,     Alejandro     Domínguez-Rodriguez    ,     Paula     Callejo-García    , 
    Juan     A.     Rosado    , and     Javier     Avila-Medina   

    Abstract     Activation of phospholipases A 2  (PLA 2 ) leads to the generation of bio-
logically active lipid products that can affect numerous cellular events. Ca 2+ -
independent PLA 2  (iPLA 2 ), also called group VI phospholipase A 2 , is one of the 
main types forming the superfamily of PLA 2 . Beside of its role in phospholipid 
remodeling, iPLA 2  has been involved in intracellular Ca 2+  homeostasis regulation. 
Several studies proposed iPLA 2  as an essential molecular player of store operated 
Ca 2+  entry (SOCE) in a large number of excitable and non-excitable cells. iPLA 2  
activation releases lysophosphatidyl products, which were suggested as agonists of 
store operated calcium channels (SOCC) and other TRP channels. Herein, we will 
review the important role of iPLA 2  on the intracellular Ca 2+  handling focusing on its 
role in SOCE regulation and its implication in physiological and/or pathological 
processes.  
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  DAG    Diacylglycerol   
  ER    Endoplasmic reticulum   
  iPLA 2     Calcium-independent PLA 2    
  LA    Lysophasphatidyl acid   
  LyPLA 2     Lysosomal PLA 2    
  OAG    1-oleoyl-2-acetyl-sn-glycerol   
  PAF-AH    Platelet-activating factor acetylhydrolases   
  PC    Phosphatidylcholine   
  PE    Phosphatidylethanolamine   
  PG    Phosphatidylglycerol   
  PS    Phosphatidylserine   
  ROC    Receptor operated channels   
  SMC    Smooth muscle cell   
  sPLA 2     Secretory PLA 2    
  SOCC/SOCE    Store operated Ca 2+  channels/entry   

6.1         Classifi cation of Phospholipase A 2  

 The phospholipase A 2  superfamily enzymes are characterized by their ability to 
catalyze the hydrolysis of glycerophospholipids at the sn-2 position and generate 
several classes of bioactive lipids, fatty acids and lysophospholipids [ 1 ]. Six main 
families of phospholipases have defi ned physiological implications. They comprise 
secretory PLA 2  (sPLA 2 ), cytosolic PLA 2  (cPLA 2 ), lysosomal PLA 2 , adipose- specifi c 
PLA 2  (AdPLA 2 ); and two major Ca 2+ -independent groups, calcium-independent 
PLA 2  (iPLA 2 ) and platelet-activating factor acetylhydrolases (PAF-AH). This sub-
division was based on their structures, catalytic mechanisms, localizations and evo-
lutionary relationships, and they are collectively identifi ed as groups, using roman 
numerals (i.e. Group I to Group XVI), with capital letters to distinguish individual 
sub-families [ 2 ]. Many of PLA 2  have contrasted role in cell signaling that involve 
intracellular Ca 2+  homeostasis regulation. 

6.1.1     Secretory PLA 2  (sPLA 2 ) 

 The secretory PLA 2 s (belonging to Groups I, II, III, V, IX, X and XII in mammali-
ans) were the fi rst type of PLA 2  enzymes discovered. They were identifi ed in organ-
isms such as snakes and scorpions; in components of pancreatic juices; arthritic 
synovial fl uid; and in many different mammalian tissues [ 3 ]. Most sPLA 2  isoforms 
are calcium-dependent, and require millimolar concentrations of the ion to function 
optimally [ 2 ,  4 ,  5 ]. Consequently, sPLA 2 s typically function at the external side of 
the cell hydrolyzing a wide variety of phospholipids [ 2 ,  6 ]. sPLA 2  hydrolyzes the 
sn-2 ester bond in the glyceroacyl phospholipids presents in lipoproteins and cell 
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membranes, inducing structural and functional changes and forming arachidonic 
acid (AA), lysopholipids and non-esterifi ed fatty acids with direct proinfl ammatory 
effects [ 7 ,  8 ]. In general, sPLA 2  isoforms have solid preference for negatively 
charged phospholipid head groups, in particular phosphatidylserine (PS), phospha-
tidylglycerol (PG) and phosphatidylethanolamine (PE) [ 9 ]. Recent studies have 
suggested that some sPLA 2  isoforms can modify cell functions by binding to recep-
tors and other proteins [ 5 ].  

6.1.2     Cytosolic PLA 2  (cPLA 2 ) 

 The cPLA 2  family (also named Group IVA–F) is one of the major PLA 2  that con-
tains six isoforms, ranging in size from 60 to 85 kDa, which are generally localized 
in the cytosol. They are active in the presence of mM levels of Ca 2+  and, with the 
exception of cPLA 2 ɣ (Group IVC), contains in their N-terminals a C2 domain for 
the binding of two Ca 2+  ions as well as two conserved phosphorylation sites. cPLA 2  
family members have a catalytic domain characterized by a three-layer architecture 
employing a conserved Ser/Asp catalytic dyad, instead of the classical catalytic 
triad, that is similar in structure to that of iPLA 2  [ 10 ,  11 ]. The fi rst group IV cPLA 2  
(Group IVA) was fi rstly identifi ed in human platelets in 1986 [ 12 ] and was cloned 
and sequenced 5 years later [ 13 ,  14 ]. cPLA 2  is perhaps the far most widely studied 
cytosolic enzyme and, besides transacylase activity, is also known to have PLA 2  and 
lysophospholipase activities [ 15 ]. cPLA 2  is activated by several different mecha-
nisms, and is recruited to the membrane by a Ca 2+  dependent translocation of the C2 
domain. A recent work has localized the lipid binding surface of the enzyme in the 
presence of Ca 2+  [ 16 ]. 

 From the different PLA 2 s, cPLA 2  is the only one described to have a preference 
for AA in the sn-2 position of phospholipids [ 10 ,  14 ]. Upon activation and translo-
cation to intracellular membranes, cPLA 2  generates and releases AA from mem-
brane phospholipids leading to an active lipoxygenase and cyclooxygenase 
metabolism [ 17 ]. AA, which acts as precursor for the generation of eicosanoids, is 
a key player in the prostanoid signaling cascades and therefore its activation is 
important for regulating various physiological and pathological processes including 
immune and infl ammatory-related processes [ 2 ,  18 ,  19 ]. Furthermore, AA is also 
considered as an agonist that induces cytosolic Ca 2+  entry through cationic channels 
called arachidonic acid-regulated calcium channels (ARC) [ 20 ,  21 ].  

6.1.3     PAF Acetyl Hydrolase/Oxidized Lipid (PAF-AH/LpPLA 2 ) 

 Platelet activating factor (PAF) acetylhydrolases (AH) (PAF-AH, Group VIIA and 
B, and VIIIA and B) have low molecular weight (26–45 kDa) and represent a unique 
group of acyl hydrolases with a catalytic serine that is capable of releasing acetate 
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from the sn-2 position of PAF, a 1- O -alkyl-PC [ 22 ]. However, they can also catalyze 
the release of oxidized acyl groups from the sn-2 position of PC and PE, not just 
PAF [ 2 ,  4 ,  23 ]. Its active site is composed of a serine, histidine, and aspartic acid 
hydrolase triad, unlike all other PLA 2 s, which have dyads [ 24 ]. There are four mem-
bers of this family that specifi cally catalyze these reactions; one of them is a secreted 
protein (GVIIA PLA 2 ), known as plasma-type PAF-AH or “lipoproteinassociated 
PLA 2 ” (LpPLA 2 ), that has generated interest as a therapeutic target for atheroscle-
rosis [ 22 ,  26 – 29 ]. On the other hand, LpPLA 2  is a potent phospholipid activator that 
is secreted by multiple infl ammatory cells including monocytes/macrophages, T 
lymphocytes and mast cells [ 30 ,  31 ]. This enzyme was cloned from human plasma 
in 1995 and was shown to have anti-infl ammatory activity in vivo [ 25 ]. The LpPLA 2  
role in cytosolic Ca 2+  regulation is still unknown.  

6.1.4     Lysosomal PLA 2  (LyPLA 2 ) 

 Lysosomal PLA 2  was purifi ed from bovine brain as an enzyme that esterifi es an acyl 
group with the hydroxyl group in the C-1 position of ceramide using phospholipids 
as the acyl group donor, so the enzyme was fi rst named 1-O-acylceramide synthase 
(ACS). The protein possesses Ca 2+  independent PLA 2  and transacylase activities. 
Hiraoka et al. [ 32 ] proposed that the hydrolyzed acyl group is transferred through an 
enzyme-acyl intermediate to ceramide or water, resulting either in the production of 
either 1-Oacyl- ceramide (ACS activity) or the release of free fatty acids (PLA 2  
activity). In terms of catalytic activity, Ly-PLA 2  specifi cally prefers PC and PE head 
groups at pH 4.5 in a Ca 2+ -independent manner. Ly-PLA 2  is ubiquitously expressed 
in diverse cell types, but highly expressed in alveolar macrophages. In fact, it plays 
a role in surfactant metabolism, and specifi cally in the phospholipid catabolism of 
pulmonary surfactant [ 33 ,  34 ].  

6.1.5     Adipose Specifi c PLA 2  (AdPLA 2 ) 

 Duncan et al. [ 35 ] discovered recently a novel intracellular PLA 2 , highly and dif-
ferentially expressed only in adipocytes and induced during preadipocyte differen-
tiation, that releases sn-2 fatty acid from phospholipids in a Ca 2+ -dependent manner. 
This recently discovered enzyme named adipose-specifi c PLA 2  (AdPLA 2 , Group 
XVI), has a molecular weight of 18 KDa. It is found abundantly in white adipose 
tissue, 40–150 times higher that found in liver. The enzyme is not an acyltransfer-
ase, but it functions entirely as a phospholipase, producing lysophosphatidylcho-
line and AA from the phospholipids. In addition, Duncan and colleagues studied 
the properties of AdPLA and found its optimal pH was 8.0, requiring cysteine and 
histidine residues at the active site, with maximal enzymatic activity in the pres-
ence of 1.0 mM Ca 2+  [ 35 ]. AdPLA 2  have been also implicated in energy regulation 
as it modultes the release of fatty acids, from stored triglycerides in white adipose 
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tissue, which will be later used as energy source by other tissues. AdPLA 2  has been 
also proposed to play a major role in the supply of AA for prostaglandin E2 (PGE2) 
synthesis in white adipose tissue [ 36 ]. Thus, AdPLA is considered a major regula-
tor of adipocyte lipolysis and is crucial for the development of obesity, although it 
seems possible that AdPLA could promote obesity through a mechanism distinct 
from PGE2 signaling [ 37 ].  

6.1.6     Calcium Independent PLA 2  (iPLA 2 ) 

 The Ca 2+  independent PLA 2 s are members of the GVI family of PLA 2  enzymes. 
Currently, six isoforms of iPLA 2  (Group VIA–F) have been identifi ed as shown in 
Table  6.1 . While their catalytic sites are similar to that of cPLA 2 , they do not require 
Ca 2+  for catalytic activity and they are generally larger in size, with moleculear 
weights ranging from 55 to 146 kDa except for Group VIF PLA 2  (~28 kDa). iPLA 2 s 
are localized either in the cytosol, the endoplasmic reticulum (ER) or in the mito-
chondrial membrane [ 38 ]. iPLA 2  are entirely involved in lipid remodeling, in the 
Land’s Cycle, and also mediate cell growth signaling [ 2 ,  4 ]. Members of this family 
share a protein domain initially discovered in patatin, the most abundant protein of 
the potato tuber.

   In the next part of this chapter, we will go through iPLA 2  classifi cation, regula-
tion, and its role in intracellular Ca 2+  regulation.   

6.2     Sub-classifi cation of iPLA 2  

6.2.1     GVIA PLA 2  (iPLA 2 α and iPLA 2 β) 

 Many new iPLA 2  (GVI PLA 2 ) members have been identifi ed in the last years, but 
the fi rst member and the best characterized of this family is the GVIA PLA 2 , which 
was purifi ed from macrophages in 1994 [ 39 ,  40 ]. GVIA PLA 2  is expressed in 

    Table 6.1 Isoforms of calcium-independent (Group VI) PLA2   

 PLA 2  
family  Group  Source 

 MW 
(KDa)  Alternate name 

 iPLA 2   VIA-1  Human/murine  84–85  iPLA 2 α 
 VIA-2  Human/murine  88–90  iPLA 2 β 
 VIB  Human/murine  88–91  iPLA 2 γ 
 VIC  Human/murine  146  iPLA 2 δ, neuropathy target 

esterase (NTE) 
 VID  Human  53  iPLA 2 ε, adiponutrin 
 VIE  Human  57  iPLA 2 ζ, TTS-2.2 
 VIF  Human  28  iPLA 2 η, GS2 
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multiple different splice variants [ 41 ] and, similar to cPLA 2  (GIV PLA 2 ), it cata-
lyzes the cleavage of the sn-2 ester bond. However, it does not show specifi city for 
AA in the sn-2 position and is fully active in the absence of Ca 2+ . The GVIA PLA 2  
also possesses sn-1 lysophospholipase and transacylase activity [ 41 ]. The enzyme 
has a conserved glycine-rich nucleotide-binding motif (GXGXXG) proximal to the 
catalytic site and it is activated several-fold by ATP [ 42 ]. The N-terminal domain of 
GIVA PLA 2  is composed of seven to eight ankyrin repeats, which are responsible 
for protein-protein interaction between monomers [ 43 ]. It is thought that ankyrin 
repeats enable the oligomeration of Group VIA monomers required for catalytic 
activity [ 39 ]. In fact, the active form of Group VIA PLA 2  is a tetramer [ 39 ]. 

 Several splice variants of GVIA PLA 2  have been identifi ed [ 39 ,  44 ]. Group 
VIA-1 or iPLA 2 α, and Group VIA-2 or iPLA 2 β [ 44 – 48 ], for example, comprise two 
catalytically active forms of this enzyme [ 44 – 48 ]. Both isoforms are similar in size, 
85 and 88 KDa respectively, and contain eight N-terminal ankyrin repeats and a 
consensus lipase motif (GXS 465 XG), whereas in GVIA-2 PLA 2  the 8 ankyrin repeats 
are interrupted by an insertion of 54 amino acids and they exhibit a glutamate resi-
due at position 450, while the corresponding position in Group VIA-1 is 
glutamine. 

 Three additional splice variants of GVIA iPLA 2  have been identifi ed: Group 
VIA-3 (also known as iPLA 2 -2); Group VIA Ankyrin-1 (or Ankyrin-iPLA 2 -1), and 
Group VIA Ankyrin-2 (or Ankyrin-iPLA 2 -2). The GroupVIA-3 splice variant 
encodes an iPLA 2  that is identical to Group VIA-2 PLA 2  (iPLA 2 β) at the N-terminus, 
that retains the GTS 519 TG active site and that has a truncated C-terminus. However, 
it is not known whether Group VIA-3 encodes a functional phospholipase A 2 . Group 
VIA Ankyrin-1 is identical to Group VIA-2 at the N-terminus but it ends prior to the 
GTS 519 TG active site with a three amino acid modifi cation at the C-terminus; it does 
not encode a functional PLA 2  enzyme [ 46 ]. Similar to Group VIA Ankyrin-1, Group 
VIA Ankyrin-2 also lacks the GTS519TG active site and additionally present with 
a 73 amino-acids shorter N-terminus and a 50-amino-acid variation at the 
C-terminus. Group VIA ankyrin-1 and Group VIA ankyrin-2 may act as negative 
regulators of Group VIA-1 and Group VIA-2 by precluding catalytically active tet-
ramer aggregation [ 39 ,  46 ]. Processes in which GVIA PLA 2  has been implicated 
include phospholipids remodeling, AA release causing eicosanoid formation, pro-
tein expression, acetylcholine-mediated endothelium-dependent relaxation of the 
vasculature, secretion, and apoptosis. iPLA 2  plays also an important role in lympho-
cyte proliferation and in Ca 2+  signaling regulated by calmodulin (CaM) and by a 
Ca 2+  infl ux factor as detailed below [ 41 ,  49 – 52 ].  

6.2.2     GVIB PLA 2  or iPLA 2 ɣ 

 The iPLA 2 ɣ called also GVIB PLA 2  have been less studied. It has been involved 
in the release of AA that leads to eicosanoid formation [ 53 ,  54 ]. iPLA 2 ɣ contains 
the consensus lipase motif (GXSXG), a C-terminal peroxisome localization 
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signal (SKL), and a glycine-rich nucleotide binding loop motif (GXGXXG). 
Interestingly, the nucleotide-binding motif commences 34 amino acids upstream 
of the putative active Ser, which is closely identical to the location of the nucleo-
tide binding loop motif of Group VIA (35 amino acids upstream) [ 53 ]. A recent 
study demonstrated that iPLA 2 γ is responsible for the release of AA and prosta-
glandin E2 (PGE2) and infl ammatory mediators in cardiac myocytes infected by 
Chagas’ disease parasite [ 55 ]. Previously, iPLA 2 γ was also suggested as a critical 
participant in the Ca 2+ -induced opening of the mitochondrial permeability transi-
tion pore (mPTP) in Liver [ 56 ].  

6.2.3     GVIC, GVID, GVIE, GIVF PLA 2 s 

 Different Ca 2+ -independent lipases have been identifi ed newly, and classifi ed 
according to the terminology of the Group system GVIC, GVID, GVIE and GIVF 
PLA 2 s. The GVIC PLA 2  enzyme has some sequence similarity to GVIA PLA 2  and 
might play a role in membrane homeostasis. This enzyme was previously known as 
NEST, the recombinantly expressed esterase domain of NTE (neuropathy target 
esterase), a membrane protein expressed in neurons of human and mice with physi-
ological function elusive [ 57 ,  58 ] that possesses PLA 2  and lysophospholipase activi-
ties [ 59 ]. NEST might slowly hydrolyze the fatty acid in the sn-2 position of PC and 
subsequently, in a fast reaction, release the fatty acid in the sn-1 position. 

 The genes for the three other enzymes have also been identifi ed before. Although, 
there was no catalytic activity attributed to corresponding proteins. The enzymes 
were shown to hydrolyze both LA and AA at the sn-2 position in the absence of free 
Ca 2+  [ 60 ], thus these three enzymes might play a role in the regulation of triacylg-
lycerol homeostasis which implicates the control of energy metabolism in adipo-
cytes. Besides, PLA 2  activity, these enzymes possess high triacylglycerol lipase and 
acylglycerol transacylase activities and all of them were inhibited by bromoenol 
lacotone (BEL) at sub-micromolar levels [ 60 ].   

6.3     Regulation of iPLA 2  

6.3.1     ATP and PKC 

 The iPLA 2  protein contains a lipase consensus sequence and a putative ATP-binding 
motif. ATP has been reported to stimulate iPLA 2  activity in rat islets [ 61 ], murine 
P388D1 cells [ 45 ], but not to affect the iPLA 2  activity of Chinese Hamster Ovary 
cells [ 44 ]. In an early study, Ackerman et al. discovered that both Triton X-100 and 
ATP enhanced the activity of iPLA 2  in P388D1 cells [ 39 ]. The enzyme activity was 
1.2–6 fold higher in mixed micelles when assayed in the presence of ATP and other 
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di- or triphosphate nucleotides [ 39 ]. In other study, ATP stimulation of an iPLA 2  
isoform was demonstrated in human pancreatic islet [ 42 ]. Interestingly, this same 
group demonstrated that ATP does not directly activate but rather protects iPLA 2  
from a loss of its activity [ 61 ]. On the other hand, there is no consensus regarding 
the role of PKC in iPLA 2  activation [ 62 ]. An early study showed that the activation 
of PKCα ultimately provoked AA release via iPLA 2 . This AA release was markedly 
inhibited by BEL or iPLA 2  antisense oligonucleotide [ 63 ]. Interestingly, we demon-
strated that both diacylglycerol analog 1-oleoyl-2-acetyl-sn-glycerol (OAG) and 
store depletion with thapsigargin produced a PKCε-dependent activation of iPLA 2 β 
in proliferating but not in confl uent aortic SMC [ 64 ].  

6.3.2     Ca 2+ /Calmodulin Regulation of iPLA 2  

 The fi rst evidence of iPLA 2  modulation by CaM came from the observation that 
Ca 2+  addition to the cytosol of cardiac myocytes inhibited iPLA 2  activity induced by 
ischemia. This inhibition was demonstrated to be due to CaM [ 65 ]. In fact, molecu-
lar and structural studies showed that in the absence of CaM, the active site of iPLA 2  
interacts with the CaM-binding domain, resulting in a catalytically competent 
enzyme, whereas reversible disruption of this interaction through the binding of 
CaM abrogates this interaction, resulting in a loss of iPLA 2  activity [ 65 – 67 ]. iPLA 2  
was shown to form a catalytically inactive ternary complex with CaM-Ca 2+  that 
could be reversibly dissociated by chelation of Ca 2+  ion with EGTA to regain full 
catalytic activity. Although iPLA 2  activity is independent of Ca 2+ , it is able to inhibit 
the iPLA 2  activity by Ca 2+ -activated CaM and this inhibition is apparently due to the 
binding to the IQ motif. In fact, the dissociation of CaM from iPLA 2  is the main 
mechanism that changes the Ca 2+ -independent enzyme into an enzyme that is sensi-
tive to modifi cation in intracellular Ca 2+  ion homeostasis. Moreover, conformational 
changes provoked in CaM using agents that inhibited the interaction of CaM with 
its target proteins resulted in iPLA 2  activation. Wolf et al. in 1997 have shown that 
W7, CaM antagonist, activated iPLA 2  in A-10 smooth muscle cells (SMC) [ 68 ]. 
Smani and colleagues also demonstrated that CaM inhibition with calmidazolium 
and a membrane-impermeable CaM inhibitory peptide, promoted iPLA 2  activation 
in SMC and RBL cell line [ 69 ]. Later on, compelling evidences have shown that 
store depletion with thapsigargin or cyclopiazonic acid stimulated iPLA 2  activation 
through displacement of inhibitory CaM [ 68 – 70 ].  

6.3.3     Chemical Inhibition of iPLA 2  

 The most important inhibitor for iPLA 2  is BEL, which has specifi city 1,000 times 
higher for iPLA 2  over other PLA 2  isoforms [ 41 ]. BEL is a suicidal substrate for 
iPLA 2  that is widely used as an irreversible mechanism-based, time- and temperature- 
dependent, inhibitor. For cell-based studies, it has been described previously that 
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high concentrations of BEL (25 μM) partially inhibit the magnesium-dependent 
phosphatidate phosphohydrolase (PAP-1), which converts phosphatidic acid to dia-
cylglycerol (DAG) [ 71 ,  72 ]. To some extent it is possible to identify promiscuous 
effects of BEL on iPLA 2  and PAP-1 by performing experiments with BEL and pro-
pranolol in parallel [ 71 ,  73 ]. The latter compound inhibits PAP-1 and not iPLA 2 . 
Others and we confi rmed that iPLA 2  activation induced by Ca 2+  release from the 
store is inhibited by BEL [ 68 ,  70 ,  73 ,  74 ]. Importantly, Jenkins et al. [ 75 ] demon-
strated that the commonly used BEL is composed of two enantiomers with different 
specifi city for iPLA 2  isoforms. S-BEL has higher specifi city to iPLA 2 β, and R-BEL 
is more specifi c to iPLA 2 γ, which allowed identifying the type of iPLA 2  involved in 
several different cellular processes. Indeed, we confi rmed that S-BEL, but not 
R-BEL, selectively inhibited iPLA 2 β activity stimulated by intracellular store deple-
tion in SMC and RBL, indicating that S-BEL is a valuable tool to determine the role 
of iPLA 2 β in intracellular signaling processes [ 64 ,  76 ].   

6.4     iPLA 2  Role in the Ca 2+  Signaling Network 

 As described above, for long time iPLA 2 ’s main role was especially related to cel-
lular phospholipids remodeling [ 41 ]. However, different reports have demonstrated 
that the specifi c beta isoform of iPLA 2  (iPLA 2 β) is involved in several agonist- 
stimulated signaling cascades. iPLA 2  has several unique features which confused 
researchers for many years. One of them relies on its activation independently of the 
presence or absence of Ca 2+ . iPLA 2  is able to function in the presence of strong Ca 2+  
chelators as BAPTA. At the same time iPLA 2  is able to bind the Ca 2+ –CaM com-
plex. Interestingly, conditions for iPLA 2  activation are similar to those described for 
store operated calcium entry (SOCE). In fact, iPLA 2  can be activated by depletion 
of intracellular Ca 2+  stores caused by vasopressin or by thapsigargin, an inhibitor of 
Sarco/Endoplamic reticulum Ca 2+ -ATPase pump [ 68 ,  77 ,  78 ]. 

6.4.1     Overview of the Store Operated Ca 2+  Channels Signaling 
Pathway 

 To increase cytoplasmic Ca 2+  concentration, Ca 2+  is either released from intracellu-
lar stores or enters into the cell by crossing the plasma membrane through ion chan-
nels. Store operated Ca 2+  channels (SOCC) and receptor operated channels (ROC) 
are considered the main route for Ca 2+  entry in non-excitable cells, but they also 
exist in excitable cells such as skeletal muscle, neurons or smooth muscle [ 79 ]. In 
excitable cells, Ca 2+  entry is achieved largely through opening of voltage and/or 
voltage independent channels ROC or SOCC that are responsible of SOCE [ 80 ]. 
The concept of SOCE activation seems to be simple: basically upon depletion of ER 
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stores, a signal is produced that activates specifi c Ca 2+ -conducting channels SOCC, 
in plasma membrane that allows Ca 2+  entry into the cell. SOCC role was originally 
linked only to refi lling the intracellular store. However, now it’s widely agreed that 
these channels provide a sustained Ca 2+  infl ux for a variety of important functions in 
eukaryotic cells. Among those functions are exocytosis, vascular contraction and 
relaxation, Ca 2+  oscillations, gene transcription, regulation of enzymatic activity, 
cell proliferation and apoptosis [ 80 ,  81 ]. 

6.4.1.1     Mechanism of SOCE Activation: Emerging Role of STIM1 
and Orai1 

 One of the most intriguing mysteries of the store-operated pathway is the mecha-
nism of its activation. Questions of how do the stores communicate with the plasma 
membrane channels and which is the signal produced by the stores upon their deple-
tion, have been a matter of intense investigation for long time. Hypotheses pre-
sented can be mainly grouped into two main categories: those that propose the 
generation of a diffusible molecule with ability to induce SOCC opening, and those 
that assume a physical interaction between channel subunit and an element of the 
ER (for review see [ 80 ,  82 ]). Soon after the identifi cation of SOCE Robin Irvine 
proposed a physical or conformational coupling between elements in the ER and 
SOCC in the plasma membrane [ 83 ], as a mechanism that resembles the classical 
excitation-contraction coupling between ryanodine receptors and dihydropyridine 
receptors in the skeletal muscle [ 84 ]. Consequently, most of the early studies 
focused on the association between inositol-triphosphate receptors (IP 3 R) and the 
subunit channel suggested to form SOCC. This hypothesis received support from 
studies demonstrating that, under resting conditions; TRPC1, TRPC3 and TRPC6 
can be co-immunoprecipitated with IP 3 R [ 85 ,  86 ]. However, the major challenge for 
this model came from the studies in triple IP 3 R knockout DT40 cells, in which 
SOCE seemed completely normal [ 87 – 89 ]. Importantly, in 2005 and 2006 the Ca 2+  
sensor of the ER was identifi ed as the STIM1 (Stromal Interaction Molecule-1) 
protein, and Orai1 was identifi ed as the structural subunit of the channel conducting 
the Ca 2+  selective CRAC [ 90 – 92 ]. Several reports have showed that upon Ca 2+  
depletion, STIM1 lose Ca 2+  from its EF hand, oligomerize and accumulate into 
punctate structures in the ER membrane located in close proximity (10–25 nm) to 
the plasma membrane. Furthermore, STIM1 and Orai1 have been reported to accu-
mulate and colocalize in punctate structures along the plasma membrane and to 
associate by a reversible and physical coupling mechanism upon depletion of the 
intracellular Ca 2+  stores which support the conformational coupling model (for 
review see [ 93 ]). While direct coupling of ER-resident STIM1 to PM-resident Orai1 
is considered as the most straightforward mechanism for signal transduction, there 
is a growing body of evidence for the presence of additional structural and/or func-
tional linker(s) between STIM1 and Orai1. Indeed, Balla’s group suggested the 
presence of additional molecular components within the STIM1-Orai1 complex 
[ 94 ]; meanwhile Rosado and colleagues nicely showed that both STIM1 and Orai1 
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also co-immunoprecipitate with other TRPC channels when stores are depleted 
[ 95 – 97 ]. Recently, we have demonstrated that store depletion stimulated STIM1 
and iPLA 2 β colocalization required for SOCE in coronary artery [ 98 ].  

6.4.1.2     Calcium Infl ux Factor and SOCE Activation 

 The other hypothesis focuses on diffusible messengers generated upon intracellular 
stores depletion. Different signaling molecules have been reported to play an essen-
tial role in the activation of SOCE in different cell types, including cGMP [ 99 ], 
tyrosine kinases [ 100 ], and small GTP-binding proteins [ 101 ], among others. 
However, special efforts were dedicated to the still uncharacterized molecule known 
as Ca 2+  infl ux factor (CIF) by Victoria Bolotina’s group. Refi ned CIF extract was 
obtained from different cell lines, including human platelets, which stimulated an 
extracellular Ca 2+  infl ux and I CRAC  (CRAC current) sensitive to the well-known 
SOCC inhibitors [ 76 ]. Interestingly, soon after STIM1 discovery, Bolotina and co- 
workers presented compelling evidences demonstrating that CIF production is 
tightly linked with STIM1 expression and requires the functional integrity of glyco-
sylation sites in its intraluminal SAM domain [ 102 ]. In this study, authors demon-
strated that upon store depletion, CIF is produced before STIM1 accumulation in 
puncta and activation of SOCE. Authors showed that lack of STIM1 in the rare 
neuronal cell line (NG115-401L), which features virtually no SOCE responses 
[ 103 ], or STIM1 downregulation in cells transfected with siRNAs, dramatically 
impaired active CIF production confi rming CIF and STIM1 relationship [ 102 ]. 
Unfortunately, the molecular identity of CIF is still unknown, although its presence 
and its biological activity were detected by numerous groups in a wide variety of 
cell types ranging from yeast to human (for review see [ 51 ,  79 ]). Previously, we 
have characterized in our earliest studies that iPLA 2 β is the physiological target of 
CIF and the mechanism of CIF-induced activation of SOCE was depicted as illus-
trated in Fig.  6.1  [ 69 ,  76 ,  104 ].

6.4.2         Essential Role of iPLA 2  in Store Operated Calcium Entry 

 In the last 1990s, several works established an interesting scenario for iPLA 2  activa-
tion, showing that it could be activated by depletion of Ca 2+  stores caused by vaso-
pressin or by thapsigargin in A10 SMC line [ 68 ,  77 ]. A10 cells stimulation with 
thapsigargin induced release of AA that was directly correlated to thapsigargin- 
induced depletion of intracellular Ca 2+  stores [ 68 ]. Next, iPLA 2 β, and not iPLA 2 γ, 
was identifi ed as the mediator of vasopressin-induced AA release in SMC [ 75 ]. 
Therefore, the role of iPLA 2 β in SOCE activation was explored and the fi rst evi-
dence of iPLA 2  requirement for SOCE activation was obtained by studying SOCE 
in primary culture of SMC as a model for excitable cells, and RBL cells as a model 
for non-excitable cells. The functional inhibition of iPLA 2  with BEL prevented the 
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activation of single SOCC in SMC, and whole cell CRAC currents in RBL induced 
by TG and/or BAPTA-induced depletion of intracellular stores. In addition, molecu-
lar inhibition using antisense against iPLA 2 , or its functional blocking with BEL 
impaired dramatically SOCE, while Ca 2+  release from the stores was not affected, 
which confi rmed the novel role of iPLA 2  in SOCE pathway [ 78 ]. Furthermore, the 
use of S-BEL enantiomer confi rmed that iPLA 2 β is the isoform responsible of 
SOCE in RBL [ 76 ] and SMC [ 64 ]. Interestingly, cell dialysis with recombinant 
iPLA 2 β could substitute the endogenous iPLA 2 β and rescue activation of I CRAC  in the 
cells in which endogenous iPLA 2 β was knocked down [ 76 ]. One of the most impor-
tant features of iPLA 2  is that it exists in a complex with CaM, which keeps it in a 
catalytically inactive state; and removal of CaM results in iPLA 2  activation [ 66 ]. 
Therefore, the inhibition of CaM was found to mimic the effects of thapsigargin- 
induced SOCE as it activated iPLA 2 ; it evoked a 2APB and BEL-sensitive Ca 2+  
infl ux; and fi nally it stimulated single SOCC in SMC [ 69 ]. Similar effect of CaM 
inhibition was also observed in astrocytes [ 70 ] and in rat cerebellar granule [ 105 ]. 

 The role of iPLA 2 β in SOCE was further confi rmed by us and by many other 
investigators in a growing number of cell types, including platelets, Jurkat T lym-
phocytes [ 69 ,  78 ], RBL-2H3 [ 104 ], neuroblastoma/glioma [ 70 ], keratinocytes 
[ 106 ], skeletal muscle [ 107 ], fi broblasts [ 108 ], prostate cancer cells [ 109 ] and oth-
ers. In all these studies molecular knock-down and/or functional inhibition of 
iPLA 2 β caused full impairment of SOCE. Strikingly, genetic screening of Drosophila 
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melanogaster performed by Vig et al. indicated that not only STIM1 and Orai1, but 
also an orthologue of iPLA 2 β encoded by the CG6718 gene, are gene products with 
a great impact on SOCE activation [ 110 ]. Recently, we have demonstrated that 
agonist- induced coronary artery contraction involved the activation of SOCE by 
STIM1, Orai1 and iPLA 2  [ 98 ]. We have shown that on cells stimulation, STIM1 
colocalized with iPLA 2 β in submembrane compartments suggesting their functional 
communication and we confi rmed that lysophopholipids, product of iPLA 2 , stimu-
lated an Orai1- but not STIM1- dependent SOCE, suggesting that the functional 
role of iPLA 2 β is downstream of STIM1 and upstream of Orai1 in coronary 
SMC. The complex relationships between the components of the CRAC channel, 
namely Orai1, STIM1, and iPLA 2 β in the SOCE pathway have been detailed in a 
previous review [ 79 ].  

6.4.3     iPLA 2  and Lysophospholipids Activation of Store 
Operated Calcium Entry 

 Afterwards, numerous studies focused on the molecular mechanism of iPLA 2 - 
dependent signal transduction. Several works from Bolotina’s lab in the fi rst decade 
of this centry, provided compelling evidences demonstrating that SOCC can be acti-
vated by CIF produced upon depletion of Ca 2+  stores in the ER, and it in turn, can 
displace the inhibitory CaM from iPLA 2 β. The early studies have shown that CIF 
activated single SOCC in inside-out membrane patches [ 111 ], and the channels 
remained active even after the membrane patches were excised and CIF was washed 
away [ 112 ], indicating the presence of an additional cascade of plasma membrane- 
delimited reactions that might be involved in CIF-induced activation of SOCC. In 
2004, a major fi nding has been described by Smani et al. demonstrating that CIF 
extract can displace inhibitory CaM from iPLA 2 β leading to lysophopholipids pro-
duction and the activation of SOCC in membrane-delimited manner in SMC [ 69 ]. 
By contrast, CIF dialysis of RBL cells transfected with antisense to iPLA 2 β failed to 
activate I CRAC , confi rming the need of functional iPLA 2 β to stimulate SOCE [ 76 ]. 
Furthermore, the exogenous application of lysophopholipids but not AA, products 
of iPLA 2 β activation, were able to stimulate SOCE in intact cells and single SOCC 
in inside-out membrane patches in SMC [ 69 ,  74 ,  98 ]. Further studies have con-
fi rmed that lysophospholids evoked SOCE in different cell lines such as astrocyte 
[ 70 ], rat cerebellar granule neurons [ 105 ], skeletal muscle [ 113 ], and keratinocytes 
[ 114 ], among others cells. Thus, several independent works established the need of 
active iPLA 2 β, and lysophospholipids to stimulate SOCE in a wide range of cells. 

 However and independently of its role in SOCE signaling, few reports have 
shown that iPLA 2  might activate some TRP channels. Works from Prevarskaya’s lab 
demonstrated that iPLA 2 β activated both SOCC and TRPM8 channels [ 109 ,  115 ], 
and AL-Shawaf and colleagues showed recently that lysophosphatidylcholine and 
AA generated by iPLA 2  are involved in TRPC5 activation by sphingosine-1- 
phosphate [ 116 ].   
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6.5     Signifi cant Potential as Targets for Novel Therapeutics 
Strategy 

 The role of iPLA 2 β, and the consequent activation of SOCE in several physio- and 
pathological processes have been largely studied. For example, iPLA 2 β-dependent 
activation of vascular reactivity was demonstrated in aorta, cerebral, mesenteric, 
carotid and coronary arteries [ 98 ,  117 ,  118 ]. Furthermore, iPLA 2 β-induced SOCE 
seems involved in SMC proliferation [ 119 ] and in HEK cells migration [ 120 ]. 
Molecular knockdown of Orai1, STIM1 or iPLA 2 β caused a similar reduction in 
velocity and distance in migrating HEK cells. Previously, Vanden Abeele et al. dem-
onstrated that iPLA 2 β activated SOCE in LNCaP prostate cancer proliferative cells 
[ 109 ], and they further showed that iPLA 2 β is also implicated in the lysophospholipid- 
dependent gating of TRPM8, a cold sensor [ 115 ]. On the other hand, Boittin and 
Reugg published several interesting studies highlighting the involvement of iPLA 2 - 
dependent activation of SOCC in dystrophic muscle fi bers [ 109 ]. They found that 
iPLA 2  is mainly localized in the vicinity of the sarcolemma, suggesting a close 
proximity with SOCC, which may be located on the sarcolemma and/or in the 
T-tubular membranes. These authors have also demonstrated that lysophosphatidyl-
choline acts downstream of iPLA 2  and directly activates SOCC in dystrophic fi bers 
[ 107 ,  113 ]. Interestingly, recent studies have determined that iPLA 2  can be targeted 
by secondary signaling pathway to potentiate or inhibit SOCE such as PKCε [ 64 ], 
and Urocortin through cyclic AMP in SMC [ 98 ], in skeletal muscle [ 121 ], and in 
hepatoma carcinoma cell lines [ 122 ]. These few examples confi rm the important 
role of iPLA 2  and SOCE in several physiological and pathological processes and 
confi rm it as a valuable therapeutic target.     
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