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    Chapter 5   
 Role of TRPC Channels in Store-Operated 
Calcium Entry                     

       Hwei     Ling     Ong     ,     Lorena     Brito     de     Souza    , and     Indu     S.     Ambudkar    

    Abstract     Store-operated calcium entry (SOCE) is a ubiquitous Ca 2+  entry pathway 
that is activated in response to depletion of Ca 2+  stores within the endoplasmic retic-
ulum (ER) and contributes to the control of various physiological functions in a 
wide variety of cell types. The transient receptor potential canonical (TRPC) chan-
nels (TRPCs 1–7), that are activated by stimuli leading to PIP 2  hydrolysis, were fi rst 
identifi ed as molecular components of SOCE channels. TRPC channels show a mis-
cellany of tissue expression, physiological functions and channel properties. 
However, none of the TRPC members display currents that resemble  I  CRAC . Intensive 
search for the CRAC channel component led to identifi cation of Orai1 and STIM1, 
now established as being the primary constituents of the CRAC channel. There is 
now considerable evidence that STIM1 activates both Orai1 and TRPC1 via distinct 
domains in its C-terminus. Intriguingly, TRPC1 function is not only dependent on 
STIM1 but also requires Orai1. The critical functional interaction between TRPC1 
and Orai1, which determines the activation of TRPC1, has also been identifi ed. In 
this review, we will discuss current concepts regarding the role of TRPC channels in 
SOCE, the physiological functions regulated by TRPC-mediated SOCE, and the 
complex mechanisms underlying the regulation of TRPCs, including the functional 
interactions with Orai1 and STIM1.  
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5.1       Introduction 

 Elevation of cytosolic calcium levels ([Ca 2+ ] i ) in response to neurotransmitter stim-
ulation of cells acts as a trigger for activation of many physiological processes, 
including cell proliferation and differentiation, cell migration, lymphocyte activa-
tion, endothelial cell function, as well as protein and fl uid secretion from exocrine 
gland cells. Plasma membrane Ca 2+  entry channels contribute to [Ca 2+ ] i  elevation 
and provide critical Ca 2+  signals that are utilized for regulation of different cell func-
tions. Store-operated calcium entry (SOCE) is a major ubiquitous Ca 2+  entry path-
way that contributes to the control of various physiological functions in a wide 
variety of cell types. SOCE is a unique mechanism in that it is activated in response 
to depletion of Ca 2+  stores within the endoplasmic reticulum (ER). Physiologically, 
this occurs following stimulation of plasma membrane receptors that lead to phos-
phatidylinositol 4,5-bisphosphate (PIP 2 ) hydrolysis and generation of inositol 
1,4,5-triphosphate (IP 3 ). IP 3  binds to its receptor (IP 3 R) in the ER membrane and 
induces Ca 2+  release from the ER, resulting in a decrease in ER-[Ca 2+ ] and activa-
tion of SOCE. This Ca 2+  entry can also be activated by treating cells with sarco- 
endoplasmic reticulum (SERCA) pump blockers like thapsigargin or cyclopiazonic 
acid that inhibit Ca 2+  uptake into ER, unmasking a passive Ca 2+  leak pathway that 
has not yet been clearly elucidated. Importantly, this leads to loss of ER-Ca 2+  and 
triggers activation of SOCE in the absence of receptor-stimulated signaling. SOCE 
is inactivated by refi lling the Ca 2+  stores within the ER, providing further evidence 
that the activity of channels mediating SOCE are governed by the status of [Ca 2+ ] in 
the ER [ 1 – 3 ]. The fi rst channel current associated with SOCE, Ca 2+ -release acti-
vated calcium current ( I  CRAC ), was measured in mast cells and T lymphocytes. This 
highly Ca 2+ -selective current has a characteristic inward rectifi cation with reversal 
potential >+40 mV [ 4 – 7 ]. Under the same experimental conditions, currents with 
varying characteristics and ionic selectivities, ranging from relatively Ca 2+ -selective 
to non-selective, have been described in different cell types. These currents have 
been generally referred to as store-operated calcium current (I SOC ) to distinguish 
them from I CRAC  [ 2 ,  8 ]. 

 Search for the molecular components of SOCE, led to the identifi cation of the 
transient receptor potential canonical (TRPC) channels, part of the superfamily of 
TRP channels. Mammalian TRPC channels were cloned based on the  Drosophila  
TRP channel, which functions as a light-sensitive Ca 2+ -permeable channel involved 
in phototransduction. The  Drosophila  phototransduction process, a phospholipase 
C-mediated pathway [ 9 – 11 ], provided further impetus to the search for mammalian 
TRP channels. The TRPC subfamily consists of seven members (TRPCs 1–7) that 
are divided into four subsets based on their amino acid (aa) homology: TRPC1, 
TRPC2, TRPC3/TRPC6/TRPC7 and TRPC4/TRPC5. All TRPC channels display 
activation in response to receptor-stimulated PIP 2  hydrolysis and have six trans-
membrane domains with a pore-forming domain localized between the fi fth and 
sixth domains. The channels contain N-terminal ankyrin repeats, a highly conserved 
TRP domain in the C-terminus, several calmodulin (CaM)-binding domains and a 
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putative IP 3 R binding site [ 9 – 11 ]. TRPC channels show diverse tissue expression, 
physiological functions and channel properties. Recent reviews have presented a 
general overview of the molecular components and mechanisms regulating SOCE 
[ 1 ,  12 ] as well as overviews of the individual TRPC channels: TRPC1 [ 13 ], TRPC2 
[ 14 ], TRPC3 [ 15 ], TRPC4 [ 16 ], TRPC5 [ 17 ], TRPC6 [ 18 ], and TRPC7 [ 19 ]. We 
will not be discussing TRPC2, which is a pseudogene in humans [ 20 ,  21 ], in this 
review. While the discovery of TRPC channels spurred a large number of studies, 
none of the TRPC family of Ca 2+ -permeable cation channels generated currents that 
resembled  I  CRAC . Thus, identity of the components for this channel, as well as the 
regulatory proteins in SOCE continued to be a major focus in the fi eld. Intensive 
search for these fi nally led to the identifi cation of the CRAC channel component, 
Orai1, a four-transmembrane domain protein which is assembled as a hexamer to 
form the pore of the CRAC channel. Two other Orai proteins, Orai2 and Orai3, were 
also identifi ed and reported to have some similarity with Orai1 and display store- 
dependent activation. However, since they also contribute to other non-SOCE 
mechanisms, such as the arachidonic acid-activated channels, further studies are 
required to fully understand their physiological function. Importantly, the main 
components involved in sensing ER-[Ca 2+ ] and activating SOCE were also identi-
fi ed. The STIM family of proteins includes two members, STIM1 and STIM2, both 
of which are Ca 2+ -sensing proteins that are localized in the ER membrane and sense 
[Ca 2+ ] within the ER lumen to regulate SOCE. Of the two, STIM1 has been more 
extensively studied and is now well established as the critical and indispensable 
regulatory component of SOCE [ 22 ]. Furthermore, there is now considerable evi-
dence that STIM1 can activate both Orai1 and TRPC1. The domains of STIM1 
involved in gating of these channels are also known. Intriguingly, TRPC1 function 
is not only dependent on STIM1 but also requires Orai1. The critical functional 
interaction between TRPC1 and Orai1, which determines the activation of TRPC1, 
has also been resolved. In the following sections of this review, we will discuss cur-
rent concepts regarding the role of TRPC channels in SOCE, the physiological 
functions regulated by TRPC-mediated SOCE, and the complex mechanisms under-
lying the regulation of TRPCs, including the functional interactions with Orai1 and 
STIM1.  

5.2     Contribution of TRPC Channels to SOCE 

 All seven TRPC channels have been implicated as components of SOCE. Furthermore, 
a variety of physiological functions have been associated with TRPC-mediated 
SOCE. Recent studies also demonstrate that some human diseases are linked to 
either loss or gain of function of TRPC channels [ 23 – 25 ]. However, not all the 
TRPC channels consistently display the hallmarks of SOCE, namely (i) activation 
by store depletion in response to stimulation with an agonist or treatment with 
SERCA pump blockers, and (ii) inhibition by Gd 3+  (1 μM) and 2-aminophenyl 
borate (2-APB; ≤10 μM). A large number of the studies assessing the role of TRPCs 
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have used heterologous expression systems where the channels are relatively over-
expressed. This does not always result in generation of a functional channel in cells. 
Some studies have also demonstrated that the mode of regulation of the channels 
appears to differ depending on the level of their expression. This led to the sugges-
tion that channel overexpression likely results in an unbalanced stoichiometry 
between TRPCs and the endogenous accessory proteins that regulate and/or modu-
late their activities. In contrast, more consistent and conclusive data have been pro-
vided by studies which assess the function of endogenous TRPCs in SOCE by 
modulating their expression and/or function in cell lines, primary cell preparations, 
as well as animal models. So far, the strongest evidence for the contribution of 
TRPC channels to SOCE has been provided for TRPC1 and TRPC4, whereas the 
contribution of TRPC3 to SOCE appears to be dependent on cell type and level of 
expression. TRPCs 5, 6 and 7 have been generally described to be store- independent, 
with a few exceptions. Note that unlike with Orai1 or STIM1, TRPC channel con-
tribution to SOCE is not seen in all cell types. 

 TRPC1 was the fi rst mammalian TRPC channel to be cloned and reported to 
have a role in SOCE [ 20 ,  21 ,  26 ,  27 ]. Among the many studies reported, exogenous 
expression of TRPC1 did not consistently increase SOCE while knockdown of 
endogenous TRPC1 signifi cantly decreased SOCE (e.g. in HSG, smooth muscle 
and endothelial cells, as well as platelets) [ 26 – 32 ]. Further conclusive evidence was 
provided by studies with mice lacking TRPC1 (TRPC1 -/- ), which despite having 
normal viability, development, and behavior [ 33 ], showed reduced SOCE in cell 
preparations from several tissues. Among these, salivary gland and pancreatic aci-
nar cells and aortic endothelial cells from TRPC1 −/−  mice displayed signifi cant 
reductions in SOCE as well as attenuation in Ca 2+ -dependent physiological func-
tions [ 34 – 36 ]. SOCE is fundamentally important for fl uid secretion in salivary 
glands and for protein secretion in the exocrine pancreas. TRPC1 −/−  mice displayed 
reduction in salivary gland fl uid secretion which was associated with a decrease in 
SOCE and K Ca  activity in acinar cells from the mice [ 36 ,  37 ]. Similarly defects in 
Ca 2+ -activated Cl −  channel activity and protein secretion, as a consequence of 
reduced SOCE, were reported in pancreatic acinar cells [ 34 ]. Notably while there is 
no change in Orai1 in salivary gland and pancreatic acinar cells from TRPC1 −/−  
mice, the channel does not appear to compensate for the lack of TRPC1 or support 
cell function on its own. Hence, decreased secretory function in these exocrine 
glands is primarily due to the loss of TRPC1-mediated SOCE. In endothelial cells, 
TRPC1 forms a heteromeric channel with TRP vanilloid 4 (TRPV4) to mediate 
SOCE. This Ca 2+  entry was signifi cantly reduced in cells from TRPC1 −/−  mice which 
adversely impacted vasorelaxation [ 35 ]. 

 The caveolae-residing protein, caveolin-1 (Cav-1), is an important modulator of 
TRPC1 activity and functions as a plasma membrane scaffold for the channel. In the 
absence of Cav-1, TRPC1 is mislocalized and is unable to interact with STIM1, 
which is a requirement for TRPC1 activation [ 38 ]. Consistent with this, localization 
of TRPC1, its interaction with STIM1, as well as SOCE were disrupted in salivary 
gland acinar cells from Cav-1 −/−  mice [ 39 ]. Together, these fi ndings further establish 
a role for TRPC1 in mediating SOCE in salivary gland cells. Other physiological 
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functions that are dependent on TRPC1-mediated SOCE are the contractile function 
of glomerular mesangial cells [ 40 ,  41 ] and osteoclast formation and function [ 42 ]. 
Loss of TRPC1 has also been implicated in aberrant vasorelaxation [ 43 ], muscle 
fatigue and slower regeneration after muscle injury [ 44 ,  45 ], whereas elevated 
TRPC1 expression has been linked to myopathies such as those observed in patients 
with Duchenne’s Muscular Dystrophy and  mdx  mice lacking dystrophin [ 46 – 48 ]. 
However, it remains to be established whether these effects are due to changes in 
TRPC1-SOCE. 

 TRPC3 is reported to contribute to both the store-operated and receptor-activated 
calcium entry pathways. Loss of endogenous TRPC3 in cell lines and tissue prepa-
rations (pancreatic acinar and submandibular gland cells) from TRPC3 −/−  mice led 
to signifi cant reductions in SOCE [ 49 ,  50 ]. In contrast, overexpression of TRPC3 
increased SOCE in COS, HEK293 and HEK293T cells, as well as DT40 chicken 
B-lymphocytes. However, when the channel was expressed to very high levels, the 
regulatory mode was switched from store-operated to receptor-activated. Cells with 
relatively lower levels of TRPC3 expression displayed Gd 3+  (1 μM)-sensitive Ca 2+  
entry, while those with higher levels of channel expression required higher [Gd 3+ ]. 
Hence, the mechanism by which TRPC3 is regulated appears to be determined by 
the level of channel expression in the cells [ 51 – 54 ]. TRPC3-mediated Ca 2+  entry 
can also contribute to pathology and tissue damage. Pancreatic acini from TRPC3 −/−  
mice showed signifi cant protection from acute pancreatitis induced by hyper- 
activation of SOCE. Similar effects were seen by blocking channel function in 
TRPC3 +/+  mice by treatment with pyrazole 3, a TRPC3 inhibitor [ 55 ,  56 ]. Unlike 
TRPC3, TRPC6 and TRPC7 channels are largely believed be receptor-activated as 
both channels are consistently activated by the second messenger, diacylglycerol 
and its analogs [ 11 ,  18 ,  19 ,  57 ]. 

 Both TRPC4 and TRPC5 have been suggested to contribute to SOCE, although 
there are very few studies reported for either channel. Moreover, TRPC5 can also be 
directly activated by Ca 2+ , which makes it diffi cult to establish conclusively whether 
TRPC5 is directly regulated by store depletion [ 58 ,  59 ]. Exogenous expression of 
TRPC4 in HEK293 cells increased SOCE and generated a relatively Ca 2+ -selective, 
inwardly rectifying current [ 60 ]. Similar results were obtained by overexpression 
TRPC4 in CHO, RBL cells [ 61 ] and  Xenopus laevis  oocytes [ 62 ]. Further evidence 
for TRPC4-mediated SOCE was provided by studies where TRPC4 expression was 
suppressed in several cell lines or by knockout of the channel in mice (TRPC4 −/−  
mice). Following siRNA treatment, TRPC4-mediated SOCE was diminished in 
mouse mesangial cells [ 63 ], human adrenal cells [ 64 ], both mouse and human endo-
thelial cells [ 65 ], human gingival keratinocytes [ 66 ], human corneal epithelial cells 
[ 67 ] and human pulmonary artery smooth muscle cells [ 68 ]. Additionally, TRPC4 
forms a heteromeric channel complex with TRPC1 in human mesangial cells [ 69 ] 
as well as human and mouse endothelial cells [ 65 ]. Similar to what has been reported 
for TRPC1 −/− , knockout of TRPC4 did not adversely impact mortality and fertility 
of the mice. Nonetheless, TRPC4 −/−  mice show signifi cantly reduced TRPC4- 
mediated SOCE in aortic [ 70 ] and lung endothelial cells [ 65 ,  71 ], resulting in defec-
tive regulation of vascular tone and endothelial permeability, respectively. 
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 TRPC channels interact with numerous proteins which can underlie the diversity 
of calcium channel activity, their regulation, and specifi city of downstream signal-
ing events in the cells (recently reviewed in [ 1 ]). Not only do TRPC channels have 
the ability to undergo homomeric interactions to form functional channels, they also 
interact with other TRPCs to generate functional heteromeric channels. Most of the 
available data in this regard comes from studies with exogenously expressed chan-
nels. TRPC1 interacts with TRPC4 and TRPC5, whereas TRPC3 interacts with 
TRPC6 and TRPC7 [ 72 – 74 ]. It is presently not clear whether the resulting hetero-
meric channels have distinct properties and functions as compared to those of the 
individual channels. Very few studies have elucidated the status of endogenous 
store-dependent heteromeric TRPC channels and their physiological function. The 
contribution of endogenous heteromeric channel complexes to SOCE have been 
reported for TRPC1/TRPC3 in a human parotid gland ductal cell line [ 75 ] and rat 
H19-7 hippocampal cell lines [ 76 ]; TRPC1/TRPC5 in vascular smooth muscle [ 77 ]; 
TRPC1/TRPC4 in endothelial cells [ 65 ], and TRPC1/TRPC3/TRPC7 in HEK293 
cells [ 50 ]. Given the overlapping expression of more than one TRPC channel in dif-
ferent cells and tissues, some physiological functions may involve multiple chan-
nels. For example, SOCE mediated by both TRPC1 and TRPC4 has been proposed 
to control endothelial cell permeability [ 65 ] and myogenesis [ 78 ,  79 ]. Multiple 
TRPC channels have been implicated in cardiac hypertrophy [ 80 ,  81 ], but it is not 
clear whether aberrant TRPC-mediated SOCE underlies this phenomena. A few 
studies have utilized double TRPC knockout mouse models to determine the role of 
heteromeric TRPC channels. Knockout of both TRPC1 and TRPC4 in mice severely 
impaired neuronal burst fi ring and caused neurodegeneration [ 82 ], whereas loss of 
both TRPC3 and TRPC6 impaired sensitivity to mechanical pressure and hearing 
[ 83 ]. The underlying basis for creating these double knockout mice models was the 
preponderance of co-expressed TRPC1 and TRPC4 in the brain [ 82 ] and TRPC3 
and TRPC6 in sensory neurons and cochlear hair cells [ 83 ]. Whether the patho-
physiological effects observed from double knockouts of endogenous TRPC hetero-
meric channel complexes can be conclusively linked to impaired regulation of 
SOCE also remains to be shown. 

 TRPC channels have also been found to associate with other TRP channels, 
including TRPV6, TRPV4, although in most of these cases it is not clear whether 
the associating channels form a single channel pore and/or contribute to 
SOCE. Co-expression of TRPC1 and TRPV4 resulted in formation of a heteromeric 
channel complex that is activated in response to store depletion in HEK293, vascu-
lar smooth muscle and endothelial cells. Moreover, the TRPC1/TRPV4 heteromeric 
channel exhibited distinct current characteristics when compared to currents medi-
ated by either TRPV4 or TRPC1 alone [ 35 ,  84 ,  85 ]. TRPC1 was reported to interact 
with TRPV6 and exert negative regulation of TRPV6 function [ 86 ]. A critical het-
eromeric interaction involving TRPC channels is the TRPC-Orai1 interaction. 
TRPC1, TRPC3 and TRPC6 functionally interact with Orai1. TRPC1-Orai1 inter-
action has been confi rmed by co-immunoprecipation data as well as TIRFM mea-
surements, where store depletion-dependent clustering of the two channels has been 
observed in several cell types [ 87 – 92 ]. Further, and more importantly, Orai1 is 
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required for TRPC function, as knockdown of endogenous Orai1 abolished TRPC1 
channel activation [ 88 ,  92 ]. A similar requirement for Orai1 has been reported for 
activation of TRPC3 and TRPC6 in response to ER-Ca 2+  store depletion [ 93 – 95 ]. 
The mechanism underlying the Orai1-dependent regulation of TRPC1 has now 
been resolved (more details will be presented below). Importantly, TRPC1 and 
Orai1 have been shown to generate two distinct channels that appear to contribute 
to specifi c cellular functions [ 88 ,  96 ]. Interestingly, a recent study reported that a 
splice variant of TRPC1 interacts with and positively regulates Orai1 channel activ-
ity in HEK293 cells. This splice variant, TRPC1ɛ, was fi rst identifi ed in early pre- 
osteoclasts and together with I-mfa (an inhibitor of MyoD family), has been 
proposed to function antagonistically to decrease Orai1 channel activity, fi ne tuning 
the Ca 2+  signaling process that regulates osteoclastogenesis [ 42 ]. The multiplicity of 
interactions between various TRPC channels, as well as between TRPC and other 
channels or regulatory proteins, lead to the generation of a plethora of signaling 
complexes that can regulate a wide variety of cellular functions. It is possible that 
the composition of these heteromeric channels as well as the interacting signaling 
proteins depends on the type of cell and the particular physiological function to be 
regulated. There are an increasing number of studies that highlight the importance 
of spatial and temporal aspects as well as the magnitude of Ca 2+  signals as major 
determining factors in the regulation of cellular responses to different physiological 
stimuli. It is important that these should be taken into account when the physiologi-
cal functions of TRPC channels are being assessed.  

5.3     Role of STIM1 and STIM2 in SOCE and TRPC Channel 
Regulation 

 STIM1 and STIM2 were discovered in studies using siRNA screening to identify 
proteins required for SOCE. Both proteins reside within the ER and during resting 
(unstimulated) conditions, have Ca 2+  bound to the luminal N-terminal EF hand 
domains. Following store depletion, Ca 2+  is released from the EF hand which leads 
to multimerization of the protein and translocation to the peripheral region of the 
cells where it concentrates in the form of puncta within distinct ER-plasma mem-
brane (ER-PM) junctions. Within this microdomain, the ER membrane and plasma 
membrane are in close apposition to each other [ 22 ,  97 ,  98 ]. More importantly, the 
proximity between the two membranes allows STIM1 in the ER to interact with and 
gate both TRPC and Orai1 channels. Different aa regions in the cytosolic C-terminus 
of STIM1 are involved in activating Orai1 and TRPC1. Orai1 activation is mediated 
by the  S TIM1  O rai1  A ctivating  R egion (SOAR; aa 344–442) [ 99 ], whereas TRPC 
channel gating occurs via the polybasic domain (aa 672–685) [ 91 ,  100 ]. It has been 
suggested that TRPC1 and TRPC4 are the main TRPC channels that can interact 
with and be gated by STIM1. However, if other TRPC channels are assembled in a 
heteromeric channel complex with either TRPC1 or TRPC4, they appear to become 
store-dependent due to the activation of TRPC1 and TRPC4 by STIM1. For 
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example, although STIM1 does not interact with TRPC3 and TRPC6, STIM1 can 
activate TRPC1/TRPC3 or TRPC4/TRPC6 channels [ 101 ]. 

 Strong evidence for STIM1 in gating TRPC channels comes from studies show-
ing an effect on channel activity of either knockdown or overexpression of STIM1 
or STIM1 with mutations that impair STIM1-TRPC channel interactions. TRPC1 
was the fi rst TRPC channel shown to be regulated by STIM1. Knockdown of endog-
enous STIM1 severely reduced endogenous TRPC1-mediated SOCE and Ca 2+  cur-
rents, whereas co-expression of TRPC1 and STIM1 increased SOCE [ 87 ,  88 ,  91 ]. 
Store depletion induced interaction between TRPC1 and STIM1, shown by co- 
immunoprecipitation experiments as well as FRET and TIRFM measurements. 
Conversely, store refi lling terminated TRPC1 function as well as STIM1-TRPC1 
association [ 91 ,  100 – 104 ]. Thus the TRPC1-STIM1 interaction is dictated by the 
ER-[Ca 2+ ] status. Conclusive studies by Muallem and co-workers resolved the 
mechanism by which STIM1 gates TRPC1. Their fi ndings demonstrated that gating 
of TRPC1 involves electrostatic interactions between the negatively charged aspar-
tate residues in TRPC1 ( 639 DD 640 ) with the positively charged lysines in the STIM1 
polybasic domain ( 684 KK 685 ) [ 100 ]. Further studies showed that these negatively 
charged residues are conserved in TRPC3, TRPC4, TRPC5, TRPC6 and TRPC7, 
suggesting the possibility that STIM1 can also gate these other TRPC channels 
[ 100 ]. Consistent with this study, TRPC4-mediated SOCE in murine and human 
endothelial cells was suppressed by knockdown of STIM1 or expression of a charge- 
swap mutant of STIM1 (KK684,685EE). Similarly, disrupting the electrostatic 
interaction between STIM1 and TRPC4 by mutation of the conserved negatively 
charged residues on TRPC4 (EE647,648KK) signifi cantly reduced SOCE and 
STIM1-TRPC4 interactions [ 65 ]. Co-immunoprecipitation of STIM1 and TRPC3 
was also increased following store depletion in salivary gland duct cells, although 
this could be due to TRPC1-TRPC3 interaction in these cells [ 105 ]. In yet another 
study, mutations in the conserved negative residues in the C-terminus of TRPC3 
(DD697,698KK), TRPC4 (EE648,649KK), TRPC5 (DE651,652KK) and TRPC6 
(EE755,756KK) prevented electrostatic interactions with and gating by STIM1. 
While these mutants did not respond to store depletion induced by cyclopiazonic 
acid, they could still be activated by muscarinic receptor stimulation in a STIM1- 
independent manner. However, co-expression of the charge-swap STIM1 mutant 
(KK684,685EE) restored store responsiveness to these TRPC mutants [ 106 ]. 

 Collectively, these data demonstrate that STIM1 has the ability to gate all TRPC 
channels via similar electrostatic interactions, even though not all channels appear 
to interact directly with STIM1. Since TRPC channels are widely expressed in tis-
sues and species, it is not yet clear what determines the interaction of any particular 
TRPC channel with STIM1 and thus their mode of activation. In neuroblastoma 
cells, STIM1 promoted SOCE mediated via TRPC1 and TRPC6, while inhibiting 
TRPC6-mediated store-independent Ca 2+  entry [ 107 ]. TRPC5 was also reported to 
contribute to SOCE in RBL cells. In these cells co-expression of STIM1 with 
TRPC5 increased, while knockdown of STIM1 abolished, thapsigargin-induced 
cation entry [ 108 ]. Thus, STIM1 might not only be involved in gating some TRPC 
channels but also determine their recruitment into a store-dependent mode. However, 
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further studies are required to establish this role of STIM1 on the mode of activation 
of TRPC channels. Involvement of other factors that might contribute to this switch 
in the mode of regulation also needs further detailed studies. Since several TRP 
channels show polymodal regulation of their function, possible activation of TRPC 
channels by mechanisms other than store depletion appears to be quite feasible. 

 There is considerable information regarding the exact intramolecular rearrange-
ments and molecular domains involved in activation of STIM1. Further, a large 
number of structure-function studies have now been reported describing the con-
fi guration of STIM1 required for binding and activation of Orai1 (recently reviewed 
in [ 109 ]). However, a similar detailed understanding of STIM1-TRPC channel 
interaction is currently lacking. An ezrin/radixin/moesin (ERM) domain (aa 251–
535) was shown to mediate the binding of STIM1 to TRPC channels [ 91 ]. However, 
since the SOAR domain resides within this ERM region of STIM1 it was suggested 
that the SOAR domain might also be involved in mediating STIM1 binding to 
TRPC channels [ 12 ,  105 ]. The coiled-coil (CC) motif within the C-terminus of 
Orai1 is proposed to interact with STIM1 [ 110 ]. TRPC channels also have CC 
domains in both their N- and C-termini. Further, co-immunoprecipitation studies 
have revealed strong interactions between exogenously expressed SOAR and 
endogenous TRPC1, TRPC4 and TRPC5, minimal interactions with endogenous 
TRPC3 and TRPC6, and no interactions with TRPC7 [ 101 ,  105 ]. Mutation of resi-
dues in the N-terminal CC domains severely weakened SOAR interactions with 
TRPC1, TRPC4 and TRPC5 but enhanced association of TRPC3 and TRPC6 with 
SOAR. Based on this data, it was proposed that interaction of TRPC1 with TRPC3 
induces a structural change which exposes a domain in TRPC3 that promotes its 
binding to STIM1 [ 105 ]. A recent study investigating the stoichiometry of TRPC, 
STIM1, and CaM assembly in a signaling complex reported TRPC channel activa-
tion using recombinantly purifi ed SOAR [ 111 ]. This study demonstrated that only 
TRPC channel complexes containing TRPC1, TRPC4 and TRPC5 could be acti-
vated by SOAR. Each TRPC tetrameric complex required two SOAR domains for 
activation and four CaMs for inactivation. SOAR and CaM appeared to reciprocally 
regulate TRPC channel activity when co-expressed in HEK293 cells. Following 
application of tenfold higher amounts of CaM, TRPC1 channel activity was 
reduced, even though SOAR was still bound to the tetramers at the initial stages of 
inhibition. SOAR eventually detached from TRPC1, which led to further CaM-
dependent decline in channel activity [ 111 ]. However, to conclusively establish that 
SOAR directly affects TRPC channel activity, data need to be provided to exclude 
SOAR- Orai1 effects in the same cell since SOAR domain will also gate Orai1 and 
Orai1- mediated Ca 2+  entry will lead to TRPC channel activation. It is worth noting 
that some studies suggest that Orai1 binding to STIM1 might limit availability of 
STIM1 for TRPC channels. However, these studies have yet to be confi rmed at the 
level of endogenous proteins. Further studies are required to establish whether 
STIM1 is indeed a limiting factor for channels contributing to SOCE and whether 
different physiological conditions favor binding of STIM1 to one type of channel 
vs the other. 
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 STIM1 shares signifi cant homology with another family member, STIM2. While 
functional domains such as the EF hand, CC domains, SOAR and polybasic domain 
are conserved between STIM1 and STIM2 there are several key differences which 
determine their diverse physiological function and role in SOCE. For example, 
STIM2 can interact with Orai1 but is a poor activator of the channel compared to 
STIM1. The difference in the gating effi ciency of STIM1 and STIM2 was shown to 
be due to a single aa difference in their respective SOAR domains; F394 in SOAR1 
vs L485 in SOAR2 [ 112 ]. The EF hand of STIM2 has a lower affi nity for Ca 2+  than 
STIM1. Thus, STIM2 can sense and respond to small changes in ER-[Ca 2+ ]. The 
triggering threshold level of [Ca 2+ ] ER  for STIM2 is >400 μM, while STIM1 responds 
when ER-[Ca 2+ ] is around 200 μM. Based on this, STIM2 has been suggested to 
aggregate and translocate to ER-PM junction under conditions when there is mini-
mal depletion ER-Ca 2+  [ 113 ] One reported function for STIM2 is the regulation of 
Orai1 in resting cells to maintain [Ca 2+ ] i  [ 114 ]. Another study suggests that STIM2 
gates Orai1 in cells stimulated with low agonist where there is less depletion of 
ER-Ca 2+  stores while STIM1 is involved in gating Orai1 at high agonist concentra-
tion when there is greater depletion [ 115 ]. A recent study provides a novel role for 
STIM2 showing that STIM2 associates with STIM1 and promotes the clustering of 
STIM1 in ER-PM junctions in cells stimulated with low [agonist]. STIM2 co- 
clusters with Orai1 and promotes STIM1-Orai1 interactions at low levels of stimu-
lation while STIM1 aggregates effi ciently, in a STIM2-independent manner, and 
interacts with Orai1 in cells stimulated with high [agonist] [ 116 ]. Knockdown of 
STIM2 in HEK293 cells or targeted knockout of STIM2 in mouse salivary glands 
attenuated STIM1-mediated activation of Orai1 and decreased the agonist sensitiv-
ity of SOCE activation. This was especially prominent at lower levels of agonist. On 
the other hand, knockdown of STIM1 completely eliminated SOCE at low and high 
levels of stimulus. Hence, STIM2 appears to tune the agonist-sensitivity of the 
STIM1-Orai1 interactions and associated Ca 2+  signals [ 116 ]. Few studies have 
investigated the direct contribution of STIM2 to TRPC-mediated SOCE. STIM1 
has been proposed to regulate TRPC1 and TRPC3 channel function, whereas 
STIM2 regulated only TRPC1 function in HEK293 cells [ 117 ]. Modulation of the 
STIM1:STIM2 ratio appears to determine the store responsiveness of TRPC1 chan-
nel function in intestinal epithelial cells [ 118 ]. Thus, the exact role of STIM2 in 
TRPC channel function and regulation remains to be determined.  

5.4     Orai1-TRPC Channel Interactions in SOCE 

 The pore-forming component of CRAC channels, Orai1, is indispensable for 
SOCE. A naturally occurring mutation of the channel, (R91W), which leads to loss 
of channel function, has been linked to severe combined immune defi ciency (SCID) 
[ 119 – 121 ]. Orai1 has two closely related family members, Orai2 and Orai3, 
although there is a paucity of data regarding their contribution to SOCE when com-
pared to Orai1 [ 122 ]. While endogenous Orai1 function is supported by endogenous 
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STIM1, exogenously expressed Orai1 does not by itself increase SOCE in cells 
unless STIM1 is co-expressed with it. The reason for this is not yet clear as cells 
appear to express STIM1 in excess of Orai1. Subsequent studies identifi ed the pore 
region of Orai1 by showing that E106Q mutation generates a channel with a non- 
functional pore, while E106D changes Ca 2+  selectivity [ 22 ,  110 ,  123 ,  124 ]. An addi-
tional interesting observation that has been reported is that STIM1 increases the 
Ca 2+  selectivity of Orai1 [ 125 ]. Again the latter study was carried out with overex-
pressed protein and needs to be more fully examined using the endogenous 
channel. 

 Intriguingly, a number of studies demonstrate that Orai1 is also required for 
TRPC1 function. Knockdown of endogenous Orai1 abolished SOCE, despite the 
presence of endogenous or exogenously expressed STIM1 and TRPC1. Further, it 
was reported that Orai1 and STIM1 form a complex with TRPC1 in response to 
ER-Ca 2+  store depletion in HSG cells [ 103 ], mouse pulmonary arterial smooth 
muscle cells [ 126 ], human parathyroid cells [ 127 ], human liver cells [ 128 ] rat kid-
ney fi broblast [ 129 ], pancreatic acinar cells and salivary gland acinar cells [ 34 ,  39 ]. 
Notably assembly of the TRPC1-Orai1 complex requires STIM1 which also gates 
both channels. Co-localization of the three proteins in ER-PM junctions, as detected 
by TIRFM, suggests that TRPC1 is also localized in same ER-PM junctions where 
Orai1-STIM1 complex is assembled. The requirement of Orai1 in TRPC1 function 
was further revealed by data showing that non-functional Orai1 mutants, either 
Orai1E106Q or Orai1R91W, abrogated store-dependent activation of TRPC1 [ 87 , 
 88 ,  92 ,  103 ]. Based on this, it was fi rst proposed that TRPC1 and Orai1 assemble 
into a heteromeric channel where both proteins contribute to the channel pore. 
There was also the suggestion that TRPC channel forms the pore while Orai1 
serves as a regulator. While this led to an extensive debate regarding the assembly 
of these putative channels, neither of these proposals was supported by conclusive 
data. Finally, the mechanism underlying the requirement of Orai1 in TRPC1 func-
tion was demonstrated in a study where Ca 2+  infl ux mediated by Orai1 triggers 
plasma membrane insertion of TRPC1 [ 88 ]. The insertion presumably occurs 
within the same ER-PM junctions where the Orai1-STIM1 complex is assembled, 
to allow for TRPC1 gating by STIM1. Moreover, recruitment of TRPC1 into these 
junctions brings TRPC1 in close proximity to Orai1, such that Ca 2+  entry via Orai1 
can be sensed locally to trigger plasma membrane recruitment of TRPC1. This 
requirement of Orai1-mediated Ca 2+  entry for TRPC1 insertion into the plasma 
membrane also accounts for the lack of TRPC1 activity when non-functional 
mutants of Orai1 are expressed. Importantly, Ca 2+  entry mediated by TRPC1 and 
Orai1 are utilized by cells to regulate separate functions. Orai1-mediated SOCE is 
suffi cient for activation of NFAT, whereas Ca 2+  entry via both Orai1 and TRPC1 are 
required for NFκB expression and function, with TRPC1 contribution being pre-
dominant [ 88 ,  96 ]. Thus, Orai1 and TRPC1 form two separate STIM1-regulated 
channel complexes (Fig.  5.1 ). TRPC1 and STIM1 form a SOC channel that gener-
ates  I  SOC  while Orai1 and STIM1 form the highly Ca 2+ -selective CRAC channel 
mediating  I  CRAC . The smaller  I  CRAC  is masked by the larger  I  SOC  current and unmasked 
when TRPC1 function is suppressed. It should be noted that true TRPC1 currents 
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have not yet been described as most reported measurements of I SOC  include currents 
generated by both TRPC1+STIM1 and Orai1+STIM1 channels [ 88 ]. A require-
ment for Orai1 in other TRPC channels such as TRPC3 and TRPC6 [ 93 ], as well as 
heteromeric TRPC channels TRPC1/TRPC4 [ 130 ], have been reported. Whether 
TRPC channel traffi cking is involved in these cases is not yet known. The exact 
proteins involved in regulating and mediating exocytosis of TRPC1 have not yet 
been elucidated.

   One interesting suggestion which has been made is that Orai1 can regulate TRPC 
channels by determining their recruitment into specialized microdomains in the 
plasma membrane, such as the lipid raft domains (LRDs). This suggestion is consis-
tent with previous studies showing that SOCE requires intact LRDs [ 39 ,  88 ,  90 ,  104 , 
 131 ,  132 ]. Further, STIM1-TRPC1 interaction also takes place within LRDs as dis-
ruption of LRD leads to abrogation of STIM1-TRPC1 interaction and loss of SOCE 
[ 104 ]. Similarly, disruption of LRD in human platelets and HEK293 cells reduced 
interactions between Orai1, TRPC1, TRPC6 and STIM1 [ 90 ,  132 ,  133 ]. Orai1 

  Fig. 5.1    Physiological function of Orai1 and TRPC1 in SOCE. Stimulation with agonists gener-
ates [Ca 2+ ] i  changes that occur locally (i.e. close to the channel pore) and globally (i.e. throughout 
the cell cytosol). Local SOCE mediated by Orai1 has been shown to activate calcineurin, which 
subsequently induces NFAT translocation into the nucleus to drive gene expression. Local Orai1- 
SOCE also promotes insertion of TRPC1 into the plasma membrane. Ca 2+  entry via both Orai1 and 
TRPC1 contribute to increase in global [Ca 2+ ] i , which has been shown to activate NFκB and NFκB- 
driven gene expression. While the Ca 2+ -activated ion channels in the plasma membrane are also 
activated by global [Ca 2+ ] i , it is not clear whether the activating Ca 2+  comes from those situated in 
the vicinity of neighboring Orai1 and TRPC1 channels and/or from the deeper regions of the cell 
cytosol       
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interacts with the cytosolic termini of TRPC1 and TRPC6 to modulate their 
 sensitivity to store depletion and STIM1 [ 93 ,  134 ,  135 ]. Thus, Lutz Birnbaumer and 
co- workers suggested the hypothesis that recruitment of Orai1, TRPC and STIM1 
into LRD confers store-responsiveness to the channels [ 135 ]. At this stage, it 
remains unclear whether Orai1-STIM1 and TRPC-STIM1 complexes are initially 
formed outside the lipid rafts and subsequently recruited into these microdomains 
following store depletion or are maintained within this domain by interactions with 
Orai1 and STIM1. Presence of PIP 2 -interacting domains in the C-terminus of 
STIM1 and STIM2 [ 132 ], which are proposed to enable anchoring of the proteins to 
the plasma membrane within ER-PM junctions, led to several studies examining the 
role of PIP 2  in SOCE. Effects of PIP 2  depletion on SOCE were inconsistent with 
some studies showing no effect on SOCE mediated by Orai1 while others demon-
strated decreased function and STIM1 clustering [ 136 – 139 ]. Nevertheless, STIM1 
or STIM2 lacking the polybasic tail domain do not form puncta within ER-PM 
junctional domains. However, when Orai1 is expressed with this mutant of STIM1, 
it rescues STIM1 clustering and CRAC channel activity. It has been suggested that 
the Orai1-STIM1ΔK complexes might be localized outside the ER-PM junctions, 
suggesting that the PIP 2  is not required for STIM1-dependent gating of Orai1 [ 140 ]. 
It is unclear whether TRPC-STIM1 interactions can also take place outside the junc-
tional domains. A recent study suggests that dynamic changes in PIP 2  levels within 
ER-PM junctions mediated by proteins such as septin, impact not only assembly of 
the Orai1-STIM1 complexes but also regulation of CRAC channel activity [ 141 –
 143 ]. It has also been recently reported that the ER-PM junctions might contain 
different PIP 2  microdomains. This study showed that Orai1-STIM1 complex assem-
bled in ER-PM junctions is transferred from relatively PIP 2 -poor to a PIP 2 -rich 
microdomain which dictates the Ca 2+ -dependent regulation of the channel. 
Interestingly, this recruitment is determined by Cav-1 and septin [ 143 ]. Further 
studies will be required to fully elucidate the dynamic lipid and protein remodeling 
that occurs with the ER-PM junctions that critically impact Orai1 and TRPC1 inter-
action with STIM1 and their function. 

 Traffi cking of TRPC channels has been proposed as a major mode of regulation 
of their function in the plasma membrane. In addition to the traffi cking proteins, 
scaffolding and regulatory proteins also modulate the magnitude and duration of 
TRPC-mediated SOCE. The main regulatory pathways that modulate surface 
expression and function of TRPC channels comprise of constitutive and regulated 
intracellular traffi cking mechanisms. The enhancement of Ca 2+  infl ux through 
TRPC channels can be due to increased exocytosis, retention via interaction with 
scaffolding proteins, and/or decreased channel endocytosis. As discussed above, 
TRPC1 function is dependent on LRD [ 144 ]. The cholesterol-binding LRD protein 
Cav-1 is reported to play a pivotal role in plasma membrane localization and activ-
ity of TRPC1. TRPC1 interacts with Cav-1 through binding sites located in its N- 
and C-terminal domains. The N-terminal Cav-1 binding site is involved in 
scaffolding and localization of TRPC1 in the plasma membrane while the C-terminal 
domain has been proposed to control channel function and/or inactivation. 
Knockdown of Cav-1, and mutations in Cav-1 or Cav-1 binding sites in TRPC1 
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resulted in mislocalization of TRPC1 and impairment of channel activity. Hence, 
Cav-1 is suggested as an LRD scaffolding protein for TRPC1 that determines 
plasma membrane localization [ 38 ,  39 ,  131 ,  145 – 149 ]. The current model proposes 
that in resting cells, constitutive traffi cking mechanisms target TRPC1 to cellular 
regions close to the plasma membrane where the inactive channel interacts with 
Cav-1 and is retained at that location intracellularly. Following store depletion, 
STIM1 translocates to ER-PM junctions and activates Orai1. Ca 2+  entry mediated 
by Orai1 is a pivotal step in TRPC1 insertion into the plasma membrane and chan-
nel activation [ 88 ], as it triggers the insertion of TRPC1 into the plasma membrane. 
Under these conditions, TRPC1 dissociates from Cav-1, interacts with and is gated 
by STIM1. Following ER-Ca 2+  store refi lling, SOCE is inactivated and TRPC1 dis-
assembles from STIM1. LRDs are essential for STIM1 translocation to the ER-PM 
junctions as deleting the C-terminal lysine-rich region of STIM1, which contains a 
PIP 2 -binding sequence, impairs puncta formation in these junctions and also alters 
partitioning of STIM1 into detergent insoluble fractions from cells. In addition, 
disruption of lipid rafts by cholesterol depletion also affects the ability of STIM1 to 
interact with TRPC1 [ 104 ]. These data demonstrate the importance of structural 
integrity for caveolar lipid rafts to act as scaffolding platforms for TRPC1-mediated 
SOCE. Based on the recent study that showed Cav-1 is required for recruitment of 
Orai1-STIM1 channel to a PIP 2 -rich domain [ 143 ], it is possible that this event can 
bring TRPC1 in close proximity to Orai1 such that it can sense local [Ca 2+ ] i  eleva-
tion due to Orai1-mediated Ca 2+  entry. Indeed, Cav-1 might be of utmost impor-
tance in Orai1-dependent activation of TRPCs as almost all TRPC channels have 
once or more Cav-1 binding domains, some of which are fairly well conserved. 
Nonetheless, Ca 2+  sensor proteins, as well as the identity of vesicles and intracellu-
lar compartments related to TRPC1 traffi cking, remain to be determined. 

 In addition to Cav-1, another scaffolding protein that regulates TRPC1 function 
is Homer1. The C-terminus of TRPC1 (aa 644–650) forms a complex with Homer1 
and IP 3 R in resting cells. However, following store depletion, this complex dissoci-
ates to enable subsequent TRPC1 interaction with and gating by STIM1 [ 150 ,  151 ]. 
Further evidence for the contribution of Homer1 came from a study with knockout 
mice (Homer1 −/− ) that reported impaired SOCE in skeletal muscle cells [ 47 ]. Soluble 
N-ethylmaleimide-sensitive factor attachment receptor (SNARE) proteins, such as 
synaptosome-associated protein (SNAP-25), are involved in membrane fusion 
within intracellular compartments or between vesicles and plasma membrane. 
Interaction of SNAP-25 with TRPC1 is vital for channel function as botulinum 
toxin treatment, which cleaves and inactivates SNAP-25, decreased SOCE in plate-
lets [ 152 ]. Several cytoskeletal and microtubule proteins have also been shown to 
modulate the TRPC1 channel traffi cking and activity. The monomeric GTPase pro-
tein, RhoA, regulates TRPC1 translocation to the plasma membrane in endothelial 
cells [ 29 ]. Interaction of β-tubulin with TRPC1 determines surface expression of 
TRPC1 retinal epithelial cells [ 153 ]. Disrupting TRPC1 interaction with either 
RhoA or β-tubulin signifi cantly decreased SOCE. In aggregate, the data show that 
proper localization of TRPC1 in the plasma membrane, as well as traffi cking to the 
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specifi c domains where SOCE is regulated, are vital for its interaction with Orai1- 
STIM1 and its activation.  

5.5     Conclusions 

 The mechanism(s) underlying SOCE involves multiple interactions that allow cells 
to display dynamic regulatory modes for each physiological stimulus. The multi-
plicity of channel-protein and protein-protein interactions underscores the variety of 
signaling complexes that can be generated within a subregion of the cell. Indeed, 
TRPC channels interact with a wide range of channels and proteins involved in Ca 2+  
signaling, as well as scaffolding and traffi cking processes. Such complexity under-
lies the physiological functions that have been ascribed to TRPC channels. Many 
studies have investigated the contributions of STIM1 and Orai1 to TRPC channel 
function. The functional relevance of STIM2, as well as Orai2 and Orai3, in SOCE 
remains to be resolved. It is worth noting that many cells and tissues express both 
STIM proteins and more than one Orai protein. Therefore, depending on the type 
and intensity of the cell stimulus, TRPC channels may also form dynamic signaling 
complexes with these STIMs and Orais to generate SOCE. Nonetheless, much 
remains to be elucidated to expand our current understanding of the exact sequence 
of molecular events involved in the regulation and function of TRPC channels in 
response to ER-Ca 2+  depletion. As TRPC channels have been implicated in a num-
ber of human diseases, understanding the mechanism(s) involved in regulating and 
modulating channel function will provide potentially important information and 
lead to novel targets for the development of effective therapeutic interventions.     
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