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Abstract. In recent years, Role Based Access Control (RBAC) has
emerged as the most popular access control mechanism, especially for
commercial applications. In RBAC, permissions are assigned to roles,
which are then assigned to users. The key to the effectiveness of RBAC
is the underlying role set that is used. The process of identifying an
appropriate set of roles that optimally meets the organizational require-
ments is called role mining. One of the most useful constraints that can
be expressed in RBAC is Separation of Duty (SoD). SoD constraints
allow organizations to put a restriction on the minimum number of users
required to complete a critical task. However, existing role mining algo-
rithms do not handle SoD constraints and cannot be easily extended to
incorporate SoD constraints. In this paper, we consider the problem of
role mining when SoD constraints are present. We develop three alter-
native approaches that can be applied either during or after role mining.
We evaluate the performance of all three approaches on several real world
data sets and demonstrate their effectiveness.

Keywords: RBAC · Role mining · Separation of duty · SMER con-
straints

1 Introduction

Resources are protected in organizations by providing appropriate and selective
permissions to users. Traditionally, access control policies were directly specified
in terms of users and their permissions. However, such an access control method
increases the burden on system administrators when the number of users or
permissions increases. RBAC (Role Based Access Control) [1,2] reduces this
administrative overhead by assigning permissions to users through roles. Roles
in RBAC make task re-assignment easier and reduce the complexity as well as
chances of error compared to direct assignment of permissions to users.
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However, RBAC is effective only when the set of roles matches the organiza-
tion’s functional requirements. Therefore, an important step in RBAC deploy-
ment is to define the requisite roles. This process, known as role engineering
[3], can be carried out using top down, bottom up or hybrid approaches [12].
In the top down approach, roles are formed by identifying independent business
processes that are associated with permissions. This approach is often difficult
to handle as organizations consist of hundreds of business processes and is also
known to be cost intensive. On the other hand, the bottom up approach uses the
existing user permission assignments for identifying roles – a procedure referred
to as role mining [4]. A hybrid approach [3] combines elements of both top-
down and bottom-up approaches to include business process knowledge as well
as existing user-permission assignment information.

Note that, the user permission assignment (UPA) information can be repre-
sented as a matrix, in which rows represent users and columns represent per-
missions. Thus, a value of 1 in the (ui, pj) entry of a UPA matrix denotes the
fact that the permission pj is assigned to the user ui. Role mining decomposes
the given UPA matrix into two boolean matrices: User Assignment matrix (UA)
and Permission Assignment matrix (PA), of which UA depicts the assignment of
roles to users and PA depicts the assignment of permissions to roles. While many
different UA and PA combinations exist that can correctly specify the UPA, the
main challenge for role mining algorithms is to find the UA and PA that can do
so optimally. Here, optimality is in terms of some metric such as the number of
roles. Several metrics have been identified in the literature [5,13].

Besides ease of administration, a key benefit of RBAC is that it also allows
specification and enforcement of policies with various constraints such as cardi-
nality, prerequisite, and Separation of Duty (SoD), which match real life situa-
tions [1]. Cardinality constraints limit the maximum number of roles a user or a
permission can belong to, the maximum number of permissions a role can have
or the maximum number of users a role can be assigned to. SoD is considered
to be an important constraint in computer security for the prevention of fraud.
Typically, an SoD constraint (also called an SoD policy) states that at least k
users are required to complete a task that requires n number of permissions, for
given values of k and n.

While many algorithms have been developed for role mining [4,8], none of
these handle the different constraints that can be expressed in RBAC. Harika
et al. [14] were the first to comprehensively address cardinality constraints in
the process of role mining. However, they also do not address SoD constraints,
which are actually the most important constraints that need to be enabled to
eliminate fraud. In this paper, we address precisely this problem – how to identify
an appropriate set of roles while also taking into consideration the existing SoD
constraints.

Note that, while SoD restricts the set of users in terms of permissions, in order
to implement it, RBAC uses Statically Mutually Exclusive Roles (SMER) con-
straints [7]. A t-m SMER constraint ensures that no user is allowed to be a mem-
ber of t or more roles out of a given set of m roles. It is actually quite challenging
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to convert a set of SoD constraints into a corresponding set of SMER constraints
that can enforce the given SoD constraints. Therefore, it is not straightforward
to just use an existing role mining algorithm to identify the UA and PA, and
then to generate the SMER constraints over this to precisely enforce the given
SoD policies.

Thus, our objective in this paper is to take a UPA matrix and a set of
SoD constraints as input, and find a UA and a PA matrix consistent with the
UPA along with a set of SMER constraints that correctly enforce the given SoD
constraints while minimizing the number of roles. We develop three alternative
strategies to solve this problem. The developed solutions fall into two broad
categories, namely SoD-aware and post-processing, based on whether constraints
are considered during or after the process of role mining.

The rest of the paper is organized as follows: In Sect. 2, we present the pre-
liminaries necessary to understand the rest of the paper. In Sect. 3, we introduce
the problem of generating SMER constraints in role mining and describe the
proposed algorithms. We present the results of experimental evaluation of our
work in Sect. 4. We discuss prior work related to this paper in Sect. 5. Finally,
we conclude the paper in Sect. 6 and discuss directions for future research.

2 Preliminaries

We now present some of the basics of the RBAC model, SoD and SMER con-
straints, and Role Mining.

Definition 1 RBAC. The Role Based Access Control (RBAC) model comprises
the following components [1]:

– U , P , R are respectively the sets of users, permissions and roles
– UA ⊆ U × R, a many-to-many mapping of users to roles
– PA ⊆ R × P , a many-to-many mapping of roles to permissions
– Cardinality, Separation of Duty and Prerequisite constraints

We leave out other components like sessions and role hierarchy as they are not
directly related to the work reported in this paper. Also, cardinality constraints
have been considered in the context of role mining in recent literature [6,9,14].
We, instead, focus on the Separation of Duty constraints. In this paper, we use
the term UA (respectively, PA) to denote the user-role assignment (respectively,
role-permission assignment) relation as well as its representation in the form of
a boolean matrix.

Definition 2 k-n SoD Constraint. A k-n SoD constraint states that at least
k users are required together to have a given set of n permissions. It can be
expressed as sod<{p1,p2,...,pn},k> where each pi is a permission for 1 ≤ i ≤ n,
and n, k are integers such that 2 ≤ k ≤ n.
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Typically, these n permissions are required to carry out a sensitive task
and the constraint specifies that no set of k-1 users should be able to com-
plete it. While this constraint restricts a set of users in terms of their permis-
sions, in RBAC, users get permissions through roles. In order to implement SoD,
RBAC uses Statically Mutually Exclusive Roles (SMER) constraints as defined
below [7].

Definition 3 t-m SMER Constraint. A t-m SMER constraint specifies a set of
m roles and no user is allowed to be a member of t or more of these m roles. A
t-m SMER constraint can be expressed as smer〈{r1,r2,...,rm},t〉, where each ri
is a role for 1 ≤ i ≤ m, and t, m are integers such that 2 ≤ t ≤ m.

It has earlier been shown that any t-m SMER constraint can be represented
using a set of t-t SMER constraints, which is defined below [7].

Definition 4 t-t SMER Constraint. A t-t SMER constraint specifies a set of t
roles and no user is allowed to be a member of all the t roles. It is expressed as
smer〈{r1,r2,...,rt},t〉, where each ri is a role for 1 ≤ i ≤ t, and t is an integer
such that t ≥ 2.

The problem of determining whether the UA and PA of an RBAC system
together satisfy an SoD constraint has been shown to be coNP-complete [7].
Unlike SoD constraints, which restrict permissions of a set of users, SMER con-
straints restrict role membership for a single user, and hence, whether an SMER
constraint holds in the UA of an RBAC system can be checked in polynomial
time (PA is not required for checking any violation of SMER constraints). How-
ever, if SMER constraints are to be used to enforce SoD constraints, one needs
to first generate a set of SMER constraints (using the PA) that are adequate to
enforce a given set of SoD constraints.

We consider the problem of generating SMER constraints from SoD con-
straints as an added requirement in role mining. In this paper, we present algo-
rithms for generating SMER constraints from SoD constraints concurrently with
the process of role mining and also alternatively as a post-processing step after an
initial stage of unconstrained role mining. The basic unconstrained Role Min-
ing Problem (RMP) (i.e., role mining without any constraints) is defined as
follows [4]:

Definition 5 Basic Role Mining Problem (RMP). Given a set of users U, a set
of permissions P and a user-permission assignment matrix UPA, find a set of
roles R, a user-to-role assignment matrix UA and a role-to-permission assign-
ment matrix PA such that the UA and PA are consistent with the UPA and |R|
is minimized.

Basic RMP has been shown to be NP-Complete [4]. Significant work [3–5,15–
17] has already been done to find efficient algorithms for obtaining approximate
solutions. However, as mentioned before, none of these handles SoD constraints.
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3 Role Mining and SMER Constraint Generation

In this section, we formally introduce the problem of role mining in the presence
of SoD constraints (RMP SoD) and present our solution approaches.

3.1 Problem Definition

The RMP SoD problem aims to find an appropriate set of roles that satisfy a
given set of SoD constraints. Thus, it can be defined as follows:

Definition 6 RMP SoD. Given a set of users U, a set of permissions P, a user-
permission assignment matrix UPA and a set E of SoD constraints, find a set of
roles R, a user-to-role assignment matrix UA, a role-to-permission assignment
matrix PA and a set C of SMER constraints such that the UA and PA are
consistent with the UPA, C enforces E, and |R| is minimized.

The following example illustrates this. Consider a set of users U = {u1,u2,u3,
u4,u5}, a set of permissions P = {p1,p2,p3,p4,p5,p6}, a UPA matrix as shown in
Table 1 and a set E = {e1, e2} of SoD constraints as shown below:

e1 = 〈{p3, p5}, 2〉 (1)

e2 = 〈{p1, p5, p6}, 2〉 (2)

Table 1. Example UPA matrix

p1 p2 p3 p4 p5 p6

u1 0 1 0 0 1 0

u2 0 1 0 0 1 0

u3 1 1 0 1 1 0

u4 1 1 1 0 0 0

u5 0 0 0 0 0 1

After role mining, a UA (depicted in Table 2) and a PA (depicted in Table 3)
would be generated along with a set C = {C1 ∪ C2} of SMER constraints as
shown below:

C1 = {〈{r1, r2}, 2〉} (3)

C2 = {〈{r1, r3, r4}, 3〉, 〈{r2, r3, r4}, 3〉} (4)

A comparison of the UA and PA matrices as well as the generated set of
SMER constraints (Expressions 3 and 4) with the given UPA matrix and the
set of SoD constraints (Expressions 1 and 2) shows that the decomposition is
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Table 2. Generated UA
matrix

p1 p2 p3 p4 p5 p6

r1 1 1 1 0 0 0

r2 1 1 0 1 0 0

r3 0 1 0 0 1 0

r4 0 0 0 0 0 1

Table 3. Generated PA
matrix

p1 p2 p3 p4 p5 p6

r1 1 1 1 0 0 0

r2 1 1 0 1 0 0

r3 0 1 0 0 1 0

r4 0 0 0 0 0 1

correct and the SoD policies can be enforced using the SMER constraints. It can
be verified that this decomposition is the smallest correct decomposition – i.e.,
it is not possible to obtain a correct decomposition of the UPA into UA and PA
using fewer roles.

3.2 Generating SMER Constraints After Unconstrained Role
Mining

We now discuss several alternative post-processing approaches that generate
SMER constraints after unconstrained role mining. The initial stage of uncon-
strained role mining can employ any of the existing role mining algorithms that
minimize the number of roles [4,8]. In the second stage, SMER constraints are
generated, methods for which are discussed in the following sub-sections. Note
that for this stage, only the PA obtained after unconstrained role mining is used
along with the given set of SoD constraints. The output of the second stage is a
set C of SMER constraints.

Näıve Approach. One possibility is to simply use an existing SMER generation
algorithm in conjunction with an existing role mining algorithm. We term this as
the näıve approach. As discussed earlier, many role mining algorithms exist. For
SMER constraint generation, Li et al. [7]. propose a method that works in two
phases. The first phase translates the given SoD constraints into Role-level Static
Separation of Duty (RSSoD) requirements, i.e., restrictions on permissions in
SoD constraints are mapped to restrictions on role memberships, and the second
phase is the generation of SMER constraints from RSSoD requirements using an
SMER-Gen procedure [7].

Definition 7 k-n RSSoD Requirement. A k-n RSSoD requirement states that at
least k users are required together to have n roles. A k-n RSSoD requirement can
be expressed as rssod〈{r1,r2,...,rn},k〉, where each ri is a role for 1 ≤ i ≤ n, and
n, k are integers such that 2 ≤ k ≤ n.

After getting the RSSoD requirements, all singleton sets of t-m SMER con-
straints that are minimal for enforcing the SoD policies are generated. The main
drawback of this approach is that, generation of RSSoD requirements involves
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finding a minimal set of roles having all the permissions in the SoD policy, which
is computationally very expensive. The methods proposed in the next two sub-
sections avoid this shortcoming.

Generation of 2-2 SMER Constraints. In the first of our proposed post-
processing approaches, we generate a set of 2-2 SMER constraints required to
enforce the given set of SoD constraints. The input is a PA matrix and a set
E = {e1,e2,...,em} of k-n SoD constraints. The output is a set C = {c1,c2,...,cq}
of 2-2 SMER constraints such that C enforces E. Each 2-2 SMER constraint
is expressed as: c = 〈{ri,rj},2〉, which means that, ri and rj are two mutually
exclusive roles, i.e., no user is allowed to be a member of both the roles. Although
2-2 SMER constraints are expected to be quite restrictive in nature, we still
consider generation of 2-2 SMER constraints as they are sufficient to enforce
any enforceable SoD constraint. An SoD constraint ei is not enforceable, if one
of the following conditions hold: (i) all the permissions in ei are assigned to
a single role in the PA matrix and (ii) the given UA matrix already has user
assignments violating the generated 2-2 SMER constraints.

To generate 2-2 SMER constraints for an SoD constraint ei, we first find a
set of roles S such that each role in S has at least one permission in ei. Next,
we check whether any role in S has all the permissions in ei. If so, we declare ei
as not enforceable; otherwise, all valid pairs of mutually exclusive roles in S are
generated. If two roles are mutually exclusive, then each role contains at least
one mutually exclusive permission which is not present in the other role and
permission set of one role is not a subset of the other.

As an example, consider an SoD constraint 〈{pa, pb, pc},2〉 in which pa, pb
and pc are three permissions and at least two users are required together to have
all these three permissions. If there are two roles of which one role has pa and
pb, and the other role has pb and pc, then we declare the two roles as mutually
exclusive as these two roles are not subsets of each other and therefore each role
has at least one permission which is not in the other. This can be determined by
checking two conditions, namely, (i) assign perms[ri] � assign perms[rj ] and
(ii) assign perms[rj ] � assign perms[ri]. assign perms[r] contains the permis-
sions of SoD assigned to the role r, which can be found by using the PA matrix.

The algorithm 2-2 SMER Post Processing for generating 2-2 SMER con-
straints from a PA matrix and a set E of k-n SoD constraints is shown in
Algorithm 1. Here S denotes the set of roles that are affected by an SoD con-
straint ei ∈ E. Lines 5 to 8 of the algorithm determine whether a constraint
is enforceable or not. If it is enforceable, then for every pair of roles in S, Line
10 finds whether they should be declared mutually exclusive. Line 11 verifies
whether the given UA matrix satisfies the mutual exclusivity constraint. If Line
11 returns false, the SoD constraint is declared as not enforceable. The above
steps are repeated for every SoD in E (Lines 3 to 18).

Generating 2-2 SMER constraints for an SoD can be done in polynomial time.
If the number of roles in the set S for the SoD is m, then the time complexity of
finding whether the SoD constraint is enforceable or not is O(m) and the time
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Algorithm 1. 2-2 SMER Post Processing
1: Required: UA, PA, a set E of k − n SoD constraints
2: C = φ
3: for each SoD ei in E do
4: Using PA, find a set S of roles having at least one permission in ei
5: if any role in S has all the permissions in ei then
6: Declare ei as not enforceable
7: continue
8: end if
9: for each pair of roles (ri,rj) in S do

10: if assign perms[ri] � assign perms[rj ] ∧ assign perms[rj ] �
assign perms[ri] then

11: if UA matrix satisfies 〈{ri,rj},2〉 then
12: C = C ∪ {〈{ri,rj},2〉}
13: else
14: Declare ei as not enforceable
15: end if
16: end if
17: end for
18: end for

complexity for generating mutually exclusive roles is O(m2). So the total time
complexity is O(m+m2), which is O(m2).

While 2-2 SMER constraints can be generated quite efficiently as compared
to the näıve approach of Sub-sect. 3.2, in some cases too many SoD constraints
might become non-enforceable if the UA matrix already has user-role assign-
ments that violate the generated 2-2 SMER constraints. We next present a
method which makes an estimate of the highest possible value of t for which
a given SoD constraint can be enforced using t-t SMER constraints. This is
expected to be less restrictive as compared to using only 2-2 SMER constraints.
At the same time, it ought to be more efficient than the näıve approach.

Generation of t-t SMER Constraints. Our second post-processing approach
also considers a PA matrix and a set E = {e1,e2,...,em} of k-n SoD constraints
as input and generates a set C = {c1,c2,...,cq} of t − t SMER constraints such
that C enforces E. To generate t − t SMER constraints for an SoD ei, the first
step, like the previous algorithm, is to find the set of roles S so that each role
in S has at least one permission in ei. The next step is to determine whether
ei is enforceable or not. Two cases for which an SoD ei cannot be enforced are:
(i) The number of roles in the set S is less than k in ei and (ii) At least one role in
the set S has all the permissions in ei. If ei is enforceable, it is checked whether
the permission set of any role is a subset of another role (here, by permission set
we mean only those permissions of a role that are included in ei). If so, then only
2-2 SMER constraints can be generated; else, we determine the largest value of
t for which the following condition is satisfied.

|S| > (k − 1)(t − 1) (5)
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Algorithm 2. t-t SMER Post Processing
1: Required: UA, PA, a set E of k − n SoD constraints
2: C = φ
3: for each SoD ei in E do
4: Using PA, find a set S of roles having at least one permission in ei
5: if number of roles in S is less than k of ei then
6: Declare ei as not enforceable
7: continue
8: end if
9: if any role in S has all the permissions in ei then

10: Declare ei as not enforceable
11: continue
12: end if
13: if permission set of any role is a subset of another (permission set considers only

the permissions of ei that are in the role) then
14: Generate 2-2 SMER constraints similar to Algorithm 1
15: else
16: Find the largest value of t such that |S |>(t-1)(k -1)
17: for each subset of roles R of size t from S do
18: if UA satisfies 〈R, t〉 then
19: C = C ∪ {〈R, t〉}
20: else
21: Declare ei as not enforceable
22: end if
23: end for
24: end if
25: end for

Theorem 1 given below establishes the reason for using this condition. Finally,
we include every subset of t roles in S as a t-t SMER constraint in the set C.
The above steps are repeated for every ei ∈ E.

The algorithm for generating t-t SMER constraints (t-t SMER Post
Processing) is shown in Algorithm 2. Lines 5 to 8 and 9 to 12 determine whether
the constraint is enforceable or not. Lines 13–14 generate 2-2 SMER constraints
if it is determined that t-t SMER constraints cannot be generated. Line 16 finds
the desired value of t. Lines 17–18 verify whether the UA matrix satisfies the t-t
SMER constraints. If Line 18 returns false for any of the t-t SMER constraints,
the SoD constraint is declared as not enforceable, else, it is included in the set
of SMERs.

The time complexity for generating t− t SMER constraints can be computed
as follows. If the number of roles in the set S is m, then the time complexity for
determining whether a constraint is enforceable or not is O(m). Time complexity
to determine whether to generate 2-2 SMER constraints or t-t SMER constraints
is O(m2) and the time complexity for generating all combinations of t out of m
roles is O(m nCk). So the overall time complexity is O(m2+m nCk) which is
O(m nCk).
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Theorem 1. Given a k-n SoD constraint and a set S of roles, the largest value of
t for which t-t SMER constraints can be generated to enforce the SoD constraint
is given by |S| > (t-1)(k-1).

Proof. Roles in set S are the roles containing permissions required to complete
a task needing separation of duty. To enforce a k-n SoD constraint, the task
needs at least k users to get all the n permissions through the roles in S. So, we
need to find a value of t such that even if we assign (t-1) distinct roles to (k-1)
distinct users, these (t-1)(k -1) roles should not be equal to the number of roles
in S, i.e., |S| 	= (t-1)(k -1).

So, after assigning (t-1) roles to (k -1) users, at least one role should be left
in S which is assigned to the kth user. Hence, |S| > (t-1)(k -1).

It may be noted that, the value of t obtained as above is a conservative
estimate. However, finding an exact bound for t would require a computationally
expensive step of examining all possible subsets of roles actually assigned to
users.

3.3 SoD-Aware Role Mining

From the discussions so far, it may be observed that, while the näıve approach
of Sub-sect. 3.2 can precisely enforce the given set of SoD constraints, the 2-
2 SMERs and the t-t SMERs generated in Sub-sects. 3.2 and 3.2, being more
restrictive, might not be enforceable in the UA matrix (which was obtained by
an unconstrained role mining algorithm from the given UPA). On the other
hand, the näıve approach is computationally expensive and might not be feasi-
ble to implement in real-life applications. It may be recalled that the first step
in the näıve approach is to find a minimal set of roles in the PA that together
have n permissions corresponding to a k-n SoD constraint for generating RSSoD
requirements (refer to Definition 7). For this step, initially a set of roles is deter-
mined such that, each role in the set has at least one permission in the SoD.
However, all the roles are not allowed to be included in the minimal set. The
roles that are not included in the minimal set have the same permissions that
are covered by the roles in the minimal set. Finding that set takes a substantial
amount of time.

As an example, consider that role ri is included in the minimal set and role
rj is not included in the minimal set. One of the following three cases may arise:

Case 1: ri and rj have the same set of permissions. In this case, two RSSoD
requirements need to be considered, one including ri and the other including rj .

Case 2: Permission set of rj is a subset of the permission set of ri.

Case 3: Permission set of rj is already covered by the remaining roles in the
minimal set.

So, if we ensure that the above three cases do not occur while forming the
roles, and thus make the role mining step SoD-aware, we can avoid the expo-
nential time required for finding the minimal set as mentioned above.
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Algorithm 3. SoD aware Role Mining
1: Required: UPA, a set E of k − n SoD constraints
2: Determine UserUnc[u] for all users u and PermUnc[p] for all permissions p from

the UPA
3: U represents the set of selected users and P represents the set of selected permis-

sions to form a role
4: while there exists at least one user u or permission p with uncovered edges do
5: Set U=φ, P=φ
6: Select vertex v with minimum number of uncovered edges
7: if v is a user then
8: Call UserSelected FormRole procedure
9: else

10: Call PermissionSelected FormRole procedure
11: end if
12: end while

It may be noted that, these conditions could be embedded in any uncon-
strained role mining algorithm. In this paper, we use the Minimum Biclique
Cover (MBC) based approach proposed in [8] as the unconstrained role mining
algorithm and show how it can be made SoD-aware. In this approach, the UPA
matrix is mapped to an undirected bipartite graph G = ({V1, V2}, E). The two
disjoint sets of vertices V1 and V2 in the UPA are U and P (the sets of users
and permissions), respectively. The edge set E consists of tuples (u, p) where u
∈ U , p ∈ P and permission p is assigned to user u in the UPA. The basic Role
Mining Problem is mapped to the Minimum Biclique Cover finding problem for
this bipartite graph. Each biclique in the minimum biclique cover represents a
role. Since MBC is known to be NP-Complete, a number of different heuristics
were tried in [8]. It was reported that selecting a vertex with minimum number
of uncovered incident edges as the greedy choice in each iteration gives better
result. We use the same heuristic in the approach presented below.

To make the MBC approach for solving RMP SoD-aware, whenever a new
role newR is formed, for every SoD ei, we determine which permissions of newR
are in ei. If the common permissions of newR and ei form a subset of a previously
created role r, then we modify newR and r as it leads to one of the three cases
described above. The common permissions in newR and r that belong to ei are
removed and a new role is created with these permissions.

After the biclique cover is obtained and the UA and PA get created, we
derive RSSoD requirements in linear time by finding the roles having at least
one permission in an SoD. Finally, we generate a set of SMER constraints in
which every SMER constraint is minimal for enforcing an SoD constraint. It is
to be noted that both t-m as well as t-t SMER constraints might get generated
using this method.

The overall procedure for SoD-aware role mining is shown in Algorithm 3
(SoD aware Role Mining). Initially, determine UserUnc[] and PermUnc[] for
all users and permissions. UserUnc[u] contains uncovered permissions for a user
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Algorithm 4. UserSelected FormRole
1: for each p ∈ UserUnc[v] do
2: Add p to P
3: end for
4: for each SoD ei in E do
5: Determine perms SoD[ei]
6: for each role r do
7: if perms SoD[ei] ⊆ assign perms[r] then
8: Call Modify UA PA procedure
9: end if

10: end for
11: end for
12: if P �= φ then
13: Add v to U
14: for each user u �= v do
15: if P ⊆ assign perms[u] and at least one element of UserUnc[u] is an element

of P then
16: Add u to U
17: end if
18: end for
19: end if
20: Form a role with U and P

u and PermUnc[p] contains uncovered users for a permission p. U and P respec-
tively represent sets of selected users and permissions for the newly formed role.
Repeat the process given below until there is no vertex with uncovered edges.

Select a vertex v, which can be either user or permission, with minimum
number of uncovered edges. If v is a user, then call UserSelected FormRole
procedure (Algorithm 4); else, call PermissionSelected FormRole procedure
(dual of Algorithm 4 - not shown separately). In Algorithm 4, Lines 1 to 3
find uncovered permissions of user v and store them in P. For each SoD ei
in E, determine perms SoD[ei] (Line 5). It contains the permissions that are

Algorithm 5. Modify UA PA
1: Required: Role r and constraint ei
2: for each permission p common to perms SoD[ei] and assign perms[r] do
3: Remove p from assign perms[r] and P
4: Add p to tempP
5: end for
6: for each user u �= v do
7: if tempP ⊆ assign perms[u] then
8: Add u to tempU
9: end if

10: end for
11: Form a role with tempU and tempP
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common to P and SoD ei. If there is any role r having the same permissions as
in perms SoD[ei] (Lines 6 to 10), then call Modify UA PA procedure (refer to
Algorithm 5). In Algorithm 5, Lines 2 to 5 remove common permissions in P and
role r and store them in tempP . Lines 6 to 10 find the users whose permission
sets are subsets of tempP and store them in tempU . Line 11 forms a role with
tempU and tempP . It then returns to Algorithm 4. If P is not null, then find
the users whose permission set is a subset of P and at least one permission must
be uncovered (Lines 14 to 18) and store them in U . assign perms[u] contains
the permissions assigned to the user u. Finally, U and P form a role.

4 Experimental Evaluation

All the algorithms presented in Sect. 3 have been implemented in C on a 3.1 GHz
Intel i5-2400 CPU having 4 GB RAM. Nine real world data sets [8,14] shown in
Table 4 were initially considered for the experiments. However, after studying the
data sets, it was found that the Domino, FW1, FW2 and HC data sets cannot
be meaningfully used to study the performance of role mining algorithms under
SoD constraints (although they can be used for testing unconstrained role mining
algorithms) since some sets of users in these data sets have all the permissions
assigned to them (thus they will violate any SoD). Hence, valid SoD constraints
cannot be generated from them.

Table 4. Data set details

Data sets # Users # Permissions # Roles Time (s)

Americas-large (AL) 3485 10127 423 78.78

Americas-small (AS) 3477 1587 213 6.31

APJ 2044 1164 456 5.60

Customer (Cus) 10961 284 276 4.66

Domino (Dom) 79 231 20 <0.01

EMEA (EM) 35 3046 34 0.02

Firewall1 (FW1) 365 709 69 0.11

Firewall2 (FW2) 325 590 10 0.15

Healthcare (HC) 46 46 15 <0.01

The rest of the data sets (in the form of UPA matrices) are given as input
to the SoD-aware role mining approach. For post-processing approaches, the
UA and PA obtained after applying the unconstrained MBC algorithm is given
as input. Details of the number of roles generated and execution time needed
using the unconstrained MBC algorithm are shown in Table 4. Since the data
sets do not inherently contain any SoD constraints, we introduce different k-n
SoD constraints using a simulator. In the simulator, for given values of k and n,
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Table 5. Average number of SMER constraints generated by SoD-aware role mining,
post-processing 2-2 SMER generation and post-processing t-t SMER generation for
different number SoD constraints with different values of k and n. (a) 2-2 SoD (b) 2-3
SoD (c) 3-6 SoD (d) 5-10 SoD. Numbers in square brackets represent the percentage
of SoD constraints that could be enforced.

(a)

Data set
2 − 2 SoD Constraints

20 SoDs 50 SoDs
SoD aware 2-2 post t-t post SoD aware 2-2 post t-t post

AL 20 [100] 984 [95] 984 [95] 50 [100] 2461 [92] 2568 [92]
AS 20 [100] 441 [80] 439 [80] 49 [100] 1279 [84] 1272 [84]
APJ 20 [100] 40 [80] 39 [80] 50 [100] 124 [84] 124 [84]
Cus 19 [100] 19 [95] 15 [80] 48 [100] 48 [96] 36 [78]
EM 19 [100] 57 [80] 54 [80] 48 [100] 142 [84] 138 [84]

(b)

Data set
2 − 3 SoD Constraints

20 SoDs 50 SoDs
SoD aware 2-2 post t-t post SoD aware 2-2 post t-t post

AL 20 [100] 3307 [100] 3306 [100] 50 [100] 7697 [98] 7694 [98]
AS 20 [100] 995 [80] 993 [80] 50 [100] 3365 [84] 3360 [84]
APJ 20 [100] 146 [100] 128 [100] 50 [100] 345 [100] 297 [100]
Cus 20 [100] 32 [60] 19 [100] 50 [100] 81 [58] 49 [98]
EM 20 [100] 172 [95] 163 [95] 50 [100] 425 [98] 404 [98]

(c)

Data set
3 − 6 SoD Constraints

20 SoDs 50 SoDs
SoD aware 2-2 post t-t post SoD aware 2-2 post t-t post

AL 520 [100] 11334 [90] 11334 [90] 1301 [100] 31155 [88] 31155 [88]
AS 488 [100] 2120 [50] 2120 [50] 1309 [100] 5081 [48] 5081 [48]
APJ 506 [100] 553 [95] 574 [95] 1262 [100] 1498 [94] 1556 [94]
Cus 479 [100] 46 [15] 372 [100] 1196 [100] 97 [14] 929 [100]
EM 430 [100] 696 [100] 697 [100] 1103 [100] 1819 [100] 1831 [100]

(d)

Data set
5 − 10 SoD Constraints

20 SoDs 50 SoDs
SoD aware 2-2 post t-t post SoD aware 2-2 post t-t post

AL 5281 [100] 24908 [70] 24908 [70] 13297 [100] 62058 [74] 62058 [74]
AS 4746 [100] 1307 [15] 1307 [15] 11889 [100] 3831 [16] 3831 [16]
APJ 4843 [100] 1459 [85] 1614 [85] 12299 [100] 3924 [90] 4258 [90]
Cus 4531 [100] 7 [5] 2180 [100] 11392 [100] 25 [2] 5461 [98]
EM 3022 [100] 1591 [100] 1594 [100] 7851 [100] 4168 [100] 4178 [100]
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Table 6. Average time (in seconds) for the generation of SMER constraints by
SoD-aware role mining, post-processing 2-2 SMER generation and post-processing t-t
SMER generation for different number SoD constraints with different values of k and
n. (a) 2-2 SoD (b) 2–3 SoD (c) 3–6 SoD (d) 5–10 SoD

(a)

Data set
2 − 2 SoD constraints

20 SoDs 50 SoDs
SoD aware 2-2 post t-t post SoD aware 2-2 post t-t post

AL 236.43 139.71 144.70 484.39 366.24 379.54
AS 13.68 10.12 10.17 26.04 29.27 30.21
APJ 481.18 0.30 0.44 518.63 0.97 1.28
Cus 279.30 < 0.01 0.24 281.49 < 0.01 0.57
EM 48.32 0.02 0.02 69.77 0.05 0.06

(b)

Data set
2 − 3 SoD constraints

20 SoDs 50 SoDs
SoD aware 2-2 post t-t post SoD aware 2-2 post t-t post

AL 246.48 505.56 509.40 531.47 1203.94 1212.81
AS 14.44 30.45 31.84 28.97 89.90 96.28
APJ 486.62 1.58 1.39 527.31 3.61 3.14
Cus 279.27 0.49 0.26 281.48 1.27 0.66
EM 56.16 0.07 0.07 85.03 0.02 0.17

(c)

Data set
3 − 6 SoD constraints

20 SoDs 50 SoDs
SoD aware 2-2 post t-t post SoD aware 2-2 post t-t post

AL 274.23 2022.69 2054.26 663.16 5762.90 5861.89
AS 17.34 117.65 143.63 39.96 280.90 337.96
APJ 496.46 6.70 7.10 552.33 17.98 19.65
Cus 279.26 1.18 5.01 281.45 2.69 12.12
EM 72.57 0.29 0.29 131.09 0.76 0.77

(d)

Data set
5 − 10 SoD constraints

20 SoDs 50 SoDs
SoD aware 2-2 post t-t post SoD aware 2-2 post t-t post

AL 314.58 6164.60 6267.25 844.92 14667.29 15008.82
AS 22.01 260.65 371.36 51.37 5.89 900.52
APJ 509.36 19.72 23.35 580.08 47.04 59.35
Cus 279.24 0.95 28.19 281.40 2.34 70.54
EM 90.60 0.66 0.67 176.17 1.74 0.67
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Table 7. Average number of roles generated for SoD-aware role mining for different
number of SoD constraints and different values of k and n (The number of roles for
the other approaches is the same as that shown in Table 4. These values are repeated
in the first column below for ease of referencing).

Data set 2− 2 SoD 2− 3 SoD 3− 6 SoD 5− 10 SoD

20 SoDs 50 SoDs 20 SoDs 50 SoDs 20 SoDs 50 SoDs 20 SoDs 50 SoDs

AL [423] 443 484 458 519 496 616 550 745

AS [213] 218 254 238 285 257 344 291 411

APJ [456] 461 473 467 481 476 505 489 531

Cus [276] 276 276 276 276 276 276 276 276

EM [34] 48 68 56 83 72 128 90 173

n permissions are chosen randomly from the set of all permissions. We study
the approaches for 4 different types of SoD constraints: 2-2 SoD, 2–3 SoD, 3-6
SoD and 5-10 SoD. The number of SoD constraints considered for each of the
four types are 20 and 50. Although we use real-world UPA matrices, since the
SoDs are synthetically generated, the experiments were repeated 30 times for
each combination of parameters. The (rounded off) mean of the results over 30
repetitions are reported in the tables included in this section.

It may be noted that, for comparative study, we had also implemented the
näıve approach described in Sub-sect. 3.2 that uses Li et al.’s [7] algorithm.
However, generation of RSSoD requirements was found to take an inordinate
amount of time. Although, the algorithm would produce an output for small
test data sets, for the data sets listed in Table 4, even after running for more
than 24 h, the program did not reach completion. Hence, the results could not
be meaningfully reported in this paper. On the other hand, all of the proposed
approaches worked for large data sets as well.

Table 5 shows the number of SMER constraints generated by the three pro-
posed approaches and Table 6 shows their execution time. The number of SoD
constraints that could not be enforced are also reported in Table 5. From the
table it is observed that, for both the post-processing approaches, i.e., 2-2 post-
processing and t-t post-processing, there are a certain number of SoD constraints
that could not be enforced. The SoD-aware approach, however, could enforce
all the constraints. The number of SMER constraints generated by the SoD-
aware approach is also, in general, less compared to the other two methods. For
the cases where some of the SoDs were not enforceable in the post-processing
approaches, the number of corresponding SMERs is less. The number of non-
enforceable SoDs is usually more for the 2-2 post-processing approach compared
to the t-t post-processing approach. A second point to note is that, some of
the entries in the two columns 2-2 post and t-t post are the same, which implies
that the value of t was obtained as 2 even in the t-t SMER constraint generation
algorithm (Lines 13-14 of Algorithm 2).

A further observation, which is intuitively obvious, is that, the number of
SMER constraints (Table 5) and time taken to generate them (Table 6) tend
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to increase as the number of SoD constraints increases and the length of the
SoD increases. The time taken for 2-2 post-processing and t-t post-processing
approaches grow rapidly as the length of the SoDs increase. For example, while
for 20 2-2 SoDs, it takes 139 s for the AL data set, the time required for 20
5–10 SoDs for the same data set is 6,164 s. The corresponding values for 50 SoDs
are 366 and 14,667 s, respectively. On the other hand, the time required for the
SoD-aware role mining does not vary so much with the length of the SoD. The
time needed for the t-t post-processing approach is comparable with that for 2-2
post-processing. Although it might be felt that the post-processing approaches
(2-2 post and t-t post) should take less time than the SoD-aware approach,
the main component of execution time in the post-processing approaches goes
into checking whether any of the existing users in the UA matrix violates the
generated SMER constraint (Line 11 of Algorithm 1 and Line 18 of Algorithm 2).

Table 7 shows the number of roles generated for different lengths of SoD con-
straints and different number of SoD constraints. We only show the results for
the SoD-aware role mining algorithm since for the post-processing approaches,
the roles are already generated by the chosen unconstrained role mining algo-
rithm and the number of roles is not changed by either 2-2 post-processing or
t-t post-processing algorithms. From the table, it is also observed that, SoD-
aware role mining generates more number of roles compared to unconstrained
role mining using the MBC approach. This is because, extra roles are created
by Algorithm 5 called from Step 8 of Algorithm 4, which in turn, is called from
Step 8 of Algorithm 3, to avoid the three cases (Cases 1–3) as explained in
Sub-sect. 3.3. Further, there is a significant dependency of the number of roles
in the SoD-aware role mining algorithm on the length of the SoD.

By comparing results across the three tables (Tables 5, 6 and 7), one can
conclude that the three approaches have their own strengths and shortcomings.
While SoD-aware role mining generates more number of roles, it significantly
outperforms t-t post-processing in terms of the number of generated SMER
constraints, especially when the lengths of the given SoD constraints are short.
Execution time for the SoD-aware role mining algorithm is also comparable with
t-t post-processing when lengths of SoD constraints are less, and is significantly
less when the SoD constraints are longer (except for the APJ and Customer
data sets). The number of SMER constraints for 2-2 post-processing approach is
much higher compared to SoD-aware role mining. Further, the post-processing
approaches often end up in situations where certain constraints are not enforce-
able, which is their main drawback.

5 Related Work

Role mining is the problem of decomposing a given UPA into UA and PA matri-
ces while optimizing a metric like the number of roles (often called the Basic
Role Mining Problem - RMP). Vaidya et al. [4] formally define basic RMP and
introduce two different variations of basic RMP, namely δ − approx RMP and
MinNoise RMP. They proved all the problems to be NP-Complete. An approach
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called Largest Uncovered Tile Mining (LUTM) was proposed in [4] to find roles
by mapping RMP to the database tiling problem. Two algorithms named as
CompleteMiner and FastMiner were proposed in [10] of which CompleteMiner
uses subset enumeration to find interesting roles. As subset enumeration takes
exponential time, FastMiner is used to reduce the time complexity by finding the
intersection for every pair of users. Lu et al. [5] present a unified framework for
modeling the optimal binary matrix decomposition problem using binary inte-
ger programming. Zhang et al. [3] use the permission assignment relation PA to
obtain an optimal role hierarchy graph. It uses the initial PA and reduces the
number of roles by identifying pairs of roles such that merging and splitting this
pair results in a least cost graph. The work in [8] maps the basic role mining
problem to the minimum biclique cover finding problem for bipartite graphs.

Some of the cardinality constraints considered during role mining include
restricting the number of permissions to a user and the number of permissions
to a role. Kumar et al. [9] propose the Constrained Role Miner Algorithm (CRM),
which limits the number of permissions that can belong to a role. John et al.
[6], propose two alternative approaches for restricting the number of roles for
a user. One is the RPA (Role Priority based Approach), which prioritizes roles
based on number of permissions and then limits the number of roles assigned
to a user, and the other is the CPA (Coverage of Permissions based Approach),
which chooses roles by iteratively picking the role having the largest number
of permissions that are yet uncovered for that user. Harika et al. [14] impose
role-usage cardinality and permission-distribution cardinality constraints in both
concurrent and post-processing frameworks. Role-usage cardinality constraint
limits the maximum number of roles a user can have and permission-distribution
cardinality constraint limits the maximum number of roles a permission can
belong to.

Another important constraint is Separation of Duty (SoD), which is used in
computer security to prevent fraud. Li et al. [7] introduce how SoD constraints
can be implemented in RBAC. It is equivalent to a post-processing approach to
role mining under SoD constraints, which generates a set of SMER constraints
from a set of SoDs and a given PA matrix such that the SMER constraints enforce
the SoD constraints. Lu et al. [11] propose Extended Boolean Matrix Decompo-
sition (EBMD), which extends BMD [5] by allowing negative authorizations for
implementing SoD constraints to solve the constraint-aware role mining prob-
lem. The work presented in the current paper is the first ever attempt to do role
mining in the presence of SoD constraints that generates SMER constraints.

6 Conclusion and Future Directions

We have proposed a number of alternative approaches for role mining in the
presence of separation of duty constraints. Besides generating the UA and PA
matrices from a given UPA matrix as done in any unconstrained role mining
algorithm, we also derive a set of SMER constraints that enforce the given set
of SoD constraints. After suggesting a näıve way of handling the problem using
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an existing algorithm, we have introduced three new methods. Two of these
generate the SMER constraints from an initial unconstrained decomposition of
the UA matrix using any existing role mining algorithm. The third approach
considers the SoDs at the time of role mining and the roles are formed in such a
way that enforceable SMERs can be easily generated from the set of mined roles.
We have evaluated the proposed algorithms on several real world data sets and
compared their performance in terms of the number of SMERs, number of roles,
as well as their execution time. The experiments show that the näıve approach
is not at all scalable and does not work for many data sets. On the other hand,
the proposed approaches were able to handle all of the standard real datasets
used to evaluate role mining and are quite scalable.

In the future, we plan to consider generation of t-t SMER constraints while
doing role mining. Additionally, in this paper we restricted our attention to min-
imizing the number of roles. In the future, we plan to consider different metrics
such as the number of SMER constraints, sum of roles and SMER constraints,
Weighted Structural Complexity (WSC) [13], etc.
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