
Asynchronous Error-Decodable Secret-Sharing
and Its Application

Ashish Choudhury(B)

International Institute of Information Technology, Bangalore, India
ashish.choudhury@iiitb.ac.in

Abstract. In this paper, we study error-decodable secret-sharing
schemes against general adversaries in the asynchronous communication
setting. Previously, such schemes were designed in the synchronous com-
munication setting. As an application of our scheme, we present the first
single round asynchronous perfectly-secure message transmission proto-
col against general adversaries.

1 Introduction

Secret sharing [Sha79,Bla79] is one of the fundamental problems in distributed
cryptography. In its simplest form, it allows a special party D called dealer to
share a secret among a set P = {P1, . . . , Pn} of n parties. The sharing is done
in such a way that certain designated subsets of parties called access sets can
reconstruct the secret by pooling their shares; on the other hand, subsets of
parties which does not constitute an access set get no information about the
shared secret. The latter condition holds even if the parties in the non-access
sets are computationally unbounded. The set of access sets and non-access sets
are represented by Σ and Γ respectively; these sets are called access structure and
adversary structure respectively. It is assumed that there exists a computationally
unbounded adversary A, who selects a set from Γ for corruption and passively
corrupts the parties in that set.

Error-decodable secret-sharing (EDSS) is a special type of secret sharing,
which allows robust reconstruction of the secret, even in the presence of a mali-
cious A. More specifically, it ensures that the honest parties reconstruct the
correct secret even if the corrupted parties produce incorrect shares during the
reconstruction process. Such schemes are more practically relevant because in
practice it is a very strong assumption that adversary will do only passive cor-
ruption. A popular adversary structure which is widely studied in the literature
is the threshold adversary structure, where it is assumed that A can corrupt at
most t parties out of the n parties; for such an A, the set Γ is the set of all
possible

(
n
t

)
subsets of t parties. It is well known that EDSS against a threshold

adversary is possible if and only if t < n/3 [MS81].
A non-threshold adversary is a generalization of threshold adversary, where

Γ consists of subsets of arbitrary size. The motivation for studying non-threshold
adversaries is that in certain scenarios, threshold adversaries may be un-realistic.
c© Springer International Publishing Switzerland 2015
S. Jajodia and C. Mazumdar (Eds.): ICISS 2015, LNCS 9478, pp. 364–377, 2015.
DOI: 10.1007/978-3-319-26961-0 22

Asynchronous Error-Decodable Secret-Sharing and Its Application 365

For example, certain computer viruses, such as the ILOVEYOU [Mis00] virus and
the Internet virus/worm [ER89] spreads only to Windows and Unix respectively.
An attacker who can exploit a weakness in one platform, can with al most the
same ease attack many computers, if not all, on that same platform. Such a
scenario is more naturally captured by a non-threshold adversary instead of a
threshold adversary.

EDSS against non-threshold adversaries are first studied in [Kur11], where
it is shown that EDSS is possible if and only if P satisfies Q(3) condition with
respect to Γ (see Definition 4); informally this means that the union of every
three sets from Γ is a proper subset1 of P. The sufficiency is shown by designing
an efficient EDSS scheme for Q(3) adversary structures, whose complexity is
polynomial in n and the size of the underlying monotone span program (MSP)
realizing Γ (see the next section for the definition of MSP).

Our Motivation and Results: All the results discussed above are in the syn-
chronous communication setting, where it is assumed that the parties are syn-
chronized via a global clock and hence there exists strict upper bound on message
delays. Unfortunately, real-world networks like the Internet does not provide such
synchronization and the messages can be arbitrarily delayed. Motivated by this,
[BCG93] introduced the asynchronous communication setting, where the mes-
sages can be arbitrarily delayed. Compared to the protocols in the synchronous
setting, asynchronous protocol are highly complex. This stems from the fact that
in a completely asynchronous protocol, it is impossible to distinguish between a
slow but honest sender, whose messages are delayed arbitrarily and a corrupted
sender, who does not send any message at all. As a result, at any stage of the
protocol, no party can afford to listen from all the n parties, as this may turn
out to be endless. Hence as soon as a party receives communication from “suf-
ficient” number of parties2, it has to proceed to the next stage, ignoring the
communication from the rest of the parties. However, the ignored parties may
be potentially honest parties.

Even though the asynchronous communication model is practically relevant,
to the best of our knowledge nothing is known in the literature about EDSS in
the asynchronous setting. Motivated by this, in this work we initiate the study of
asynchronous EDSS (AEDSS). Specifically, we design an AEDSS scheme for Q(3)

adversary structures. The scheme is obtained by modifying the EDSS scheme
of [Kur11] to adapt it to the asynchronous setting. Interestingly, the adaptation
is not straight forward and requires the parties to iteratively perform certain
steps in an “online” fashion upon the disclosure of every share, to deal with the
asynchronous nature of the communication (more on this later).

EDSS is very closely related to one round perfectly-secure message trans-
mission (PSMT) [Kur11]. On a high level, a PSMT protocol allows a distrib-
uted sender and a receiver to carry out reliable and secure communication
1 Note that this is a generalization of the condition t < n/3 for the threshold setting.
2 For example, in the threshold setting, a party has to proceed to the next step after

listening from n − t parties, as t corrupted parties may decide not to send any
communication.

366 A. Choudhury

over n channels, some of which may be under the control of a computation-
ally unbounded malicious adversary [DDWY93]. Given an EDSS scheme, one
can easily design a one round PSMT protocol. As an application of our AEDSS,
we present the first one round asynchronous PSMT (APSMT) protocol toler-
ating a generalized adversary. This significantly improves upon the previous
best APSMT protocol against non-threshold adversary [SKR02], which requires
O(|A|) rounds of interaction between the sender and the receiver; here |A|
denotes the cardinality of the set of channels corrupted by the adversary in
the protocol.

Overview of Our AEDSS: We follow [Kur11] and first design a weaker prim-
itive called weak secret sharing (WSS). Informally a WSS scheme is similar to
EDSS, where sharing is done with respect to a designated party, say Pi, who is
given the shared secret as well as the randomness used to compute the shares of
the secret. The reconstruction protocol is now invoked by this designated Pi, who
publicly reveals the assigned secret and the randomness, which is then compared
with the shares disclosed by the individual share holders. If Pi is honest, then it
correctly discloses the secret and the randomness. And this will be “consistent”
with the individual shares of all but the parties belonging to an access set. Based
on this observation, the parties can accordingly decide to accept or reject the
secret disclosed by the designated Pi. It is ensured that a secret is accepted if
and only if the secret (and the associated randomness) are revealed correctly by
the designated Pi [Kur11]. Given a WSS scheme, [Kur11] designed their EDSS
as follows: the dealer first computes the shares of the secret and the shares are
distributed to the respective share holders. In addition, each individual share is
further shared via WSS, where the randomness used for WSS is assigned to the
corresponding share holder. Later during the reconstruction phase, each share
holder reveals its share via the reconstruction algorithm of the WSS. The prop-
erties of WSS ensure that only the correctly revealed shares are accepted, which
ensures robust reconstruction.

To design our AEDSS, we first extend the WSS of [Kur11] to the asynchro-
nous setting. Here we need to deal with two issues due to the asynchronous
nature of the communication. First, the designated Pi with respect to which
WSS is executed may not invoke the reconstruction algorithm if Pi is corrupted.
As a result, the reconstruction protocol of WSS may not terminate for a cor-
rupted Pi. Second, even if the designated Pi invokes the reconstruction protocol
by revealing the secret and the randomness, the individual shares of the share
holders will be revealed asynchronously and hence may not be available simul-
taneously. As a result, each time a new share is revealed, the parties need to
verify the consistency of the revealed secret and the corresponding shares in an
online fashion. So unlike the synchronous setting, the reconstruction protocol
of the asynchronous WSS will no longer be a single step process, but rather an
iterative process. Once we have an asynchronous WSS, we obtain AEDSS as
follows: the dealer first computes the shares of the secret and each share is fur-
ther shared via our AWSS. During the reconstruction phase, each share holder
reveals its share by executing the reconstruction protocol of the AWSS. However

Asynchronous Error-Decodable Secret-Sharing and Its Application 367

due to the asynchronous nature of the communication, the parties cannot afford
to terminate the reconstruction of all the AWSS instances. Hence as soon as the
parties terminate the AWSS instances of a set of parties belonging to an access
set, they reconstruct the secret by using the shares revealed in those instances.

2 Preliminaries

We assume a set P = {P1, . . . , Pn} of n parties and an external dealer D �∈ P.
The parties are connected by pair-wise private and authentic channels. There
exists a finite field F and all computation are assumed to be performed over F.
We denote by S the set of all possible secrets that can be shared. The distrust
among the parties is modeled by a centralized adversary A, who can corrupt a
subset of parties from P. The set of potential subsets of corruptible parties is
denoted by an adversary structure Γ , where Γ ⊆ 2P . Adversary A is assumed
to be static, who decides the subset of parties to corrupt at the beginning of the
execution of a protocol; the corrupted subset is one of the elements of Γ . The
adversary is computationally unbounded and can force the corrupted parties to
deviate from the protocol instructions in any arbitrary fashion. The dealer D is
always assumed to be honest. Let Σ = Γ c, where Γ c denotes the complement
of Γ ; we call the set Σ access structure and the elements in Σ are called access
sets. We next define secret-sharing scheme.

Secret-Sharing Scheme: In a secret-sharing scheme, D has a secret which it
wants to share among P. The sharing needs to be done in a way that the parties
in any access set can reconstruct the secret by combining their shares, while the
parties in any set belonging to the adversary structure gets no information about
the secret. More formally:

Definition 1 (Secret-Sharing Scheme [Kur11]). Asecret-sharing scheme over
the adversary structure Γ and access structure Σ = Γ c is a pair of algorithms
(Sh,Rec) where:

– (Share1, . . . ,Sharen) ← Sh(s, r): the sharing algorithm Sh takes the secret s to
be shared along with some randomness r and computes the shares Share1, . . . ,
Sharen, with Sharei designated for the party Pi, for i = 1, . . . , n.

– Rec is the reconstruction algorithm such that:

Rec(A,ShareA) =
{

s, if A ∈ Σ
⊥, if A ∈ Γ

where ShareA = {Sharei|Pi ∈ A}.
– The following holds:

H(S|SHAREA) =
{

0, if A ∈ Σ
H(S), if A ∈ Γ

where H is the entropy function [CT06], S is a random variable induced by s
and SHAREA is a random variable induced by ShareA.

We next define monotone access structures.

368 A. Choudhury

Definition 2 (Monotone Access Structure). An access structure Σ is called
monotone provided the following holds:

if A ∈ Σ and A′ ⊇ A, then A′ ∈ Σ.

In [CDM00] it is shown how to design a secret-sharing scheme for any given
monotone access structure Σ using monotone span programs (MSP); we briefly
recall the same in the sequel.

Linear Secret-Sharing Scheme (LSSS) and MSP [CDM00]: On a very high
level, an MSP M is an � × d matrix over F, with � ≥ d and � ≥ n, where

M =

⎛

⎜
⎝

m1

...
m�

⎞

⎟
⎠.

There exists a labeling function ψ : {1, . . . , �} → P and we say row j is associated
with party Pi if ψ(j) = Pi. For a subset of parties A ⊆ P, let MA be the sub-
matrix of M consisting of the rows mi such that ψ(i) ∈ A. Matrix M has the
property that A is an access set if and only if the vector (1, 0, . . . , 0) is in the
linear span of MA. Given such an M , an LSSS can be designed as follows:

Algorithm Sh: To share a secret s ∈ F, the dealer D does the following:

– Select a random vector r ∈ F
d−1 and compute a vector

v = M ×
(

s
r

)

where v = (v1, . . . , v�)T .
– Let LSSS(s, r)

def
= (Share1, . . . ,Sharen), where Sharei = {vj |ψ(j) = Pi}.

Dealer D gives Sharei to party Pi for i = 1, . . . , n.

Algorithm Rec: Let A ∈ Σ be an access set. To reconstruct s, the parties in A
do the following:

– Let μA be a row vector such that μA ·MA = (1, 0, . . . , 0); such a μA is bound to
exist as (1, 0, . . . , 0) is in the linear span of MA. Given such a μA, the parties
in A reconstruct s by computing:

s = μA · ShareA, where ShareA = {Sharei|Pi ∈ A}.

We say that the above (M,ψ) is an MSP which realizes3 Γ . In [CDM00] it is
shown how to design an MSP realizing any monotone access structure. More-
over, it is also shown that the above pair of algorithms (Sh,Rec) indeed constitute
a valid secret-sharing scheme.
3 Readers familiar with the classical (n, t) Shamir secret-sharing scheme [Sha79] can

see that M for the Shamir’s scheme is the n × (t + 1) Vandermonde matrix. The
vector (s, r)T constitutes the coefficients of the sharing polynomial of degree at
most t, with s as the constant term. The reconstruction vector µA consists of the
Lagrange’s reconstruction coefficients.

Asynchronous Error-Decodable Secret-Sharing and Its Application 369

In our protocols, we use the following metric to check the locations at which
two vectors of shares match.

Definition 3. Let Share = (Share1, . . . ,Sharen) and Share� = (Share�
1, . . . ,

Share�
n) be two vectors of shares, where Sharei,Share

�
i are associated with party

Pi, for i = 1, . . . , n. Then Match(Share,Share�)
def
= {Pi|Sharei = Share�

i }.
In our protocol, we will use the following property of LSSS, which simply follows
from the property of MSP that the shares of the parties in an access set uniquely
determine the shared secret.

Lemma 1 ([CDM00,Kur11]). Let Share and Share� be two vectors of shares,
where Share = LSSS(s, r),Share� = LSSS(s�, r�) and Σ is the underlying access
structure. If Match(Share,Share�) ∈ Σ, then s = s�.

In our protocols, we often require to verify whether a given set of parties A is
an access set. This can be done in time polynomial in the size of the underlying
MSP by verifying whether the row vector (1, 0, . . . , 0) is in the linear span of
MA. We next present the following definition of Q(k) condition from [HM97].

Definition 4 (Q(k) Condition [HM97]). Let S ⊆ P be a set and Γ be an
adversary structure over P. We say that S satisfies Q(k) condition with respect
to Γ if there exists no k sets B1, . . . ,Bk ∈ Γ , such that S ⊆ B1 ∪ . . . ∪ Bk.

Finally we note that like the standard secret-sharing schemes, we assume a fixed
set of n parties. However it is well known in the literature how to deal with
situations where the set of parties changes dynamically (see for example [NS13]);
similar techniques are applicable even against generalized adversary.

2.1 The Asynchronous Model and Definitions

Our protocols are designed in the asynchronous communication setting, where
there exists no global clock and the channels between the parties have arbitrary
delays; thus there are no strict upper bounds within which messages reach to
their destinations. The only guarantee in this model is that the messages sent by
the honest parties will eventually reach to their destinations. The order of the
message delivery is decided by a scheduler. To model the worst case scenario, we
assume that the scheduler is under the control of the adversary. The scheduler
can only schedule the messages exchanged between the honest parties, without
having access to the “contents” of these messages. We consider a protocol exe-
cution in the asynchronous setting as a sequence of atomic steps, where a single
party is active in each such step. A party is activated when it receives a message.
On receiving a message, it performs an internal computation and then possibly
sends messages on its outgoing channels. The order of the atomic steps are con-
trolled by the scheduler. At the beginning of the computation, each party will be
in a special start state. A party is said to terminate/complete the computation if
it reaches a halt state, after which it does not perform any further computation.
A protocol execution is said to be complete if all the honest parties terminate

370 A. Choudhury

the computation. For an excellent introduction to the asynchronous protocols,
see [Can95].

We next define asynchronous error-decodable secret-sharing scheme (AEDSS).
Informally such a scheme consists of two protocols, a sharing protocol and a
reconstruction protocol. The sharing protocol allows the dealer D to share a
secret among P. The reconstruction protocol allows the parties to reconstruct
the shared secret, even if the corrupted parties provide incorrect shares. Both
the protocols terminate for the honest parties. Formally:

Definition 5 (AEDSS). Let (AEDSS-Sh,AEDSS-Rec) be a pair of asynchro-
nous protocols for the dealer D and the set of parties P. Dealer D has a private
input s ∈ F for the protocol AEDSS-Sh, which it wants to share among P. Then
(AEDSS-Sh,AEDSS-Rec) is called an AEDS scheme for the adversary structure
Γ if the following are satisfied for every possible A:

– Termination. Every honest party eventually terminates AEDSS-Sh,
AEDSS-Rec.

– Correctness. Every honest party upon terminating AEDSS-Rec outputs s.
– Privacy. No information about s is revealed to A during AEDSS-Sh.

To design our AEDSS, we actually require a weaker primitive called asynchro-
nous weak secret-sharing (AWSS). Like AEDSS, an AWSS scheme also consists
of a sharing protocol and a reconstruction protocol. During the sharing protocol,
D shares a secret s among P; additionally the secret s is also handed over to
a designated party Pi ∈ P. The reconstruction protocol allows Pi to reveal s
to a designated party PR ∈ P. The sharing protocol always terminate for the
honest parties. But the reconstruction protocol need not always terminate for
Pi and PR; however it always terminates if Pi and PR are honest. Moreover, it
is required that if an honest PR terminates the reconstruction protocol, then the
reconstructed value is the same as distributed by D to Pi. More formally:

Definition 6 (AWSS). Let (AWSS-Sh,AWSS-Rec) be a pair of asynchronous
protocols for a pair of designated parties Pi, PR ∈ P, the dealer D and the set of
parties P. Dealer D has a private input s ∈ F for the protocol AWSS-Sh, which
it wants to give to Pi and share it among P. Party Pi has a private input s� for
AWSS-Rec, which it wants to reveal to party PR. Then (AWSS-Sh,AWSS-Rec)
is called an AWSS scheme for the adversary structure Γ if the following are
satisfied for every possible A:

– Termination. All the following should be satisfied:
• Every honest party eventually terminates AWSS-Sh.
• Every honest party in P \{Pi, PR} eventually terminates AWSS-Rec. More-

over, if Pi and PR are honest then they also eventually terminate AWSS-Rec.
– Correctness. The following holds:

• If Pi is honest then it obtains s at the end of AWSS-Sh.
• If PR is honest and terminates AWSS-Rec, then s� = s.

– Privacy. If Pi is honest then no information about s is revealed during
AWSS-Sh.
• If PR is honest then no information about s is revealed during AWSS-Rec.

Asynchronous Error-Decodable Secret-Sharing and Its Application 371

3 Asynchronous Weak Secret-Sharing Scheme (AWSS)

Let P satisfies Q(3) condition with respect to Γ . We present an AWSS scheme for
Γ . The AWSS scheme consisting of protocols AWSS-Sh (for the sharing phase)
and AWSS-Rec (for the reconstruction of the secret by a designated party) is
presented in Fig. 1. Protocol AWSS-Sh is straight forward: let (M,ψ) be an MSP
realizing Γ , where M is of size � × d. The dealer then computes the shares
according to the LSSS and distributes it among the parties. In addition, the
secret along with the randomness used in the LSSS are handed to the designated
party Pi. The protocol eventually terminates for every honest party.

During AWSS-Rec, party Pi first reveals the secret along with the randomness
to the designated party PR. Hence the participation of Pi is very crucial for the
termination of AWSS-Rec; a corrupted Pi may choose not to participate in the
protocol, in which case the protocol does not terminate for PR. Independently,
every party hands over their shares to PR. Party PR on receiving the secret
and randomness from Pi, itself computes the shares of all the parties according
to the LSSS. It then matches these shares with the ones it received from the
corresponding parties. The comparison is performed till the matching occurs for
all but a set of parties belonging to the adversary structure. This ensures that
the matching occurs for a set of parties satisfying Q(2) condition. Note that the
shares of the parties reach asynchronously to PR. Hence PR needs to perform the
comparison every time it receives a new share. The idea here is that the set of
honest parties in P satisfy Q(2) condition and their shares will eventually reach
to PR. Moreover, if Pi is honest, it correctly reveals the secret and randomness
to PR; so eventually the shares sent by the honest parties will match with the
corresponding shares, computed by PR itself from the revealed secret and the
randomness. On the other hand, if Pi is corrupted and the matched set satisfies
Q(2) condition, then also it is ensured that Pi has revealed the correct secret.
This is because among these matched set of parties, the set of honest parties will
constitute an access set, whose shares uniquely determine the original secret.

The properties of AWSS-Sh and AWSS-Rec are stated in Theorem 1.

Theorem 1. Let A be an adversary specified by an adversary structure Γ over P,
such that P satisfies Q(3) condition with respect to Γ . Then (AWSS-Sh,AWSS-Rec)
constitutes a valid AWSS scheme for Γ . Protocol AWSS-Sh runs in time polynomial
in |S| and �. Protocol AWSS-Rec runs in time polynomial in |S|, � and n.

Proof (Termination). Since D is honest, protocol AWSS-Sh eventually termi-
nates for every honest party. During AWSS-Rec, every honest party in the set
P\{Pi, PR} terminates after sending its share to PR. Next we consider an honest
Pi and PR. If Pi is honest, then PR eventually receives (s, r) from Pi. Moreover,
the set of honest parties in P satisfies Q(2) condition with respect to Γ . Fur-
thermore, the shares of each honest party eventually reaches PR. Given this, it
is easy to see that PR eventually finds that the set P \ Match(Y,Y′) ∈ Γ and
terminates.

372 A. Choudhury

Fig. 1. Asynchronous weak secret-sharing scheme

Correctness. We have to consider an honest PR. Since PR terminates, it implies
that P \ Match(Y,Y′) ∈ Γ . This further implies that Match(Y,Y′) satis-
fies Q(2) condition with respect to Γ . If not, then the set Match(Y,Y′) ∪ P \
Match(Y,Y′) = P fails to satisfy Q(3) condition, which is a contradiction. Let
PR receives (s�, r�) from Pi, implying Y = LSSS(s�, r�). Note that if Pi is honest
then (s�, r�) = (s, r). Let Com = Match(Y,Y′) and let Com-Hon be the set of
honest parties in the set Com. It is easy to see that Com-Hon is an access set, as
otherwise this will contradict the fact that Com satisfies Q(2). Now this implies
that LSSS(s, r) and LSSS(s�, r�) are the same, with respect to the parties in
Com-Hon. This from Lemma 1 implies that s� = s.

Privacy. During AWSS-Sh, the dealer D just distributes the shares computed
according to LSSS and there is no interaction among the parties. So it follows
from the properties of LSSS that if Pi is honest, then no information about s is

Asynchronous Error-Decodable Secret-Sharing and Its Application 373

revealed to A. During AWSS-Rec, all the shares are sent only to PR, along with
(s, r). So if PR is honest, then the privacy of s is preserved.

Efficiency. During AWSS-Sh, computing the shares costs time polynomial in |S|
and � for D. During AWSS-Rec, party PR has to verify if the set P\Match(Y,Y′)
∈ Γ ; moreover this verification may need to be performed n times in the worst
case. So overall this costs time polynomial in n and � for PR. �

4 Asynchronous Error-Decodable Secret-Sharing Scheme
(AEDSS)

Let P satisfy Q(3) condition with respect to Γ and let (M,ψ) be an MSP realizing
Γ , where M is of size � × d; we present an AEDSS tolerating A. Note that
P satisfying Q(3) is a necessary condition for the existence of EDSS even in
the synchronous communication setting. So obviously it is necessary even for
AEDSS. The AEDSS scheme consisting of protocols AEDSS-Sh (for the sharing
phase) and AEDSS-Rec (for the public reconstruction of the secret) is presented
in Fig. 2. For simplicity and without loss of generality, we assume that � = n
and ψ(i) = i for i = 1, . . . , n.

During AEDSS-Sh, the dealer first computes the shares of the secret according
to the LSSS and distributes the shares among the parties. In addition, for each
share, it executes an instance of AWSS-Sh to further share the share; as a result,
each party will have a share of each share. The protocol eventually terminates
for the honest parties. During AEDSS-Rec, each share holder Pj executes an
instance AWSS-Recji of AWSS-Rec to reveal its share to every other party Pi.
Party Pi waits to terminate AWSS-Rec instances corresponding to the parties in
an access set. Once it terminates those many instances, it reconstructs the secret
using the shares revealed at the end of those instances. The idea here is that
the instances AWSS-Recji executed by each honest Pj eventually terminates for
each honest Pi and the set of honest parties constitute an access set. Moreover,
for every instance AWSS-Recji terminated by Pi, the share revealed by Pj is the
same as distributed by the dealer; this is true even if Pj is corrupted (follows
from the properties of AWSS-Rec). So every honest Pi eventually terminates the
protocol with the correct secret.

The properties of AEDSS-Sh and AEDSS-Rec are stated in Theorem 2.

Theorem 2. Let A be an adversary specified by an adversary structure Γ over
P, such that P satisfies Q(3) condition with respect to Γ . Then (AEDSS-Sh,
AEDSS-Rec) constitutes a valid AEDSS for Γ . Both protocols run in time poly-
nomial in |S|, n and �.

Proof (Termination). SinceD is honest, the instancesAWSS-Sh1, . . . ,AWSS-Shn

eventually terminates for every honest party and so every honest party eventually
terminates AEDSS-Sh. We next claim that AEDSS-Rec also terminates eventually
for every honest party Pi. This follows from the fact that theAWSS-Recji instances
invoked by honest parties Pj corresponding to Pi eventually terminates (follows
from Theorem 1) and the set of honest parties constitutes an access set.

374 A. Choudhury

Fig. 2. Asynchronous error-decodable secret-sharing scheme

Correctness. Let Pi be an honest party. For correctness, we need to argue
that if Pj ∈ Ci then Sharej obtained at the end of the instance AWSS-Recji is
indeed correct. However, this follows from the correctness property of AWSS-Rec
(follows from Theorem 1).

Privacy. During AEDSS-Sh, the adversary gets no information about the shares
of the honest parties, as they are shared via AWSS; this follows from the privacy
property of AWSS. Given this, it is easy to see that s remains private during
AEDSS-Sh.

Efficiency. In the protocol, n instances ofAWSS-Sh and n2 instances ofAWSS-Rec
are executed. It now follows easily that both AEDSS-Sh and AEDSS-Rec runs in
time polynomial in |S|, n and �. �

Asynchronous Error-Decodable Secret-Sharing and Its Application 375

Notation 1. In the next section, while using AEDSS-Sh and AEDSS-Rec we will
use the following notation:

– AEDSS-Sh(s, r) = (Ŝhare1, . . . , Ŝharen): this denotes D executing AEDSS-Sh
with secret s and randomness r and computing all the information to be dis-
tributed among the parties. Here Ŝharej denotes all the information distributed
by D to the party Pj. Thus Ŝharej = (Sharej , rj , {Shareij}n

i=1).
– AEDSS-Reci(·) = s: this denotes party Pi reconstructing s by executing its part

of the code of AEDSS-Rec(s). This is an online process, where Pi asynchro-
nously receives information from various parties and performs computation
on them, till it receives sufficient information to reconstruct s.

5 Application of AEDSS to Asynchronous
Perfectly-Secure Message Transmission (APSMT)

In the model of perfectly-secure message transmission (PSMT), there exists a
sender S and a receiver R connected by n channels W = {w1, . . . , wn}, some
of which may be under the control of a computationally unbounded malicious
adversary A. There exists a message m ∈ F, which S wants to reliably and
privately communicate to R over the n channels, even in the presence of the
adversary. In [SKR02], asynchronous PSMT (APSMT) is studied in the pres-
ence of a non-threshold adversary. In the asynchronous model, the channels are
not synchronized and there can be arbitrary delays; the only guarantee is that
information sent over honest channels reach to their destination eventually. The
non-threshold adversary is characterized by an adversary structure Γ over W,
which denotes the set of possible subsets of channels which can be potentially
corrupted by A; during the execution of a protocol, adversary can select any
subset of channels from Γ for corruption. In [SKR02] it is shown that APSMT
tolerating A is possible if and only if W satisfies Q(3) condition with respect
to Γ . To prove the sufficiency of the Q(3) condition, they presented a protocol,
which requires O(|A|) rounds of interaction between S and R, where |A| denotes
the cardinality of the set of channels corrupted by A in the protocol. We present
an APSMT protocol, which requires only one round of interaction between S
and R, thus significantly improving the protocol of [SKR02].

Our APSMT protocol called APSMT (see Fig. 3) is adapted from our AEDSS,
where S plays the role of the dealer and W is treated as P, with wi playing the
“role” of party Pi. Specifically, S considers m as the secret to be shared among
P and computes the information to be distributed among the parties as part
of AEDSS-Sh; the information that needs to be given to party Pi is sent over
the channel wi. Receiver R asynchronously receives information over the channels
and recovers m by executing the steps of AEDSS-Rec that an honest party would
have executed to recover m.

The properties of APSMT are stated in Theorem 3, which simply follow from
the protocol steps and the properties of AEDSS-Sh,AEDSS-Rec.

376 A. Choudhury

Fig. 3. Single round APSMT protocol

Theorem 3. Let A be an adversary specified by an adversary structure Γ over W,
such that W satisfies Q(3) condition with respect to Γ . Then APSMT constitutes a
valid APSMT protocol. Protocol APSMT runs in polynomial time in |M|, � and n,
where M is the set of all possible messages that can be communicated.

6 Open Problems

Our AEDSS requires computation time polynomial in the size of the underlying
MSP. In the worst case, the underlying MSP may be exponential in n. On the
other hand, certain access structures like the threshold access structures have
very efficient MSP and hence error-decoding mechanism, requiring computation
time polynomial only in n. It is a very interesting open problem to design AEDSS
for arbitrary access structures with running time polynomial in n.

Acknowledgement. The author would like to thank the anonymous referees for their
useful feedback.

References

[BCG93] Ben-Or, M., Canetti, R., Goldreich, O.: Asynchronous secure computation.
In: STOC, pp. 52–61. ACM (1993)

[Bla79] Blakley, G.R.: Safeguarding cryptographic keys. In: AFIPS National Com-
puter Conference, pp. 313–317 (1979)

[Can95] Canetti, R.: Studies in secure multiparty computation and applications.
Ph.D. thesis, Weizmann Institute, Israel (1995)

[CDM00] Cramer, R., Damg̊ard, I.B., Maurer, U.M.: General secure multi-party
computation from any linear secret-sharing scheme. In: Preneel, B. (ed.)
EUROCRYPT 2000. LNCS, vol. 1807, pp. 316–334. Springer, Heidelberg
(2000)

[CT06] Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn.
Wiley, New York (2006)

Asynchronous Error-Decodable Secret-Sharing and Its Application 377

[DDWY93] Dolev, D., Dwork, C., Waarts, O., Yung, M.: Perfectly secure message
transmission. J. ACM 40(1), 17–47 (1993)

[ER89] Eichin, M.W., Rochlis, J.A.: With microscope and tweezers: an analysis
of the internet virus of November 1988. In: IEEE Symposium on Security
and Privacy, pp. 326–343. IEEE Computer Society (1989)

[HM97] Hirt, M., Maurer, U.M.: Complete characterization of adversaries tolerable
in secure multi-party computation (extended abstract). In: PODC, pp. 25–
34. ACM (1997)

[Kur11] Kurosawa, K.: General error decodable secret sharing scheme and its appli-
cation. IEEE Trans. Inf. Theory 57(9), 6304–6309 (2011)

[Mis00] Computer bug bites hard, spreads fast [online] (2000). http://www.cnn.
com/2000/TECH/computing/05/04/iloveyou.01/index.html

[MS81] McEliece, R.J., Sarwate, D.V.: On sharing secrets and reed-solomon codes.
Commun. ACM 24(9), 583–584 (1981)

[NS13] Nojoumian, M., Stinson, D.R.: On dealer-free dynamic threshold schemes.
Adv. Math. Commun. 7(1), 39–56 (2013)

[Sha79] Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
[SKR02] Srinathan, K., Kumar, M.V.N.A., Pandu Rangan, C.: Asynchronous secure

communication tolerating mixed adversaries. In: Zheng, Y. (ed.) ASI-
ACRYPT 2002. LNCS, vol. 2501, pp. 224–242. Springer, Heidelberg (2002)

http://www.cnn.com/2000/TECH/computing/05/04/iloveyou.01/index.html
http://www.cnn.com/2000/TECH/computing/05/04/iloveyou.01/index.html

	Asynchronous Error-Decodable Secret-Sharing and Its Application
	1 Introduction
	2 Preliminaries
	2.1 The Asynchronous Model and Definitions

	3 Asynchronous Weak Secret-Sharing Scheme (AWSS)
	4 Asynchronous Error-Decodable Secret-Sharing Scheme (AEDSS)
	5 Application of AEDSS to Asynchronous Perfectly-Secure Message Transmission (APSMT)
	6 Open Problems
	References

