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General Chairs’ Message

We are indeed delighted and honored to be associated with the 11th International
Conference on Information Systems Security (ICISS 2015), held during December
16–20, 2015, at Jadavpur University, Kolkata. Since its inception in 2005, the
decade-long perseverance and dedication of information security researchers in India
and the consistent support of friends and well-wishers, like Prof. Sushil Jajodia and
other experts from different countries, have contributed to the acceptance of this
conference as a major venue to exchange ideas in the frontier areas of information
systems security.

After the successful completion of the 10th edition of the conference in 2014 at
Hyderabad, when it was decided that a team of young researchers from Jadavpur
University would take the lead to bring the conference back to its birthplace, we were
sure that the event would take place again without any glitch. The Program Committee
under the stewardship of Prof. Sushil Jajodia and Prof. Chandan Mazumdar was
quickly formed and the committee took steps to attract contributions from across the
globe and to get the papers reviewed by experts within the stipulated period. We extend
our sincere thanks to the program chairs, the members of the Program Committee, and
the reviewers, without whose help the excellent technical program for this conference
would not have been completed.

We are indebted to Profs. Pierangela Samarati, Stefano Paraboschi, Vincenzo Piuri,
and Vinod Ganapathy, who kindly accepted our invitation to share their experience and
to deliver the keynote lectures. It is heartening to note that the invited speakers also
contributed to the volume with their research papers. The conference included tutorial
sessions on different aspects of information security with participation from academia
and industry. We are grateful to the tutorial speakers. The participants definitely
benefitted from their lectures. We are thankful to Prof. Sarmistha Neogy for organizing
such lively tutorial sessions.

The Publicity Chairs Sara Foresti and Manoj S. Gaur contributed significantly in
promoting the conference to the information security community across the globe. The
Organizing Committee led by Mridul Sankar Barik and Sanjoy K. Saha along with
Finance Chairs Anirban Bhaduri and Anirban Sengupta ensured that different events
of the conference were adequately handled. We take this opportunity to record our
appreciation for their effort. We would also like to thank the sponsors for their
contributions.

December 2015 Arun Kumar Majumdar
Aditya Bagchi



Preface

This volume contains the papers presented at the 11th International Conference on
Information Systems Security (ICISS 2015), held December 16–20, 2015, in Kolkata.
The conference initiated in 2005 to cater to cyber security research in India successfully
entered its 11th edition and has been providing an attractive international forum on
information system security for academics, industry, business, and government.

This year, the conference attracted 133 submissions from 17 countries. Given the
high quality of the submissions, the Program Committee (PC) accepted 24 full papers
and eight short papers after a rigorous review process with multiple reviews for each
paper. We thank all the expert reviewers for their invaluable support. We are grateful to
the PC members who put in enormous efforts in reviewing and selecting the papers.
Without the untiring efforts of the PC members/reviewers and the contributions of the
authors of 133 papers, the conference would not have been possible.

The entire process of submission, refereeing, e-meetings of the PC for selecting the
papers, and compiling the proceedings was done through the EasyChair system.
Thanks go to the architects of EasyChair for providing a highly configurable confer-
ence management system.

One of the hallmarks of the ICISS conference series is the high quality of
plenary/invited presentations. This year we were fortunate to have four eminent
speakers give invited presentations: Pierangela Samarati (University of Milan), Stefano
Paraboschi (University of Bergamo), Vincenzo Piuri (University of Milan), and Vinod
Ganpathy (Rutgers University). It is indeed a great pleasure for us to thank the invited
speakers who agreed to present at the conference coming from far-off places in
mid-December. All of the invited speakers have also contributed to the volume by
providing their papers. We are grateful to them for their time and efforts.

Owing to the keen interest in information system security, the conference also
included several tutorials on various topics in cyber security and also short talks to
facilitate discussion on emerging topics.

We thank all the members of the Organizing Committee for making all the
arrangements for the conference. We are grateful to Jadavpur University for all the
support provided for running the conference. In particular, Dr. Anirban Sengupta
helped us at key points including the maintenance of the conference website.

Last but not least, thanks go to Alfred Hofmann from Springer for readily agreeing
to publish the proceedings in the LNCS series. Thanks go to his team and in particular
Anna Kramer for preparing the proceedings meticulously and in time for the
conference.

December 2015 Sushil Jajodia
Chandan Mazumdar
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Data Security Issues in Cloud Scenarios

Sabrina De Capitani di Vimercati, Sara Foresti, and Pierangela Samarati(B)

Computer Science Department, Università degli Studi di Milano, 26013 Crema, Italy
{sabrina.decapitanidivimercati,sara.foresti,pierangela.samarati}@unimi.it

Abstract. The amount of data created, stored, and processed has
enormously increased in the last years. Today, millions of devices are
connected to the Internet and generate a huge amount of (personal)
data that need to be stored and processed using scalable, efficient, and
reliable computing infrastructures. Cloud computing technology can be
used to respond to these needs. Although cloud computing brings many
benefits to users and companies, security concerns about the cloud still
represent the major impediment for its wide adoption.

We briefly survey the main challenges related to the storage and
processing of data in the cloud. In particular, we focus on the problem
of protecting data in storage, supporting fine-grained access, selectively
sharing data, protecting query privacy, and verifying the integrity of
computations.

1 Introduction

The wide use and advancements of Information and Communication Technolo-
gies (ICTs) have profoundly changed our lives. The proliferation of any kind of
smart devices that can easily connect to the Internet together with the availabil-
ity of (almost free) wireless connections anywhere have led to a more distributed
computing environment, which is expected to grow in the near future. In this
context, modern applications and services provide increase user functionality
with support of advanced user’s authentication and identity protection [4,27,37].
At the same time, however a huge amount of data is generated, collected, and
processed, which introduces the need of developing scalable, efficient, and reli-
able computing infrastructures. Cloud computing is a collection of technologies
and services that provides an answer to these needs, making virtually unlimited
storage space and computing power available at affordable prices. Users and
companies can therefore store their data at external cloud providers, access reli-
able and efficient services provided by third parties, and use computing power
available in multiple locations across the network. Although the use of cloud
computing has clear economic advantages, the collection, storage, processing,
and sharing of (often personal) data in the cloud pose several security concerns
(e.g., [3,25,32–35,43,44]). In particular, when data are moved to the cloud, the
data owner loses control over them and often even knows neither the location
where the data are stored nor the organizations responsible for their manage-
ment.
c© Springer International Publishing Switzerland 2015
S. Jajodia and C. Mazumdar (Eds.): ICISS 2015, LNCS 9478, pp. 3–10, 2015.
DOI: 10.1007/978-3-319-26961-0 1



4 S. De Capitani di Vimercati et al.

It is important to observe that the protection of data is a key aspect not
only for the success of today’s cloud infrastructures but also for the proper
development of applications in emerging areas such as Internet of Things and
Big Data analytics, which are characterized by huge amounts of data that need
to be shared and processed by different parties. In addition to data privacy,
another important concern is the security and privacy of the data processing
that may involve different parties with the need of sharing information and per-
forming distributed computations. Ensuring that the data processing is carried
out securely is a significant challenge. The goal of this paper is to provide an
overview of the data protection challenges that need to be addressed when using
the cloud to store and process data, and to illustrate existing proposals address-
ing them. In particular, we focus on the problem of protecting data in storage
while supporting fine-grained access, selectively sharing data among different
users/data owners, supporting query privacy, and verifying the integrity of data
computations.

2 Protection of Data in Storage and Fine-Grained Access

A well-known problem that characterizes the use of a cloud infrastructure is the
loss of control over data. A data owner storing her data in the cloud often knows
neither where her data are stored nor the organizations involved in their man-
agement. Encryption services are therefore at the basis of current solutions for
protecting the confidentiality and integrity of the data from malicious users and
from the providers themselves (e.g., [7,25,43]). Encryption can be applied both
at the server side or at the owner side. In the first case, data owners have full trust
in the cloud provider managing their data (e.g., Google Cloud Storage, iCloud),
which has full access to their data, and can enjoy full functionality. In the sec-
ond case, the data are encrypted before outsourcing them to a cloud provider
(e.g., Boxcryptor, SpiderOak), and data owners can enjoy protection but lim-
ited functionality. In fact, the cloud provider cannot access the data it stores in
plaintext, and hence cannot directly evaluate queries or execute computations,
because they would require operating on encrypted data. Current approaches
enabling the execution of queries on encrypted data are based on: the use of
specific cryptographic techniques supporting keyword-based searches (e.g., [8]);
homomorphic encryption supporting any operation but with high performance
overhead (e.g., [29]); different layers of encryption each supporting specific oper-
ations [40]; or indexes, that is, metadata attached to the data and used for
fine-grained information retrieval and execution of specific queries, depending
on the kind of index (e.g., [9,31,46]).

Although all these approaches provide the capability of evaluating queries
on encrypted data, they make query evaluation more expensive or not always
possible. To avoid this problem, alternative solutions to encryption use data
fragmentation to protect data confidentiality. Data fragmentation is based on the
observation that often data are not sensitive per se but the association among
data is sensitive and needs to be protected. For instance, while a list of names
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and a list of illnesses are not sensitive, the association of each name in the first
list with a illness in the second list needs to be kept confidential. In this case,
encrypting both names and illnesses may not be necessary. Data fragmentation
comes at this point: the use of encryption is limited or avoided by splitting
data in different fragments (e.g., [1,10–12,15]). Fragments are computed in such
a way that sensitive associations, called confidentiality constraints, are broken.
To guarantee that sensitive associations cannot be reconstructed, fragments are
designed in such a way to guarantee their unlinkability or are stored at different
cloud providers.

Besides protecting data confidentiality and integrity, attention has been also
dedicated to solutions aimed at proving to remote parties that the management
of data by a cloud provider complies with the service level agreement, guaran-
teeing their availability (e.g., [6,36]).

3 Selective Information Sharing

The proposals aimed at protecting the confidentiality of the data in the cloud
are typically based on the implicit assumption that any authorized user can
access the whole data content. This assumption, however, is in contrast with the
nature of today’s open and dynamic scenarios, where different users might need
to have different views on the outsourced data (e.g., [2,18]). Since neither the
cloud provider storing the data nor the data owner can enforce the access control
policy for confidentiality and efficiency reasons, respectively, existing solutions
are based on the use of attribute-based encryption (ABE) and selective encryp-
tion techniques. ABE is a public-key encryption schema that regulates access to
resources on the basis of policies defined on descriptive attributes associated with
users [30,48]. ABE-based approaches have been recently widely investigated, and
several solutions have been proposed for improving the support of policy updates
(e.g., [28,42]). Selective encryption is based on the idea that different resources
are encrypted with different keys and that a key derivation strategy (e.g., [5]),
which relies on the definition of a key derivation hierarchy , is adopted to trans-
late read access privileges into the ability of users to derive the encryption keys
used to protect the data they are authorized to access [19,20]. To easily support
changes to the access control policy on a resource (i.e., grant/revoke opera-
tions) without downloading the resource, decrypting it, changing the key deriva-
tion hierarchy, and re-encrypting the resource with the new key, two layers of
encryption (each characterized by its own encryption policy) are used. One layer
is managed by the data owner, while the other is managed directly by the cloud
provider and access to data is granted to users who know the encryption keys of
both the layers. Therefore, the management of grant and revoke operations can
be partially delegated to the cloud provider storing the data.

Few works have also extended the selective encryption techniques to enforce
write privileges (e.g., [14,41,42]), to support the presence of multiple data owners
selectively sharing their data among each other (e.g., [17]), and to support the
release of data according to a subscription-based policy [13].
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4 Query Privacy

Several efforts have been dedicated to the development of efficient techniques
for protecting access confidentiality and pattern confidentiality . Access confiden-
tiality means that an observer (including the cloud provider storing the data)
should not be able to infer the target of an access singularly taken. Pattern confi-
dentiality means that an observer should not be able to infer whether the target
of two different accesses is the same. Private Information Retrieval (PIR) tech-
niques have been traditionally used to provide both these protection guarantees
but they are computationally expensive and operate on plaintext data, therefore
not protecting data confidentiality. Recent alternative solutions enhance existing
index structures (e.g., B+-trees and Oblivious RAM [9,26,49]) to protect confi-
dentiality of data, accesses, and patterns thereof. However, these solutions, while
more efficient than PIR approaches, cause an overhead in access times (either for
each access or when triggering expensive reordering of the underlying data struc-
ture), which make them not always applicable in real-life scenarios. Dynamically
allocated data structures (e.g., [22–24,45,51]) represent a different approach to
provide data, access, and pattern confidentiality, while guaranteeing a limited
overhead in query evaluation and supporting concurrent accesses to the data.
The basic idea of these solutions consists in moving the physical location where
data are stored after each access (without leaving traces of such reallocations)
so that an observer cannot make any inference on the data accessed.

5 Integrity of Computations

When data are elaborated by cloud providers that are not fully trustworthy,
there is the problem of verifying the integrity of such a computation, that is,
verifying whether the result is correct , complete, and fresh. A result is: cor-
rect if the computation involves only genuine data; complete if the computation
has been performed on the whole data collection and includes all resources sat-
isfying the computation; fresh if the computation has been performed on the
most recent version of the data. At a high level, existing solutions addressing
this problem can be divided into two main classes: deterministic and probabilis-
tic. Deterministic approaches are based on the definition of authenticated data
structures, which are structures built over specific attributes (e.g., Merkle hash
trees or signature chaining schemas [38,39]). A user submits a query to a cloud
provider that executes it and returns the query result along with the informa-
tion necessary for the user to verify the correctness and completeness of the
query result. Such an information, called verification object , is computed with
the help of an authenticated data structure. These techniques provide determin-
istic integrity guarantees but only for queries with conditions on the attribute(s)
on which the data structure has been built. Probabilistic approaches comple-
ment the data with fictitious information or checks whose absence in a query
result signals an integrity violation (e.g., [21,47,50]). Probabilistic approaches
can detect an integrity violation for any query but with only probabilistic guar-
antees. This means that while the absence of the expected fictitious information
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implies an integrity violation, their presence does not provide full guarantees of
the integrity of the query result (the cloud provider might have just not missed
the fictitious information inserted by the data owner). The possible presence of
multiple providers in the computation complicates the scenario and requires the
use of additional controls (e.g., [16]).

6 Conclusions

The adoption of cloud technologies to store and process huge amount of data,
while bringing many benefits, also introduces novel security risks on the data.
In this paper, we described challenges related to the management of data in the
cloud, and described current solutions.
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Abstract. Automated Border Control (ABC) systems automatically
verify the travelers’ identity using their biometric information, without
the need of a manual check, by comparing the data stored in the elec-
tronic document (e.g., the e-Passport) with a live sample captured dur-
ing the crossing of the border. In this paper, the hardware and software
components of the biometric systems used in ABC systems are described,
along with the latest challenges and research trends.

1 Introduction

The number of travelers in the world is constantly increasing [12] and Inter-
national Border Crossing Points (BCP) are required to increase the passenger
throughput, without sacrificing security or comfort. In this context, Automated
Border Control (ABC) and surveillance systems can be deployed for an auto-
matic, secure, fast, and user-friendly crossing procedure [5,50,51,60].

ABC systems, or e-Gates, typically include three steps: (i) the document
(e.g., the e-Passport) is checked for authenticity; (ii) the identity of the traveler
is verified based on his biometric traits; (iii) the validity of the traveler autho-
rization (e.g., the visa) is checked. Face and fingerprint recognition techniques
are used in most of the e-Gates, with some systems using also the iris. If the
biometric recognition is not successful, a manual check of the traveler identity is
performed [23].

Three types of automated border crossing procedures are possible: (i) one-
step process; (ii) integrated two-step process; (iii) segregated two-step process
[50]. In a one-step process, the document, the identity, and the authorization are
verified at the same time, inside the e-Gate. In an integrated two-step process,
the validity of the document is checked before letting the traveler go inside the
e-Gate for the identity verification and for checking his travel authorization. In a
segregated two-step process, the validity of the document and the travel autho-
rization can be checked also at a different time and place of the border crossing.

In order to perform the required steps, four subsystems are used: (i) the Docu-
ment Authentication System (DAS), which checks the validity of the

c© Springer International Publishing Switzerland 2015
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document; (ii) the Biometric Verification System (BVS), which captures live
biometric samples and compares them with the ones contained in the document;
(iii) the Central Systems Interface (CSI), which handles communication with
external systems; (iv) the Border Guard Maintenance System (BGMS), which
is used by the officers to monitor the ABC system.

In order to check if the traveler is authorized for passage across the border,
the ABC system checks with three external systems: (i) the Visa Management
Systems (VMS), which contains the visa information [46]; (ii) the Registered
Traveler Program (RTP), which contains the personal and biometric data of
frequent travelers who voluntarily enrolled in the program; (iii) the Entry-Exit
Management Systems (EEMS), which contains the information about which bor-
ders the travelers cross, in order to detect overstayers, illegal immigration, and
collect statistical information. In particular, the EU is proposing to officially
adopt the RTP and EES in the ABC systems [2,3,44,45].

2 Biometric Verification in ABC Systems

This section describes the biometric verification procedures using the face, the
fingerprint, and the iris, which are the biometric traits used in ABC systems, as
recommended by the ICAO [61]:

– Face recognition is the primary biometric trait adopted in e-Gates [61], since
it is socially accepted, non-intrusive, and does not require special training.
The biometric face verification consists of six steps: (i) the system chooses the
camera position based on the traveler’s height; (ii) information is displayed
to instruct the traveler about how to position its head; (iii) illumination is
automatically adjusted based on environmental lights; (iv) the face image is
captured; (v) a quality assessment module is used to determine if the image
complies with the ISO recommendations [61,64]; (vi) the matching between
the live image and the sample in the document is performed.

– Fingerprint recognition is an optional biometric technology in e-Passports and
e-Gates [61], features high recognition performances and good social accep-
tance, and is widely adopted. The biometric fingerprint verification consists
of four steps: (i) information is displayed to instruct the traveler about how
to position the finger on the sensor; (ii) the fingerprint image is captured;
(iii) a quality assessment module is used to determine if the image meets the
required ISO recommendations [63]; (iv) the matching between the live image
and the sample contained in the document/database is performed. Minutiae-
based matching algorithms are the most widespread [55,58,67,72]. Moreover,
second generation European e-Passports store both face and fingerprint traits,
which can be combined to increase the recognition accuracy [4,22,74].

– Iris recognition is optional in e-Gates [61] and, while featuring very high recog-
nition performances, is intrusive and has limited social acceptance, and for
these reasons is not widely adopted. The biometric iris verification consists of
four steps: (i) information is displayed to instruct the traveler about where
to place his head near the camera; (ii) a near-infrared light pulse is used to
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illuminate the eye, as well as control the gaze direction and the dilation of
the pupil; (iii) the iris image is captured; (iv) the live image and the sample
contained in the document/database are matched.

3 Challenges

The most important challenges in the design of ABC systems regard the devel-
opment of better anti-spoofing techniques, compatibility between systems, scal-
ability of biometric systems, and methods for allowing the use of the e-Gates
also to people with reduced mobility and visual impairments. Moreover, other
challenges regard the capture of higher quality face and fingerprint images, and
the design of less-intrusive iris biometric recognition technologies:

– Better anti-spoofing techniques, in particular liveness-based methods, are
important to avoid cheating attempts that use, for example, printed face
images [69], fake fingers made with silicone [68], or synthetic irises [14]. Recent
projects studied enhanced anti-spoofing techniques for biometric systems [1],
however the data about impostors trying to gain authorized access in e-Gates
are not publicly available.

– Compatibility between systems should be realized by adopting a common bio-
metric data format [63–65], in order to facilitate the adoption of ABC systems.
The type of data exchanged (sample or template) must be chosen according
to bandwidth and privacy requirements [7,8,11,16,17,20,21,40,79]. Moreover,
a common standard for cryptographic interoperability could help the wide-
spread adoption of security and privacy protection techniques [40].

– Scalable biometric systems must be designed, so that ABC systems are able
to work efficiently on a large scale [56,57].

– The design for people with reduced mobility and visual impairments could
help people in a wheelchair, with muscular dystrophy, or with walking aids
in accessing the e-Gate and interacting with the biometric sensors. Similarly,
it could help visually impaired people when they can not see the information
displayed to instruct them about the correct procedures.

– Higher quality face images greatly increase the recognition performances, but
require the users to stand looking directly in front of the camera, which must
be placed at the correct height. Moreover, the illumination must be uniform
and able to compensate for environmental variations [78].

– Higher quality fingerprint images also increase the performance of fingerprint
recognition technologies, and can be obtained by enhancing both the usability
of the system and the algorithms for the quality estimation [24,28,38], without
increasing the acquisition time.

– Less-intrusive iris recognition techniques could help in extending the field of
use iris-based systems, since they are currently the most accurate, but have
high costs and intrusiveness. At the moment, iris recognition systems are not
considered in e-Passports [71] and require additional systems for their use.



14 R.D. Labati et al.

4 Research Trends

The most promising research trends in the design of innovative ABC systems
regard the use of multibiometrics and less-constrained recognition:

– Multibiometrics can increase biometric recognition accuracy, usability, and
robustness to spoofing attacks, by combining multiple biometric sources [74,
80]. Several studies demonstrate the increase of accuracy fusing face and fin-
gerprint biometrics [77], also in the case of ABC systems [22,62]. Moreover,
the non-universality or low discriminative power of some biometric traits (e.g.,
soft biometrics) can be compensated by fusing multiple traits [6,15,52–54,66],
which can then be used in automated border control and surveillance [73].
However, multibiometric systems are bigger, more complex, and handle more
sensitive data, thus requiring more robust data protection schemes [18,19].

– Less-constrained recognition could increase the usability and social acceptance
of biometric systems [70]. In fact, since they allow a touchless recognition, it
would be possible to perform the biometric verification at higher distances,
with natural light conditions, and while the traveler is moving, by using the
fingerprint [25,26,29,30,32–35,39,41], the palm [59], or the iris [27,37,42,70,
75,76]. A study showed that touchless fingerprint technologies would be pre-
ferred over touch-based systems [35], thus allowing for an increased confi-
dence and adoption of biometric recognition [43]. Moreover, less-constrained
biometric recognition techniques using innovative traits are being researched
[13,31,36], and the advances in three-dimensional reconstruction techniques
[9,10,47–49] could allow the use of three-dimensional modeling methods for
accurate, less-constrained biometric systems [34,35,59,81].

5 Conclusions

The paper presented the biometric technologies adopted in ABC systems for the
traveler’s recognition, with a particular focus on the systems based on the face,
the fingerprint, and the iris.

Moreover, the challenges of biometric systems in the context of ABC systems
were discussed, with specific attention to their usability and to anti-spoofing
techniques. The current issues of face, fingerprint, and iris recognition systems
were also presented.

Lastly, the paper introduced the most promising research trends for a more
accurate, usable, and socially accepted biometric recognition for travelers in ABC
systems, with a specific focus on multibiometrics and less-constrained systems.
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Università degli Studi di Bergamo, Bergamo, Italy
{parabosc,enrico.bacis,simone.mutti}@unibg.it

Abstract. Solutions like SELinux have recently regenerated interest
toward Mandatory Access Control (MAC) models. The role of MAC mod-
els can be expected to increase in modern systems, which are exposed to
significant threats and manage high-value resources, due to the stronger
protection they are able to offer. Android is a significant representative of
these novel systems and the integration of MAC models is an important
recent development in its security architecture. Opportunities indeed exist
to further enrich the support offered by MAC models, increasing their flex-
ibility and integrating them with other components of the system. We dis-
cuss a number of proposals that have recently been made in this domain.

First, we illustrate the integration of SELinux and SQLite, named
SeSQLite, which permits to apply MAC permissions at a fine granularity
into relational databases, offering both a schema-level and row-level sup-
port. Then, AppPolicyModules are presented, which let app developers
specify extensions to the system-level policy that protect the resources
of each specific app. Finally, an integration between SELinux and the
interprocess communication services is proposed, to further regulate the
cooperation among separate apps and services. All these enhancements
lead to a stronger and more detailed support of the complex security
requirements that characterize modern environments.

1 Introduction

A clear long-term trend in computer security is the increasing complexity
of the systems that have to be controlled, with a significant increase in terms
of the attack surface, resource value, and complexity of user needs. In terms of
the attack surface, larger software stacks and the presence of pervasive network
connections increase the exposure of a system and the number of components
whose failure may lead to a compromise of a system. The growth in resource
value derives from the adoption of computer systems to support most activities.
The wider impact of IT solutions also leads to the need to offer access to a
larger number of users, each with the need to operate over a specific fraction of
the system resources. In many domains the use of computers would indeed be
even stronger in the absence of security worries. It can be argued that security
management is a bottleneck to the development of modern information systems.
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The construction of systems able to offer adequate protection has to consider
a large variety of aspects [1,5,11]. At a high-level, it is necessary that components
of IT systems are built using a security-by-design approach, giving to security
the role of critical requirement considered in the first phases of the project. Each
of the elements, at every level of the architecture, has then to provide robust
behavior. An element that is perceived to increase in importance is the use
of modern access control models and policy languages. These classical security
tools require to be extended in order to meet the stringent requirements of novel
applications.

The Android operating system is a representative example of modern com-
puter systems, with novel challenges and the need to extend current security
techniques and models. Android has become the most widely deployed operat-
ing system, with an impact on a variety of application domains (smartphones,
embedded devices, domotics, automotive, etc.). In this paper we mostly refer to
the use of Android in the smartphone domain, but the other domains can also
benefit from the enhancements that we propose.

Android has to face an extensive collection of security challenges. One of the
most visible threats in Android is represented by the installation of potentially
malicious apps. Much of the utility of a smartphone derives form its ability to
execute apps that suit specific user needs. Apps can be retrieved from monitored
markets, like Google’s Play Store, or from user-chosen repositories, which may
host malicious apps. The risk associated with user-chosen repositories is far
greater, but the design of Android has to assume that users will be able and will
install potentially malicious apps. The goal is then to reduce the damage that a
malicious app can do to the system. The problem can be considered a variant of
classical multi-user operating systems, where users are assumed to potentially
misbehave and access control aims at restricting the damage potential. Indeed,
in Android each app is associated in the Linux kernel with a specific uid and
gid, adapting to apps the Discretionary Access Control (DAC) services of Linux
that were originally designed to support multiple users. At the file system level,
each app is then able to label its files with acls that will be consistent with the
protection needs of each app.

The DAC model alone is insufficient to deal with the security challenges
Android has to face. An important recent evolution in Android is the develop-
ment of SEAndroid, which integrates SELinux into the design of the operat-
ing system [15]. SELinux implements a type-based Mandatory Access Control
(MAC) model in Linux. The advantages of MAC models are particularly ben-
eficial to Android. The presence of SELinux offers a strictly enforced central
policy, able to limit the power (and abuses) of privileges. The availability of
SELinux permits Android to better support the security principle of “isolation”,
containing the installed apps within a restricted space and limiting their ability
to compromise system resources.

SEAndroid already provides significant benefits, but we see additional oppor-
tunities to extend its use in Android. The paper summarizes a few recent advances
in this domain that could lead to an increase in the security of the system. A first
aspect is the inability of the SQLite database to support fine granularity in the
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access to resources. An effort has been directed to the integration in SQLite of
the support for MAC labels, allowing a table-level and row-level enforcement of
access restrictions on the content of the database. Another research line con-
siders the introduction of the ability of apps to be protected by SELinux. The
current architecture mainly uses SELinux to protect system resources from the
vulnerabilities and misbehaviors of system components and apps. Apps that are
not considered part of the core system are all contained together in a single
untrusted app domain. An app interested in getting protection cannot receive
support from the MAC system. Developers of apps that process sensitive data
may instead be interested in getting this protection. To allow app developers to
specify ad-hoc policies for their apps requires to satisfy several critical require-
ments, with a need for the correct management of policy modules that goes
beyond what current systems provide. The proposal of AppPolicyModules wants
to provide a mechanism that lets apps to be enriched with an ad-hoc MAC pol-
icy for their resources, with guarantees about the fact that this addition to the
policy is not going to weaken the system MAC policy. The availability of this
technology also opens the door to the realization of a more robust support of
Android permissions.

2 Overall Android Architecture

The Android architecture is composed by three layers (see Fig. 1): (a) a Linux
kernel (b) a middleware framework and (c) an application layer. The first layer
(i.e., the Linux kernel) provides low-level services and device drivers to other
layers and differs from a traditional Linux kernel. The Android team has taken
the Linux kernel code and modified it to run in an embedded environment, thus
it does not have all the features of a traditional Linux distribution.The second
layer is composed by native Android libraries, runtime modules (e.g., Dalvik
Virtual Machine) and an application framework.

The third layer is composed by applications. They can be divided into two
categories (i) core applications (e.g., browser, dialer phone) installed by default
and (ii) common applications, written in Java, installed by the user. Each appli-
cation is composed by different app components. There are four different types
of app components: (a) Activities, typically each screen shown to a user is rep-
resented by a single Activity component (b) Services, provide the background
functionalities (c) Content Providers used to share data among applications and
(d) Broadcast Receivers used to receive event notifications both from the system
and from other applications.

2.1 Android Security Architecture

Android provides a permission mechanism that enforces restrictions on the spe-
cific operations that a particular process can perform. Basically, by default, an
application has no permissions to perform any operation (e.g., reading or writ-
ing the user’s private data, keep the device awake, performing network access).
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Fig. 1. Android Architecture overview.

Furthermore, Android isolates applications from each other, with a sandbox. The
sandbox mechanism relies on the use of certificates. All Android applications
must be signed with a certificate whose private key is held by their developer
and is a prerequisite for inclusion into the official Android Market. The purpose
of certificates in Android is twofold: (a) to distinguish application authors; and
(b) to grant or deny access to signature-level permissions.

Android assigns a unique user id (UID) and a group id (GID) to each app.
Each installed application has a set of data structures and files that are associated
with its UID and GID. Only the application itself and the superuser (i.e., root)
have the permissions to access these structures and files.

2.2 SELinux

SELinux originally started as the Flux Advanced Security Kernel (FLASK) [7]
developed by the Utah University Flux team and the US Department of Defense.
The development was enhanced by the NSA and released as open source software.
SELinux policies are expressed at the level of security context (also known as
security label or just label). SELinux requires a security context to be associated
with every process (or subject) and resource (or object), which is used to decide
whether access is allowed or not as defined by the policy. Every request that a
process generates to access a resource will be accepted only if it is authorized by
both the classical DAC access control service and by the SELinux policy. The
advantages of SELinux compared to the DAC model are its flexibility (the design
of Linux assumes a root user that has full access to DAC-protected resources)
and the fact that process and resource labels can be assigned and updated in
a way that is specified at system level by the SELinux policy (in the DAC
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model, owners are able to fully control the resources). SELinux uses a closed
world assumption, so the policy has to explicitly define rules to allow a source
(the process) to perform a set of actions on a target (the resource). The rule
also specifies the class of target on which the rule has to be applied (e.g., file,
directory). An SELinux rule has the following syntax:

a l low sou r c e t t a r g e t t : c l a s s { a c t i on s } ;

3 SeSQLite

Android provides several ways to store apps data. For example, apps can store
text files both in their own files directory and in the phone SD card. Sometimes,
however, an app needs to be able to carry out complex operations on persistent
data, or the volume of data requires a more efficient method of management
than a flat text file. To this end Android provides a built-in SQLite database1.

SQLite is the most widely deployed in-process library that implements a SQL
database engine. It offers high storage efficiency and small memory footprint.
A SQLite database is represented by a single disk file and anyone who has
direct access to the file can read the whole database content. Usually, due to
the fact that SQLite has no separate server, the entire database engine library
is integrated into the application that needs to access a database. Furthermore,
SQLite does not provide any kind of access control mechanism, it only provides
a few proprietary extensions (e.g., database encryption).

Modern DBMSs provide their own authorization mechanisms [4,6], with a
corresponding set of SQL constructs, which permit access control at the level of
tables, columns or views. DBMSs use a permission model that is similar to, but
separate from, the underlying operating system permissions. Current information
systems often make a limited use of these database access control facilities and
tend to embed access control directly in the application program used to access
the database. This choice derives from the perceived difficulty in keeping the
database users aligned with the user population in the application, and from the
flexibility obtained in the construction of the application thanks to the absence
of access control restrictions to the database. (Our expectation is that this is
going to change, but it will take a long time.)

The integration of the MAC model, defined at the level of the operating
system, and the access control services, internal to the DBMS, promises to reduce
the above obstacles and lead to an increase in the security of the system. Such
integration would also provide system-wide consistency, because all the access
control decisions would be guaranteed to be compliant with the system-level
MAC policy. To realize such integration in Android it is necessary to extend
SQLite with the support for SELinux controls.

1 https://www.sqlite.org/.

https://www.sqlite.org/
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3.1 SQLite and Content Provider

In the Android platform, SQLite is used to store several types of information,
like contacts, SMS messages, and web browser bookmarks. In order to let an
app consume these types of information, Android provides specific components,
called Content Providers. The Content Providers are daemons that provide an
interface to the SQLite library, for sharing information with other applications.

Due to the fact that SQLite does not provide any security mechanism, access
control is embedded directly into the Content Provider used to access the data-
base. The Content Provider code that handles a query can explicitly call the
system’s permission validation mechanism, using the Android Permission Frame-
work, to require certain permissions.

Besides the Content Provider, at the Linux kernel level Android provides
both DAC and MAC access control [15]. Both DAC and MAC are designed
to provide protection against an attempt to directly access the database by a
process that is not the Content Provider.

3.2 SeSQLite Architecture

The file-level granularity provided by DAC is not sufficient if we want to provide
a fine grained access control over SQLite databases. To this end, we introduced
Security-Enhanced SQLite [10] (SeSQLite), which extends SQLite and integrates
it with SELinux in order to provide fine-grained mandatory access control. In
this way we can ensure that access control policies are consistently applied to
every user and every application.

The requirements leading the implementation of SeSQLite are the following:

R.1 - Backward Compatibility SeSQLite is designed to maintain backward-
compatibility with common SQLite databases (i.e., no modification to
the SQL syntax);

R.2 - Flexibility SeSQLite is designed to provide everything needed to success-
fully implement a Mandatory Access Control module, while imposing the
fewest possible changes to SQLite. Moreover, it is designed to be easily
adapted to different implementation of MAC (e.g., SELinux or SMACK
[14]);

R.3 - Performance SeSQLite must keep negligible the overhead on computa-
tional time and database size.

3.3 Access Control Granularity

In a SQLite database there are different types of SQL object, which can be
grouped in two granularity levels: the Schema Level and the Tuple Level. To
supply per-SQL object protection, SELinux requires that SQLite provides sup-
port for security labeling. However, a distinction among the approaches used
to manage schema and tuple object is needed, since schema and tuple objects
address different needs and belong to different logical models, as it will be pre-
sented in the following.
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Fig. 2. Example of an access policy defined on a database of contacts leveraging both
SeSQlite schema checks and tuple checks. An application that wants to issue a SELECT
query over the shadowed parts needs an additional privilege.

Schema Level. All SQL statements must be compiled before their execution.
In SQLite, the compilation process follows the sequence of steps below:

1. Syntax check;
2. Semantic check;
3. Expansion;
4. Code generation.

The output of the compilation process is a piece of program containing the
information about all the tables and attributes that have to be accessed.

Example 1. Consider the Address table in Fig. 2 and the following query:

SELECT Country, City, Street FROM Address WHERE Contact_ID=1;

The statement accesses four columns within the Address table. The Country,
City and Street attributes appear in the target list directly as a part of the query.
The Contact ID is used in the WHERE clause.

Using this information, SeSQLite introduces a schema check to control if the
query complies with the SELinux policy, i.e., the user can access all the tables
and columns specified in the query. An error is immediately raised if the user
does not have all the privileges needed to perform the query.

According to the example policy in Fig. 2, the check will raise an error if
the issuer is not granted the access privilege, since the user does not have the
privileges to select the attribute Street. The same approach can be applied to
INSERT, DELETE and UPDATE statements.

Row Level. At tuple level, the query is made to be always compliant with the
policy. In fact, tuple level access control operates as a filter that automatically
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excludes any unaccessible tuple from the loop that scans the tables. This allows
SeSQLite to process only the tuples that can be accessed by the user, according
to the action requested.

Query rewriting is the most common mechanism used to provide fine-grained
access control at tuple level because the modifications are internal to the data-
base and do not require any adaptation at application level. Essentially this can
be compared to automatically appending conditions to a SQL query’s WHERE
clause as it executes, and dynamically changing the result returned by the query.

Example 2. Consider the table Email address in Fig. 2 and the query:

SELECT Type, Email_address FROM Email WHERE Contact_ID=1;

Table 1. Result of the query in Example 2 without check tuple().

Type Email address

HOME alice@example.com

WORK alice@example.org

The output of the query is shown in Table 1. However, if we consider the
same query and we want to enforce that a user can select only non protected
tuples, with query rewriting the query becomes:

SELECT Type, Email_address FROM Email
WHERE Contact_ID=1 AND check_tuple();

The check tuple() function appends to the WHERE clause the predicate
responsible to perform the access control filter. The query output is presented
in Table 2.

Table 2. Result of the query in Example 2 with check tuple().

Type Email address

WORK alice@example.org

SeSQLite uses a modified version of traditional query-rewriting, with the
following traits:

1. Due to the fact that SQLite does not provide a multi-user database, the
decision to allow or deny the access to a SQL object depends on the policy
provided by the SELinux Security Server. This design provides a characteris-
tic feature called system-wide consistency in access control, which means that
SELinux provides all the access control decisions based on a single declarative
policy.
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2. In order to maintain a negligible overhead, SeSQLite uses two different query
rewriting approaches, based on the number of SELinux contexts used in the
database (the experimental results can be found in Table 3):
– The first approach is based on a custom SQL function, which checks for

each row if its security context can be seen by the issuer of the query.
This approach is selected when a substantial number of different SELinux
contexts is used in the database.

– The second approach is used when a limited number of SELinux contexts is
present in the database (the most common case). Before starting the table
scan, the visibility of all the contexts present in the database is computed
based on the issuer of the query. The ones that can be accessed are enclosed
in a SQL IN operator, so that only those tuples are accessed.

Table 3. Total CPU time and overhead for a suite of common operation in SeSQLite.

Time Overhead

SQLite 5.846 s −
SeSQLite (2 contexts) 6.132 s +4.8 %

SeSQLite (100 contexts) 6.741 s +15.3 %

SeSQLite (1000 contexts) 6.749 s +15.4 %

4 AppPolicyModules

SeSQLite assumes that different Android application use different SELinux con-
texts, so that it is possible to use this information in the access control checks.

Unfortunately, at the moment all the apps share a single SELinux context2:
untrusted app. We recently proposed the concept of AppPolicyModules (APMs)
[2], which aim at providing the full benefits given by the use of Mandatory Access
Control to third-party apps.

4.1 Providing Mandatory Access Control to Apps

APMs follow the principles of the Android security model, which aims at strength-
ening the boundaries among apps, introducing an additional mechanism to guar-
antee that apps are isolated and cannot manipulate the behavior of other apps.
The additional mechanism is obtained with an adaptation of the services of the
MAC model introduced by SELinux.

The introduction of APMs improves the definition and enforcement of the
security requirements associated with each app. However, apps become known

2 There is also the context google app used only for the apps signed by Google.
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to the system only when the user asks for their installation. For this reason, the
MAC policy has to be dynamic, with the ability to adapt to the installation and
deletion of apps. This requires modularity and the capability to incrementally
update the security policy, letting an app be able to specify the policy module
it is associated with. In this way app developers, who know the service provided
by the app and its source code, can benefit from the presence of a MAC model,
letting them define security policies that increase the protection the app can get
against attacks coming from other apps, which may try to manipulate the app
and exploit its vulnerabilities.

It is to note that many app developers will either be unfamiliar with the
SELinux syntax and semantics, or will not want to introduce strict security
boundaries to the app beyond those associated with untrusted app. However, we
observe that the app developers that can be expected to be most interested in
using the services of the MAC model are expert developers responsible for the
construction of critical apps (e.g., apps for secure encrypted communication, or
for key management, or for access to financial and banking services).

We consider here how it is possible to use APMs to enforce a stricter model
on the management of Android permissions, relying on the automatic generation
of APMs. If we consider the structure of the AndroidManifest.xml file provided
by each app, it already contains the definition of security requirements through
the use of the tag <use-permission>. For example, if an app developer wants
to write on the SD card, she has to explicitly request the associated Android
permissions (e.g., android.permission.WRITE EXTERNAL STORAGE), which
corresponds both to a set of concrete actions at the OS level and to a set of
SELinux rules.

The system already offers both a high-level and a low-level representation of
permissions, but they are not integrated. Furthermore, in the absence of policy
modularity, the apps are associated only with the untrusted app domain, which
is allowed to use the actions that correspond to the access to all the resources
that are invokable by apps, essentially using for protection only the functions of
Android permissions. The integration of security policies at different levels offers
a more robust enforcement of the app policy. This can be realized introducing a
mechanism that bridges the gap between different levels, through the analysis of
the high-level policy (i.e., the permissions asked by the app within the Android
Permission Framework) and the automatic generation of an APM that maps
those Android permissions to a corresponding collection of SELinux rules.

In general, with the availability of appPolicyModules, the system could evolve
from a scenario where each app is given at installation time access to the whole
untrusted app domain at the SELinux layer, to a scenario where each app is asso-
ciated with the portion of untrusted app domain that is really needed for its exe-
cution, with a better support of the classical “least-privilege” security principle.
It is to note that Android M provides the feature to drop Android permissions
at runtime. This confirms that APMs and more generally domain specialization
identify a concrete need and that Android is evolving in this direction.
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Example 3. Most mobile browsers (e.g., Chrome, Firefox) store confidential infor-
mation such as usernames and passwords in a SQLite database. Following Google’s
best practices for developing secure apps, the password database is saved in the
app data folder, which should be accessible only to the app itself. However, this is
not enough to protect the password database by other apps with root privileges.

The use of MAC support offers protection even against threats coming from
the system itself, like a malicious app that abuses root privileges. The app can
protect its resources from other apps, specifying its own types and defining in
a flexible way which system components may or may not access the domains
introduced by the APM.

Figure 3 shows an example where the untrusted app domain does not hold
any permission on the file labeled as password file, which is accessible only by
the browser1 domain.

It is to note that both browser1 and password file are typebounded (see [9]),
thus browser1 is not violating any restriction defined on the parent domain (i.e.,
untrusted app). Greater flexibility derives from the possibility to freely manage
privileges for internal types over internal resources, building a MAC model that
remains completely under the control of the app.

The management of policy modules provided by apps and integrated within
the system-level SELinux policy has to satisfy four crucial requirements.

Req1, No impact on the system policy: the app must not change the system
policy and only have an impact on processes and resources associated
with the app itself;

Req2, No escalation: the app cannot specify a policy that gives more privileges
than those given to untrusted app;

Req3, Flexible internal structure: the app can define and activate separate
domains, to limit potential vulnerabilities deriving from internal flaws,
adopting the principle of “least privilege” and fragmenting its structure
in a way that each component is only given the minimum amount of
privileges it needs to execute properly;

Req4, Protection from external threats: the app can protect its resources
from other apps, specifying its own types and then defining SELinux
restrictions on them.

We refer to [2] for an extensive discussion of these principles and their impact
on the realization of APMs.

5 SEIntentFirewall

In order to cross the process boundaries (i.e., inter-process communication) an
app can use a messaging object to request an action from another app or system
component. The messaging object is called Intent.
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browser1 password file

browser2 normal

browser2 incognito

history file

untrusted app app data file

Fig. 3. Isolation of two applications using typebounds.

5.1 Android Intents

Formally, Intents are asynchronous messages that allow application components
to request functionality from other Android components. This mechanism has
been denoted as Inter-Component Communication (ICC). Intents represent the
high-level Inter-process Communication (IPC) technique of Android, while the
underlying transport mechanism is called Binder.

Binder is a customized implementation of OpenBinder for Android. It has the
facility to provide bindings to functions and data from one execution environ-
ment to another. The OpenBinder implementation runs under Linux and extends
the existing IPC mechanisms. Android provides two types of intent:

Implicit intent: specifies the action that should be performed and optionally
the data for the action. If an implicit intent is used, Android searches for all
components that are registered for the specific action and the provided data
type;

Explicit intent: explicitly defines the component that should be called by the
Android system (i.e., using the Java class as identifier).

Intents can be used to: start Activities; start, stop, and bind Services; and,
broadcast information to Broadcast Receivers. All of these forms of communica-
tion can be used with either explicit or implicit Intents.

5.2 SEIntentFirewall Architecture

Unfortunately, Intent messages can be intercepted by a malicious app, as shown
in previous research [3,12,13], due to the fact that there is no guarantee that
the Intent will be received by the intended recipient, and launch a malicious
Activity in place of the intended Activity. To address this problem, Google has
introduced the Intent Firewall component since Android 4.3. As it is explicit
in the name, the Intent Firewall is a security mechanism that regulates the
exchange of Intents among apps.
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Fig. 4. Overview of the architecture used by SEIntentFirewall.

Although this approach provides several advantages in the protection against
Intent-based attacks, it introduces two major drawbacks. Firstly, the Intent Fire-
wall policy can be modified only by the root user (i.e., uid 0). Secondly, due to
the fact that the system has to manage a new policy language, it introduces
policy fragmentation.

SEIntentFirewall [8] is a built-in enhancement of IntentFirewall, providing
fine-grained Mandatory Access Control (MAC) for Intent objects (see Fig. 4).
This approach leads to a more powerful control on the communication among
apps. This aims at strengthening the barriers among apps, introducing an addi-
tional mechanism to guarantee that apps are isolated and cannot manipulate
the behavior of other apps.

The SELinux decision engine will then operate as the Policy Decision Point.
This choice offers a well-defined policy language and engine, leads to a simpler
and better structured code base, and minimizes the implementation effort. It

Fig. 5. A malign app is blocked in manifold ways thanks to the wide adoption of
SELinux. The SeSQLite database blocks the retrieval of sensitive data; SEIntentFire-
wall intercepts malicious Intents; the APM specifies which app has access to the pass-
word file, while the permission mapping strengthens the permission control.
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is to note that this design does not require to adapt apps source code. The
SEIntentFirewall will be obtained with an adaptation of the services provided
by APMs, discussed before [2]. This way, the security-demanding developers will
be able to embed their SEIntentFirewall rules jointly with the AppPolicyModule.

6 Conclusions

The paper reported on a number of interconnected investigations, all charac-
terized by the objective of extending the support of Mandatory Access Control
in Android. The integration of SELinux and SQLite extends the use of labels
to the database content, supporting the application of the system-level policy
to the structured data contained in the many existing databases. The support
for AppPolicyModules offers to app developers the opportunity to protect with
stronger guarantees their apps and data from vulnerabilities in other apps or
system components. The introduction of the SEIntentFirewall finally lets the
MAC model cover also the invocation of services.

As it is shown in Fig. 5, all these elements support each other and permit the
construction of a more robust operating environment, with the possibility to con-
trol the behavior of the system in different phases, all following the specifications
of a modular policy applied at every access request.
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Abstract. Modern cloud computing infrastructures use virtual machine
monitors (VMMs) that often include a large and complex administrative
domain with privileges to inspect client VM state. Attacks against or
misuse of the administrative domain can compromise client security and
privacy. Moreover, these VMMs provide clients inflexible control over
their own VMs, as a result of which clients have to rely on the cloud
provider to deploy useful services, such as VM introspection-based secu-
rity tools.

This paper discusses the self-service cloud computing (SSC) project
that addresses these two shortcomings. SSC splits administrative privi-
leges between a system-wide domain and per-client administrative
domains. Each client can manage and perform privileged system tasks
on its own VMs, thereby providing flexibility. The system-wide admin-
istrative domain cannot inspect the code, data or computation of client
VMs, thereby ensuring security and privacy. SSC also allows providers
and clients to establish mutually trusted services that can check regula-
tory compliance while respecting client privacy. We have used a prototype
implementation of SSC atop the Xen hypervisor to build user domains to
perform privileged tasks such as memory introspection, storage intrusion
detection, and anomaly detection.

1 Introduction

Over the last four years, the author has his collaborators have been working on
a project called Self-service Cloud Computing (SSC) [1–3]. SSC aims to improve
the state of client security on public cloud platforms. This paper discusses the
key ideas of SSC and reflects on some of the design decisions and implications
of SSC.

The SSC project begins with the observation that Modern cloud infrastruc-
tures rely on virtual machine monitors (VMMs) to flexibly administer and exe-
cute client virtual machines (VMs). VMMs implement a trusted computing base
(TCB) that virtualizes the underlying hardware (CPU, memory and I/O devices)
and manages VMs. In commodity VMMs, such as Xen and Hyper-V, the TCB
has two parts—the hypervisor and an administrative domain. The hypervisor
directly controls physical hardware and runs at the highest processor privilege
level. The administrative domain, henceforth called dom0, is a privileged VM
c© Springer International Publishing Switzerland 2015
S. Jajodia and C. Mazumdar (Eds.): ICISS 2015, LNCS 9478, pp. 36–57, 2015.
DOI: 10.1007/978-3-319-26961-0 4
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Fig. 1. The design of a Self-service Cloud (SSC) computing platform. SSC splits the
TCB of the system (indicated using the shaded components) into a system-level TCB,
with the hardware, the SSC hypervisor, and the domain builder, and a client-level
TCB, with the Udom0 and service domains.

that is used to control and monitor client VMs. Dom0 has privileges to start/stop
client VMs, change client VM configuration, monitor their physical resource uti-
lization, and perform I/O for virtualized devices.

Endowing dom0 with such privileges leads to two problems:

• Security and privacy of client VMs. Dom0 has the privilege to inspect the
state of client VMs, e.g., the contents of their vCPU registers and memory.
This privilege can be misused by attacks against the dom0 software stack
(e.g., because of vulnerabilities or misconfigurations) and malicious system
administrators. This is a realistic threat [4–10], since dom0 typically executes
a full-fledged operating system with supporting user-level utilities that can be
configured in complex ways.

• Inflexible control over client VMs. Virtualization has the potential to enable
novel services, such as security via VM introspection [11,12], migration [13]
and checkpointing. However, the adoption of such services in modern cloud
infrastructures relies heavily on the willingness of cloud service providers to
deploy them. Clients have little say in the deployment or configuration of
these services. It is also not clear that a “one size fits all” configuration of
these services will be acceptable to client VMs. For example, a simple cloud-
based security service that checks network packets for malicious content using
signatures will not be useful to a client VM that receives encrypted packets.
The client VM may require deeper introspection techniques (e.g., to detect
rootkits), which it cannot deploy on its own. Even if the cloud provider offers
such an introspection service, the client may be reluctant to use it because
dom0’s ability to inspect its VMs may compromise its privacy.

SSC aims to simultaneously address the problems of security/privacy and
inflexbile control by observing that both of the above problems are a direct conse-
quence of the way in which commodity hypervisors assign privilege to VMs. SSC
introduces a novel privilege model that reduces the power of the administrative
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domain and gives clients more flexible control over their own VMs. SSC’s privi-
lege model splits the responsibilities traditionally entrusted with dom0 between
a new system-wide administrative domain, called Sdom0, and per-user admin-
istrative domains, called Udom0s, service domains (SDs) and mutually-trusted
service domains (MTSDs).

Udom0 (User dom0) is a per-user administrative domain that can monitor
and control the set of VMs of a particular client. When a client attempts to
start a VM in SSC, it is assigned its own Udom0 domain. This domain creates
the user VMs that perform the actual work for the client (UdomUs). Udom0
can delegate its privileges to service domains (SDs), which are special-purpose
user domains that can perform privileged system services on UdomUs. Clients
can leverage SDs to implement services such as memory introspection to verify
VM integrity, intrusion detection, and storage encryption. In a traditional cloud,
these services would be implemented in dom0, and would have to be deployed
by the cloud provider. Thus, SSC allows clients to flexibly deploy new services
and control their own VMs using SDs.

Sdom0 (System dom0) is the system-wide administrative domain in SSC.
Sdom0 retains the privileges to start/stop Udom0 domains upon request by
clients, and to run drivers for virtualized devices. Sdom0 manages resources,
including scheduling time-slices and I/O quotas. SSC’s privilege model disallows
Sdom0 from inspecting the state of the client’s domains (Udom0s, SDs, and
UdomUs), thereby ensuring the security and privacy of client VMs.

Although this privilege model allows SSC to achieve our stated goals, in
practice, cloud providers typically require some ability to control client VMs for
regulatory compliance. For example, providers may wish to ensure that clients
are not misusing their cloud infrastructure to host malicious software [14]. To do
so, the cloud provider must have the ability to inspect client VMs, but this may
conflict with the client’s privacy goals. There is often such a tension between
the client’s privacy policies and the cloud provider’s need to retain control over
client VMs executing on its platform.

SSC resolves this tension by introducing mutually-trusted service domains
(MTSDs). The cloud provider and the client mutually agree upon policies and
mechanisms that the provider will use to control the client’s VMs. The cloud
provider implements its code in a MTSD, which runs similar to a SD, and can
therefore inspect a client’s VMs. Clients can leverage trusted computing tech-
nology [15–17] to verify that a MTSD only runs code that was mutually agreed-
upon with the cloud provider. Clients that have verified the trustworthiness of
the platform and the MTSD can rest assured their privacy will not be compro-
mised. Likewise, the cloud provider can ensure liveness of MTSDs for regulatory
compliance.

Figure 1 depicts the design of SSC. We use the term meta-domain to refer
to the collection of a client’s domains (Udom0, UdomUs, SDs, and MTSDs).
Only Udom0 holds privileges over UdomUs in its meta-domain, but can delegate
specific privileges to SDs to carryout specialized services. To bootstrap meta-
domains, SSC employs a specialized domain builder (domB). DomB is entrusted
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with the task of creating VMs, a privilege that no longer resides with the system-
wide administrative domain (Sdom0). Section 3 presents a detailed overview of
the design of SSC.

We have implemented an SSC-compliant VMM by modifying Xen (v3.4.0)
and have demonstrated its utility by showing that SDs can be used to implement
a variety of services [1,2]. This paper mainly focuses on the main ideas underlying
the design of SSC, and we refer the reader to the original papers on SSC for
detailed experimental evaluations.

2 Threat Model

SSC’s threat model is similar to those used in recent work on protecting client
VMs in the cloud [18–20], and differentiates between cloud service providers and
cloud system administrators. Cloud providers are entities such as Amazon EC2
and Microsoft Azure, who have a vested interest in protecting their reputations.
On the other hand, cloud system administrators are individuals entrusted with
system tasks and maintaining the cloud infrastructure. To do so, they have access
to dom0 and the privileges that it entails.

We assume that cloud system administrators are adversarial (or could make
mistakes), and by extension, that the administrative domain is untrusted. Admin-
istrators have both the technical means and the monetary motivation to misuse
dom0’s privileges to snoop client data at will. Even if system administrators are
benign, attacks on client data can be launched via exploits directed against dom0.
Such attacks are increasing in number [4–9] because on commodity VMMs, dom0
often runs a full-fledged operating system, with a complex software stack. Like-
wise, misconfigured services in dom0 can also pose a threat to the security and
privacy of client data.

SSC protects clients from threats posed by exploits against Sdom0 and cloud
administrators who misuse Sdom0’s privileges. SSC prevents Sdom0 from access-
ing the memory contents of client VMs and the state of their virtual processors
(vCPUs). This protects all of the client’s in-memory data, including any encryp-
tion keys stored therein. SSC’s core mechanisms by themselves do not prevent
administrators from snooping on network traffic or persistent storage. Security-
concious clients can employ end-to-end encryption to protect data on the network
and storage. Packet headers need not be encrypted; after all, network middle-
boxes inspect and mangle packet headers.

SSC assumes that the cloud service provider is trusted. The provider must
supply a TCB running an SSC-compliant VMM. We assume that the physical
hardware is equipped with an IOMMU and a Trusted Platform Module (TPM)
chip, using which clients can obtain cryptographic guarantees about the software
stack executing on the machine. The cloud provider must also implement pro-
cedural controls (security guards, cameras, auditing procedures) to ensure the
physical security of the cloud infrastructure in the data center. This is essen-
tial to prevent hardware-based attacks, such as cold-boot attacks, against which
SSC cannot defend. SSC does not attempt to defend against denial-of-service
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attacks. Such attacks are trivial to launch in a cloud environment, e.g., a mali-
cious administrator can simply configure Sdom0 so that a client’s VMs is never
scheduled for execution, or power off the server running the VMs. Clients can
ameliorate the impact of such attacks via off-site replication. Finally, SSC does
not aim to defend against subpoenas and other judicial instruments served to
the cloud provider to monitor specific clients.

3 Design and Implementation of the SSC Platform

We now describe the design and implementation of the SSC platform, focusing
on the new abstractions in SSC, their operation, and SSC’s privilege model. As
Fig. 1 shows, an SSC platform has a single system-wide administrative domain
(Sdom0) and a domain-building domain (domB). Each client has its own admin-
istrative domain (Udom0), which is the focal point of privilege and authority for
a client’s VMs. Udom0 orchestrates the creation of UdomUs to perform client
computations, and SDs, to which it delegates specific privileges over UdomUs.
SSC prevents Sdom0 from inspecting the contents of client meta-domains.

Fig. 2. Summary of new hypercalls introduced to enable SSC. Figure 3 shows their
usage.

One of the main contributions of the SSC model is that it splits the TCB
of the cloud infrastructure in two parts, a system-level TCB , which consists
of the hypervisor, domB, BIOS and the bootloader, and is controlled by the
cloud provider, and a client-level TCB , which consists of the client’s Udom0,
SDs, and MTSDs. Clients can verify the integrity of the system-level TCB using
trusted hardware. They are responsible for the integrity of their client-level
TCBs. Any compromise of a client-level TCB only affects that client.

Sdom0 runs all device drivers that perform actual I/O and wields authority
over scheduling and allocation decisions. Although these privileges allow Sdom0
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Fig. 3. Protocols used in SSC for the creation of Udom0, UdomUs, SDs and MTSDs.

to perform denial-of-service attacks, such attacks are not in our threat model;
consequently, Sdom0 is not part of the TCB.

The components of SSC must be able to communicate with each other for
tasks such as domain creation and delegating privileges. In our prototype, VMs
communicate using traditional TCP/IP sockets. However, domB receives direc-
tives for domain creation through hypervisor-forwarded hypercalls (see Figs. 2
and 3). Images of domains to be created are passed by attaching storage volumes
containing this information.

3.1 Bootstrapping

Hosts in the cloud infrastructure are assumed to be equipped with TPM and
IOMMU hardware, which is available on most modern chipsets. We assume that
the TPM is virtualized, as described in prior work [15]. The supporting user-
level daemons for the virtualized TPM (vTPM) run within domB, which is in the
TCB, and interact with the hardware TPM on the physical host. The protocols
described in this section assume client interaction with a vTPM instance. We
use the vTPM protocols as described in the original paper [15], although it
may also be possible to use recently-proposed variants [21]. The vTPM can
cryptographically attest the list of software packages loaded on a system in
response to client requests; such attestations are called measurements [22].

During system boot, the BIOS passes control to a bootloader, and initializes
the hardware TPM’s measurement. In turn, the bootloader loads our modified
version of the Xen hypervisor, Sdom0’s kernel and ramdisk, and domB’s kernel
and ramdisk. It also adds entries for the hypervisor and domB to the measure-
ment stored in the TPM’s PCR registers. The hypervisor then builds Sdom0
and domB. Finally, it programs the IOMMU to allow Sdom0 access to only
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the pages that it owns. Following bootstrap and initialization, the hypervisor
unpauses Sdom0 and schedules it for execution. Sdom0 then unpauses domB,
which awaits client requests to initialize meta-domains. SSC forbids Sdom0 from
directly interacting with the TPM; all TPM operations (both with the hardware
TPM and vTPM instances) happen via domB.

Sdom0 starts the XenStore service, which is a database used traditionally by
Xen to maintain information about virtual device configuration. Each user VM
on the system is assigned its own subtree in XenStore with its virtual device
configurations.

3.2 Building Client Meta-Domains

In SSC, domB receives and processes all requests to create new domains, includ-
ing Udom0s, UdomUs, SDs, and MTSDs. Client requests to start new meta-
domains are forwarded to domB from Sdom0. In response, domB creates a
Udom0, which handles creation of the rest of the meta-domain by itself sending
more requests to domB (e.g., to create SDs and UdomUs). To allow clients to
verify that their domains were built properly, domB integrates domain building
with standard vTPM-based attestation protocols developed in prior work [15,22].

Udom0. Upon receiving a client request to create a new meta-domain, Sdom0
issues the Create Udom0 hypercall containing a handle to the new domain’s
bootstrap modules (kernel image, ramdisk, etc.). DomB builds the domain and
returns to the client an identifier of the newly-created meta-domain. In more
detail, the construction of a new meta-domain follows the protocol shown in
Fig. 3(a). This protocol achieves two security goals:

(1)Verified boot of Udom0. At the end of the protocol, the client can verify that
the Udom0 booted by the SSC platform corresponds to the image supplied
in step 1 of Fig. 3(a). To achieve this goal, in step 1, the client supplies a
challenge (nTPM) and also provides hash(Udom0 image), encrypted under
the vTPM’s public key (AIK). These arguments are passed to domB, as
part of the Create Udom0 hypercall in step 2. In turn, DomB requests
the vTPM to decrypt the content enciphered under its public key, thereby
obtaining hash(Udom0 image). DomB then creates the domain after verify-
ing the integrity of the VM image (using hash(Udom0 image) and Sigclient),
thereby ensuring that Sdom0 has not maliciously altered the VM image
supplied by the client. It then returns to the client an identifier of the
newly-created meta-domain, a digitally-signed measurement from the vTPM
(containing the contents of the vTPM’s PCR registers and the client’s chal-
lenge) and the measurement list. The client can use this to verify that the
domain booted with the expected configuration parameters.

(2)Bootstrapping SSL channel with client. In SSC, the network driver is con-
trolled by Sdom0, which is untrusted, and can eavesdrop on any cleartext
messages transmitted over the network. Therefore, the protocol in Fig. 3(a)
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also interacts with the client to install an SSL private key within the newly-
created Udom0. This SSL private key is used to authenticate Udom0 during
the SSL handshake with the client, and helps bootstrap an encrypted channel
that will then be used for all further communication with the client.

Installation of the SSL private key proceeds as follows. In step 1, the client
supplies a fresh symmetric key (freshSym), and a nonce (nSSL), both encrypted
under the vTPM’s public key. In step 2, domB creates Udom0 after checking
the integrity of the Udom0 image (using Sigclient). When domB creates Udom0,
it requests the vTPM to decrypt this content, and places freshSym and nSSL

in Udom0’s memory, where SSC’s privilege model prevents them from being
accessed by Sdom0. Recall from Sect. 3.1 that Sdom0 cannot directly access the
TPM or vTPM (only domB can do so), and therefore cannot obtain the value
of freshSym. In step 5, Udom0 sends nSSL to the client, which responds in step 6
with the SSL private key encrypted under freshSym. Udom0 can now decrypt
this message to obtain the SSL private key. Assuming that both freshSym and
nSSL are random and generated afresh, the protocol allows the client to detect
replay attempts.

This protocol has been carefully designed to restricts the power of certain
kinds of attacks launched by malicious SDom0s. We refer the reader to [1] for a
discussion of these attacks and a security analysis of the protocol.

UdomUs and SDs. Udom0 accepts and processes client requests to start UdomUs
and SDs. Clients establish an SSL connection with Udom0, and transmit the
kernel and ramdisk images of the new domain to Udom0. Udom0 forwards this
request to domB, which then builds the domain.

We aim for Udom0s and SDs to be stateless. They perform specialized tasks,
and do not need persistent state for these tasks. The lack of persistent state eases
the clients’ task of verifying the integrity of these domains (e.g., via inspection
of their code), thereby minimizing risk even if they are compromised via attacks
directed against them. The lack of state also allows easy recovery upon compro-
mise; they can simply be restarted [23]. In our design, we do not assign persistent
storage to SDs. They are neither extensible nor are they allowed to load kernel
modules or extensions outside of the initial configuration. All relevant configu-
ration values are passed via command line parameters. This design does require
greater management effort on the part of clients, but is to be expected in SSC,
because it shifts control from the provider to clients.

We have implemented SDs and Udom0s in our prototype using a carefully-
configured paravirtualized Linux kernel; they only use ramdisks. The file system
contains binaries, static configuration and temporary storage. SSC elides any
unnecessary functionality in SDs and Udom0s to minimize their attack surface.
Udom0s in our prototype integrates a replica of the xend Python-based toolstack
for end-user interaction and to provide an administrative interface to the meta-
domain.

MTSDs. Like SDs, each MTSD belongs to a client meta-domain. MTSDs can
be given specific privileges (via the Create MTSD hypercall) to map the state
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of client VMs, checkpoint, fingerprint, or introspect them. This allows the cloud
provider to inspect client domains for regulatory compliance. Both the cloud
provider and client cooperate to start the MTSD, as shown in the protocol in
Fig. 3(c). The client initiates the protocol after it has agreed to start the MTSD
in its meta-domain. DomB creates the MTSD, and both the provider and the
client can each ensure that the MTSD was initialized properly using signed
measurements from the vTPM. The provider or the client can terminate the
protocol at this point if they find that the MTSD has been tampered with.

3.3 SSC Privilege Model

At the heart of SSC is a new privilege model enforced by the hypervisor. This
model enables clients to administer their own VMs securely, without allowing
cloud administrators to eavesdrop on their data. For purposes of exposition,
we broadly categorize the privileged operations performed by a VMM into six
groups.

(1)VM control operations include pausing/unpausing, scheduling, and destroy-
ing VMs.

(2)Privacy-sensitive operations allow the mapping of memory and virtual CPU
registers of a VM.

(3)Read-only operations expose non-private information of a VM to a requester,
including the number of vCPUs and RAM allocation of a VM, and the
physical parameters of the host.

(4)Build-only operations include privacy-sensitive operations and certain oper-
ations that are only used during VM initialization.

(5)Virtual I/O operations set up event channels and grant tables to share mem-
ory and notifications in a controlled way for I/O.

(6)Platform configurations manage the physical host. Examples of these oper-
ations include programming the interrupt controller or clock sources.

In addition to these operations, VMMs also perform hardware device adminis-
tration that assigns PCI devices and interrupts to different VMs. We expect that

Table 1. Actors and operations in the privilege model. Each � in the table denotes
that the actor can perform the corresponding operation.

Sdom0 domB Udom0 SD/MTSD

VM control (C) � � �
Privacy-sensitive (P) � �
Read-only (R) � � �
Build-only (B) �
Virtual I/O (I) � � �
Platform config. (L) �
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hardware device administration may rarely be used in a dynamic cloud environ-
ment, where VM checkpointing and migration are commonplace, and leave for
future work the inclusion of such operations in the SSC privilege model.

In SSC, Sdom0 has the privileges to perform VM control, read-only, virtual
I/O and platform operations. VM control operations allow VMs to be provi-
sioned for execution on physical hardware, and it is unreasonable to prevent
Sdom0 from performing these tasks. A malicious system administrator can mis-
use VM control operations to launch denial-of-service attacks, but we exclude
such attacks from our threat model. Sdom0 retains the privileges to access read-
only data of client VMs for elementary management operations, e.g., listing
the set of VMs executing in a client meta-domain. Sdom0 executes backend
drivers for virtual devices and must therefore retain the privileges to perform
virtual I/O operations for all domains on the system. As discussed earlier, SSC
also admits the notion of driver domains, where device drivers execute within
separate VMs [24]. In such cases, only the driver domains need to retain privi-
leges to perform virtual I/O. Finally, Sdom0 must be able to control and con-
figure physical hardware, and therefore retains privileges to perform platform
operations.

The domain builder (domB) performs build-only operations. Building
domains necessarily involves some operations that are categorized as privacy-
sensitive, and therefore includes them. However, when domB issues a hypercall
on a target domain, the hypervisor first checks that the domain has not yet
accrued a single cycle (i.e., it is still being built), and allows the hypercall to
succeed only if that is the case. This prevents domB from performing privacy-
sensitive operations on client VMs after they have been built.

Udom0 can perform privacy-sensitive and read-only operations on VMs in its
meta-domain. It can also perform limited VM control and virtual I/O operations.
Udom0 can pause/unpause and destroy VMs in its meta-domain, but cannot
control scheduling (this privilege rests with Sdom0). Udom0 can perform virtual
I/O operations for UdomUs in its meta-domain. Udom0 can delegate specific
privileges to SDs and MTSDs as per their requirements. A key aspect of our
privilege model is that it groups VMs by meta-domain. Operations performed by
Udom0, SDs and MTSDs are restricted to their meta-domain. While Udom0 has
privileges to perform the above operations on VMs in its meta-domain, it cannot
perform VM control, privacy-sensitive, and virtual I/O operations on MTSDs
executing in its meta-domain. This is because such operations will allow Udom0
to breach its contract with the cloud provider (e.g., by pausing, modifying or
terminating an MTSD that the Udom0 has agreed to execute). Tables 1 and 2
summarize the privilege model of SSC.

In our SSC prototype, device drivers execute within Sdom0, thereby requiring
clients to depend on Sdom0 to perform I/O on their behalf. Näıvely entrusting
Sdom0 with I/O compromises client privacy. In SSC, we modified XenStore to
allow domB to create subtrees for newly-created VMs, and give each Udom0
access to the subtrees of all VMs in its meta-domain. Udom0 uses this privilege
to customize the virtual devices for its UdomUs. For instance, it can configure
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Table 2. Actors, objects, and operations in the privilege model. Each column denotes
an actor that performs an operation, while each row denotes the object upon which
the operation is performed. Operations are abbreviated as shown in Table 1.

Sdom0 domB Udom0 SD MTSD

Hardware L

Sdom0

domB C,R,I I

Udom0 C,R,I B

SD C,R,I B C,P,R,I C,P,R,I C,P,R,I

MTSD C,R,I B R,I R,I R,I

UdomU C,R,I B C,P,R,I C,P,R,I C,P,R,I

a UdomU to use Sdom0 as the backend for virtual I/O. Alternatively, it can
configure the UdomU to use an SD as a backend; the SD could modify the I/O
stream. An SD can have Sdom0 as the backend, thereby ultimately directing I/O
to physical hardware, or can itself have an SD as a backend, thereby allowing
multiple SDs to be chained on the path from a UdomU to the I/O device.
We also modified XenStore to allow Sdom0 and Udom0 to insert block devices
into domB. This is used to transfer kernel and ramdisk images during domain
building.

We implemented this privilege model in our prototype using the Xen Security
Modules (XSM) framework [25]. XSM places a set of hooks in the Xen hypervisor,
and is a generic framework that can be used to implement a wide variety of
security policies. Security policies can be specified as modules that are invoked
when a hook is encountered at runtime. For example, XSM served as basis for
IBM’s sHype project, which extended Xen to enforce mandatory access control
policies [25]. We implemented the privilege described in this section as an XSM
policy module.

4 Examples of SDs and MTSDs

We now illustrate the utility of SSC’s privilege model using a number of example
SDs and MTSDs that we implemented atop our prototype.

Storage SDs. Cloud providers supply clients with persistent storage. Because the
actual storage hardware is no longer under the physical control of clients, they
must treat it as untrusted. They must therefore have mechanisms to protect the
confidentiality and integrity of data that resides on cloud storage. Such mech-
anisms can possibly be implemented within the client’s VMs itself (e.g., within
a custom file system). However, virtual machine technology allows such ser-
vices to be conveniently located outside the VM, where they can also be com-
bined flexibly. It also isolates these services from potential attacks against client
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Fig. 4. Storage SD architecture.

VMs. Because all I/O from client VMs is virtualized, storage encryption and
integrity checking can easily be implemented as cloud-based services offered by
the provider.

Cloud providers would normally implement such services as daemons within
dom0. However, this approach entails clients to trust dom0, and hence cloud
administrators. SSC provides clients the ability to implement a variety of stor-
age services as SDs without trusting cloud administrators. We describe two such
SDs below, one for integrity checking and another for encryption. Our imple-
mentation of both SDs is set up as illustrated in Fig. 4. Each SD executes as a
VM. When Udom0 starts a UdomU that wants to avail the service offered by
an SD, it configures the UdomU to advertise the SD as the backend driver for
disk operations. The SD itself executes a frontend driver that interfaces within
a backend driver running within Sdom0. When UdomU attempts to perform a
disk operation, the data first goes to the SD, which is the advertised backend
for the UdomU. The SD performs the advertised service, and passes it to the
frontend executing within the SD. In turn, the frontend forwards the (possibly
modified) data block to Sdom0’s backend, which interacts with the disk to store
data persistently.

This setup can also be used to chain SDs, each offering its own service.
For example, an encryption SD (see below) can serve as the I/O backend for
UdomU. In turn, a checkpointing SD can serve as the I/O backend for the
encryption SD. This would allow clients to easily produce disk checkpoints that
store encrypted data.

Encryption SD. Storage encryption protects the confidentiality of client data
by enciphering it before storing it on disk. Using SSC, clients can deploy their
own storage encryption SD that enciphers their data before it is transmitted to
Sdom0, which stores it on disk (or further processes the encrypted data, e.g., to
implement replication). Conversely, Sdom0 reads encrypted data from disk, and
passes it to the SD, which decrypts it and passes it to the client. SSC ensures
that Sdom0 cannot access the encryption keys, which are stored in client VM
memory, thereby protecting client data.

Udom0 initiates the storage encryption SD using a key passed as a ker-
nel parameter, and an initialization script that starts the SD with a crypto
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loopback device. The SD encrypts client data before it reaches Sdom0, and
decrypts enciphered disk blocks fetched by Sdom0. Data is never presented in the
clear to the cloud provider, and the encryption key is never exposed to Sdom0.
In our implementation, the crypto loopback device in the SD uses AES 128-bit
encryption.

Integrity Checking SD. Our integrity checking SD offers a service similar to
the one proposed by Payne et al. [26]. The SD implements a loopback device,
which runs as a kernel module. This device receives disk access requests from
UdomUs at the block level, enforces the specified integrity policy, and forwards
the requests to/from disk.

In our prototype SD, users specify important system files and directories
to protect. The SD intercepts all disk operations to these targets, and checks
that the SHA256 hashes of these disk blocks appear in a database of whitelisted
hashes. Since all operations are intercepted at the block level, the SD needs to
understand the high-level semantics of the file system. We use an offline process
to extract known-good hashes at the block level from the client VM’s file system,
and populate the hash database, which the SD consults at runtime to check
integrity.

Memory Introspection SD. Memory introspection tools (e.g., [27–30]) rely on the
ability to fetch and inspect raw memory pages from target VMs. In commodity
cloud infrastructures, memory introspection must be offered by the provider,
and cannot be deployed independently by clients, who face the unsavory option
of using the service but placing their privacy at risk.

Using SSC, clients can deploy memory introspection tools as SDs. We illus-
trate such an SD by implementing an approach developed in the Patagonix
project [30]. Patagonix aims to detect the presence of covertly-executing mali-
cious binaries in a target VM by monitoring that VM’s page tables. As originally
described, the Patagonix daemon runs in dom0, maps all the memory pages of
the target VM, and marks all pages as non-executable when the VM starts.
When the target VM attempts to execute a page for the first time, Patagonix
receives a fault. Patagonix handles this fault by hashing the contents of the page
(i.e., an md5sum) requested for execution, and comparing it against a database
of hashes of code authorized to execute on the system (e.g., the database may
store hashes of code pages of an entire Linux distribution). If the hash does not
exist in the database, Patagonix raises an alarm and suspends the VM.

We implemented Patagonix as an SD. Each Patagonix SD monitors a target
UdomU, a reference to which is passed to the SD when the UdomU boots up.
Udom0 delegates to Patagonix SD the privileges to map the UdomU’s pages, and
mark them as non-executable. The SD receives and handles faults as the UdomU
executes new code pages. Our Patagonix SD can detect maliciously-executing
binaries with the same effectiveness as described in the original paper [30].

System Call Monitoring SD. There is a large body of work on system call-based
anomaly detection tools. While we will not attempt to summarize that work here
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(see Giffin’s thesis [31] for a good overview), these techniques typically work by
intercepting process system calls and their arguments, and ensuring that the
sequence of calls conforms to a security policy. The anomaly detector executes
in a separate VM (dom0), and capture system call traps and arguments from
a user VM for analysis. Using SSC, clients can implement their own system
call anomaly detectors as SDs. The SD simply intercepts all system calls and
arguments from a target UdomU and checks them against a target policy.

Checkpointing SD. It is commonplace for cloud service providers to checkpoint
client VMs for various purposes, such as live migration, load balancing and
debugging. On commodity cloud architectures, checkpointing is implemented as
a user daemon within dom0, which copies client VM memory pages and stores
them unencrypted within dom0. If dom0 is untrusted, as is usually the case, it is
challenging to create trustworthy checkpoints [32]. SSC simplifies checkpointing
by allowing it to be implemented as an SD. The SD maps the client’s memory
pages, and checkpoints them akin to the dom0 checkpointing daemon (in fact,
we reused the same code-base to implement the SD). As previously discussed,
clients can chain the storage encryption SD with the checkpointing SD to ensure
that the checkpoint stores encrypted data.

Memory Deduplication SD. When multiple VMs have memory pages with iden-
tical content, one way to conserve physical memory using a mechanism where
VMs share memory pages [33]. Such a mechanism benefits cloud providers, who
are always on the lookout for new techniques to improve the elasticity of their
services. It can also benefit cloud clients who may have multiple VMs on the
cloud and may be billed for the memory consumed by these VMs. Identify-
ing and exploiting memory sharing opportunities among VMs allows clients to
judiciously purchase resources, thereby reducing their overall cost of using the
cloud. In commodity cloud computing environments, providers implement mem-
ory deduplication to consolidate physical resources, but such services are not
exposed to clients, thereby limiting their applicability.

SSC allows clients to deploy memory deduplication on their own VMs with-
out involving the cloud provider. To illustrate this, we implemented a memory
deduplication SD. This SD accepts as input a list of domains (UdomUs) in the
same meta-domain, and identifies pages with identical content (using their md5
hashes). For each such page, the SD instructs the hypervisor to keep just one
copy of the page, and free the remaining copies by modifying the page tables
of the domains. The hypervisor marks the shared pages as belonging to spe-
cial “shared memory” domain. When a domain attempts to write to the shared
page, the hypervisor uses copy-on-write to create a copy of that page local to
the domain that attempted the write, and makes it unshared in that domain.

Regulatory-Compliance using MTSDs. The SDs discussed so far are deployed
within the client’s meta-domain, and their output is not visible to cloud admin-
istrators. However, cloud administrators may wish to monitor client VMs, e.g., to
enforce regulatory compliance. In today’s cloud infrastructure, this is achieved
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via VM introspection tools that execute in dom0. Such tools can inspect and
modify client state, and therefore require dom0 to be trusted.

MTSDs offer cloud providers unprecedented power and flexibility in verify-
ing client regulatory compliance while respecting client privacy. As an example,
cloud providers can implement the Patagonix SD above as an MTSD to ensure
that a client VM is free of malware. In this case, the cloud provider would sup-
ply the database of code hashes, which is the regulatory compliance policy. The
MTSD itself would execute in the client meta-domain; the manifest of this MTSD
simply requests privileges to read client memory pages and registers. The MTSD
continuously monitors client UdomUs and reports a violation of regulatory com-
pliance to the cloud provider (i.e., Sdom0) only if the client becomes infected
with malware. The cloud provider only learns whether the client has violated
regulatory compliance, and cannot otherwise read or modify the content of the
client’s memory pages.

Clients may wish to ensure that the MTSD’s functionality does not compro-
mise their privacy. For example, the client may want to check that an MTSD
that reads its VM memory pages does not inadvertantly leak the contents of
these pages. One way to achieve this goal is to inspect the code of the MTSD
to ensure the absence of such undesirable functionality. However, we cannot rea-
sonably expect most cloud clients to have the economic resources to conduct
thorough and high-quality security evaluations of MTSDs.

We therefore limit the amount of information that an MTSD can transmit
outside the meta-domain. MTSDs are not given any persitent storage, and can
only communicate with the provider (i.e., Sdom0) via the SSC hypervisor. Fur-
ther, this communication channel is restricted to be a stream of bits whose
semantics is well-understood. That is, each 0 bit in the stream denotes a vio-
lation of regulatory compliance, while a 1 bit denotes otherwise.1 The client
can set up a user daemon (e.g., within Udom0) that is awakened by the SSC
hypervisor upon every new bit transmitted by the MTSD over this channel. An
honest client that does not violate the provider’s regulatory compliance policies
should therefore only expect to see a stream of 1s transmitted to Sdom0. Any
0s in the stream either denote an MTSD attempting to steal information, or an
inadvertant compliance violation (e.g., due to malware infection). In either case,
the client can terminate its meta-domain.

5 A Retrospective Look at SSC

The previous sections have described the main ideas underlying SSC. After hav-
ing worked on SSC for nearly four years, we now look back and comment on
some of the design decisions in light of recent hardware trends, in particular, the
Intel SGX [34,35].

1
Note that a client cannot modify this stream without tampering with the code of the MTSD.
The provider ensures that the MTSD was booted correctly (Fig. 3(c)), and SSC’s privilege model
prevents the client from modifying a running MTSD.
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SSC’s Threat Model. When we started the SSC project, one of the main foci of
the research community was to protect client VMs from co-located VMs belong-
ing to adversarial clients [36]. We instead chose to focus on protecting client
data from an adversarial public cloud platform. At the time, one of the main
approaches to achieve this goal was to store client data encrypted on the cloud
platform and develop techniques to compute on encrypted data. While this app-
roach is promising, general-purpose techniques such as homomorphic encryption
are still too expensive to be practical. Domain-specific techniques (e.g., [37]) are
a promising way to achieve practical overheads, but must be carefully designed
for each specific domain. We were seeking a practical yet general-purpose solu-
tion that would work in a broad range of settings.

Unfortunately, this goal is challenging to achieve. The cloud provider con-
trols the entire compute infrastructure and can subvert any security mechanisms
that are not grounded in cryptography. As a result, we chose to relax our goals
somewhat, and work with the slightly unconventional threat model of differen-
tiating the cloud provider from cloud administrators, and choosing to trust the
cloud provider but not cloud administrators. The cost of doing so was that we
could not protect against attacks initiated by the cloud provider itself, e.g., via
government-issued subpoenas, requiring the cloud provider to gather the client’s
data. This was a price we were willing to pay. It also seemed like an interest-
ing point in the design space, and other research groups were also concurrently
working on related problems assuming a similar threat model [18–20].

However, with the announcement of the Intel SGX, our original goal is no
longer challenging to achieve. The SGX provides hardware support for enclaves,
which are regions in a process address space that are protected from the rest of
the process and even the underlying operating system. Building atop the SGX,
it should therefore be possible to build virtual machines that are able to protect
a client’s data from the underlying hypervisor and other software components
that are controlled by the cloud provider (e.g., as has been demonstrated by the
Haven project [38]).

However, this protection comes at a cost. With SGX enclaves, the cloud
provider no longer has visibility into the code and data of the client. While
this benefits the client by protecting the confidentiality of its code and data,
it also allows malicious clients to execute arbitrary code within their enclaves
and violate service-level agreements with the cloud provider. For example, the
cloud provider may wish to ensure that the client is not misusing the cloud
infrastructure to host a malware (e.g., a botnet command and control server).
On traditional cloud platforms, this goal is easy to achieve. If a cloud provider
suspects that a client is violating the terms of the SLA, it can simply scan the
contents of the client’s VMs for traces of any SLA-violating code or data. With
enclaves, malicious clients can easily hide their activities from cloud providers,
who must then use other means to infer malicious activity. Thus, the SGX “flips”
the threat model in favor of clients. It is not clear that this extreme is desirable,
either. Later in this section, we briefly discuss a possible solution to this problem
using SSC’s MTSD abstraction.
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MTSDs and Mutual Trust. We introduced MTSDs and the concept of mutual
trust in SSC to balance the concerns of the client and the cloud provider. We
believe that this notion of mutual trust is novel; to our knowledge, it has only
been investigated concurrently in the context of one other project on system
administration [39].

Of all new abstractions introduced in SSC, we feel that MTSDs have the
potential to have the greatest impact. In our own work, we have demonstrated
several novel applications that can be enabled using mutual trust, such as privacy-
preserving regulatory compliance [1]. It can also be used to implement trustwor-
thy resource accounting and billing software [2]. On traditional cloud platforms,
clients trust the cloud provider to correctly charge them based upon the resources
that they consume. If a client has reason to believe that a cloud provider is charg-
ing it for more than its share of resources consumed, it cannot prove that the
cloud provider is cheating. MTSDs allow the creation of trustworthy services
that performs resource accounting. The client and cloud provider agree upon
the software that will be used to account for the client’s network bandwidth uti-
lization. This metering software executes as an MTSD and serves as the network
backend for all of the client’s network-facing VMs. The client and cloud provider
can both verify that the MTSD was started correctly (using TPM attestations),
and the SSC hypervisor ensures that neither the cloud provider nor the client
can tamper with the MTSD once it has started execution. Thus, both the cloud
provider and the client can trust the network bandwidth utilization reported by
the MTSD.

Moving foward, we feel that the idea of mutual trust can also find valuable
applications in SGX-enabled platforms. For example, the cloud provider and
client could leverage a mutually-trusted library to ensure that the contents of
the client’s enclaves comply with the cloud provider’s SLAs. Investigating how
such a mutually-trusted library can be constructed and the guarantees that it
can provide are topics for interesting future research.

Reliance on the TPM. Finally, as is clear from the discussion in Sect. 3, SSC’s
security guarantees rely in a critical way on attestations generated by the TPM.
However, like other TPM-based protocols, these attestations only provide guar-
antees about the software stack during the instant that the attestations were
created. It well-known that malicious modifications to the software stack that
are introduced after or between attestations can bypass detection, and SSC’s
bootstrap protocols suffer from the same shortcoming. It would be interesting
to investigate whether similar attestation protocols as implemented in the SGX
(e.g., to attest the integrity of enclave creation) can be leveraged to extend the
boot-time guarantees provided by SSC’s protocols.

6 Related Work

Popular cloud services, such as Amazon’s EC2 and Microsoft’s Azure rely on
hypervisor-based VMMs (Xen [40] and Hyper-V [41], respectively). In such
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VMMs, the TCB consists of the hypervisor and an administrative domain. Prior
attempts to secure the TCB have focused on both these entities, as discussed
below.

Historically, hypervisors have been considered to be a small layer of software.
Prior work has argued that the architecture of hypervisors resembles that of
microkernels [42]. The relatively small code size of research hypervisors [43–45],
combined with the recent breakthrough in formally verifying the L4 microker-
nel [46], raises hope for similar verification of hypervisors. However, commod-
ity hypervisors often contain several thousand lines of code (e.g., 150 KLoC in
Xen 4.1) and are not yet within the realm of formal verification. Consequently,
researchers have proposed architectures that completely eliminate the hypervi-
sor [18].

The main problem with these techniques is that they often do not support
the rich functionality that is needed in cloud computing. Production hypervisors
today need to support different virtualization modes, guest quirks, hardware
features, and software features like memory deduplication and migration. In
SSC, we work with a commodity hypervisor-based VMM (Xen), but assume that
the hypervisor is part of the TCB. While this exposes an SSC-based VMM to
attacks directed against hypervisor vulnerabilities, it also allows the SSC model
to largely resemble commodity cloud computing. Recent advances to strengthen
hypervisors against certain classes of attacks [47] can also be applied to SSC,
thereby improving the overall security of the platform.

In comparison to hypervisors, the administrative domain is large and com-
plex. To address threats against the administrative domain, the research commu-
nity has focused on adopting the principle of separation of privilege, an approach
that we also adopted in SSC. Murray et al. [48] disaggregated the administrative
domain by isolating in a separate VM the functionality that builds new VMs.
This domain builder has highly-specific functionality and a correspondingly small
code-base. This feature, augmented with the use of a library OS enhances the
robustness of that code. Murray et al.’s design directly inspired the use of domB
in SSC. Disaggregation is also advocated by Nova [45]. The Xoar project [23]
extends this approach by “sharding” different parts of the administrative tool-
stack into a set of domains. Previous work has also considered separate domains
to isolate device drivers [24], which are more defect-prone than the rest of the
kernel.

SSC is similar to these lines of research because it also aims to reduce the
privilege of Sdom0, which can no longer inspect the code, data and computation
of client VMs. However, SSC is unique in delegating administrative privileges to
clients (via Udom0). It is this very feature that enables clients to deploy custom
services to monitor and control their own VMs.

The CloudVisor project [19] leverages recent advances in nested virtualization
technology to protect the security and privacy of client VMs from the admin-
istrative domain. In CloudVisor, a commodity hypervisor such as Xen executes
atop a small, trusted, bare-metal hypervisor. This trusted hypervisor intercepts
privileged operations from Xen, and cryptographically protects the state of client
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VMs executing within Xen from its dom0 VM, e.g., dom0 only has an encrypted
view of a client VM’s memory.

The main advantage of CloudVisor over SSC is that its TCB only includes
the small, bare-metal hypervisor, comprising about 5.5 KLOC, whereas SSC’s
system-wide TCB includes the entire commodity hypervisor and domB. More-
over, the use of cryptography allows CloudVisor to provide strong guarantees
on client VM security and privacy. However, SSC offers three concrete advan-
tages over CloudVisor. First, SSC offers clients more flexible control over their
own VMs than CloudVisor. For example, because CloudVisor only presents an
encrypted view of a client’s VM to dom0, many security introspection tools
cannot be implemented within dom0. Second, unlike CloudVisor, SSC does not
rely on nested virtualization. Nesting fundamentally imposes overheads on client
VMs because privileged operations must be handled by both the bare-metal and
nested hypervisors, which can slow down I/O intensive client applications, as
reported in the CloudVisor paper. Third, SSC’s MTSDs allow the cloud provider
and clients to execute mutually-trusted services for regulatory compliance. It
is unclear whether the CloudVisor model can achieve mutual trust of shared
services.

There has been nearly a decade of research on novel services enabled by
virtualization, starting with Chen and Noble’s seminal paper [11]. On current
cloud infrastructures, deploying these techniques requires the cooperation of the
cloud provider, which greatly limits their impact. SSC enables clients to deploy
their own privileged services without requiring the cloud provider to do so. The
primary advantage of such an approach is that clients need no longer expose
their code and data to the cloud provider. At the same time, SSC’s MTSDs
accommodate the need for cloud providers to ensure regulatory compliance and
have some control over client VMs.

The xCloud project [49,50] also considers the problem of providing clients
flexible control over their VMs. The original position paper [49] advocated sev-
eral approaches to this problem, including by extending hypervisors, which may
weaken hypervisor security. The full paper [50] describes XenBlanket, which
realizes the vision of the xCloud project using nested virtualization. XenBlan-
ket implements a “blanket” layer that allows clients to execute paravirtualized
VMMs atop commodity cloud infrastructures. The key benefit of XenBlanket
over SSC is that it provides clients the same level of control over their VMs
as does SSC but without modifying the hypervisor of the cloud infrastructure.
However, unlike SSC, XenBlanket does not address the problem of protecting
the security and privacy of client VMs from cloud administrators.

7 Summary

SSC is a new cloud computing model that improves client security and privacy,
and gives clients the flexibility to deploy privileged services on their own VMs.
SSC introduces new abstractions and a supporting privilege model to achieve
these goals. We integrated SSC with a commodity hypervisor (Xen), and pre-
sented a number of applications showing SSC’s benefits.
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Abstract. Conventional access control models like discretionary access
control and role based access control are suitable for regulating access
to resources by known users of an organization. However, for systems
where the user population is dynamic and the identities of all users are
not known in advance, attribute based access control (ABAC) can be
more conveniently used. The set of constraints supported by an access
control model acts as a deciding factor for the type of restrictions it
can put on unauthorized access. Among the various types of constraints,
enforcement of Separation of Duty (SoD) is considered to be the most
important in any commercial application. In this paper, we introduce
the problem of SoD enforcement in the context of ABAC. We analyze
the complexity of the problem and provide a methodology for solving it.
Experiments on a wide range of data sets show encouraging results.

Keywords: Attribute based access control · Separation of duty · Mutu-
ally exclusive policies · Policy enforcement

1 Introduction

Organizations use access control mechanisms to mitigate the risk of unautho-
rized access to their data, resources and systems. Depending on the information
required for authorization and the process of making decisions, different access
control models have been developed. For traditional information systems, where
a system provider needs to deal only with a predictable set of users, access con-
trol models such as Discretionary Access Control (DAC) [18], Mandatory Access
Control (MAC) [17] and Role based Access Control (RBAC) [16] have been pro-
posed. Among these, RBAC, which is based on the notion of roles, has emerged
as the most effective one. The primary limitation of these traditional models
including RBAC, is their significant dependence on user identity and an inher-
ent lack of extendibility, making them unsuitable for dynamic systems where
users from different domains may have to be given access.
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To handle such dynamic environments, in recent years, Attribute based Access
Control (ABAC) has been proposed [9]. ABAC mediates access based on the
attributes of users and objects and not on their identity. In addition environmen-
tal attributes also play a role in the model. An attribute in the context of ABAC
defines a particular characteristic of an entity.

Access decision in ABAC considers a set of authorization policies or rules
that consist of predicates over attribute values of the requesting user, requested
resources and the environment in which the request is being made. A user can
execute an operation on a resource, if and only if, attribute values of the request-
ing user and that of the requested resource as well as the environment satisfy
the authorization policy for that operation. The limitation of extendibility of
traditional models in multiple domains can be overcome in ABAC by selecting
appropriate attributes for those domains.

To comply with organizational business requirements, authorization policies
of access control models often need to be constrained. One of the most common
form of constraint in any commercial organization is Separation of Duty (SoD)
[19]. A typical SoD constraint (interchangeably called an SoD policy) prevents
error and fraud by ensuring that at least two individuals are responsible for
the separate steps of any critical task. For example, consider the task of payroll
processing, which involves two main activities, namely, accounting and signing of
checks. A relevant SoD principle would be that, if an employee is able to do the
accounting activity, then she is restricted from signing the checks. A system is
said to be safe with respect to an SoD policy, if the set of authorization policies
of the system does not violate that SoD policy.

While SoD enforcement in RBAC has been studied in the literature [11], to
the best of our knowledge, there is no work yet on enforcement of SoD in the
context of ABAC. In this paper, we formally define SoD in terms of the various
ABAC components. We show that, although directly enforcing SoD in ABAC is
intractable, enforcement through mutually exclusive authorization policies can
be done efficiently. We also show how to determine the set of such mutually
exclusive policies for a given SoD constraint.

The rest of the paper is organized as follows. Section 2 discusses the prelimi-
naries about the various ABAC components and the principle of SoD. Section 3
defines the SoD verification problem in ABAC and analyzes its complexity. In
Sect. 4, we provide a methodology for SoD enforcement using mutual exclusion.
Section 5 gives the results of experimental evaluation of the proposed approach.
Related literature is reviewed in Sect. 6 and finally, Sect. 7 concludes the paper
along with some suggestions for prospective future work.

2 Preliminaries

In this section, we first introduce the main components of attribute based access
control [4]. We also provide the general definition of Separation of Duty and its
implications in the context of ABAC.
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2.1 Attribute Based Access Control (ABAC)

ABAC is an access control model based on the notion of attributes of the request-
ing user, requested object, and the environment in which a request is made. The
basic components of ABAC are as follows:

– users (U): A set of authorized users. Each member of this set is represented
as ui, for 1 ≤ i ≤ |U|.

– Objects (O): A set of resources to be protected. Each member of this set is
represented as oi, for 1 ≤ i ≤ |O|.

– Environment (E): A set of environment conditions such as access location and
access time, independent of users and objects. Each member of this set is
represented as ei, for 1 ≤ i ≤ |E|.

– UA: A set of user attribute names that could possibly influence access deci-
sions. A member of UA is represented as uai, for 1 ≤ i ≤ |UA|. Each uai is
associated with a set of values it can acquire. For instance, consider a user
attribute qualification associated with the set of values {UG, PG and Null1}.
Then, every ui ∈ U can have either UG, PG or Null as the value of the
attribute qualification.

– OA: A set of object attributes that could possibly influence access decisions.
An element of OA is represented as oai, where 1 ≤ i ≤ |OA|. Similar to users,
each object attribute oai is associated with a set of values it can acquire. For
instance, if an object attribute type is associated with a set of values {Binary,
Text} associated with it, then the value of the attribute type for each object
oi ∈ O can be either Binary or Text.

– EA: A set of all environment attributes that could possibly influence access
decisions. A member of EA is denoted as eai, where 1 ≤ i ≤ |EA|. Each eai ∈
EA is associated with a set consisting of all the possible values that eai can
acquire. For instance, if an environment attribute workingshift is associated
with a set of values {DayShift, EveningShift, NightShift, Null}, then for every
ei ∈ E , value of the attribute workingshift can be either DayShift, EveningShift,
NightShift or Null.

– FU : U × UA → {j|j is a user attribute value}. For instance, consider a user
Bob, who is a UG student. Then FU (Bob, qualification) = {UG}.

– FO: O × OA → {j|j is an object attribute value}. For instance, consider a file
F1 whose type is Binary. Then, FO(F1, type) = {Binary}.

– FE : E × EA → {j|j is an environment attribute value}. For instance, consider
an environment e having value DayShift for the attribute named workingshift.
This is represented as FE(e, workingshift) → {DayShift}.

– �: A set consisting of all possible operations (actions) on objects allowed in
a system. For example, if read and write are the only two possible actions on
a file, then � = {read, write}. Each member of � is represented as ai.

– P: A set of authorization policies. Each member of this set is represented as
pi, for 1 ≤ i ≤ |P|.

1 Null indicates that the value of the attribute is unknown.
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A policy p in ABAC is a 4 - tuple of the form 〈uc, oc, ec, a〉. Here, uc (respec-
tively oc and ec) is a user condition (respectively, object condition and envi-
ronment condition) comprising of equalities of the form n = c, where n is
a user attribute name (respectively, object attribute name and environment
attribute name) and c is either a constant or any. For an attribute name n,
if the value of c is any, then the attribute n is not relevant for making the
access decisions. a ∈ � is an action.

When a user makes a request to access an object, the authorization policy set
P is searched for the policies through which the user can get access. If any such
policy exists, then access is granted, otherwise denied. As an example, consider
an organization having the following requirement: A user having clearance level
high and designation Director can edit any file having clearance level confidential,
from his office computer. In ABAC, this requirement can be specified in the form
of a policy: <{(clearance level = High), (designation = Director)}, {(type = File),
(clearance level = confidential)}, {(access location = Director Office)}, edit>.

We now introduce the notion of an ABAC state. An ABAC state ϕ is a 4-tuple
< FU , FO, FE ,P >. Modification in any of the components results in a differ-
ent state. These components collectively determine access permissions of users to
objects. A state is said to be safe if it restricts every unauthorized access.

2.2 Separation of Duty

Separation of Duty (SoD) is a security principle that prevents a single user
from performing all the steps in a critical task. The idea behind this is that the
likelihood of a single person involved in a fraud is higher than that of a group of
people being involved. A k-n SoD (k-out-of-n Separation of Duty) policy, which is
a generalization of the above statement, states that no less than k users together
should get all the n permissions required to perform a task. This definition of SoD
is valid irrespective of the underlying access control mechanism. Two different
approaches could be used to enforce an SoD policy: Static SoD (SSoD) and
Dynamic SoD (DSoD). In the present work, we consider only SSoD in which
an SoD policy should hold irrespective of the dynamic environment. Thus, in
the rest of the paper, we deal only with the attributes of users and objects as
mentioned in Subsect. 2.1 and do not consider environmental attributes as is
required in DSoD.

Since a permission in any access control model essentially provides author-
ity to a user to perform actions on certain objects, every permission could be
expressed as a 2-tuple (ai, oj), where ai is the name of the action to be performed
and oj is the name of the object on which ai is to be performed. We denote a
pair of action and object as an access tuple (hereinafter referred to as a tuple).
Using this notion of tuples, we can define SoD in ABAC as follows:

Definition 1. A k-n SoD (k-out-of-n Separation of Duty) policy is expressed as
sod〈{t1, t2,......, tn}, k〉, where each ti is a tuple of the form (ai, oi) such that
ai ∈ �, oi ∈ O, 1 < k ≤ n.
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The above definition of SoD conveys that, for a task that requires n actions
to be performed respectively on n objects (not necessarily distinct), no less than
k users together should satisfy authorization policies that would give them all
the t1, t2,......, tn accesses. An SoD policy 〈{t1, t2,......, tn}, k〉, can be further
represented in a compact form as a 2-tuple 〈Per , k〉, where Per is the set of tis
in the SoD. A set ω of m SoD policies is denoted as ω = {s1, s2, ......, sm}.

Given a k-n SoD policy s and an ABAC state ϕ, if no set of k-1 users in ϕ
together is authorized for t1, t2,......, tn, then we say that ϕ satisfies s, which is
denoted as satisfiesϕ[s]. An ABAC state is said to be safe, if for each s ∈ ω,
satisfiesϕ[s] is true, otherwise unsafe, if satisfiesϕ[s] is false.

Example 1. Consider a university XYZ having Dramatics and Dance societies
for its students. Every society has got some committee members, who are not
students. At the start of an academic session, each enrolled student is required
to apply for the membership of any one of the societies. If a student is already
a member of a society, then she can either change the society or can apply for
renewal of membership for the same society of which she is already a mem-
ber. A committee member is not allowed to apply for membership. They can
only approve the membership of the applicants. Representative sets of users and
objects are shown below:

– U : {Tom, Alice, John}
– O: {Form1, Form2, List1, List2}.

Table 1 gives the names of all the user attributes along with their possible
values. Table 2 gives the names of each object attribute and their corresponding
values. The set of actions allowed is given by � = {apply, verify, approve}.
Tables 3 and 4 show the FU and FO, respectively, while Table 5 shows the set
of authorization policies P for XYZ.

Table 1. User Attributes and their Possible Values

UA Range of UA

Designation {student, null}
Course {ug, pg, null}
Role {committee member, applicant, null}
Type {fresher, member, null}

The SoD requirements for University XYZ are as follows:

s1 =<{(apply, Form1), (approve,Form1)}, 2>

s2 =<{(verify,Form1), (approve,Form1)}, 2>

ω = {s1, s2}
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Table 2. Object Attributes and their Possible Values

OA Range of OA

Type {form, document}
Subtype {application form, renewal form, new applicant list, renewal

applicant list}
Category {dramatics, dance}
Protection Level {read-only, read-write}

Table 3. User-User Attribute Assignment

U Designation Course Role Type

Tom Student ug Applicant Fresher

Alice Student pg Applicant Member

John Null Null Committee member Null

It is observed from Tables 1, 2, 3, 4 and 5 that, while satisfiesϕ[s1] is true,
satisfiesϕ[s2] is false. This is due to the presence of the policies p5 and p6
through which the user John is getting authorized to both the tuples (verify,
Form1) and (approve, Form1). Thus, the ABAC state defined above is not safe.

3 Problem Formulation and Complexity Analysis

We next formally define the SoD verification problem in ABAC.

3.1 Problem Definition

Definition 2. ABAC-VF-SoD (SoD Verification in ABAC): Given an ABAC
state ϕ and a set of SoD policies ω, an instance of ABAC-VF-SoD takes the
form < ϕ, s >, where s ∈ ω. It asks whether satisfiesϕ[s] is true.

If answer to satisfiesϕ[s] is true for each instance of an ABAC-VF-SoD
problem, only then the ABAC state ϕ is considered to be safe. Next, we study
the complexity class of ABAC-VF-SoD.

Table 4. Object-Object Attribute Assignment

O Type Subtype Category Protection Level

Form1 Form Application form Any Read-write

Form2 Form Renewal form Any Read-write

List1 Document New applicant list Dance Read-only

List2 Document Renewal list Dance Read-only
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Table 5. ABAC Authorization Policies

p1 = <(Designation = student, Course = ug, Role = applicant, Type =
fresher), (Type = form, Subtype = application form, Category = dance,
Protection Level = read-write), (apply)>

p2 = <(Designation = student, Course = ug, Role = applicant, Type =
fresher), (Type = form, Subtype = application form, Category =
dramatics, Protection Level = read-write), (apply)>

p3 = <(Designation = student, Course = pg, Role = applicant, Type =
new), (Type = form, Subtype = application, Category = dance,
Protection Level = read-only), (apply)>

p4 = <(Designation = student, Course = pg, Role = applicant, Type =
Member), (Type = Form, Subtype = application form, Category =
dramatics, Protection Level = read-only), (apply)>

p5 = <(Designation = any, Course = any, Role = committee member, Type
= any), (Type = form, Subtype = application form, Category = any,
Protection Level = read-only), (verify)>

p6 = <(Designation = any, Course = any, Role = committee member, Type
= any), (Type = form, Subtype = applicant list, Category = any,
Protection Level = read-only), (approve)>

Theorem 1. ABAC-VF-SoD is coNP complete

Proof. To prove that ABAC-VF-SoD is coNP complete, we prove that the com-
plement of ABAC-VF-SoD, denoted by ABAC-VF-SoD′, is NP-complete. Given
a set ω of SoD policies and an ABAC state ϕ, an instance of ABAC-VF-SoD′

problem asks whether satisfiesϕ[s] is false.
ABAC-VF-SoD′ is in NP: Suppose a k-n SoD policy s ≡ 〈Per, k〉 and a set

of k′ users are given, such that k′ ≤ k and it is claimed that the given k′ users
together violate the SoD policy s. This claim can be easily verified by finding the
union of the set of tuples accessible by the set of k′ users, using the authorization
policies P and then comparing it with the Per set of the SoD policy. If the set of
tuples accessible by k′ users together forms a superset of Per, then satisfiesϕ[s]
is false. This can be done in polynomial time.

ABAC-VF-SoD′ is NP-hard: To prove that ABAC-VF-SoD′ is NP-hard, we
reduce the decision version of a well known NP-hard problem, namely the set
covering problem (D SCP) [1] to the ABAC-VF-SoD′ problem. D SCP is defined
as follows: Given a set of elements called the universe U, a set S of m subsets of
U and a value K, does there exist a set of K subsets of S whose union equals U.
The steps for constructing a k-n SoD policy from a set covering problem 〈U, S,
K〉 such that |U | = n are as follows:

– Map each element of the universe U to a t ∈ SoD
– Assign k = K + 1.

If the size of the solution for the set covering problem is K, then at least K + 1
users are required to cover all the t in the k-n SoD policy. The steps for creating
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an ABAC state ϕ are as follows: create a user for each set N ∈ S. If a set of K
subsets together covers all the elements of U, then a minimum of K + 1 users
together are required to cover all the (action, object) pairs in the SoD. The above
reduction can be done in polynomial time.

Algorithm 1. CHECK SoD BF(s = 〈{t1, t2, ... , tn}, k〉, P, FU )
1: for each subset S ∈ 2U do
2: accessible tuples ← set of tuples τ ⊆ {t1, t2, ... , tn} accessible by the members

of S
3: if (accessible tuples ⊇ {t1, t2, ... ,tn} &&|S| < k) then
4: return false
5: end if
6: end for
7: return true

3.2 Brute Force Approach for Solving ABAC-VF-SoD

A brute force algorithm for solving ABAC-VF-SoD is given in Algorithm 1.
CHECK SoD BF generates all the subsets of U and then, finds the set of tuples
accessible by its members and stores it in accessible tuples. If the cardinality of
accessible tuples is less than k and also it contains all the tuples in SoD, then
the algorithm returns false. The algorithm will return true only if SoD is not
violated at all. As is obvious, such an algorithm needs an exponential number
of iterations and hence, is not practical for reasonable number of users, objects
or access control policies.

4 Solving ABAC-VF-SoD Using Mutual Exclusion

As mentioned above, a tuple t in an SoD policy is of the form (a, o). For a user u
to be able to perform the action a on the object o, there must be a policy p ∈ P
that allows u the requested action. We denote such policies which allow a user
to perform actions on objects as valid for that user. The set valid[u] consists of
all valid policies for a user u. If a policy p allows access to a tuple t of an SoD
policy, then p is said to be relevant for t. The set relevant[t] contains all such
relevant policies. The set of all tuples which can be accessed using a policy p is
denoted as valid tuples[p]. Using these notations, the set of all tuples of an SoD
policy for which a user is authorized can be represented as:

auth−tuples[u] = {t| ∃p ∈ valid[u] ∧ t ∈ valid−tuples[p]}
An SoD puts a constraint on the set auth tuples[u], which in turn can be

enforced by putting a constraint on the set valid[u]. The cardinality of the set
valid[u] for a user u can be restricted by declaring policies to be mutually exclu-
sive. If two policies p1 and p2 are declared to be mutually exclusive, then no user
can have both of these policies in his valid set.
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Definition 3. A t-m MEP (t-out-of-m MEP) policy is expressed as MEP〈{p1,
p2,......, pt}, m〉, where each pi is an authorization policy and 1 < m ≤ t.

This definition of MEP conveys that no user in the system can have |valid[u]| ≥
m. If a user violates an MEP policy e, then it is represented as violatese[u]. The set
of MEP policies of an ABAC system can be represented as ξ = {e1, e2, ...., en}.

Example 2. Consider that the ABAC system given in Example 1 has a mutual
exclusion requirement as follows:

– No user can apply for both dance and dramatics
– No user can both apply and approve the application form for any of the activ-

ities.

From Table 5, the set ξ of the system will have the following mutual exclusion
constraints:

ξ = {e1, e2, e3, e4, e5, e6}, (1)

where
e1 = 〈{p1, p2}, 2〉
e2 = 〈{p3, p4}, 2〉
e3 = 〈{p1, p6}, 2〉
e4 = 〈{p2, p6}, 2〉
e5 = 〈{p3, p6}, 2〉
e6 = 〈{p4, p6}, 2〉

It can be easily verified that none of the users violates e2, e3, e4, e5 and e6
but the MEP constraint e1 is violated by Tom.

Definition 4. ABAC-VF-MEP (Verification of MEP in ABAC): Given a set
of mutually exclusive policies ξ and the user-user attribute assignment relation
FU , an instance of ABAC-VF-MEP takes the form < e,FU >, where e ∈ ξ. It
asks whether there exists a user u ∈ U for which violatese[u] is true.

An ABAC state ϕ is considered safe with respect to a set of MEP policies ξ,
if and only if, all instances of ABAC-VF-MEP return false. The ABAC-VF-MEP
problem can be solved using Algorithms 2, 3 and 4.

Algorithm 2. CHECK MEP SET(ξ = {e1, e1, ... , en}, FU )
1: flag = true
2: for each e ∈ ξ do
3: flag = CHECK MEP(e, FU )
4: if (flag == false) then
5: return false
6: end if
7: end for
8: return true
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Algorithm 3. CHECK MEP(e, FU )
1: for each user u ∈ U do
2: valid[u] = Find valid Set(e, Fu, u)
3: if (|valid[u]| > m) then
4: return false
5: end if
6: end for
7: return true

Algorithm 4. Find valid Set(e, Fu, u)
1: valid[u] ← null
2: for each p ∈ e do
3: if (Aval[u] ⊇ USERuan=uav of p) then
4: valid[u] ← valid[u] ∪ {p}
5: end if
6: end for
7: return valid[u]

Algorithm 2 takes a set ξ of MEP constraints of the form e=〈{p1, p2,......,
pt}, m〉 and the user-user attribute assignment relation FU of an ABAC system
as input. The algorithm returns false, if there exists an e ∈ ξ and a user u
for which violatese[u] is true. To check whether e is violated or not, it uses the
function CHECK MEP given in Algorithm 3. CHECK MEP takes a single MEP
constraint and the user-user attribute assignment relation FU of ϕ as input and
returns false, if there exists any user u for which violatese[u] is true. The function
Find Valid Set given in Algorithm 4 finds the valid set for users. To find a valid
policy for a user, it uses Aval[u], which consists of the set of all user attribute-
value pairs for the user u.

Theorem 2. ABAC-VF-MEP is in P

Proof. One of the possible ways for solving ABAC-VF-MEP is given in Algo-
rithm 2. In the algorithm, the for loop of Lines 2–7 is executed at most |ξ| times.
For each constraint, the function CHECK MEP is executed once. In the function
CHECK MEP, the for loop of Lines 1–6 is executed at most |U| times. For each
u ∈ U , it invokes the function Find Valid Set once. The for loop of Lines 2–6
of Find Valid Set is executed at most |P| times (|e| ≤ |P|). Hence, the overall
complexity of the algorithm is O(|ξ||U||P|).

The fact that ABAC-VF-SoD is intractable while ABAC-VF-MEP is in P,
makes the use of ABAC-VF-MEP a suitable approach to solve ABAC-VF-
SoD and thus enforce SoD in an ABAC system. However, it should be noted
that, while an ABAC-VF-SoD instance takes input in the form of SoD tuples,
an ABAC-VF-MEP instance takes input in the form of authorization policies.
Thus, one needs to reduce, a step that is not required to be performed on-
line, an instance of ABAC-VF-SoD to an instance of ABAC-VF-MEP (other-
wise, ABAC-VF-SoD would not be in coNP, as already proved). To do so, an
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instance of ABAC-VF-SoD is initially transformed into an intermediate form,
which is based on authorization policies and then from that intermediate form,
it is transformed into an instance of ABAC-VF-MEP. Thus, reduction of an
instance of ABAC-VF-SoD problem into an instance of ABAC-VF-MEP is a
two step process:

– Generation of SoAP (Separation of Authorization Policies, the intermediate
form) from SoD

– Generation of MEP from SoAP.

Generation of SoAP from SoD. A SoAP policy puts a constraint on the
cardinality of the set valid of a user. It can be formally defined as follows:

Definition 5. A k-n SoAP (k-out-of-n Separation of Authorization Policy) is
defined as SoAP〈{p1, p2,......, pn}, k〉, where each pi ∈ P, 1 < k ≤ n.

This definition of SoAP conveys that to cover every pi ∈ SoAP, at least k users
are required. A p is covered by a user u, if p ∈ valid[u]. For a given SoD policy,
several SoAP policies can be generated. A minimal SoAP policy for an SoD policy
is the one which uses minimum number of authorization policies to enforce the
SoD policy.

An algorithm to generate an SoAP policy, which implicitly enforces an SoD
policy, is given in Algorithm 5. The algorithm CREATE SoAP takes an SoD
policy SoD, the set of authorization policies P and the user-user attribute assign-
ment relation FU as input and generates a reduced set of authorization policies
P ′. P ′ is then passed to a function CREATE MINIMAL SoAP to generate the
minimal SoAP policy.

Algorithm 5. CREATE SoAP(SoD <{t1, t2,......, tn}, k>, P, FU )
1: for each t ∈ SoD do
2: find relevant[t]
3: end for
4: P ′ = ∪t∈SoD relevant[t ]
5: SoAP ← CREATE MINIMAL SoAP(SoD, P ′ , FU )
6: if (SoAP != null) then
7: return SoAP
8: end if
9: return “SoD cannot be enforced”

The CREATE MINIMAL SoAP function given in Algorithm 6 generates all
possible subsets of P ′. Among all these generated subsets, it returns the set which
is of minimal cardinality and also covers all the tuples of the input SoD. If the
size of the subset thus found is less than the number of users required in the
original SoD, then the algorithm returns “SoD cannot be enforced”as the output.
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Generation of MEP from SoAP. For a given SoAP policy, various sets
of MEPs can be generated. Different MEP constraints put different levels of
restrictiveness on the valid set of users. Every SoD policy can be enforced using
(|P|-2) MEP constraints. An algorithm for generating a t-m MEP constraint
from a k-n SoAP is given in Algorithm 7.

The algorithm GenerateMEP takes a SoAP policy as input and returns the
set of MEP constraints which together enforce the input SoAP. To understand
the behavior of the GenerateMEP algorithm, consider following cases:

Algorithm 6. CREATE MINIMAL SoAP(SoD, P ′ , FU )

1: for q → 0 to (2|P′|-1) do
2: policy set[q] ← null
3: sod tset[q] ← null
4: pset size[q] ← null
5: end for
6: q ← 0
7: for each pset ∈ 2|P′| do
8: policy set[q] ← pset
9: pset size[q] ← |pset|
10: sod tset[q] ← ∪p∈pset auth policy[p]
11: q ← q + 1
12: end for
13: min ← ∞
14: for i → 0 to q do
15: if (sod tset[q] {t1, t2,......, tn}) &&(pset size[q] < min) then
16: min ← pset size[q]
17: location ← q
18: end if
19: end for
20: if (min >= k) then
21: return <policy set[location], k>
22: end if
23: return null

– SoAP = < {p1, p2, p3, p4, p5}, 2 >. This SoAP policy states that at least two
users are required to cover all the authorization policies. In other words, no
user can have p1, p2, p3, p4 and p5 in its valid set. So, the algorithm returns
the MEP constraint < {p1, p2, p3, p4, p5}, 5 >

– SoAP = < {p1, p2, p3, p4, p5}, 5 >. This SoAP policy states that at least five
different users are required to cover p1, p2, p3, p4 and p5 in their valid sets. This
implies that no user can have more than one authorization policy out of p1, p2,
p3, p4 and p5 in its valid set. So, the algorithm returns 〈{p1, p2, p3, p4, p5}, 2 〉.

– SoAP = < {p1, p2, p3, p4, p5}, 4 >. This SoAP policy states that at least four
different users are required to cover all the p1, p2, p3, p4 and p5 in their valid
set. This means that out of p1, p2, p3, p4 and p5 none of the users should have
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Algorithm 7. GenerateMEP(SoAP = < {p1, p1, ...., pn}, k >)
1: if ( k == 2) then
2: return < {p1, p2, ...., pn},n >
3: end if
4: if ( k == n) then
5: return < {p1, p2, ...., pn}, 2 >
6: end if
7: return all size-(n-1 ) subsets of {p1, p2, .... , pn} with m = k -1 and the set {p1,

p2, .... , pn} with m = k

more than two authorization policies in their valid set. In order to ensure this,
the algorithm generates all the subsets of {p1, p2, p3, p4, p5} of cardinality 3
as well as the complete set {p1, p2, p3, p4, p5}, each having m equal to 3.

We now give an example showing the generation of SoAP from an SoD policy
and the generation of MEP constraints from the obtained SoAP policy.

Example 3. Consider an ABAC system having the set of authorization policies
P = {p1, p2,......, p10} and two SoD policies s1 = <{t1, t3}, 2> and s2 = <{t1,
t2, t3}, 3>. Let the relevant sets for t1, t2 and t3 be as follows:

– relevant[t1] = {p1, p3, p4}
– relevant[t2] = {p3, p5}
– relevant[t3] = {p6}.

SoAP Generation Using CREATE SoAP. For s1, the reduced policy set P ′

will have {p1, p3, p4, p6} and the minimal SoAP will be of the form <{p1, p6},
2>2. For s2, the reduced policy set P ′ will be {p1, p3, p4, p5, p6} and the minimal
SoAP will be of the form <{p3, p6}, 3>. For s2, the algorithm CREATE SoAP
will return “SoD cannot be enforced”.

MEP Generation Using GenerateMEP. For the SoAP policy <{p1, p6},
2> as mentioned above, the generated MEP is <{p1, p6}, 2> implying that no
user can have more than one policy out of the set {p1, p6} in his valid set.

It can be observed that, while the generation of MEP from an SoAP using the
algorithm GenerateMEP can be done in polynomial time, generation of SoAP
from SoD using the algorithm CREATE MINIMAL SoAP (given in Sect. 4 as
Algorithm 6) is not polynomial. However, it may be noted that, the algorithm
CREATE MINIMAL SoAP would normally be run off-line since the policies in
an ABAC system are more stable as compared to the user-user attribute map-
pings. For any change in user-user attribute mappings as required in a dynamic
system, the administrator needs to run only the algorithm CHECK MEP SET.

2 The other possible minimal set are {p3, p6} or {p4, p6}.
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5 Experimental Evaluation

To study the run time behavior of both ABAC-VF-SoD and ABAC-VF-MEP,
we have built a synthetic data generator that takes the number of users, objects,
authorization policies and size of SoD policies as input, and generates user-user
attribute mappings, object-object attribute mappings, authorization policies as
well as SoD policies for an ABAC system. For the experiments, Java (7.0.1–17)
on a Windows 7 system with 64-bit i5 processor @ 2.50GHz and 4GB RAM
is used.

The effect of increase in the number of users on the execution time of the
brute force approach (Algorithm 1) for solving the ABAC-VF-SoD problem is
shown in Fig. 1. The data set used for the analysis consists of 100 authorization
policies and 10–5 SoD policies. From the figure, it is seen that the run time
of the algorithm increases exponentially with increase in the number of users.
This is because the algorithm needs to check every subset of the set USER (see
Subsect. 3.2). The execution time is largely dependent on the cardinality of the
authorized user set. In the worst case, the size of this set would be same as the
number of users in the organization, making direct checking of SoD violation
impractical whenever there is a change in the user-user attribute value relation,
including assigning user attribute values to new users.

Fig. 1. Variation in execution time of ABAC-VF-SoD with increase in number of users

The effect of increase in the number of users and number of policies on
the execution time of the CHECK MEP algorithm (Algorithm MEPCheck) for
solving ABAC-VF-MEP is shown in Figs. 2 and 3, respectively. The figures show
that a linear increase in the number of users or the number of policies causes a
close to linear increase in the run time of the algorithm.

We also carried out experiments with the sample university data set avail-
able from http://www3.cs.stonybrook.edu/∼stoller. The smallest size data set
consists of 35 users and 10 rules (authorization policies). As the number of
authorization policies is fixed to 10 in each data set, we provide only the effect

http://www3.cs.stonybrook.edu/~stoller
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Fig. 2. Execution time of ABAC-VF-MEP with increase in number of users

Fig. 3. Execution time of ABAC-VF-MEP with increase in number of policies

of the increase in the number of users on the execution time. Since the smallest
data set has 35 users, we were unable to run Algorithm 1 on this data set to
completion as even for 20 users, the execution time is in hours (refer to Fig. 1).
On this data set, execution time for Algorithm 4 is reported in Table 6. Form the
table it can be seen that, even for the largest data set consisting of 330 users,
CHECK MEP takes only a few milliseconds. Thus, this is a practical approach
for verifying whether any change in the relation FU violates the SoD policies.

6 Related Work

There is a sizable amount of literature on ABAC in general. In [15], a logic based
framework for ABAC is proposed in which access policies are specified in the
form of free logic programs that admit primitive recursion using the CLP(SET )
version of set theory. A trust based access control model called TrustBAC is
introduced in [12]. It extends the conventional RBAC model with the notion
of trust levels. Here, users are assigned to trust levels instead of roles based on
their credentials. Trust levels are assigned to roles, which, in turn, are assigned
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Table 6. Execution Time of ABAC-VF-MEP with increase in the Number of users

No. of Users Execution time (in msec)

35 23

132 103

167 117

244 139

330 157

to permissions as in RBAC. In [14], authors introduce ABAC and suggest its
use as an access control model for the open environment. The present state and
future trends in access control is surveyed, and it is shown that the new trend in
access control is part of future communication infrastructure supporting mobile
computing.

In [13], the ABAC model has been presented in terms of authorization archi-
tecture and policy administration. It is also shown how ABAC can be used to
secure web service invocations. Advantages of ABAC over other access control
mechanisms for web based services is also demonstrated. Jin et al. [9] show
how authorization policies in DAC, MAC and RBAC can be expressed using
ABAC. It establishes a formal connection between theses three successful classi-
cal models and the ABAC model. In [6], a methodology for integrating modeling
and analysis of organizational workflows and ABAC policies is proposed. The
proposed methodology helps to identify workflow activities that are not being
protected by access control policies and to improve existing access control poli-
cies. In [10], an approach to integrate ABAC with RBAC by modeling RBAC in
two different levels is introduced. The first level, referred to as the aboveground
level, is a standard RBAC model extended with environment, and the second
level, referred to as the underground level, is used to represent security knowl-
edge in terms of attribute based policies. Thus, it helps to bring the advantages
of RBAC into ABAC. In [4], NIST provides a comprehensive definition for the
ABAC model.

Very recently, a few approaches for mining attribute based policies have been
proposed. In [8], the authors present a methodology for mining ABAC policies
from RBAC policies and attribute data. The proposed methodology splits a role
to generate rules. Roles are split in such a fashion that the set of permissions
assigned to those roles is the Cartesian product of a set of resources and a
set of operations. While splitting, a correspondence between the resulting split
roles and the mined rules is preserved. [2] performs policy mining by iterating
over tuples of the user-permission relation and uses selected tuples as seeds for
constructing candidate rules. The highest-quality candidate rules are selected
to be included in the generated policy. In [3], a multi-objective evolutionary
approach is used for mining policies. The proposed methodology aims at learning
a policy consistent with the input requests and does not use those attributes
which uniquely represent user and resource identities and hence, exploits the
true potential of the ABAC paradigm.
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There is also a significant amount of work towards specifying constraints in an
ABAC system. In [9], a policy specification language called ABACα, which can
specify policies for authorizing a permission as well as constraints on attribute
assignment, is proposed. The set of constraints specified in [9] applies restric-
tions on the values a subject attribute may take when the subject is created
or an object attribute may get when the object is created. A constraint apply
only when specific events such as a user modifying a subjects attributes occur.
In [7], a policy specification language called ABCL (Attribute based Constraint
Specification Language) is proposed. It provides a mechanism to represent dif-
ferent kinds of conflicting relations among attributes in a system in the form
of relation sets. While the constraints in ABACα are event specific, the con-
straints in ABCL are event independent and are to be uniformly enforced no
matter what event is causing an attribute value to change. They are specified as
restrictions on a single set-valued attribute or restrictions on values of different
attributes of the same entity. Nurmamat and Rahman [5] examine the potential
relationships between subjects, objects and also the relationships among them.
Given an initial ABAC system, a revised system is generated based on subject
similarity.

Although a few types of constraints have been studied for ABAC, this paper
is the first ever work that comprehensively studies the effect of SoD on ABAC
and how one can enforce the same.

7 Conclusion and Future Scope

In this work, we have shown how Separation of Duty can be represented in terms
of ABAC components. We introduced two problems, namely, the ABAC-VF-
SoD problem and the ABAC-VF-MEP problem. While ABAC-VF-SoD has been
shown to be intractable, ABAC-VF-MEP can be efficiently solved in polynomial
time. It has been shown that SoD verification can be done efficiently if we can
generate a set of mutually exclusive policies corresponding to an SoD policy. As
a future work, we plan to formulate a strategy which can effectively determine
the set of MEP constraints that are most effective and least restrictive for a
given SoD policy.
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Abstract. People often share sensitive personal information through
online social networks (OSNs) to keep in touch with their friends and
families. Such sensitive information if leaked inadvertently to malicious
third parties may have disastrous consequences on the lives of individu-
als. Access control policies need to be specified, analyzed, enforced, and
managed in a simple manner for the regular OSN users. We demonstrate
how this can be done. We first propose a simple model that captures
the typical OSN features and show how to represent it using an Entity-
Relationship Diagram. The numerous features of an OSN interact with
each other in subtle ways – this makes it easy for the näıve user to
make misconfiguration errors. Towards this end, we illustrate how our
OSN model can be formalized in Alloy and its constraints adequately
captured. Alloy has an embedded SAT solver which makes it amenable
to analysis. We illustrate how potential misconfigurations caused by the
user can be automatically detected by the SAT-solver. Finally, we show
how OSN policies can be enforced, managed, and changed through Policy
Machine which is an attribute-based access control framework.

1 Introduction

Online Social Networks (OSNs) are used for various purposes and impact society
in many different ways. For example, on an individual level, they help families
and friends separated by distance keep in touch and thus help mitigate undesir-
able effects of long distance relationships. Sensitive personal information is often
shared through OSNs.

Organizations have used the data generated in OSNs to do targeted advertis-
ing campaigns, develop new products, perform market research, trend analysis
and reputation monitoring, and vet and hire human resources. Third parties can
also misuse this information with disastrous consequences on individuals such
as damaged reputation, financial hardships, or compromised physical safety and
security. Thus, it is important to protect sensitive information shared in OSNs.
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OSNs have evolved from simple networks of members sharing information to
large networks whose differing types of relationships and interactions make them
difficult to understand and analyse. Researchers have proposed access control
policies [3,4,14] for OSNs. Relationship-based access control (ReBAC) policies
for OSNs are based on the structure, and on different models of sharing [2,4,5,9,
15–17]. In a ReBAC system a member will give the right to access, or the right
to perform an operation on, private objects they own to other members based on
their direct and indirect relationships. In access control for OSNs, a social graph
represents the relationships and the links formed among users and artifacts on
which access control rules are evaluated. The wide variety of artifacts that are
posted by the user together with the various features supported by OSNs makes
configuring the access control rules hard.

OSN access control policies on the various artifacts are not necessarily inde-
pendent, and interact in subtle ways that may give rise to inconsistencies and
conflicts. In such cases, the default conflict resolution mechanisms decide which
policies have higher priority. Thus, if a user has specified policies in an incorrect
manner, his sensitive information may be leaked unintentionally. Researchers
have worked on misconfiguration detection, that is, on uncovering situations in
which the user’s intent is inaccurately mapped to her access control settings
[1,11–13].

Correct specification of access control policies is not enough. This is because
OSNs are, by their very nature, dynamic. The set of users in an OSN, the
resources needing protection, and the policies of users are subject to change.
Moreover, OSNs introduce features and capabilities to make them more respon-
sive to the functional needs of the user. However, all of these pose special chal-
lenges for specification, enforcement, and management of access control policies
of the user. Towards this end, we provide tools and techniques to the näıve user
so that he can correctly specify, enforce, and manage his OSN policies.

We start by expressing OSN policies using an Entity Relationship Diagram.
Such a diagram is easy to understand and use, but fails to capture all the con-
straints in the OSN. Moreover, it is also not amenable to automated analysis.
Automated analysis is needed to study and understand how the different fea-
tures of the OSN interact with each other and to detect how such interactions
may cause misconfigurations.

We use Alloy [10] for the purpose of automated analysis. Alloy is a for-
mal modeling language capable of expressing complex structural constraints and
behaviour. Alloy is supported by an automated constraint solver called the Alloy
Analyzer that searches for instances of the model that satisfy modelled system
properties. The model is automatically translated into a Boolean expression,
which is analysed by SAT solvers embedded within the Alloy Analyzer. A user-
specified scope on the model elements bounds the domain, making it possible to
create finite Boolean formulas that can be evaluated by the SAT-solver. When a
property does not hold, a counter example is produced that demonstrates how
it has been violated. Using our Alloy model, we are able to demonstrate how
the different features give rise to misconfigurations. The misconfigurations may
help the user refine her access control policies.
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The access control policies of the user must be enforced and managed in a
consistent manner. We demonstrate how this can be done using an attribute-
based access control framework. The motivation of using an attribute-based
access control framework is three fold. First, attribute-based access control is
a more general purpose access control model that can express all the different
types of policies associated with a user and is not limited to OSN policies. This
obviates the need for the user to learn multiple types of access control models.
Second, attribute-based control is gaining maturity and it is most likely going
to become the next generation access control standard. Third, it will also pro-
vide the ground work needed to compare between expressing OSN policies using
relationship-based access control vs. attribute-based access control.

We had a choice of using XACML or using the NIST Policy Machine (PM)
[6–8] as our access control framework. XACML provides the language and archi-
tecture for supporting attribute-based access control and it is widely used. PM
originated for the Enterprise Server Environment and provides a consistent pol-
icy enforcement mechanism that supports a wide-range of policies. We decided
to use the PM for several reasons. First, the PM provides a more elegant support
for administering access control that is needed by the users in OSNs. Specifically,
it handles access to data and access to policy governing the data in a uniform
manner. Second, it supports policy evolution. Third, it provides a consistent
framework that can be used to support the various policies associated with a
user.

The rest of the paper is organized as follows. Section 2 provides the OSN poli-
cies that are expressed using an Entity Relationship Diagram. Section 3 presents
the Alloy model and demonstrates how misconfigurations can be automatically
detected using Alloy. Section 4 presents the highlights of the Policy Machine that
are relevant to our current work. Section 5 demonstrates how the policies can be
expressed using the PM framework. Section 6 concludes the paper with some
pointers to future directions.

2 Online Social Network Model

In this section, we describe the various entities and their associations in an OSN.
The different entity sets are denoted by User, Subject, Group, Application, Object,
and Operation as shown in Fig. 1. Each of these entity sets and association sets
are associated with a set of attributes that describe that set.

2.1 Entity Sets in REBAC

User. This is the set of entities who have an account in the OSN. Each user
is associated with a set of attributes. Examples of attributes include identity
and profile. identity gives the identity by which the user is known in the OSN.
Although most of the above attributes are defined by the user, some are incor-
porated by the system. For example, User = {Jane, T im,George,Amy}.
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Group. This is the set of groups in the OSN, some are user created and others
exist in the system by default. Group = {Photography,Running}.

Relationship. The set of relationships supported by the OSN. Specifically, these
are the categories of relations on which access control are decided. It also includes
the category called customized where a user can create his own relations. For
example, Relationship = {Friends, Restricts, Blocks, Bans, Follows}.

Fig. 1. Simple ReBAC

Application. The set of applications that users can install and use in the OSN.
For example, Application = {Solitaire, GreetingCards}.

Subject. A user has several attributes and associations (these are discussed in
the next section), but only some of these attributes and associations are used in
making access control decisions. The set of attributes or associations of a user
that determines access control to a resource is termed as Subject. For instance,
a user may get access to a resource based on his identity, his relationship to the
owner of the resource, membership in some groups, or by virtue of executing
some applications. In this work, the id of the user, Group, Application, and the
relationship that an owner of the object has with the access requester determine
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the access privilege and we refer to them as Subject. For example, the data owner
George may define the subject as Subject = {Running,Amy, Family)}.

Object. The set of resources that need protection. Attribute of an object include
its type which determines the operations on the object. An object can be either
a File or a Folder. Folders are containers that store the individual files. Note
that, the objects may be organized in the form of a directory structure through
the use of folders.

Operation. This is the set of actions that can be performed on objects. For
example, Operation = {Tag, View, Share, Search, Comment}.

2.2 Relationship Sets

In this case, we have several associations between entity sets some of which we
discuss below.

Uses. This association set, Uses, connects the entity sets User to Process and
it is a many to many relation. We use tuple notations to denote the individual
instances of association sets. Note that, We use a tuple notation (ui, aj) to denote
instances of this association set. In other words, (ui, aj) ∈ Uses. Moreover,
(ui, aj) ∈ Uses ⇒ ui ∈ Users∧ aj ∈ Applications∧ aj ∈ uses(ui). For example,
Uses = {(Jane, Solitaire)}.

Membership. This association set, Membership, connects the entity sets Users
to Groups and it has pairs of the form (ui, gm) which indicates that the user ui

is a member of group gi. (ui, gm) ∈ Membership ⇒ ui ∈ Users∧ gm ∈ Groups.
For example, Membership = {(George, Running), (Tim, Running)}.

UUR. This association gives the user to user relation and contains a set of
triples (ui, uj , rm), that specifies that user ui is related by rm to user uj . Note
that, two users ui and uj can be related by multiple relations. For example, we
can have UUR = {(Jane, George, Friends), (Jane, Amy, Follows), (Amy, Jane,
Bans)}.

Mutually Exclusive. This association set MutuallyExclusive gives the pairs of
relations (ri, rj) that are mutually exclusive to each other. It means that two
users ui and uj cannot be related by two relations that are mutually exclu-
sive to each other. The association is symmetric. In other words, (ri, rj) ∈
MutuallyExclusive =⇒ (rj , ri) ∈ MutuallyExclusive. For example, Mutu-
allyExclusive = {(Friends, Blocks), (Blocks, Follows)}.

HierRel. Relations may be ordered, where the ordering relation may be referred
to as HierRel which is transitive and antisymmetric and is defined by the sys-
tem. For any two relations ri and rj , (ri, rj) ∈ HierRel signifies that relation ri
is prerequisite to relation rj and rj also gets all the positive permissions given
to ri. (Friends, Family) is an example of hierarchy. Thus, if a user uk can be
in a relationship rj with um only if she is in relationship ri with um. In other
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words, (ri, rj) ∈ HierRel ∧ (uk, um, rj) ∈ UUR =⇒ (uk, um, ri) ∈ UUR. We
use HierRel+ to denote the transitive closure of HierRel.

HierOper. The operations in an OSN forms a partial order where the order-
ing relation is defined by the system and is referred to as HierOper. For any
two operations opi and opj , (opi, opj) ∈ HierOper signifies that if an entity has
the permission to execute opi on some object r, then it also has the permis-
sion to execute opj on r provided there are no prohibitions defined on it. If the
entity is prohibited from executing opi on object r, then opj may or may not be
prohibited from executing r depending on the type of enforcement. For exam-
ple, (V iew, Tag) is an example where the operations are arranged in a hierarchy.

Permissions. This is the set of allowable and prohibitable operations in a sys-
tem. Each permission is an association between Subjects, Objects and Oper-
ations and has an attribute called kind which is an enumerated type having
values Allow and Deny corresponding to positive and negative permissions respec-
tively. Permissions may be defined by the user or by the system. Example of
a permission is (ui, opi, oi, Allow) which allows user ui to perform operation
opi on object oi. Another example is (rj , opj , oj ,Deny) which prohibits relation
rj from performing operation opj on object oj . Examples of permissions are
(Amy, Share, o9,Deny) and (Solitaire, Traverse, georgefl, Allow).

3 Automated Analysis of OSN Models

We need to formally analyze our Alloy model to detect potential problems with
the configuration and to understand how the elements interact. Moreover, auto-
mated analysis is desirable as they can reveal problems that the user has missed.
Towards this end, we show how to represent such a model in Alloy.

Alloy is a formal modeling language capable of expressing complex struc-
tural constraints and behaviour. Alloy is supported by an automated constraint
solver called the Alloy Analyzer that searches for instances of the model that
satisfy modelled system properties. The model is automatically translated into a
Boolean expression, which is analysed by SAT solvers embedded within the Alloy
Analyzer. A user-specified scope on the model elements bounds the domain, mak-
ing it possible to create finite Boolean formulas that can be evaluated by the
SAT-solver. When a property does not hold, a counter example is produced that
demonstrates how it has been violated.

3.1 Modeling OSN in Alloy

In the following, we show how the OSN can be modeled in Alloy. An Alloy model
consists of signature declarations, fields, facts and predicates. Each signature con-
sists of a set of atoms which are the basic entities in Alloy. Atoms are indivisible
(they cannot be decomposed), immutable (their properties do not change) and
uninterpreted (they do not have any inherent properties). Each field belongs to
a signature and represents a relation between two or more signatures. A relation
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denotes a set of tuples of atoms. Facts are statements that define constraints on
the elements of the model. Predicates are parameterised constraints that can be
used within facts or other predicates.

Listing 1.1 shows a partial Alloy model of Facebook’s access control policies.

Listing 1.1. OSN Policy

sig OSN {
individuals: set Individual,

lists: set List,

objects: set Object,

folders: set Folder,

protected_elements: set (Resource),

owned: set (Resource + Custom),

owners: individuals -> owned,

object_location: folders -> objects,

social_graph: individuals -> individuals -> lists,

permissions,

exceptions

:individuals -> Subject -> protected_elements,

has_access: Individual -> protected_elements}
{

protected_elements = objects + folders

owned = objects + folders + (lists & Custom)

}

The model identifies

1. Groups of elements denoting
(a) the set of individuals that have an OSN account; (corresponds to entity

User in Sect. 2)
(b) the set of lists representing relationship tags including friends, friends of

friends; (corresponds to entity Relationship in Sect. 2)
(c) the set of objects denoting the different types of objects such as pho-

tographs, videos, status updates, etc.; (corresponds to attribute type of
entity Object in Sect. 2)

(d) the set of folders that contains groups of objects; (corresponds to Folder
in Sect. 2)

(e) the set of protected elements representing those elements in the model
that are protected under a policy - objects and folders; (corresponds to
entity Object in Sect. 2) and

(f) the set of elements in owned representing elements that are owned by
individuals - objects, folders, and custom lists. (corresponds to associa-
tion Owns in Sect. 2)

2. Relations denoting
(a) object location shows how objects are arranged in folders;
(b) social graph shows how individuals denote the kinds of relationships

they have with other individuals; for example the tuples (Jim, Bailey,
Blocks), and (Amy, Bailey, Friends) in the social graph means that Jim
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blocks Bailey, and that Amy is friends with Bailey respectively. (corre-
sponds to association UUR in Sect. 2)

(c) owners shows who owns the objects, folders, and custom lists; (corre-
sponds to subset of User in Sect. 2)

(d) permissions and exceptions are the privacy settings for protected
elements; in addition to giving access to named individuals, permis-
sion and exceptions include giving access to lists (of individuals). For
example if the tuple (Jim, Friends, object1) exists in permissions, and
the tuple (Bill, Acquaintances, object1) exists in exceptions, then all of
Bill’s friends except acquaintances have access to object1 ; (corresponds
to entity Permission and its attribute Type in Sect. 2) and

(e) The has access relation represents the resolving of the permissions and
exceptions and tells explicitly who has access to particular elements
protected under the policy which correspond to positive and negative
permissions.

We need additional constraints on the model to faithfully represent OSN
policies. For convenience, we use some of the utilities provided by the Alloy
Analyzer for 2-tuple relations (util/relation), and 3-tuple relations (util/ternary)
in our specifications.

Owners. Each owned element has exactly one owner; this makes the owner
relation a total injection over the owned elements. We can express this con-
straint in Alloy through use of the predicate bijective. We show this constraint
in Listing 1.2.

Listing 1.2. Owners Constraints

bijective[osn.owners, osn.owned]

Objects and Folders. Each object may be contained in only one folder; this
means that the object location relation is injective over the objects. In addition,
a folder and the objects it contains must belong to the same individual. We show
these constraints in Listing 1.3.

Listing 1.3. Constraints for Folders

// each object can only be contained in one folder

injective[osn.object_location, osn.objects]

// a folder and the objects it contains has the same owner

all fol: osn.folders, o: osn.objects |

fol->o in osn.object_location implies

osn.owners.fol = osn.owners.o

Social Graph. The social graph maps the UUR relation in Sect. 2 and describes
the relationships among individuals, and individuals with interest groups. In the
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social graph we exclude self relationships - this makes the subgraph of the
social graph irreflexive in its first two elements; We show these constraints in
Listing 1.4 and use select12[] from the ternary utilities to select the first and
second elements from the social graph.

Listing 1.4. General Constraints for Social Graph

// no self relationships in the social graph

irreflexive[select12[osn.social_graph]]

We can extract acquaintances, close friends, family members, friends,
those blocked or restricted, those placed in custom lists, friends of friends,
and those in an interest group; we describe them in the paragraphs below.

Friends. A tuple, say (Amy, Bailey, Friends) in the social graph means that
Amy and Bailey have established a friendship; such friendships are symmetric,
so the tuple (Bailey, Amy, Friends) will also exist in the social graph. We can
extract those individuals that are friends from the social graph by selecting the
firsts two elements where the third element is Friends. We show these constraints
in Listing 1.5.

Listing 1.5. Constraints for Friends

let friends = select12[osn.social_graph & univ->univ->Friends] |

// symmetry

symmetric[friends]

Individuals denoted as custom, acquaintance, family, and restricted are first
friends with the individuals who marks them as such; for example the tuple (Bai-
ley, Amy, Acquaintance) where Bailey marks Amy as an acquaintance is allowed
in the social graph because Amy and Bailey are also friends; acquaintances, close
friends, family, restricts, and other user defined relationships (custom) may also
be extracted from the social graph in the same manner as friends; these rela-
tionships are constrained as given in Listing 1.6.

Listing 1.6. Social Graph Relationships that depends on Friends

acquaintance in friends

custom in friends

family in friends

restricts in friends

Blocks. An individual that is blocked is not a friend. Listing 1.7 has this con-
straints.

Listing 1.7. Constraints for Blocks

no blocks & friends
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Permissions and Exceptions.

General Constraints for Permissions and Exceptions. A tuple in the permissions
relation gives access to protected elements, and the tuples in the exceptions
relation prohibit access. In other words, they correspond to positive and negative
permissions in the OSN model as shown in Sect. 2. Typically, the owner sets
permissions and exceptions. Some rules about permissions and exceptions are
given below.

1. When an owner of a resource wants exclusive access or wants everyone else
to get access to a resource, she can specify the permission as Only me or
Everyone respectively. For example, the tuple (Amy, Only me, object2) in
permissions would indicate that only Amy has access to object2. If an owner
uses Only me or Everyone to specify permissions on objects, the permissions
cannot be overridden by exceptions on those objects.

2. Individual can give permissions/exceptions on resources they own to their
friends or to their own custom lists.

3. Exceptions can be specified for only those protected elements that have per-
missions defined on them.

We show a part of the constraints for permissions and exceptions for protected
elements, custom lists, and implications of Only me and Everyone permissions
in Listing 1.8.

Listing 1.8. General Constraints for Permissions and Exceptions

// each protected element has at least one permission defined

surjective[perms13, osn.resources]

// each protected element has at least one permission defined

surjective[perms13, osn.resources + osn.copies]

// permissions/exceptions for owned custom lists

all

i: osn.individuals |

let

c = osn.lists & Custom,

ic = i->c | {
(ic in (perms12 + excepts12)) implies

(ic in osn.owners) }

// Implications for Only_me and Everyone permissions

all

r: res |

some (Only_me->r + Everyone->r) & perms23 implies

(#perms23.r = 1and #excepts23.r = 0)
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Resources. We can extract specific permissions and exceptions for resources
and show that any folder and the objects they contain must have the same
permissions and exceptions, and that individuals specify permissions only for
resources they own. We show this in Listing 1.9.

Listing 1.9. Specific Resource Constraints for Permissions and Exceptions

// individuals specify permissions/exceptions for resources they own

((resource_permissions13 + resource_exceptions13) - univ->Friends)

in osn.owners

// a folder and the objects it contains have the same permissions,

// and the same exceptions

all

fol: osn.folders, obj: osn.objects|

fol->obj in osn.object_location implies (

perms.fol = perms.obj and excepts.fol = excepts.obj)

Access to Protected Elements. Resolving permissions and exceptions with
those blocked or restricted by an individual gives the set of users who are able
to access a protected element. In the following, we describe how this is done.

1. Extract the permissions and exceptions for a protected element and replacing
list with the individuals in the list.

2. Remove those blocked or restricted by the owner of the protected element if
the permission for the object and copies that are not public (i.e. Everyone).

We do not show the functions for resolving the access, but show how we
constrain the has access relation where Everyone denotes the universe of indi-
viduals (publicly accessible) where HaveAccessToResource[] is the function we
use to resolve access for objects.

Listing 1.10. Access to Protected Elements

// access to resources

all

i: everyone, r: osn.protected_resources |

let

perm = i->r | {
perm in osn.has_access iff

perm in HaveAccessToResource[osn, r] }

3.2 Misconfiguration Detection

The work of [11] identifies that a user’s mental model of sharing, i.e. what a user
intended to share, may not be actually reflected in the policy configurations. It
is important to detect potential misconfigurations in policy rules and notify the
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user so that he can take some corrective actions. We describe the misconfigura-
tions that can be uncovered through analysis of the Alloy model in the following
paragraphs.

Friend(s) Exist in Both the Allowed and Denied List. If this happens, then the
individuals will not have access to the resource. We show an example of Fig. 2
where Individual0 both grants and denies access to Object for Individual1, and
give the Alloy specification for detecting this misconfiguration in Listing 1.11.

Fig. 2. Misconfiguration: explicit permission and exception for same resource

Listing 1.11. Explicit Allow and Deny

pred IndividualHasExplicitPermissionAndExceptionForResource[

osn: OSN, i: Individual] {
some o: osn.objects |

i in ran[osn.permissions.o] and

i in ran[osn.exceptions.o] }

Smartlist Updates. Facebook supports interest groups consisting of a set of mem-
bers. Members post messages to these groups which are viewable to all other
members. We may want existing group members to be notified when new mem-
bers join the group so that they make informed decisions when submitting their
posts. In the following, we show the Alloy code when a member has posted an
object to the interest group and an individual who is in the member’s restrict-
ed/blocked list joins the interest group. Since these scenarios suggest a before
and after state in the OSN, we can check when state changes detect that these
misconfigurations occur. Alloy specification to check for this misconfiguration is
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given in Listing 1.12; the state prior to the set of the operations is osn and the
state after to the set of operations is osn’.

Listing 1.12. Interest Group Misconfiguration

pred RestrictedNowInInterestGroup [osn, osn’: OSN, o: Object,

restricted: Individual] {
some

restrictor: Individual,

it: Interest_Group |

let

restricts = restrictor -> restricted |

// restrictor is owner of object

restrictor -> o in osn.owners and

restrictor -> o in osn’.owners and

// object is shared with interest group, it

restrictor -> it -> o in osn.permissions and

restrictor -> it -> o in osn’.permissions and

// restriction in both before ans after state of social graphs

restricts in osn.social_graph.Restricts and

restricts in osn’.social_graph.Restricts and

// restrictor’s presence in the interest group

restrictor -> it in univ.(osn.social_graph) and

restrictor -> it in univ.(osn’.social_graph) and

// restricted’s presence in the interest group

restricted -> it not in univ.(osn.social_graph) and

restricted -> it in univ.(osn’.social_graph) and

// restricted’s access

restricted->o not in osn.has_access and

restricted->o in osn’.has_access and

// restrictor’s access

restrictor->o in osn.has_access and

restrictor->o in osn’.has_access }

In this example, we show a textual view of the model found by the Alloy
Analyser in Fig. 3; Fig. 3(a) shows that Individual0 has restricted Individual1,
Individualo has shared Object2 with Interest Group0, and Individual1 is not a
part of Interest Group0, while Fig. 3(b) shows that Individual1 is now a part of
Interest Group0 and now has access to Object2.

For lack of space, we do not show other misconfigurations.
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(a) Before State (b) After State

Fig. 3. Misconfiguration: interest group cause restricted individual to have access to
object

4 Policy Machine

Enterprise computing applications aim to provide data services (DSs) to its
users. Examples of such services are email, workflow management, and calendar
management. NIST Policy Machine (PM) [7] was proposed so that a single access
control framework can control and manage the individual capabilities of the
different DSs. Each DS operates in its own environment which has its unique
rules for specifying and analyzing access control. The PM tries to provide an
enterprise operating environment in which policies can be specified and enforced
in a uniform manner. PM was initially developed for enterprise applications and
is targeted at Microsoft Windows Server environment where the Active Directory
is responsible for user authentication and authorization. The PM follows the
attribute-based access control model and can express a wide range of policies that
arise in enterprise applications and also provides the mechanism for enforcing
such policies.

We present only the specification constructs in the PM that are needed to
model OSN policies. The PM consists of two types of objects: (i) data objects
and (ii) policy objects. We have operations defined on these objects. Examples
of operations on data objects are read and write. Examples of operations on
policy objects are adding users, adding attributes to the users etc. Note that,
operations on policy objects alter the access control state and allows for policy
evolution.

The policy objects consists of 3 entities: (i) users, (ii) processes, and
(iii) objects. Users represent the human users in the system who need access to
resources. The users access resources through some program. A program invoked
by the user is referred to as a process and it inherits the privileges of the invoking
user. Objects are the resources needing protection.
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In addition, we have 3 types of containers: (i) user containers, (ii) object
containers, and (iii) policy containers. Each container is associated with one or
more attributes that characterize the elements contained in them. The containers
group and categorize elements contained in them. Each element can be in one
or more containers.

In addition, the PM defines links, referred to as associations and prohibitions,
between user containers and object containers. Associations describe the access
privileges that users belonging to the given user container have over objects
belonging to the given object container. Prohibitions describe the rights that are
prohibited for users belonging to the user container over the objects belonging
to the given container. The links are labeled with the names of operations that
are allowed and restricted respectively.

Prohibitions can be specified on a user basis or on a process basis to accom-
modate prohibition on a session basis. While granting access, all the policies
associated with the specific user and process with regards to an object are taken
into account. In the case of conflict, prohibition has a higher precedence.

The final component is obligation which describes the sequence of operations
that must occur when an access has occurred. Note that, these operations may
occur over data objects or policy objects. If such operations occur over policy
objects, the access control configuration gets modified.

5 Specifying OSN Model Using PM

In this section, we briefly describe how the OSN model can be represented using
the PM. One of the motivation for using PM for OSNs is the ability to provide
administrative control to the users with regards to configuring their access con-
trol policies. The second motivation for using PM is for automated enforcement
of the policies and to avoid misconfigurations by the user.

5.1 Formalization of Containers in Policy Machine

The core of the PM is represented by the notion of containers associated with
users and objects. In this work, we formalize the notion of containers and also
extend it in order to handle OSN policies.

Definition 1 (Container): A container is a set of elements. If the elements
contained in a container is a set of users, we refer to it as a user container. If
the elements in a container are objects, the container is an object container. If
the elements in a container are policies, it is referred to as policy container or
policy class.

Each container characterizes its members and has multiple attributes for each
of its characteristics. id and owner are two essential attributes for all contain-
ers. id uniquely identifies each container in the system. Each container has an
attribute called owner which identifies the set of users who have administrative
control over the container, such as, adding and removing elements contained in
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them. The owner of a container can be an individual user of the OSN, a group
of OSN users having shared rights, or the system user. When the owner of a
container is an individual user, we refer to it as a private container. When a
group of users share administrative privileges over a container, it is referred to
as a shared container. When the system administrators have ownership, it is
referred to as a system container.

Two containers can be related by the following relationships, namely, disjoint,
contained-in, and overlapping relations. We define these relations below. These
relations play a role in access control decisions.

Definition 2 (Disjoint): If containers A and B are disjoint, then elements
contained in one of them should not be in the other. Formally, A and B are
disjoint, iff ∀x ∈ A, x �∈ B ∧ ∀y ∈ B, y �∈ A. Disjoint relation is symmetric.
Disjoint containers have different sets of elements, so they do not interfere with
each other with regards to access control decisions.

Definition 3 (Overlapping): If containers A and B are overlapping, then ele-
ments contained in one of them may also be present in the other. Formally, A
and B are overlapping, iff ∀x ∈ A, x �∈ B ∨ x ∈ B ∧ ∀y ∈ B, y �∈ A ∨ y ∈ A.
Overlapping relation is symmetric. For an element existing in two overlapping
containers, the privilege is the union of the privileges of the two containers and
the prohibition is also the union of the prohibitions of the two containers.

Definition 4 (Contained-in): If container A is contained-in container B, then
every element in A is also an element in B. Formally, A is contained-in B, iff
∀x ∈ A, x ∈ B. Contained-in relation is transitive. For an element in a container
A that is contained in another container B, the privilege and prohibitions of B
also apply to the element.

5.2 Modeling the Entities and Relationships in the OSN Model

We now describe how we map the various entity sets and association sets in
the OSN Model to match the PM configuration. The PM defines 3 entity sets,
namely, User, Process, and Object. The other entity sets and associations are
described using containers, associations, and assignments, as described below.

User in the OSN corresponds exactly with the set User as defined by the PM.
Group consists of a set of groups that are defined for the OSN. In the PM

framework, we model each group as a container. For the groups Photography
and Running, we create two containers, namely, PhotographyC container and
a RunningC container. This may be a private container or a shared container
depending on how the group is managed. Each user can be part of one or more
such containers and each container can have multiple users. The relation Mem-
bership in the OSN model decides which user is in which container. For example,
if {(George, Running), (Tim, Running), (John, Photography)} ⊆ Membership,
then {George, Tim} ⊆ RunningC and {John} ⊆ PhotographyC.

Application gives the set of application that can be defined for the OSN.
Here again each application is modeled as a container and users can be part of one
or more such containers. The owner of the application may be the individual or



Modeling of Online Social Network Policies 95

the system depending on what is allowed by the OSN. For the set Application =
{Solitaire, GreetingCard}, we create containers SolitaireC and GreetingCardC.
The association Uses in the OSN model is used to propagate the respective
containers. For example, Uses = {(Jane, Solitaire)}, results in user Jane being
in the container SolitaireC which signifies that Jane is invoking the application
Solitaire.

Relationship in the OSN signifies the set of relationships supported by
the OSN. Each user has a set of relationships which are modeled as a set of
private containers which gives her the authority to add or delete users from these
containers. For example, the OSN user George may have FriendsC, BlocksC,
RestrictsC and AllowsC containers. The elements of the association UUR in the
OSN model are used to populate these containers. Suppose UUR = {(Jane,
George, Friends), (Jane, Amy, Follows), (Amy, Jane, Bans)}. User Jane has
container FriendsC which contains George and also has a container FollowsC
which contains Amy. User Amy has a container BansC which contains Jane.

Two relations can be mutually exclusive. Suppose MutuallyExclusive =
{(Friends, Blocks), (Blocks, Follows)}. (Friends, Blocks) are mutually exclusive
means that user George cannot place another user, say John on both the Friends
list and the Blocks list. Mutually exclusive relations are modeled as disjoint con-
tainers; and can be automatically enforced by the system. Thus, for the above
example FriendsC and BlocksC are disjoint containers. Thus, if George places
John in FriendsC container, he will be prohibited from placing John in BlocksC
container.

Two relations may also be related in a hierarchy as depicted by the Hier-
Rel in the OSN model. For example, Friends and Family can form a hierarchy.
Hierarchical relations can be modeled as contained-in containers. Thus, Family
is contained-in the Friends container. Thus, privileges applicable to members
of Friends automatically applies to members of Family. Note that, HierRel is
transitive and can easily be modeled by the contained-in. relation which is also
transitive.

Subject is an abstraction that describes the set of attributes that may give
a user the access. In the PM, the ownership in the various containers determine
the access privilege of a user.

Object in the OSN model is the set of resources needing protection and
corresponds to the PM notion of objects. Each object is also contained in one or
more containers that determine the operations permitted on it. The containers
can be owned by one user, or by multiple users, or by the system.

Operation in the OSN model correspond to the set of actions that can be
performed on objects. In addition, the operations may be ordered in a hierarchy
through HierOper. We have no explicit representation of operations in the PM,
but the association Permissions can be represented which we discuss later.

We use the assignment relation to map users and objects to their respec-
tive containers. Note that, the assignment relation is transitive. In addition, we
have labeled associations that specify the access rights user containers have on
the object containers. Some operations are ordered in a hierarchy. For example,
(View, Tag) is an example of operations arranged in a hierarchy. Thus, if a user
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has the permission to view an object, she also has the permission to tag it. How-
ever, such hierarchies must be flattened and represented as labeled associations.
Figure 4 gives a fragment of an OSN policy that is represented using the PM.

Fig. 4. Using PM to represent OSN policy

6 Conclusion and Future Work

OSNs contain a large amount of sensitive personal information. Inadvertent leak-
age or disclosure can have disastrous consequences. Adding to the complexity
is the fact that OSNs provide numerous features which make it harder for the
näıve user to configure his access control settings in the correct manner. Formal
models, tools, and enforcement mechanisms are needed for specifying, analyzing,
enforcing, and managing the access control settings of the OSN user. We pro-
pose a simple model for expressing OSN policies, and demonstrate how such a
model can be automatically analyzed using Alloy to detect for potential miscon-
figurations. We also illustrate how such a model can be enforced and managed
using PM which is an attribute-based access control framework developed at
NIST. Our future plans involve developing new types of access control models
for OSNs that support advanced features like spatio-temporal access control,
history-based, and retention policies. We also intend to compare relationship-
based access control with attribute-based access control for use in OSNs with
respect to expressiveness, ease-of-use, and complexity.
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Abstract. In recent years, Role Based Access Control (RBAC) has
emerged as the most popular access control mechanism, especially for
commercial applications. In RBAC, permissions are assigned to roles,
which are then assigned to users. The key to the effectiveness of RBAC
is the underlying role set that is used. The process of identifying an
appropriate set of roles that optimally meets the organizational require-
ments is called role mining. One of the most useful constraints that can
be expressed in RBAC is Separation of Duty (SoD). SoD constraints
allow organizations to put a restriction on the minimum number of users
required to complete a critical task. However, existing role mining algo-
rithms do not handle SoD constraints and cannot be easily extended to
incorporate SoD constraints. In this paper, we consider the problem of
role mining when SoD constraints are present. We develop three alter-
native approaches that can be applied either during or after role mining.
We evaluate the performance of all three approaches on several real world
data sets and demonstrate their effectiveness.

Keywords: RBAC · Role mining · Separation of duty · SMER con-
straints

1 Introduction

Resources are protected in organizations by providing appropriate and selective
permissions to users. Traditionally, access control policies were directly specified
in terms of users and their permissions. However, such an access control method
increases the burden on system administrators when the number of users or
permissions increases. RBAC (Role Based Access Control) [1,2] reduces this
administrative overhead by assigning permissions to users through roles. Roles
in RBAC make task re-assignment easier and reduce the complexity as well as
chances of error compared to direct assignment of permissions to users.
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However, RBAC is effective only when the set of roles matches the organiza-
tion’s functional requirements. Therefore, an important step in RBAC deploy-
ment is to define the requisite roles. This process, known as role engineering
[3], can be carried out using top down, bottom up or hybrid approaches [12].
In the top down approach, roles are formed by identifying independent business
processes that are associated with permissions. This approach is often difficult
to handle as organizations consist of hundreds of business processes and is also
known to be cost intensive. On the other hand, the bottom up approach uses the
existing user permission assignments for identifying roles – a procedure referred
to as role mining [4]. A hybrid approach [3] combines elements of both top-
down and bottom-up approaches to include business process knowledge as well
as existing user-permission assignment information.

Note that, the user permission assignment (UPA) information can be repre-
sented as a matrix, in which rows represent users and columns represent per-
missions. Thus, a value of 1 in the (ui, pj) entry of a UPA matrix denotes the
fact that the permission pj is assigned to the user ui. Role mining decomposes
the given UPA matrix into two boolean matrices: User Assignment matrix (UA)
and Permission Assignment matrix (PA), of which UA depicts the assignment of
roles to users and PA depicts the assignment of permissions to roles. While many
different UA and PA combinations exist that can correctly specify the UPA, the
main challenge for role mining algorithms is to find the UA and PA that can do
so optimally. Here, optimality is in terms of some metric such as the number of
roles. Several metrics have been identified in the literature [5,13].

Besides ease of administration, a key benefit of RBAC is that it also allows
specification and enforcement of policies with various constraints such as cardi-
nality, prerequisite, and Separation of Duty (SoD), which match real life situa-
tions [1]. Cardinality constraints limit the maximum number of roles a user or a
permission can belong to, the maximum number of permissions a role can have
or the maximum number of users a role can be assigned to. SoD is considered
to be an important constraint in computer security for the prevention of fraud.
Typically, an SoD constraint (also called an SoD policy) states that at least k
users are required to complete a task that requires n number of permissions, for
given values of k and n.

While many algorithms have been developed for role mining [4,8], none of
these handle the different constraints that can be expressed in RBAC. Harika
et al. [14] were the first to comprehensively address cardinality constraints in
the process of role mining. However, they also do not address SoD constraints,
which are actually the most important constraints that need to be enabled to
eliminate fraud. In this paper, we address precisely this problem – how to identify
an appropriate set of roles while also taking into consideration the existing SoD
constraints.

Note that, while SoD restricts the set of users in terms of permissions, in order
to implement it, RBAC uses Statically Mutually Exclusive Roles (SMER) con-
straints [7]. A t-m SMER constraint ensures that no user is allowed to be a mem-
ber of t or more roles out of a given set of m roles. It is actually quite challenging
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to convert a set of SoD constraints into a corresponding set of SMER constraints
that can enforce the given SoD constraints. Therefore, it is not straightforward
to just use an existing role mining algorithm to identify the UA and PA, and
then to generate the SMER constraints over this to precisely enforce the given
SoD policies.

Thus, our objective in this paper is to take a UPA matrix and a set of
SoD constraints as input, and find a UA and a PA matrix consistent with the
UPA along with a set of SMER constraints that correctly enforce the given SoD
constraints while minimizing the number of roles. We develop three alternative
strategies to solve this problem. The developed solutions fall into two broad
categories, namely SoD-aware and post-processing, based on whether constraints
are considered during or after the process of role mining.

The rest of the paper is organized as follows: In Sect. 2, we present the pre-
liminaries necessary to understand the rest of the paper. In Sect. 3, we introduce
the problem of generating SMER constraints in role mining and describe the
proposed algorithms. We present the results of experimental evaluation of our
work in Sect. 4. We discuss prior work related to this paper in Sect. 5. Finally,
we conclude the paper in Sect. 6 and discuss directions for future research.

2 Preliminaries

We now present some of the basics of the RBAC model, SoD and SMER con-
straints, and Role Mining.

Definition 1 RBAC. The Role Based Access Control (RBAC) model comprises
the following components [1]:

– U , P , R are respectively the sets of users, permissions and roles
– UA ⊆ U × R, a many-to-many mapping of users to roles
– PA ⊆ R × P , a many-to-many mapping of roles to permissions
– Cardinality, Separation of Duty and Prerequisite constraints

We leave out other components like sessions and role hierarchy as they are not
directly related to the work reported in this paper. Also, cardinality constraints
have been considered in the context of role mining in recent literature [6,9,14].
We, instead, focus on the Separation of Duty constraints. In this paper, we use
the term UA (respectively, PA) to denote the user-role assignment (respectively,
role-permission assignment) relation as well as its representation in the form of
a boolean matrix.

Definition 2 k-n SoD Constraint. A k-n SoD constraint states that at least
k users are required together to have a given set of n permissions. It can be
expressed as sod<{p1,p2,...,pn},k> where each pi is a permission for 1 ≤ i ≤ n,
and n, k are integers such that 2 ≤ k ≤ n.
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Typically, these n permissions are required to carry out a sensitive task
and the constraint specifies that no set of k-1 users should be able to com-
plete it. While this constraint restricts a set of users in terms of their permis-
sions, in RBAC, users get permissions through roles. In order to implement SoD,
RBAC uses Statically Mutually Exclusive Roles (SMER) constraints as defined
below [7].

Definition 3 t-m SMER Constraint. A t-m SMER constraint specifies a set of
m roles and no user is allowed to be a member of t or more of these m roles. A
t-m SMER constraint can be expressed as smer〈{r1,r2,...,rm},t〉, where each ri
is a role for 1 ≤ i ≤ m, and t, m are integers such that 2 ≤ t ≤ m.

It has earlier been shown that any t-m SMER constraint can be represented
using a set of t-t SMER constraints, which is defined below [7].

Definition 4 t-t SMER Constraint. A t-t SMER constraint specifies a set of t
roles and no user is allowed to be a member of all the t roles. It is expressed as
smer〈{r1,r2,...,rt},t〉, where each ri is a role for 1 ≤ i ≤ t, and t is an integer
such that t ≥ 2.

The problem of determining whether the UA and PA of an RBAC system
together satisfy an SoD constraint has been shown to be coNP-complete [7].
Unlike SoD constraints, which restrict permissions of a set of users, SMER con-
straints restrict role membership for a single user, and hence, whether an SMER
constraint holds in the UA of an RBAC system can be checked in polynomial
time (PA is not required for checking any violation of SMER constraints). How-
ever, if SMER constraints are to be used to enforce SoD constraints, one needs
to first generate a set of SMER constraints (using the PA) that are adequate to
enforce a given set of SoD constraints.

We consider the problem of generating SMER constraints from SoD con-
straints as an added requirement in role mining. In this paper, we present algo-
rithms for generating SMER constraints from SoD constraints concurrently with
the process of role mining and also alternatively as a post-processing step after an
initial stage of unconstrained role mining. The basic unconstrained Role Min-
ing Problem (RMP) (i.e., role mining without any constraints) is defined as
follows [4]:

Definition 5 Basic Role Mining Problem (RMP). Given a set of users U, a set
of permissions P and a user-permission assignment matrix UPA, find a set of
roles R, a user-to-role assignment matrix UA and a role-to-permission assign-
ment matrix PA such that the UA and PA are consistent with the UPA and |R|
is minimized.

Basic RMP has been shown to be NP-Complete [4]. Significant work [3–5,15–
17] has already been done to find efficient algorithms for obtaining approximate
solutions. However, as mentioned before, none of these handles SoD constraints.
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3 Role Mining and SMER Constraint Generation

In this section, we formally introduce the problem of role mining in the presence
of SoD constraints (RMP SoD) and present our solution approaches.

3.1 Problem Definition

The RMP SoD problem aims to find an appropriate set of roles that satisfy a
given set of SoD constraints. Thus, it can be defined as follows:

Definition 6 RMP SoD. Given a set of users U, a set of permissions P, a user-
permission assignment matrix UPA and a set E of SoD constraints, find a set of
roles R, a user-to-role assignment matrix UA, a role-to-permission assignment
matrix PA and a set C of SMER constraints such that the UA and PA are
consistent with the UPA, C enforces E, and |R| is minimized.

The following example illustrates this. Consider a set of users U = {u1,u2,u3,
u4,u5}, a set of permissions P = {p1,p2,p3,p4,p5,p6}, a UPA matrix as shown in
Table 1 and a set E = {e1, e2} of SoD constraints as shown below:

e1 = 〈{p3, p5}, 2〉 (1)

e2 = 〈{p1, p5, p6}, 2〉 (2)

Table 1. Example UPA matrix

p1 p2 p3 p4 p5 p6

u1 0 1 0 0 1 0

u2 0 1 0 0 1 0

u3 1 1 0 1 1 0

u4 1 1 1 0 0 0

u5 0 0 0 0 0 1

After role mining, a UA (depicted in Table 2) and a PA (depicted in Table 3)
would be generated along with a set C = {C1 ∪ C2} of SMER constraints as
shown below:

C1 = {〈{r1, r2}, 2〉} (3)

C2 = {〈{r1, r3, r4}, 3〉, 〈{r2, r3, r4}, 3〉} (4)

A comparison of the UA and PA matrices as well as the generated set of
SMER constraints (Expressions 3 and 4) with the given UPA matrix and the
set of SoD constraints (Expressions 1 and 2) shows that the decomposition is
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Table 2. Generated UA
matrix

p1 p2 p3 p4 p5 p6

r1 1 1 1 0 0 0

r2 1 1 0 1 0 0

r3 0 1 0 0 1 0

r4 0 0 0 0 0 1

Table 3. Generated PA
matrix

p1 p2 p3 p4 p5 p6

r1 1 1 1 0 0 0

r2 1 1 0 1 0 0

r3 0 1 0 0 1 0

r4 0 0 0 0 0 1

correct and the SoD policies can be enforced using the SMER constraints. It can
be verified that this decomposition is the smallest correct decomposition – i.e.,
it is not possible to obtain a correct decomposition of the UPA into UA and PA
using fewer roles.

3.2 Generating SMER Constraints After Unconstrained Role
Mining

We now discuss several alternative post-processing approaches that generate
SMER constraints after unconstrained role mining. The initial stage of uncon-
strained role mining can employ any of the existing role mining algorithms that
minimize the number of roles [4,8]. In the second stage, SMER constraints are
generated, methods for which are discussed in the following sub-sections. Note
that for this stage, only the PA obtained after unconstrained role mining is used
along with the given set of SoD constraints. The output of the second stage is a
set C of SMER constraints.

Näıve Approach. One possibility is to simply use an existing SMER generation
algorithm in conjunction with an existing role mining algorithm. We term this as
the näıve approach. As discussed earlier, many role mining algorithms exist. For
SMER constraint generation, Li et al. [7]. propose a method that works in two
phases. The first phase translates the given SoD constraints into Role-level Static
Separation of Duty (RSSoD) requirements, i.e., restrictions on permissions in
SoD constraints are mapped to restrictions on role memberships, and the second
phase is the generation of SMER constraints from RSSoD requirements using an
SMER-Gen procedure [7].

Definition 7 k-n RSSoD Requirement. A k-n RSSoD requirement states that at
least k users are required together to have n roles. A k-n RSSoD requirement can
be expressed as rssod〈{r1,r2,...,rn},k〉, where each ri is a role for 1 ≤ i ≤ n, and
n, k are integers such that 2 ≤ k ≤ n.

After getting the RSSoD requirements, all singleton sets of t-m SMER con-
straints that are minimal for enforcing the SoD policies are generated. The main
drawback of this approach is that, generation of RSSoD requirements involves
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finding a minimal set of roles having all the permissions in the SoD policy, which
is computationally very expensive. The methods proposed in the next two sub-
sections avoid this shortcoming.

Generation of 2-2 SMER Constraints. In the first of our proposed post-
processing approaches, we generate a set of 2-2 SMER constraints required to
enforce the given set of SoD constraints. The input is a PA matrix and a set
E = {e1,e2,...,em} of k-n SoD constraints. The output is a set C = {c1,c2,...,cq}
of 2-2 SMER constraints such that C enforces E. Each 2-2 SMER constraint
is expressed as: c = 〈{ri,rj},2〉, which means that, ri and rj are two mutually
exclusive roles, i.e., no user is allowed to be a member of both the roles. Although
2-2 SMER constraints are expected to be quite restrictive in nature, we still
consider generation of 2-2 SMER constraints as they are sufficient to enforce
any enforceable SoD constraint. An SoD constraint ei is not enforceable, if one
of the following conditions hold: (i) all the permissions in ei are assigned to
a single role in the PA matrix and (ii) the given UA matrix already has user
assignments violating the generated 2-2 SMER constraints.

To generate 2-2 SMER constraints for an SoD constraint ei, we first find a
set of roles S such that each role in S has at least one permission in ei. Next,
we check whether any role in S has all the permissions in ei. If so, we declare ei
as not enforceable; otherwise, all valid pairs of mutually exclusive roles in S are
generated. If two roles are mutually exclusive, then each role contains at least
one mutually exclusive permission which is not present in the other role and
permission set of one role is not a subset of the other.

As an example, consider an SoD constraint 〈{pa, pb, pc},2〉 in which pa, pb
and pc are three permissions and at least two users are required together to have
all these three permissions. If there are two roles of which one role has pa and
pb, and the other role has pb and pc, then we declare the two roles as mutually
exclusive as these two roles are not subsets of each other and therefore each role
has at least one permission which is not in the other. This can be determined by
checking two conditions, namely, (i) assign perms[ri] � assign perms[rj ] and
(ii) assign perms[rj ] � assign perms[ri]. assign perms[r] contains the permis-
sions of SoD assigned to the role r, which can be found by using the PA matrix.

The algorithm 2-2 SMER Post Processing for generating 2-2 SMER con-
straints from a PA matrix and a set E of k-n SoD constraints is shown in
Algorithm 1. Here S denotes the set of roles that are affected by an SoD con-
straint ei ∈ E. Lines 5 to 8 of the algorithm determine whether a constraint
is enforceable or not. If it is enforceable, then for every pair of roles in S, Line
10 finds whether they should be declared mutually exclusive. Line 11 verifies
whether the given UA matrix satisfies the mutual exclusivity constraint. If Line
11 returns false, the SoD constraint is declared as not enforceable. The above
steps are repeated for every SoD in E (Lines 3 to 18).

Generating 2-2 SMER constraints for an SoD can be done in polynomial time.
If the number of roles in the set S for the SoD is m, then the time complexity of
finding whether the SoD constraint is enforceable or not is O(m) and the time
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Algorithm 1. 2-2 SMER Post Processing
1: Required: UA, PA, a set E of k − n SoD constraints
2: C = φ
3: for each SoD ei in E do
4: Using PA, find a set S of roles having at least one permission in ei
5: if any role in S has all the permissions in ei then
6: Declare ei as not enforceable
7: continue
8: end if
9: for each pair of roles (ri,rj) in S do

10: if assign perms[ri] � assign perms[rj ] ∧ assign perms[rj ] �
assign perms[ri] then

11: if UA matrix satisfies 〈{ri,rj},2〉 then
12: C = C ∪ {〈{ri,rj},2〉}
13: else
14: Declare ei as not enforceable
15: end if
16: end if
17: end for
18: end for

complexity for generating mutually exclusive roles is O(m2). So the total time
complexity is O(m+m2), which is O(m2).

While 2-2 SMER constraints can be generated quite efficiently as compared
to the näıve approach of Sub-sect. 3.2, in some cases too many SoD constraints
might become non-enforceable if the UA matrix already has user-role assign-
ments that violate the generated 2-2 SMER constraints. We next present a
method which makes an estimate of the highest possible value of t for which
a given SoD constraint can be enforced using t-t SMER constraints. This is
expected to be less restrictive as compared to using only 2-2 SMER constraints.
At the same time, it ought to be more efficient than the näıve approach.

Generation of t-t SMER Constraints. Our second post-processing approach
also considers a PA matrix and a set E = {e1,e2,...,em} of k-n SoD constraints
as input and generates a set C = {c1,c2,...,cq} of t − t SMER constraints such
that C enforces E. To generate t − t SMER constraints for an SoD ei, the first
step, like the previous algorithm, is to find the set of roles S so that each role
in S has at least one permission in ei. The next step is to determine whether
ei is enforceable or not. Two cases for which an SoD ei cannot be enforced are:
(i) The number of roles in the set S is less than k in ei and (ii) At least one role in
the set S has all the permissions in ei. If ei is enforceable, it is checked whether
the permission set of any role is a subset of another role (here, by permission set
we mean only those permissions of a role that are included in ei). If so, then only
2-2 SMER constraints can be generated; else, we determine the largest value of
t for which the following condition is satisfied.

|S| > (k − 1)(t − 1) (5)
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Algorithm 2. t-t SMER Post Processing
1: Required: UA, PA, a set E of k − n SoD constraints
2: C = φ
3: for each SoD ei in E do
4: Using PA, find a set S of roles having at least one permission in ei
5: if number of roles in S is less than k of ei then
6: Declare ei as not enforceable
7: continue
8: end if
9: if any role in S has all the permissions in ei then

10: Declare ei as not enforceable
11: continue
12: end if
13: if permission set of any role is a subset of another (permission set considers only

the permissions of ei that are in the role) then
14: Generate 2-2 SMER constraints similar to Algorithm 1
15: else
16: Find the largest value of t such that |S |>(t-1)(k -1)
17: for each subset of roles R of size t from S do
18: if UA satisfies 〈R, t〉 then
19: C = C ∪ {〈R, t〉}
20: else
21: Declare ei as not enforceable
22: end if
23: end for
24: end if
25: end for

Theorem 1 given below establishes the reason for using this condition. Finally,
we include every subset of t roles in S as a t-t SMER constraint in the set C.
The above steps are repeated for every ei ∈ E.

The algorithm for generating t-t SMER constraints (t-t SMER Post
Processing) is shown in Algorithm 2. Lines 5 to 8 and 9 to 12 determine whether
the constraint is enforceable or not. Lines 13–14 generate 2-2 SMER constraints
if it is determined that t-t SMER constraints cannot be generated. Line 16 finds
the desired value of t. Lines 17–18 verify whether the UA matrix satisfies the t-t
SMER constraints. If Line 18 returns false for any of the t-t SMER constraints,
the SoD constraint is declared as not enforceable, else, it is included in the set
of SMERs.

The time complexity for generating t− t SMER constraints can be computed
as follows. If the number of roles in the set S is m, then the time complexity for
determining whether a constraint is enforceable or not is O(m). Time complexity
to determine whether to generate 2-2 SMER constraints or t-t SMER constraints
is O(m2) and the time complexity for generating all combinations of t out of m
roles is O(m nCk). So the overall time complexity is O(m2+m nCk) which is
O(m nCk).
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Theorem 1. Given a k-n SoD constraint and a set S of roles, the largest value of
t for which t-t SMER constraints can be generated to enforce the SoD constraint
is given by |S| > (t-1)(k-1).

Proof. Roles in set S are the roles containing permissions required to complete
a task needing separation of duty. To enforce a k-n SoD constraint, the task
needs at least k users to get all the n permissions through the roles in S. So, we
need to find a value of t such that even if we assign (t-1) distinct roles to (k-1)
distinct users, these (t-1)(k -1) roles should not be equal to the number of roles
in S, i.e., |S| 	= (t-1)(k -1).

So, after assigning (t-1) roles to (k -1) users, at least one role should be left
in S which is assigned to the kth user. Hence, |S| > (t-1)(k -1).

It may be noted that, the value of t obtained as above is a conservative
estimate. However, finding an exact bound for t would require a computationally
expensive step of examining all possible subsets of roles actually assigned to
users.

3.3 SoD-Aware Role Mining

From the discussions so far, it may be observed that, while the näıve approach
of Sub-sect. 3.2 can precisely enforce the given set of SoD constraints, the 2-
2 SMERs and the t-t SMERs generated in Sub-sects. 3.2 and 3.2, being more
restrictive, might not be enforceable in the UA matrix (which was obtained by
an unconstrained role mining algorithm from the given UPA). On the other
hand, the näıve approach is computationally expensive and might not be feasi-
ble to implement in real-life applications. It may be recalled that the first step
in the näıve approach is to find a minimal set of roles in the PA that together
have n permissions corresponding to a k-n SoD constraint for generating RSSoD
requirements (refer to Definition 7). For this step, initially a set of roles is deter-
mined such that, each role in the set has at least one permission in the SoD.
However, all the roles are not allowed to be included in the minimal set. The
roles that are not included in the minimal set have the same permissions that
are covered by the roles in the minimal set. Finding that set takes a substantial
amount of time.

As an example, consider that role ri is included in the minimal set and role
rj is not included in the minimal set. One of the following three cases may arise:

Case 1: ri and rj have the same set of permissions. In this case, two RSSoD
requirements need to be considered, one including ri and the other including rj .

Case 2: Permission set of rj is a subset of the permission set of ri.

Case 3: Permission set of rj is already covered by the remaining roles in the
minimal set.

So, if we ensure that the above three cases do not occur while forming the
roles, and thus make the role mining step SoD-aware, we can avoid the expo-
nential time required for finding the minimal set as mentioned above.
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Algorithm 3. SoD aware Role Mining
1: Required: UPA, a set E of k − n SoD constraints
2: Determine UserUnc[u] for all users u and PermUnc[p] for all permissions p from

the UPA
3: U represents the set of selected users and P represents the set of selected permis-

sions to form a role
4: while there exists at least one user u or permission p with uncovered edges do
5: Set U=φ, P=φ
6: Select vertex v with minimum number of uncovered edges
7: if v is a user then
8: Call UserSelected FormRole procedure
9: else

10: Call PermissionSelected FormRole procedure
11: end if
12: end while

It may be noted that, these conditions could be embedded in any uncon-
strained role mining algorithm. In this paper, we use the Minimum Biclique
Cover (MBC) based approach proposed in [8] as the unconstrained role mining
algorithm and show how it can be made SoD-aware. In this approach, the UPA
matrix is mapped to an undirected bipartite graph G = ({V1, V2}, E). The two
disjoint sets of vertices V1 and V2 in the UPA are U and P (the sets of users
and permissions), respectively. The edge set E consists of tuples (u, p) where u
∈ U , p ∈ P and permission p is assigned to user u in the UPA. The basic Role
Mining Problem is mapped to the Minimum Biclique Cover finding problem for
this bipartite graph. Each biclique in the minimum biclique cover represents a
role. Since MBC is known to be NP-Complete, a number of different heuristics
were tried in [8]. It was reported that selecting a vertex with minimum number
of uncovered incident edges as the greedy choice in each iteration gives better
result. We use the same heuristic in the approach presented below.

To make the MBC approach for solving RMP SoD-aware, whenever a new
role newR is formed, for every SoD ei, we determine which permissions of newR
are in ei. If the common permissions of newR and ei form a subset of a previously
created role r, then we modify newR and r as it leads to one of the three cases
described above. The common permissions in newR and r that belong to ei are
removed and a new role is created with these permissions.

After the biclique cover is obtained and the UA and PA get created, we
derive RSSoD requirements in linear time by finding the roles having at least
one permission in an SoD. Finally, we generate a set of SMER constraints in
which every SMER constraint is minimal for enforcing an SoD constraint. It is
to be noted that both t-m as well as t-t SMER constraints might get generated
using this method.

The overall procedure for SoD-aware role mining is shown in Algorithm 3
(SoD aware Role Mining). Initially, determine UserUnc[] and PermUnc[] for
all users and permissions. UserUnc[u] contains uncovered permissions for a user
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Algorithm 4. UserSelected FormRole
1: for each p ∈ UserUnc[v] do
2: Add p to P
3: end for
4: for each SoD ei in E do
5: Determine perms SoD[ei]
6: for each role r do
7: if perms SoD[ei] ⊆ assign perms[r] then
8: Call Modify UA PA procedure
9: end if

10: end for
11: end for
12: if P �= φ then
13: Add v to U
14: for each user u �= v do
15: if P ⊆ assign perms[u] and at least one element of UserUnc[u] is an element

of P then
16: Add u to U
17: end if
18: end for
19: end if
20: Form a role with U and P

u and PermUnc[p] contains uncovered users for a permission p. U and P respec-
tively represent sets of selected users and permissions for the newly formed role.
Repeat the process given below until there is no vertex with uncovered edges.

Select a vertex v, which can be either user or permission, with minimum
number of uncovered edges. If v is a user, then call UserSelected FormRole
procedure (Algorithm 4); else, call PermissionSelected FormRole procedure
(dual of Algorithm 4 - not shown separately). In Algorithm 4, Lines 1 to 3
find uncovered permissions of user v and store them in P. For each SoD ei
in E, determine perms SoD[ei] (Line 5). It contains the permissions that are

Algorithm 5. Modify UA PA
1: Required: Role r and constraint ei
2: for each permission p common to perms SoD[ei] and assign perms[r] do
3: Remove p from assign perms[r] and P
4: Add p to tempP
5: end for
6: for each user u �= v do
7: if tempP ⊆ assign perms[u] then
8: Add u to tempU
9: end if

10: end for
11: Form a role with tempU and tempP
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common to P and SoD ei. If there is any role r having the same permissions as
in perms SoD[ei] (Lines 6 to 10), then call Modify UA PA procedure (refer to
Algorithm 5). In Algorithm 5, Lines 2 to 5 remove common permissions in P and
role r and store them in tempP . Lines 6 to 10 find the users whose permission
sets are subsets of tempP and store them in tempU . Line 11 forms a role with
tempU and tempP . It then returns to Algorithm 4. If P is not null, then find
the users whose permission set is a subset of P and at least one permission must
be uncovered (Lines 14 to 18) and store them in U . assign perms[u] contains
the permissions assigned to the user u. Finally, U and P form a role.

4 Experimental Evaluation

All the algorithms presented in Sect. 3 have been implemented in C on a 3.1 GHz
Intel i5-2400 CPU having 4 GB RAM. Nine real world data sets [8,14] shown in
Table 4 were initially considered for the experiments. However, after studying the
data sets, it was found that the Domino, FW1, FW2 and HC data sets cannot
be meaningfully used to study the performance of role mining algorithms under
SoD constraints (although they can be used for testing unconstrained role mining
algorithms) since some sets of users in these data sets have all the permissions
assigned to them (thus they will violate any SoD). Hence, valid SoD constraints
cannot be generated from them.

Table 4. Data set details

Data sets # Users # Permissions # Roles Time (s)

Americas-large (AL) 3485 10127 423 78.78

Americas-small (AS) 3477 1587 213 6.31

APJ 2044 1164 456 5.60

Customer (Cus) 10961 284 276 4.66

Domino (Dom) 79 231 20 <0.01

EMEA (EM) 35 3046 34 0.02

Firewall1 (FW1) 365 709 69 0.11

Firewall2 (FW2) 325 590 10 0.15

Healthcare (HC) 46 46 15 <0.01

The rest of the data sets (in the form of UPA matrices) are given as input
to the SoD-aware role mining approach. For post-processing approaches, the
UA and PA obtained after applying the unconstrained MBC algorithm is given
as input. Details of the number of roles generated and execution time needed
using the unconstrained MBC algorithm are shown in Table 4. Since the data
sets do not inherently contain any SoD constraints, we introduce different k-n
SoD constraints using a simulator. In the simulator, for given values of k and n,
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Table 5. Average number of SMER constraints generated by SoD-aware role mining,
post-processing 2-2 SMER generation and post-processing t-t SMER generation for
different number SoD constraints with different values of k and n. (a) 2-2 SoD (b) 2-3
SoD (c) 3-6 SoD (d) 5-10 SoD. Numbers in square brackets represent the percentage
of SoD constraints that could be enforced.

(a)

Data set
2 − 2 SoD Constraints

20 SoDs 50 SoDs
SoD aware 2-2 post t-t post SoD aware 2-2 post t-t post

AL 20 [100] 984 [95] 984 [95] 50 [100] 2461 [92] 2568 [92]
AS 20 [100] 441 [80] 439 [80] 49 [100] 1279 [84] 1272 [84]
APJ 20 [100] 40 [80] 39 [80] 50 [100] 124 [84] 124 [84]
Cus 19 [100] 19 [95] 15 [80] 48 [100] 48 [96] 36 [78]
EM 19 [100] 57 [80] 54 [80] 48 [100] 142 [84] 138 [84]

(b)

Data set
2 − 3 SoD Constraints

20 SoDs 50 SoDs
SoD aware 2-2 post t-t post SoD aware 2-2 post t-t post

AL 20 [100] 3307 [100] 3306 [100] 50 [100] 7697 [98] 7694 [98]
AS 20 [100] 995 [80] 993 [80] 50 [100] 3365 [84] 3360 [84]
APJ 20 [100] 146 [100] 128 [100] 50 [100] 345 [100] 297 [100]
Cus 20 [100] 32 [60] 19 [100] 50 [100] 81 [58] 49 [98]
EM 20 [100] 172 [95] 163 [95] 50 [100] 425 [98] 404 [98]

(c)

Data set
3 − 6 SoD Constraints

20 SoDs 50 SoDs
SoD aware 2-2 post t-t post SoD aware 2-2 post t-t post

AL 520 [100] 11334 [90] 11334 [90] 1301 [100] 31155 [88] 31155 [88]
AS 488 [100] 2120 [50] 2120 [50] 1309 [100] 5081 [48] 5081 [48]
APJ 506 [100] 553 [95] 574 [95] 1262 [100] 1498 [94] 1556 [94]
Cus 479 [100] 46 [15] 372 [100] 1196 [100] 97 [14] 929 [100]
EM 430 [100] 696 [100] 697 [100] 1103 [100] 1819 [100] 1831 [100]

(d)

Data set
5 − 10 SoD Constraints

20 SoDs 50 SoDs
SoD aware 2-2 post t-t post SoD aware 2-2 post t-t post

AL 5281 [100] 24908 [70] 24908 [70] 13297 [100] 62058 [74] 62058 [74]
AS 4746 [100] 1307 [15] 1307 [15] 11889 [100] 3831 [16] 3831 [16]
APJ 4843 [100] 1459 [85] 1614 [85] 12299 [100] 3924 [90] 4258 [90]
Cus 4531 [100] 7 [5] 2180 [100] 11392 [100] 25 [2] 5461 [98]
EM 3022 [100] 1591 [100] 1594 [100] 7851 [100] 4168 [100] 4178 [100]
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Table 6. Average time (in seconds) for the generation of SMER constraints by
SoD-aware role mining, post-processing 2-2 SMER generation and post-processing t-t
SMER generation for different number SoD constraints with different values of k and
n. (a) 2-2 SoD (b) 2–3 SoD (c) 3–6 SoD (d) 5–10 SoD

(a)

Data set
2 − 2 SoD constraints

20 SoDs 50 SoDs
SoD aware 2-2 post t-t post SoD aware 2-2 post t-t post

AL 236.43 139.71 144.70 484.39 366.24 379.54
AS 13.68 10.12 10.17 26.04 29.27 30.21
APJ 481.18 0.30 0.44 518.63 0.97 1.28
Cus 279.30 < 0.01 0.24 281.49 < 0.01 0.57
EM 48.32 0.02 0.02 69.77 0.05 0.06

(b)

Data set
2 − 3 SoD constraints

20 SoDs 50 SoDs
SoD aware 2-2 post t-t post SoD aware 2-2 post t-t post

AL 246.48 505.56 509.40 531.47 1203.94 1212.81
AS 14.44 30.45 31.84 28.97 89.90 96.28
APJ 486.62 1.58 1.39 527.31 3.61 3.14
Cus 279.27 0.49 0.26 281.48 1.27 0.66
EM 56.16 0.07 0.07 85.03 0.02 0.17

(c)

Data set
3 − 6 SoD constraints

20 SoDs 50 SoDs
SoD aware 2-2 post t-t post SoD aware 2-2 post t-t post

AL 274.23 2022.69 2054.26 663.16 5762.90 5861.89
AS 17.34 117.65 143.63 39.96 280.90 337.96
APJ 496.46 6.70 7.10 552.33 17.98 19.65
Cus 279.26 1.18 5.01 281.45 2.69 12.12
EM 72.57 0.29 0.29 131.09 0.76 0.77

(d)

Data set
5 − 10 SoD constraints

20 SoDs 50 SoDs
SoD aware 2-2 post t-t post SoD aware 2-2 post t-t post

AL 314.58 6164.60 6267.25 844.92 14667.29 15008.82
AS 22.01 260.65 371.36 51.37 5.89 900.52
APJ 509.36 19.72 23.35 580.08 47.04 59.35
Cus 279.24 0.95 28.19 281.40 2.34 70.54
EM 90.60 0.66 0.67 176.17 1.74 0.67
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Table 7. Average number of roles generated for SoD-aware role mining for different
number of SoD constraints and different values of k and n (The number of roles for
the other approaches is the same as that shown in Table 4. These values are repeated
in the first column below for ease of referencing).

Data set 2− 2 SoD 2− 3 SoD 3− 6 SoD 5− 10 SoD

20 SoDs 50 SoDs 20 SoDs 50 SoDs 20 SoDs 50 SoDs 20 SoDs 50 SoDs

AL [423] 443 484 458 519 496 616 550 745

AS [213] 218 254 238 285 257 344 291 411

APJ [456] 461 473 467 481 476 505 489 531

Cus [276] 276 276 276 276 276 276 276 276

EM [34] 48 68 56 83 72 128 90 173

n permissions are chosen randomly from the set of all permissions. We study
the approaches for 4 different types of SoD constraints: 2-2 SoD, 2–3 SoD, 3-6
SoD and 5-10 SoD. The number of SoD constraints considered for each of the
four types are 20 and 50. Although we use real-world UPA matrices, since the
SoDs are synthetically generated, the experiments were repeated 30 times for
each combination of parameters. The (rounded off) mean of the results over 30
repetitions are reported in the tables included in this section.

It may be noted that, for comparative study, we had also implemented the
näıve approach described in Sub-sect. 3.2 that uses Li et al.’s [7] algorithm.
However, generation of RSSoD requirements was found to take an inordinate
amount of time. Although, the algorithm would produce an output for small
test data sets, for the data sets listed in Table 4, even after running for more
than 24 h, the program did not reach completion. Hence, the results could not
be meaningfully reported in this paper. On the other hand, all of the proposed
approaches worked for large data sets as well.

Table 5 shows the number of SMER constraints generated by the three pro-
posed approaches and Table 6 shows their execution time. The number of SoD
constraints that could not be enforced are also reported in Table 5. From the
table it is observed that, for both the post-processing approaches, i.e., 2-2 post-
processing and t-t post-processing, there are a certain number of SoD constraints
that could not be enforced. The SoD-aware approach, however, could enforce
all the constraints. The number of SMER constraints generated by the SoD-
aware approach is also, in general, less compared to the other two methods. For
the cases where some of the SoDs were not enforceable in the post-processing
approaches, the number of corresponding SMERs is less. The number of non-
enforceable SoDs is usually more for the 2-2 post-processing approach compared
to the t-t post-processing approach. A second point to note is that, some of
the entries in the two columns 2-2 post and t-t post are the same, which implies
that the value of t was obtained as 2 even in the t-t SMER constraint generation
algorithm (Lines 13-14 of Algorithm 2).

A further observation, which is intuitively obvious, is that, the number of
SMER constraints (Table 5) and time taken to generate them (Table 6) tend
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to increase as the number of SoD constraints increases and the length of the
SoD increases. The time taken for 2-2 post-processing and t-t post-processing
approaches grow rapidly as the length of the SoDs increase. For example, while
for 20 2-2 SoDs, it takes 139 s for the AL data set, the time required for 20
5–10 SoDs for the same data set is 6,164 s. The corresponding values for 50 SoDs
are 366 and 14,667 s, respectively. On the other hand, the time required for the
SoD-aware role mining does not vary so much with the length of the SoD. The
time needed for the t-t post-processing approach is comparable with that for 2-2
post-processing. Although it might be felt that the post-processing approaches
(2-2 post and t-t post) should take less time than the SoD-aware approach,
the main component of execution time in the post-processing approaches goes
into checking whether any of the existing users in the UA matrix violates the
generated SMER constraint (Line 11 of Algorithm 1 and Line 18 of Algorithm 2).

Table 7 shows the number of roles generated for different lengths of SoD con-
straints and different number of SoD constraints. We only show the results for
the SoD-aware role mining algorithm since for the post-processing approaches,
the roles are already generated by the chosen unconstrained role mining algo-
rithm and the number of roles is not changed by either 2-2 post-processing or
t-t post-processing algorithms. From the table, it is also observed that, SoD-
aware role mining generates more number of roles compared to unconstrained
role mining using the MBC approach. This is because, extra roles are created
by Algorithm 5 called from Step 8 of Algorithm 4, which in turn, is called from
Step 8 of Algorithm 3, to avoid the three cases (Cases 1–3) as explained in
Sub-sect. 3.3. Further, there is a significant dependency of the number of roles
in the SoD-aware role mining algorithm on the length of the SoD.

By comparing results across the three tables (Tables 5, 6 and 7), one can
conclude that the three approaches have their own strengths and shortcomings.
While SoD-aware role mining generates more number of roles, it significantly
outperforms t-t post-processing in terms of the number of generated SMER
constraints, especially when the lengths of the given SoD constraints are short.
Execution time for the SoD-aware role mining algorithm is also comparable with
t-t post-processing when lengths of SoD constraints are less, and is significantly
less when the SoD constraints are longer (except for the APJ and Customer
data sets). The number of SMER constraints for 2-2 post-processing approach is
much higher compared to SoD-aware role mining. Further, the post-processing
approaches often end up in situations where certain constraints are not enforce-
able, which is their main drawback.

5 Related Work

Role mining is the problem of decomposing a given UPA into UA and PA matri-
ces while optimizing a metric like the number of roles (often called the Basic
Role Mining Problem - RMP). Vaidya et al. [4] formally define basic RMP and
introduce two different variations of basic RMP, namely δ − approx RMP and
MinNoise RMP. They proved all the problems to be NP-Complete. An approach
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called Largest Uncovered Tile Mining (LUTM) was proposed in [4] to find roles
by mapping RMP to the database tiling problem. Two algorithms named as
CompleteMiner and FastMiner were proposed in [10] of which CompleteMiner
uses subset enumeration to find interesting roles. As subset enumeration takes
exponential time, FastMiner is used to reduce the time complexity by finding the
intersection for every pair of users. Lu et al. [5] present a unified framework for
modeling the optimal binary matrix decomposition problem using binary inte-
ger programming. Zhang et al. [3] use the permission assignment relation PA to
obtain an optimal role hierarchy graph. It uses the initial PA and reduces the
number of roles by identifying pairs of roles such that merging and splitting this
pair results in a least cost graph. The work in [8] maps the basic role mining
problem to the minimum biclique cover finding problem for bipartite graphs.

Some of the cardinality constraints considered during role mining include
restricting the number of permissions to a user and the number of permissions
to a role. Kumar et al. [9] propose the Constrained Role Miner Algorithm (CRM),
which limits the number of permissions that can belong to a role. John et al.
[6], propose two alternative approaches for restricting the number of roles for
a user. One is the RPA (Role Priority based Approach), which prioritizes roles
based on number of permissions and then limits the number of roles assigned
to a user, and the other is the CPA (Coverage of Permissions based Approach),
which chooses roles by iteratively picking the role having the largest number
of permissions that are yet uncovered for that user. Harika et al. [14] impose
role-usage cardinality and permission-distribution cardinality constraints in both
concurrent and post-processing frameworks. Role-usage cardinality constraint
limits the maximum number of roles a user can have and permission-distribution
cardinality constraint limits the maximum number of roles a permission can
belong to.

Another important constraint is Separation of Duty (SoD), which is used in
computer security to prevent fraud. Li et al. [7] introduce how SoD constraints
can be implemented in RBAC. It is equivalent to a post-processing approach to
role mining under SoD constraints, which generates a set of SMER constraints
from a set of SoDs and a given PA matrix such that the SMER constraints enforce
the SoD constraints. Lu et al. [11] propose Extended Boolean Matrix Decompo-
sition (EBMD), which extends BMD [5] by allowing negative authorizations for
implementing SoD constraints to solve the constraint-aware role mining prob-
lem. The work presented in the current paper is the first ever attempt to do role
mining in the presence of SoD constraints that generates SMER constraints.

6 Conclusion and Future Directions

We have proposed a number of alternative approaches for role mining in the
presence of separation of duty constraints. Besides generating the UA and PA
matrices from a given UPA matrix as done in any unconstrained role mining
algorithm, we also derive a set of SMER constraints that enforce the given set
of SoD constraints. After suggesting a näıve way of handling the problem using
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an existing algorithm, we have introduced three new methods. Two of these
generate the SMER constraints from an initial unconstrained decomposition of
the UA matrix using any existing role mining algorithm. The third approach
considers the SoDs at the time of role mining and the roles are formed in such a
way that enforceable SMERs can be easily generated from the set of mined roles.
We have evaluated the proposed algorithms on several real world data sets and
compared their performance in terms of the number of SMERs, number of roles,
as well as their execution time. The experiments show that the näıve approach
is not at all scalable and does not work for many data sets. On the other hand,
the proposed approaches were able to handle all of the standard real datasets
used to evaluate role mining and are quite scalable.

In the future, we plan to consider generation of t-t SMER constraints while
doing role mining. Additionally, in this paper we restricted our attention to min-
imizing the number of roles. In the future, we plan to consider different metrics
such as the number of SMER constraints, sum of roles and SMER constraints,
Weighted Structural Complexity (WSC) [13], etc.
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Abstract. The growing relevance of vehicular applications like media
player, navigation system, or speedometer using graphical presentation
has lead to an increasing number of displays in modernf cars. This effec-
tuates the desire for flexible sharing of all the available displays between
several applications. However, automotive requirements include many
regulations to avoid driver distraction to ensure safety. To allow for safe
sharing of the available screen surface between the many safety-critical
and non-safety-critical applications, adequate access control systems are
required. We use the notion of contexts to dynamically determine, which
application is allowed to access which display area. A context can be
derived from vehicle sensors (e.g., the current speed), or be an application-
specific state (e.g., which menu item is selected). We propose an access
control model that is inherently aware of the context of the car and the
applications. It provides delegation of access rights to display areas by
applications. We implemented a proof-of-concept implementation that
demonstrates the feasibility of our concept and evaluated the latency
introduced by access control. Our results show that the delay reacting
on dynamic context changes is small enough for automotive scenarios.

1 Introduction

Within the last 30 years the development of cars in the automotive industry
has increasingly depended on electronics and software instead of mechanics [3].
The growing relevance of graphics functions and applications using integrated
displays in modern cars is a good indicator for this trend. For instance, the
Head Unit (HU) uses displays integrated into the backside of the front seats
and center console to display multimedia content, navigation system, and web
browser. Additionally, the Instrument Cluster (IC) uses the instrument and the
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head-up displays to show car specific information like speed, warnings, and nav-
igation instructions. In order to support these applications, cars are equipped
with a growing number of displays of steadily increasing size. The availability
of these displays has lead to the desire to use them flexibly, by dynamically
mapping applications to display areas. For instance, users desire to customize
the Human-Machine Interface (HMI), e.g., reduce the size of the speedometer
in favor of a larger display area for navigation, or choose between HMI themes.
The dynamic mapping of applications to display areas introduces one great chal-
lenge: ensuring safety. It is the responsibility of the Original Equipment Manu-
facturers (OEMs) to ensure that graphical outputs from the various applications
do not violate safety requirements. Different standards like [15, ISO 26262] and
automotive guidelines (e.g., [7]) address the safety aspects of displaying infor-
mation in vehicles. For example, as regulated by German law (StVZO Sect. 57
[16]), the speedometer must be visible. Additionally, warning messages must be
displayed at consistent places on the displays, easily perceivable by the driver
(e.g., the brake warning light is statically mapped to a place and guaranteed to
be visible).

Most of these requirements apply to specific situations or states of a vehi-
cle, only. For instance, the visibility of the speedometer applies only to moving
vehicles, thus the display area of the speedometer could be used for any purpose
while the car is parking. Moreover, the display area used by the break warning
light could be used for extended radio information. In order to guarantee safe
display access, the flexibility must be restricted adequately, using the automo-
tive requirements and guidelines. To this end, we use the notion of contexts to
dynamically determine at some point in time, which application is allowed to
access which display area. A context can be derived from vehicle sensors (e.g.,
speed, location, or time), or be an application-specific state (e.g., which menu
item is selected). Integrating context natively into access control, significantly
improves safety, flexibility, and efficiency, since a certified component is in charge.

Moreover, the growing number of applications and the desire to integrate
third-party applications (e.g., from Google Play), favors a decentralized devel-
opement process. While traditional access control assumes a central authority,
e.g., to assign the access control matrix, a decentralized development process
requires access control that supports decentralized granting of permissions.

In [10] we proposed an access control model that provides access control
to display areas, where access decisions only depend on the applications and
reaction on context changes is completely left to the applications in a distributed
fashion. However, correctly considering the context of the car or applications
often determines whether the automotive requirements are fulfilled or not. Thus,
inherent support for contexts is an obvious evolution of the concepts in [10].

In this paper, we extend our approach by concepts for context-aware access
control, which allow for adapting access permissions based on the context of the
car or the applications without compromising on safety. Our model grants per-
missions to exclusively access certain display areas to applications depending on
the current context. In detail, we make the following contributions: (1) A formal
definition of the context-aware access control model and the required properties
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like isolation. (2) A proof-of-concept implementation to show the feasibility of
the approach. (3) An evaluation of the performance of our implementation.

The rest of this paper is structured as follows. In Sect. 2 we present our system
model. In Sect. 3 we define our context-aware access control model and address
correctness in Sect. 4. In Sect. 5 we define the protocol for state transitions and
proof the correctness of our protocol. We present our implementation in Sect. 6
and evaluate the latency introduced by access control in Sect. 7. We discuss
related work in Sect. 8 and conclude in Sect. 9.

2 System Model

In this section, we introduce our system model (c.f. Fig. 1) for context-based dis-
play access control in automotive HMI systems. The display surface is a shared
resource represented by the set of all available pixels of the connected displays.
Applications present their graphical output on display areas, which ares defined
as subsets of the display surface. The mapping between applications and display
areas is dynamic and performed by the Access Control Layer depending on the
current context and the permissions. Each application authenticates itself to the
Access Control Layer. To this end, each application has a Universally Unique
Identifier (UUID). A context represents a distinct situation of the car or of an
application and can be set only by the responsible application using the Con-
text Manager. A permission defines which application is allowed to access which
display area in which context. To prevent inconsistencies, each pixel must be
mapped to at most one application. In case the visibility of an application is
restricted, depending on the context permissions must be revoked if this con-
text is active, e.g., context “car in motion” requires that a video playback must
not be visible to the driver. To guarantee conflict-freeness either two permis-
sions do not allow access to the same or part or the same display area or their
mapped contexts cannot be active at the same time. If the context changes, the
application allowed to access a certain display area might also change.

Fig. 1. System model Fig. 2. Context mapping

Figure 2 shows an example where a display area located in the center of
the IC display is shared between four applications. Based on the automotive
requirements, in such a case the decision which of the four applications gets
exclusive access to the display area shall be based on the current set of contexts—
namely, “Imminent collision”, “Incoming phone call”, and “Navigation selected”.
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To facilitate the software development process, the OEM shall be able to
pass context-based usage permissions for display areas to software development
companies or even individual developers, which again shall be able to pass usage
permissions to others in a hierarchical fashion. This allows the OEM to meet
all safety-relevant requirements without being a central certification authority
for all applications. Nevertheless, for the sake of security, the deployment of
applications is centralized using the Vehicle Backend (cf., Fig. 1).

3 Context-Aware Access Control Model

In this section we present our model for access control to display areas based on
contexts. First, we present an overview. Then, we define the entities and describe
the granting of permissions—constrained by contexts—between applications.

3.1 Overview

Access control mechanisms determine which subjects are allowed to access which
objects. In this work, subjects correspond to applications and objects to display
areas whose pixels are accessed by applications. We use permissions that allow
applications to access display areas. Access to display areas is restricted by con-
texts of the car or applications. An application requires a permission restricted
to certain contexts—called constrained-permission—to access a dedicated dis-
play area. Only if the contexts specified in the constrained-permission match
the current contexts of the car and applications, access is granted. An appli-
cation that owns a constrained-permission cp can grant another application a
constrained-permission not exceeding cp in both, size and context. Since our
model guarantees that at any point in time each pixel is accessed by exactly one
application, an application might need to revoke a constrained-permission if it
wants to access a certain pixel itself. Providing dynamic granting and revoking of
constrained-permissions our model suits to a decentralized development process
where the OEM delegates the development of certain application components
to a contractor, who delegates parts of the application to subcontractors, etc.
Next, we define these concepts in a formal model.

3.2 Objects and Subjects

We define a display area (object) as a set of pixels as depicted in Fig. 3. The
smallest display area consists of a single pixel called an atomic object. The com-
plete display surface is called the display surface and consists of all pixels.

Definition 1. Λ = {λ1, ..., λn} is a finite set of pixels (atomic objects). A dis-
play area is a subset of the set of pixels, formally a display area o is an object
o ∈ O = P(Λ)\∅ with O representing the set of all display areas.

An application (subject) requires a permission to access a display area’s content.
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Definition 2. S = {s1, ..., sn} is a set of applications (subjects) with n ≥ 1.

Fig. 3. Subject and objects Fig. 4. Contexts

3.3 Contexts

In automotive scenarios setting the graphical content of display areas often
depends on context. As depicted in Fig. 4, contexts are identified by three Data
Sources. The source car sensor data provides information about the status of the
car (e.g., the RPM of the wheels, or the status of the brakes) or environmental
conditions (e.g., the distance to the car in front). The source communication
events considers events occurring due to incoming information via communi-
cation devices, e.g., phone calls, SMS, and mails. Finally, user interface (UI)
events are triggered by the user input events like selecting the radio in the
HU menu. The data from the data sources is interpreted by Context Providers,
which decide for their contexts whether they are active or inactive. Each context
is exclusively mapped to one application which serves as context provider and
has an ID, unique within the scope of its application. Next, we define contexts
formally.

Definition 3. C = (S × N) is the set of all contexts, where each context is
represented by an application and the context ID. CTX = {f : C → A} is the
set of functions that return for each context its status A = {active, inactive}.

A context (e.g., with id 1) describes a state like “car is in motion” which is
determined by the application speedometer ssp, i.e., (ssp, 1) ∈ C. Hence, in case
the current speed is above 0mph, the speedometer sets the status of its context
(ssp, 1) to active otherwise to inactive. For instance, if set ctx ∈ CTX is a set of
contexts and the context (ssp, 1) is active then ((ssp, 1), active) ∈ ctx. Let a ∈ A.
If a = active, the function inv(a) = a′ returns a′ = inactive else a′ = active.

3.4 Constrained-Permissions

A constrained-permission represents a permission restricted to contexts. An
application is only allowed to access a display area if it has a constrained-
permission matching the current contexts. We define a constrained-permission
as follows.
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Fig. 5. Example of contexts and constrained-permissions

Definition 4. CP : CTX×S×O is the set of constrained-permissions express-
ing that an application is allowed to access a display area in certain contexts.

We assume the application speedometer ssp shall only be visible in case the car
is in motion (i.e., c1 = (ssp, 1) is active), as depicted in Fig. 5. To this end, ssp
has a constrained-permission cp1 which allows access to display area o1, iff the
current contexts of ctx1 ∈ CTX contains (c1, active) and (c2, inactive).

Next we define conflict-freeness of two constrained-permissions, which guar-
antees that at no point in time a pixel is accessibly by more than one applica-
tion. Let cp = (C1, (s1, o1)) ∈ CP and cp′ = (C2, (s2, o2)) ∈ CP . We say two
constrained-permissions cp and cp′ are conflict-free, iff either the intersection of
the two objects o1 and o2 is empty or a context c is in the set of contexts C1

and in C2, and the status of both is different.

Definition 5. cp and cp′ are conflict-free ⇔ cp�cp′ = ∅ ⇔ o1∩o2 = ∅∨∃cx =
(c, a) ∈ C1,∃cx′ = (c′, a′) ∈ C2 : c = c′ ∧ a �= a′. Let Im(ctx) = {ctx(c)|c ∈ C}.
We say cp  cp′ ⇔ Im(ctxcp′) ⊆ Im(ctxcp) ∧ ocp ⊆ ocp′ .

For instance, let cpsp = (Ĉ, ssp, o) ∈ CP and cpacc = (C̃, sacc, ô) ∈ CP be
constrained-permissions of speedometer and adaptive cruise control, respectively,
where o covers ô. In this case, to guarantee conflict-freeness means that Ĉ and
C̃ cannot both match the same set of current contexts.

To increase flexibility of obtaining and releasing constrained-permissions, we
next introduce hierarchical granting and revoking of constrained-permissions.

Hierarchical Granting of Constrained-Permissions. An application that
received a constrained-permission cp can itself grant a constrained-permission cp′

to other applications under the following conditions. First, the display area of cp′

is a subarea of the display area of cp. Second, cp′ must be at least as constraining
(in terms of contexts) as cp. Third, if other constrained-permissions have been
granted based on cp, all of them must be conflict-free with cp′. An application is
no longer allowed to access any pixels included in one of its granted constrained-
permissions which match the current contexts. Formally, we define a set that
maps to each application its granted and received constrained-permissions.

Definition 6. CONS = {f : S → P(S × CP ) × P(S × CP )} maps to
each application two sets P(S × CP ) that contain mappings of constrained-
permissions to applications representing the constrained-permissions an appli-
cation has received and the constrained-permissions it has granted to other
applications.
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Fig. 6. Example of granting constrained-permissions of S1 to S2 and S3

Let cons ∈ CONS, s ∈ S. Set receivedcp(cons, s) := {r|(r, g) ∈ cons(s)}
denotes the set of constrained-permissions s has received. Similarly, set
grantedcp(cons, s) := {g|(r, g) ∈ cons(s)} is the set of constrained-permissions
s has granted. Accordingly, (s′, cp′) ∈ receivedcp(cons, s) indicates that applica-
tion s has received a constrained-permission cp′ from application s′ and (s′, cp′) ∈
grantedcp(cons, s) indicates that application s′ granted cp′ to s′.
In Fig. 6 we depict an example of granting constrained-permissions between the
applications s1, s2, and s3. We assume set cons ⊆ CONS contains the cur-
rent constrained-permissions and s1 received a constrained-permission cp1 from
application ŝ (not depicted in Fig. 6) and granted {cp2} and {cp3} to s2 and s3,
respectively. Thus, the display areas of cp1, cp2, and cp3 are all the same. The
constrained-permissions cp2 and cp3 are conflict-free (cp2 � cp3 = ∅) since the
context c3 must be active in cp2 and inactive in cp3 which cannot happen at the
same time. Since each context that matches cp1 also matches either cp2 or cp3, s1
has no longer access to o1 in any context (as long as it does not revoke cp2 or cp3).
Hence, the display area an application can use actually depends on the current
contexts and the constrained-permissions it granted to other applications.

We define the comparison operator <cp for applications to indicate the chain
of dependencies according to constrained-permissions. An application which
received a constrained-permission has a dependency to its granting application.

Definition 7. Let s, s′ ∈ S; cp ∈ CP ; cons ∈ CONS. We say s <cp s′ ⇔

∃s1, ..., sn ∈ S;∃cp1, ..., cpn−1 ∈ CP : (7.1)
s1 = s′ ∧ sn = s ∧ cp  cpn−1∧ (7.2)
∀i : 1 ≤ i < n : (si, cpi) ∈ receivedcp(cons, si+1) (7.3)
∀i : 1 ≤ i < n − 2 : cpi+1  cpi (7.4)

If an application s has received a constrained-permission cp from application s′

or indirect by using a chain of intermediate applications then s <cp s′. Hence, s
depends on s′ according to the constrained-permission cp.
Formally, with s, s′ ∈ S, we say s �=cp s′ ⇔� ∃cp ∈ CP : s <cp s′ ∨ s′ <cp s.
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4 Safety Property

In this section, we introduce states in our model and describe the correctness of
our model using a safety property defined using states. States are called safe, if
they fulfill the safety property. A state in our model is a set of sets of constrained-
permissions and contexts.

Definition 8. U : CONS × CTX represents the set of contexts, granted and
received constrained-permissions. We say u ∈ U is a state in U .

Next, we define a safety property which can be satisfied in a state in U or not.
States satisfying this property are safe states and a sequence of safe states is
called safe state sequence.

Definition 9. A state satisfies the Conflict-freeness Property (CFP), if
each constrained-permission is conflict-free. Let u = (cons, ctx) ∈ U .
u satisfies CFP ⇔

∀s, s′, s1, s2 ∈ S;∀cp, cp′ ∈ CP : s′ �=cp s ∧ s′ �=cp′ s ∧ cp �= cp′∧
(s1, cp) ∈ receivedcp(cons, s) ∧ (s2, cp′) ∈ receivedcp(cons, s′)
⇒ (cp � cp′ = ∅)

This means, it exists at most one constrained-permission that allows access to a
display area for a given set of contexts at a time. This property implies exclu-
sive access, i.e., in each context each display area is accessed by at most one
application. Thus, an application that has access to a pixel is guaranteed to be
visible if the according context is given.

5 Protocol

In this section, we describe the requests that can be issued by applications in
order to change contexts or constrained-permissions and are performed by tran-
sitions using rules. Moreover, we discuss the verification of our protocol, i.e.,
that our defined model fulfills the defined safety property using our transitions.

5.1 Requests and Transitions

A transition is triggered by a request to add or delete a constrained-permission,
or to set the status of a context.

Definition 10. A request r ∈ RP = RA × S × S × CP consists of the oper-
ation mode RA = {append, discard}, grantor, grantee, and the constrained-
permission. A request RC = S × C × A consists of the application, the context,
and the desired status. The set of all possible requests is R = RP ∪ RC.

We define transitions between states. To maintain consistency, these transitions
are restricted by rules. If none of the rules apply then the state does not change.
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Definition 11. trans : U ×R → U is a function which represents the transition
from one state to another in U initiated by a request r ∈ R.

The three possible types of request, in particular, grant a constrained-
permission, revoke a constrained-permission, and set the status of a context,
are described in the following.

To grant a constrained-permission cp to another application s′, an appli-
cation s initiates a request r ∈ RP with ra = append. The request is accepted,
if s has received a constrained-permission which is an super-set of cp and cp is
conflict-free to all granted constrained-permissions of s—expressed by Rule 1.
Rule 1. To satisfy Rule 1, the following condition cond1 has to be fulfilled.

cond1 = (r = (ra, s, s′, cp) ∈ RP ∧ ra = append ∧ cp = (C1, ŝ, ô)∧
s �= s′ ∧ s′ = ŝ ∧ [∀cp′ ∈ {ĉp ∈ CP |∃(ŝ, ĉp) ∈ grantedcp(cons, s)} : cp � cp′ = ∅]∧
[∃c̃p ∈ {ĉp ∈ CP |∃(ŝ, ĉp) ∈ receivedcp(cons, s)} : cp  c̃p = (C̃, (s̃, õ)) ∧ s̃ = s])

To perform the grant transition we use the function addcp : CONS × S ×
S × CP → CONS that adds a constrained-permission. Let s, s′ ∈ S; cp =
(Ccp, scp, ocp) ∈ CP . We say [cons′ = addcp(cons, s, s′, cp)] ⇔

cons′(s) = (receivedcp(cons, s), grantedcp(cons, s) ∪ {(s′, cp)})∧ (5.1.1.1)

cons′(s′) = (receivedcp(cons, s′) ∪ {(s, cp)}, grantedcp(cons, s′))∧ (5.1.1.2)

[∀s′′ ∈ S\{s′, s} : cons′(s′′) = cons(s′′)] (5.1.1.3)

If the condition cond1 is fulfilled the function addcp adds cp to the set of
receivedcp and grantedcp constrained-permissions for s and s′ in cons (5.1.1.1),
(5.1.1.2). All other applications are not affected by this function (5.1.1.3).

To revoke a constrained-permission cp, an application s initiates a
request r ∈ RP with ra = discard. If s has granted cp, the request is accepted,
and, additionally, constrained-permissions depending on cp will also be revoked—
formally expressed by Rule 2.
Rule 2. To satisfy Rule 2, the following condition cond2 has to be fulfilled.

cond2 =(r = (ra, s, s′, cp) ∈ RP ∧ ra = discard∧
(s �= s′ ∧ (s′, cp) ∈ grantedcp(cons, s) ∧ (s, cp) ∈ receivedcp(cons, s′)))

To perform the transition we use the function delcp : CONS ×S ×S ×CP →
CONS that deletes a constrained-permission. Let s, s′ ∈ S; cp = (Ccp, scp, ocp);
cp′ = (Ccp′ , scp′ , ocp′) ∈ CP . We say [cons′ = delcp(cons, s, s′, cp)] ⇔

[∀s1 ∈ S : s1 <cp s ⇒ (5.1.2.1)

receivedcp(cons′, s1) = receivedcp(cons, s1)\ (5.1.2.2)

{(s2, cp′) ∈ S × CP |s2 <cp′ s1 ∧ cp′  cp}∧ (5.1.2.3)
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grantedcp(cons′, s1) = grantedcp(cons, s1)\ (5.1.2.4)

{(s2, cp′) ∈ S × CS|s1 <cp′ s2 ∧ cp′  cp}]∧ (5.1.2.5)

cons′(s) = (receivedcp(cons, s), grantedcp(cons, s)\{(s′, cp)})∧ (5.1.2.6)

[∀s3 ∈ S\{s′, s};∀cp′ ∈ CP : cp′  cp ∧ s �=cp′ s3 ∨ s <cp′ s3 (5.1.2.7)

⇒ cons′(s3) = cons(s3)] (5.1.2.8)

If the condition cond2 is fulfilled, the function delcp removes cp and all depend-
ing constrained-permissions from receivedcp (5.1.2.2), (5.1.2.3) and grantedcp
(5.1.2.4), (5.1.2.5). All other constrained-permissions that did not receive or
grant a permission depending on cp are not affected by this function (5.1.2.8).
To change the status of a context c, an application s initiates a request
r ∈ RC. The request is accepted, iff s introduced c.
Rule 3. To satisfy Rule 3, the following condition cond3 has to be fulfilled.

cond3 = (r = (s, c, a) ∈ RC ∧ c = (s̃, n) ∈ C ∧ s̃ = s)

To perform the transition, we use the function setctx : CTX × C × A → CTX
which adds a context to the set of current contexts. Formally, setctx(ctx, c, a) =
ctx′ ⇔ ctx′(c) = a ∧ ∀c′ ∈ C\{c} : ctx′(c′) = ctx(c′).
Next, we use the three rules to define the function trans. Let u = (cons, ctx) ∈ U ,
and r ∈ R with r = (ra, s, s′, cp) ∈ RP , or r = (s, c, a) ∈ RC. We define

trans(u, r) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(addcp(cons, s, s′, cp), ctx), if cond1 (Rule 1)
(delcp(cons, s, s′, cp), ctx), if cond2 (Rule 2)
(cons, setctx(ctx, c, a)), if cond3 (Rule 3)
u, otherwise.

5.2 Protocol Correctness Verification

To verify the correctness of our model we use the Conflict-freeness Property
(CFP) (cf., Sect. 4) and a system that consists of sequences of states and requests.
We use this system to define a proposition which we prove by using complete
induction over the states. Finally, we prove that the system is safe if the initial
state fulfills the CFP. For instance, using an initial state where a single applica-
tion has a constrained-permission for the whole screen area for a certain context,
is a safe state. Our proof implies that using our protocol, only safe states can be
reached. Next, we give the formal definitions.

System. In this section, we give the formal definitions for the sequence of states
and the system. A system consists of all possible sequences of requests and the
sequence of all states starting from a given initial state. We denote In ⊂ N0 as
a finite set with In = {0, 1, 2, 3, ..., n}.



128 S. Gansel et al.

Definition 12. The set of sequences is a set of n-tuples and defined as XIn

=
{(x0, ..., xi, ..., xn)|xi ∈ X ∧ i ∈ In ∧ xi = f(i) with f : In → X}.
We say (x0, x1, ..., xn) ∈ XIn

is a sequence with x0 := x0 ∈ X, x1 := x′
1 ∈ X,...,

xn := x
(n)
n ∈ X.

The operator � indicates whether an element is part of a sequence or not. Let
(x0, x1, ..., xn) ∈ XIn

. We define x � (x0, x1, ..., xn) ⇔ ∃i ∈ In : x = xi.

This means, a sequence is an ordered list of elements and the operator �
indicates whether an element is part of that sequence. After the generic definition
of sequences we next define sequences of requests and sequences of states.

Definition 13. For a sequence of requests (r0, ..., rn−1) ∈ RIn−1
the

sequence of states generated by (r0, ..., rn−1) is defined as (u0, u1, ..., un) ∈
U In

with ∀i ∈ In−1 : ui+1 = trans(ui, ri).

Using the definition of sequences of requests and states we next define a system
that consists of an initial state and all possible states that can be reached by using
sequences of requests. In addition, we define the operator � that indicates
whether a transition (u, r, u′) is part of a system or not.

Definition 14. A system Ψ(ustart) ⊂ RIn ×U In

is generated by initial state
ustart. Let xr = (r0, ..., rn−1) ∈ RIn−1

; xu = (u0, ..., un) ∈ U In

.
We define (xr, xu) ∈ Ψ(ustart) ⇔

u0 = ustart ∧ ∀i ∈ In\{0} : ui = trans(ui−1, ri−1)

Let (u, r, u′) ∈ U × R × U , u0 ∈ U . We define (u, r, u′) � Ψ(u0) ⇔

∃xr ∈ RIn−1
,∃xu ∈ U In

,∃i ∈ In\{0} : (14.1)

(xr, xu) ∈ Ψ(u0) ∧ ui � xu ∧ ui+1 � xu ∧ ri � xr∧ (14.2)

(u, r, u′) = (ui−1, ri−1, ui). (14.3)

This means, that (u, r, u′) is part of a system if a sequence of requests and states
(14.1) exists, of which u, r and u′ are part of (14.2) and a transition from state
u to u′ by request r (14.3) exists.

Next, we define a safe state and a safe system that consists only of safe state
sequences.

Definition 15. u ∈ U is a safe state ⇔ u satisfies the CFP. (u0, ..., un) ∈ U In

is a safe state sequence ⇔ ∀i ∈ In : ui is a safe state. A system Ψ(u0) ⊂
U In × RIn

with xr ∈ RIn−1
and xu = (u0, ..., un) ∈ U In

is a safe system ⇔
∀(xr, xu) ∈ Ψ(u0) : xu is a safe sequence.

By using the definition of a safe system we prove in the next section that the
CFP defined in Sect. 4 is always satisfied if the initial state satisfies CFP.
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5.3 Proof

Since the states and transitions of our model consist of mathematical formula-
tions, we define a proposition that corresponds to the CFP defined in Sect. 4 and
helps us to prove the safety of our model. Let u, u′, u0 ∈ U ; u′ = (cons′, ctx′);
u = (cons, ctx); r ∈ R.

Proposition 1. All sequences in Ψ(u0) satisfy CFP for all u0 that satisfy CFP ⇔
∀(u, r, u′) ∈ U × R × U : (u, r, u′) � Ψ(u0) ⇒ u, u′ ∈ U satisfy CFP.

Proposition 1 says that all sequences in a system Ψ(u0) satisfy CFP if, and only
if, for all states u′ which can be directly generated from any state u with one
request, the respective states u and u′ also satisfy CFP. If this proposition holds,
every system Ψ(u0) is a safe system if state u0 satisfies the CFP in Sect. 4.

To prove the correctness of Proposition 1. We define a lemma to prove the
proposition using complete induction over the states of the system. The following
Lemma CFP states that a transition from a state which satisfies the CFP will
always end in a state which also satisfies the CFP.

Lemma. CFP: All sequences in Ψ(u0) satisfy CFP for all u0 which satisfy
CFP ⇔ ∀(u, r, u′) ∈ U × R × U : (u, r, u′) � Ψ(u0) ⇒ u, u′ ∈ U satisfy CFP.

Proof: According to Sect. 5, a request r ∈ R is either in RP or in RC. The case
r ∈ RC is trivial, since Rule 3 (Sect. 5) does not change the set of constrained-
permissions cons and therefore is not relevant for Lemma CFP. In case r =
(ra, s, s′, cp) ∈ RP , we have to consider the following three sub-cases:

(R1): Let ra = append and the condition cond1 be fulfilled. We follow that
the transition trans(u, r) = (addcp(cons, s, s′, cp), ctx) leads to the set of
received constrained-permissions receivedcp(cons′, s′) = receivedcp
(cons, s′) ∪ {(s, cp)}.
We first show that cp is conflict-free with all granted constrained-permissions
of s. Then, we show that cp is conflict-free with all constrained-permissions
which do not depend on s. Finally, we follow that state u′ satisfies the
CFP. In detail, since u satisfies CFP and condition cond1 is fulfilled, we
follow ∀(s̃, c̃p) ∈ grantedcp(cons, s) : cp � c̃p = ∅ with cp granted by s.
In addition, we know that (s, cp) �∈ receivedcp(cons, s′) due to cond1.
We follow in state u′ that cp is conflict-free with all granted constrained-
permissions of s.
In addition, cond1 implies ∃ŝ ∈ S with (ŝ, ĉp) ∈ receivedcp(cons, s) :
cp  ĉp. Since state u satisfies CFP, we know that ĉp is conflict-free
for all applications and constrained-permissions in the state u. We follow
with cp  ĉp and (s, cp) ∈ receivedcp(cons′, s′) that cp is conflict-free
with all constrained-permissions which do not depend on s in state u′.
Finally, due to ∀cp′′ ∈ CP,∀s, s1, s2 ∈ S′′: (s1, cp′′) ∈ receivedcp(cons′,
s′′) and (s2, cp) ∈ receivedcp(cons′, s′), it follows cp � cp′′ = ∅ since
s′ �=cp s′′ and s′ �=cp′′ s.
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(R2): Let ra = discard and cond2 be fulfilled. Then it follows trans(u, r) =
(delcp(cons, s, s′, cp), ctx).
Since u satisfies CFP we know ∀(s̃, c̃p) ∈ grantedcp(cons, s) : cp� c̃p = ∅.
Moreover, we know that in the state u the constrained-permission cp
received by the application s′ ((s, cp) ∈ receivedcp(cons, s′)) is conflict-
free to all other constrained-permissions, i.e.,

∀s, s′, s1, s2 ∈ S;∀cp, cp′ ∈ CP : cp �= cp′ ∧ (s1, cp) ∈ receivedcp(cons, s)∧
(s2, cp′) ∈ receivedcp(cons, s′) ∧ s′ �=cp s ∧ s′ �=cp′ s ⇒ cp � cp′ = ∅

We know that all constrained-permissions in the set of received
constrained-permissions are conflict-free in state u and therefore cp is also
conflict-free. After the transition we know that the function delcp(cons, s,
s′, cp) leads to (s, cp) �∈ receivedcp(cons, s′) and additionally removes all
constrained-permissions that depend on the constrained-permission cp, i.e.,
∀s1 ∈ S : s1 <cp s ⇒ receivedcp(cons′, s1) = receivedcp(cons, s1)\
{(s2, cp′) ∈ S×CP |s2 <cp′ s1∧cp′  cp}. Hence, in state u′ the constrained-
permission cp and all depending constrained-permissions are removed from
the set of received and granted constrained-permissions of all applications,
whereas all the other constrained-permissions are not changed, i.e., ∀s3 ∈
S\{s′, s};∀cp′ ∈ CP : cp′  cp∧s �=cp′ s3∨s <cp′ s3 ⇒ cons′(s3) = cons(s3).
We follow, that in state u′ all remaining constrained-permissions are also
conflict-free and state u′ satisfies the CFP.

(otherwise): We know that u′ = u. Since u satisfies the CFP, it follows that u′

also satisfies CFP.
Finally, we prove Proposition 1 by complete induction.
Let (xr, xv) ∈ Ψ(ustart) with xr = (r0, ..., rn−1) ∈ RIn−1

, xu = (u0, ..., un) ∈
U In

. We define u0 = ustart as initial state and generate the states in xu by using
our transition: ∀i ∈ In\{0} : ui = trans(ui−1, ri−1). The state u0 satisfies the
CFP (induction base). Let ∀i ∈ In\{0} : (vi−1, ri−1, vi) � Ψ(v0), cf. Eq. 14.3.

Base: u0 satisfies the CFP. With u1 = trans(u0, u0) we conclude u1 satisfies
the CFP, according to Lemma CFP.

Induction Hypothesis: ui satisfies the CFP.

Induction Step: Let ui satisfy the CFP. From the Lemma CFP follows ui+1 =
trans(ui, ri) satisfies the CFP. �
We follow that all systems Ψ(u0) are safe systems if the state u0 satisfies the CFP.
This means, that our transitions do not violate the CFP. Hence, implementing
our access control model by initially assigning all available display area for a
certain context to a single application—which is a state that satisfies the CFP—
leads to a safe system.

6 Implementation

In this section we describe the proof-of-concept implementation of our access con-
trol model for an automotive HMI system. Basically, an application that wants
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to display content on the screen, first needs to obtain a permission which then
is used to create a window. Our compositor copies the content of the windows
to the screen-buffer which makes them appear on the displays.

Traditionally, compositors operate on rectangular windows. In contrast, our
compositor operates on (typically) non-rectangular windows, since the set of pix-
els (atomic objects) in a constrained-permission (CP) might not be rectangular.
To this end, our implementation uses windows with a bitmap attached that rep-
resents the subset of pixels of the windows, the application is actually allowed
to access. In Fig. 7, we depict a typical Automotive Scenario for a given set
of CPs and active contexts, using applications like speedometer, tachometer,
indicators, trip, car status, and menu. In Fig. 8, we depict the bitmasks used in
the active CPs of Fig. 7. All CPs are conflict-free and hierarchically granted in
the order of their criticality. Besides this depicted scenario, our implementation
includes many more scenarios for IC and HU. For instance, we implemented
CPs that allow to display half of the speedometer and the tachometer in the
left and the right corner, respectively, in favor of a bigger display area for the
presentation of the navigation system in the middle of the screen.

Fig. 7. Automotive Scenario using
typical IC applications

Fig. 8. Bitmasks of the Automotive
Scenario

The implementation consists of the software components depicted in Fig. 9.
To isolate the safety-critical applications (e.g., brake failure warning) from the
non-safety-critical applications (e.g., media playback) traditionally running
physically isolated on IC and HU, we use different virtual machines (VM) run-
ning on the virtualization solution PikeOS from Sysgo. We use a dedicated VM—
called Virtualization Manager—which provides access control and has exclusive
access to the hardware components GPU, displays, and input devices.

The Isolated Communication Channel provides session-based FIFO commu-
nication between the applications in the VMs and the system components of the
Virtualization Manager by using shared memory. The applications communicate
via Communication Channel with the Virtualization Manager to get access to
the hardware components. The Communication Manager stores the certificates
of the applications, forwards them to the Authentication Manager (AM), and
creates a dedicated communication channel to the system components for each
authenticated application. The AM restricts the communication between appli-
cations and system components based on their identification. The context-based
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Fig. 9. Implemented architecture

access control layer performs access decisions using contexts. The Context Man-
ager (CM) provides context handling for applications which can set the status of
contexts by using the API call setContext(CTX c,CA a) (cf. Rule 3 in Sect. 3)
with context c and status a. The CPM handles granting and revoking of CPs
and provides access decisions for the Window Manager (WM) which is responsi-
ble for creating, destroying, and positioning of windows. Applications can grant
or revoke CPs by calling grantConsPerm(CTX[(c1, a1), (c2, a2), ...], uuidA, o)
(cf. Rule 1 in Sect. 3) with the list of contexts [(c1, a1), (c2, a2), ...], the targeting
application uuidA, and the display area o or revokeConsPerm(ID cpid) (cf.
Rule 2 in Sect. 3) with the id cpid of the CP. Access control is enforced through
pixel-exact CPs which are implemented using rectangular areas in combination
with bitmasks that restrict operations to the allowed pixels. Applications can cre-
ate, modify, or move a window within the bounds of a received CP. We created a
Compositing Layer that provides an API for resizing and mapping of windows.
Applications directly render into the off-screen buffers of their windows, and
the compositing takes care of pixel-exact copying of the window contents to the
screen buffers of the two displays. Due to the exclusive access property of our
system, the compositing does not need to care about the layering of windows.

We use a cockpit demonstrator (cf. Fig. 10) with two automotive 12” displays
each with a resolution of 1440×540 pixels and common input devices like steering
wheel buttons and the central control knob to control the applications. The
hardware platform is a Freescale i.MX6 SABRE for Automotive Infotainment
quad core embedded board with three GPUs, namely, the GC2000 3D GPU
providing OpenGL ES 2.0 support, the GC355 which supports vector graphics
with OpenVG 1.1, and the GC320 which provides compositing of framebuffers
with a 2D API. We use the OpenGL ES 2.0 API for the rendering of the graphical
content into the applications’ backbuffers. The compositing layer uses the 2D
API of the Image Processing Unit (IPU) for copy operations in framebuffers.

7 Performance Evaluation

We evaluated the performance of our access control model implementation. To
this end, we measured the latency introduced by our access control. Since some
context changes are safety-critical the time required to change the access to
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Fig. 10. Cockpit demonstrator

display areas delays the visibility of safety-critical applications. As described in
[11], important information shall be visible within given time constraints. The
time constraint is not a fixed value, but determined by the OEM based on auto-
motive guidelines, ISO standards, and legal requirements. However, the required
maximum latency for graphical output does not exceed 2 s. For instance, the
image of the rear view camera shall be visible in no more than 2 s after shifting
into reverse (as demanded by US National Highway Traffic Safety Administra-
tion). Thus, 2 s can be considered as generic upper bound. On the other hand,
for time-critical user interaction, typically latency shall not exceed 250 ms [11].
More precisely, the time delay required to change the access to display areas
and to allow applications to request new windows is crucial since it delays the
visibility of safety-critical applications. Next, we describe the evaluation setup
and present the results.

7.1 Setup

The latency introduced by our access control system primarily depends on the
number of permissions that need to be changed. A permission can change either
by being disabled, so that the application window is no longer visible, or by
being enabled, making an application window visible. The latency to get a
new permission, is denoted as Δtget, i.e., the time between sending the com-
mand setContext(CTX c,A a) to set a context c and receiving the command
confirmWindow(WinID id) which returns the id of the created window. The
latency to cede an owned permission, is denoted as Δtcede, i.e., the time between
sending setContext(CTX c,A a) and revoking access by using the command
revoke(ox). Figure 11 depicts the messages sent between the components of our
model, for a scenario where the permissions of two applications (B and C) are
affected. In more detail, application A sets the context c1 = (A, 1) to status a by
sending setContext(c1, a) to the CM. The CM changes the context status and
notifies the CPM. The CPM determines the affected permissions and notifies
the WM (nofify(ox, B), where ox is the new bitmap) and the affected appli-
cations. Application C is notified (revoke(ox)), that it has no longer access to
ox. Application B is granted a new permission (grant(ox)) and creates windows
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Fig. 11. Scenario, measuring access control latencies

wx with createWindow(wx, ox) using the bitmap ox. Finally, the WM sends
confirmWindow(wid) to B.

We evaluated two different scenarios consisting of up to 16 applications. In
the first scenario one application provides up to 15 constraint-permissions to
15 separate display areas, as depicted in Fig. 12. By setting a context, access
to these dedicated display areas is granted to up to 15 different applications
at once. After each applications successfully created a window the application
revokes the granted permissions by setting back the context status. We call this
flat-granting of permissions.

In the second scenario, each of the 15 applications provides one constraint-
permission to part of its display area. The constrained-permissions are derived
from one display area where (except for the last) each application grants exactly
one application access to a subset of its display area, as depicted in Fig. 13.
All granted constrained-permissions depend on the same context, i.e., if this
context is changed, all applications eventually need to get or cede their respective
window. We call this scenarios deep-granting of permissions.

7.2 Results

We measured the latencies Δtget and Δtcede for different numbers of affected
applications. The average latencies over 100 runs of the flat-granting and of the

Fig. 12. Example: Flat-granting of display
areas to four applications

Fig. 13. Example: Deep-granting
of display areas
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deep-granting of permissions are depicted in Figs. 14 and 15. In addition, the
minimal and maximal latencies are depicted.

Fig. 14. Latencies of context changes affecting flatly granted permissions

Fig. 15. Latencies of context changes affecting in deeply granted permissions

We observe, that the latency Δtget linearly depends on the number of affected
applications that get a new permission and create new windows. Even with 15
new application windows, the latency did not exceed 1 s in both evaluations.
Situations where many new windows are created occur only in mode changes
of big screen areas, e.g., if the rear-view camera needs to be switched off, or
the IC display switches from full-screen video playback back to driving mode.
Thus, the upper bound of 2 s (cf., [11]) applies and our implementation is always
fast enough. For situations of time-critical user interaction, typically only one
application gets a new permission which takes in our implementation up to 58 ms
at worst. This is below the 250 ms threshold. In case of sequential granting, the
upper bound of ceded permissions Δtcede did not exceed 200 ms, thus staying
below the 250 ms threshold. Although flatly granted permissions exceed the
250 ms in case of more than 10 applications, but still stay below 1 s. Thus,
our measurement results indicate, that it is fast enough to fulfill automotive
requirements for a sufficient amount of applications.
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8 Related Work

In [10] we presented an access control concept, a formal model for defining and
controlling the access to display areas to guarantee the safe and secure sharing
of displays. However, this concept is not aware of contexts, which leaves the
applications the complex task to detect combinations of distributed contexts
and change the access rights accordingly within tight latency constraints. Win-
dow compositing for virtual machines is target of some works (e.g., [8,9,12]).
However, they do not provide fine-grained access control and assume that the
user has full control over window placement which incompatible with automo-
tive requirements. Epstein addresses security issues in the X-server and proposes
mechanisms [6] to prevent them. Again, the user controls compositing without
restrictions. For context-aware access control, there exists a plethora of work.
Schilit and Theimer [18] first introduced context-awareness and used context as
location, identities of nearby people and objects, and changes to those objects.
They focus on providing clients with information about located-objects and how
those objects change over time. However, they do not consider any access control.
The focus of [2,14,17,19] is on role-based access control (RBAC) using contexts
to decide which roles are currently active and which according permissions are
valid. But either do they consider a system administrator to be responsible for
defining the applicable set of permissions for each context or do not provide del-
egation of access rights. Context-aware access control models which do not rely
on RBAC are using context information similar to roles in the access decision
process (e.g., [4,5]). Since they do not provide hierarchically depending permis-
sions the access control prioritized usage of resources is not possible. Herges et al.
[13] introduced a generic access control framework which uses an access control
model based on context information, a trust model, and the concept of isolation
domains to cope with automotive related requirements for infotainment applica-
tions. However, they focus on the communication between the components using
messages. Our models are state-based systems similar to the Bell and LaPadula
model (BLP) [1] which also defines a state machine for enforcing access control.
BLP focuses on confidentiality of information and uses an access control matrix
for restricting access to data. However, the BLP does neither prevent concurrent
access nor allow flexible granting of permission by subjects.

9 Summary and Future Work

Sharing the available screen area between an increasing number of automo-
tive applications becomes more and more important. Due to automotive safety
requirements an appropriate access control system is required. Since the context
of the car or applications often determines whether the automotive requirements
are fulfilled or not it is an obvious evolution to use the context in the access
decisions of automotive HMI. In this paper, we present a context-aware access
control model that targets safety-critical automotive HMI systems. Our model
provides the ability to hierarchically grant access to display areas depending on
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the contexts of the car and applications and offers dynamic flexibility
without compromising on safety. This allows for guaranteed displaying of safety-
critical applications and prevents intended or unintended presentation of driver-
distracting content while the vehicle is in motion. Our fully formalized model
meets the automotive safety requirements which can be formally proved using
our defined safety property. To demonstrate the feasibility of our concept we
presented a proof-of-concept implementation and evaluated it using an automo-
tive scenario. Our next steps will be the optimization of the graphics forwarding
between virtual machines to improve the rendering performance and a GPU
scheduler that meets the timing requirements of the safety-critical applications.
Additionally, we want to add a virtualized Android VM.

Acknowledgement. This paper has been supported in part by the ARAMiS project
of the German Federal Ministry for Education and Research with funding ID 01IS11035.
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Abstract. Efficient and secure management of access to resources is
a crucial challenge in today’s corporate IT environments. During the
last years, introducing company-wide Identity and Access Management
(IAM) infrastructures building on the Role-based Access Control (RBAC)
paradigm has become the de facto standard for granting and revoking
access to resources. Due to its static nature, the management of role-
based IAM structures, however, leads to increased administrative efforts
and is not able to model dynamic business structures. As a result, intro-
ducing dynamic attribute-based access privilege provisioning and revo-
cation is currently seen as the next maturity level of IAM. Nevertheless,
up to now no structured process for incorporating Attribute-based Access
Control (ABAC) policies into static IAM has been proposed. This paper
closes the existing research gap by introducing a novel migration guide for
extending static IAM systems with dynamic ABAC policies. By means of
conducting structured and tool-supported attribute and policy manage-
ment activities, the migration guide supports organizations to distribute
privilege assignments in an application-independent and flexible manner.
In order to show its feasibility, we provide a naturalistic evaluation based
on two real-world industry use cases.

Keywords: Identity and Access Management · IAM · ABAC · Policies

1 Motivation

The effective and secure management of employees’ access to sensitive appli-
cations and data is one of the biggest security challenges for today’s organiza-
tions [19]. A variety of national and international regulations or certifications
like Basel III [3], the Sarbanes-Oxley-Act of 2002 [45], or the ISO 27000 fam-
ily [23] together with internal guidelines force enterprises to audit and control
actions within their systems. At the same time developments like the application
of cloud-based services in corporate environments further underline the need for
secure user management.

c© Springer International Publishing Switzerland 2015
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140 M. Kunz et al.

As a result, centralized Identity and Access Management (IAM) relying on
the Role-based Access Control (RBAC) [43] paradigm became the core element
for increasing user management efficiency and reduce related IT security risks
over the last years. However, due to its static nature, the application of RBAC
leads to a considerable amount of administrative overhead. Growing numbers of
outdated roles stemming from organizational changes together with the need of
manually administrating user role assignments as well as role permission assign-
ments result in complex and outdated RBAC structures. Even disregarding the
fact that it takes an average of 18 months for its initial implementation, RBAC
consumes an average of 2,410,000$ for a firm of 10,000 employees [34]. As a
result, researchers and practitioners recently started to point out the need for
dynamic access privilege management IAM infrastructures [14,27,42].

Using Attribute-based Access Control (ABAC) policies [20] for dynamically
granting and revoking access based on employees’ and privileges’ attributes (from
hereinafter referred to as dynamic Identity and Access Management (dIAM)) is
seen as the next maturity level of company-wide IAM. The ABAC paradigm
in general is based on the presumption that using a subject’s, object’s, and
their shared context’s attributes an authorization decision can be made. ABAC
research traditionally focused on aspects like expressing ABAC rules (e.g. using
XACML as standardized language) while only little attention has been paid to
its adoption in company-wide IAM environments. This adaptation requires the
definition of a potentially high number of policies within the central IAM system,
the enforcement of policy decisions within the legacy applications depending on
their underlying access control models, as well as the continuous policy mainte-
nance. In order to complete these tasks, companies require a guided approach
which is able to manage organizational project complexity as well es the tech-
nical heterogeneity of involved applications and protocols. To the best of our
knowledge, no such structured approach has been provided up to now.

In this paper we are closing the existing research gap by firstly investigating
the main building blocks required for dIAM infrastructures (Sect. 3). Secondly
we propose a migration guide for implementing dIAM which serves as a project
guideline dividing the necessary steps into manageable activities (Sect. 4). We
thirdly evaluate our work within two real world use cases in the insurance and
research industry. Besides the theoretical structuring of activities we identified
the need for automation and thus additionally provided a prototypical software
implementation for executing single activities of our migration guide. In order
to achieve this we extended an existing IAM-tool proposed in [10] with attribute
management and policy generation functionality. This allowed us to facilitate
available functionality (e.g. data import or data visualization) and further eval-
uate our migration guide within real-life projects (see Sect. 5).

2 Related Work

Traditionally, Identity and Access Management in organizations has been asso-
ciated with storing user data, maintaining user accounts, and controlling users’
access to applications [11]. In today’s medium to large-sized companies a cen-
tralized management of users following the RBAC paradigm has become the
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de facto standard approach for handling the challenges imposed by a steadily
growing number of digital identities as well as access privileges. Recent surveys
underline this growing importance of roles in information security in general and
in IAM environments in particular [13]. However, over time and without proper
controls such as de-provisioning processes, the number of roles is steadily grow-
ing, contradicting the benefits of administrative cost reduction [9]. In order to
keep role systems up to date, methodologies and metrics for the ongoing opti-
mization of role-based IAM infrastructures are required [10,26]. Nonetheless, the
static concept of roles in general lacks the ability to adopt to company changes
and struggles with situational adaptivity [42]. Both requirements, however, are
main challenges of modern IAM infrastructures.

As a result, companies aim at enhancing their existing IAM systems with
dynamic ABAC policies in order to increase provisioning capabilities, strate-
gically reduce administrative tasks, and keep IAM infrastructures manageable
[21]. While standard ABAC protocols like the eXtensible Access Control Markup
Language (XACML) [33] have been around since 2003, Priebe et al. [36] and
Yuan et al. [52] were the first to formally define ABAC as an access control
model. However, their focus was on formalizing the model and did not consider
an application-independent IAM scenario. Jin et al. suggest an attribute-based
architecture for IAM focusing on attribute correlation and attribute importance
in different IAM-related domains [25]. Their work, however, does not aim at sup-
porting organizations during the set up of a dIAM system. Recently, Hu et al.
[20] were amongst the first to provide generalized definitions and best practices
while also giving recommendations on deploying ABAC in cross-application set-
tings. They, however, neither provide the structured guidance nor an overview
on how to adopt ABAC in an organization-wide IAM system.

Up to now, to the best of our knowledge, no approach constituting the
single building blocks of ABAC-based company-wide IAM and aligning them
into a structured process model exists. We close this gap in the remainder by
firstly gathering the aforementioned building blocks on the basis of a thorough
research review (Sect. 3). Secondly, we structure them in the form of a migration
guide which can be employed by organizations that aim at extending their static
identity- or role-based IAM towards the integration of ABAC policies (Sect. 4).

3 Building Blocks of Dynamic Identity and Access
Management

In the following we present the core elements of dIAM systems derived from
ABAC literature (e.g. building on the findings of [20]) as well as literature from
related areas, such as data and information quality management or policy man-
agement. Even though most works do not consider their application for company-
wide IAM in particular, researchers in general already identified attribute man-
agement as well as policy management as the two main aspects of any ABAC
implementation. Attribute management [6,8,16,20,35,37,52] in general deals
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with requirements related to the attributes used within ABAC policies, rang-
ing from the aggregation of attributes up to their ongoing maintenance. Policy
management [4,15,20,22,24,30,37] deals with the development and continuous
improvement of access policies.

3.1 Policy Management

While policies and their life-cycle in general have been studied in various research
areas (e.g. [7]), researchers recently stated the need for a structured approach
for policy management in IAM. Building on the generic policy life-cycle model
proposed by Buecker et al. ([7], see Fig. 1) we outline relevant aspects of policy
management in IAM in the following.

Fig. 1. Policy management based on [7] including corresponding dIAM aspects

Language Agreement. The first challenge prior to defining policies is the
agreement upon a common expression language providing the syntax for depict-
ing the semantics of policies interpreted by an IAM infrastructure. Looking at
the research area, language requirements have been investigated [44] and com-
parisons of the suitability of policy languages (e.g. [17]) such as XACML [33] or
EPAL [1] have been provided. Other authors like Strembeck [48] rather suggest
generating a customized policy language tailored to the specific needs of a cer-
tain scenario. Within the area of IAM, however, a standardized approach seems
more promising due to the high number of different applications and stakeholders
involved.

Guidelines. Besides a common policy language, the establishment of policy
guidelines plays an important role during the development as well as mainte-
nance of dIAM systems. Policy guidelines are representing general rules on how
policies are to be developed within a specific context. Note that in complex sce-
narios contradicting policies could potentially be defined. As a result, the estab-
lishment of design guidelines is mandatory in order to avoid semantically correct
but inefficiently modeled and contradicting policies. Beckerle and Martucci [4]
were the first to formally define security and manageability goals for policies.
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They exclusively examined general goals for security and authorization rules.
However, their results also can be applied in the context of IAM. Examples
include the following goals provided in [4]:

– Rule sets have to grant authorized access.
– Redundant rules need to be removed.
– Contradicting rules need to be removed.
– Concise rule sets are better than large rule sets.

By means of such exemplary guidelines organizations can increase policy homo-
geneity and ease policy maintenance.

Development. Policy Development deals with the actual creation of policies.
Choosing an appropriate policy development methodology within a given sce-
nario (i.e. an IAM project) is crucial for project success. Available methodologies
can be divided into policy engineering and policy mining approaches (see Fig. 2).
Policy engineering deals with the top-down extraction of policies from business
processes or workflows [2,5], optionally based on security policy templates as
shown in [41]. Authors agree that the policy notation used during policy devel-
opment [47] and the provided tool-support [46] are critical success factors for
policy engineering. Policy mining, in contrast, applies data mining technologies
for extracting policies from Natural Language Policies [29,49], currently assigned
access privileges [50], or access logs [22,51]. While providing an increased level of
automation, policy mining lacks the integration of business know-how and strug-
gles with low-quality attribute values - above all in the context of company-wide
IAM involving numerous stakeholders and policies. Research results from related
areas [11] underline that in such scenarios a hybrid approach building on both,
an increased level of automation as well as the integration of expert knowledge,
is the most promising method for policy modeling.

Fig. 2. Policy development methods

Simulation, Translation and Implementation. In company-wide IAM sys-
tems a potentially large number of ABAC policies affecting thousands of access
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privilege assignments might be required. As a result, a tool-supported simula-
tion for anticipating the consequences of newly introduced policies becomes a
central step during the setup of a policy base. Simulation tools can support the
integration of policy owner feedback prior to policy activation as well as depict
the future state of access within systems managed by an IAM infrastructure
(e.g. using visual investigations as proposed in [31]). After simulation the poli-
cies need to be mapped onto the access control models of the legacy applications
connected to an IAM. Those applications commonly are based on static access
control models (e.g. SAP based on static roles or the Microsoft Active Directory
(AD) based on groups). As a result, the IAM system in place has to carry out
the required translations, i.e. the provisioning of dynamically calculated access
privileges using static access control concepts (e.g. SAP roles).

Optimization. Once simulated and implemented, policies require the continu-
ous monitoring of their correctness and validity by applying automated analyt-
ical methods. Note that due to the high number of expected policies a manual
analysis is not feasible in the context of IAM. Lu et al., for instance, provide
an approach for discovering inconsistencies and errors within policies at design-
time [28]. Recently, Hummer et al. [22] proposed an approach that allows for
a structured optimization of policies without interfering with a running IAM
system. They apply anomaly detection methods in order to highlight deviations
of normal policy patterns and visually present them to human policy engineers.

3.2 Attribute Management

Besides policy-related activities, attributes and their management form the foun-
dation of any ABAC implementation. Attribute management is of great impor-
tance for company-wide IAM Despite its importance for company-wide IAM
where employees are managed based upon master data attributes and access
privileges are handled using attributes. However, attribute management in IAM
has not attracted researchers’ attention to a great extent up to now.

System and Attribute Selection. The initial selection and definition of appli-
cation systems as well as related attributes managed within the ABAC policies
[20] is the foundation for structured attribute management for dIAM. Note that
in case an organization already has a deployed IAM system, basic attribute
selection already took place during the initial system setup. Nevertheless, a re-
investigation and potential extension of attribute sets commonly needs to be
executed. Several master data attributes stored within a personnel management
system might, for instance, be unused up to now but needed during later policy
definition (e.g. an employee’s job position or cost center).

Constraints and Data Types. After selecting required attributes, a definition
of their data types, values and constraints needs to be carried out. Data types
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commonly range from boolean to single-valued and multi-valued attributes [6].
Researchers recently analyzed the effects of policy evaluation performance and
highlighted its relation to the used attributes and attribute values [32]. Regarding
attribute constraints, Bijon et al., for instance, introduce constraints on attribute
assignments and values [6]. As further examples, Jin et al. provide a methodology
for the classification of attributes according to their criticality and importance
for access [25], while there also exists an overview of data and systems that are
typically involved in an IAM environment [22].

Data Integration. As aforementioned, company-wide IAM commonly han-
dles large amounts of data stemming from numerous applications, databases,
or directory services. Organizations already operating an IAM hence need to
review and extend existing integration processes to reflect the needs of future
dynamic ABAC policies. IAM systems in general differentiate between source
and target systems whereas a source system for certain attributes can act as
target system for other attributes at the same time. An example could be an
HR system providing master data of employees while at the same time receiving
employees’ email addresses from a mail application. Note that the definition of
master sources for attributes has implications on attribute ownership. It is e.g.
likely that human resources representatives are responsible for reviewing and
validating attributes stemming from the personnel system.

Cleansing and Quality Controls. Policies created on the basis of erroneous
attribute values essentially lead to security vulnerabilities, compliance violations,
and administrative overhead. As a result, a structured review and cleansing of
incorporated attribute values is a mandatory building block of dIAM prior to
policy development. For an overview of potential data quality problems, cf. [39].
Hummer et al. recently argued that for optimizing policies, a centralized view on
available and utilizable attributes spanning all involved systems is necessary in
order to detect data errors and inconsistencies [22]. Data cleansing additionally
builds on available attribute quality controls (e.g. rules for valid attribute values).
Such quality controls, e.g., support the automated monitoring of attribute value
changes and the advent of new attribute values and attribute types. We suggest
to apply measures and metrics (for an overview cf. [18]) as well as best practices
[40] from the field of data and information quality management to address these
challenges.

4 Migration Guide

After describing the building blocks of an ABAC-based IAM, this Section of the
paper introduces our tool-supported migration guide supporting a step-by-step
migration from an existing static towards a dynamic IAM solution. It consists
of three phases, namely a preparatory phase, an implementation phase and a
maintenance phase (see Fig. 3). The goal of the preparatory phase is to achieve
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Fig. 3. Process model for migrating towards dIAM

a common understanding of policies and provide an attribute base used during
later process phases. The subsequent implementation phase covers the cleansing
of attributes and actual development of policies while the maintenance phase
provides measures for continuous monitoring and improvement of the policy
system. Note that due to space restrictions we cannot provide a detailed pre-
sentation of all involved sub-activities but rather aim at giving an overview of
required tasks. In order to increase automation, we implemented a prototypi-
cal software for supporting the execution of attribute and policy management
activities (Phase 2 of our migration guide). It is able to exchange data with an
existing IAM system supporting the respective ABAC implementation process.

4.1 Preparation Phase

Due to the complexity and heterogeneity of static IAM environments, several
preparatory activities have to be completed before ABAC policies can be defined.
Relevant systems, attributes, responsibilities, and guidelines have to be reviewed
and defined in order to foster a common understanding on a technical as well as
organizational level among involved stakeholders.

Attribute Management. During system and attribute selection source sys-
tems for attribute data (e.g. personnel management systems) need to be investi-
gated for attributes required during policy definition (Activity 1.3). Additional
sources like IAM systems themselves or other applications providing informa-
tion about user accounts or access privileges (e.g. ownership, criticality) might
be identified. Note that organizations having basic attribute synchronization
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processes in place commonly have not dealt with the facilitation of extended
attributes for complex access control decisions. By investigating system docu-
mentation or conducting expert interviews they hence need to review and extend
the currently used attribute types in order to reflect ABAC requirements.

At the same time, data types need to be defined and constraint definitions
for the attributes need to be established (Activity 1.4, cf. Sect. 3, Constraints &
Data Types). This, amongst others, includes the definition of data types, master
data sources, data ownerships, valid attribute values, or attribute ranges, i.e.
intervals (if the data type is a numeric type) of validity. This way, erroneous
attribute values can be identified during the subsequent cleansing activities.

After successfully completing the system and attribute selection and defini-
tion of constraints and data types, the attribute synchronization (Activity 1.5)
takes place. Attribute values are imported into the IAM during this phase. At
the same time conflicts like different encodings or granularity issues (e.g. address
vs. street and zip code) can be detected.

Policy Management. Regarding policy management, a general language
agreement (Activity 1.1) for policy expression as well as the definition of policy
guidelines need to be established prior to policy creation. Most of the currently
available IAM implementations, for instance, are able to foster XACML as stan-
dardized policy language. Additionally, a shared understanding among project
stakeholders on an organizational level needs to be established in the form of
a company-wide glossary with definitions for important terminology. Available
policy types like grant or denial policies should, for instance, be described. Fur-
thermore, guidelines for policies (Activity 1.2, cf. Sect. 3, Policy Guidelines) can
act as sources on how the human policy engineers are requested to model poli-
cies. Imagine a scenario in which only grant policies are allowed. Policy engineers
should hence not have the option to design denial policies throughout a tool-
supported policy creation process at all. Additionally, guidelines for the strategic
maintenance of policies (Phase 3 of our migration guide) need to be defined. By
introducing policy and attribute ownerships and requiring a periodic certification
process, companies can essentially increase long-term policy quality.

4.2 Implementation Phase

After the preparatory activities have been completed, organizations enter the
implementation phase (Phase 2) of our migration guide, i.e. the initial devel-
opment and setup of a dIAM based on ABAC policies. Concerning attribute
management, a systematic initial review and cleansing (Activity 2.1) of attribute
data is required before the initial creation of policies as well as their subsequent
simulation and implementation (Activities 2.2 and 2.3) can be carried out (cf.
Sect. 3, Policy Development; Simulation, Translation and Implementation).

Attribute Management. Medium and large-sized organizations commonly
struggle with data quality issues regarding their digital identities and access
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privileges. As a result, a dedicated cleansing process for improving attribute data
quality is a crucial success factor for implementing dIAM. Following an initial
assessment of attribute data (e.g. the identification of empty or invalid attribute
values) the manual or automated cleansing of attributes needs to take place. We
argue that a tool-based detection and cleansing process fosters user adoption by
reducing the overall project complexity. Automated error identification can, for
instance, be carried out by means of data mining or data quality metrics. Data
mining, for instance, can be applied to detect outliers and unusual attribute
values (see [12]). Based on predefined quality metrics (e.g. general rules like the
currency [18] of an attribute value or a list of valid location attribute values) it
leads to an overall higher quality of defined policies. Figure 4 (left side) gives a
simple attribute cleansing example by grouping current location attribute values
from a personnel system within our prototype after the attribute synchronization
took place. Existing data errors such as typos, different language codings, or
misspellings can be identified easily. The right side of Fig. 4 displays the attribute
values after cleansing by human experts in collaboration with attribute owners.

Fig. 4. Before and after manual cleansing by grouping of attribute location and its
various occurrences

Policy Management. As aforementioned, a potentially high number of policies
bundling a wide range of access privileges or responsibilities are managed in
corporate IAM environments. As a result, a manual policy generation by human
policy engineers is not feasible. Organizations thus aim at employing automation
techniques for creating policies and reviewing them in a hybrid manner (e.g.
by experts who provide business knowledge and semantics, see Sect. 3). As one
example of a potential role development approach in large IAM environments,
we thus implemented policy mining algorithms that are able to automatically
generate candidates for grant policies based on given attribute information. In
order to support human review processes we additionally developed a simple
representation of policies using a wizard-based graphical interface within our
prototype (see Fig. 5).

Using this approach, a human policy engineer can select combinations of
available attributes (left side of Fig. 5, e.g. function and location) and option-
ally merge semantically or syntactically equivalent attribute values (right side of
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Fig. 5. Automated tool-based policy mining and review

Fig. 5, bundling the attribute values Munich and Nuremberg). In a second review
step, suggested policy candidates are then displayed to the policy engineer. Con-
tinuing our example above, access is granted on the basis of the combination of
employees’ location and function. As a result, three policies for each function
attribute value are generated, e.g. one policy for sales representatives in Berlin,
Frankfurt , and Munich/Nuremberg each. During review, a human policy engi-
neer can alter or remove unneeded policies (e.g. in case no sales representatives
are located in Frankfurt). During a third step our prototype calculates the access
rights shared by policy members based on customizable data mining algorithms.
This way, a policy engineer could, for instance, enforce that only access rights
that are not yet included in other policies are considered during the access priv-
ilege calculation or that critical access privileges are in general excluded from
policy generation.

Completing the third step of our policy development wizard, policy owners
are assigned and the policy candidates can be saved and exported to an IAM
system. Ownership assignment can take place either based on rules (e.g. line
managers are responsible for policies that affect their department) or manually.

After agreeing upon policy definitions, their simulation and implementation
within an IAM test environment takes place. Due to the high number of organi-
zational changes (e.g. restructuring organizational hierarchies, ownerships, and
responsibilities) such policy simulation is a cornerstone of every policy modeling
initiative. After final approval, the implementation of policies in the productive
system occurs.
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4.3 Maintenance Phase

The last phase of our migration guide (Phase 3) is dedicated to the continuous
improvement of the previously implemented ABAC policies. In order to ensure
long-term applicability of the defined rule set and minimize system complexity
over time, a structured process for a periodic assessment and re-design of existing
and new policies needs to be established. As a result, the maintenance phase
deals with ensuring both, the correctness of policies and a high level of attribute
quality (Activities 3.1 and 3.2, cf. Sect. 3, Policy Optimization).

Attribute Management. Regarding attribute management (Activity 3.2), we
recommend the introduction of a structured monitoring process comprising two
main activities, namely the periodic identification and review of quality metric
violations as well as the definition of organizational agreements.

Quality measures defined during the previous phases of the migration guide
form the basis for continuous attribute quality assurance. Throughout automated
and periodic checks the correctness of attribute values can be investigated based
on given quality measures and outlier detection methodologies. Examples for
such checks can be periodic certifications of attributes by attribute owners or the
detection of wrong attribute values using valid value lists. Besides such technical
measures organizational agreements have to be made, e.g. in order to handle
scenarios when new applications are connected to an IAM. In such cases, the
IAM team has to decide whether the provided attributes fulfill the initially
established constraints and attribute quality levels.

Policy Management. Besides the strategic management of attribute types
and their values, the long-term maintenance of ABAC policies together with the
potentially automated proposal of newly required but not yet defined policies
need to be ensured. Note that both maintenance activities are highly depen-
dent on each other. In contrast to attribute monitoring, discovering erroneous
and outdated policies requires an increased level of automation. While single-
valued attribute errors might be easily identified, a misconfiguration of policies
granting critical access privileges can hardly be identified without tool-support.
For addressing this challenge, Hummer et al. recently suggested measures and
processes for strategic policy maintenance [22]. They, for instance, introduce
tool-supported outlier and anomaly detection for identifying unused or outdated
policies into the field of IAM.

5 Evaluation

After proposing our migration guide we now execute a naturalistic ex post eval-
uation covering two industry use cases based on the evaluation framework by
Pries-Heje et al. [38]. The used real-life data-sets originate from companies oper-
ating in the health insurance in Switzerland (from hereinafter refereed to as
‘Insucomp’) as well as the research sector in Germany (from hereinafter refereed
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to as ‘Rescomp’). All attribute values have been anonymized accordingly. While
Rescomp already had a working IAM system in place, Insucomp conducted a
policy development project as part of their initiative to initially implement an
IAM system. The project duration was six months (Rescomp) and nine months
(Insucomp) respectively, with both projects sharing the same overall goals:

1. Automatically providing new employees with correct basic access.
2. Increasing the amount of automatically distributed privileges by using

dynamic provisioning policies.

In order to achieve these goals, both companies executed Phases 1 and 2 of our
migration guide and facilitated our prototypical tool implementation during pol-
icy development. Insucomp additionally implemented basic measures for policy
and attribute maintenance (Phase 3) while Rescomp plans to do so in future.
Note that even though both use cases only aimed at policy definition based on
subject attributes, our model can also be applied during the general development
of policies comprising subject, object, and environmental attributes.

5.1 Insucomp

Insucomp is employing 349 external and 866 internal employees which in total
own 7,777 accounts in 13 different application systems, including one AD and
one SAP instance. In total, 2,297 different access rights are directly assigned
to the user accounts resulting in 54,059 access rights assignments. Insucomp’s
variety of applications using static access privilege assignments in combination
with manual provisioning processes resulted in large administrative efforts over
the last years. As a result, a new IAM system based on dynamic access control
policies had to be introduced between 2014 and 2015.

Preparation Phase. Throughout a kick-off workshop, Insucomp initially
taught policy engineers guidelines on how to semi-automatically construct poli-
cies (Activity 1.2) while the IAM software implemented during the overall IAM
project pre-defined the applied policy language (Activity 1.1). In the specific
case the proprietary modeling capabilities of the Dell One Identity Manager
were employed due to the reduced expected technical implementation efforts
required. The system and attribute selection (Activity 1.3) took place in an iter-
ative manner. Firstly, the HR system was defined as source for employee master
data. The available attributes together with access privileges from all 13 applica-
tions were imported into our prototype. Consecutively, policy engineers and the
responsible line officers agreed upon the exclusion of certain access rights from
the Microsoft AD, the SAP, and the Customer Relationship Management system
from further consideration. This decision was based on several reasons: Firstly,
granting certain access rights in an automated manner would have resulted in
an increase of license costs. Secondly, selected access privileges from the Cus-
tomer Relationship Management system were classified as critical from an IT
security perspective and hence excluded from automated provisioning processes.
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Regarding the attributes for policy development, the domain experts and IAM
team selected an employee’s position as the main HR attribute for the policy
construction. Constraints and data types were defined accordingly:

– C1: The German value for the position is used in policies.
– C2: A code is introduced for each value, referring to exactly one position.
– C3: A policy definition needs to contain both, a human-readable position as

well as its respective machine-readable 4-digit code.
– C4: The position is a string value.

During attribute synchronization (Activity 1.5), violations of those constraints
were identified. As an example, several languages were originally used to express
an employee’s position. In coordination with the HR department, the German
position attribute value (C1) was selected as the defining attribute for later
policy evaluations. Other languages were excluded from the data import and
from now on are represented as translation of the main value (i.e. the German
value) within a new attribute field in the HR system.

Implementation Phase. Following our migration guide a subsequent data
cleansing process was conducted. Inspecting all attribute values within our pro-
totype (Activity 2.1), Insucomp was, amongst others, able to discover ten erro-
neously defined positions. Additionally, positions with an inappropriate seman-
tic granularity level were detected. For instance, initially one position for Clerk
Insurance Processing existed within the HR system. However, for representing
two semantically distinct insurance levels, Insucomp had to model two additional
types of clerks with different access rights. As a result, the IAM team enforced
the creation of more detailed positions and codes within the HR system. In the
given example, two new positions were created in the HR system and employees
were assigned accordingly (see Fig. 6). Finishing the data cleansing activities a
total of 253 positions have been available in the final attribute base.

After successful attribute cleansing, the actual detection of policy candidates
within our prototype and the respective review together with domain experts
took place (Activity 2.2). As a side effect, Insucomp was able to discard 3,600
excessive assignments (i.e. 6.7 % of all access privilege assignments) during the
policy review process as our prototype highlighted additional (potentially exces-
sive) privileges of employees assigned to a certain policy. This had a large impact

Fig. 6. Example for refactoring of employee positions
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on the overall project, further underlining the importance of secure provisioning
and de-provisioning processes based on dynamic policies.

Finally, Insucomp exported the defined policies from our prototype and
imported them within their newly set-up IAM system (Activity 2.3). They ran-
domly selected sample policies in order to simulate correct functionality through-
out various identity lifecycle processes (i.e. onboarding, change, and offboarding
of employees). As a result, a total of 253 policies were put into operation. This
led to the dynamic provisioning of 32 % of all access rights among Insucomp’s 13
connected application systems, essentially reducing the manual administrative
workload while at the same time increasing the level of IT security.

Maintenance Phase. At the end of the migration project, Insucomp defined
measures and quality controls in order to ensure the correctness of policies and
attributes (Phase 3 of our migration guide). For conducting structured attribute
management (Activity 3.2) newly introduced or changed attributes or attribute
values have to be reported by the HR department to the IAM team in the future
in order to adapt policies accordingly. Policy optimization has not been carried
out up to now but is one element of the Insucomp IAM roadmap within the next
year.

5.2 Rescomp

Rescomp already employed a working IAM system prior to the beginning of
their policy definition project. Nonetheless, user management still was executed
manually to a large extent for the 473 employees and the 761 different access
rights (5,774 user privilege assignments in total). Rescomp’s dynamic research
environment requires automated and flexible access privilege provisioning in the
future (e.g. for external employees like students needing temporary access to
critical company data while undergoing regular organizational changes at the
same time). As a result, a dIAM migration project was initiated in 2014. Similar
to Insucomp, Rescomp executed the first two phases of our migration guide. Even
though they have not executed maintenance activities up to now, they recently
defined policy optimization as one element of their future IAM roadmap.

Preparation Phase. As a preparatory activity, Rescomp defined general guide-
lines for policy modeling (Activity 1.2). They introduced three types of valid
policies, namely location-based policies, department and type-based policies, as
well as function-based policies. Location-based policies represent the physical
location of employees e.g. for granting physical access to buildings. Department-
and type-based polices, in contrast, are defined based on the departmental assign-
ment of employees in combination with their type, essentially granting access to
departmental file shares for internals, trainees, students, or externals. In addi-
tion, function-based policies were defined to further refine employee’s access
rights according to their job function. Besides the three policy types, the IAM
team defined a guideline regarding the definition of empty policies, i.e. policies
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that currently no employee is matching. In accordance with their project goals
they decided to prepare such policies prior to an initial match of an employee
(Activity 1.2). They, for instance, created a policy for all members of the tech-
nical service department whose type of contract is student. Students might only
work within the department during their term holidays and thus the according
policy might be unused for certain periods of the year but still is required during
other months.

Following the migration guide, they selected two installations of their
Microsoft AD for inclusion of access rights and provided the employee attributes
from the HR system in place. During Activity 1.4 department, type of contract,
function, project and location were selected as attribute base for policy defin-
ition. Similarly to Insucomp, Rescomp defined constraints and data types for
these attributes. They, for instance, decided that regarding the types of contract
internals, apprentices, and students should be treated equally in terms of their
access rights.

Implementation Phase. Due to an already high attribute quality provided
by the HR system, attribute cleansing was not required as no errors were identi-
fied during the attribute investigation. As a result, the IAM team subsequently
conducted the policy development (Activity 2.2) in cooperation with business
representatives. They started with the definition of basic location policies and
continued with the creation of department and employee type-based policies as

Fig. 7. Example policy export using XML notation
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well as policies for employees’ function attributes. Business representatives were
asked to review the policy candidates using our prototype. In total, this process
lead to the definition of 449 policies for automatic access privilege assignments,
covering a total of 34.8 % of all managed access privileges. Regarding the access
rights, 45.9 % of all initially existing privileges can now be assigned in an auto-
matic way, i.e. they are included in at least one policy. All policies were exported
from our prototype using the XML-notation and consecutively transferred into
the existing LDAP-based IAM system of Rescomp using custom Python scripts
(Activity 2.3). Figure 7 presents a short XML export example of one depart-
ment and employee type-based policy bundling students, trainees, and intern-
ships within a controlling department.

6 Conclusion

Dynamically assigning and revoking access privileges in company-wide IAM
infrastructures has gained significant importance when it comes to automated
and secure user management. Migrating to a dynamic IAM infrastructure based
on ABAC policies can decrease manual administrative efforts while at the same
time increasing the overall IT security level within companies. In order to support
organizations during their required migration efforts, we proposed a novel three-
step migration guide for implementing dynamic IAM based on ABAC policies in
a structured manner. Up to now, no such structured process model highlighting
and coordinating the respective migration tasks has been proposed. Our migra-
tion guide covers the required preparation, setup, as well as maintenance tasks
and additionally offers tool-support in order to automate attribute and policy
management activities. By doing so it increases the flexibility of policy engi-
neers, reduces errors during policy modeling, and speeds-up the overall process
of policy creation. Evaluating our migration guide throughout two real-life use
cases we have further underlined its practical applicability.

In the future, we plan to extend our software prototype by implementing
automated identity attribute monitoring activities that support companies dur-
ing long-term attribute maintenance. In contrast to organizational guidelines
this would support the enforcement of quality rules for attribute management.
Additionally, we plan to expand policy development and policy maintenance
capabilities in order to allow for a better cooperation between the responsible
domain experts and the policy engineers.
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Abstract. In ICISS 2014, Paul et al. identified several problems in
the existing Proof-of-Work protocol for Bitcoin mining and proposed an
alternative solution to generate blocks containing valid transactions. In
their scheme, each miner generates a hash value locally and then the min-
ers engage in a distributed computation of the minimum of the hashes
to select the winner. The authors claimed that this will eliminate the
advantage of the miners with more computational resources and there-
fore would be more democratic. However, in this paper we show that
the new scheme is also subject to the same weakness in the sense that
a miner with more computational resources can do some local computa-
tion in order to increase its winning probability. We also discuss possible
remedies to this problem and their implications.

Keywords: Bitcoins · Cryptocurrency · Democratic mining · Electronic
cash system · Miners · Proof-of-work

1 Introduction

Popularity of Bitcoins [15] as an electronic cash system is increasing day by
day. In Bitcoins, the users are identified with virtual pseudonyms referred to as
Bitcoin addresses, where each address corresponds to a unique public/private
key pair. Transfer of coins from one address to the other is referred to as a
transaction [7]. A transaction is formed by digitally signing a hash of the previous
transaction where the coin was last spent along with the public key of the future
owner and finally incorporating the signature in the transaction. Blocks [6] are
used to store these transactions and they maintain a synchronization among all
nodes in the network.

Any peer can verify the authenticity of a BTC transaction by checking the
chain of signatures. A block of valid transactions contains a hash that takes as
input only the transactions in the current block, but also the hash of the previous
block and a nonce. This helps to prevent double-spending [1].

Before the transactions are verified, they are stored in a transaction pool.
Each miner tries to create a hash less than a specified target by changing the
c© Springer International Publishing Switzerland 2015
S. Jajodia and C. Mazumdar (Eds.): ICISS 2015, LNCS 9478, pp. 161–170, 2015.
DOI: 10.1007/978-3-319-26961-0 10
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nonce and the winner creates a block of valid transactions and appends it to
the existing block-chain. This is called the Proof-of-Work [3] (PoW) protocol.
Upon successful generation of a block, a miner is granted a fixed amount of
BTCs, known as coin-based transaction, plus the transaction fees from all the
transactions that have been included in the block. This provides an incentive for
users to continuously mine Bitcoins. The target is changed by the system from
time and time and this helps to keep the Bitcoin generation rate under control.

1.1 Motivation and Contributions

In a recent work [16], the authors identified many weaknesses in the Pow protocol
in Bitcoins. We summarize them below.

– A group of miners having ‘rich’ computational resource may set up a mining
pool in such a way that it may control more than 50% of the network’s
computing power. They can modify the ordering or exclude the occurrence of
transactions by launching a 51% attack [14]. The pool may indulge in double
spending by simply reversing transactions that they send. It may also prevent
other valid transactions from being confirmed or reject every block found by
competing miners. The mining pool keeps on earning maximum profit and as
pointed out in [16], this leads to the socially undesirable problem of “rich gets
richer”.

– The PoW protocol requires time (on an average 10 min) to verify a block [11].
So within the verification time a Bitcoin exchange might be completed. An
attacker can simultaneously send an illicit transaction log to the seller and
another log to the rest of the peers in the Bitcoin network, where the original
owner gets back his currency. But by the time the seller realizes that he has
received a fraudulent amount, the transaction may have already been carried
out. This is called race-attack.

– When a miner solves the PoW puzzle and verifies a new block, he may keep it
with himself and start working on the next puzzle for verifying the block which
would follow his unreleased block. Thus if a mining pool is set up, they might
use their overall computational power to keep verifying blocks. Finally, when
other miners find a new block, the selfish miners releases their verified chain of
blocks. Their blocks would automatically be added to the main Bitcoin chain
and the selfish miners would always gain, since the longer chain always wins.
This is called ‘Selfish Mining’ [9].

– Attackers may illegally infect a huge number of machines [10] in the network
with malware, thus building a malicious botnet, that would be able to mine
Bitcoins. There are several examples of such attacks [4,18,19].

– Each PoW problem generally requires 108 GH/s (Gigahashes/second) to be
solved. According to “Bitcoin Watch” [12], the whole Bitcoin network hit
a record-breaking high of 1 exaFLOPS a year earlier. The world’s top 10
supercomputers can muster 5 percent of that total, and even the top 500 can
only muster a mere 12.8 percent. The new ASIC machines used by the miners
are built from scratch and are only used to mine Bitcoins. Thus they can’t
serve any other purpose. So the total power spent on Bitcoin mining could
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theoretically be spent on something else, like real world problems that exist
naturally.

– As discussed in [16], the time required for confirmation of a transaction usually
takes around 5–20 minutes, which is against the policy where each transaction
verification should take on an average 10 min. If more miners join in the race
to find the puzzle for verifying the block, more hashes would be generated
and tested within the same time-span. But according to the Bitcoin protocol,
the network self-regulates the speed of generation of Bitcoins after a certain
time-span (after every 2016 blocks) by checking the number of days required
to generate x many hashes. If the time-span is found out to be too short, then
the difficulty level of PoW puzzle is increased and so it becomes harder to find
out the required hash in the next round. Thus, there is no guarantee of fixed
generation rate of Bitcoins.

In [16], a new alternative of PoW was proposed with a view to mitigate the
above problems. They called their mining method to be “democratic” in the sense
that each miner has equal probability of winning. In this paper, we theoretically
prove that the above claim is correct only when each miner generates only one
hash and submits it as an input to the winner-finding algorithm. However, if the
miners are allowed to compute multiple hashes by changing the nonce’s, then
one can submit a suitable function of those local hashes as one’s input to the
winner-finding algorithm and thereby increase one’s winning probability. Thus,
the problem of ‘rich gets richer’ and the associated issues like selfish mining
and illegal use of computation-intensive machines still remain. As a remedy, we
discuss several possible alternatives. However, none of the remedies suggested
are perfect and it appears that achieving true democracy in Bitcoin mining in
practice is indeed a very difficult open problem.

2 Analysis of Weakness of the Proposal in [16]

The idea behind the approach of [16] was that each user generates a hash, based
on which the miner of the next block is decided. The hash H is generated from
the 7 fields mentioned in Table 1. The work [16] suggested to use the following
hash function

H = SHA256(SHA256(V ||Hp||T ||Up||Ht||R||P )). (1)

in tandem with the originally proposed one by Nakamoto [2,15].

Table 1. Items used by the user to generate the hash.

Version
(V)

Previous
block hash
(Hp)

Timestamp
(T )

Bitcoin
address
(Up)

Hash of merkle tree of
verified
transactions (Ht)

Nonce (R) Padding
(P )
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The user whose hash is of minimum value amongst all the users in the system,
is the winner and generates the next block. This user receives the transaction fees
for all the transactions that are verified in his/her block and it is added to the
block-chain as the next block. The winner also initiates a coin-base transaction
to his/her public address and awards himself/herself with a specified amount of
Bitcoins. This serves an additional incentive for verifying the blocks.

The work [16] suggested a distributed algorithm for the minimum hash com-
putation, divided into 3 phases: hash generation phase, hash broadcast phase
and hash verification stage. These 3 phases together run for 10 min and give the
true minimum hash of the system. This duration is called the time frame which
should be maintained by the Bitcoin system time.

The time for hash generation is specified as the first 2 min of the time frame.
This time is maintained by the Timestamp T in the hash message. Any message
that has been generated after this 2 min will be discarded.

In this section, we show that if a miner generates hashes with different nonce’s
and reports the minimum of these locally generated ones as the input to the
distributed algorithm, then he/she increases his/her winning probability over
the scenario if he/she would have just tried with one nonce and sent the single
generated hash. In order to formally prove our claim, we need to study the order
statistics of the hashes.

2.1 Preliminaries

In this section, we revisit the order statistics of discrete random variables for
the special case of the minimum. In the next section, we apply this theoretical
framework to establish our claim. Detailed treatise of order statistics can be
found in any standard textbook on probability and statistics such as [20]. How-
ever, for the sake of completeness and for ease of reference, we mention only the
key results that we would need.

The cumulative distribution function F (x) of any discrete random variable
X is the probability that the random variable takes a value less than or equal
to x. In other words,

F (x) = Pr(X ≤ x) =
∑

a≤x

Pr(X = a). (2)

Naturally,
Pr(X ≥ x) = 1 − Pr(X ≤ x − 1) = 1 − F (x − 1). (3)

Now consider n independently and identically distributed (i.i.d.) discrete
random variables X1, X2, . . . , Xn. Let Xmin denote the minimum of these n
quantities. From Eq. (3), we can write

Pr(Xmin ≥ x) =
n∏

i=1

Pr(Xi ≥ x) = (1 − F (x − 1))n
. (4)
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Hence, from Eq. (4), we can get

Pr(Xmin = x) = Pr(Xmin ≥ x) − Pr(Xmin ≥ x + 1)
= (1 − F (x − 1))n − (1 − F (x))n

. (5)

In particular, when the random variables denote a random sample (X1, . . . ,
Xn) from a uniform distribution over {0, . . . , k − 1} for some fixed integer k,
then we can substitute F (x) by x+1

k in all the above expressions.

2.2 How Local Power Can Affect Global Democracy

Here we show that if a miner or a mining pool has a large computational resource,
then they can increase their winning probability by generating many hashes by
changing the nonce’s and reporting the minimum of the hashes as the input to
the distributed algorithm.

Suppose the range of the hash function family is {0, 1}b and let k = 2b. In
Bitcoins, typical value of b is 256; however, our analysis works in general and
hence we do not assume any concrete values of the variables used in our analysis.
Since H serves as a random function, we can model n independent hashes as a
random sample of size n from a uniform distribution over {0, . . . , k − 1}.

Suppose there are n miners and let X1, . . . , Xn be their respective inputs
to the minimum-finding algorithm D. When no miner does local computation
and submits the first hash that he/she obtains, (X1, . . . , Xn) may be considered
a random sample of size n from the uniform distribution over {0, . . . , k − 1}.
Without loss of generality, let us analyze the winning probability of the first
miner.

Pr(X1 = Xmin)
= Pr(X1 ≤ min{X2, . . . , Xn})

=
k−1∑

x=0

Pr(min{X2, . . . , Xn} = x & X1 ≤ x)

=
k−1∑

x=0

Pr(min{X2, . . . , Xn} = x) · Pr(X1 ≤ x) [since Xi’s are independent]

=
k−1∑

x=0

(
(1 − F (x − 1))n−1 − (1 − F (x))n−1

)
· F (x) [from Eq. (5)]

=
k−1∑

x=0

α(x)β1(x) = P1 (say), (6)

where α(x) = (1 − F (x − 1))n−1 − (1 − F (x))n−1 and β1(x) = F (x).
Now, suppose that the first miner performs local generation of the m hashes

Y1, . . . , Ym and submits their minimum Ymin as his/her input to D, while each
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of others follow the honest strategy of generating only hash and submitting it
to D. Then

X1 = Ymin = min{Y1, . . . , Ym}.

Note that (X2, . . . , Xn) can be treated as an independent random sample of size
n − 1 from the uniform distribution over {0, . . . , k − 1}. In this case,

Pr(X1 = Xmin)
= Pr(X1 ≤ min{X2, . . . , Xn})

=
k−1∑

x=0

Pr(min{X2, . . . , Xn} = x & X1 ≤ x)

=
k−1∑

x=0

Pr(min{X2, . . . , Xn} = x) · Pr(X1 ≤ x) [since Xi’s are independent]

=
k−1∑

x=0

Pr(min{X2, . . . , Xn} = x) · Pr(Ymin ≤ x) [since X1 = Ymin]

=
k−1∑

x=0

Pr(min{X2, . . . , Xn} = x) ·
(

x∑

y=0

Pr(min{Y1, . . . , Ym} = y)

)

=
k−1∑

x=0

(
(1 − F (x − 1))n−1 − (1 − F (x))n−1

)
·

(
x∑

y=0

(1 − F (y − 1))m − (1 − F (y))m

)

[from Eq. (5)] (7)

=
k−1∑

x=0

(
(1 − F (x − 1))n−1 − (1 − F (x))n−1

)
· (1 − (1 − F (x))m) (8)

=
k−1∑

x=0

α(x)βm(x) = Pm (say), (9)

where α(x) = (1 − F (x − 1))n−1 − (1 − F (x))n−1 is the same as before and
βm(x) = 1 − (1 − F (x))m. Note that the second argument of the product in
Eq. (7) is a telescoping sum and only the first and the last term in this sum
remains after intermediate cancellations, yielding the second argument of the
product in Eq. (8).

By comparing the expressions of the probabilities in Eqs. (6) and (9), we can
state the following result.

Theorem 1. Suppose there are n miners and Pm denotes the winning proba-
bility of a miner who first computes m ≥ 1 hashes locally and submits their
minimum as input to the minimum-finding algorithm, and all the other n − 1
miners generate only one hash for submission as input. Then Pm ≥ P1 and

lim
m−→∞ Pm = 1.
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Proof. Note that β2(x) ≥ β1(x) iff 1 − (1 − F (x))m ≥ F (x), or in other words,
iff 1 − F (x) ≥ (1 − F (x))m, which holds for all m ≥ 1. This proves the first part
of the Theorem.

As m −→ ∞, (1 − F (x))m −→ 0, and hence βm(x) −→ 1. Then from Eq. (9),
the limiting value of Pm becomes

k−1∑

x=0

α(x) =
k−1∑

x=0

(
(1 − F (x − 1))n−1 − (1 − F (x))n−1

)
.

This is again a telescoping sum. After cancellation of the intermediate terms,
only the first term, wich is 1, minus the last term, which is 0, remains, yielding
the value of the sum as 1. ��

Thus, the miners can arbitrarily increase their winning probabilities by gen-
erating more and more local hashes. This leads to the same problems as PoW.
Note that our result does not depend on the uniformity assumption. As long as
the hashes are independently and identically distributed, the result still holds.

3 Possible Remedies and Their Implications

It is easy to see that using similar analysis as in Sect. 2, one can prove that
replacing the minimum by the maximum or the median does not serve as the
remedy of the problem of democracy. In all these functions, local computation
helps the miners and hence the one with more computational resource has more
advantage. In this section, we discuss what are the possible counter-measures to
mitigate this problem.

3.1 A Statistical Solution

This solution is surprisingly simple and yet it recovers the democracy of mining.
We replace the winning condition from minimum of the submitted hash values
to the mode of these values. In other words, suppose that there are m users who
submits the hash values as H1, . . . , Hm. Let h1, . . . , h� be the distinct values
among {H1, . . . , Hm}. Let fi be the frequency of hi in all the inputs, 1 ≤ i ≤ �.
If ft is the maximum of these frequencies, 1 ≤ t ≤ �, then ht is the mode.
Suppose there are a total of r users who submitted the value ht. Then amongst
these r users, the one with the minimum timestamp is chosen as the winner.

The question is why the mode works, but not any other function of the
submitted hashes? We have already discussed why the individual hashes can be
thought to follow uniform distribution over {0, . . . , k−1}. Note that the uniform
distribution of a discrete random variable is special in the sense that any value
in the domain of the random variable can be the mode. This automatically
removes any possibility of acquiring any advantage by repeated local sampling
by the miners. Naturally, if the mode exists, there will be multiple users whose
submitted hash values will be equal to the mode. One can then resolve the ties
by the timestamp; whoever has the minimum timestamp wins.
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We keep the rest of the parameters same as in [16]. This includes the modified
format of the block header, the inputs to the hash function as described in
Table 1, the hash generation time limit of 2 mins, and the hash verification stage
as the last phase of the distributed algorithm.

3.2 The Problem of Distributed Mode Computation

The work [16] suggested to use the algorithm described in [17] to find the min-
imum hash in distributed manner. We suggest to use the distributed algorithm
of [13] for finding the mode. The work [13] describes one deterministic and
another randomized algorithm for distributed mode computation. We suggest to
use the deterministic one and it has the time complexity of O(D+�), where D is
the diameter of the network and � is the number of distinct elements (hashes). If
the edges are unweighted, a trivial upper-bound of the diameter of the network
is the number of nodes (users) in the network.

3.3 A Cryptographic Problem

While the above solution is theoretically sound, in practice it has its own lim-
itation. The range of the hash function used in Bitcoins is {0, 1, . . . , 2256 − 1}.
However, the number of Bitcoin users is only a few million. Since the hash func-
tion output is assumed to be uniformly distributed, the probability of two hash
outputs to collide would be vanishingly small. This implies that the frequency of
each distinct hash output will be 1 most of the time and so all the hash values
generated are modes. This is a case of multiple modes and for this situation, the
behaviour of the distributed algorithm of [13] is not specified. If all the values
are determined to be modes, which is natural in case of the current standards
of hash functions, the only solution is to arbitrarily pick up a winner or use the
minimum timestamp criteria.

3.4 Reducing Hash Output Size

One may think that shrinking the range of the hash function to the same order
as the number of users will solve the problem. It is more likely that a mode will
exist in this case. But again, reducing hash output size will cause easy attacks on
collision resistance, pre-image resistance and second pre-image resistance. This
may lead to forging a valid transaction or other kinds of attacks.

3.5 Purely Timestamp-Based Solution

Other possible solutions may be to select a winner based solely on the timestamp.
In order to restrict the rate of the number of blocks added, the system can
set a minimum threshold for each timestamp. This forces the users to wait for
certain period of time before they can submit their data. After they submit, a
distributed algorithm can be used to find the user with the minimum timestamp
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as the winner. While this solves the problems associated with mode computation
or hash size reduction, in order to have only legitimate transactions in the block-
chain, one must ensure that the timestamps cannot be manipulated.

4 Conclusion and Future Work

In this paper, we have analyzed the weaknesses of the recently proposed alterna-
tive [16] of the existing Proof-of-Work protocol of Bitcoins. The PoW protocol
has the problem of selfish mining and illegal use of computational resources, that
are associated with non-democratic Bitcoin mining. We showed in this paper that
the alternative proposal of [16] claims to avoid these problems, but in practice
this proposal fails to meet this claim.

We also discussed possible remedies of the above problem and their limita-
tions. Though none of the remedies are perfect, still it opens up new directions
of research. As part of our future work, we plan to investigate the feasibility of
designing a truly democratic mining. The motivation for searching a democratic
mining strategy is not only to establish equanimity between computationally
rich and poor, but also to minimize power consumption and pave the way for
greener Bitcoins.
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Abstract. Malware often conceal their malicious behavior by making
unscrupulous use of library APIs. Hence any accurate malware analysis
must track data-flows not only through the application but also through
the library. Libraries like Android (2 mLOC) are too large to be analyzed
repeatedly with each application, hence we need to compute data-flow
summaries of libraries that are expressive enough to reveal possible mali-
cious flows, and compact to be included in malware analysis along with
each application.

We present FlowMiner, a novel approach to automatically extract
the data-flow summary of a Java library, given its source or bytecode.
FlowMiner’s summaries are fine-grained, i.e., preserve key artifacts
from the original library to enable accurate context, object, field, flow
and type-sensitive malware analysis of applications in conjunction with
the library. Unlike prior summarization techniques, FlowMiner resolves
method calls to anonymous classes to a single target, making it more
precise. FlowMiner’s summaries are compact, e.g., contain only about
a third (fourth) of the nodes (edges, resp.) in the data-flow semantics of
recent versions of Android. FlowMiner’s summaries are stored in XML,
allowing any analysis tool to use them for analysis.

1 Introduction

Modern software is increasingly built on top of reusable libraries, and when such
libraries are large, the static analysis of an application together with its libraries
becomes prohibitively expensive. An alternative is to analyze an application
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without its libraries. However, for security-critical analyses, this is inaccurate
because it discounts data flow through the libraries. In particular for malware
detection [14,17,20,26], such inaccuracies are unacceptable because the data
flows through the library may provide the critical piece of missing evidence to
reveal the malicious behavior of an application.

For example, Android [7,19] applications (apps) are often significantly smaller
than the Android framework itself. While a typical app may have of the order
of 100 k LOC, Android 4.4.4 (KitKat) [2] contains over 2 million LOC. Further,
Android allows many mechanisms for information flows that pass back and forth
between the app (many of which are asynchronous), all of which must necessarily
be incorporated into an analysis to uncover possible malicious behaviors. This
is not specific to Android however; in most malware analysis and other security
audit use cases, it is essential to account for data flows through the library in
order to avoid missed detections.

Library Summaries for Malware Detection. This paper focuses on the cre-
ation of the data flow summary of a Java library, which is a subset of the original
data flow semantics of the library. It is desirable that the summary is (a) com-
pact, i.e., is smaller than the library, and (b) fine-grained, i.e., preserves enough
information so that it can be used (instead of the entire library) when analyz-
ing an application to allow accurate detection of malicious flows. Summaries are
application-agnostic, and once created be reused for analyzing any application.

Prior work on summarizing libraries are inadequate as their summaries are
too coarse to be used accurately in a future analysis. For example, in [11], flows
to or from a field in a class are counted as flow to or from the object, and
the summary of a method is represented as simple mappings between its input
parameters and return values. These preclude the summary from being used
in a subsequent sensitive analysis accurately. Similarly, [22] does not resolve
calls to anonymous classes as monomorphic, although such calls only have a
single target. Hence, there is a need for algorithms and tools that compute fine-
grained, compact and application-agnostic summaries of a library’s semantics
with enough information to be reused accurately in any future analyses of an
application that uses the library.

FlowMiner. In this work we present FlowMiner, a novel approach to auto-
matically extract fine-grained yet compact data-flow summaries of a Java library.
We employ a graphical summarization paradigm wherein the library summary
is expressed as a multi-attributed directed graph, which is more expressive than
coarse, binary relationships between inputs and outputs. FlowMiner extracts
application-agnostic summary data-flow graph semantics through a one-time
analysis of library bytecode. This summary is stored in a portable format, and
can be reused by other analysis tools to accurately, scalably analyze applications.

FlowMiner’s summaries are fine-grained because they preserve key arti-
facts in the library that provide crucial information about its data-flow seman-
tics. For example, individual field definitions must be present if a summary
is to be used in a field-sensitive way, and individual call sites must be pre-
served if library callbacks are to be captured. We found that more than 90% of
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summarized field flows will be false positives if field definitions are not retained
(we present empirical results of our experiments that support this claim in
Sect. 6). Consequently, FlowMiner preserves fields, method call sites, literal
values, and formal and informal method parameters and return values as key
artifacts in the summary data-flow.

FlowMiner’s summaries are compact because FlowMiner removes from
the summary non-key features (e.g., irrelevant def-use chains of assignments that
do not contribute flow information), which are of value to subsequent analyses.
FlowMiner also resolves method calls to anonymous classes to a single tar-
get, making it more precise. FlowMiner elides (replaces paths with edges) these
uninteresting flow details to arrive at a compact data-flow graph containing only
the key artifacts crucial to the data-flow and reachability information between
them (e.g., FlowMiner’s Android summary contains only about a third of the
nodes and a fifth of the edges of the original program graph). Arguably, this
makes subsequent analyses to be more scalable when using our summary versus
the original library. Importantly, FlowMiner is sound in the following sense –
each flow preserved in FlowMiner’s summary is actually possible at runtime
in the context of some application.

Contributions. In summary, the following are the contributions of this paper.

– A static analysis technique to automatically generate fine-grained, expressive
data flow summary given the source or bytecode of any Java library that
• Preserves key artifacts of the program semantics needed to allow subsequent
context, object, flow, field, and type-sensitive data-flow analyses

• Uses a rich, multi-attributed graph as the mathematical abstraction to
encode fine-grained summaries

• Extracts compact summaries much smaller than the original library by
eliding non-key features in the flows of the original library into key paths.

– FlowMiner, an open-source reference implementation [12] of our algorithms
that extracts summaries given the source or bytecode of a library and exports
them to a portable, tool-agnostic format.

– Evaluation of FlowMiner’s compactness and expressiveness on the recent
versions of Android, and a comparison with the state-of-the-art.

Organization. The rest of the paper is organized as follows. Section 2 provides
a motivating example of an Android application whose malicious behavior can-
not be detected without data-flow semantics for the Android library. Section 3
outlines our approach, Sects. 4 and 5 provide algorithmic and implementation
details of FlowMiner. We evaluate our work in Sect. 6, compare it with prior
work in Sect. 7, and conclude in Sect. 8.

2 Motivating Example

We put forward a motivating example of an Android application with a malicious
behavior that cannot be detected without including the data-flow semantics of
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1 public class MainActivity extends Activity {
2 private String deviceID;
3 private String simSerial;
4 private AsyncTask <String ,Void ,Void > at;
5 @Override
6 protected void onCreate(Bundle savedInstanceState) {
7 TelephonyManager tm = (TelephonyManager) getSystemService(Context.

TELEPHONY_SERVICE);
8 deviceID = tm.getDeviceId ();
9 simSerial = tm.getSimSerialNumber ();

10 at = new AsyncTask <String ,Void ,Void >(){
11 @Override
12 protected Void doInBackground(String ... params) {
13 try { String url = "http :// evil.com/";
14 for(String s : params){ url += "&" + s; }
15 new URL(url).openConnection ();
16 } catch (IOException e) {}
17 return null;
18 }
19 };
20 }
21 @Override
22 protected void onPause (){at.execute(deviceID , simSerial);}
23 }

Listing 1.1. Malicious Android app that uses Android’s AsyncTask library class to
leak data

the library (Android) or its summary in an analysis. While we illustrate the
need to summarize data-flow semantics of libraries using an Android example, it
arises in many applications not limited to malware detection, Android, or even
the Java programming language. The techniques we propose in this paper for
data-flow summarization are generic and widely-applicable.

Malicious App. Let us see the difficulty an analyst would encounter in detect-
ing malware in an app without including the Android library or its appropriate
summary. In the Android app shown in Listing 1.1, MainActivity is a subclass of
Activity, so it defines an application screen. It overrides two lifecycle methods;
the Android framework will call onCreate when MainActivity is initialized for the
first time, and it will call onPause when MainActivity loses user focus. Therefore,
at some point when this app is run, there will be a call to onCreate followed by
a call to onPause. This triggers a latent malicious behavior.

Consider the onCreate method. On lines 8–9, the app retrieves the device
ID and SIM card serial number, writing them to member fields. Lines 10–20
define and instantiate an anonymous AsyncTask, which is a threading mecha-
nism defined by the Android library. A call to AsyncTask.execute(params) causes
Android to run the object’s doInBackground(params) method in a new thread,
passing along the same arguments. Line 10 writes this anonymous AsyncTask

object to a member field.
If we examine onPause(), we see that the AsyncTask is asynchronously

executed with the device ID and SIM card serial number as arguments. The
doIn Background method constructs a shady URL for a server operated by an
attacker on lines 13–16, appending the sensitive information to the URL. Line 15
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opens a connection, causing an HTTP GET request to be issued to the mali-
cious server. This application behavior clearly will leak sensitive device data to
http://evil.com.

Analysis Without Summaries. Consider how an analyst would hope to detect
the malicious flow using a state-of-the-art static analysis tool without including
the entire Android framework in the analysis. The analyst would first define
TelephonyManager.getDeviceId and TelephonyManager.getSimSerialNumber to be
sensitive information sources, and any constructor of URL to be a sensitive infor-
mation sink. The analyst would then run a static analysis tool, hoping to detect
data-flows from any of the sources to any of the sinks. Observe that static analy-
sis tools can follow the data-flows from Android’s TelephonyManager into the
onCreate method, then through member field definitions, leading to the para-
meters of a call to AsyncTask.execute (defined by Android). The analyzer can
follow the flow no further, as it has no information about the internal (private)
implementation of AsyncTask. Thus static analysis fails to detect the malicious
data-flow because data-flow semantics for the Android library are unavailable.

To solve this problem and identify the malicious flow via static analysis,
we either have to (a) resort to whole-program analysis by including the entire
Android implementation along with the app as input to the static analyzer,
which is prohibitively expensive; or (b) include summary data-flow semantics
for Android that precisely define the data-flow information between Android
components necessary to track data-flow through Android. In this example,
we require a summary of how data passed to AsyncTask.execute flows through
the private implementation of Android and back into the app via asynchronous
callback.

In Sect. 3, we provide an overview of our solution for computing precise sum-
maries of a library. We perform an automatic, one-time extraction of summary
data-flow semantics within a given library (such as Android). We demonstrate
how these summaries can be grafted into the partial program analysis context,
enabling us to detect the malicious program behavior presented in the example
above. The resolution of this example is described in Sect. 5.

2.1 Background: Graph Schema to Represent Program Semantics

We use the graph paradigm for representing and reasoning with a program’s
structure and semantics. In this paradigm, the structure and semantics of a pro-
gram P is represented as a rich multi-attributed software graph called program
graph, denoted G(P). The nodes of G(P) correspond to artifacts of P such as
variables, parameters to a method, call sites, classes, methods, etc., and the edges
correspond to structural (e.g., contains, overrides, extends, etc.) and semantic
(e.g., data-flow, call, control flow, etc.) relationships between those artifacts. We
use the Atlas [13] platform to generate G(P) given P1. Atlas stores G(P) in
an XML format following the eXtensible Common Software Graph (XCSG) [3]

1 We omit details of the Atlas platform; the interested reader can refer [13].

http://evil.com
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schema, an open XML standard, and provides a language to query G(P). We
use this query language in our implementation to extract relevant information
needed for constructing the data-flow summary of P.

The artifacts in G(P) that serve as raw material for our summary extraction
approach include:

– Program declarative structure
– Type hierarchy relationships (type points to a type it extends or implements)
– Method override relationships (method points to a method definition that it

overrides)
– Static type relationships (variable points to its declared type)
– Call site information: Method signature, Type to search, Informal parameters
– Pre-computed data-flow relationships (variable points to its flow destination):

Field reads and writes, Local def-use chains, Local array accesses.

3 Approach

In this section we provide a high-level overview of our novel approach to
automatically-extract summary library data-flow semantics. Our approach has
the following desirable attributes:

– Targets JVM bytecode for wide applicability
– Automatically extracts summaries without manual effort
– Retains enough details to enable context, object, field, flow and type-sensitive

analysis of applications using the library
– Uses portable encoding to allow use by any analysis tool
– Summaries are much smaller than a library itself.

Notation. We begin by introducing the notation and concepts needed to explain
the algorithmic aspects of our approach. Let P be a program, and G(P) be
its corresponding program graph. Let M be the set of methods defined in P.
For each method mi ∈ M let the set Pi = {pi1,pi2 . . . pi|Pi|} denote the formal
parameters to mi, and ri its return. We denote a method call site by c :=
〈mj , t

c,Pc, rc〉 with Pc denoting the set of arguments (parameters passed) from
the call site c to mj and rc denoting the returned type from mj . tc denotes either
the Class where mj is defined (if c is a static dispatch), or else the stated type
of the reference on which mj is invoked (if c is a dynamic dispatch). Statically-
dispatched call sites do not require runtime information to calculate the target
of the call. These include calls to static methods and constructors. Dynamically-
dispatched call sites do require runtime information to calculate the destination,
as is the case for calls to general member methods.

Remark 1. An interesting case arises when an application defines a subtype of
a library type – this may introduce new potential runtime targets in the appli-
cation for dynamic dispatch call sites in the library (callbacks). For example,
an application may define implementations of the java.util.List interface and
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1 static int average(List <Integer > l)
2 { int lSum = sum(l); int lLength = l.size(); return lSum/lLength; }
3 static int sum(List <Integer > l)
4 { int s = 0; for(Integer i : l) s += i; return s; }

Listing 1.2. Computing the average and sum of a set of Integers.

pass instances of these types as parameters of calls to the library. Hence, in order
for the computed data-flow summaries of the library to be strictly application-
agnostic and complete, they cannot pre-resolve a dynamically-dispatched callsite
a priori. Our approach to computing data-flow summaries adheres to this prin-
ciple, which we call the open world assumption for computing summaries.

Illustration of Approach. To illustrate the approach taken to extract sum-
maries from G(P), consider the two methods, sum and average, defined in List-
ing 1.2. A subset of the program graph G(P) for the corresponding code is shown
in Fig. 1. Our goal is to arrive at the data-flow summaries in Fig. 2. Observe that
the summary graph is derived from the original program graph G(P); undistin-
guished nodes from G(P) are removed to simplify the summary flow semantics.
However, the summary graph retains critical features of the flows such as literal
values, call sites, method signature elements, which we identify as key nodes in
the program graph, and the flows between them.

To get from G(P) in Fig. 1 to GS(P) in Fig. 2, we perform the following
high-level steps:

1. Compute the program graph G(P)
2. Identify key nodes in G(P) (colored cyan in Fig. 1)
3. Compute flows between key nodes, eliding paths through non-key nodes into

simple edges (details in Sect. 4.1)
4. Compute inter-procedural summary flows by analyzing callsites (in Sect. 4.2).

We note important differences between the program graph G(P) and the
summary graph GS(P) obtained. Nodes in G(P) that are important or key
features of a data-flow, such as formal method parameters, method return nodes,
and literal values, are all retained in GS(P). On the other hand, intermediate
nodes and edges in the program graph between key nodes are elided in the
summary. For Listing 1.2, the key nodes in G(P) are colored cyan in Fig. 1;
these are the only nodes retained in the summary graph (Fig. 2).

When intermediate nodes along a flow from key node k1 to k2 are removed
from the program graph, a summary edge is introduced between k1 to k2 to
convey the existence of a summary data-flow. For example, in the summary of
the average method, the nodes corresponding to the variables lSum, lLength, and
the operator / are intermediate nodes in Fig. 1 that are elided in the summary
in Fig. 2. In their place are direct summary flow edges from the callsites of sum

and List.size to the return value of the method.
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Fig. 1. Partial program graph for List-
ing 1.2 with key nodes colored cyan
(Color figure online)

Fig. 2. Elided local flow summary
GS(P) for Fig. 1 (Color figure online)

In the next section, we describe algorithms for each high-level step listed
above to automatically compute GS(P) from G(P).

4 Automatic Summary Extraction

Given a Java library program P, we perform a one-time analysis of P to construct
the program graph G(P) (see Sect. 2.1). We explain our technique for summary
computation in two parts. Section 4.1 describes in detail our algorithm to com-
pute summaries of (local) data-flows within each method. Section 4.2 describes
the corresponding algorithms to compute interprocedural data-flows.

4.1 Mining Local Flows

Before describing the algorithm to mine summary data-flows local to a method,
we first identify key nodes in G(P).

Key Nodes. We define key nodes as precisely those nodes in the G(P) that
must be preserved in the summary graph GS(P). For the language of Java, the
nodes we consider key include: (i) method signature elements (formal parameters,
formal implicit identity parameter, return node), (ii) call sites (informal para-
meters, informal implicit identity parameter, return value), (iii) fields, (iv) literal
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values, (v) definitions written to and read from fields, (vi) array access operators
and operands (array reference operand, array index operand), (vii) for-each loop
iterables and receivers, (viii) array components.

Remark 2. The key nodes in G(P) will differ based on the language of the library,
and hence the notion of key nodes must be well defined for the library’s language
prior to using our approach. For example, G(P) for a library written in the C
language may contain other key nodes such as pointers to fields and functions.

The algorithm for extracting a summary of local data-flows (i.e., within a
method) is based on the idea of eliding pre-processed def-use chains with respect
to the set of key nodes in the method. Given the program graph G(P), we begin
by identifying the set K of key nodes in the graph, and then reduce G(P) by
preserving only the nodes in K and the reachability information among them. As
a result, all intermediate data-flow nodes and edges that occur on paths between
key nodes are elided for each method, resulting in a summary graph GS(P) that
is much smaller than G(P). Def-use paths occurring between key nodes in a
method are merged into simple edges, but key nodes are never elided.

Extracting Summary Flows. Given the set K and the pre-processed data-flow
graph of def-use chains that can be derived from G(P), Algorithm 1 computes
elided summary data-flows with respect to K. The procedure MineFlow iterates
over the key nodes in K. For each k ∈ K, MineFlow finds the set K′ ⊆ K of other
key nodes that are reachable along data-flow paths that do not include other key
nodes as intermediates, using procedure ElidedFlow (Line 3). For each key node
k′ ∈ K′, MineFlow introduces a summary flow edge from k to k′ (Lines 4–5).

Eliding Intermediate Nodes. The procedure ElidedFlow computes the set of
nearest-reachable key nodes K ′ for a given key node k by exploring the data-
flow graph breadth-first starting from k. The procedure maintains a frontier

containing the set of nodes that have to be processed, initialized to {k}. In each
iteration, it adds each node f ′ in the frontier that has a key node successor to
the return value (Lines 14–16); and otherwise, it is added to the frontier so that
further key nodes potentially reachable from k via f ′ can be searched in a future
iteration (Lines 14,17–18). ElidedFlow terminates when all nodes in the frontier

have been processed (Line 12); since there are clearly finite number of nodes in a
frontier, ElidedFlow always terminates. The set of nodes returned by ElidedFlow

is exactly the set of key nodes reachable from k via non-key intermediate nodes.

Remark 3. The attributes labeling each summary edge are determined based on
the kind of summary relationship being represented. For instance, if the origin
or destination is a field definition, then the edge will be labeled with attributes
indicating that it is a data-flow from or to a field.

Our summary also stores other kinds of relationships including array accesses,
dynamic callsite information, for-each iteration, and resolved flows to methods.
These relationships from G(P) are included in GS(P).
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Algorithm 1. Mining summary data-flows
procedure MineFlow(K, G(P))

2: for all k ∈ K do
K′ ← ElidedFlow(k, K, G(P))

4: for all k′ ∈ K′ do
Add summary flow edge from k to k′

6: end for
end for

8: end procedure

procedure ElidedFlow(k, K, G(P))
10: frontier ← {k}

result ← {∅}
12: for all f ∈ frontier do

frontier ← frontier - f
14: for all f ′ s.t. (f, f ′) is a data-flow edge in G(P) do

if f ′ ∈ K then
16: result ← result ∪f ′

else if f ′ /∈ frontier then
18: frontier ← frontier ∪f ′

end if
20: end for

end for
return result

22: end procedure

4.2 Mining Interprocedural Flows

The task of mining interprocedural flows involved in method calls, as well as
dynamic call site information, is somewhat more complex. First, we must decide
which call sites to resolve at present (during summary generation) and which
cannot be resolved until summaries are applied in the context of an analysis. If
a potential target of a call site may lay outside of the library after an applica-
tion is introduced into the analysis context, then we must not resolve targets of
the call site at this time. Clearly static dispatches can be resolved during sum-
mary generation, because the targets are unambiguous even with an open-world
assumption about future analysis contexts (see Remark 1).

Resolvable and Unresolvable Call Sites. It is important to distinguish
between call sites that can be statically-resolved and those which cannot at
the time of summary generation. By pre-resolving those which are statically-
resolvable to their targets, we generate sound data-flow relationships that a client
can use, and prevent future rework by clients. Additionally, direct interproce-
dural flows are more compact to express than leaving a callsite description in the
summaries. Thus, it is preferable to identify and resolve statically-dispatchable
callsites at the time of summary generation.
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1 public final class Integer extends Number implements Comparable <Integer > {
2 private final int value;
3 public Integer(int value) { this.value = value; }
4 public byte byteValue () { return (byte) value; }
5 public int compareTo(Integer object) { return compare(value ,object.

value); }
6 public static int compare(int lhs , int rhs) {
7 return lhs < rhs ? -1 : (lhs == rhs ? 0 : 1); } ...
8 }

Listing 1.3. Partial implementation of Integer from the Java standard library

Although dynamic dispatches are not statically-resolvable in general, they
become so under certain circumstances. For instance, a call to a member method
marked final or private cannot possibly have polymorphic behavior, even under
an open-world assumption. Similarly, a call to a member method within a type
that is marked final or anonymous is also unable to result in polymorphism.

The algorithm to mine interprocedural summary flows is shown in
Algorithm 2. The procedure MineCallsiteSummaries in Algorithm 2 calls the
procedure ClassifyCallsites to partition the set C of call sites as described
above and returns (a) R+ containing call sites for which targets may be unam-
biguously resolved even in the face of an open-world assumption at the time of
summary generation, and (b) R− containing call sites for which multiple targets
(presently, or in a future analysis context), may be resolved.

Next, the procedure MineMethodFlows is called for R+. For each call site, this
procedure resolves the target using a dispatch calculation2 (line 23) and adds
summary flow edges in GS(P) connecting the informal call site parameters Pc
to the corresponding formal parameters Pj in the (resolved) target method mj ’s
definition (lines 24–27). MineMethodFlows concludes by connecting the return
flows from the return value in the resolved method mj to the receiving variable
at the call site (line 29). Finally, MineDynamicDispatch is called on R−, wherein
the dynamic dispatch information for each call site in the G(P) is retained
in the summary GS(P) (lines 34–37) so that a client can resolve them in a
future analysis context. MineCallsiteSummaries terminates despite the presence
of recursive calls, as it iterates over the (finite number of) callsites only once.

4.3 Summary Extraction Example

Consider the Integer class from the Java standard library, a subset of which
we show in Listing 1.3. Its summaries are shown in Fig. 3, where elements of
GS(P) are colored magenta. Note that due to Algorithm 1, e.g., the conditional
operators and intermediate definitions in the compare method have been elided;
and due to Algorithm 2 compareTo method has a statically-resolvable call to
compare. FlowMiner has resolved the call automatically, showing the flow of
the two informal parameters in compareTo to the formal parameter and identity

2 Recall that each call site in R+ can be resolved to a single target.
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Algorithm 2. Mining method flows and dynamic callsite information relation-
ships

procedure MineCallsiteSummaries(C)
2: 〈R+,R−〉 = ClassifyCallsites(C)

MineMethodFlows(R+)
4: MineDynamicDispatch(R−)

end procedure

6: procedure ClassifyCallsites(C)
R+ ← ∅

8: R− ← ∅
for all c ∈ C do

10: if c is a static dispatch then
R+ ← R+ ∪ c

12: else if mi is final ∨ private ∨ constructor then
R+ ← R+ ∪ c

14: else if t is final ∨ private ∨ anonymous ∨ array then
R+ = R+ ∪ c

16: else
R− = R− ∪ c

18: end if
end for

return 〈R+,R−〉
20: end procedure

procedure MineMethodFlows(C)
22: for all c := 〈mi,Pc, rc, tc〉 ∈ C do

mj ← dispatch(c) � Unambiguous resolution of c to mj

24: Pc ← {pc
1, p

c
2 . . . pc

|Pc|} � Arguments passed at callsite c

Pj ← {pj
1, p

j
2 . . . pj

|Pj |} � Formal parameters to mj

26: for all pc
k ∈ Pc do

Add method flow summary edge (pc
k, pj

k) to GS(P)
28: end for

Add return flow summary edge (rj , r
c) to GS(P)

30: end for
end procedure

32: procedure MineDynamicDispatch(C)
for all c := 〈mi,Pc, rc, tc〉 ∈ C do

34: Add dynamic callsite method edge (c, mi) to GS(P)
Add dynamic callsite type edge (c, t) to GS(P)

36: for all pc
k ∈ Pc do

Add dynamic callsite param edge (pc
k, c) to GS(P)

38: end for
end for

40: end procedure
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Fig. 3. Summary extraction results for the Integer class (Color figure online)

parameters of compare, and the corresponding flow of the return value back
to compareTo. This example also illustrates field reads and writes, which were
imported directly to GS(P) from G(P) during mining. This summary graph
enables accurate tracking of flows through the Integer class.

5 Implementation

Architecture. FlowMiner is implemented as a plugin for the popular Eclipse
IDE. As shown in the architectural diagram of Fig. 4, FlowMiner takes Java
library bytecode as input, typically in the form of a JAR archive. This is passed
to Atlas that constructs an XCSG representation of the program graph (see
Sect. 2.1) for the library. FlowMiner then runs the algorithms described in
Sect. 4 to extract a summarized version of the library’s data-flow semantics from
the library’s program graph. This summary data-flow graph is packaged into a
portable XML format according to a schema that extends the XCSG schema [3]
that can be used to parse and import summaries into existing tools.

An XML schema definition (XSD) for expressing summary graphs in XML
is provided with the open source reference implementation of FlowMiner [12].
This can be used by other static analysis tools to parse and import the data-flow
summary of a library for analysis of an application that uses the library.
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Fig. 4. Architecture of FlowMiner

It is worth noting two important
features of our summary schema.
First, our summaries pertain only
to data-flow. While a flow edge (A,
B) implies the existence of a con-
trol flow path along which this flow
happens, we do not retain control
flow nodes and edges from G(P).
This allows GS(P) to be much more
compact than the library itself. Sec-
ond, our summaries retain sufficient
information to be used with context,
type, field, object, and flow sensitiv-
ity. The client using the summaries
for subsequent analysis is able to
decide which categories of sensitiv-
ity to employ in order to achieve the
desired level of accuracy and speed.
One consequence of this philosophy
is that we only resolve flows for method call sites when the target can be unam-
biguously resolved to a single possibility with an open-world assumption, i.e., no
matter what other types and methods are introduced into an analysis context
by an application, the resolution decision for the call site cannot be changed.
We leave dynamic dispatch call sites to be resolved when summaries are applied
to an analysis context, since we cannot know ahead of time if that context may
introduce new possibilities for the target of the call site. However, we do provide
the signature of the call site, as well as the informal stack parameters involved
in the call, so that clients may resolve it later.

Using Summaries. Existing static analyzers can apply summaries generated
by FlowMiner to perform a complete and accurate program analysis. What it
means to apply summaries will differ based on the tooling used by the analyzer.
For instance, an analyzer implemented on top of the Atlas platform would ‘apply’
summaries by translating the portable XML summary document into additional
nodes and edges from GS(P) for insertion into the program graph G(P) of
an application. Once inserted, these supplementary data-flow semantics will be
included in any subsequent analysis.

Recall the example malicious Android app from Sect. 2, for which a static
analyzer was unable to detect the malicious behavior. The application asyn-
chronously leaks the user’s device ID and SIM card number to an attacker.
We defined the values returned by TelephonyManager.getSimSerialNumber and
TelephonyManager.getDeviceId to be sensitive information, and asked our ana-
lyzer to track forward data-flows from these artifacts. The result ran into a dead
end as soon as the flow disappeared into the private implementation of Android’s
AsyncTask.execute API.
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Fig. 5. Partial program analysis of malicious app from Listing 1.1 with FlowMiner
summaries of Android (Color figure online)
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After applying the summary GS(P) extracted from a one-time analysis of
Android 4.4.4 using FlowMiner, we are able to obtain the result in Fig. 5 on
Atlas. Summary nodes and edges (GS(P)) are highlighted in magenta to dis-
tinguish them from elements of the original program graph (G(P)). By employ-
ing GS(P), our static analyzer is able to detect the entirety of the malicious
flow. Observe that after the sensitive information enters AsyncTask.execute, our
summaries of Android track the asynchronous data-flow involving local flows, a
method call, a write and read of a field, and finally a callback into the applica-
tion (MainActivity$1.doInBackground) on a new thread. From there, our analyzer
uses G(P) to follow the flow through an enhanced for loop, string concatenation,
and ultimately to the URL constructor, completing the leak.

6 Evaluation

Experiments. With the goal of evaluating FlowMiner’s accuracy and com-
pactness, we summarized recent versions of the Android operating system listed
in column 1 of Table 13. We ran our experiments on a multi-core computer with
64 GB RAM, and Eclipse Luna installed with Atlas and FlowMiner. We cre-
ated a simple Atlas analyzer to gather the summary statistics listed in Table 1.

Fig. 6. Coarse flow specifications
taint entire objects rather than
fields, leading to false positives
(Color figure online).

Expressiveness. The data-flow summaries
extracted by FlowMiner are fine-grained
and expressive. For example, the coarse infor-
mation flow specifications at the granular-
ity of object tainting generated by Clapp
et al. [11] can be directly inferred from
our summaries – When information in a
FlowMiner summary reaches a member
field definition, the corresponding “taint” on
the object is implied; and when informa-
tion flows from a member field to a method
return, it is implied that the object “taints”
the method return. Hence, FlowMiner
summaries are strictly more expressive than
the most closely-related prior work. The presence of registration/callback pairs
identified by EdgeMiner [9] can also be inferred from FlowMiner summaries
using details of virtual callsites (for which multiple runtime targets may exist)
stored in GS(P). More importantly, our summaries can be used more accurately.
Figure 6 shows how coarse specifications that taint entire objects can lead to an
exponential number of implied false positive flows. The figure shows three types
with two fields each. Dashed arrows represent transfer of taint at the granularity
of objects, while solid arrows represent transfer of taint with field granularity.

3 For each version, we downloaded the Android framework from the build for the
aosp arm-user device configuration and then generated corresponding JVM byte-
code that can be analyzed with Atlas.
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While a subset of the flows implied by object granularity are true positives
(black), the majority of flows will be false positives (red). In general, a flow
involving object-granularity summaries that traverses through N classes (with
K unrelated fields each) will produce on the order of KN false positive flows!

Table 1 shows the number of data-flow edges induced in the summary by
FlowMiner in column 6 (fine-grained approach that tracks data-flows at field
level granularity), which is about 8 % of that induced by the coarse-grained
approach that tracks data-flows at object level granularity (shown in column 7).
This means that over 92 % of the flows induced by coarse-grained approach are
false positives compared to those produced by FlowMiner.

Soundness and Completeness. We observe that FlowMiner is sound in
the following sense – each flow preserved in FlowMiner’s summary is actu-
ally possible at runtime in the context of some application. In other words, the
removal of any summary flow edge would remove critical information needed
later to compute a data-flow in some partial program analysis context. This fol-
lows from the way in which our summaries are generated (see Sect. 3 for details).
FlowMiner provides complete summaries of data-flow semantics, i.e., does not
miss any true flows, except those induced (i) as side effects of reflective calls,
and (ii) by mixed-language library code (e.g., Java library calling native C code).
This follows from the facts that (i) Atlas fully supports the features of the Java
7 programming language, and hence captures all local, field, and method flows
between Java program elements in the program graph it constructs; and (ii) the
program graph that is used by FlowMiner for extracting summary information
contains all the possible edges from call sites to potential targets for dynamic
dispatches (see Sect. 2.1).

We also empirically verified the correctness of our FlowMiner implemen-
tation for the Android versions via an Atlas script as follows. We first computed
both the program graph G(P) and the summary graph GS(P), and then suc-
cessfully verified the property that there is a data-flow path from one key node
k to another k′ in GS(P) if and only if there is a corresponding data-flow path
from k to k′ in G(P).

Compactness. The compactness of extracted summary artifacts is important
for practical use. As shown in Table 1, GS(P) produced by FlowMiner for
Android 4.4.4 contains only 36.98% of the nodes and 20.06% of the edges of
G(P) (other versions follow this trend). Hence, our summaries provide significant
savings versus a fully-detailed program graph of a library, and yet retain the
critical details for use in a partial-program data-flow analysis.

Scalability. We tested FlowMiner’s scalability on the Android framework.
For example, Android 4.4.4 (KitKat) contains roughly 2 million lines of Java
code, omitting comments and white space. At this scale, FlowMiner com-
pletes its one-time analysis and export of data-flow summary semantics within
an additional 45 min after constructing the original program graph.
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Table 1. Experimental results showing the compactness and accuracy of FlowMiner
on recent versions of Android. |V |, |E| denote the number of nodes and edges in the
original program graph; |V |S , |E|S denote the same for the summary graph. Column 6
represents the number of data-flow edges in FlowMiner’s summary that tracks flows
at field level granularity, and column 7 shows the corresponding number of edges when
flows are tracked at the object level granularity

(aPercentage of object-granularity flows that are avoided due to the field-sensitive
flow summarization performed by FlowMiner)

7 Related Work

Summarizing Call Graphs. There has been a lot of interest in summarizing
control flow transitions within a software library. Such control-flow summaries
are useful for routine static analysis tasks such as call graph generation [4,15,
24,25], tracking of non-trivial calling relationships between application and the
library (e.g., asynchronous callbacks in Android) [9] and visualization of control
flows from the application to the library and vice-versa [16].

Summarizing Data Flow Graphs. Mining data flows from object-oriented
software libraries is an important problem, and is particularly crucial for security-
critical analyses. Malware detection in Android apps [1], for example, requires
tracking the flow of sensitive information (source, e.g., IMEI number) from the
mobile device to potentially harmful destinations (sinks, e.g., a location on the
internet).

Callahan first proposed the program summary graph as implemented in
PTOOL [8] as a way to compactly represent the inter-procedural call and data
flow semantics of the whole program. Rountev et al. [21] pointed out the need
to use summaries of data flow semantics when analyzing applications that are
dependent on large libraries. They proposed a general theoretical framework for
summarizing data flow semantics of large libraries, using pre-computed summary
functions per library component and building on the work of Pnueli [23].

Similarly to Rountev et al., Chatterjee et al. [10] summarize each procedure in
the bottom up traversal order of the call graph such that the summary of a caller
is expressed in terms of the summary of the callee component(s). More recently,
Rountev et al. [22] described an approach called interprocedural distributive
environment (IDE) data-flow analysis for summarizing object-oriented libraries
(that subsumes the class of interprocedural, finite, distributive subset (IFDS)
problems [18] which is used by FlowDroid [6]) by using a graph representation
of the data-flow summary functions; their approach abstracts away redundant
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data-flow facts that are internal to the library, in a similar vein to our concept
of eliding flows. Our summaries differ from that computed by Rountev et al. in
that when mining inter-procedural flows, we resolve calls to a member method
within an anonymous type to single target, because such calls can only have
one possible runtime target, whereas Rountev et al. do not consider such calls
to be monomorphic. Malicious applications often use custom anonymous classes
to camouflage malicious behavior, and hence our approach of resolving calls to
methods in anonymous classes to a single target is particularly useful to a secu-
rity analyst or a subsequent analysis detect malicious flows by presenting more
accurate and precise flow information. Secondly, the scalability of our approach
has been validated on the Android framework, which is significantly larger in
size (of the nodes and edges in the original and summary graphs) compared to
the Java libraries evaluated by Rountev et al.

Some approaches summarize a software component independently of its callers
and callees. For example, AVERROES [5] generates a placeholder that over-
approximates the behavior of a given library. Their over-approximation may be
too coarse to be useful in malware detection scenarios where we need summaries
to retain enough information for various kinds of sensitive analyses.

Summarizing Android Flows. To the best of our knowledge, the most closely
related work in summarizing libraries in the context of Android is by Clapp
et al. [11], who employ a dynamic analysis approach to mine information flows
from Android. Their approach successfully recovers 96 % of a set of hand-written
information flow specifications. In contrast, FlowMiner uses static analysis
instead of dynamic analysis to identify possible flows within the library, hence
avoiding the possibility that some execution paths are not covered. Furthermore,
the flow specifications extracted by FlowMiner track and preserve data flows
at the granularity of individual variables and definitions (rather objects) within
methods and objects, so we avoid falsely merging unrelated flows. Also, our flow
specifications express flows among program elements that are not necessarily
on the library API. This allows subsequent analyses to be context, field, type,
object, and flow-sensitive. We retain the details of virtual call sites so that flows
involving potential callbacks into an application are captured.

8 Conclusion

We presented FlowMiner [12], a novel solution that uses static analysis tech-
niques to automatically generate an expressive, fine-grained summary of a Java
library that is particularly useful for accurate detection of malicious data-flows
in applications that use the library. FlowMiner identifies and retains key arti-
facts of the program semantics in the summary that are necessary to allow
context, object, flow, field, and type-sensitive data-flow analyses of programs
using the summarized library. FlowMiner uses a rich, multi-attributed graph
as the mathematical abstraction to store summaries. FlowMiner’s summaries
are compact, containing only about a third of the nodes and a fifth of the edges
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of the original program graph when tested on recent versions of Android, as non-
key features in the flows of the original library are elided into key paths. Because
FlowMiner retains individual flows through individual field definitions in con-
trast to existing coarse-grained methods that taint entire objects, over 92% of
the false positive flows indicated by tainting entire objects are avoided (for the
Android framework). FlowMiner extracts summaries given the bytecode of a
library and exports them to a portable, tool-agnostic format. We demonstrated
how FlowMiner’s summary can be used in the malware analysis of an Android
app. Validation of FlowMiner on recent versions of Android show that our
summaries of are significantly smaller than the original library, yet more expres-
sive and accurate than other state-of-the-art techniques. In the future, we plan
to summarize Java libraries other than Android, and study the impact of using
our summaries on specific data-flow analyses for malware detection.
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Abstract. SQL injection attacks, a class of code injection attacks, pose
a serious threat to web applications. A web server allows users to perform
a query in order to get the intended service where the SQL queries con-
taining user inputs are executed by the database server. An attacker can
take advantage of this query-response mechanism to inject some char-
acters into the user input based on the attack strategy. This may lead
to an SQL injection attack. If an attacker can bypass the SQL injection
defense put at the web server, then the attacker can obtain some sensi-
tive information from the database. In this paper, we present a scheme,
SQLshield that prevents SQL injection attacks in web applications. SQL-
shield uses a randomization technique that modifies the user input data
before the SQL query is executed at the database server. The random-
ization technique used in SQLshield modifies the user input data in such
a way that the execution of the resultant SQL query does not divert
from its programmer-intended execution. We compare SQLshield with
other schemes and show that SQLshield performs better than the other
approaches used to detect and prevent SQL injection attacks.

Keywords: Web security · SQL injection attacks · SQL parse tree ·
Randomization

1 Introduction

World wide web consists of millions of web applications which are run with the
power of internet for a variety of services such as financial, healthcare, research,
entertainment, educational and so on. Most of the web applications’ services
require frequent access to the database while interacting with the users. These
applications provide mechanisms by which a user is allowed to submit a query
that aims to retrieve intended data or provide service with the help of the data-
base server. If such applications do not handle the malicious queries appropri-
ately, then the database’s response to such queries would reveal some sensitive
information to the malicious party. SQL injection attack [1,8,11] is one such
attack which poses some serious threats (primarily authentication bypass and
leakage of private information [17]) to web applications. Web application that
uses SQL statement for query-response mechanism between the server and a
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client may potentially be vulnerable to SQL injection attacks. By injecting mali-
cious SQL statements into input fields, the attacker may execute malicious SQL
queries in the database server. Such unintended execution of the SQL queries
can reveal some sensitive information about the users as well as the server [15].
As a result, validating user-linked data is necessary in order to defend the web
applications from SQL injection attacks. We give a simple example below which
would help a naive reader to understand how a typical SQL injection attack
works on a web application.

Actual Query :
SELECT password FROM users WHERE name = ‘$username’

Attacker Query :
SELECT password FROM users WHERE name = ‘A’ OR 1=1 #’

Consider the Attacker Query. The attacker’s input to the query is A’ OR 1=1 #.
Here, 1=1 always results in true. Since the operation between the two operands
name = ‘A’ and 1=1 is an OR operation, the entire “WHERE clause” is
evaluated as TRUE. This would lead to the exposure of all the passwords from
the users’ table and a successful attempt at an SQL injection attack.

Several approaches [2–6,25] have been proposed in literature for detect-
ing (and/or preventing) SQL injection attacks. The techniques used in these
approaches include the use of aliases for table and field names, prepared state-
ment, stored procedures, limiting user input length, escaping string delimiters,
filtering the error messages and a learning based approach [24] to detect SQL
injection attack by measuring the anomaly score for a given query. Subsequently,
string constraint solving [22], dynamic runtime monitoring of untrusted strings,
training on trusted strings, automating the filtering and training mechanisms
[9,10] can work to some extent for detecting and preventing SQL injection
attacks. But, the training set and runtime monitoring downgrade the system’s
performance. The prevention mechanism can be effective if it detects malicious
input and allows only legitimate input. Sometimes it may so happen that the
user’s input contains legitimate data, but the security mechanism used for detect-
ing an SQL injection attack triggers it as a potential injection attack which
deprives the legitimate users from getting the intended services.

Our Contributions. We present a scheme, SQLshield, which can detect and
prevent SQL injection attacks on web applications. Whenever a user (possibly
malicious) gives input through the web-interface, SQLshield appends a random
key to the selected sub-strings of the user input (not to the underlined SQL
query’s keywords). Then, SQLshield forms the parse tree of a query and removes
the random key from the user input. Here, the parse tree of the SQL query
remains benign due to the randomization on user input. Therefore, the attacker
cannot execute an SQL injection attack as the intended behaviour of the SQL
query cannot be altered. We discuss some recently proposed techniques [2–4,6]
on defending SQL injection attacks and observe some limitations of them. Our
proposed scheme, SQLshield, mitigates such limitations. The following limita-
tions of SQLrand [2] and CANDID [3] are mitigated by SQLshield.
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– Unlike SQLshield, SQLrand uses a secret key to prevent SQL injection attacks.
Therefore, there is no threat of getting the key revealed while using SQLshield
as a defence mechanism. In the case of handling exceptions and type-errors,
the secret key may be revealed from the proxy functioning on SQLrand. This
is due to the bad implementation of CGI scripts which ultimately exposes the
underlined randomized queries [2].

– CANDID detects SQL injection attacks when candidate query’s parse tree
does not match the actual query’s parse tree. If a benign user input contains
SQL keywords, CANDID detects it as an SQL injection attack due to the
mismatch occurring between the parse tree of the candidate query and user
query. As SQLshield randomizes user inputs, the underlined structure of SQL
query’s parse tree does not alter even if the user inputs are part of the SQL
keyword set.

The remainder of the paper is organized as follows. Section 2 reviews related
approaches on preventing SQL injection attacks. Section 3 presents our scheme,
SQLshield. Sections 4 and 5 provide implementation and performance details of
SQLshield. We conclude the paper in Sect. 6.

2 Related Work

Over the years many approaches [2–6,21,23] have been proposed for mitigating
SQL injection attacks on web applications. There exist several testing tools [26,
27] for the detection of code injection attacks including SQL injection. Overall,
none of these approaches prevent SQL injection attacks completely. Each of these
approaches has its merits and limitations towards the same security objective.
We review some of these approaches in order to compare our proposed approach
with them.

2.1 SQLrand

SQLrand [2] randomizes the SQL keywords used in a query statement. A secret
keyword is shared between the web server and the proxy server. The web server
appends this secret keyword to all the SQL keywords present in a query (contain-
ing user inputs), forms a randomized SQL and passes it to the proxy server. The
secret keyword is removed from the randomized SQL query by the proxy which
then produces the result set and forwards it to the web server. The architecture
of SQLrand is shown in Fig. 1.

SQLrand protects the web server from SQL injection assuming that the
attacker cannot steal the secret keyword (shared between web server and proxy)
that is used to randomize the SQL keywords in the query statement. One of the
advantages of choosing SQLrand to prevent SQL injection attacks is that it is
relatively easy to implement. A major drawback of SQLrand is its dependence
on a secret keyword. If the attacker manages to get the secret keyword, then
he can bypass the prevention mechanism [2]. We briefly illustrate SQLrand with
the secret keyword 123.
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Actual Query :
SELECT password FROM users WHERE name = ‘$username’

Randomized Query :
SELECT123 .. FROM123 .. WHERE123 name = ‘$username’

Fig. 1. Architecture of SQLrand [2]

Now, if the attacker successfully gets the secret keyword (i.e. 123), then he
can append this keyword to all the SQL keywords in the (malicious) query (as
shown below) and then try to bypass the web server’s randomization process. If
the attacker succeeds in bypassing the web server with the correct choice of the
secret keyword, then the (malicious) query will get de-randomized by the proxy
followed by the (malicious) query’s successful execution by the database server.

Attacker Query :
SELECT123 .. FROM123 .. WHERE123 name = ‘A’ OR123 1=1 #

2.2 CANDID

CANDID (Candidate Evaluation for Discovering Intent Dynamically) [3] is also
used to prevent SQL injection attacks in web applications. CANDID adds a
benign query (known as candidate query) along the control path in the source
code and compares the structure of the candidate query’s parse tree with the
structure of the actual query (containing possibly malicious user inputs) during
runtime. CANDID detects an SQL injection attack when the structure of the
actual query’s parse tree (executed during the user’s interaction with the data-
base) differs from the structure of the benign query’s parse tree. The architecture
of CANDID is shown in Fig. 2.

Benign Query :
SELECT .. FROM .. WHERE name = ‘ABC’
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Fig. 2. Architecture of CANDID [3]

Attacker Query :
SELECT .. FROM .. WHERE name = ‘A’ OR 1=1 #’

Here, the structure of the attacker query’s parse tree does not match to the
structure of the benign query’s parse tree. For example, the attacker query’s
parse tree has a node corresponding to the SQL keyword-OR which is not present
in the benign query’s parse tree. Therefore, CANDID detects such attempt at
an SQL injection attack and does not allow the attacker query to execute. One
major advantage of CANDID is that it considers special characters (e.g. #,
×, % etc.) as inputs to the query and detects SQL injection if the candidate
query’s parse tree structure does not match with the intended structure. One
of the drawbacks of CANDID is that if the user input consists any of the SQL
keywords or special characters, it may be treated as a malicious query even if
the input is benign. Therefore, it cannot distinguish between the benign and
the malicious inputs when the input itself is a legitimate SQL token. The query
execution fails if the input itself is an SQL token due to the structural mismatch
between the parse trees of the candidate query and actual query. Although there
is no malicious input, CANDID considers the SQL tokens as malicious inputs
and stops the execution of the query.

2.3 SDriver

SDriver (Secure Driver: location specific signatures) [6] keeps track of the stack
frame of all the active function calls which are used to distinguish between
legitimate and malicious query. SDriver is not easy to bypass as it does not
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depend on the source code of the application. However, the training phase’s
dependence on application is a major limitation of SDriver. For every application,
it goes through the training process which results into a significant overhead in
the entire execution. The architecture of SDriver is shown in Fig. 3.

Fig. 3. Architecture of SDriver [6]

2.4 TAPS

TAPS (Tool for Automatically Preparing SQL statements) [4] transforms the
original query into its corresponding prepare statement. It uses the parse tree of
an SQL query to identify data place-holder. TAPS removes the burden of manual
transformation of each query into its prepared statement. The limitation of TAPS
is that it may malfunction depending on the source code of the web application.
Furthermore, the queries need to be verified manually on the occurrence of errors
once the transformation is performed. There also exist other defensive coding
practices which include the use of prepared statements and stored procedures.
Such techniques need a lot of software-development care [11] and some minor
bug may potentially lead to the vulnerability to SQL injection attacks. Readers
are encouraged to go through [11–14,16,20] to understand SQL injection attacks’
defences and their limitations.

3 SQLshield - An Improved Scheme

We present a scheme, SQLshield, to prevent SQL injection attacks on web appli-
cations. SQLshield has the merits of SQLrand and CANDID. At the same time,
it also mitigates their limitations. SQLshield uses a keyword to randomize user
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Fig. 4. Architecture of SQLshield

Fig. 5. Working principle of SQLshield

inputs (but not the SQL keywords). Initially, all the sub-strings of a user input
are enumerated.

Then, the keyword is appended to a sub-string which belongs to the set of
the standard SQL tokens and special characters. After this randomization on
user inputs, the final structure of an SQL query’s parse tree is generated, the
user inputs are de-randomized and the query is executed. If the user inputs
are benign, appropriate result sets are returned to the web-server after the safe
access to the database. We note that the random keyword used for randomization
process in SQLshield does not necessarily have to be secret. The architecture of
SQLshield and the working principl e are presented in Figs. 4 and 5, respectively.
We illustrate SQLshield with the following example.

SELECT password FROM users WHERE name = ‘$username’

Suppose the attacker enters ’ OR 1=1 # as input, then SQLshield converts the
input ’ OR 1=1 # to ’999 OR999 1=9991 #999’ by choosing a random
key 999. Note that the random key is to be appended to the tokens (e.g., OR,
AND, =, #, ’, etc.) which are present in a user input. The modified query or
newly formed query is as follows.

SELECT .. FROM .. WHERE name = ‘’999 OR999 1=9991 #999’

Now the modified query (i.e., a query with modified inputs) is fed into the
SQL parser. The SQL parser generates the parse tree of the modified query (as
shown in Fig. 6).
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Fig. 6. SQLshield - Parse tree of SQL query with a modified (malicious) input

Since the parse tree contains an unexpected leaf node (i.e., 999 OR999
1=9991 #999’, the SQL parser would report a syntactic error and does not
proceed further for the execution. In this way, SQLshield blocks an attempt
at SQL injection attack. If the user input is benign, the parse tree structure
created after randomization process will be syntactically valid. Therefore, after
the creation of the parse tree, SQLshield extracts the modified user input, de-
randomizes it with the random key 999 and gets the actual input. Then, the
parser places the actual input in appropriate places in the query’s parse tree and
sends the query to the database for execution.

The parse tree of the programmer intended query is shown in Fig. 7. If an
attacker injects a malicious input, the modified parse tree of the query is shown
in Fig. 8. Note that it has two unexpected nodes at the end due to the SQL
injection attack. It can be seen from Fig. 7 that these nodes are not supposed to
be present in this SQL query’s parse tree. SQLshield focuses on eliminating such
unintended structural change in SQL query’s parse trees to avoid SQL injection
attacks.

DELETE * FROM users WHERE id = ‘$username’

DELETE delete_list FROM table_list WHERE where_cond

identifier

*

identifier

users

identifier = literal

id $username

Fig. 7. Parse tree of SQL query containing a benign input
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Fig. 8. Parse tree of SQL query with a malicious input

Algorithm 1. SQLshield
1: procedure modifyQuery(original query)
2: sql set ← set of SQL keywords and characters
3: parse-tree ← original query.getParseTree()
4: parse-tree-valid ← parse-tree.isValid()
5: top:
6: if !(parse-tree-valid) then
7: return “ERROR”
8: end if
9: /* Main Operation of SQLshield */

10: map¡pos,str¿ extract-input ← parse-tree.InputsPos()
11: for all input positions pos in extract-input do
12: user input ← extract-input[pos]
13: for all sub-strings substr in user input do
14: if substr in sql set then
15: appendRandomKey(user input, substr)
16: end if
17: end for
18: extract-input[pos] ← user input
19: end for
20: parse-tree.putInputs(extract-input)
21: parse-tree-valid ← parse-tree.isValid()
22: if !(parse-tree-valid) then
23: return “ERROR”
24: end if
25: modified query ← parse-tree.formQuery()
26: return modified query
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SQLshield randomizes the user input by appending a random key to specific
tokens of the user input, which belong to a pre-defined set of SQL tokens and
special characters, and forwards the query to the parse tree generator which will
generate the parse tree as shown in Fig. 6. Once this structure has been decided
and validated syntactically, the randomized input is removed from the parse
tree and it is replaced by the original input. In this way, our scheme does not
completely alter the inputs and also it does not allow the attacker to change the
parse tree structure of the query. As the actual cause of SQL injection attack
lies in the malicious input, the initial procedure of SQLshield makes sure that
the user inputs participating in the generation of the SQL query’s parse tree are
not malicious. To achieve this, SQLshield appends a random key to only those
sub-strings of the user input which belong to a pre-defined set of SQL tokens
and special characters. Even if the attacker knows the random key, he cannot
execute any malicious query and exploit the system because SQLshield appends
the random key (even the attacker has already appended the random key to any
SQL token) to the user input. Therefore, after de-randomization, the query will
have syntactically invalid SQL tokens which cannot be executed successfully as
per the attacker’s intention. The core idea of SQLshield is given in Algorithm1.

4 Implementation of SQLshield

We implemented SQLshield using SQL Parser v1.5.1.8 written in JAVA [7]. The
SQL query is parsed and the place-holder for user inputs are located. Random-
ized inputs are placed in the SQL query and fed to the parser. After the query’s
parse tree is finalized, the random key appended in the initial randomization
stage is removed from the inputs. We evaluated SQLshield on a 64-bit Linux
Machine running on quad-core Intel Core i3 CPU M 370 @ 2.40 GHz with a
RAM of 5.6 GB. We have tested the following SQL queries (including malicious
ones) in our experiments on SQLshield.

Test Case 1
Input SQL: SELECT * FROM products WHERE price BETWEEN 10 AND 20
Input Data: 10,20
Output SQL: SELECT * FROM products WHERE price BETWEEN 10 AND 20

Test Case 2
Input SQL: SELECT * FROM customers WHERE state=‘oregon’ AND
city=‘remand’
Input Data: oregon, remand
Output SQL: SELECT * FROM customers WHERE state=‘or999egon’ AND
city=‘remand999’

Test Case 3
Input SQL: INSERT INTO .. VALUES (‘+1’,‘test#’)
Input Data: +1,test#
Output SQL: INSERT INTO .. VALUES (‘+9991’,‘test#999’)
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Test Case 4
Input SQL: UPDATE .. SET name=‘John Morr’ WHERE age = ‘%1 %’
Input Data: John Morr,%1 %
Output SQL: UPDATE .. SET name=‘John Mor999r’ WHERE age =
‘%9991 %999’
The above four SQL queries have benign inputs. Since the user input contains
SQL keywords and special characters, SQLshield modifies them by appending
the random key 999 to each of such tokens (e.g., keywords, special characters).
Now, the parse tree structure is constructed and the modified inputs in the
parse tree are de-randomized by the same random key 999, which brings back
the original inputs into the programmer desired query’s parse tree.

Test Case 5
Input SQL: DELETE FROM .. WHERE id = ‘’ OR 1=1 #’
Input Data: ’ OR 1=1 #
Output SQL: DELETE FROM .. WHERE id = ‘’999 OR999 1=9991 #999’

The Test case 5 has malicious inputs. In this case, the user input contains an
SQL keyword (e.g., OR) and special characters (e.g., ’, =, #). Upon receiving
these inputs, SQLshield modifies them by appending the random key 999 to
each of such tokens (e.g., OR, ’, =, #). Then, the parse tree structure is con-
structed. Based on the flow of the SQL parse tree construction, the parse tree
has an input node without any text (shown as a blank node in Fig. 6) and an
unexpected node with the value 999 OR999 1=9991 #999’. After randomizing
the malicious user inputs, the modified inputs are no longer malicious. As the
modified inputs are benign, the finalized parse-tree structure would be either
the programmer’s intended structure which will not have any malicious input
or it will be syntactically invalid. As a result, even if the attacker injects mali-
cious inputs, SQLshield will make sure that the underlying structure of the SQL
query’s parse tree which is sent to database for execution cannot be altered by
the attacker.

4.1 Remarks

If the application developer wants to use any tool to strengthen the security (e.g.
JDBC Checker [18,19]), then such type-validations have to be performed before
SQLshield is executed. Therefore, the initial assumption while implementing
the proposed Algorithm 1 is that the algorithm starts executing after all the
necessary input validations and modifications such as input’s format validation,
are performed. The reason for this assumption is that if the randomization on
inputs is performed before the validations, the input format might be changed
and the application may misbehave. It is evident from the discussion that such
an assumption does not violate the generality of SQLshield’s security objectives.
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5 Performance

We have executed 100 input queries and measured the starting and ending time
of the program. We found that our JAVA code’s average execution time is 2 s
for processing 100 queries on NetBeans IDE 8.0 leading to an average execution
time equal to 20ms per query which is in the same order of SQLrand [2]. This
shows that the execution time of SQLshield is not significantly higher than what
is normally observed. However, the additional cost in SQLshield is due to the
parsing of an SQL query and it seems to be practical to fulfil the objective of
preventing the application against SQL injection attacks.

SQLshield performs better than CANDID (and also others mentioned in
Table 1) to prevent SQL injection attacks as SQLshield allows to have user inputs
which belong to the set of SQL tokens and special characters. CANDID considers
such inputs as SQL tokens and qualifies even a benign query as a malicious query
and invalidates it. SQLshield overcomes this limitation as it allows SQL tokens
as inputs by appending a random key to the input’s sub-strings which match
exactly to the SQL tokens. SQLshield appends a random key to every SQL
token and special characters contained in the user input. If the attacker knows
the random key (999 in our example) and tries to inject any malicious input, the
attacker will not succeed in executing the query, because the SQL tokens in the
input will lose their actual interpretation due to the randomization as explained
in the previous section.

Table 1. Comparison of SQLshield with other schemes

Feature →
Scheme ↓

Intermediate
manipulation

Key dependency Debugging costa

SQLrand
[2]

Yes Yes (must be secret) High

CANDID
[3]

No No Moderate

SDriver [6] Yes No Moderate

TAPS [4] Yes No High

SQLshield Yes Yes (need not be secret) Low
aDebugging cost denotes the amount of time and effort required by the
developers to identify bugs and fix them

5.1 Limitations of SQLshield

Even though SQLshield effectively prevents SQL injection attacks and mitigates
the limitations of SQLrand and CANDID, it has the following issues.

– Since SQLshield uses a string matching algorithm to identify SQL tokens and
delimiters’ presence in user input, the execution time of the program is a
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function of the length of the input. Therefore, it may take more time if the
underlined string matching algorithm used is not efficient.

– The web application may have several user inputs. It may happen that not
all these inputs contribute to SQL queries. Therefore, the programmer has to
identify the inputs which go into an SQL query in order to determine which
inputs have to be randomized. We do not want to randomize and de-randomize
the user inputs which do not correspond to SQL query and do not cause SQL
injection. If the application programmer wants this task to be automated, it
requires development care and some extra effort in the implementation.

6 Conclusion

Preventing SQL injection attacks is an important requirement for smooth cus-
tomer service in web-based applications. The main cause of SQL injection attacks
lies in the malicious inputs submitted to a web application that allows the
attacker to execute the malicious query and thereby, obtain some sensitive infor-
mation of user or database. We proposed a scheme, SQLshield, to prevent SQL
injection attacks on web applications. SQLshield inserts a random key in user
inputs. After the parse tree of an SQL query is formed, the inputs are brought
back from the tree and transformed to its original version by removing the ran-
dom key. Then, SQLshield puts this original data in the respective place-holders
in the query’s parse tree and sends it for execution to the database server. We
note that even if the attacker knows the random key, he cannot succeed in exe-
cuting a malicious query because the malicious inputs are randomized again and
the injected tokens are treated as invalid at the database server. Unlike other
schemes, SQLshield allows a legitimate user input containing any SQL com-
mand. We compared SQLshield with SQLrand, CANDID, SDriver and TAPS,
and showed that SQLshield performs better than others due to its strong defence
against SQL injection attacks.
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Abstract. Information systems are prone to attacks. Those attacks can
take different forms, from an obvious DDOS to a complex attack scenario
involving a step by step stealthy compromise of key nodes in the target
system. In order to detect those multi-steps attack scenarios, alert corre-
lation systems are required. Those systems rely on explicit or implicit cor-
relation rules in order to detect complex links between various events or
alerts produced by IDSes. Explicit and accurate correlation rules strongly
linked with the system are difficult to build and maintain manually. How-
ever this process can be partially automated when enough information
on the attack scenario and the target system are available. In this paper,
we focus on the evaluation of correlation rules produced by an automatic
process. In a first place, the method is evaluated on a representative sys-
tem. In this realistic evaluation context, when the knowledge of both the
attack scenario and the targeted system is precise enough, the gener-
ated rules allow to have a perfect detection rate (no false positive and
no false negative). Then stress tests are conducted in order to measure
the robustness of the approach when the generation of rules relies on a
provided knowledge which is either partially incorrect or incomplete.

Keywords: Alert correlation evaluation · Attack scenario · Attack tree

1 Introduction

In order to handle the detection of multi-steps attack scenarios, it is necessary
to produce correlation rules strongly linked to the target system. Most of the
phases leading to the generation of the correlation rules can be automated with a
generic process (provided that a description of the system is available and up to
date). In order to produce realistic correlation rules, this process relies on suitable
inputs: the knowledge base that describes the environment and an attack scenario
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specified with a suitable level of details. The main benefit of this approach is
that once the system is defined in a knowledge base, it is easy to modify it
to take into account small changes in the system or generate correlation rules
for new attack scenarios without having to build or rebuild each rule manually.
However, even if the process builds correct correlation rules if its inputs are
complete and correct, no assumption can be made once these inputs are slightly
faulty. These faults can be caused by a bad specification of the attack scenarios
or outdated information about the target system. Thus, this paper proposes in
a first part to test the accuracy and applicability of these generated correlation
rules in a real environment. Then, the focus is on the evaluation of the accuracy
of the correlation rules given faulty inputs parameters. This second evaluation
is performed in a simulated environment. The generation process is explained
in Sect. 2 and correlation rules built with this system are evaluated in a real
case scenario in Sect. 3. The different factors that can hinder the generation
of accurate correlation rules are exposed in Sect. 4 and used in Sect. 5 to put
the system under stress in order to measure the impact of these factors on the
detection. Section 6 introduces related works in alert correlation systems and
their evaluation process and Sect. 7 concludes the paper.

2 Correlation Rule Generation Framework

The reference [3] describes a framework for generating correlation rules. The
generation process consists in successive transformations of an attack tree to
correlation rules given specific context information extracted from a knowledge
base. Inputs are (1) an attack tree [2] built with three types of operators, Or,
And and Sand (a sequential And), (2) a knowledge base referencing the target
system topology, the system cartography (installed softwares and services) and
the system supervision (sensors and detection devices information). The process
is divided in five steps. Among them, the first one is manual and the others
are automated. Those steps are illustrated in Fig. 1. In this toy example, the
structure of the starting attack tree is composed of an operator Sand that links
two leaves A and B. Informally, these leaves describe respectively a scan followed
by an attack leading to a code execution on one of the scanned machine.

The first step aims at specifying each elementary attacker action in the attack
tree. During this step, the attack tree is used to construct a more formal and
structured representation of the attack scenario called an action tree. The use
of an action language allows to specify elementary actions by defining a name
(which defines the functional visibility of the action) and attributes (which define
the topological visibility). The name of the action is extracted from a taxonomy.
More precisely, depending on the nature of the action (explicit attack action
or standard action), the name is taken from the CAPEC or CEE taxonomy.
Attributes can be expressed by constants or by two types of variables. The
first type of variable is called static variable. It is meant as a generalisation
variable and represents a value that can be determined statically thanks to the
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Fig. 1. Steps for the generation of correlation rules

information present in the knowledge base (e.g. the IP of a machine hosting a
web server). The second type is called dynamic variable and represents data for
which a value can only be specified at run time (e.g. the IP of an attacker).
In Fig. 1, the action tree has a similar structure as the initial attack tree but
the leaves A’ and B’ are actions specified with the action language. The scan
action is named port-scan in the CAPEC taxonomy and the attacker machine
(source address attribute) is modelled by a dynamic variable (#A#). On the
other hand, the target attribute is a static variable (named <S>) that models
any machine present in a subnetwork called DMZ.

The second step consists in the identification of the attack scenario actors (that
means all nodes, services, user accounts that could be targeted by the attack).
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Those actors are selected based on the specifications expressed by the action tree.
For example, an action can describe a specific type of attack targeting a node
in a given area with a listening network service. Then all nodes in the area that
match this description and are vulnerable to the attack are selected. For each
potential actor, a specific subtree is instantiated. A single tree is then formed
by linking all these subtrees together with an Or operator. Figure 1 shows this
transformation. A1 and B1 are the instantiated A’ and B’ actions for a specific
actor (the static variable <S> is instantiated and references now node1 ) while
A’1 and B’1 represent the same actions relatively to a different actor.

The third step focuses on selecting the suitable observers (sensors and supervi-
sion devices) for each action. These observers are selected based on their topo-
logical and functional visibility. Those visibilities are expressed in the knowl-
edge base and characterize the ability for a given observer to monitor a specific
perimeter of the system and a specific set of behaviours or actions.

The fourth step aims at producing the specification of each alarm or message
that could be triggered by each observer when they detect the actions assigned
to them in the previous step. It consists in selecting the fields that should actu-
ally be present in the generated alert. As an example, network based sensor
cannot always provide information about software or users while host sensors
can. In addition, IDS alerts usually contain a rule identifier related to the rule
that triggers the alert. This reference is added to the message specification. The
resulting structure is called a correlation tree. In Fig. 1, the instantiated action
A1 is observable by two distinct observers that can generate respectively mes-
sages M1 and M2. These two messages are linked by an Or operator in order
to express that the two messages are potentially raised when the action occurs.
Thus, the first action on the node1 can be detected by a snort (NIDS) and an
Ossec agent (HIDS), each of these two devices can generate a message containing
fields and a specific rule identifier.

The fifth step consists in translating the correlation tree to a specific correlation
language syntax (which is related to a specific correlator). In our case, the target
correlation language is ADeLe [6,10]. The transformations involve the translation
of the constant fields of correlation tree leaves into event filters, the structure of
logical operator into Sequence, OneAmong and NonOrdered temporal operator,
and the binding between dynamic variables into inter-event constraints. Figure 1
shows the logical operator translation, some of the event filters (E1,E2 ) and the
constraints between the different events.

3 Evaluation in a Real Environment

The different goals of this section are: (1) showing that the method is applicable
in a real complex environment (2) testing that the generated correlation rules
are able to detect real attacks performed during a pentest (no false negatives)
(3) verifying that no false positives are introduced by the generation process.
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3.1 System Topology and Cartography

The system is illustrated in Fig. 2. It consists in zones with dedicated roles. The
main zones are the DMZ, the server zone and the client network. Each machine
(in the DMZ and the server zone) has two interfaces: the first is connected to
the production network, the second to the administration network. These zones
are delimited by three firewalls: the frontal firewall between the Internet and the
DMZ, the production firewall between the client network, the server zone and
the DMZ, and the administrator firewall between the administrator network and
the DMZ and the server zone. The DMZ hosts a Proxy that enables clients to
access the outside, a mail server, two web servers (Web1, the main web server
and Web2, a blog under construction), a FTP server, a DNS server and a VPN
server, which allows remote user to connect to the server zone. The server zone
contains an Active Directory server, a mail server, a Web server hosting an
Intranet web service and a sensitive server, which hosts sensitive files. Several
clients are present in the client network. They can access their mail accounts in
the server zone, the web servers and the Internet via the proxy. Only a specific
number of clients are allowed to connect to the sensitive server.

Fig. 2. Topology of the target system

3.2 Supervision

The system is supervised by several sensors and IDSes.

HIDS: Ossec HIDS are deployed in each server and client. They perform integrity
checks on sensitive directories and analyse local logs generated by the operating
system or the deployed services. All alerts raised by these sensors are collected by
Ossec servers (located in the suitable administrator subnetwork). In addition,
the availability of the different services deployed for each server is monitored



212 E. Godefroy et al.

with Nagios so that alerts could be triggered when a service stops unexpectedly.
Ossec servers collect information provided by Arpwatch sensors as well.

NIDS: Four machines running the Snort NIDS are deployed respectively in the
DMZ, in the server zone, in the client network and in front of the external
firewall. To ensure that an IDS raises an alert only when the corresponding
action really occurs, each of them has been accurately tuned: only reliable and
relevant built-in rules are enabled and new custom rules are added to describe
the security policy of the system (for example, some servers must not connect
to each others in the DMZ or in the server zone) and to detect the exploitation
of known vulnerabilities in the system.

3.3 Attack Steps

In this system, information present in the sensitive server could be disclosed
by an external attacker. The details of a possible attack scenario is exposed in
two parts. They focus respectively on the compromise of the DMZ and of the
server zone.

DMZ Attack Path. The DMZ has a restrictive firewall allowing only access
from external entities to two Web servers: the main Web server and a blog under
construction. Consequently these nodes are the first target of an external attack.

Compromise of the web server: The main Web server is vulnerable to information
disclosure through a directory traversal. A successful attack can lead the attacker
to gather some username/password tuples. On the second Web server which
hosts a blog, attackers can find the administrator password hash embedded in
the sources of a specific page and then use these credentials to login through the
administrator interfaces. With the blog administrator’s rights, it is possible to
upload a malicious PHP script to build a first attack relay in the DMZ.

Compromise of the FTP Server: The FTP server runs a vulnerable distributed
compilation service accessible only from the DMZ. The successful exploitation
of this vulnerability provides local access to this machine. Root privileges can
then be obtained by running a local root exploit.

Server Zone Attack Path. The firewall that separates the DMZ and the
server zone (prod-fw) forbids all direct connections from the DMZ except those
incoming from VPN clients. As a consequence, this can be the next entry point.
By usurping an IP address of a VPN client, an attacker can access some machines
on the server zone and gather information on the mail server or on the Samba
server by using credentials previously stolen. It is also possible to access to the
intranet Web server.
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Compromise of the intranet server: This server is vulnerable to an SQL injec-
tion or credential reuse to access administrator interface. It is then possible for
attackers to escalate their privileges with a local root exploit kernel. Then, a man
in the middle attack can disclose the IP address of a client machine that can
access the protected server. A spoofing of this IP and the use of stolen credentials
allow attackers to access the sensitive server.

3.4 Test Methodology

A set of attack scenarios is built without knowledge of the collected alerts. The
attack scenarios are relatively small (4 actions in average). Indeed, various rea-
sons make this choice viable. First small scenarios are more likely to match
a real attack than a long complex scenario. Moreover, long scenarios can be
cut into more elementary logical units (such as a fingerprinting followed by a
successful privilege escalation followed by a scan on other machines from this
compromised one).

Action Tree Example. Figure 3 illustrates the following scenario, which con-
sists in a sequence of actions: the first action expected is a code injection attack
from an attacker located in the DMZ network (we suppose that he manages to
compromise a machine) to a server running a ftp service in the same network.
Then two concurrent actions should be realized: the installation of a backdoor
in the attacked server and the creation of a communication channel between
this server and the attacker machine. Then, the attacker performs a privilege
escalation and can shutdown some services with its administrator rights. In this
picture, static variables are represented between signs “<>” and dynamic vari-
ables between signs “# #”.

A second shorter attack scenario (see Fig. 4) introduces three actions. The
first describes an attack from the external network to a web server located in
the public DMZ. Then two actions are possible (as they are linked with an Or
operator). These actions specify footprinting activities (it could be a port scan
or any other recognition action) from the previous compromised web server to a
second server in the DMZ or in the server zone.

The set of scenarios tested is composed of 15 different attack scenarios con-
taining in average four actions (smallest and largest scenario contain respec-
tively 2 and 8 actions). The scenarios expresses phases of recognition followed by
exploitations and new recognitions from the compromised hosts, fishing attacks
on the clients, compromises of a server and attacks to use the compromised
machine against other servers on the internet.

Results. The attack scenarios tested were not all represented during the pen-
test (for example no attacks on clients were performed). In the other hand we
know exactly which machines were compromised. This allows to classify each
detection result. 7 (among 15) correlation rules trigger alerts that detect real
multi-steps attacks (no false positive). Correlation rules that trigger no alarm
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Sand

code_injection
src.addr:  #Att#

src.loc: DMZ
tgt.addr: <Server>

tgt.loc: DMZ
tgt.service: ftp

And

backdoor
src.addr: <Server>
tgt.addr: <Server>

tunnel
src.addr: <Server>

tgt .addr :  #At t#

privilege_escalation
src.addr: <Server>
tgt.addr: <Server>

dos
src.addr: <Server>
tgt.addr: <Server>

Fig. 3. Action tree: taking control of a machine and shutting down services

were representing multi-steps attacks that were not performed or performed only
partially (no false negative). The detailed of the detected actions for each of the
attack scenarios described in Figs. 3 and 4 are summarized in Fig. 6. A subset of
this second correlation tree is illustrated in Fig. 5.

4 Introducing Faults in the Correlation Rule Generation
Process

The Sect. 3 emphasises that with a knowledge base describing accurately the
defended system and well described attack scenario, the generated correlation
rules permit to correlate attack steps. False positives and false negative produced
by IDSes can hinder the correlation process. Indeed, false positives can in some
cases trigger the recognition of some attack scenario. False negatives can also
hinder the recognition, but some methods can be used for taking into account
missed attack in an attack chain [1]. In addition, the process can be altered
in different ways, leading to altered correlation rules that could generate false
positives or miss attacks. The goal of this section is to list the different ways
the rules can be impacted. An experimental analysis of some of these faults is
developed in Sect. 5

4.1 Faults in the Knowledge Base

Obsolete entries in the knowledge base lead to the generation of a correlation
rule referencing irrelevant attack paths or irrelevant alerts. Consequences can be
(1) generation of false positives triggered by the irrelevant messages present in
the correlation rule, (2) false negatives in the case where irrelevant messages are
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Sand

code_injection
src.location : EXT

src.address : #Att#
tgt.location : DMZ

tgt.address : <Tgt1>
tgt.serv.type : webservice

Or

footprinting
src.location : DMZ

src.address : <Tgt1>
tgt.location : DMZ

tgt.address : <Tgt2>

footprinting
src.location : DMZ

src.address : <Tgt1>
tgt.location : server-zone

tgt.address : <Tgt3>

Fig. 4. Attack scenario: compromise

added to Sand or And operators. However, the presence of obsolete attack paths
referencing host or services not present in the system can probably lead to very
few false positives given that no alerts or messages concerning the services should
be produced. These obsolete attack path should not trigger false negatives, as
the correlation rule is a superset of the reference correlation rule.

Missing entries in the knowledge base can lead to false positives or false negatives
depending on the data missing and the attack scenario involved. In general, a lack
of information about devices in the knowledge base leads to false negatives. If
some information concerning sensors are missing and the attack scenario consists
in a sequence of unordered set of actions (Sand or And), the lack of suitable
observers for an action can lead to the deletion of some important messages,
leading to have less restrictive correlation rules that can trigger false positives.

Figure 7 illustrates the effects of two specific missing entries and one obsolete
entry. The reference correlation tree (T0 ) is composed of messages that can be
generated by a network IDS (N1 ) and local sensors (L1 and L2 ). If we suppose
that the knowledge base is outdated and references only one node (among two) or
the network IDS is not present (or incorrectly referenced), we obtain respectively
the correlation trees T1 and T2. T1 consists in the left branch of the reference
tree and the correlation tree T2 is not referencing any message produced by the
NIDS N1 (N1 1 and N1 2 ). On the other hand, T3 can result from a knowledge
base containing a second network IDS N0 that does not exist any more in the
real system.
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Sand

Or

ossec_dmz
id=31122/31421/31430

src .addr=#At t#
tgt.addr=10.0.0.9

snort_dmz
id=1:110008:1

src .addr=#At t#
tgt.addr=10.0.0.9

Or

snort_dmz
id=122:[1-5-19]:1
src.addr=10.0.0.9

tgt.addr=Tgt2

Or

snort_server_zone
id=122:[1-5-19]:1
src.addr=10.0.0.9

tgt.addr=Tgt3

snort_dmz
id=122:[1-5-19]:1
src.addr=10.0.0.9

tgt.addr=Tgt3

Fig. 5. Correlation tree

Fig. 6. Details of two attack scenarios and the related actions. Each elementary action
is detected by a specific IDS rule

System size impact on fault consequences: The impact of the faults presented
in Subsect. 4.1 can be modified by the size of the target system. Indeed, in a
big system, a mistake in the knowledge base can lead to a correlation tree in
which a relatively small part is false. As a consequence, is it less probable that
an attack targets specifically only the nodes of the system that are not correctly
represented in the knowledge base. Thus the rate of false negatives should be
lower in this case than for smaller system.

4.2 Faults in Action Tree Specification

Some faults can be made during the process of transformation of an attack tree
to an action tree (step 1).

Lack of details in the specification is characterized by a poor translation of an
attack tree subgoal into elementary actions. If those actions are described too
generically or are not all specified, the resulting correlation tree can be too
generic and could generate potentially a lot of false positives.

Specifying too many elementary actions can have the opposite effect. Indeed, if a
sequence contains actions that are not correctly ordered or an additional action
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Fig. 7. Influence of some faults on the correlation tree

that is not going to be realized by the attacker, then the process generates
correlation rules unable to detect the attack scenario, leading to false negatives.

5 Evaluating the Impact of Faults in the Correlation
Process

Section 4 describes the theoretical consequences of different faults on the corre-
lation tree. In this section, we propose to conduct an experimentation in order
to evaluate the influence of different faults on the detection process. We focus on
faults that affect the knowledge base because it seems to be the more common
case. The evaluation consists in injecting known type of faults in an up to date
knowledge base. The detection capability of the resulting rules is compared with
the fault-free correlation rules.

5.1 System and Scenarios Tested

We start with an initial knowledge base that models properly the target sys-
tem. This system is shown in Fig. 8. From this initial base, different faults are
injected in the knowledge base. Then, correlation rules are generated based on
the modified knowledge base. The detection capabilities of theses rules are then
compared to those of the initial correlation rule. The injected faults are divided
in two categories: Addition of an element that are not present in the reference
knowledge base and deletion of elements. For this specific system, 13 attack sce-
narios are tested. In order to evaluate short scenarios and long and more complex
scenarios, two types of scenarios are built: (1) attack scenarios consisting in two
to four actions. (2) scenarios composed of the assembly of two simple scenarios
joined together with the Or or the Sand logical operator.



218 E. Godefroy et al.

Fig. 8. Reference system topology

The first three scenarios (s0, s1, s2: see Fig. 9) focuse on actions that are
mainly detectable by network sensors. The three ones that follow (s3, s4, s5) are
built from the previous by replacing the root operator sand by an and operator.
The next three (s6, s7, s8) are composed mostly of actions observable by host
sensors. The last four consist in combinaison of the previous ones: s9 and s10
are respectively scenario built from linking the scenario s0 and s6 (resp. s0 and
s3) with an sand operator. s11 and s12 are built in the same way as s9 and s10
but with an or operator instead of a sand.

5.2 Evaluation Mechanisms

Figures 10 and 11 explicit the way the influence of faults is evaluated. The ref-
erence knowledge base is the starting point. A fault is injected in the reference
knowledge base and leads to the creation of an altered knowledge base. Given
a specific attack scenario, it is possible to generate a correlation tree associated
with each of these two knowledge bases. This process is illustrated in Fig. 10.
Once the two correlations tree are built, they are feed to a correlator in order
to process different logs. Some logs contain attack traces related to the initial
attack scenario. False positives are evaluated for logs that contain no attack
trace. Each such log can generate one false alarm. Thus, for a given attack sce-
nario, the maximum number of false positives matches the number of logs with
no attack traces. False negative are counted similarly: for each log containing
an attack trace, each time no alert is raised, one false negative is counted. This
method allows us to compare the number of false negatives and positives among
the different scenarios. False positives and negatives are then compared to those
produced by the reference output (This reference output produces no false posi-
tive and no false negatives by construction). This process is illustrated in Fig. 11.

Log generation: The logs used to test the generated correlation rules are semi
randomly generated based on specific set of possibles fields values (IP addresses,
Sensor Rule Id, ports). For each attack scenario, 200 samples of logs are gener-
ated. Each sample contains 1000 lines of logs. Initially, the log samples do not
contain any trace matching the reference attack scenario. Traces of the attack is
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s0

s1

s2

s6

s7

s8

Fig. 9. Action trees and their matching correlation trees. In action trees (left of each
arrow), letters denote different types of actions. In correlation trees (right), L and N
stand respectively for an action visible by a local observer and a network observer.
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Fig. 10. Fault injection and faulty correlation rule generation procedure

Fig. 11. Faulty correlation rule performances evaluation

included in half of the samples. These attack traces are generated by selecting a
random attack path in the reference correlation tree (the details are explained
in the following paragraph).

Attack insertion algorithm: The correlation tree contains all messages that could
be generated when an attacker performs the attack scenario on the system. This
tree contains several attack paths and each action could be monitored potentially
by different sensors that may be complementary. In order to choose a realistic
sequence of logs, an attack path (a branch among the root OR) is randomly
chosen. Each time the branch contains an OR (which matches a choice in the
attack scenario or a potential detection by several sensors), a random number of
branches among the possible OR children are chosen. Thus, this process builds
an attack sequence observable from a subpart of the possible observers.
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5.3 Results

The results are shown in Table 1. Each line represents an attack scenario and each
column a knowledge base configuration. The column labelled ref is the reference
case. Other columns are labelled with the type of fault involved. The O prefix
stands for the obsolete entries and the M prefix for the missing entries in the
knowledge base. The added or removed elements include nodes, network sensor,
local sensors and sensors rules. The recall and precision are used to measure the
efficiency of the detection. Those values are defined as follows:

(TP : True Positives, TN : True Negatives, FP : False Positives, FN : False
Negatives)

Recall =
TP

TP + FN

Precision =
TP

TP + FP

The results show that 50 % of the tested faults have an impact on the detec-
tion (this impact could be false negatives, false positives or both). Among all the
tested faults, the most critical impact is observed for a missing network sensor.
It can be explained by the wide visibility of this category of detecting device.

Test results show that additions of some types of elements (obsolete entries)
in the knowledge base are not affecting the results. This can be explained by
the way the rules are generated. Adding irrelevant items to the base will not
change the output rules because these objects are not considered. On the other
hand, the addition of potentially relevant facts (sensors or rules) makes altered
correlation rules containing references to messages that can not be generated by
any observer in the system. This case is discussed in the next paragraph and
does not occur in our example because at least one observer can detect each
action for each attack scenario. The explanation of the different scores depends
greatly on the attack scenarios specific features. For example, scenarios 6 to 8 are
composed of actions that are mostly only locally observable. Thus, the absence
of a local sensor in the knowledge base (M local sensor) leads to correlation
rules that generate false positives and no false negatives, contrary to the other
scenarios for this fault. This can be explained by the correlation rule structure
that is reduced to only one network sensor event and no local sensor events.
Thus, each time this event occurs, an alarm is raised. On the other hand, these
scenarios are less prone to false negatives than the others when a network sensor
is missing in the knowledge base.

From the figure, we should conclude that superfluous information never
impacts the correlation rule efficiency. This is false in theory, but three con-
ditions have to be met in order to impact the detection. It supposed that: (1)
the attack scenario contains at least one action that cannot be monitored by
at least one observer (2) this action is directly part of a sequence of actions
or a conjunction of actions (Sand or And) (3) there is a superfluous observer or
detection rule in the knowledge base and this observer/rule can monitor the spe-
cific action. Given those prerequisites, the generated correlation rule includes the
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Table 1. Recall (Rec.) and precision (Pre.) for each tested faults types

messages that should be raised by the non existent observer. As a consequence,
it acts as a blocking event in the attack scenario recognition (false negative).

6 Related Work

One of the main prerequisite of the alert correlation rule generation is the knowl-
edge base that models the environment. Such an environment model is an impor-
tant feature in the field of alert correlation. The approaches [13] and [7] use an
environment model describing the different hosts, services, vulnerabilities and
access control lists present in the system in order to classify the received alerts
based on their accuracy and reliability.

Moreover, some works [4,8] rely on attack graphs, a structure sharing some
similarities with attack trees. The main difference is that attack graphs are
often automatically generated from known vulnerabilities or possible elemen-
tary attacks on a given system. As a consequence, the attack correlation method
relying on automatically generated attack graph are only accurate for the detec-
tion of attack paths exploiting known and identified vulnerabilities.

Evaluating correlation system is a complex task. Indeed, the dataset used to
test the correlation system has to be representative of a real system and should
not introduce biases while containing interesting complex attack traces. Famous
datasets have been studied and used by the intrusion detection and alert cor-
relation community. These datasets include the DARPA1 intrusion dataset, the
Defcon 9 dataset, the honeynet project scan of the month 17 and the Treasure
Hunt dataset [12]. DARPA dataset are criticised in [5] and [11]: the main prob-
lem is related to the fact that these datasets are not real and include bare attack
traces synthetically injected in a background noise. This noise alone should nor-
mally never produce false positives, which could be a problem (because some
normal traffic are created by poor implementations of protocols that can behave
like abnormal behaviour). In addition, these datasets include only events (and
no alerts). As a consequence, it is difficult to evaluate the efficiency of the cor-
relation system alone because of the dependencies with the IDSses choices and

1 MIT Lincoln Laboratory, DARPA Intrusion Detection Evaluation, http://www.ll.
mit.edu/ideval/.

http://www.ll.mit.edu/ideval/
http://www.ll.mit.edu/ideval/
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configurations. The problem with the Defcon 9 dataset is the lack of realistic
background traffic and amount of attacks compared to legitimate traffic. The
honeynet logs are limited to an infrastructure consisting in a single web server.
Moreover, normal and representative traffic is not expected on a honeypot. The
treasure Hunt is more interesting from the system complexity and attack scenario
point of view but it provides only raw data and no alerts. As explained in [11],
running IDSes on those data can generate bias because the quality and number
of alarms generated depends highly on the IDSses configurations. In other works
[9] logs from university network are used. This can provide more realistic data
but some sensible information must be removed prior to the detection, which
can bias the results.

7 Conclusion and Future Work

In this article, we show that, with ideal conditions, the process that creates
correlation rules neither create malformed rules nor introduce false positives in
those rules. Then, we show that this process is applicable in a real case scenario
including a medium size system. Finally, we take into account the fact that
the generation process relies on a knowledge base that may not be properly
synchronised with the real environment. As a consequence, the reliability of the
generated correlation rules has been tested after some controlled fault injections
in the knowledge base. It resulted that some types of faults have a great impact
on false positives and false negatives while other types have no easily noticeable
impacts. These results show that if the knowledge base describes a superset
of the real system, the detection is not hindered in most case scenarios. On
the contrary, a knowledge base describing a subset of the actual system causes
detection capabilities deterioration. However, it is important to notice that the
impact of the faults is also determined by the features of each attack scenario
(size, action visibility). It could be then interesting to consider a study on possible
attack scenario structures for which the different faults only slightly alter the
detection process.
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Abstract. The interaction between different applications and services
requires expressing their security properties. This is typically defined as
security policies, which aim at specifying the diverse privileges of dif-
ferent actors. Today similarity measure for comparing security policies
becomes a crucial technique in a variety of scenarios, such as finding the
cloud service providers which satisfy client’s security concerns. Existing
approaches cover from semantic to numerical dimensions and the main
work focuses mainly on XACML policies. However, few efforts have been
made to extend the measure approach to multiple policy models and
apply it to concrete scenarios. In this paper, we propose a generic and
light-weight method to compare and evaluate security policies belonging
to different models. Our technique enables client to quickly locate service
providers with potentially similar policies. Comparing with other works,
our approach takes policy elements’ logic relationships into account and
the experiment and implementation demonstrate the efficiency and accu-
racy of our approach.

Keywords: IT security · Access control · Policy evaluation · Similarity
measure

1 Introduction

Nowadays, data and service exchange across multiple actors becomes an emerg-
ing demand to provide dynamic ecosystems. This process involves a large number
of actors such as cloud service provider (SP) and client. From customer’s point
of view, it is always difficult to decide whose service should be chosen so they
use a broker to rank and select the suitable SPs based on user’s requirement.
However, most of the current service ranking technologies [1] do not consider
the security aspect or they only measure security parameters such as encryp-
tion method [2] and security level [3,4]. Among various criteria that need to be
considered for the service selection, security policy is a critical concern. Before a
collaboration takes place between different actors, an actor A may need to know
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if the other actor guarantees a similar level of A’s security policies. Policy com-
parison is one of the main mechanisms to that end. It consists in measuring the
similarity between two security policies and giving an evaluation score. A higher
score between policies p1 and p2 indicates that they are more likely to share
an equivalent security level and yield the same decisions. Unlike other measure
criteria, security policies are usually based on first-order logic. For example, an
access control policy consists of multiple elements and they collectively deter-
mine whether a user is allowed to take some actions on certain objects. Thus,
the existing brokering technologies are difficult to apply on security policies.

In this paper, we propose a new algorithm to calculate the similarity score
between two policies. The contribution is twofold. On one hand, our method is
policy-agnostic and can be applied on various types of security policies. On the
other hand, we propose integrating our policy similarity measure algorithm in
SP selection process and the implementation proves that this integration can
enrich the services offered with efficiency.

The rest of the paper is organized as follows: Sect. 2 reviews existing propos-
als on security policy models and policy similarity measure techniques. Section 3
proposes the policy similarity measure algorithm with an exhaustive calculation
example. Section 4 illustrates an experiment in which the accuracy of our algo-
rithm is demonstrated. Section 5 gives an implementation integrated with our
algorithm. Section 6 concludes the paper and outlines future work.

2 Related Work

To present our policy evaluation method, we suggest, as a first step, to specify
security policies which describe and control different exchanges within a dynamic
environment of diverse applications. In this context, the administrator of these
applications has to define what is permitted and what is prohibited during the
execution in order to secure the use of the proposed services. To do that, he
should specify the security policy to be implemented. Access control policy is
one kind of such policies. An access policy governs access to protected resources
by specifying which subjects can access which resources by which operations and
under which circumstances. The specification of access control policy depends
on different policy models. One widely used model is RBAC (Role-Based Access
Control) [5]. In the RBAC model, access permissions are not assigned directly to
the users but are abstracted as roles which correspond to different task descrip-
tions. To apply RBAC, users should be assigned to different roles thus they pos-
sess indirectly the relevant permissions. The OrBAC (Organization Based Access
Control) model [6] is an extension of the RBAC model. It defines a conceptual
and industrial framework to meet the needs of information security and sensitive
communications and allows the policy designer to define a security policy inde-
pendently. With the development of web service, ABAC (Attribute Based Access
Control ) model [7] brings flexibility and interoperability for policy definition.
The ABAC model defines permissions based on security-relevant attributes such
as subject attributes, resource attributes and environment attributes.
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To the best of our knowledge, most approaches to evaluate policy similarity
are based on XACML [8] policies. Lin et al. [9] propose an algorithm to eval-
uate policy similarity by calculating the similarity score between two XACML
policies. This is indeed a pioneering work and it effectively distinguishes the
categorical predicate and numerical predicate cases. The second version of the
algorithm [10] advances the measure algorithm for numerical predicate and inte-
grates ontology matching. However, the work has two limitations. Firstly, the
algorithm only focuses on the literal level but not logic aspect of security policy.
As a result, the similarity score computed may have a large difference with the
test value in real cases (presented in AppendixA). Secondly, the former algo-
rithm contains 9 weight parameters which need to be configured and choosing
the proper values is not easy to users. In addition, there are two variants of the
former work. Bei et al. [11] investigate the contrary of the similarity: dissimilar-
ity. In order to address the rule relationship comparison, they apply fuzzy theory
to compute rule dissimilarity. Pham et al. [12] improve the similarity computing
approach specified by Lin et al. [9] and also propose a mechanism to calculate
a dissimilarity score by identifying related policies which are likely to produce
different access decisions. Based on policy similarity measure, there exist some
applications. Lin et al. [13] present a novel data protection framework in which
policy similarity comparison approach is applied on policy ranking model. Cho
et al. [14] propose a technique that allows similarity evaluation of encrypted
policies. Shaikh et al. [15] suggest using similarity measure to select services in
a distributed and heterogeneous environment. Bertolino et al. [16] put forward
a new approach for access control test prioritization based on similarity.

3 Policy Similarity Measure (PSM)

The PSM assigns a similarity score Spolicy for any two given policies, which
approximates the percentage of the rule pairs having the same decision. The for-
mal definition is given in Eq. (1), where Num(sameDecision(r1i, r2j)) denotes
the quantity of the rule pairs having the same decision and Num(allDecision(r1i,
r2j)) denotes the amount of the total decision pairs.

Spolicy(p1, p2) ≈ Num(sameDecision(r1i, r2j))
Num(allDecision(r1i, r2j))

, r1i ∈ p1, r2j ∈ p2 (1)

The similarity score is a value between 0 and 1. Two equivalent policies are
expected to obtain a similarity score which equals 1. We mention that the defi-
nition of policy similarity score in [10] focuses on the percentage of the requests
obtaining the same decisions. Comparing with the former work, our definition
for PSM is more fine-grained because the same decision from two policies can be
derived from one or multiple rule pairs. Consequently, by considering decisions
of rule pairs but not final policy decisions, our PSM is more accurate from both
calculation and test aspects. More details are shown in Sect. 4.
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3.1 Policy Structure

As a generic algorithm, our PSM can be applied on different policy models and
this compatibility requires a transformation process before calculation. Policies
are firstly split into different rules and each rule is expressed in the form of:

decision effect(attr name1 ⊕ attr value1, ..., attr namen ⊕ attr valuen) (2)

where decision effect is a decision effect such as permit and deny; attr name
denotes the name of an attribute; ⊕ indicates a comparison operator and
attr value represents an attribute value. We define (attr namei⊕attr valuei) as
a policy element and it can be broadly classified into the following five categories
[17,18]:

Category 1: One Variable Equality Constraints. x = c, where x is a vari-
able and c is a constant.
Category 2: One Variable Inequality Constraints. x� c, where x is a vari-
able, c is a constant and � ∈ {<,≤, >,≥}.
Category 3: Real Valued Linear Constraints.

∑n
i=1 aixi � ci, where xi is

a variable, ai, ci are constants and � ∈ {=, <,≤, >,≥}. This category contains
conjunctions of atomic boolean expressions defined by linear constraints in m-
dimensional real space.
Category 4: Regular Expression Constraints. The general form of boolean
expression in this category is any element formed using ∧ and ∨ with expressions
of the form either s ∈ L(r) or s /∈ L(r), where s is a string variable and L(r) is
the language generated by regular expression r.
Category 5: Compound Boolean Expression Constraints. This category
includes constraints obtained by combining elements belonging to the categories
listed above. The combination operators can be ∧,∨ and ¬.

It is worth noting that elements in most security policies usually belong to cat-
egory 1 2 and 3. In this paper, we are not going to address how to deal with
category 4 because expressing security policy by generated language is out of
scope of basic security policy definition. We would also like to mention that the
categories listed above are not mutually exclusive. For example, the expression
“8 : 00 ≤ Time ≤ 18 : 00” which belongs to category 3 can be also expressed by
category 5: “(8 : 00 ≤ Time) ∧ (Time ≤ 18 : 00)”. In our formalization, in order
to minimize the expected computational burden, we avoid the use of category 5
by transforming the policy elements with Boolean combinations into category 3.

We would also like to note that each element in Form 2 after transformation
should be atomic. An element is atomic if it does not contain explicitly compound
logical operator (∧,∨,¬). By this definition, an atomic element can belong to
category 1, 2 and just one dimension of category 3. In category 5, an element
whose attribute values are connected by “∨” operator can be expressed by a set.
Here we don’t consider “¬” operator for the reason that “¬” relation can be
converted into rules having contrary effects. Having different types of attribute
values, atomic elements in security policies can be divided into the following two
types:
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– Categorical element: The operator is “=” and the attribute value belongs
to the string data type or be a set of string. For example “Role=admin” and
“Action=[read,write,create]” are categorical atomic elements.

– Numerical element: The operator can be “=”,“<”,“≤”,“>”,“≥” and the
attribute value can be integer, real, date/time data types. Operators and val-
ues can be combined into a set or an interval. For example, elements “time={3
pm, 4 pm, 5 pm}”, “FileSize > 5 GB”, “8 : 00 ≤ Time ≤ 18 : 00” are numer-
ical atomic elements.

In an example that we will use throughout the paper, we consider three XACML
policies illustrated in [10]. These policies are defined for managing an information
system of a research laboratory. The policies after transformation are:

Policy1 (p1)
r11 : Permit(Role = {professor, postDoc, student, techStaff },
Resource = {source, documentation, executable}, Action = {read, write})
r12 : Deny(Role = {student, postDoc, techStaff },
Resource = {source, documentation, executable}, Action = write,
19 : 00 ≤ Time ≤ 21 : 00)

Policy2 (p2)
r21 : Permit(Role = {student, faculty, techStaff }, Action = {read, write},
F ileSize ≤ 120 MB)
r22 : Permit(Role = techStaff , Action = {read, write}, 19 : 00 ≤ Time ≤ 22 : 00)
r23 : Deny(Role = student, Action = write, 19 : 00 ≤ Time ≤ 22 : 00)
r24 : Deny(Role = {student, faculty, staff }, Action = {read, write},
Resource = media)

Policy3 (p3)

r31 : Permit(Role = businessStaff , Resource = xls, Action = {read, write},

8 : 00 ≤ Time ≤ 17 : 00, F ileSize ≤ 10 MB)

r32 : Deny(Role = student, Action = {read, write})

From a user’s perspective, p1 is more similar to p2 than p3 because most activities
described by p1 for the data owner are allowed by p2. Our motivation is to quickly
compute similarity scores Spolicy(p1, p2) and Spolicy(p1, p3) with expectation that
the former is higher than the latter. The expected result is to indicate that the
similarity between p1 and p2 is much higher than the similarity between p1
and p3.

3.2 Overview of PSM Algorithm

Shown in Fig. 1, the PSM algorithm takes two policies as input and generates
a similarity score as output. The calculation process can be divided into four
steps.

Step 1: Policy Transformation. Two policies to be computed are split into
rules in Form 2 which consist of atomic elements as follows.

r1i : Permit(e1i 1, e1i 2, ...), r2j : Permit(e2j 1, e2j 2, ...), ...
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Fig. 1. The process of similarity score calculation

Step 2: Rule Pair Calculation. Scores of each rule pair in the same decision
effect (d) between two policies are calculated. In Eq. (3), the score for each rule
pair is the product of the scores of all the element pairs. Product operation is
chosen because any mismatch of element pair results different replies from two
policies. Details for element pair calculation are shown in Sect. 3.3.

Sd(r1i, r2j) =
∏

k

S(e1i k, e2j k), r1i ∈ p1, r2j ∈ p2, e1i k ∈ r1i, e2j k ∈ r2j (3)

Step 3: Decision Effect Calculation. Each Sd(p1, p2) equals the sum of all
the similarity scores of rule pairs in one decision effect (Eq. (4)).

Sd(p1, p2) =
∑

i

∑

j

Sd(r1i, r2j), r1i ∈ p1, r2j ∈ p2 (4)

Step 4: Total Score Calculation. Shown in Eq. (5), the total score is based
on the scores from different decision effects Sd(p1, p2) and the total amount of
rule pairs from all the decision effects.

Spolicy(p1, p2) =

∑
d Sd(p1, p2)∑
d Num(d)

, d ∈ (permit, deny, ...). (5)

3.3 Similarity Score of Rule Elements

The score of an element pair can be calculated when they share the same
attribute name and in the same decision effect. In step 2 above, the score of a
rule pair is based on the rule elements having the same attribute name. When an
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element’s attribute name does not appear in another rule, the access decisions
from the two rules are not affected due to this difference. For this reason, we
consider that the score of such element is 1. The calculation for similarity score
of rule elements differs in element type.

Similarity Score for Categorical Elements. For categorical elements, we
measure the exact match of two values. A higher score indicates that the two
elements share more common attribute values. The formula for two elements e1
and e2 is defined as follows:

Sc(e1, e2) =
num(v1 ∩ v2)

num(v1 ∪ v2 ∪ v3... ∪ vn)
(6)

Sc(e1, e2) presents the exact percentage of the same decision for one element
pair. num(v1 ∩ v2) denotes the quantity of common attribute values between
element e1 and e2; num(v1 ∪ v2 ∪ v3...∪ vn) is the quantity of common attribute
values among all the elements in two policies and these elements should (1) have
the same attribute name (2) belong to the rules of the same decision effect.
Equation (6) is an extension of Jaccard similarity coefficient [19]. The difference
is that the denominator in our equation covers two policies but not two rules
because the aggregation of element scores in decision effect calculation (Eq. 4)
requires the same attribute space shared by different rule pairs.

Some policy models may use abstract element to represent a set of concrete
values. For example, in RBAC, Role element is an abstraction of Subjects; in
OrBAC, a Role is a set of Subjects, an Activity is a set of Actions and a V iew is
a set of Objects. In this case, the abstract values should be transformed to their
related concrete values. For example, abstraction trees for Role and Resource
elements of p1, p2, p3 are shown in Figs. 2 and 3.

Department

student

undergraduate graduate

faculty

researcher

postDoc professor professorEmeritus

instructor

staff

businessStaff technicalStaff

Fig. 2. Abstraction tree for Role element.

File

documentation

.pdf .doc .txt

executable

.o .exe

media

.mp3 .avi

source

.c .cpp .java .xls

Fig. 3. Abstraction tree for Resource element.
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To calculate the score of Role elements between r11 and r21, as
student and faculty are two abstract values, they should be trans-
lated into concrete values which are leaves: {undergraduate, graduate} and
{postDoc, professor, professorEmeritus, instructor}. After the transforma-
tion, we find that the two elements share 5 common attribute values. The dis-
junction of all the Role elements from policy 1 and policy 2 contains 8 attribute
values. Applying Eq. (6), Sc(er 11(Role), er 21(Role)) = 5/8 = 0.625.

Another application of tree architecture is to represent the inheritance rela-
tion. The inheritance mechanism is defined in object-oriented programming as
an efficient way to design an application. In Java, a class which is derived from
another class is called a subclass. A similar mechanism for roles is used in RBAC
[5] and the hierarchy of roles is associated with inheritance of permission. The
role inheritance mechanism is extended in OrBAC model [20]: hierarchies of
roles, views and activities are formally defined associated with inheritance rela-
tionships. In an inheritance tree, child elements can inherit the privileges of their
parent elements. For example, the Role elements of a research laboratory may
possess an inheritance tree for permission (Fig. 4). When applying Eq. (6), all
the attribute values having inheritance relationship in the same inheritance tree
should be treated as identical ones.

student

professor

postDoc technicalStaff

Fig. 4. Inheritance tree for Role element

Similarity Score for Numerical Elements. The calculation for numerical
elements is more complex because numerical attribute values may have different
forms such as single value, set, bounded interval and unbounded interval. Here
we propose a unified method defined in Algorithm 1 for computing the similar-
ity score between two numerical elements. The algorithm takes two numerical
elements as input. Firstly, if two elements have the same attribute name, opera-
tor(s) and attribute value(s), the score is 1 (lines 1,2). Secondly, the two elements
should be checked if their intersection is empty. An empty intersection returns
0 as similarity score (lines 4,5). Otherwise, there are three cases:

– Bounded interval (lines 7,8): Two elements’ values are both bounded inter-
val. Length of an interval equals the difference between its endpoints. To com-
pute the score, we divide the length of the conjunction of two intervals by the
length of their disjunction. For example, the score for time elements in r12
and r23 is: Sn(r 12(time), r 23(time)) = Len(21 − 19)/Len(22 − 19) = 0.67.
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Algorithm 1. Sn(e1, e2): numerical similarity score calculation
Input: two numerical elements e1 and e2
Output: numerical similarity score
1: if e1 = e2 then
2: return 1
3: end if
4: if e1 ∩ e2 = φ then
5: return 0
6: else
7: if both e1 and e2 are bounded intervals then
8: return Len(e1∩e2)

Len(e1∪e2)

9: else if both e1 and e2 are sets then
10: return Num(e1∩e2)

Num(e1∪e2)

11: else
12: return 0.5
13: end if
14: end if

– Set (lines 9,10): Two elements’ values are both sets. To compute the score,
we divide the cardinality of the conjunction of two sets by the cardinality of
their disjunction. For example, Time1 = [3 am, 4 am, 5 am], Time2 = [4 am, 5
am, 6 am], Sn(Time1, T ime2) = 2/4 = 0.5.

– Other cases: As calculation between two different forms is difficult, we assign
a fuzzy value 0.5 as the similarity score. 0.5 is chosen because it is the average
value of similarity score.

3.4 Example of Calculation

Here we present an exhaustive example to illustrate how the PSM works. Con-
tinuing with the three policies p1, p2, p3 defined in Sect. 3.1 and their abstraction
trees introduced in Sect. 3.3, we illustrate the four steps of calculation.

1. Policy transformation: Shown in Sect. 3.1, the three policies have already
been transformed from XACML policies to rules composed of atomic ele-
ments.

2. Rule pair calculation: Applying Eqs. (3), (6) and Algorithm 1, we calculate
scores for different rule pairs in each decision effect:

Permit :
Srule(r11, r21) = 0.625 × 1 × 1 × 1 = 0.625
Srule(r11, r22) = 0.125 × 1 × 1 × 1 = 0.125

Deny :
Srule(r12, r23) = 0.25 × 1 × 0.5 × 0.67 = 0.084
Srule(r12, r24) = 0.5 × 0 × 0.5 × 1 = 0
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3. Decision effect calculation: By Eq. (4), scores of each decision effect are:

Spermit = Srule(r11, r21) + Srule(r11, r22) = 0.75
Sdeny = Srule(r12, r23) + Srule(r12, r24) = 0.084

4. Total score calculation: The final score between two policies is calculated
by Eq. (5):

Spolicy(p1, p2) =
Spermit + Sdeny

Num(permit) + Num(deny)
=

0.75 + 0.084
2 + 2

= 0.209

Applying the same process, we can also calculate the similarity score between
policies p1 and p3: Spolicy(p1, p3) = 0.083. The two scores Spolicy(p1, p2) and
Spolicy(p1, p3) indicates that policy p1 is more similar to p2 than p3 in terms of
the percentage of rule pairs having the same decision.

4 Experimental Results

In order to verify if our algorithm is applicable to real cases, we compare the
percentage of the same decision pairs with the PSM score. Firstly, we implement
a random policy generator which takes policy elements as input then generates
access control policies in Form 2. Secondly, we extract policy elements from
four policies with different models and each of them is related to a real sce-
nario: RBAC for project management [21], Net-RBAC for firewall configuration
[22], OrBAC for hospital management [23], ABAC for administration of research
laboratory [10]. Thirdly, these policy elements are inputted to the policy gener-
ator and each policy pair generated obtains a similarity score by our algorithm.
Finally, we input various combinations of elements as access control requests into
the four policies and count the percentage of the same decision pair between rules
from output. We mention that the test method which we used are brute-force
based: for categorical element, we take all the combination of string values; for
numerical element, enumerating all the numerical based attribute value in an
interval (For example 19 : 00 ≤ Time ≤ 21 : 00) is impossible. Without loss
of generalization, we make equidistant sampling for bounded interval and bilat-
eral sampling for unbounded interval. For example, inputs are all the integers
from 1 to 24 for 0 : 00 ≤ Time ≤ 24 : 00; for FileSize > 10 MB, inputs are
FileSize = 9 MB and FileSize = 11 MB.

Figures 5 and 6 show the policy similarity score (y-axis) and the same decision
percentage for rule pairs (x-axis) in set-4 and set-8. Each test set contains 1000
pairs of policies. In set-4, each policy has four rules and in set-8 each policy has
eight rules. The configurations of elements for each policy model are shown in
Table 1. For example, laboratory administration policies are written by ABAC
model and these policies contain 19 categorical elements with permit and deny
effects. We observe that the score increases when the similarity between two
policies increases. At the same time, the experimental values approach to the
scores calculated and the quantity of test rules has no impact on the variation of
curves. These data enable us to conclude that the PSM score well approximates
the similarity between policies.
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Table 1. Policies tested

Policy Model Categorical element Numerical element Effect

project-admin RBAC 15 0 permit

firewall-admin Net-RBAC 4 28 permit

hospital-admin OrBAC 15 6 permit,deny

lab-admin ABAC 19 0 permit,deny

5 Application

Our PSM algorithm can be applied to different SP selection use cases such
as network configuration, compute allocation and cloud storage. This section
presents a concrete scenario.

5.1 Scenario Description

SUPERCLOUD [24] is a European project which aims to support user-centric
deployments across multi-clouds and enables the composition of innovative trust-
worthy services. SUPERCLOUD will build a security management architecture
and infrastructure to fulfill the vision of user-centric secure and dependable
clouds of clouds. One use case is to build a middle-ware layer between cloud
customer and cloud SPs and this middle-ware could select SP(s) according to
the security requirement of client. Here we implement a scenario of cloud storage.
The subjects involved in the scenario are cloud client, cloud broker and SP. A
cloud client wants to use the cloud storage service(s) provided by one or multiple
SPs. At the same time, the client wishes that the security policies of SP meet
his requirement. Otherwise, he may launch a negotiation process with SP(s)
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whose security policies are most approximate. To this end, the client chooses the
SUPERCLOUD solution. It is worth noting that discovering SP(s) with client’s
similar security level is just a pre-selection phase. Other criteria such as price
and performance will be taken into consideration in the final negotiation and
decision steps.

Fig. 7. Service provider selection for cloud storage

The implementation is based on CloudSim [22] simulation framework. Figure 7
illustrates the architecture of our implementation. Firstly, client expresses his
requirement on cloud storage by security policies. For example, client may wish
that he could have a space of 100 GB and he is allowed to upload files between
8:00 and 22:00. Then the client sends his requirement to the SUPERCLOUD
layer where a cloud broker is deployed. The cloud broker obtains the informa-
tion and security policy templates from SPs. Applying our PSM algorithm, the
broker proposes a ranking list of SPs which meet client’s requirement from stor-
age space to security policies. PSM scores from SPs are ranked from high to
low. When one SP’s storage space is less than the requirement, broker may also
propose a composition of two SPs in the same domain1. In this case, two SPs’
security policies should be combined and the policy after composition is also cal-
culated by PSM and ranked. The composition operation depends on concrete use
1 We suppose that SPs in a cloud federation share the same domain and two SPs in

the same domain can be composed as a virtual SP.
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cases. Here we apply Conjunction (&) operation proposed in [25] for cloud stor-
age policies. Consequently, there is more storage space and the security policy
is stricter after composition. An example is as follows:

SP1 : 50 GB, P ermit(Action : [upload, download], 8 : 00 ≤ Time ≤ 23 : 00)

SP2 : 50 GB, P ermit(Action : [upload, download, delete], 7 : 00 ≤ Time ≤ 22 : 00)

SP1&SP2 : 100 GB, P ermit(Action : [upload, download], 8 : 00 ≤ Time ≤ 22 : 00).

5.2 Performance

The implementation is programmed in JAVA and is executed on an Intel machine
having configuration: 2.2 GHz with 4 GB of RAM running Windows 8 and JDK
1.8. We measure the execution time needed until the client receives a SP ranking
list. Figure 8 shows the execution time with the increase of SP quantity from 0 to
100 in each domain and there exist five domains. Blue line with triangles presents
the execution time with the PSM and red line with stars shows the execution
time without the PSM. In Fig. 9, the domain number varies from 5 to 30. The
higher surface presents the execution time with the PSM and the lower surface
shows the execution time without the PSM. From the two figures, we remark
that the introduction of the PSM does not cause much of performance loss and
it proves that our PSM algorithm is light-weight.

6 Conclusion and Future Work

The main objective of this paper is to expose our proposition to show how
to measure the similarity between two security policies. The proposition gives
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mainly a generic and light-weight algorithm with which we can calculate a simi-
larity score between two access control policies. After introducing the categorical
measure and numerical measure, output of our algorithm approximates to the
test result. In addition, our algorithm can be applied on policies with different
models such as ABAC, RBAC and OrBAC.

We are planning to extend our work along the following directions. The first
direction is related to policy negotiation between SP and client in a real distrib-
uted environment such as Grid’5000 [26]. The similarity evaluation may serve as
a filter step to find out the SPs with similar security level. The second direction
is to integrate our algorithm in some security policy negotiation frameworks [27].
The similarity score will be helpful in the negotiation process such as counter
offer generation and decision making.

Acknowledgments. The work reported in this paper has been supported by ANRT
(Association Nationale de la Recherche et de la Technologie) and Orange as CIFRE
(Conventions Industrielles de Formation par la REcherche) thesis and the work of
Nora Cuppens-Boulahia and Frédéric Cuppens has been partially carried out in the
SUPERCLOUD project, funded by the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 643964.

Appendix

A Brute-force based test for existing work

Figure 10 shows the brute-force test result of policy similarity score by using
the same test environment illustrated in Sect. 4. The y-axis represents the PSM
score computed by the algorithm proposed in [10]; the x-axis shows the test
result of policy similarity defined by Eq. (7) [10], where Sreq denotes the set of
the requests with the same decisions from p1 and p2 and Req is the set of the
requests applicable to either p1 or p2:

Spolicy(p1, p2) = |Sreq|/|Req| (7)

We remark that the similarity score computed does not approximate to the
test result. The main reason is that, firstly, as a brute-force based test method,
our input requests are more exhaustive than ones generated by other test tools
such as MTBDD [18]. Secondly, the PSM algorithm defined in [10] focuses only
on the literal level but not logic aspect of security policy. As a result, two secu-
rity rules sharing the majority of common elements are considered to hold a
higher similarity score. However, the rest of elements may cause totally different
decisions which indicates that the two rules are not similar in terms of output.
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Abstract. Cloud-centric collaboration enables participating domains
to dynamically interoperate through sharing and accessing of informa-
tion. Owing to the loosely-coupled nature of such collaborations, access
requests from remote users are made in the form of set of permissions.
The collaboration service provider maps the requested permissions into
appropriate local roles to allow resource accesses. Access request are
made either by applications or human users, and may be either pre-
registered, or anonymous. Authentication in cloud-based collaborations
is done using web-based tokens which do not consider the properties of
the requester. Access permission is given strictly on the basis of the valid-
ity of the issued tokens for a particular session. But there is no provision
to determine if any user with the valid tokens will cause any security
breach with the shared resources. The human element involved in these
collaborations becomes a single point of failure, exploiting which, a mali-
cious user can gain control over a cloud-based account. Thus, there is a
need to learn and identify the requesters’ behaviors from the history of
their access patterns and subsequently use that knowledge, at runtime,
to flag certain requests that are anomalous with respect to the normal
behavior profile. In this paper, we propose a parametric statistical based
approach which enables a resource providing domain to detect request
anomalies made by a given user. Finally, we validate our methodology
using publicly available datasets and present a performance evaluation
in terms of accuracy of the proposed mechanism.

Keywords: Cloud computing · Access tokens · Collaboration service ·
Anomaly detection · Statistical testing

1 Introduction

Cloud computing supports three prominent service delivery models:
(i) Infrastructure-as-a-Service (IaaS), (ii) Platform-as-a-Service (PaaS), and
c© Springer International Publishing Switzerland 2015
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(iii) Software-as-a-Service (SaaS). One of the popular offerings of the SaaS cloud
is the online collaboration service [4,21]. In this service, the cloud vendor pro-
vides online collaboration tools which facilitate faster sharing and accessing of
information. Examples of cloud-based collaboration include document-centric
collaboration, project management, blogs, micro blogging, wikipages, feeds from
social networks, file sharing and synchronization, and so on. A recent Forrester1

survey reveals that cloud-centric collaboration has become valuable and essen-
tial, and that more than 56 % of software decision-makers are using or will use
SaaS offerings to replace or complement their existing collaboration technology.
Cloud providers, such as, Google Cloud Storage, Microsoft Azure, and so on
offers online collaboration service which is essentially loosely-coupled in nature.
In such collaborations, independent domains dynamically interoperate and reveal
only limited information about their services and policies, relevant to collabora-
tion [3]. We define the scope of this paper as: detecting anomalous access requests
from users to secure collaborations among multiple autonomous domains in the
SaaS cloud environment.

Authorization of requests in cloud-based collaborations is done through web-
based access tokens (e.g., OAuth 2.0), eliminating the need for furnishing sen-
sitive credential information, as is done in the trust management systems, like
PolicyMaker [7,8], KeyNote [9], Cassandra [6], Traust [20], and so on. These
systems use certificates issued by a trusted Certification Authority (CA) or a
public key infrastructure (PKI) to map unknown subjects to predefined roles. For
cloud-based collaborations, the participating domains have to strictly use vendor
provided APIs to model the access policies in form of access control lists (ACL).
The cloud authentication server issues access tokens on behalf of the collabo-
rating domains to the requesting user applications. The requesting application
can be either pre-registered, or anonymous. These tokens contain the allowed
scopes of access modes (e.g., read, write, execute, etc.) on the shared objects.
To initiate collaborative activities, the querying application attaches this token
with the hashed code of the object. On receiving the request, the cloud authenti-
cation server reads the user-defined access control list (ACL) on the object and
determines whether to allow or reject the request. If the ACL grants permis-
sion for the requested operation, the access is granted until the token is timed
out. Otherwise, the request fails and a 403 Forbidden Error (Access Denied) is
returned.

As token-based cloud authentication is not based on the properties of the
requesting entity, it does not bind a user to its purported behavior or actions.
It does not convey any information about the behavior of the bearer between
the time the token was issued and its use. Access permission is given strictly on
the basis of the validity of the issued token for a particular session. Either the
requester’s token is accepted and required privileges are allowed, or the token
is rejected and access is denied. But there is no provision to determine if any
user with valid token will cause any security breach with the shared information.
Therefore, to prevent unauthorized disclosure of the shared resources and possi-
1 http://www.informationweek.com/cloud-computing/software/cloud-collaboration-
tools-big-hopes-big/240143787.

http://www.informationweek.com/cloud-computing/software/cloud-collaboration-tools-big-hopes-big/240143787
http://www.informationweek.com/cloud-computing/software/cloud-collaboration-tools-big-hopes-big/240143787
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ble misappropriation, there is a need to learn and identify the normal behavior of
the users from the history of access requests. Then, at runtime, if some requests
are observed to deviate from this normal behavior, they will be flagged as “anom-
alous”. The work in this paper proposes an approach to detect anomalous access
requests at runtime. We have used parametric statistical technique to implement
our anomalous request detection mechanism.

To the best of our knowledge, the anomalous access request detection in
cloud-based collaborations through parametric statistical technique has not been
studied in earlier works. The contributions of this work are highlighted as follows:

– We propose a mathematical framework for evaluating our anomaly indicator.
– An algorithm has been proposed to detect anomalous user requests using

statistical confidence interval testing.
– Validation of the approach done using publicly available datasets.
– Simulation-based experiments have been done to evaluate the performances

(with respect to accuracy) of the proposed algorithm in terms of the following
parameters: false-positive, false-negative, precision, and recall.

The rest of the paper is organized as follows. In Sect. 2, related work in the
areas of fraud detection and anomaly detection based on the parametric statis-
tical techniques have been discussed. Section 3 describes the proposed approach
through mathematical formulations and statistical modeling. In Sect. 4 experi-
mental study and performance analysis have been done. Finally, conclusions are
drawn in Sect. 5.

2 Related Work

In this paper, our area of focus is to detect anomalous (fraudulent) access
requests in cloud-centric collaborations based on parametric statistical tech-
niques. Therefore, as the current work is a blend of fraud detection and paramet-
ric statistical techniques, we present the reviews of the reported works on these
two aspects.

A fraud occurs when a malicious user utilizes the resources provided by an
organization in an unauthorized manner. In such cases, the malicious user can
either be the actual customer of the organization or might be impersonating a
legitimate user of the system. A typical approach to detect frauds in financial
organizations is activity monitoring [16]. In this approach, a usage profile for
each customer is maintained and monitored to detect any deviations. Few areas
where activity monitoring have been extensively used are:

– Credit-card and banking fraud detection: Profiling and clustering based
approaches are used in this type of fraud detection [18]. Two approaches
which are usually adopted are detection by-owner, and detection by-operation.
In [10], the authors propose a decision support system for online banking fraud
analysis and investigation, termed as BankSealer. The proposed model builds
three-fold user profile, such as: (i) local profile, (ii) global profile, and (iii)
temporal profile. At runtime, BankSealer supports analysts by ranking new
transactions that deviate from the learned profiles.
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– Insurance claim fraud detection [16]: Detection of such fraud has been very
important for the associated companies to avoid financial losses. Neural net-
work based techniques [19] have been applied to identify anomalous insurance
claims.

– Insider trading detection: Insider trading can be detected by dynamically
identifying anomalous trading activities in the market. In [2], temporal and
streaming data has been used for such anomaly detection.

Statistical technique assumes that normal data instances occur in higher proba-
bility region of a stochastic model, while anomalies occur in the low probability
region [11]. In such technique, a statistical model (usually for normal behav-
ior) is fit to the given data and then inference tests are applied to determine
if an unseen instance belongs to this model or not. Both parametric as well as
nonparametric techniques have been applied to fit a statistical model.

Parametric techniques assume the knowledge of the underlying distribu-
tion and estimate the parameters from the given data. It performs a statistical
hypothesis testing, where the null hypothesis implies that the data instance is
generated by the estimated distribution [5]. If the statistical test rejects the null
hypothesis, the data point is an anomaly. The literature on parametric tech-
niques can be classified into the following categories:

– Gaussian model-based [15]: It assumes that the data is generated from a
Gaussian distribution. The general approach is to declare all data beyond
3σ anomalous. However, some of the sophisticated techniques used in this
category are: box plot rule, Grubb’s test, student’s t-test, and χ2-test.

– Regression model-based: This technique consists of two steps: In the first step,
a regression model is fitted on the data. In the second step, for each test
instance, the residual for the test instance is used to determine the anomaly
score. In [1], the authors have done anomaly detection on time-series data
using regression.

As evident from the above review, the state-of-the-art literature on fraud detec-
tion does not address detection of anomalous requests in a cloud environment.
Such requests, if not detected, can compromise a legitimate user’s account lead-
ing to unauthorized disclosure of the shared information. Similarly, researchers
have used the parametric statistical techniques in different domains, however, no
work which has used it in securing cloud-based collaborations is reported. Thus,
these limitations in the state-of-the-art literatures have motivated the authors
to address this problem.

3 Anomalous Request Detection in Cloud-based
Collaborations

As discussed in Sect. 1, token-based authentication in cloud systems does not
bind a user to its purported behavior or actions. Neither does it convey any infor-
mation about the behavior of the bearer between the time the token was issued
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and its use. Hence, to secure collaborations among the participating domains,
there is a need to learn the normal behavior profile of the users and flag the
requests which deviate from this profile. This section presents our approach of
detecting anomalous access requests in cloud-based collaborations.

3.1 Parametric Statistical Approach for Anomalous Request
Detection

As mentioned in Sect. 1, the nature of collaborations prevalent in the cloud
environment is loosely-coupled, and the requests from the remote users are made
in form of set of permissions. Formally a collaborative access request is defined
as follows:

Definition 1 (Collaborative access request). A collaborative access request, car,
is defined as a tuple 〈dr, T

dr

ID, Preq〉, where dr is the requesting (remote) domain,
T dr

ID is the identity of a requesting user from dr, and Preq is a set of permissions
requested by T dr

ID to accomplish specific task(s).

Here, Preq either consists of one or a set of permissions p1, p2, . . . where each pi

is defined as follows:

Definition 2 (Permission). A permission, pi, is defined as a tuple 〈oi, ai〉,
where oi is an object or resource and ai is the privilege to access oi.

Here, the privilege indicates read, write, execute, and so on. These permissions
are mapped into a set of roles, which need to be activated by the user to perform
the desired collaborative actions. Traditionally, this assignment of mapping the
requested permissions into a set of roles is known as the inter-domain role map-
ping (IDRM) problem [12]. An important requirement of the IDRM problem
is to generate a minimal set of roles that match the requested set of permis-
sions [13]. This ensures that the principle of least privilege [22] is not violated
during cross-domain interoperations. IDRM belongs to the NP-complete class,
as there is no polynomial time solution to find the minimal set of roles that
exactly cover the requested set of permissions. In [17], the authors have pro-
posed a heuristic to perform this mapping in polynomial time, which have been
used in the present work.

Irrespective of how we map a set of permissions to a minimal set of roles, the
stream of requests from a user provides the source of learning the access pattern.
Hence, if we are able to quantify the set of requests into a stationary parameter,
anomaly detection techniques can be used to mark atypical behavior of a user
which could potentially be an intrusion. The basic idea of this work is to learn
the behavior of the user within a look-back window (L), quantify it, and detect
the anomalies. We formally define the look-back window as follows:

Definition 3 (Look-back window). Look-back window (L) is the size of the set
of historical user requests (U) for learning a given requester’s behavior.

Hence, ifP 1
req, P

2
req, . . . P

i
req . . . are the requestsmadeover different intervals of time

by user u, then the historical user request is given as: U = {P 1
req, P

2
req, . . . P

i
req . . .}.

The maximum look-back window size is: L =
∑

j |P j
req|.
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For learning the user behavior, we adopt the “semi-supervised” technique, in
which all the requests in the set U are labeled to be non-anomalous (or, belonging
to normal class). A model representing the class of normal behavior will be build
using the historical request set (training data), and at runtime, any request (test
data) which does not belong to the normal class will be marked as fraudulent.
In any collaborative system, multiple domains with a large number of shared
resources are involved. Owing to the complexity of such systems, the access
policies of the participating domains do not change frequently. Also, the users
have access to a fixed set of objects/resources predefined by the policies designed
by the collaborators. Based on this notion, the following two assumptions have
been adopted by our approach:

1. Request size from a non-fraudulent user is constant.
2. User shows a stationary (normal) behavior in the given look-back window.

Generally, in any organization, there exists two types of permissions: (i) generic,
and (ii) specific. The generic permissions are the most commonly used ones and
are required for the most basic actions. For instance, the read permission in
a user’s profile is expected to be activated most often. Conversely, the specific
permissions are those which are activated only for a certain set of activities. For
example, the write permission in a user’s profile will be activated only when a
request for profile edit is made. This notion has been validated in Sect. 4.1 using
some publicly available datasets.

Let at a given session, a registered user requests for any permission pk ∈ PQ,
where PQ is the current requested set. If Ek be the event that pk does not
belong to a request set randomly chosen from the user’s historical requests (U)
within a given look-back window (i.e., pk /∈ P j

req, P j
req being a random element

of U), we can use Pr(Ek) to quantify the probability of deviation of pk from the
user’s recent behavior. Now, if none of the requests in PQ belongs to a randomly
chosen element in U , then deviation of the request set PQ from the user’s recent
behavior, assuming that each Ek is independent, becomes:

δ(PQ) =
∏

∀pk∈PQ

Pr(Ek) (1)

where, δ(PQ) denotes that the degree of deviation of the request set PQ from the
recent behavior. If at least one of the permissions, say pk, belongs to a randomly
chosen set P k

req ∈ U , then deviation of the request set PQ becomes:

δ(PQ) =
∏

∀pk∈PQ

1 − Pr(Ek) (2)

where, Ek is the event where at least one permission, say pk, belongs to the
user’s recent behavior. If N be the set of requests which contains pk (N ⊆ U),
then the probability that pk will belong to the given look-back window will be
given as:

Pr(Ek) =
|N |
L

(3)
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Substituting Eq. (3) in Eq. (2) we get the following:

δ(PQ) =
∏

∀pk∈PQ

1 − |N |
L

(4)

Taking logarithm on both sides of the Eq. (4):

δ′(PQ) =
∑

∀pk∈PQ

log(1 − |N |
L

) (5)

Where, δ′(PQ) is the logarithm of our deviation function δ(PQ). However, as
log δ(PQ) will generate another constant (real) value, we do not change the
notation for the degree of deviation in the above equation.

Generic permissions, due to their common usage, will occur more often in
different request sets in the given look-back window. In contrast, the specific
permissions will have rare occurrences and thus have the value |N |

L � 1.
Let ζ ⊆ PQ is the set of specific permissions from the requested set. The

amount of activity that a single request accounts for is constant. Assuming
that specific permissions account for specific activities, we can assume that the
number of specific permissions in a non-fraudulent request is constant. Thus,
without loss of generality, we can term ζ to be a stationary time series process.

Now, using Taylor’s expansion of log(1 + x) and neglecting the higher order
terms in the Eq. (5), we define the probabilistic deviation of PQ from the recent
behavior as:

δ(PQ) =
∑

∀pk∈ζ

log(1 − |N |
L

)

=
∑

∀pk∈ζ

−|N |
L

(6)

Assuming that a user deviates from his current behavior at every request only
be a constant probability, we can say that δ(U) is also a stationary time series
process. Adding two stationary time series gives us another stationary time series
conditioned upon a stable behavior of a user:

|ζ| + δ(U) =
∑

∀pk∈ζ

1 −
∑

pk∈ζ

|N |
L

=
∑

∀pk∈ζ

1 − |N |
L

(7)

Therefore, Eq. (7) expresses a stationary property and can be used to detect the
deviation from a user’s stable behavior.

As discussed earlier, for specific permissions in a request set, the probability
of occurrences will be on the lower side. Hence, to estimate the “specificity” of
a particular permission, we define the following:
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Definition 4 (Specificity of a permission). If N ⊆ U be the set of requests which
contains permission p observed over the given look-back window of L, then the
specificity of p is defined as:

π(p) = 1 − |N |
L

Thus, specificity will be low for frequently requested (activated) permissions,
and vice-versa for the rare ones. From the perspective of role-based access con-
trol (RBAC) model [23], we know that a role consists of a set of permissions.
Therefore, if a particular role is not often activated, it can be assumed to be a
administrative one containing specific or critical privileges. Formally, we define
the specificity of a role as follows:

Definition 5 (Specificity of a role). If Perm is the set of permissions constitut-
ing any role r, then the specificity of r observed over the given look-back window
of L is defined as:

π(r) =
∑

∀p∈Perm

π(p)

Similarly, specificity of a set of roles R will be given by the sum of the specificities
of individual roles: π(R) =

∑

∀r∈R

π(r)

Choice of the above entities (permission or role or role-set) for anomaly detec-
tion is an implementation issue and depends upon the number of roles/permissions
in the domain. However, it is always preferable to work with the entity with higher
cardinality. This gives more granularity and the lesser likelihood of information
loss.

Based on Definition 4, we modify the Eq. (7) as:

|ζ| + δ(U) =
∑

∀pk∈ζ

π(pk) (8)

Thus, specificity of request entities forms the indicator (parameter) in the pro-
posed anomaly detection approach. As we have assumed that the user shows
stationary behavior, the distribution parameters (mean, standard deviation) at
any time instant t is same as (and hence independent of) the parameters at
time instant (t + 1). Additionally, if we consider a look-back window of signifi-
cant size, both the properties (viz., independence and sample size/skewness) of
central limit theorem (normal distribution) are satisfied.

In the next section, we discuss about our anomalous request detection algo-
rithm using the concept of specificity.

3.2 Anomalous Request Detection Algorithm

Specificity (π), in general, is the measure of how the given entity (permission
or role or role-set) is likely to deviate from the user’s normal behavior. Entities
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regularly requested by a user will have a low specificity and vice-versa. Suppose
access to an entity becomes unexpectedly high due to certain constraints. The
administrator can control that by artificially increasing the specificity of that
entity to a very high value. For instance, consider a scenario where an online
examination is being conducted using cloud-based collaboration service. After
the examination is over we would want the access to the answer scripts to be
frozen. One way to do this is to keep the role-permissions assignments to be
dynamic. Another more subtle way is to artificially increase the specificity of
write permissions to the answer scripts to a very high value after the test is
over. Therefore, the relationship between a user’s behavior and the specificity of
an entity (permission or role or role-set) can be proposed as:

Proposition 1. The more regular the user’s behavior with respect to an entity,
the lesser is its specificity.

To explain a user’s regular behavior, we present the following use case: Consider
a generic role Employee that a user has to activate every time he accesses the
system. In contrast, the user activates the role Project Head only for a particular
purpose, and during a predefined time of the day. Thus, in terms of access pat-
tern, the user’s behavior is more regular and frequent with respect to the generic
role than the specific role. So, the Employee role will have a lower specificity than
that of Project Head role.

Algorithm 1 describes our technique to detect anomalous requests made by a
particular user during accessing the resources through cloud-based collaboration
service. We determine if a particular request is anomalous or not through esti-
mation of the confidence intervals. The input to the algorithm are the current
request (permission) set Preq, historical request set U relevant to the given user,

Input: Requested permission set (Preq), Historical user request set (U),
Confidence level (z�)

Output: Confidence value (c)
Initialize: R ← Φ;
Initialize: μ, σ;
R ← mapPermissionsToRoles(Preq);
μ ← U.getMeanSpecificity();
σ ← U.getStandardDeviation();
F ← π(R);
if F > μ + z�σ then

mark Preq as anomalous;
end
else

U.update(Preq);
end
c ← Pr(μ, σ, F );
Return: c;

Algorithm 1. Anomalous Request Detection
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and a confidence boundary z�. The confidence boundary may vary with different
users, however, it can be regulated by the security administrators of the collab-
orating domains. The requested permission set is mapped into a set of roles R
using the heuristic presented in [17]. For all the roles in U , the mean specificity
(μ) and the standard deviation (σ) are computed. Specificity of the generated
role set R is computed and the value is stored in a variable F . Then we perform
a confidence interval testing to determine if the observed specificity of the role
set R can be entailed as anomalous or not. If the observed value falls beyond the
confidence boundary, we mark the request to be anomalous. Conversely, if the
observed specificity is found to be within the confidence interval, the requested
permission set Preq is added to the historical user request. For both cases, the
algorithm returns the probability by which F belongs to the normal distribution
with mean μ and standard deviation σ.

In Sect. 3.1, we derived the mathematical formula for specificity, assuming
that |N |

L � 1. However, in Algorithm 1 we have not filtered out the generic per-
missions for which the assumption is not valid. Experimentally it was found that
there has been a slight improvement in the performance of the algorithm after
explicitly removing generic permissions. But the task of marking a permission
generic or specific has to be done manually, which increases the possibility of over
fitting the historical data. Moreover, the specificity for such permissions will be
very close to 0. Hence, their contribution to the mean and standard deviation
remains insignificant even if we consider them.

4 Results and Discussion

In this section, we first validate our approach of estimating the specificity of enti-
ties (permissions, roles, role-sets) which forms an integral part of our approach
to detect anomalous requests. Next, performances of the proposed algorithm
(refer to Algorithm 1) in terms of precision and recall for different sizes of the
look-back window have been evaluated and analyzed.

4.1 Validation of the Proposed Approach

We have discussed in Sect. 3.1 that in any domain there exists two types of
entities: generic and specific. Generic entities are the ones which are requested/
activated frequently and are available to most of the users in the system. While,
the specific ones are those which are restricted by imposing spatio-temporal
constraints, and are also available only to the privileged users. Based on this
heuristic, we have defined the “specificity” parameter for estimating the degree
of deviation from the user’s recent access behavior. To validate the abovemen-
tioned concept we have attempted to study this pattern in some of the datasets
from [14]. These datasets are the network access control rules used in Hewlett
Packard (HP) to manage external business partner connectivity. They include
two matrices: (i) permission assignments (PA), and (ii) role assignments (RA)
for nine different domains. PA contains the role to permissions mapping, and



A Statistical Approach to Detect Anomalous 253

RA has the user to role mapping. Each row in the RA matrix corresponds to a
request, that may or may not come from the same user.

Table 1 gives the details about the sizes of different entities available in those
nine domains [14].

In the first step, we study the role to permission assignments using bipartite
graphs which capture the degree distribution of different roles. Due to brevity of
space, we present only the degree distribution obtained for two smaller domains
(Domino and Healthcare (HC)), and one larger domain (Americas Large) in
Fig. 1. It is evident from the degree distributions, that there are a few permissions
that are associated with a large number of roles and the rest are limited to
only a few, which attribute to our designated generic and specific permissions,

Table 1. Test datasets

Domain Roles Permissions Role-sets

Americas Large 421 10127 3485

Americas Small 1587 211 3477

Apj 1164 456 2044

Customer 284 276 10961

Domino 231 20 79

Emea 3046 34 35

Firewall1 709 69 365

Firewall2 590 10 325

Healthcare 46 15 46

[Domino] [Healthcare]

[Americas Large]

Fig. 1. Degree distribution of permissions
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Fig. 2. Degree Distribution of roles in Americas Large

respectively. Hence, it can be inferred that for all reasonable-sized domains, there
exists a set of generic and a set of specific permissions. Similar observation in
case of roles is also available in Fig. 2.

From Fig. 2 it is clear that only a few roles are frequently activated (generic),
while a large proportion of the roles are restricted from regular accesses (specific).
Thus, our notions of generic and specific entities in a given domain are validated
through the analysis on degree distribution.

4.2 Experimental Study

As mentioned in Sect. 3.2, the proposed algorithm for anomalous request detec-
tion takes the following as inputs: (i) current requested set of permissions, (ii) his-
torical user request set, and (iii) a confidence level. As real-time request streams
in cloud-based collaborations are not available, we simulate requests to feed our
algorithm. Simulation of permission requests requires the following types of data:

– Permission assignment matrix: This matrix (PA) gives the role to permission
mapping for a domain. Each entry in the matrix can have the following values:

PAi,j =
{

1 If rolei contains permissionj

0 Otherwise

– Role activation history : This gives the series of roles-sets activated in a domain.
These role-sets may have been activated by the same or different users. Let
us denote it as Hact.

The different steps for evaluating the performance of our algorithm have been
described below.
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Table 2. Role-permission assignment in provider domain dj

Role ID Permissions (Perm)

0 19

1 21

2 20

3 0

4 1

5 8

6 89

7 23

8 9

9 30

10 22

11 0 4 6 8 12 20 22 23 28 29 56 81 85 150 229 230

12 3 5 7 9 11 13 14 16 19 21 24 27 30 32 33 34 35

13 0 3 5 7 9 10 11 12 13 14 16 18 19 21 23 24 25

14 0 1 3 5 7 8 9 11 12 13 14 16 19 20 21 23 24 25

15 1 19 23 25 98 121 122

16 3 5 7 9 11 13 14 16 18 19 21 24 27 30 32 33 34

17 0 1 8 9 19 20 21 24 25 26 27 28 29 30 31

18 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 21

19 2 10

User Profile Generation. For generating user profiles, we begin with a series
of role-sets, that may or may not have come from the same user. We create an
average user, parameterized by these role-sets. Let Fq(r) be the number of times
role r was activated in the role activation history (Hact). Let ρ() be the reverse
map from a permission to role, i.e. ρ(p) = {r : p, r ∈ PA} . For every permission
p we can define count as below:

count(p) =
∑

r∈ρ(p)

Fq(r)

In other words, count(p) gives the number of times the permission p was requested/
accessed inHact. This is an approximate frequency of use of the permission.Permis-
sions used very regularly will have a higher count value and vice-versa. Therefore,
an estimate of the probability that the permission p will be accessed is given as
follows:

Pr(p ∈ PQ) =
count(p)
|Hact|
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Input: Role activation history Hact, Request size (M)
Output: Simulated request set (RQ)
Initialize: R ← Φ;
Initialize: P ← Φ;
Initialize: rand;
for ∀r ∈ domain.roles do

rand ← randInt(0, |Hact|);
if rand < F (r) then

R ← R ∪ r;
end

end
for ∀r ∈ R do

for ∀p ∈ Perm(r) do
P ← P ∪ p;

end

end
RQ ← random.choice(P, M);
Return: RQ;

Algorithm 2. Request Generator for an Average User

where, PQ being a randomly chosen request set from the history.
We can similarly define the probability that a role is activated in response to

a request as:

Pr(r ∈ RQ) =
Fq(r)
|Hact|

where, RQ is the set of roles activated in response to PQ. This pair of probability
values for every permission/role constitutes the user profile.

Request Generation. Once the user profile is created, we generate a request
to simulate the average user’s behavior using Algorithm 2. The above procedure
selects roles that are frequently activated with high probabilities and generates
a series of requests, considered to be normal. To simulate anomalous behavior,
the first if-clause after random number generation is changed to rand < F (r),
which will select roles that are less likely to be activated/requested. For testing
our algorithm, a small set of anomalous requests are inserted in the generated
series of normal requests with frequencies of one in 4, 8, 16, and 32 requests.

Application of the Anomalous Request Detection Algorithm. In this
section, we demonstrate an example scenario where the proposed mechanism of
anomalous request detection has been applied to secure collaborations among
participating domains in the cloud. We consider a cloud provider C which pro-
vides an online collaboration tool as service. Multiple domains d1, d2, . . . , dn

share their resources in C and manage access to them through the available APIs.
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Table 3. Estimates generated by the proposed algorithm

ID Request set Generated role set (R) π(R) Profile (μ, σ)

1 19 0 4 6 8 3 18 19 16 18.5, 4.092

2 122 0 4 6 8 3 15 18 19# 21.5 18.5, 4.092

3 1 0 4 6 8 3 4 18 19 16.5 18.5, 4.555

4 19 0 4 6 8 3 18 19 16 17.25, 3.73

5 122 1 19 0 4 6 8 3 15 18 19 20 18.25, 3.799

6 122 0 4 6 8 3 15 18 19 # 21.2222 18.25, 3.381

7 122 1 19 0 4 6 8 3 15 18 19 20 19.25, 2.43

8 122 0 4 6 8 3 15 18 19 21.1 20.5, 1.870

9 1 0 4 6 8 3 4 18 19 16.4545 19.5, 3.316

10 122 0 4 6 8 3 15 18 19 # 21.0769 19.5, 3.082

11 19 0 4 6 8 3 18 19 16 18.25, 3.072

12 1 0 4 6 8 3 4 18 19 16.4286 18.25, 3.031

13 19 0 4 6 8 3 18 19 16 17.25, 2.947

14 122 1 19 0 4 6 8 3 15 18 19 # 20 17, 2.5

15 122 0 4 6 8 3 15 18 19 # 21.0625 18.25, 2.989

16 1 0 4 6 8 3 4 18 19 16.4375 18.25, 3.031

17 19 0 4 6 8 3 4 18 19 16.4444 17.25, 3.491

18 122 1 19 0 4 6 8 3 15 18 19 # 21.0769 19.5, 3.082

19 19 0 4 6 8 3 18 19 16 18.25, 3.072

We assume that the vendor provides the APIs for proposed anomaly detection
approach, which are used by the domains to determine if the current collabora-
tion request is conforming to the user’s normal behavior.

Let there be two domains, di and dj , which will collaborate using the cloud
vendor’s APIs, di being the requesting domain and dj the providing domain.
The role-permission assignment in dj is given in Table 2. Now consider a user
ui ∈ di who mostly requests for the permissions {0, 1, 4, 6, 8, 19}. We introduce a
few requests with an anomalous permission 122 in order to make the algorithm
to activate role 15. The moving average and standard deviation for a look-back
window of L = 5 have been used to demonstrate how the algorithm updates itself
with any change in the user behavior. A sample run of the algorithm with a con-
fidence level of 0.5 on a simulated set of requests has been shown in Table 3. We
have used # to indicate the flagged (anomalous) requests. The observed speci-
ficity (π) of the generated role set (R), the mean specificity, and the standard
deviation characterizing a user behavior are computed by Algorithm 1. From
the role-permission assignment in Table 2, it is clear that permissions like 122
are critical, as in order to access them a large number of extra permissions must
be activated. The estimations (given in Table 3) illustrate that the algorithm is
able to recognize this risk when a request for 122 comes as an isolated request,
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[Freq = 1 of 4] [Freq = 1 of 8]

[Freq = 1 of 16] [Freq = 1 of 32]

Fig. 3. Parameter estimation with look-back window size = 40

for instance, in IDs 2, 10, and 18. However, when these requests come one after
the other, they become a part of the user’s behavior and hence are not flagged
(as observed in IDs 5, 7, and 8), showing the adaptive nature of the algorithm.

4.3 Performance Analysis

In this section, we evaluate the performance of our algorithm in terms of the
following well accepted parameters:

– False Positive: Normal request wrongly detected as anomalous.
– False Negative: Anomalous request not detected, but marked as normal.
– Precision: It measures the probability that a request is actually anomalous, in

situation where it has been flagged to be anomalous. Mathematically, precision
is expressed as:

Precision =
TruePositive

TruePositive + FalsePositive
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[Freq = 1 of 4] [Freq = 1 of 8]

[Freq = 1 of 16] [Freq = 1 of 32]

Fig. 4. Parameter estimation with look-back window size = 80

– Recall: It computes the percentage of actual anomalous requests which has
been flagged. Mathematically, recall is given as:

Recall =
TruePositive

TruePositive + FalseNegative

Another parameter that has been adjusted for performance evaluation of the algo-
rithm is the look-back window. As discussed in Sect. 3.1, the look-back window is
the size of the set of previous requests made by a particular user. We study the per-
formances of the algorithm for different sizes of the look-back window (consisting
of 40, 80, and 120 historical requests) and for different frequencies of occurrences
of the anomalous requests viz., 1 out of 4, 8, 16, and 32. Figure 3 gives the plots of
the abovementioned parameters (for L = 40) with respect to the dataset given for
the Domino domain. Similarly, in Figs. 4 and 5, the performances of the algorithm
in terms of the specified parameters have been depicted.

Observations from the Performance Analysis. The performance of the
anomaly detection algorithm greatly depends upon the value of the confidence
level z� to be set by the security expert in the collaborating domains. Based
on the experimentation done, the optimal value depends upon the expected
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[Freq = 1 of 4] [Freq = 1 of 8]

[Freq = 1 of 16] [Freq = 1 of 32]

Fig. 5. Parameter estimation with look-back window size = 120

frequency of the anomalous requests. As expected, smaller the frequency, larger
is the optimal confidence level. In fact, confidence level seems to be logarithmic
upon the frequency of anomaly.

Look-back window is a function of the stability of a user’s behavior. However,
if the user is expected to change his behavior very frequently, a smaller look-
back window will work better so that the system may be able to adapt well
to the changes in behavior with a lesser number of false alarms. Keeping the
stability factor of behavior stationary, no significant effect of look-back window
was observed on performance as is demonstrated by the given plots. Thus, we
have the following observations with respect to the performance of the proposed
anomaly detection algorithm:

– If the frequency is low, there will be a high percentage of false positives.
– For stationary behavior, the look-back window size does not significantly

change the experimental parameters.
– Look-back window size depends on the expected frequency of anomaly, but is

not correlated to the performance.
– Performance of the proposed approach depends upon the confidence level. For

narrower confidence intervals, recall is close to 1 and precision is very low, and
vice-versa for the wider intervals.
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– If the security expert of a domain is not aware of the users and the typical
requests they make, it is safe to maintain a moderate confidence boundary
between 2 and 3.

– Performance degrades if the frequency of anomaly decreases, as there are not
enough data points to flag.

5 Conclusion

Online collaboration has become one of the popular services provided by the
present day SaaS clouds. Through such services, customers are given a loosely-
coupled environment where they can share and access resources remotely. In the
state-of-the-art clouds, authorizing accesses to shared resources is done based on
the validity of tokens, which do not have any mechanism to determine if a valid
user will cause security breach with the shared information. The human element
involved in these collaborations becomes a single point of failure, which may be
exploited by a malicious user to gain control over a genuine user account. Thus,
there is a need to learn and identify the requesters’ behaviors from the history
of their access patterns and subsequently use that knowledge, at runtime, to flag
certain requests that are anomalous with respect to the normal behavior profile.
In this paper, we propose an algorithm based on parametric statistical technique
to detect request anomalies made by a given user. The frequency of activation
of an entity (permission or role or role-set) forms the anomaly indicator for this
work. We validate our methodology using publicly available datasets and present
a detail experimental study for performance evaluation based on accuracy. The
results suggest that the proposed algorithm will perform better if the confidence
boundary is set between 2 and 3, and the occurrence of anomalous requests
is frequent. As a part of the future work, we will attempt to implement our
algorithm in a cloud system such that real-time request feeds can be analyzed.
Further, we plan to evaluate the performance analysis of the algorithm in terms
of the anomaly detection latency to address the following scenarios: (i) size of
policy set in the collaborating domains change frequently, and (ii) low occurrence
of anomaly in the requested entities.
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Abstract. Internet-based computing has lead to an emergence of a large
number of threats. One of the major threat is DDoS (Distributed Denial
of Service) attack. Recent incidents have shown that DDoS attacks have
the capability of shutting a business not for a day but weeks. DDoS
attacks have a greater impact on multi-tenant clouds than traditional
infrastructure. DDoS attacks in the cloud, take the shape of EDoS (Eco-
nomic denial of sustainability) attacks. In EDoS, instead of “Service
Denial”, economic harms occur due to fake resource usage and subse-
quent addition or buying of resources using on-demand provisioning. To
detect and mitigate DDoS attacks in the cloud, we argue that on-demand
resource allocation (known as auto-scaling) should also be looked, in
addition to network or application layer mitigation. We have proposed a
novel mitigation strategy, DARAC, which makes auto-scaling decisions
by accurately differentiating between legitimate requests and attacker
traffic. Attacker traffic is detected and dropped based on human behav-
ior analysis based detection. We also argue that most of the solutions
in the literature, do not pay much attention to the service quality to
legitimate requests during an attack. We calculate the share of legiti-
mate clients in resource addition/buying and make subsequent accurate
auto-scaling decisions. Experimental results show that DARAC mitigates
various DDoS attack sets and take accurate and quick auto-scaling deci-
sions for various legitimate and attacker traffic combinations saving from
EDoS. We also show how proposed mechanism could make “arms-race”
very difficult for the attackers as the resource need to defeat DARAC
mechanism on a very small capacity server is huge. Results also show
significant improvements in the average response time of the web-service
under attack, in addition to infrastructure cost savings up to 50 % in
heavy attack cases.

1 Introduction

DDoS attacks are on the rise, with attackers being supported by mass exploita-
tion of web vulnerabilities, millions of exploitable internet-abled devices, success-
ful botnet building and the monetization of these resources in the DDoS-for-Hire
c© Springer International Publishing Switzerland 2015
S. Jajodia and C. Mazumdar (Eds.): ICISS 2015, LNCS 9478, pp. 263–282, 2015.
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strategies [14]. Attackers have continued renting these botnets, mainly to perform
volumetric attacks. Affordable but fatal services like these, can create sufficient
traffic to take down a business infrastructure, which lacks DDoS protection. Tar-
geting businesses without DDoS protection have made attackers successful and
earned them a huge profit. There are multiple attack impact studies which are
published by many DDoS mitigation solution providers [33,37,42]. According to
a quarterly report by Akamai (Q4) [42] 2014, DDoS attacks are increased by 90 %
as compared to their Q3 report in 2013. Recent reports give interesting and awak-
ening facts about the economic harms due to DDoS attacks [34]. There is 400 %
rise in economic losses per hour at peak times than the last year. Our work is
also motivated by the recent DDoS attacks (Q1 2015) on cloud services. Attacks
on Microsoft and Sony gaming servers by Lizard Squad and similar attacks on
Amazon EC2 and Rackspace servers are alarming events for the whole security
community. This gives a rise to the attack motives and its shift from service
denial to economic harms and massive cloud service denial [32,39]. Similarly,
Greatfire.org faced a DDoS attack in March 2015 with a heavy costs as large as
$30 K/day on Amazon EC2 cloud [29]. Reports by [19], states that the economic
losses due to DDoS on the average is near $400 K.

One of the important characteristic of cloud is elasticity of resources, which
enables cloud based services to be scaled horizontally to a large magnitude.
It is visible that DDoS attack could be successful on cloud services as they
dynamically scale their servers in magnitude. DDoS attacks have a different
behavior when targeted to cloud. They do not disrupt the services but affect the
consumer’s monetary strength. This has been attributed as fraudulent resource
consumption in [11]. Cloud consumer, in anticipation that the resource utiliza-
tion activity as genuine, may scale the server and would be trapped in this catch.
These types of attacks were first coined by Christopher Hoff in 2008 with the
term Economic Denial of Sustainability (EDoS) attacks. Subsequently, DDoS
attacks on cloud was picked up in [11] where the authors explains the fraudulent
resource consumption as a threat to cloud consumers.

Through this paper, we are putting up an argument that DDoS attack on cloud
should be treated differently. They cannot be detected and mitigated as they were
being addressed in fixed and dedicated server infrastructure. We propose that eco-
nomic and performance aspect are quite essential parameters in detecting and mit-
igating such type of attacks. We have proposed a novel mitigation scheme, which
takes auto-scaling decisions wisely on the basis of real requirement of legitimate
traffic by falsifying the attacker traffic. This has been achieved by identifying legit-
imate requests and their share in auto-scaling decisions.

The rest of the paper is organized as follows, Sect. 2 discusses DDoS attacks
in cloud and initial experiment to show the convergence and difference between
EDoS to DDoS. Section 3 details various requirements of an effective solution
to DDoS in cloud computing. Section 4 discusses, DARAC, our proposed strat-
egy towards DDoS mitigation. Results to various experiments are shown and
discussed in Sect. 6. Various related contributions in this area are described in
Sect. 7. Conclusion and future work are described in Sect. 8.
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2 DDoS Attack in Cloud: Impact

Services in cloud can be scaled up or down using auto-scaling utility. This util-
ity is the main target of EDoS attackers, who may send huge no. of requests,
which will result in scaling resources up and causing huge losses to the cloud
consumers. This is explained as fraudulent resource consumption (FRC) in [10],
where authors call such kind of resource consumption as fraudulent. On demand
cloud will scale virtual servers by looking at the demand. However, these fake
resource claims will force cloud consumers to pay for the traffic which was not
genuine. In cloud environment, EDoS may culminate to DDoS. Initially when
the servers are under attack, the billing usage of the cloud consumers rise. When
the service level agreement is saturated for the maximum allowed resources, it
transforms to DDoS (Fig. 1).

We performed certain experiments which illustrates this effect in detail. A
virtual machine(VM) is created on a server running a hypervisor. VM under

Table 1. DDoS Impact: configuration

Item Configuration

Physical server i5 3330 S 2.70 GHz

Total CPUs (4 Cores, 8 VCPus)

Total memory 8 GB

Hypervisor XenServer 6.2

Guest/Attacker OS Ubuntu 14.04 Server

Guest configuration Specified in Table 2

Guest application Apache2

Attackers Dual Core (4 GB)

Attacker application ApacheBench2

Table 2. SLA for Auto-scaling

Item Configuration

Initial resources (Static server) VCPUs=1 and Memory=256 MB

Initial resources (Dynamic server) VCPUs=1 and Memory=1 GB

Min to max memory (Static server) 256 MB and 1024 MB

Min to max memory (Dynamic server) 1024 MB and 4096 MB

Min to max VCPUs 1 and 4 VCPUs

Monitoring period 3 min

Condition for overload 70 % Utilization

Condition for underload 30 % Utilization

Increase-Decrease factor 128 MB and 1 VCPU (Static)

256 MB and 1 VCPU (Dynamic)
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attack is running a webserver. For characterising the impact, both static and
dynamic webservers are tested against a DDoS attack. Whenever a cloud con-
sumer deploys a VM, it’s performance is bounded by a fixed SLA (Service Level
Agreement). Auto-scaling policy [21,41,44] is one of the most important point
in SLA, which is used in our discussion. There are many auto-scaling policies
which are used in literature and in production environments [2]. Few providers
use customized policies where user can decide underload and overload conditions.
Subsequently, auto-scaling will increase new or remove idle resources from the
VM. We are using one such policy which is simple and has set these thresholds to
70 % (“Overload”) and 30 % (“Underload”). This algorithm runs in background
and monitors the VM. If the memory utilization exceeds the threshold of 70 %
for 3 min (“Overload” State) than an additional chunk of memory is added to
the VM. Similarly, if the CPU utilization exceeds the threshold of “Overload”
State, which is of 70 %, one addiitional VCPU is hot plugged to support the load.
This resource addition/expansion continues till the SLA is not breached, keeping
cost and resource caps in consideration. Same is true for idle resource removal,
where utilization threshold of “Underload” state is 30 %. If utilization below
this level, is observerd for 3 min, some fixed amount of memory or one VCPU
is removed. Auto-scaling will account and bill only for the resources which are
used to follow the principles of “Pay-as-you-Go” accounting. This is important
to note that this policy may not be optimal in terms of resource usage and cost
consideration. However, for the purpose of our work, we wanted to have a basic
auto-scaling policy which can help us in analysing the impact of DDoS. Any
other policy of auto-scaling, would ideally not change the impact much.

Other important parameters of this policy is listed in Table 2. Various con-
figuration and parameters related to attack scenario, are listed in Table 1.

2.1 Static Webserver

This web server had one static page of size 2 MB. The web server was flooded
by four attackers with 200 concurrent requests for a total of 200 K requests from
each one of them. The web server received 800 concurrent connections in total
and served 800 K (200 K × 4 attackers) requests. Figure 2c and d show the effects
of the attack on Memory. Due to the persistent attack, the memory utilization
always peaked above 70 %. This resulted into multiple triggers of auto-scaling
and has recieved regular addition of memory chunks in the form of 128 MB each.
Finally, it becomes stable at 1024 MB because of maximum limit posed by the
SLA. Once Memory allocation reaches 1024 MB, auto-scaling would not assign
any more memory resource and EDoS culminates to DDoS which is evident by
large number of failed requests and timeouts. For the case of VCPUs, there
is not much effect (Fig. 2a and b). This is mostly due to the static nature of
the application. As the major stress in this attack is towards memory and disk
transfer, there are no visible effets on CPUs.
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Fig. 1. DDoS Scenario: experimental design
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Fig. 2. Behavior of auto-scaling during attack

2.2 Dynamic Webserver

Dynamic web server is a WikiBook Dump and was configured with mysql at the
backend to serve wiki pages. This VM was given an initial RAM of 1024 MB and
one VCPU. Attack was performed with 1500 transactions, each transaction with
6 requests in each one of them. This way it makes 1500 × 6, 9000 requests with a
concurrency of 4. The results of the attack is shown in Fig. 2e, f, g, and h, which
show the behavior of auto-scaling towards a dynamic server. The CPU usage
which started from values close to 0 % but due to attack, the utilization reached
around 100 % (at 45th minute). This usage remained 100 % for the whole duration
of the attack there after. We can see that despite providing extra resources in the
form of VCPUs, the usage didn’t fall. The pattern could be appreciated more
vividly in Fig. 2f, VM was hot plugged with an extra VCPU at 51st minute,
once again as CPU usage was higher than 70 % for 3 min, one more VCPU was
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hot plugged. Likewise, the VM was provided with all 4 the VCPUs but still the
utilization was around 90 %. As the SLA didn’t specify more VCPUs, attack
turned into a DDoS. This is visible due to request failures and timeouts.

Similarly, due to the attack, the memory usage exceeds the threshold of 70
percent and memory was incrementally added. The memory was incremented
by a factor of 256 MB. In Fig. 2h, we can see, how the memory is being added
to the VM during attack. This is now clear that the EDoS attack had adversely
affected the cloud consumer to buy more and more resources and the sustain-
ability of utility computing was affected. For the infrastrcture limitations, we
have limited the maximum resources allowed to a VM in the SLAs. In case, if
the SLA has “unlimited” addition of resources with horizontal scaling [2], where
instead of adding more resources on the same server, cloud may start more VM
clones/instances on other servers or even migrate the server to a “spacious”
server. This will be economically disastrous for the cloud consumer to pay heavy
bills of these extra instances.

3 Needs of Effective Mitigation

We argue that the real problem behind the success of EDoS in cloud is fake
resource allocation and consumption. If “auto-scaling” can differentiate between
the malicious traffic and benign traffic and calculate their individual shares in
triggering the resource allocation, we can stop such attacks. Solutions based on
Turing tests [28,40], traditional rate based [1,5], threshold based [10] and anom-
aly detection methods [8,11], may not be solely apt to mitigate these attacks.
In addition to these methods, we argue that few very important features are
needed in an ideal solution for the context of cloud. Following are requirements
of an effective solution for cloud environments.

1. Segregation: Mitigation should ideally be able to segregate good and benign
traffic and drop attack traffic.

2. Real Requirement: Addition of resource should only be allowed, if there is
a real requirement of benign traffic.

3. Service to Benign users: Benign users should be given a timely and quality
response as if there was no attack.

Point no. 1 has been a key idea, among many of the solutions, presented in
the past. Point no. 2 is specifically needed for the utility computing models to
tackle the consequences of EDoS. Point no. 3 is an aspect which has not been
addressed by the state of the art solutions. As the server under attack, gets busy
in attack mitigation, it does not really find resources and time to take care of
legitimate customers. Though, mitigation solutions actually work towards keep
serving legitimate customers, however, there is no specific work towards this
problem in the literature.
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4 DARAC: DDoS Aware Resource Allocation in Cloud

We propose a novel mitigation system which helps in mitigating DDoS flavored
attacks in cloud computing. This solution incorporates all three features into
account.

1. Segregation between attacker traffic and benign traffic is done on the basis of
human behavior analysis [22,35,46]. By this, we are successful in identifying
attackers on the basis of the total no. of unique page requests from each
unique source in a minute. Many contributions have worked in this area and
identified that a real human user would not request more than a specific
number of requests (n) for a webpage (a page on a website) in a minute.
For our experiments, we have considered this to be 25 requests/minute for a
webpage. This number can be easily calculated and decided by an usability
survey in which the maximum number of times a real user can request a
page can be calculated in real setting. Requests having more than these many
requests, would be considered as attack traffic and dropped [38]. This number
may vary depending upon the application a site is running. In particular,
the detection would be much effective if this number is decided based on
a specific webpage. For example, a user might have opened 20 tabs on the
same ecommerce website but his target webpage (complete url) in all these
tabs may be different. As novelty of our idea, contributes towards point no.
2 and 3 for an effective solution (Sect. 3), we are not providing other detailed
methods for this purpose. However, any other method can be used to perform
the traffic segragation activity.

2. DARAC provides a mechanism by which “auto-scaling” mechanism of cloud
will always ask DARAC, whether to add resources or not. This is supported
by the whole mechanism mentioned in point 1 above. In particular, once the
attacker traffic is dropped, the features of legitmate traffic recorded in last
3 min are used to decide whether the additional resources are needed. This
intelligent auto-scaling mechanism is supported by “Capacity Planner”.

3. Capacity Planner module keeps a track of required quality of service to users
and needed resources. This is very important to serve legitimate customers
well. Required QoS and corresponding resources (in terms of CPU, memory
and bandwidth) can be stored using a dry stress run or can learned using
machine learning techniques [26].

4.1 DARAC Approach

Figure 3 shows the detailed step-by-step process of DARAC. Detailed steps are
as follows.

1. An auto-scaling trigger, which is discussed in Sect. 2, is an event in which
auto-scaling has to either increase/decrease resources. This may be due to
an attack or may be due to the real need.
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Fig. 3. DARAC: mitigation mechanism

2. Auto-scaling asks DARAC to evaluate the situation. Specifically, auto-scaling
triggers, “Traffic Evaluator” module in DARAC.

3. Traffic Evaluator checks whether there is an attack. This is done on the
basis of segregation based on human behavior analysis and blacklisted IPs
collected in step 4.

4. If there are attacker IPs available in the traffic analysis, they are deropped
and added to the blacklist.

5. In case if there is no attack, DARAC directly goes to see the legitimate traffic
statistics.

6. Remaning traffic which is actually legitimate traffic is used to calculate the
frequency at which the real traffic is coming in.

7. The calculated legitimate traffic is then sent to “Capacity Planner” module.
8. “Capacity Planner” module sees the traffic and consults its capacity plan

to get the resources required to support the service quality. The resulted
resource capacity is then sent to auto-scaling algorithm in Hypervisor/cloud
manager.

9. Here, SLA compatibility is checked whether the required resource change can
be made. Additionally, resource availability is also checked whether required
amount of resources are available on the same server (Vertical Scaling). In
case if it is not the situation, migration or another VM instance creation
(Horizontal Scaling) needed. In case of resource removal, the same can be
performed by the auto-scaling.

10. The required resource change is made by auto-scaling.
11. The required resource change becomes effective.

Step 2 to 8 are performed by the VM itself and step no. 1, 9 and 10 are performed
by the cloud/hypervisor. This is a solution which harness both the levels of
control into account. This is also important from the perspective that the VM
owner’s right to decide the resource requirement and privacy of traffic statistics.
The VM owner may want to have different QoS levels, resource needs and cost
constraints while planning capacity specific to their application requirements.
Based on these reasons, the separation has been made. Following are the detailed
descriptions of two most important modules of DARAC.
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4.2 Traffic Evaluator

Traffic Evaluator sees the traffic of last 3 min and segregates the legitimate traf-
fic from the attacker traffic. If the rate of traffic originated from each unique IP
address to a unique webpage (complete url) is more than n requests per minute
(25 requests/minute for our experimental setup) it is considered as a non-human
behaviour and IP is tagged as illegitimate and gets blocked. After packets arriv-
ing from these IP address are dropped, this module calculates the frequency of
legitimate traffic that has arrived in the time frame under consideration. Traffic
is captured using libpcap libraries. One of the most important contribution of
our work is that the traffic is always recorded consistently but the evaluation
and drop is not a continous process. It is purely a trigger based approach where
auto-scaling flags the resource addition to trigger “Traffic Evaluator” module.

4.3 Capacity Planner

Capacity planning module takes the frequency of legitimate arriving traffic as
input and tells minimum number of resources required to cater to incoming traffic
so that quality of service is maintained at a particular threshold. If the present
number of resources is less than what it should be as suggested by the capacity
planning algorithm, then the resource hot plug request is genuine and should
be catered. On the other hand, if present number of resources are sufficient to
cater the present incoming traffic then the resource hot plug request was mainly
because of illegitimate traffic and resources should not be increased in this case.
Therefore, this module returns “No Change” in this case. A web server with a
response time not more than 1 s is considered as an ideal web server [30,43]. We
benchmark our web server and try to find out the maximum requests per second
that can be served by the web server with the given amount of resources such
that the response time of the service, remains within the required threshold.
We start with a unit resource and find the volume of the traffic (request per
second) beyond which QoS of service would start degrading. We repeat this step
several times incrementally increasing the number of resources each time. Initial
capacity plan is given in Table 3. Similar detailed plans can be evaluated for all
the resource combinations like CPU, memory, disk and bandwidth and using
other QoS parameters [26].

Table 3. Capacity planning table

Request/s VCPUs Memory Disk

5 1 1 GB 10 GB

10 2 1 GB 10 GB

15 3 1 GB 10 GB

20 4 1 GB 10 GB
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5 Evaluation of DARAC

Evaluation of DARAC is conducted by multiple attack experiments. For this
purpose a scenario as shown in Fig. 3 has been used. Auto-scaling is only consid-
ered for the CPU resources for simplicity in analyzing the cost considerations.
Computational power is what the costliest utility in cloud pricing models. The
experimental setup and configuration is similar to the preliminary experiments
shown in Tables 1 and 2 except the fact the auto-scaling is only enabled for
VCPUs and memory is fixed at 1GB. The webserver under attack is dynamic
webserver presented in Sect. 2.2 for its applicability to real environment. We will
discuss the attack and legitimate traffic generation and various experiments in
the following sections.

5.1 Traffic Design

For the effectiveness of the evaluation we have mixed the normal traffic, which
is the representative of benign users, and the attacker traffic, which is represen-
tative of attackers, who want to fraudulently consume the resources of the cloud
based service. For this purpose, we used different methods for traffic generation.
There are no attack datasets available, which give the vast coverages of various
attack scenarios, therefore, we have generated our own traffic sets combining
attack and benign request frequecies.

Legitimate Traffic. It is established that the benign user traffic follows the
poisson distribution [47].

P (k) =
eλ.t.(λ.t)k

k!
(1)

λ is the average rate of arrival of request, t is the time. For our experiment we
have taken k from 0 to 100 and t = 60 s. Data generated using the distribution
has been used to plan and send the legitimate traffic.

Attacker Traffic. We performed a total of nine experiments. For an a affective
attack scenario we have taken a very low attack of frequency 1 requests/second,
Medium which is of 100 requests/second and 200 requests/second. Attack of
1 requests per second could be from a case when attacker rents huge botnets
and attacks from myriad IPs in that case even a request of 1 req/second is to
be characterized as an attack as it will be scale up. There are attack instances
where even 1 request per minute attack costed a cloud consumer on Amazon
AWS [11]. Moderate and high level traffic is chosen as per the discussions in the
classical paper [27]. Four attacker machines are used to send concurrent attack
traffic.
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5.2 Experimental Design

To try out all possibilities of an attack on server we have taken 9 combinations
of attack and benign traffic. This has helped us in covering almost all the attack
scenarios. We took benign traffic to be 10 (low benign), 20 (Moderate benign),
50 (Heavy benign) requests per second. Similary, attacker traffic was designed
to have 1 (Very low attack), 100 (Moderate attack), 200 (heavy attack) requests
per second. This resulted into nine traffic sets as shwon in Table 4.

Table 4. Traffic sets

Traffic
set

Attack
frequency

Benign
frequency

Traffic
set

Attack
frequency

Benign
frequency

Traffic
set

Attack
frequency

Benign
frequency

1 1 10 4 100 10 7 200 10

2 1 20 5 100 20 8 200 20

3 1 50 6 100 50 9 200 50

6 Results and Discussion

Figures 4 and 5 shows various result graphs. These graphs show the behavior
of auto-scaling and webserver responses in both scenarios (“No DARAC” and
“With DARAC”). Once the attack starts, the resource utilization (CPU Uti-
lization) reaches the auto-scaling “overload” threshold for the duration specified
by the auto-scaling algorithm, which is three minutes in this case. This triggers
the “auto-scaling”, which in turn triggers, DARAC to see if it is real resource
surge. DARAC, in its traffic evaluator module, checks the traffic and tries to
get insight into the traffic data of each unique source to each unique webpage.
Human behavior for each specific website is different but finite. This finite num-
ber is based upon usability surveys conducted on muliple users and their behavior
on each specific website and page. This has helped us in segregating the traffic
in good and bad traffic. This results into blocking and dropping any subsequent
requests from the attackers. This is quite visible in each plot (“With DARAC”
plots in Figs. 4 and 5.), where after dropping the attack traffic, the resource uti-
lization changes. At the same time, the capacity planner module, decides about
the required resource change by looking at the quality of service. After chang-
ing (adding/removing) the resources, the response time pattern and auto-scaling
resource addition pattern settles to a attack free point. By doing this, DARAC
achieves all the requirements of an effective solution, which are mentioned in
Sect. 3. Following are some specific inferences into the results.

1. Impact on auto-scaling and costs: Impact on auto-scaling is quite visible
in Figs. 4 and 5. Additionally, considering flat pricing of the infrastructure
cloud resources, cost of resources with and without DARAC has been shown
in Table 5. A representative saving of upto 50 % has been achieved using
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DARAC. This cost saving consequently allows the cloud provider to allocate
resources to needy VMs which have a real requirements and also saves on
unnecessary migrations which would have been there in case of total resource
outage on the server.

2. Impact on response time: It is quite evident that the page response time
is the most important quality of a web-server. As shown in Table 6, average
response time without any mitigation, with DARAC and “post-attack miti-
gation” have reasonable difference. There is a significant decrease in response
times after the mitigation has been applied. Though, it could not reach the
ideal (1 s) but it was quite near to it while the attack effects were gone.
Response time with the combinations, where benign frequency is 50, are not
providing the expected benefit. This is due to the fact that the server under
consideration only provide required QoS till benign request frequency of 20
requests/second. However, this could be decreased by giving more VCPUs
or alternative horizontal scaling methods like migration and VM instance
creation.

With this, we showcase how our proposed mitigation mechanism, DARAC, is
able to detect and mitigate DDoS traffic. Whether it is a myriad attack with
intensity as low as 4 requests per second (1 request/second from each attacker)
or as high as 800 requests per second (200 requests/second from each attacker),
DARAC was able to mitigate the attack. DARAC tries to segregate the good
and the bad IP and the allocation of the resources is done by a capacity planner
based on requirement and quality of service to benign users. DARAC is also
very cost effective (refer Table 5) as it saves resources and does not need any
additional resources due to its simple segregation method. DARAC can success-
fully mitigate the attacks without any downtime and take a quick decision over
whether there is real need to increase the resources or not. The time required
to mitigate and take a decision is around 10–15 s in most of the cases, which
is less than what is considered as the ideal time period for resource hot plug.
Now let us see two most specific and important aspects which make DARAC an
important direction and contribution to defeat DDoS attacks in cloud.

1. Defense against well planned DDoS attacks

Q.1. What would happen if an attacker plans a DDoS attack on this server
by intelligently sending requests just one less than the detection threshold
n? Would attacker be successful if she sends requests from multiple differ-
ent machines or spoofed IPs?

DDoS attacks which are planned intelligently in a manner such that if the
attacker comes to know the detection threshold, it may plan an attack from
large number of distributed nodes (or spoofed IPs) sending (just one request
less than the threshold). Though knowing this would not help an individual
attacker but as a group they may be successful. However, in order to plan
this attack the resource requirement at the attacker side would be huge. For
a quick calculation based on the present attack scenario:
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Attack frequency Af in the test is 200 requests/sec * 4 attackers which would
result into 800 requests/seconds. As the detection method is minute based,
the total number of requests which should be sent in a minute would be 48000
requests/minute (800*60 s). Now in order to plan an attack which would
send requests lesser than the threshold, attacker may choose to send just 24
requests/minute from each unique source (one less than the threshhold n).
In order to plan a successful attack, this would require at least 2000 nodes to
send n−1 requests/minute to the victim server for 1000 s. This is an estimate
for a server of capacity as detailed in Table 1. For a production level cloud
VM with large amount of resources, the required number to attackers/bots
would be much greater. This would even remain true for attackers with IP
spoofing. Even if the attacker are able to spoof IPs quickly they would need
800 nodes where at least half of them would need to spoof IPs at least once
in a minute and other half of them would need to spoof/change their IPs
twice in the same one minute duration. This is required to have 2000 unique
source IPs in one minute to send n − 1 requests.

2. Winning the resource race

Q.2. DDoS attacks are like “arms race” between the victim and attack-
ers [25]. How do we win this race?

DDoS attacks boils down to the fact that the one who will have more active
resources will win the DDoS race. We argue that this aspect should be seen
from a different perspective in cloud. DDoS race will be won by the side which
sustains the attack with minimum resources (costs) and motivates (insti-
gates) the other side to acquire more and more resources (again more costs).
This aspect is quite visible in DARAC, where attacker side, instead of only 4
attackers requires at least 2000 attackers to get the attack succesful. DDoS
attacks with large botnets using exhaustive IP spoofing without any visi-
ble coordination for attack among themselves are near impossible to detect.
There are large number of surveys and contributions supoorting this argu-
ment. This is a strong statement to make but in the past there has been no
ful-proof solutions against these types of DDoS attacks, which is going to
become the biggest cyber hurdle for cloud operations.

7 Related Work

Most of the state of the art solutions for DDoS detection and mitigation are
based on three key ideas. Turing tests [9,40] and Crypto puzzles [4], Anomaly
detection [8,24] and threshold based detection [1,5,18]. There are few solutions
in the literature which are specifically proposed for cloud but use one or more of
these three ideas [12,40]. This is evident that the solutions pertaining to DDoS
in cloud require a treatment covering resource allocation in cloud. As that is
the main hit and gain attraction point for the attackers. We are only listing
contributions which have worked towards the DDoS mitigation in cloud with a
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Table 5. Impact on auto-scaling and savings

Traffic
set

Attack
frequency

Benign
frequency

No DARAC
(VCPUs)

With DARAC
(VCPUs)

Savings (%)

1 1 10 3 2 33 %

2 1 20 3 2 33 %

3 1 50 3 2 33 %

4 100 10 4 3 25 %

5 100 20 4 3 25 %

6 100 50 4 3 25 %

7 200 10 4 2 50 %

8 200 20 4 2 50 %

9 200 50 4 3 25 %

Table 6. Impact on response time

Traffic
set

Attack
frequency

Benign
frequency

No DARAC
average
response time(s)

With DARAC
average
response time(s)

Post-mitigation
average
response
time(s)

1 1 10 6.55 2.86 1.5

2 1 20 7.67 5.60 3.36

3 1 50 11.93 4.94 3.27

4 100 10 8.80 5.49 1.63

5 100 20 11.72 5.83 2.10

6 100 50 14.72 14.71 14.78

7 200 10 7.95 3.31 2.73

8 200 20 12.35 2.49 2.42

9 200 50 15.03 15.52 13.35

special interest towards utility computing. However, we acknowledge large no.
of key works solving DDoS in non-cloud or fixed infrastrucure server environ-
ments [6,36].

Idziorek et al. in [10,11] have termed these attacks as “Fraudulent Resource
Consumption”. They provided solutions based on anomaly detection using fea-
tures like session length and volume of the requests by using a machine learning
system trained against legitimate web traffic. In [15], authors describe sPoW,
which is a unilaterally deployable “Pay-as-you-Go” cloud-based EDDoS (Dis-
tributed EDoS) mitigation mechanism that offers network-level and application
level EDDoS protection to servers deployed in clouds. By mediating connectiv-
ity to servers and varying the channel identities used to reach the servers fre-
quently, sPoW transforms network-level EDDoS into traffic that can be filtered.
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(a) AF=1 BF=10 (No DARAC) (b) AF=1 BF=50 (No DARAC) (c) AF=1 BF=20 (No DARAC)

(d) AF=1 BF=10 (With DARAC) (e) AF=1 BF=20 (With DARAC) (f) AF=1 BF=50 (With DARAC)

(g) AF=1 BF=10 (No DARAC) (h) AF=1 BF=20 (No DARAC) (i) AF=1 BF=50 (No DARAC)

(j) AF=1 BF=10 (With DARAC) (k) AF=1 BF=20 (With DARAC) (l) AF=1 BF=50 (With DARAC)

(m) AF=100 BF=10 (No DARAC) (n) AF=100 BF=20 (No DARAC) (o) AF=100 BF=50 (No DARAC)

(p) AF=100 BF=10 (With DARAC) (q) AF=100 BF=20 (With DARAC) (r) AF=100 BF=50 (With DARAC)

Fig. 4. Effects of DARAC, AF=Attacker Frequency, BF= Benign Frequency

In another work, authors proposed EDoS-armour, a two fold solution based on
admission control and congestion control [23]. In admission control, a limit is
put on number of clients (that can simultaneously send requests), thus allowing
only enough clients that can be served easily within available resources of the
web server. In congestion control, priority of allowed client is done based on the
type of resources they visit and type of activities they perform.
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(a) AF=100 BF=10 (No DARAC) (b) AF=100 BF=20 (No DARAC) (c) AF=100 BF=50 (No DARAC)

(d) AF=100 BF=10 (With DARAC) (e) AF=100 BF=20 (With DARAC) (f) AF=100 BF=50 (With DARAC)

(g) AF=200 BF=10 (No DARAC) (h) AF=200 BF=20 (No DARAC) (i) AF=200 BF=50 (No DARAC)

(j) AF=200 BF=10 (With DARAC) (k) AF=200 BF=20 (With DARAC) (l) AF=200 BF=50 (With DARAC)

(m) AF=200 BF=10 (No DARAC) (n) AF=200 BF=20 (No DARAC) (o) AF=200 BF=50 (No DARAC)

(p) AF=200 BF=10 (With DARAC) (q) AF=200 BF=20 (With DARAC) (r) AF=200 BF=50 (With DARAC)

Fig. 5. Effects of DARAC, AF=Attacker Frequency, BF= Benign Frequency

Authors in [31] give in-cloud EDDoS mitigation service (Scrubber Service),
which is used on demand and is charged according to pay-per-use basis. As the
Puzzle generation and Verification is done by the Scrubber Service, the burden
on Service Provider server can be achieved by reducing cloud bills to the ser-
vice provider and guaranteed availability of service. There are other approaches,
where the authors propose a moving-target based defense that dynamically
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obscures network-layer and transport-layer addresses [13,45]. By constantly mov-
ing the logical location of a host on a network, this technique prevents targeted
attacks, host tracking, and eavesdropping. Authors in [20,48] have proposed solu-
tions which follow a recovery based approach by doing migration of webserver
under attack. This allows serving legitimate customers and saving the server in
getting into a severe attack. Backup resources in the form of replicated attack
mitigation servers have also been proposed in [20].

In an another work, Shui et al. in [47] have proposed a dynamic resource
allocation based DDoS mitigation solution. Authors proposed that reserved or
idle resources should be used in quick attack mitigation. One important con-
cern is about the overhead of the reserved resources cost. Additionally, predic-
tion about the amount of needed reserved resources is also difficult. There are
other DDoS mitigation solutions based on third party mitigation using cloud
resources [7,16,17]. Other fixes like CloudWatch API [3] have been proposed to
keep a track of resource usage and scaling, in addition to resource caps/limits.
With this discussion, this is evident that there are very few solutions which have
used the direction of resource allocation based mitigation in clouds. DARAC is
one such solution which works in this direction by only allocating resources to
legitmate requests with service quality.

8 Conclusion and Future Work

DDoS attacks are well studied in the literature, but their impact is different
in the emerging cloud computing environments. The difference is mostly due
to utility computing based “Pay-as-you-Go” model. There is a high need to
devise solutions that are capable of solving the cloud version of DDoS, which is
EDoS. We have shown through preliminary experiments that the fake resource
utilization and subsequent resource addition due to the attack resuls into EDoS,
which ultimately converges to DDoS.

This has motivated us to design our proposed mitigation system, DARAC,
which is DDoS aware resource allocation in the cloud. There are three important
aspects of DARAC which make it quick and effective DDoS mitigation solution
for cloud computing. The attacker and benign traffic segregation based on human
behavior analysis, intelligent auto-scaling for real users and quality services to
benign users during the attack, are three significant contributions of our work.
The novelty of our work lies in the wise auto-scaling strategy with capacity
planning for the services. Experiments are shown with wide coverage of attacker
and benign traffic sets. Results show significance of DARAC in the detection
and blocking attacker traffic, stopping EDoS culmination. Importantly, DARAC
achieved significant achievement in response time improvement and infrastruc-
ture cost savings up to 50 %.

Through this, we have started a new direction of DDoS mitigation in the
cloud where instead of only working on the application level, we show that multi-
level mitigation is useful. Extending the “arms race” to instigate the attackers
to spend more and more resources, makes it difficult for the attackers to defeat
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such a small capacity server using DARAC. The present solution in its stage,
requires improvements in some directions. We plan to extend DARAC to sup-
port dynamic thresholds based on the requirement and resource availability. We
also plan to devise and test dynamic auto-scaling algorithms having migration
and VM instance creation support. Detailed production level capacity planning
methods with variety of QoS parameters are also needed to have effective service
quality.
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Abstract. At Asiacrypt 2012, Peyrin et al. showed generic attacks
against the HMAC design. They utilized a pair of related keys where
only the relation between the keys is known to the attacker but not
the keys themselves (the secret key model). On similar lines, at Crypto
2012, Dodis et al. showed differentiability attacks based on ambiguous
and colliding keys on HMAC in known/chosen key model. Peyrin et al.
also proposed a patching scheme for HMAC and claimed that the pro-
posed patch thwarts their attacks.

In this work, we first show that the patch proposed by Peyrin et al. will
not prevent their attacks for the HMAC construction for certain “good”
cryptographic hash functions. Specifically, we show that no public and
reversible patch will prevent their attack on HMAC instantiated with a
weakly collision resistant hash function. Following this, we propose two
different patches, called the secret patch and the collision resistant one
way (CrOw) patch, to thwart the attacks of Peyrin et al. and Dodis et al.
Our work is theoretical in nature, and does not threaten the security of
HMAC used with standard hash functions. Further, both our patches are
designed to be used as wrappers and do not affect the underlying HMAC
construction. This property is similar to Peyrin et al.’s patch.

Keywords: HMAC · Patch · Related key attack · Colliding keys ·
Ambiguous keys · Indifferentiability

1 Introduction

HMAC (designed by Bellare, Canetti and Krawczyk in 1996 [4]) is a MAC algo-
rithm based on a cryptographic hash function. It was subsequently adopted by
IETF working group as RFC 2104 [9] and made a standard for authentication in
secure internet protocols. It is widely used in banking industry and secure web
connections via its use in TLS and IPSEC (i.e. HMAC-SHA-1 which uses SHA-1
[1] as the underlying hash).

The HMAC construction [4], using a hash function H, is defined as HMAC
(K,M) = H(K ⊕ opad ||H(K ⊕ipad ||M)), where ipad and opad are constants

c© Springer International Publishing Switzerland 2015
S. Jajodia and C. Mazumdar (Eds.): ICISS 2015, LNCS 9478, pp. 285–302, 2015.
DOI: 10.1007/978-3-319-26961-0 17
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defined as ipad = 0x3636...36 and opad = 0x5C5C...5C. H is any crypto-
graphically secure hash function which takes an arbitrary sized input message
M and produces an n bit output after finalization of l bit internal state. K is
the message authentication secret key shared between the two communicating
parties. Let d be the block length of underlying compression function h of hash
H in HMAC. In HMAC scheme the key size |K| should be equal to block size d
of underlying compression function h. If |K| < d then we have to pad the key
with zero bits to make it equal to d and if |K| > d then the key K is fed to the
hash function H and its output is used as key i.e. K = H(K). For this purpose
key padding schemes are used. However if |K| = d then no padding is done.

Pad0∗
(x) padding scheme or 0∗ or zero padding, defined as pad0

∗
(x) = x||0v

where v = d−|x| when |x| < d, pad0
∗
(x) = H(x) when |x| > d and pad0

∗
(x) = x

when |x| = d.

Pad10∗
(x) padding scheme or 10∗ padding, defined as pad10

∗
(x) = x||10v−1

where v = d − |x| when |x| < d and pad10
∗
(x) = H(x) when |x| ≥ d.

K be the zero padded (pad0
∗
) version of the key K i.e. K = K ‖ 0000.... For

sake of simplicity, we will denote padded key K with K for the rest of the paper.
The HMAC or HMAC-H(K,M) construction is explained in Fig. 1.

H(K̄ ⊕ ipad)

H(K̄ ⊕ opad)

t (n-bit)

h (n-bit)||

||

M

Fig. 1. The HMAC construction

Mihir Bellare [3] showed that the MAC is pseudo-random if the underlying keyed
compression function is pseudo random. Leurent et al. [8] proposed attacks on
HMAC based on cycle detection technique discussed in [11] with a little higher
complexity than birthday bound 2l/2 where l is the size of internal state i.e.
output size of its underlying compression function h. They suggested that in
order to prevent this attack the parameter l should be increased. For example,
the size l is recommended to be at least 256 bits in order to achieve 128-bit
security. Note that they considered standard secret key attack model but not
related secret/known/chosen key attack models. Related secret key attack model
is one where some relation between the two keys is known but keys themselves are
not known. On the other hand, in related chosen/known key attack models, both
the relation and the keys are chosen/known. Peyrin et al. [11] and Dodis et al. [6]
introduced two types of related keys, namely ambiguous keys and colliding keys,
defined below.

Type I Related Key: Ambiguous keys are key pair (K1, K2) such that
K1 �= K2 but pad(K2) = pad(K1) ⊕ ipad ⊕ opad.
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Type II Related Key: Colliding keys are key pair (K1, K2) such that
K1 �= K2 but pad(K1) = pad(K2).

In [11], Peyrin et al. showed that ambiguous keys can lead to cycle detec-
tion based Distinguishing-R (complexity: 2n/2+1), Distinguishing-H (complexity:
2n/2+1 for narrow-pipe and 2n/2+2+2l−n+1 for wide pipe), internal state recovery
(complexity: 2n/2+2+2l−n+1) and forgery attacks (complexity: 2n/2+2+2l−n+1)
on HMAC in secret related key model. These attacks are briefly discussed in
Sect. 2. Here n is the output size of its underlying hash function and l is the
output size of the compression function h of hash function H. Note that com-
plexity of Distinguishing-R and Distinguishing-H attacks depends only on n (in
order to give 128 bit security, the n is recommended to be at least 256 bit and
l does not make any impact). Thus these attacks can’t be prevented even if we
increase l. This is in contrast with the attacks of Leurent et al. [8]. Especially
in case of l/2 ≤ n ≤ l, the complexity of internal recovery and forgery attacks
is less than 2l/2, so in order to give 128 bit security against these attacks the
recommended sizes of l and n are such that l − n ≥ 128 or n ≥ 256. Peyrin
et al. [11] then proposed a patch for HMAC to prevent the same attacks based
on cycle detection using ambiguous keys in secret key attack model. On simi-
lar lines, Dodis et al. [6] showed differentiability attacks against HMAC using
colliding keys and ambiguous keys in known/chosen key model. In [7], authors
have presented selective forgery attacks and improved universal forgery attacks.
It uses the functional graph properties discussed in [8] to improve attacks but
differs from our approach.

Our contributions

1. We show a weakness in the patch proposed by Peyrin et al. [11] and explain
how the patch proposed by them may not work, even when the hash function
H of HMAC is collision, preimage and second preimage resistant.

2. As discussed above these attacks can be prevented by choosing large n and
l, which will hamper the efficiency. Hence, instead of increasing n and l,
we propose to use two new message patches, namely (i) secret patch and
(ii) collision resistant one way (CrOw) patch. These patches efficiently prevent
attacks of Peyrin et al. using ambiguous keys in secret key attack model and
differentiability attacks of Dodis et al. using ambiguous keys in chosen/known
key attack model.

3. We propose 10∗ key padding for HMAC to prevent differentiability attack of
Dodis et al. based on colliding keys in chosen/known key attack model.

4. SP and CrOw patches thwart the attacks by Peyrin et al. Also, both patches
are supposed to be applied as a wrapper over HMAC construction. Hence,
the HMAC construction remains intact as in the earlier work.

5. SP and CrOw can be combined with 10∗ key padding without losing the
effects described in item 3 and 4.

6. Our work is essentially a theoretical study of HMAC patches without affecting
the real HMAC construction. We understand that our attack may not be
possible in real world deployments but it help us improve our understanding
of such constructions.
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Table 1 shows the attack complexities of various generic attacks in single and
related key model (cycle based). The explanation for complexities provided is
given in AppendixA.

Table 1. Attack complexities of generic attacks under various scenarios.

Generic attacks Single

key

Related key (cycle based attacks)

Without patch Peyrin’s

patch

Secret patch CrOw patch

Distinguishing R 2l/2 2n/2+1 2l/2 2n/2+1 + 2k 2n/2+2+u

Distinguishing H 2l 2n/2+2 + 2l−n+1 2l 2n/2+2 + 2k + 2l−n+1 2n/2+2+u+2l−n+1

Existential

foregry

2l/2 2n/2+2 + 2l−n+1 2l/2 2n/2+2 + 2k + 2l−n+1 2n/2+2+u+2l−n+1

Internal state

recovery

2n 2n/2+2 + 2l−n+1 2n 2n/2+2 + 2k + 2l−n+1 2n/2+2+u+2l−n+1

Table 2 clearly indicates that HMAC scheme patched with our patches is
secure from cycle detection based attacks discussed by Peyrin et al. [11].

2 Previous Work

In [11], Peyrin et al. state that the “choice of ipad and opad is not anecdotal”.
If any other random pair of constants is used as ipad and opad then the attacks
may work for all key sizes. They show that related key pairs which allow dis-
tinguishing attacks only exist for keys of length ≥ (d − 1), where d is the block
length of compression function h of hash function H. They showed four different
types of attacks on HMAC, namely, Distinguishing-R, Internal State Recovery,
Distinguishing-H and forgery attack. These attacks are described briefly below,

Distinguishing R Attack: The attacker can query two oracles, FK and FK′,
that are instantiated either with HMAC or with a random function R. He must
obtain non-negligible advantage in distinguishing the two cases:

Adv(A) = |Pr[A(HMAC(K,M),HMAC(K ′,M)) = 1]
− Pr[A(R(K,M), R(K ′,M)) = 1]|

Distinguishing H Attack: The attacker can query oracles, HMAC(K,M) and
HMAC(K,M) based on H where H is a known dedicated hash function instan-
tiated either with known underlying compression function h or with random
compression function r. He must obtain non-negligible advantage in distinguish-
ing the two cases:

Adv(A) = |Pr[A(HMACH(h)(K,M),HMACH(h)(K ′,M)) = 1]
− Pr[A(HMACH(r)(K,M),HMACH(r)(K ′,M)) = 1]|
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Internal State Recovery: Internal State Recovery is said to be done success-
fully if attacker can recover the l-bit internal state of underlying hash H from
n-bit output.

Forgery: Forgery is said to be done successfully when attacker can generate a
valid tag t for a message m, which it never queried to HMAC.
The forgery is classified into two broad categories:

– If the message is chosen by attacker then it is Existential Forgery.
– If the message is chosen by challenger the it is Universal Forgery.

We omit the description of these attacks due to space limitations and refer the
reader to [11] for details of these attacks. The main idea behind all these attacks
is to obtain a cycle or a synchronized cycle by generating long query paths. If
we can prevent the adversary from obtaining a cycle then all these attacks will
be thwarted.

2.1 Patch Proposed by Peyrin et al.

The authors then proposed few patching schemes which can avoid these attacks
by preventing the formation of cycles and comment about shortcomings of each
of these schemes. The schemes are as follows:

1. Use of different IVs in inner and outer instances of HMAC. It was rejected
as it requires modification of the HMAC implementation.

2. Truncating the output of HMAC. It was also rejected as the expected generic
security of MAC algorithm reduces due to this change.

3. XORing some distinct constants to inner and/or outer hash calls. As explained
in [11], this patch does not work since the attacker can suitably modify its
query strategy and can still get synchronized chains.

4. Adding an extra bit to the input of outer hash call. It was also rejected since
the attacker can still get synchronized chains by modifying his query strategy.

5. To prepend a 0 bit (byte) to the input message before feeding it to HMAC.

After analyzing all possible schemes they proposed to prepend 0 bit (or byte) to
the input message before passing it to the HMAC construction. They claimed
that this patch successfully prevents an adversary from generating cycles and
the additional overhead of adding 1 bit (or byte) to the message is insignifi-
cant. This patch has the additional advantage of the feasibility of being imple-
mented by means of a message wrapper while keeping the HMAC implementation
unchanged. Therefore, this patching scheme was claimed as the best for patching
HMAC against such attacks. For our analysis, we will refer to this patch as the
patch P0. Note that no proof of security of the patch has been provided.

Patch P0 is defined as P0(M) = 0||M where M is a message of any length and
resulting HMACP0-H(K,M) (also denoted as HMAC- H(pad0

∗
(K), P0(M)))

is defined as follows.
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HMACP0-H(K,M) = HMAC-H(K,P0(M)),
= HMAC-H(K, 0 ‖ M).

This construction is defined in Fig. 2.

H(K ⊕ ipad)

H(K ⊕ opad)

t (n-bit)

h (n-bit)||

||

0||M

Fig. 2. HMACP0-H(K,M) construction.

3 Insecurity of Patch P0

To analyse patch P0, we may modify underlying primitives but not the funda-
mental HMAC construction. We emphasize that we allow the attacker to tamper
the output of oracle HMAC-H(K,M) (or HMAC-H(K’,M)) before the next call
to the same or a different oracle. However, the attacker can’t tamper within
the HMAC construction (he can only tamper between two calls to the HMAC
oracle). In Fig. 3 we have depicted the attack/modification area. By introducing
changes at the place marked as “attack” in this figure, we analyse the patch P0.

3.1 MAC Security

The security of a Message Authentication Code (MAC) is defined in terms
of unforgeability i.e. MAC scheme is said to be (Af , q) secure if no adver-
sary A can produce a valid message-tag pair (mv, tv) after asking q queries
((m1, t1),(m2, t2),. . . (mq, tq)) with non negligible advantage Af . Such that
(mv, tv) /∈ ((m1, t1),(m2, t2),. . . (mq, tq)).

Hash constructionHP0 : Let HP0 be a collision resistant function H. The HP0

outputs H(M) prepended with 0. Patch P0 is defined as

P0(M) = 0||M,

where M is a message of arbitrary length. HP0 is defined as

HP0(M) = P0(H(M)) = 0||H(M) = 0||h.

The HMAC construction which is patched with patch P0 and uses HP0 as under-
lying hash function will be denoted as HMACP0-HP0(K,M).
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H(K ⊕ ipad)

H(K ⊕ opad)

t0

h0
||

||

0||M

H(K ⊕ ipad)

H(K ⊕ opad)

t0

h0||

||

0||M

attack

attack

c

c

Next Call to

Next Call to

Oracle HMAC-H(K,M)

Oracle HMAC-H(K ,M)

HMACP0-H(K,M)

HMACP0-H(K ,M)

Fig. 3. HMACP0-H(K,M) and HMACP0-H(K′,M) behave like black boxes, hence an
attacker can only modify the sequence between two consecutive calls to the oracles.

Security of HP0 : Note that the hash function HP0 is not a PRF due to an
trivial distinguisher against it. The distinguisher only looks at the first bit of the
hash output and concludes that it is a random function if the first bit of the hash
output is 1, and a hash function otherwise. This may lead one to believe that
the hash function HP0 is not suitable for use inside the HMAC construction, as
the security proof of HMAC is expected to hold only when the underlying hash
function is a PRF. However, it was shown in [3] that HMAC instantiated with a
hash function H is secure as a keyed MAC if the following two conditions hold:

1. the hash function H is “computational almost universal” (cAU).
2. the compression function h used inside the hash function H is “Privacy Pre-

serving MAC” (PP-MAC).

We now discuss these two properties with respect to the hash function HP0

assuming that H is a random oracle. HP0(K,M) is said to be PP-MAC if
no adversary A with multiple queries (q0,q1) can distinguish HP0(K||q0) and
HP0(K||q1), where all queries (q0,q1) are distinct. There is no way to distinguish
HP0(K,M) in this setting since H is taken to be a random oracle and the first
bit of output (which is always 0) is useless for the distinguishing attack. Now we
show that HP0(K,M) is also a cAU hash function. If an adversary chooses two
different messages M1 and M2 without knowing the secret key then HP0(K||M1)
�= HP0(K||M2) with overwhelming probability. Since H is assumed to be ran-
dom oracle the matching probability will be 2−n, where the output size of HP0

is n + 1 bits. Therefore, HP0 is PP-MAC and cAU.

3.2 Security of HMACP0-HP0(K,M)

Let adversary A guesses a valid message-tag pair (mv, tv) and perform forgery.
Now, forgery is only be successful if (mv, tv) /∈ ((m1, t1),(m2, t2),. . . (mq, tq)). We
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will denote the internal state of HMAC-H(K,M) i.e. output of H(K ⊕ ipad||M)
by z and output size by n. The probability of successful forgery will be given by
summation of probabilities of the following cases:

1. mv �= mi and tv �= ti, ∀ i in {1, 2 . . . q}:
In this case both mv and tv are /∈ {(m1, t1),(m2, t2),. . . (mq, tq)}. Hence, the
probability of happening this event ≈ 1/2n.

2. mv = mi and tv �= ti, ∀ i in {1, 2 . . . q}:
(a) mv = mi, zv �= zi and tv �= ti, ∀ i in {1, 2 . . . q}:

Inthiscasemv ∈{m1,m2, . . .mq},zv /∈{z1, z2, . . . zq}andtv /∈{t1, t2, . . . tq}.
Hence, the probability of happening this event ≈ q queries ∗1/2n = q/2n.

(b) mv = mi, zv = zi and tv �= ti, ∀ i in {1, 2 . . . q}:
Inthiscasemv ∈{m1,m2, . . .mq},zv ∈{z1, z2, . . . zq}andtv /∈{t1, t2, . . . tq}.
Hence, the probability of happening this event ≈ q queries ∗1/2n = q/2n.

3. mv �= mi and tv = ti, ∀ i in {1, 2 . . . q}:
(a) mv �= mi, zv �= zi and tv = ti, ∀ i in {1, 2 . . . q}:

Inthiscasemv /∈{m1,m2, . . .mq},zv /∈{z1, z2, . . . zq}andtv ∈{t1, t2, . . . tq}.
Hence, the probability of happening this event ≈ q queries ∗1/2n = q/2n.

(b) mv �= mi, zv = zi and tv = ti, ∀ i in {1, 2 . . . q}:
Inthiscasemv /∈{m1,m2, . . .mq},zv ∈{z1, z2, . . . zq}andtv ∈{t1, t2, . . . tq}.
Hence, the probability of happening this event ≈ q queries ∗1/2n = q/2n.

The total probability of successful forgery (1+2+3) ≈ 1/2n +2q/2n +2q/2n =
(1 + 4q)/2n. In practice q <<< 2n, therefore the probability is negligible and
construction HMACP0-HP0(K,M) is secure from forgery.

3.3 HMACP0-HP0(K,M) is not Secure

The attack described in [11] relies on the fact that given large numbers of queries
on oracles HMAC-H(K,M) and HMAC-H(K ′,M), a collision will occur at some
instance. After the collision same input will be forwarded to identical stages in
both the cases and this trend (collisions) will continue. The term walk refers
to output chains which can be generated by selecting a random input at first
and then using its output as input to next stage. Figure 4 illustrates the walk
generation using HMACP0-HP0(K,M) and HMACP0-HP0(K ′,M). To avoid the
attacker from getting a cycle, occurrence of the same consecutive outputs (either
intermediate or final) of HMACP0-HP0(K,M) and HMACP0-HP0(K ′,M) must
be prevented. By prepending an extra 0 bit (or byte) in every call to HMAC-
H(K,M), the authors of [11] tried to make the internal states different. So
that even if the outputs of HKout

or HKin
collide in HMACP0-HP0(K,M)

and HMACP0-HP0(K ′,M), the outputs of next stage will never collide. This is
because inputs to the next stage are different for both calls due to the prepended
extra 0 (If at some point h0 and t′1 collides then 0 is prepended to h0). So the
values at b and c′ (used in Fig. 4) are not same hence outputs t1 and h′

1 also
differ. If we manage to keep the inputs same in both cases then collision will
propagate, resulting in cycles. In Fig. 4, we can observe that in this scenario if
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HP0(K ⊕ ipad)

(K ⊕ opad)

t0

h0
|| h1

||

0||M
0 || a

(K ⊕ ipad)

(K ⊕ opad)

t1

||

||

(K ⊕ ipad)

(K ⊕ opad)

t0

h0|| h1

||

0||M
0 || a

(K ⊕ ipad)

(K ⊕ opad)

t1

||

||

drop(h0)

drop(h0)

c

a

b

a

c

b

HP0

HP0

HP0

HP0

HP0

HP0

HP0

Fig. 4. Walk Generation using oracle HMACP0 − HP0(K,M) and HMACP0 −
HP0(K′,M).

the collision takes place at any point, then the probability of a collision taking
place at the next step is 1.

In Fig. 4, HMACP0-HP0(K,M) and HMACP0-HP0(K ′,M) are used as ora-
cles, both of which use HP0 as hash function. The message M is prepended with
0 in both the cases. The output given by HP0 hash is prepended with 0. In the
same figure we can observe that due to this step, if a collision occurs at h0 and t′0
(i.e. 0||h0 = 0||t′0) then it will not propagate to the next step. As all calls to HP0

provide 0 prepended to the output of the actual hash function H, due to which
at the beginning of next call of HMACP0-HP0(K,M) or HMACP0-HP0(K ′,M),
there will be two extra 0 bits (one from the hash function HP0 and another
one prepended according to the patching scheme P0). To tackle this, we have
to deploy drop(x) function block which will remove this extra zero. If this extra
zero is not removed then the length of b will become 1 bit longer than c′ and
hence the hash value will differ completely.

The dropping of this extra 0 bit makes the value at b and c′ same (i.e.
h0 = t′0). As a result of this, t1 and h′

0 will also collide (i.e. t1 = h′
0). This chain

will continue and hence cycles will be obtained by the attacker. Therefore, the
patching scheme proposed in [11] is completely broken even when a hash function
which is collision resistant, preimage resistant and 2nd preimage resistant, but
is not a random oracle.

3.4 HMACP0-H(K,M) is Secure

The patching scheme proposed by Peyrin et al. [11] suggests prepending a 0
bit (or byte) and thwarts synchronized computation chain (i.e. cycle). Even if
the values collide i.e. h0 = t′1, since the function H is a random oracle, the
probability of having t1 = h′

1 is negligible. The prepended extra 0 increases the
length of the message hence altering the output significantly. As a first try, we
would like to bring this probability to some measurable bounds.

We propose function modify(x) to do some modifications to x. Suppose that
a collision happens at some point in the path i.e. h0 = t′0, as shown in Fig. 5.
After the modify(x) function is applied to h0, the probability of having a collision
in each subsequent step is at most 1/2.
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H(K ⊕ ipad)

H(K ⊕ opad)

t0

h0
|| H h1

||

0||M
0 || a

H(K ⊕ ipad)

(K ⊕ opad)

t1

||

||

H(K ⊕ ipad)

H(K ⊕ opad)

t0

h0|| H h1

||

0||M
0 || a

H(K ⊕ ipad)

(K ⊕ opad)

t1

||

||

modify(h0)

modify(h0)

a

b

c

a

b

c

Fig. 5. Walk Generation using oracles HMACP0-H(K,M) and HMACP0-H(K,M).

As at least 2n/2 elements are needed in a computational chain, the prob-
ability of getting a chain will be ≤ 2−2n/2

. This probability is very low and
infeasible in real world scenario i.e. for HMAC-SHA1(K,M) it is 2−280 . Hence
HMAC-H(K,M) is secure when a collision resistant, preimage resistant and sec-
ond preimage resistant hash H is used which behaves like a random oracle.

4 Insecurity of Any Public and Reversible Patch

In Sect. 3 we observed that the attack is possible due to drop(x) function which is
the inverse of the patch (Patching scheme prepends 0 to message whereas drop(x)
drops the prepended 0). Hence the attack is only possible when attacker knows
the patching scheme and can find its inverse. In this section we will demon-
strate how HMACP -HP (K,M) scheme is insecure for any public and reversible
patch P .

Hash constructionHP . To demonstrate attacks on generic design, hash func-
tion HP is defined such that it is based on a good hash function H. HP is a
random oracle or not depends on the function P which applies on the output of
function H. Let P be a public and reversible function. The hash function HP is
defined as

HP (M) = P (H(M)) = P (h).

4.1 HMACP -HP (K,M) is not Secure

To analyse the security of HMACP -HP (K,M), we consider two oracles HMACP -
HP (K,M) and HMACP -HP (K ′,M) depicted in Fig. 6. From previous sections
we know that patch part changes the input before feeding it to HMAC-H(K,M)
hence thwarting the attack. Even by using custom hash function HP which
outputs P (h) we are not able to get a computational chain. Suppose collision
happened at h0 = t′0, still t1 �= h′

0. This is due to the fact that b differs from
c′, because in case of oracle HMACP -HP (K,M), patch P is applied. Therefore
to carry the attack we have to get rid of this extra padding (applied to h0 in
case of HMACP -HP (K,M)). As we know P is public and reversible so we can
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easily construct function P−1 which is inverse of P . In Fig. 6, the attacker uses
P−1 to remove extra patching of h0 such that h0 = P (a) where a = P−1(h0). So
inputs b and c′ become same and hence adversary can get computational chains.
Hence HMACP -HP (K,M) construction is not safe if the patch P is public and
reversible.

(K ⊕ ipad)

(K ⊕ opad)

t0

h0
|| h1

||

M

(K ⊕ ipad)

(K ⊕ opad)

t1

||

||

P−1

P

HP

(K ⊕ ipad)

(K ⊕ opad)

t0

h0
|| h1

||

M

(K ⊕ ipad)

(K ⊕ opad)

t1

||

||

P

a

a

b

b

c

c
HP

HP

HP

HP

HP

HP

HP

P

P

P−1

Fig. 6. Path generation using oracle HMACP -HP (K,M) and HMACP -HP (K′,M).

5 Our Two New Patch Proposals

In previous sections we discussed the patching scheme proposed by Peyrin
et al. [11] and showed that it is not secure against cycle detection based attacks
described by them. We observed that if one wants to patch the HMAC-H(K,M)
scheme then patching scheme should satisfy some minimum conditions. Such a
patching scheme should be either secret or one way. We will discuss such patches
and then compare them.

5.1 Secret Patch SP(K,M)

A secret patch is one which is unknown to the attacker, i.e., either the attacker is
unaware of the patching scheme or unaware of the patch applied despite knowing
the patching scheme. Secret patching scheme SP(K,M) is defined as

SP (K,M) = M [1] ⊕ K||M [2]M [3] . . .M [s]

where message M is divided into s blocks of block length d, say M [1]M [2]. . .
M [s]. If |M | < d then M [1] is padded with 0’s such that |M [1]00 . . . 0| = d,
otherwise it is used as it is. K is a secret key of length |K|-bit. If |K| < d then
K is padded with 0’s such that |K00 . . . 0| = d, if |K| > d then H(K) is used
as key where H is a hash function with output length n. We will consider K
as the padded secret key from now on. In the case of a secret patch we don’t
bother about the randomness of underlying hash function H, i.e. we need H to
be collision resistant, preimage and second preimage resistant but we don’t care
about its randomness.
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Lemma 1. The HMAC scheme is secure with respect to related key attacks using
cycle detection described by Peyrin et al. [11] and Dodis et al. [6] if a secret patch
is used. Secret patch refers to a patching scheme which is applied to the message
M before passing it into HMAC and the attacker can’t predict patch with more
than negligible probability.

The explanation is given in Appendix B. We propose HMACSPK -H(K,M) as
the secret patch, shown in Fig. 7 and defined as

HMACSPK − H(K,M) = HMAC(K,SP (K,M)),
= HKout

(HKin
(SP (K,M))),

= HKout
(HKin

(K ⊕ M [1]||M [2]M [3] . . .M [s]))).

We emphasize to use the same key K in secret patch SP and HMAC. Explana-
tion for this is provided in Appendix C. HMACSPK -H(K,M) (also denoted as
HMAC- H(pad0

∗
(K), SP (K,M))) is secure against cycle detection based related

key attacks shown in [11].

5.2 Collision Resistant One Way Patch CrOw(M)

A good collision resistant one way function is one in which computation in one
direction is easy and fast whereas it is very hard (or may be impossible) to
go in the other direction and is resistant to collision, preimage and 2nd preim-
age attacks. This will be applied to message M before passing it into HMAC-
H(K,M) scheme, though it is public but no adversary can efficiently invert its
output to obtain the correct input. Collision Resistant One way patching scheme
CrOw(M) is defined as

CrOw(M) = f ′(M [1])||M [2]M [3] . . .M [s]

here message M is divided into s blocks of block length d say M [1]M [2]M [3] . . .
M [s] and f ′ is a one way function with output length d.

HMACCrOw-H(K,M) or HMAC-H(pad0
∗
(K), CrOw(M))) is HMAC-H(K,

M) construction which is using one way patch CrOw(K,M) as the patching
scheme, and any collision resistant, preimage and second preimage resistant hash

(K ⊕ ipad)

(K ⊕ opad)

t

h||

||

M

H

H

K SP

Fig. 7. The HMACSPK -H(K,M) construction



298 D. Chang et al.

function H (not necessarily a random oracle) internally. To analyse the security
of HMACCrOw-H(K,M), in Fig. 8 we show the path generation by using oracles
HMACCrOw-H(K,M) and HMACCrOw-H(K ′,M).

As we discussed earlier, HMACCrOw-H(K,M) will behave like a black box.
The attacker will be left with only one choice for mounting the attack, i.e.,
between two calls to oracle HMACCrOw-H(K,M) (or HMACCrOw-H(K ′,M)).
If h0 and t′0 collides then for a successful attack b and c′ should also collide,
so that the collision chain can propagate. In case of HMACCrOw-H(K,M), the
value h0 will be patched by patch CrOw(M). Therefore, the only way to make
b and h0 same is to apply CrOw−1(M) on h0 so that when CrOw is applied on
it, it remains h0 i.e. h0 = CrOw(a) = f ′(a[1])||a[2]a[3].....a[s].

(K ⊕ ipad)

(K ⊕ opad)

t0

h0
|| h1

||

M

(K ⊕ ipad)

(K ⊕ opad)

t1

||

||

(K ⊕ ipad)

(K ⊕ opad)

t0

h0
|| h1

||

M

(K ⊕ ipad)

(K ⊕ opad)

t1

||

||

a

a

b

b

c

c
H

H

H

H

H

H

H

H

CrOw

modify(h0)

modify(h0)

CrOwCrOw

CrOw

Fig. 8. Path generation using oracle HMACCrOw-H(K,M) and HMACCrOw-H(K′,M)

As the patch is a one way function f ′. Hence, no attacker can design an
inverse function f ′−1 for it. To carry out the attack we need to find preimage
of the given f ′(M) for each step. Let the average complexity to do this be 2avg.
Since H is a n bit output hash function and the attacker has to do this for all
the steps, a total of 2n/2 steps are needed to get synchronized cycle. Our CrOw
patch is similar to construction proposed in [2], however the motive is different.
As a result, the total complexity of this attack will be around

Total Complexity ≡ 2avg ∗ 2n/2 = 2avg+n/2.

Therefore, if a good collision resistant one way function f ′ is used then the
complexity is very high. Hence HMACCrOw-H(K,M) is very difficult to attack
by using cycle detection based attacks discussed in [11].

5.3 Comparison

We have proposed two patches for HMAC. Both patches are individually capable
of securing the HMAC scheme. The security of collision resistant one way patch
depends on choice of function f ′(x) which can be any good function, we can’t
provide concrete complexity bounds. Also patch SP(K,M) uses XOR operation
on first block of message M [1] and key K whereas the patch CrOw(M) calculates
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function f ′ on first block of message M [1], so from efficiency point of view the
patch SP(K,M) is better because the XOR operation is lightweight as compared
to any good one way function f ′ where many XOR/other operations may be
required to be implemented to achieve randomness and preimage resistance (here
we may use a good hash function like SHA-1 as function f ′).

⇒ Secret Patch SP(K,M) is a more efficient choice for preventing cycle
detection based related key attacks described in [11] on HMAC-H(K,M).

6 Preventing Differentiablilty Attacks

In [6], Dodis et al. described two kinds of weak keys i.e. related/ambiguous keys
and colliding keys discussed in previous sections, which when used with HMAC
can allow an attacker to mount differentiablilty attacks exploiting structure of
HMAC on the scheme. They suggested that the only way to avoid such attacks
is not to use these weak keys. These keys can be avoided by using keys of
fixed length |K| such that key length |K| < d − 1, where d is block length
of compression function h of hash function H. In [5], Coron et al. suggested
that a hash function should behave like a random oracle, so such attacks raise a
serious issue for scheme. To prevent differentiability attacks based on colliding
keys, we propose a new padding scheme pad10

∗
.

Lemma 2. In case of padding pad10
∗
, there exists no colliding keys but ambigu-

ous keys may exist for key of size |K| < d − 2 is used.

6.1 Security Against Attacks

Table 2 shows the feasibility of attacks when HMAC is used with different patches
and paddings. We have discussed the following two attacks in the table.

1. Related key attacks based on ambiguous keys. Related key attacks com-
prises of distinguishing-R, distinguishing-H, internal state recovery and forgery
attacks on HMAC scheme. The Table 2 shows that HMAC when used with
our patches is secure from cycle detection and differentiability attacks based
on ambiguous keys.

2. Indifferentiability attacks based on colliding keys. As described in [6],
indifferentiability attack on HMAC is said to be performed successfully if the
attacker can distinguish between pair of oracles consisting of HMAC with under-
lying hash H and a random oracle with a simulator based on the random oracle.
In [10], the authors show that if a component S is indifferentiable from T , then
the security of any crypto system C(T ) based on T is not affected when T is
replaced by S.

For HMAC scheme collision keys based attacks is not possible for |K| =
d whereas for all other possible keys it is feasible. Further, ambiguous keys
based attacks will only be prevented when |K| < d − 1. On the other hand,
HMAC when used with pad10

∗
(K), collision keys based attacks are not possible
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for any case and ambiguous keys based attacks will work for all keys of size
except |K| < d − 2. Results are similar for HMAC-H(padx(K), P0(M)). For
HMAC patched with our patching schemes i.e. HMAC-H(padx(K), SP (K,M))
and HMAC-H(padx(K), CrOw(M)), when pad0

∗
(K) is used, colliding keys based

attack is feasible for all keys of size except |K| = d. On the other hand, when
padding scheme pad10

∗
(K) is used, colliding keys based indifferentiability attacks

are not feasible for any key size.

7 Conclusion

In this work, we have shown that HMAC-H(K,M) patched with the patching
scheme proposed by Peyrin et al. in [11] fails when a collision, preimage and 2nd
preimage resistant but not a random oracle function is used as the underlying
hash function. We provided the explanation of failure for their patching scheme
and showed that the use of secret or collision resistant one way patching scheme
(i.e. SP(K,M) and CrOw(M)) can secure HMAC-H(K,M). We proposed that
HMAC patched with any one of our two patches with pad10 or 10 . . . 0 padding,
is resistant to cycle detection based generic related key attacks due to ambigu-
ous keys discussed by Peyrin et al. [11] and indifferentiability attacks based on
colliding keys discussed by Dodis et al. [6].

A Explanation of Complexities in Table 1

The generic attack complexities in single key model and for related key model
(cycle attack) is provided in [11] by Peyrin et al., but they didn’t provide any
calculations of complexities after applying their patch. In our views, as the patch
prevents the cycle formation, the attack is not possible hence the complexity will
be that is in single key setting. However in secret patch the attacker can guess
the key in 2k efforts where k is length of unpadded key. So, the efforts for getting
cycle will be 2n/2 + 2k. The point to note here is that adversary has to guess
the key only once for whole cycle but if he can find key, the security of HMAC
is completely broken (now the key is known to adversary) and it needs very
high effort. For CrOw patch in order to crack patch attacker needs to find the
preimage of output of CrOw patch, which will require 2u efforts where u is output
length of CrOw patch. Unlike secret patch, here it has to be done for all 2n/2

steps so the complexity will be 2n/2+2+u.

B Explanation for Secret Patch SP

HMACSPK -H(K,M) is HMAC-H(K,M) which is using secret patch SP (K, M)
as the patching scheme, any collision resistant, preimage resistant and second
preimage resistant hash function H (not necessarily a random oracle). Here
K = K00 . . . whereas |K| = d and M is the message. For subsequent sections, we
will consider K = K. To analyse the security of HMACSPK -H(K,M), in Fig. 9,
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we have path generation by using oracles HMACSPK -H(K,M) and HMACSPK′ -
H(K ′,M).

As discussed earlier, HMACSPK -H(K,M) will behave like a black box. So
an attacker can only mount attack between two calls to oracle HMACSPK -
H(K,M) (or HMACSPK′ -H(K ′,M)). If h0 and t′0 collide then for a successful
attack b and c′ should also collide, so that the collision chain can propagate.
In case of HMACSPK -H(K,M), h0 will be applied upon by patch SP(K,M).
Therefore, the only way to make b and h0 same is to apply SP−1(K,M) on h0

so that when SP(K,M) is applied on it, it remains h0 i.e. h0 = SP(K, a) =
K ⊕ a[1]||a[2]a[3].....a[s].
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Fig. 9. Path generation using oracle HMACSPK -H(K,M) and HMACSPK′ -H(K′,M).

Hence the attacker needs the secret key K to carve such a out of h0. The
attacker attempt to guess the key and guesses K. The probability of guessing
the right key is

Prob [K = h0 ⊕ a] ≤ 2−d ≤ Negligible

where the total effort required is 2d+2n/2. Note that 2d is the effort of getting the
key K and 2n/2 is number of consecutive rounds needed to construct a cycle. As

Total Complexity = 2d + 2n/2

which is very high, so the probability of getting a synchronized cycle in this case
is negligible. We emphasize the use of same key K for secret patch as well as for
HMAC. Use of two different keys for secret patch and HMAC leads to forgery
attack explained in Appendix C.

C HMACSPK2 -H(K1,M) is not Secure

If secret patch is used with two different keys K1,K2 are used i.e. HMACSPK2 -
H(K1,M), then the construction prevents related key attacks based on cycle
detection techniques but it allows forgery attack on HMAC(K,M). If we use
two different keys K1,K2 when calculating secure tag of message M then tag can
be forged by using keys K1,K ′

2 on a crafted message M ′ such that K2 ⊕ M =
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K ′
2 ⊕M ′. When such message, key pair is fed to the construction it will produce

the same secure tag h in both the cases. Therefore, by using this attack, an
adversary can forge secure tags. If single key K is used and the attacker tries to
forge a secure tag on HMACSPK -H(K,M). It is impossible to have two messages
M,M ′ such that K ⊕ M = K ⊕ M ′. If the attacker chooses different K for two
separate HMACSPK -H(K,M) calls then the inner and the outer keys will be
different in both the cases. This will prevent forgery attacks on the scheme.
Therefore we can not use two different keys for this purpose.
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Abstract. Integral distinguisher is the main factor of integral attack.
Conventionally, first order integral distinguisher is obtained and higher
order integral distinguisher is derived from extension of first order (con-
ventional algorithm). The algorithm was applied to many byte-based
block ciphers, and such application was thought to be established. Even
in such application, however, we find that the conventional algorithm
is imprecise. We discovered integral distinguisher of byte-based block
ciphers, TWINE and LBlock, which are different from results of the con-
ventional evaluation. As a substitute for the imprecise algorithm, we
propose a new algorithm to search higher order integral distinguisher.
The point of the proposal algorithm is exploitation of bijective and
injective components of cipher functions. We focus on injective com-
ponents for the first time, in addition to bijective components which are
already exploited. We demonstrate the proposal algorithm by TWINE
and LBlock. As a result, we confirm the result of the proposal algorithm
is consistent with our result which was conjectured from computer exper-
iment. Obtaining more precise integral distinguisher allows designers to
select stronger cipher structures and key schedules, and the proposal
algorithm contributes to it.

Keywords: Chosen plaintext attack · Light-weight block cipher · Inte-
gral attack · Saturation attack

1 Introduction

1.1 Background

When we consider secret keys as constant values, cipher functions are considered
as bijective function of FL

2 → F
L
2 , where L is the block length. Also, bijective com-

ponent exists in block ciphers, and integral attack exploit these bijective compo-
nent. Integral attack was originally proposed as SQUARE attack [1]. SQUARE
attack was given different names such as saturation attack [6], and Knudsen
et al. formalized it as integral attack [3].

We define byte-based block cipher as a block cipher in which operation unit can
be defined as m-bit (m > 1), and we call the operation unit as sub block. Note that
a block is divided into N sub blocks (L = N × m). Also we define bit-based block
cipher as a block cipher in which we can not define any sub block (m = 1).
c© Springer International Publishing Switzerland 2015
S. Jajodia and C. Mazumdar (Eds.): ICISS 2015, LNCS 9478, pp. 303–323, 2015.
DOI: 10.1007/978-3-319-26961-0 18
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Integral distinguisher is the main factor of integral attack. We construct
integral distinguisher from 2mn chosen plaintexts, where n is the order of integral.
Basically, we need to know whether a summation of all 2mn sub block values is 0
or not. Knudsen et al. studied integral distinguisher as first order initially, and
considered higher order integral distinguisher as extension of first order one [3].
We call this algorithm as conventional algorithm. In the conventional algorithm,
they search higher order integral distinguisher with two steps. In the first step,
they obtain first order integral distinguisher. In the second step, they extend
first order integral distinguisher by increasing the order.

Integral attack was applied to many byte-based block ciphers, and these
attacks were based on integral distinguisher obtained by the conventional algo-
rithm [1,2,5,6,8]. However, the conventional algorithm is imprecise even in eval-
uation of byte-based block ciphers. We point out it is problematic to apply the
algorithm for Feistel ciphers whose N is large such as TWINE [7] and LBlock
[8] (N = 16). We found new fifteenth order integral distinguisher of TWINE
and LBlock which contradicts results of the conventional algorithm in our pre-
vious work [4,5,7,8]. Also, we point out there is a restriction of input integrals
in the conventional algorithm. Note that we define input integral as a condition
of chosen plaintexts. Input integrals in the scope of the conventional algorithm
are only ones of first order and their extensions.

1.2 Contribution

In this paper, we propose a new algorithm to search higher order integral dis-
tinguisher. We search higher order integral property from input to output (from
top to down). In other word, we do not use extension which is used in the con-
ventional algorithm. From this, we can search all of input integrals, and this is
a solution for restriction of input integrals.

As for a solution for the problem of preciseness, we exploit bijective and
injective component of cipher functions. We focus on injective components for
the first time, in addition to bijective components which are already exploited.
We divide the proposal algorithm into two algorithms. One is Algorithm A which
exploits bijective component, an we use new idea, bijective path, to analyze it.
The other is Algorithm B which exploits injective component, and we use new
idea, independent to analyze it.

As an application of the proposal algorithm, we search precise integral dis-
tinguisher of TWINE and LBlock. As a result, we confirm that the result of the
proposal algorithm is consistent with one which is conjectured from computer
experiment, and they are the most precise distinguisher until now.

More precise integral distinguisher is always more advantageous for the
attacker. If distinguisher of more rounds is constructed, the number of rounds
to be attacked can be extended. Even if only the number of balanced sub blocks
increases, it is also advantageous for the attacker. As the number of balanced
sub blocks increases, the number of sub keys the attacker can guess from single
integral distinguisher increases. In other word, the attacker needs less chosen
plaintexts to guess all of the secret keys. From designers’ viewpoint, they need
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to select stronger cipher algorithm and key schedule by considering such vulner-
abilities, and the proposal algorithm contributes to it.

2 Preliminaries

2.1 Notations

Throughout the paper, we use the notations shown in Table 1.

Table 1. Notation of variables.

N the number of sub blocks

m bit-length of a sub block (m > 1)

n the order of integral distinguisher (1 ≤ n ≤ N − 1)

xr
b bth sub block of r-th round (0 ≤ b ≤ N − 1, 0 ≤ r).

x̃r
b sequence (ordered collection of values) of values of xr

b .

v variable sub block.

c constant sub block.

RKr
k sub key inputed in F functions of r-th round (0 ≤ k, 1 ≤ r).

α{a0,a1,...,an−1} input integral; condition of chosen plaintexts, and a0, a1, ..., an−1

indicates the position of variable sub blocks.

β{b0,b1,...,bn−1} output integral of γ-th round; summation of all γ-th round block
values, and b0, b1, ..., bn−1 indicates the position of balanced sub
blocks.

α →γ β integral distinguisher; output integral β is obtained after γ-th
round encryption by input integral α.

2.2 Integral Attack

Based on integral distinguisher, an attacker guess some sub keys. To construct
integral distinguisher, he prepares a set of chosen plaintexts and encrypt them.
The attacker chooses one or several sub blocks of plaintext as variable sub blocks.
When n sub blocks are chosen, he needs to prepares 2mn plaintexts, where m
is bit-length of a sub block. In 2mn plaintexts, a concatenation of variable sub
blocks takes every possible element of Fmn

2 and one of the other sub blocks takes
a constant value. Let v0||v1||...||vn−1 be a concatenation of variable sub blocks of
plaintext, and c0||c1||...||cN−n−1 a concatenation of constant sub blocks, where
N is the number of sub blocks. In short, we prepare a set of 2mn plaintexts which
satisfies

v0||v1||...||vn−1 = {0, 1, ..., 2mn − 1},

c0||c1||...||cN−n−1 = const. (1)
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every possible element of F32
2

F F

r-th round

c0 v0 c1 c2
F F

=⇒

every possible element of F64
2

(r−1)-th round
c0 c1 v0 v1

F F

c0 v0 v1 c1
F F

Fig. 1. Outline of extension from first order integral to second order integral.

We call a condition of chosen plaintexts as input integral, and we denote it by α.
A set of 2mn plaintexts and block values of intermediate rounds are analyzed

in sub block unit. Let xr
b,i ∈ F

m
2 be i-th element of 2mn values of a sub block xr

b .
The summation of all values has following property.

2nm−1∑

i=0

xr
b,i =

{
0
random

(2)

If the summation is always 0, we say it is balanced, otherwise unbalanced. We
call balanced sub blocks of γ-th round as output integral, and we denote it by
β. We denote integral distinguisher by input and output integral. Let α →γ β
be integral distinguisher that output property β is obtained after γ-th round
encryption when we set chosen plaintexts according to input condition α. We
call integral distinguisher gained by choosing n variable bits as n-th order integral
distinguisher.

3 Conventional Algorithm

The conventional algorithm is divided into two steps. In the first step, they
obtain first order integral distinguisher. In the second step, they extend first
order integral distinguisher to higher order integral distinguisher. Mathematical
validity of extension of integral distinguisher is proven [3]. However, we disagree
with the usage as extension of first order integral distinguisher.

We use the idea of first order integral in the proposal algorithm, however, we
do not use extension of integral distinguisher in it. Therefore, we only explain
extension of integral distinguisher in this section, and explain the way to obtain
first order integral distinguisher in Sect. 5.3. A typical extension of integral dis-
tinguisher is shown in the evaluation of CLEFIA [6]. The designers of CLEFIA
extend first order integral distinguisher to second one. Figure 1 shows the outline.

At first, following first order integral distinguisher is obtained.

α{1} →6 β{1} (3)

We regard α{1} as integral of r-th round. We let v be variable sub blocks and c
constant sub blocks. Sub blocks {xr

0, x
r
1, x

r
2, x

r
3} is written as {c0, v0, c1, c2} and
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xr
1 takes every possible element of F32

2 . Considering an input integral which can
be extended to one of (r − 1)-th round, we assign xr

2 as a variable sub block to
make xr

1||xr
2 take every possible element of F

64
2 . From this, sub blocks of r-th

round becomes {c0, v0, v1, c2}, i.e., α{1,2}.
Calculating back (r − 1)-th round, xr−1

2 and xr−1
3 must be variable. Suppose

we write {xr−1
0 , xr−1

1 , xr−1
2 , xr−1

3 } as {c′
0, c

′
1, v

′
0, v

′
1}. Since a mapping from xr

1||xr
2

to xr−1
2 ||xr−1

3 is bijective, xr−1
2 ||xr−1

3 takes every possible element of F64
2 . There-

fore, {c′
0, c

′
1, v

′
0, v

′
1} denotes the same state as α{2,3}. Hence, α{1,2} of (r − 1)-th

round results in α{2,3} of r-th round.
For these reason, integral distinguisher of α{1} can be extended to integral

distinguisher of α{2,3} as follows.
{

α{1} →6 β{1}
α{2,3}1← α{1}

⇒ α{2,3} →7 β{1} (4)

In the second step of the conventional algorithm, we extend first order integral
such as Eq. (3) round by round, exploiting bijective components.

4 Problems of Conventional Algorithm

In Feistel ciphers whose number of sub blocks N is small such as CLEFIA
(N = 4), the conventional algorithm is still effective and precise. However, we
find it is problematic to apply the algorithm for Feistel ciphers whose N is
large such as TWINE and LBlock (N = 16). In evaluation of such ciphers, the
results of the algorithm become imprecise. We discovered following integral dis-
tinguisher of TWINE and LBlock in our previous work [4]. We used computer
experiment to discover them. Note that computer experiment is an experiment
to compute a summation of intermediate values such as Eq. (2). We executed
computer experiment for 10 times to verify each integral distinguisher. Due to
limitations of space, we can not show the detail of these ciphers, see the details
in [7,8].

TWINE [7]: We discovered following first order integral distinguisher of TWINE
by computer experiment.

α{1} →9 β{1,3,13,15} (5)

This integral distinguisher can be extended to fifteenth order integral distin-
guisher as follows.

α{0,1,2,3,4,5,6,7,8,9,10,11,12,13,15} →15 β{1,3,13,15} (6)

Note that integral distinguisher shown by the designers of TWINE is different
from Eq. (6) [7]. In our previous work [4], we discovered following eleventh order
integral distinguisher of TWINE by computer experiment.

α{0,2,3,5,6,7,8,9,10,12,15} →11 β{1,3,5,7,9,11,13,15} (7)
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This integral distinguisher can be extended to fifteenth order integral distin-
guisher as follows.

α{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15} →15 β{1,3,5,7,9,11,13,15} (8)

LBlock [8]: Following fifteenth order integral distinguisher of LBlock obtained
by the conventional algorithm is known [5,8].

{
α{8} →9 β{9,11,13,15}
α{0,1,2,4,5,6,7,8,9,10,11,12,13,14,15}6← α{8}

(9)

⇒ α{0,1,2,4,5,6,7,8,9,10,11,12,13,14,15} →15 β{9,11,13,15} (10)

We discovered following fifteenth order integral distinguisher by computer exper-
iment and its extension [4].

{
α{0,2,3,4,5,6,8,10,12,13,15} →11 β{8,9,10,11,12,13,14,15}
α{0,1,2,4,5,6,7,8,9,10,11,12,13,14,15}4← α{0,2,3,4,5,6,8,10,12,13,15}

(11)

⇒ α{0,1,2,4,5,6,7,8,9,10,11,12,13,14,15} →15 β{8,9,10,11,12,13,14,15} (12)

We point out following two problems of the conventional algorithm; preciseness
and restriction of input integrals. As for preciseness, it is obvious from above
results of TWINE and LBlock.

We define input integral as a condition of chosen plaintexts such as Eq. (1).
The number of possible input integral is 2N − 2, where N is the number of sub
blocks. Subtraction denotes a full code book and single chosen plaintext which
are out of scope of integral attack. On the other hand, input integrals in the
scope of the conventional algorithm are only ones of first order and their exten-
sions. The number of input integral in the scope of the conventional algorithm
is calculated as

N−1∑

i=0

(Γi + 1), (13)

where Γi is the number of rounds that i-th first order integral distinguisher can
be extended at most. Note that there are overlaps among extensions of first
order integral, so that the number of different input integrals is always less than
Eq. (13). In CLEFIA (N = 4), the number of input integrals in the conventional
algorithm is 8, and the actual number is 14. When N is large, differential between
2N − 2 and Eq. (13) becomes large. As for TWINE (N = 16), the number of
input integrals in the scope of the conventional algorithm is 56, and the actual
number is 216 − 2.

From these two problems, we disagree with application of the conventional
algorithm to Feistel ciphers whose N is large.

5 Fundamentals of Proposal Search Algorithm

5.1 Byte-Based Block Cipher

In this paper, we limit the scope of target cipher function to byte-based block
cipher. To define such cipher exactly, we suppose a block cipher which composes
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of bijective functions and addition on F
m
2 . With respect to bijective functions,

we denote L and F be linear and nonlinear function, s.t., Fm
2 → F

m
2 .

For example, we consider a nonlinear function F which contains key addition
as follows.

F (x;RK) = S(x ⊕ RK),
x,RK ∈ F

m
2 , (14)

where S is a S-box of Fm
2 → F

m
2 . Suppose RK is random constant, F is regarded

as F
m
2 → F

m
2 random functions chosen by RK. Although a cipher function

includes 2m possible random functions, we ignore the detail of functions and
denote them by F , since our interest is only in their bijection and nonlinear-
ity. With respect to addition, we denote ⊕ and � as XOR(eXclusive OR) and
addition mod 2m, respectively.

In the following sections, we use partial functions of byte-based block cipher
as follows.

G : Fmn
2 → F

mn
2

H : Fmn
2 → F

m
2 (15)

We suppose G and H are composed of L, F , ⊕ and �.

5.2 Sequence of Sub Blocks

We analyze higher order integral distinguisher in sub block unit. For analyzing
sub blocks, multiset was adopted to denote them in the previous work [3]. How-
ever, sequence allows us to analyze more precise properties of sub blocks, since it
represent actual cipher states. We denote a sequence of a sub block λ as follows.

λ̃ = (λi)
2mn−1
i=0 , λi ∈ F

m
2 (16)

Also, a sequence of a concatenation of l sub blocks Λ is written as

Λ̃ = (Λi)
2mn−1
i=0 = (λ0,i||λ1,i||...||λl−1,i)

2mn−1
i=0 , (1 ≤ l ≤ N), (17)

where Λ = λ0||λ1||...||λl−1.
In construction of integral distinguisher, sequential order to input each plain-

texts does not affect output integral. In other word, we can sort chosen plaintexts
optionally. Therefore, we can define a mapping to sort a sequence of Λ, s.t.,

S : (Λi)
2mn−1
i=0 →

(
Λσ(i)

)2mn−1

i=0
, (18)

where σ is any permutation function.
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5.3 First Order Integral Property

First order integral distinguisher is easily obtained by symbolization of sequences
of sub block values. We call symbols to denote the property of each sequence
of a sub block as integral property. Especially we call integral property of first
order integral as first order integral property. We introduce a definition of first
order integral property used in the evaluation of CLEFIA [6].

Definition 1. Let x̃r
b = (xr

b,i)
2m−1
i=0 (xr

b,i ∈ F
m
2 ) be a sequence of sub block xr

b and
Xr

b be a first order integral property of x̃r
b. First order integral property Xr

b is
categorized as follows.

Constant(C) : ∀i, i′, xr
b,i = xr

b,i′ (19)

All(A) : ∀i, i′(i �= i′), xr
b,i �= xr

b,i′ (20)

Balance(B) :
2m−1∑

i=0

xr
b,i = 0 (21)

Random(R) : Others (22)

For example, when first order integral property of x̃r
b is All(A), we denote Xr

b =
A. To show the usage of Definition 1, we exemplify determination of first order
integral property when two sequences are XORed. Suppose Xr

b = A and Xr
b′ = A,

and a sequence of another sub block z̃ is calculated as (xr
b,i ⊕xr

b′,i)
2m−1
i=0 . We only

consider Xr
b and Xr

b′ to determine first order integral property of z̃ without
considering operations of each element such as xr

b,i ⊕ xr
b′,i. In this case, we can

determine first order integral property of z̃ as B from previous works [6,8]. In
this way, we only consider their properties, and we do not need to consider each
element of sequences of sub blocks.

Focusing on first order integral property C, there is an important character-
istic. From previous works [1,2,6,8,9] and validation of computer experiment,
following is derived as an obvious proposition.

Proposition 1. First order integral distinguisher holds for any values of con-
stant sub blocks and sub keys.

5.4 Higher Order Integral Property

We call integral property whose order n equals to or greater than 2 as higher
order integral property. To analyze higher order integral property, we define new
symbolization as follows.

Definition 2. Let x̃r
b = (xr

b,i)
2mn−1
i=0 (xr

b,i ∈ F
m
2 ) be a sequence of a sub block

xr
b, and yr

b (k) multiplicity of xr
b,i = k in the sequence. We denote X r

b as higher
order integral property of x̃r

b. Higher order integral property X r
b is categorized as

follows.
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Constant(C) : ∀i, i′, xr
b,i = xr

b,i′ (23)

Uniform(U) : ∀k, yr
b (k) = 2n(m−1) (24)

Even(E) : ∀k, yr
b (k) mod 2 ≡ 0 (25)

Balance(B) :
2mn−1∑

i=0

xr
b,i = 0 (26)

Random(R) : Others (27)

Each element xr
b,i is in F

m
2 . On the other hand, x̃r

b must have multiplicity, since
the length of x̃r

b is 2mn. Therefore, we define U instead of A of first order integral,
and U has different property from B. Also, we define special property E which
is the intermediate property between U and B. If an input sequence is U or
E , an output sequence of nonlinear bijective function F has the same property
as input.

From definition of higher order integral properties, we have following inclu-
sion relation among properties.

B ⊃ E ⊃ U (28)

There is a case that analysis of one sub block results in multiple properties. If
it is analyzed to be B and E , we determine higher order integral property of the
sub block is E , since it does not contradict the analysis of B. In the same way,
we choose U , if it is analyzed to be B, E and U .

5.5 Search Algorithm Using Bijection

We can say that integral distinguisher is mainly dependent of bijection between
input variable sub blocks and output sub blocks of intermediate rounds. Using
bijection, we can predict higher order integral distinguisher. In n-th order inte-
gral, the number of input variable sub blocks V is n. Considering intermediate
variable sub blocks V ′, there are some combinations of n variable sub blocks,
s.t., V → V ′ is bijective. To analyze bijective characteristics, we define bijective
path P which consists of such sub blocks (V and V ′) as follows.

Definition 3. Let V be a set of input variable sub blocks (start point), and E
a temporary end point of bijective path (|V | = |E| = n). We denote G as a
function of Fmn

2 → F
mn
2 supposed in Eq. (15). We define bijective path P and

end point of bijective path E as following recursive conditions.

(i) Input variable sub blocks V is added to P and V is substituted for E at first.
(ii) If E and n sub blocks E′, s.t., E′ = G(E), satisfies that E → E′ is bijective,

E′ is added to P and E′ is substituted for E. Note that any sub blocks outside
E′ and P must not be codomain of any mapping from E.

(iii) If E → E′ is not bijective for any n combinations of E′, E is a final end
point of bijective path.



312 H. Kosuge et al.
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Fig. 2. Trail of temporary end point of bijective path E in CLEFIA.

F

( i )f is bijective of

F
2m
2 → F

2m
2

F

(ii)f is bijective of

F
m
2 → F

m
2

F

(iii)f is not bijective of

F
m
2 → F

2m
2

:sub blocks in bijective path

Fig. 3. Bijective characteristics of f function.

We use recursive conditions of Definition 3 as algorithm to search bijective path
(see Algorithm A). We update positions of temporary end point of bijective path,
and add all of them to bijective path P . We demonstrate it in CLEFIA as toy
example. We show the trail of temporary end point of bijective path E when
we set input integral α{0,1,3} in Fig. 2. Filled squares indicate positions of sub
blocks in E. From left to right, E is updated and the rightmost one shows final
end point of bijective path. We use a function f as follows.

{x′
0, x

′
1} = f(x0, x1) = {x0, F (x0,⊕RK) ⊕ x1},

x0, x1, RK ∈ F
32
2 , (29)

where RK is a constant value. The function f has following characteristics.

(i) If x0, x1 ∈ E, f is bijective of F2m
2 → F

2m
2 .

(ii) If x1 ∈ E and x0 �∈ E, f is bijective of Fm
2 → F

m
2 .

(iii) If x0 ∈ E and x1 �∈ E, f is not bijective, since it is F
m
2 → F

2m
2 .

We show these characteristics in Fig. 3.

Using bijective path and end point of bijective path, we determine higher order
integral property of sub blocks is U or E from following propositions.

Proposition 2. If a sub block xr
b is in bijective path P (xr

b ∈ P ), higher order
integral property of x̃r

b is U (X r
b = U).
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Proof. Suppose V → V ′ is bijective. From Definition 3, at least one combination
of n variable sub blocks V ′ exists in P . From condition of chosen plaintexts,
i.e., Eq. (1), Ṽ contains all elements of Fmn

2 without multiplicity. Therefore, all
sequences in Ṽ satisfy the definition of U (Eq. (24)). Since V → V ′ is bijec-
tive, Ṽ ′ also contains all elements of F

mn
2 without multiplicity. Therefore, all

sequences in Ṽ ′ satisfy the definition of U . All sub blocks in P are also in V or
V ′. Hence, higher order integral properties of sequences of all sub blocks in P
are U . ��

Proposition 3. Let V be a set of input variable sub blocks, and E = {e0, e1, ...,
en−1} end point of bijective path. Let {Xr

b (e0),Xr
b (e1), ...,Xr

b (en−1)} be a set of
first order integral properties of sub sequences, s.t., E\et (0 ≤ t ≤ n − 1) are
constant. If following condition holds, higher order integral property X r

b is U .

∃et ∈ E, Xr
b (et) = A ⇒ X r

b = U (30)

Proof. Let H be a function of Fmn
2 → F

m
2 supposed in Eq. (15). Suppose a sub

block value is expressed as

xr
b = H(e0, e1, ..., en−1). (31)

A sequence x̃r
b is written as

x̃r
b = (H(e0,i, e1,i, ..., en−1,i))

2mn−1
i=0

= (H(et,i, Ei\et,i))
2mn−1
i=0 . (32)

where et,i is i-th element of ẽt and Ei is a set of i-th elements of sequences of sub
blocks in Ẽ = {ẽ0, ẽ1, ..., ẽn−1}. We substitute i = 2mk + l (0 ≤ k ≤ 2m(n−1) − 1,

ẽt Ẽ\ẽt

0x0

0x0

0x1

k = 1

0x1

0xf

0xf

·

· ·

··

· ·

··

· ·

·

0x0 0x0 · · · · 0x1

0x0 0x0 · · · · 0x1

0x0 0x0 · · · · 0x1

0x0 0x0 · · · · 0x0

0x0 0x0 · · · · 0x0

0x0 0x0 · · · · 0x0

0x0

0x1

k = 0

k = 256

0xf

·

· ·

·· ··

· ·

·· ··

· ·

·· ·

0xf 0xf · · · · 0xf

0xf 0xf · · · · 0xf

0xf 0xf · · · · 0xf

····
····
····
·

Fig. 4. Example of sorted sequence.
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0 ≤ l ≤ 2m − 1). We rewrite Eq. (32) as

x̃r
b =

(
(H(et,2mk+l, E2mk+l\et,2mk+l))

2m−1
l=0

)2m(n−1)−1

k=0
. (33)

From an assumption that V → E is bijective (see Definition 3), the number of
distinct combinations of Ẽ is 2mn and one of Ẽ\ẽt is 2m(n−1). The multiplicity
of each combination in Ẽ\ẽt is 2m, and ẽt takes 2m distinct values for every
possible combination of Ẽ\ẽt. Therefore, it is possible to sort x̃r

b which satisfies
following two conditions in Eq. (33).

(i) ∀k, l, l′(l �= l′), et,2mk+l �= et,2mk+l′

(ii) ∀k, l, l′(l �= l′), E2mk+l\et,2mk+l = E2mk+l′\et,2mk+l′

We show an example sorted sequence, s.t., each element is in F
4
2 and n = 15, in

Fig. 4.
Let x̃′r

b be a sub sequence of sorted x̃r
b for given k, and x̃′r

b is written as

x̃′r
b =

((
H(v′

t,2mk+l, V
′
2mk+l\v

′
t,2mk+l)

)2m−1

l=0

)

k=const
. (34)

We can regard integral property of x̃′r
b as first order, and Xr

b (et) holds for any
values of constant sequences from Proposition 1. Suppose a first order integral
property of x̃′r

b is A (Xr
b (et) = A), x̃′r

b contains every possible element of Fm
2 for

any k in Eq. (42). In addition, x̃r
b is a summation of individual sub sequences x̃′r

b

which is respectively chosen by k. Therefore, x̃r
b contains 2m(n−1) sub sequences

which contains every possible element of Fm
2 , and this satisfies the definition of

U (Eq. (24)). ��

Proposition 4. Let V be a set of input variable sub blocks and E = {e0, e1, ...,
en−1} end point of bijective path. Let {Xr

b (e0),Xr
b (e1), ...,Xr

b (en−1)} be a set of
first order integral properties of sub sequences, s.t., E\et(0 ≤ t ≤ n − 1) are
constant. If following condition holds, higher order integral property X r

b is E.
∃et ∈ E, Xr

b (et) = C ⇒ X r
b = E (35)

Proof. Since Xr
b (et) = C, there is not any mapping, s.t., et → xr

b. We substitute
i = 2m(n−1)k + l (0 ≤ k ≤ 2m − 1, 0 ≤ l ≤ 2m(n−1) − 1) of Eq. (32). We rewrite
Eq. (32) as

x̃r
b =

(
(
H(E2m(n−1)k+l\et,2m(n−1)k+l)

)2m(n−1)−1

l=0

)2m−1

k=0

, (36)

where Ei is a set of i-th elements of sequences of sub blocks in Ẽ = {ẽ0, ẽ1, ...,
ẽn−1}, and H be a function of Fmn

2 → F
m
2 supposed in Eq. (15). Since V → E is

bijective, Ẽ\ẽt contains 2m(n−1) distinct combinations, and multiplicity of Ẽ\ẽt

is 2m. Therefore, we can sort xr
b as E2m(n−1)k+l\et,2m(n−1)k+l whose multiplicity

of each element of Fm
2 is the same for any k in Eq. (36). Therefore, x̃r

b is regarded
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as a summation of 2m sub sequences which has the same multiplicity for any
element of Fm

2 . Hence, multiplicity of each element of Fm
2 in the sequence x̃r

b is
the product of 2m(even number) and this multiplicity satisfies the definition of E
(Eq. (25)). ��

From Propositions 2, 3 and 4, we search U and E sub blocks among all sub blocks
of a cipher function. Thereafter, we search B sub blocks in the same manner of
first order integral property. Note that B or E sub blocks has probability to be
analyzed as U by using injection (see Proposition 5).

5.6 Search Algorithm Using Injection

Since we can exploit similar property of Proposition 3 from injection among
sub blocks, integral distinguisher obtained by bijective path is not sufficiently
precise. In actual, we can obtain precise distinguisher only by an algorithm
using injection, since property obtained by bijection is also obtained by injection.
However, the algorithm using bijection is more efficient than one of injection.
Therefore, we execute the former at first, and execute the latter as supplement.

To analyze injection, we use new idea, independent. This idea resembles to
linear independent. We define independent as follows.

Definition 4. Let Hi(0 ≤ i ≤ n′ − 1, n ≤ n′) be nonlinear functions of Fn′m
2 →

F
m
2 which are supposed in Eq. (15). We denote E = {e0, e1, ..., en−1} as end

point of bijective path. Suppose a set of n′ intermediate variable sub blocks V ′ =
{v′

0, v
′
1, ..., v

′
n′−1} are expressed as

H0(e0, e1, ..., en−1) = v′
0,

H1(e0, e1, ..., en−1) = v′
1,

...
Hn′−1(e0, e1, ..., en−1) = v′

n′−1. (37)

If V ′ satisfies following conditions, a sub block v′
t ∈ V ′(0 ≤ t ≤ n′ − 1) is inde-

pendent of V ′.

(i) E → V ′ is injective (|E| ≤ |V ′|).
(ii) ∃es ∈ E(0 ≤ s ≤ n − 1), E\es → V ′\v′

t is injective.

Proposition 5. Let H be a function of Fmn′
2 → F

m
2 supposed in Eq. (15). Let

V ′ = {v′
0, v

′
1, ..., v

′
n′−1} be a set of intermediate variable sub blocks, and a sub

block xr
b and V ′ satisfy

xr
b = H(v′

0, v
′
1, ..., v

′
n′−1). (38)

Suppose v′
t ∈ V ′ is independent of V ′ (see Definition 4). If following condition

holds, higher order integral property X r
b is U .

Xr
b (v′

t) = A ⇒ X r
b = U (39)
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Proof. A sequence x̃r
b can be written as

x̃r
b =

(
H(v′

t,i, V
′
i \v

′
t,i)

)2mn−1

i=0
. (40)

where v′
t,i is i-th element of ṽ′

t and V ′
t,i is a set of i-th elements of sequences of

sub blocks in Ṽ ′ = {ṽ′
0, ṽ

′
1, ..., ṽ

′
n′−1}. We substitute i = 2mk+ l (0 ≤ k ≤ 2m −1,

0 ≤ l ≤ 2m(n−1) − 1) of Eq. (40). We rewrite Eq. (40) as

x̃r
b =

((
H(v′

t,2mk+l, V
′
2mk+l\v

′
t,2mk+l)

)2m−1

l=0

)2m(n−1)−1

k=0
. (41)

From condition (ii) of Definition 4, Ṽ ′\ṽ′
t contains 2m(n−1) distinct combina-

tions, and multiplicity of each distinct combinations is 2m. From condition (i )
of Definition 4, Ṽ ′ contains 2mn distinct combinations, and there is no multi-
plicity. Therefore, ṽ′

t takes 2m distinct values for every possible combination of
Ṽ ′\ṽ′

t. We sort x̃r
b as following two conditions in Eq. (41).

(i) ∀k, l, l′(l �= l′), v′
t,2mk+l �= v′

t,2mk+l′

(ii) ∀k, l, l′(l �= l′), V ′
2mk+l\v

′
t,2mk+l = V ′

2mk+l′\v
′
t,2mk+l′

Let x̃′r
b be a sub sequence of sorted sequence x̃r

b for given k, and x̃′r
b is written as

x̃′r
b =

((
H(v′

t,2mk+k′ , V ′
2mk+k′\v′

t,2mk+k′)
)2m−1

k′=0

)

k=const
. (42)

Therefore, we can regard integral property of sub sequence x̃′r
b as first order, and

Xr
b (v′

t) holds for any values of constant sequences from Proposition 1. Suppose
a first order integral property of x̃′r

b is A (Xr
b (v′

t) = A), x̃′r
b contains every

possible element of Fm
2 for any k in Eq. (42). In addition, x̃r

b is a summation
of individual sub sequences x̃′r

b which is respectively chosen by k. Therefore, x̃r
b

contains 2m(n−1) sub sequences which contains every possible element of Fm
2 , and

this satisfies the definition of U (Eq. (24)). ��

6 Procedure of Proposal Algorithm

We divide search algorithm into two algorithms, Algorithm A and B. Algorithm
A is based on Sect. 5.5 and Algorithm B is based on Sect. 5.6. In addition, we
propose Algorithm B′ for Algorithm B. We test injection by Algorithm B′.

Algorithm A: We divide search scope into two domains, inside and outside of
bijective path. Inside bijective path, higher order integral properties of sub blocks
are obviously U from Proposition 2. Outside bijective path, we analyze relation
between end point of bijective path and each output sub blocks to determine
their higher order integral property. After U and E sub blocks are specified, we
search for B sub blocks.
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Algorithm A has following six steps.

Step-1. Choose n sub blocks as input variable sub blocks V (|V | = n). Add V
to bijective path P and substitute V for temporary end point of bijective
path E.

Step-2. For every possible combination of n sub blocks E′ = G(E), test if
E → E′ is bijective or not. If E → E′ is bijective, go to Step-3. Otherwise,
E is end point of bijective path, go to Step-4.

Step-3. Add E′ to P and substitute E′ for E. Return to Step-2.
Step-4. Determine higher order integral property of sub blocks inside P as U .

For every possible combination of {et, x
r
b}(et ∈ E, xr

b �∈ P ), calculate first
order integral properties Xr

b (et) and preserve them.
Step-5. Using every set of Xr

b (et)(et ∈ E, xr
b �∈ P ), determine whether higher

order integral property of every sub block outside P is U or E from Propo-
sitions 2, 3 and 4.

Step-6. Search sub blocks which are calculated as B. End algorithm.

Higher order integral properties of B or E sub blocks are temporary. Their
higher order integral properties can be changed in Algorithm B.

Algorithm B: In Algorithm B, we reanalyze higher order integral properties of
sub blocks which were determined as B or E in Algorithm A. We call these sub
blocks as undetermined B or E sub blocks. They can be U from Proposition 5.
Let V ′ = {xr0

0 , xr0
1 , ..., xr0

n′} be sub blocks in r0-th round which satisfies

xr
b = H(xr0

0 , xr0
1 , ..., xr0

n′), 0 ≤ r0 ≤ r − 1, (43)

where xr
b is a target sub block to determine higher order integral property. We

test injection of E → V ′ for each r0-th round. Note that n′ = |V ′| must be equal
to or greater than n = |V | = |E| from definition of injection. When we find V ′,
s.t., E → V ′ is injective, we search a combination of {v′

t, es} which satisfies the
definition of independent (see Definition 4). If we find at least one combination
of {v′

t, es} which satisfies the definition of independent, we obtain X r
b = U . We

execute above procedure for every undetermined B or E sub block.
Algorithm B has following four steps.

Step-1. Find an undetermined B or E sub block, and let the sub block be target
sub block xr

b . If it is found, go to Step-2, and substitute r0 = r−1. Otherwise,
end algorithm.

Step-2. Test injection of E → V ′, where V ′ is sub blocks in r0-th round, s.t.,
Eq. (43). If E → V ′ is injective, go to Step-3. Otherwise, repeat Step-2 by
decrementing r0 (r0 = r0 − 1). If r0 is less than 0 (r0 < 0), X r

b is determined
B or E , and return to Step-1.

Step-3. For every possible combination of {v′
t, es}, test whether they satisfies

Xr
b (v′

t) = A and injection of E\es → V ′\v′
t. If at least one combination

is found, X r
b = U , and go to Step-4. Otherwise, substitute r0 − 1 for r0

(r0 = r0 − 1), and return to Step-2 and.
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W to W (output to input)
µ → →

F

µ →

F

µ µ

F

W to W (input to output)

F

µ → →

F

µ →

F

µ µ

Fig. 5. Characteristics of f function in terms of μ to ε.

Step-4. Update higher order integral properties which can be changed by the
fact that X r

b = U (B sub blocks increase). Return to Step-1.

Integral distinguisher obtained by Algorithm A increases preciseness by Algo-
rithm B. We show a detailed algorithm of Step-2 and 3 in Algorithm B′.

Algorithm B′: Let W be output sub blocks of intermediate rounds, and G a
function of Fmn

2 → F
mn′
2 such as Eq. (37). To generalize situation to test injection,

we suppose that injection of W → W ′(= G(W ), |W ′| = n′) is tested. Note that
we substitute W = E or W = E\es in Algorithm B. Here, we assume W = E
(|W | = n).

To test injection, we use contraposition of definition of injection. Suppose we
input two plaintexts into cipher function. Let w and Δw be values of concatena-
tion of every sub block in W , and they are element of Fmn

2 . Let w′ and Δw′ be
values of concatenation of every sub block in W ′ = G(W ), and they are element
of Fmn′

2 . When we have w′ = Δw′, we test whether we can obtain w = Δw. If
w = Δw is obtained, W → W ′ is injective.

We regard output sub blocks of intermediate rounds as variable term used
in Eq. (37). We define two states of such sub blocks as equal (ε) and unequal
(μ) as follows. Suppose a sub blocks are derive from xr

b = G(W ), where G is a
function of Fmn

2 → F
m
2 supposed in Eq. (15). As same as w and Δw, we consider

two actual values of xr
b . Let χr

b and Δχr
b be actual values of xr

b , and they are
element of Fm

2 . If χr
b = Δχr

b , xr
b is ε and we write xr

b = ε. Otherwise, xr
b is μ and

we write xr
b = μ.

At first, ε is substituted for sub blocks in W ′ and constant sub blocks and μ
is for the others.

(xr
b ∈ W ′) ∨ (X r

b = C) ⇒ xr
b = ε

(xr
b �∈ W ′) ∧ (X r

b �= C) ⇒ xr
b = μ (44)
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Regarding current ε sub blocks as start point, we consider the diffusion of ε
sub blocks. In other words, we search sub blocks which is changed from μ to
ε. Considering input-output relation of each functions such as f function (see
Eq. (29)), we can determine whether each sub block is μ or ε. For example, f
function has following three characteristics in terms of μ to ε.

(i) {x0, x1} = {ε, ε} ⇒ {x′
0, x

′
1} = {ε, ε}.

(ii) {x0, x1} = {ε, μ} ⇒ {x′
0, x

′
1} = {ε, μ}.

(iii) {x0, x1} = {μ, ε} ⇒ {x′
0, x

′
1} = {μ, μ}.

These characteristics holds if we replace {x0, x1} as {x′
0, x

′
1}. We show six char-

acteristics in Fig. 5. We search sub blocks which is changed from μ to ε in two
direction. One is direction from W ′ to W (output to input). The other is direction
from W to W ′(input to output). After repetition of these two steps, if all sub
blocks in W are equal, W → W ′ is injective from contraposition of definition of
injection.

Algorithm B′ has following five steps.

Step-1. Set input variable sub blocks W and output variable sub blocks W ′. If
|W | > |W ′| holds, output “W → W ′ is not injective”, and end Algorithm.
Otherwise, substitute ε or μ for every sub block by using Eq. (44).

Step-2. From W ′ to W , search μ sub blocks to be ε and substitute ε for them.
Step-3. From W to W ′, search μ sub blocks to be ε and substitute ε for them.
Step-4. If there are not any change from μ to ε in Step-2 and 3, go to Step-5.

Otherwise, return to Step-2.
Step-5. If all sub blocks in W are ε, output “W → W ′ is injective”. Otherwise

output “W → W ′ is not injective”. End algorithm.

7 Application of Proposal Algorithm

As an application of the proposal algorithm shown in Sect. 6, we search integral
distinguisher of TWINE and LBlock, and compare the results with ones of previ-
ous work [4]. Since the number of sub blocks N is 16, we analyze fifteenth order
integral distinguisher of TWINE and LBlock. As an example, we show fifteenth
order integral distinguisher of TWINE in Fig. 6 and demonstrate the proposal
algorithm in it. In Algorithm A, we search bijective path at first. Underlined sub
blocks are in bijective path P and ones squared with solid line are end point of
bijective path E in Fig. 6. Higher order integral properties of these sub blocks
are U from Proposition 2. Sub blocks without any lines or squares are sub blocks
whose higher order integral properties are determined in Algorithm A.

In Algorithm B, we search independent sub blocks to change higher order
integral property of B to U . U sub blocks squared with broken line are sub blocks
whose higher order integral property are changed from B to U or R to B. All of
independent sub blocks to change these properties are in 7-th round.

We show the way to change higher order integral property of x13
0 as example.

Let V ′
r=7 be a set of sub blocks of 7-th round. The sub block x13

0 is written as
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Fig. 6. Fifteenth order integral distinguisher of TWINE obtained by the proposal
algorithm.
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x13
0 = H(V ′), s.t., V ′ = V ′

r=7\x7
9. We choose x7

11 as v′
t, since first order integral

property X13
0 (x7

11) = A. Also, we choose x6
10 as es ∈ E. Using Algorithm B′,

we confirm E → V ′ and E\x6
10 → V ′\x7

11 are injective. Therefore, higher order
integral property of x̃13

0 is changed from B to U . In the same way, higher order
integral properties of x̃13

2 , x̃13
12 and x̃13

14 are changed from B to U . Higher order-
integral properties of sub blocks which are output of ⊕ operation of two U sub
blocks are B. Therefore, higher order integral properties of x̃14

0 , x̃14
4 , x̃14

10 and x̃14
14

are changed from R to B. Hence, we find output integral is β{1,3,5,7,9,11,13,15},
and this is the same as the result which is discovered from computer experiment
shown in Eq. (8). Also, we find the same output integrals are obtained if we
choose a constant sub block whose index is even in fifteenth order integral of
TWINE. These results are also consistent with the result which is discovered
from computer experiment. In addition to TWINE, we search fifteenth order
integral distinguisher of LBlock, and obtain results which are consistent with
the results discovered by computer experiment such as Eq. (12).

Since integral distinguisher discovered in previous work [4] is the most precise
distinguisher of TWINE and LBlock, we confirm preciseness of the proposal
algorithm.

8 Discussion

8.1 Comparison with Conventional Search Algorithm

There are two major differences between the proposal algorithm and the con-
ventional one. One is an approach to search higher order integral property from
input to output (from top to down). From this, the proposal algorithm is fea-
sible independent of the order and the selection of input variable sub blocks.
Therefore, all input integrals are in the scope of the proposal algorithm. Also,
integral properties of all sub blocks are obtained. In the conventional algorithm,
unsearched domain inevitably exists, since they only extend first order integral.

The other is an approach to elucidate higher order integral property. Only
property as first order integral is elucidated in the conventional algorithm. Since
the number of plaintexts is 2mn, the definition of first order integral property does
not represent actual properties. Our definition of higher order integral property
represent actual properties.

In addition to above theoretical superiority, we have shown preciseness of the
proposal algorithm in Sect. 7. In Sect. 8.2, we consider computational complexity
of the proposal search algorithm.

8.2 Computational Complexity of Proposal Algorithm

Suppose a cipher function has N sub blocks and consists of R-th round itera-
tion, and we try to gain (N − 1)-th order integral distinguisher. We calculate
computational complexity of each algorithm respectively.
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Algorithm A: Algorithm A has two major steps, search of bijective path and
determination of higher-order integral property. With respect to search of bijec-
tive path, we look up small tables such as Fig. 3 to determine temporary end
point of bijective path E is changed from current one. Let TA1 be a table size
of bijective characteristics of every function such as f (Eq. (29)). Even if we
lookup table in every sub block, computational complexity is N ×R times lookup
table(LUT) and the table size is TA1 .

With respect to determination of higher-order integral property, we calculate
first-order integral property of every sub blocks in terms of each sub block in
end point of bijective path E (|E| = N − 1). We prepare a table of calculation
of each first-order integral property such as A ⊕ A = B. Let TA2 be a table size
of such calculations. Even if we lookup table in every sub blocks, computational
complexity is N2 × R times LUT and the table size is TA2 .

Algorithm B: Suppose we test every N × R sub blocks is U . For every R
round and possible combination of {v′

t, es}, we test injection of E → V ′ and
E\es → V ′\v′

t. Therefore, computational complexity of Algorithm B is N3 ×R2

times computational complexity of Algorithm B′.

Algorithm B′: We lookup small tables such as Fig. 5 to determine whether sub
blocks are changed from μ and ε. Let TB′ be table size of characteristics in terms
of μ and ε of every function such as f . Even if we repeat Step-2 and 3 for N ×R
times(maximum times), computational complexity is N2 × R2 times LUT and
the table size is TB′ . Therefore, computational complexity of Algorithm B is
N5 × R4 times LUT and the table size is TB′ .

From these computational complexity, we can execute the proposal algorithm
even in general-purpose computers.

9 Conclusion

When a cipher is byte-based, the proposal algorithm is applicable to not only
Feistel type but also SPN type ciphers. For example, AES is in the scope, since
Mixcolums is decomposed of L and ⊕ in sub block unit which is element of F8

2.
As for fastness, we can execute it even in personal computers. Therefore, we
recommend the proposal algorithm instead of the conventional one.

Designers of block ciphers must consider precise integral distinguisher
obtained by the proposal algorithm. There is a possibility that the number of
rounds to be attacked increases from the precise integral distinguisher. Even if
it is not, it can be less difficult to guess all of the secret keys from increased bal-
anced sub blocks. Therefore, the designers need to consider such vulnerabilities
and select stronger cipher algorithm and key schedule.
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Abstract. Digital signature guarantees the authenticity and encryp-
tion ensures the confidentiality of a transmitted message. Signcryption,
as the name indicates, is a primitive which serves both these purpose
with added efficiency and features. In this paper, we introduce a variant
of signcryption called Plaintext Checkable Signcryption (PCSC), which
extends signcryption by the following functionality: given a signcryptext
c, a plaintext m and the corresponding public values, it is universally
possible to check whether c is a signcryption of m. The security require-
ments of such a primitive is studied and a suitable model of security
is proposed. Moreover, we provide efficient generic model construction
for PCSC based on “Encrypt-then-Sign” paradigm using an arbitrary
partially trapdoor one-way function and a signature scheme. Finally, the
construction is shown to be secure in the proposed model.

Keywords: Plaintext checkability · Signcryption · Random oracle model

1 Introduction

Signcryption, introduced by Zheng [16] and formalized in [1,2], has been an area
of active research from the day of its inception. Signcryption is a primitive which
encrypts as well as authenticates a message. The main objective in the study of
signcryption scheme was two-fold: to reduce the cost of signcryption than naive
combination of encryption and signature and to achieve better security than the
components: encryption and signature scheme. Till then, depending upon their
applicability in various requirements, various signcryption schemes along with sev-
eral variants like, identity-based signcryption [14], proxy signcryption, aggregate
signcryption [9], signcryption with delayed identification [7], threshold signcryp-
tion [13], heterogeneous signcryption [12] etc., various techniques for constructing
these schemes like [6] and their corresponding security notions have evolved.

In this paper, we propose a new signcryption variant, called plaintext check-
able signcryption (PCSC). A plaintext checkable signcryption scheme is a sign-
cryption scheme with the additional functionality that anyone can test whether
a ciphertext c is the signcryption of a given plaintext message m. To clarify
the applicability of such a primitive, we give one potential application of this
primitive PCSC as follows:
c© Springer International Publishing Switzerland 2015
S. Jajodia and C. Mazumdar (Eds.): ICISS 2015, LNCS 9478, pp. 324–333, 2015.
DOI: 10.1007/978-3-319-26961-0 19
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Suppose there are many doctors in a hospital. The patients may send their
messages, such as seeking an appointment for a particular doctor at certain
time, the reports or even their emergencies, to the drop-box of the doctors in a
signcrypted way.1 But due to the busy schedules, the doctors are unable to go
through each of the signcrypted messages from the patients. Thus, the hospital
management appoints several secretaries (who work in shifts) for all the doctors.
Each secretary should have access to the drop-box of all the doctors and each of
them should be able to sort all the signcrypted messages of each doctor depending
on the instructions for sorting from the doctors. A trivial solution could be to
provide the secret keys of all the doctors to each secretary. However, the patients
or even the management of the hospital may not want to do that. Instead, the
management wants the secretaries to have only the power to search any message
(for the convenience of the doctors so that a particular secretary may be asked
for any message to search) but must not have the power to decrypt the encrypted
messages. For example, a doctor D, who is now on vacation, requests secretary
S to redirect only the messages containing the phrase “emergency” in it to his
smart phone. Once the drop-box of D receives those particular messages having
“emergency” as a plaintext, the secretary S sorts the encrypted messages to
redirect to the corresponding doctor for necessary actions.

Note that a PCSC scheme cannot achieve even the standard notion of indistin-
guishability of signcryptions under chosen-plaintext attack: an adversary choos-
ing two messages and receiving the signcryption of one of them can simply test
which message was signcrypted using the plaintext checking functionality. How-
ever, we want that the signcryptext to leak as little information as possible about
the plaintext.

1.1 Related Work

The problem of searching an encrypted database [4,10,11] etc. has been well stud-
ied under the name of searchable encryption in the last decade. However, search-
able versions of signcryption schemes are not yet explored. As a matter of fact,
a searchable signcryption scheme built using techniques from any of [4,10] will
not suffice, as for each individual message to be searched by the secretary, a sep-
arate trapdoor (message-specific trapdoor) must be generated and sent to her by
each doctor through a secure channel. Thus, for each request to search a plain-
text, each doctor needs to issue a separate trapdoor to be sent to the secretary,
making the scheme impractical in the proposed scenario. For signcryption schemes
built using delegated searchable encryption [11], the secretaries will have to store
multiple master trapdoors, one for each of the doctors. Moreover, all the existing
constructions of delegated searchable encryption [11] are pairing-based, thereby
restricting the constructions only to a specific tool. In publicly verifiable signcryp-
tion schemes, though the validity of the signcryption can be checked publicly with-
out revealing the message in question, it does not allow for plaintext checkability.
1 Note that authentication of the message is important in this scenario to avoid spam

messages.
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The only work closely related to this scenario, is Plaintext Checkable Encryp-
tion (PCE) [5]. A plaintext checkable encryption scheme is a probabilistic public-
key encryption scheme with the additional functionality that anyone can test
whether a ciphertext c is the encryption of a given plaintext m under a pub-
lic encryption key pk. Thus, an obvious solution is to carefully combine a PCE
and a standard signature scheme to construct a PCSC. However, this method
restricts the choice of building blocks of the proposed primitive. In fact, our
generic construction can be securely designed using encryption schemes with
weaker security than that used in generic constructions of PCE in [5].

1.2 Our Contribution

In this paper, we introduce a new signcryption variant, Plaintext Checkable
Signcryption (PCSC), and carefully formalize its security notion based on the
scenario stated above. As stated earlier, indistinguishability against chosen plain-
text attack can not be achieved by a PCSC scheme and mere one-wayness of
the signcryption may not be acceptable as it may leak some information about
the underlying plaintext. Although the plaintext checkability itself leaks some
information about the plaintext, we want it to leak the bare minimum. To frame
a proper notion of minimal information leakage, we introduce the notion of
unlinkability of signcryptions. Informally speaking, a signcryption scheme is said
to have unlinkable signcryptions if no probabilistic polynomial time adversary
is able to distinguish two signcryptions of the same message from signcryptions
of different messages. We also provide an efficient generic construction of PCSC
using partially trapdoor one-way function and a signature scheme. Finally, we
prove its security along the proposed model.

Organisation of the Paper. The rest of the paper is organised as follows: In
Sect. 2, some definitions of existing cryptographic primitives and their security
notions are discussed. In Sect. 3, we propose the formal definition and security
notion of PCSC. The main construction is given in Sect. 4 and its security analy-
sis is done in Sect. 5. Finally we conclude with some open issues in Sect. 6.

2 Preliminaries and Definitions

We begin by formally defining the notions of Public-Key Encryption (PKE) and
Signature Scheme (SS) and their corresponding security notions.

2.1 Public-Key Encryption (PKE)

A Public-Key Encryption (PKE) is a tuple of probabilistic polynomial-time
(ppt.) algorithms (Gen,Enc,Dec) such that:

1. The key generation algorithm, Gen, takes as input a security parameter 1n

and outputs a public-key/private-key pair (pk, sk).
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2. The encryption algorithm Enc takes as input a public key pk, a message m
from the underlying plaintext space M and an ephemeral key r from the
randomness space R to output a ciphertext c := Enc(pk,m, r) belonging to
the ciphertext space C.

3. The decryption algorithm Dec takes as input a private key sk and a ciphertext
c to output a plaintext m or a special reject symbol “⊥”.

It is required that there exists a negligible function negl such that for every n,
every (pk, sk) and every message m in the corresponding plaintext space, it holds
that Pr[Dec(sk,Enc(pk,m, r)) �= m] ≤ negl(n).

Security Notion for Public-Key Encryption (PKE): Though there are
various notions of security for public-key encryption scheme, one of the weak-
est one, partially trapdoor one-wayness, is discussed here as it suffices for our
construction.

Partially Trapdoor One-wayness (PTOW): A PKE scheme is said to be
partially trapdoor one-way (PTOW) if its encryption function Encpk : M×R →
C is partially trapdoor one-way, i.e.,

– for any given c = Encpk(m, r) and pk, it is computationally infeasible to get
back m. In this case, m is said to be a partial pre-image of c. Formally speak-
ing, for any probabilistic polynomial time adversary A, its success, defined by
SuccA = Pr[A(pk, c) → m : ∃r ∈ R such that Encpk(m, r) = c] is negligible.

– given a secret trapdoor sk, for any c ∈ Encpk(M × R), it is easily possible to
get back m ∈ M such that there exists an r ∈ R such that c = Encpk(m, r).
The secret trapdoor sk is called a partial trapdoor as it enables a partial
pre-image (i.e., m) recovery.

Remark 1. It is to be noted that a partially trapdoor one-wayness of encryption
is a strictly weaker security notion than indistinguishability of encryption against
chosen plaintext attack.

If we wish to analyse a scheme PKE in the random oracle model [3], the hash
functions are replaced by random oracle queries as appropriate, and A is given
access to the random oracle in the above attack game.

2.2 Signature Scheme (SS)

A Signature Scheme is a tuple of ppt. algorithms (Gen,Sign,Ver) such that:

1. The key generation algorithm, Gen, takes as input a security parameter 1n

and outputs a signing-key/verification-key pair (sk, pk).
2. The signing algorithm Sign takes as input a signing-key sk, a message m from

the underlying plaintext space to output a signature s := Sign(sk,m).
3. The verification algorithm Ver takes as input a verification-key pk and a

message-signature pair (m, s) to output 0 or 1.

It is required that there exists a negligible function negl such that for every n,
every (pk, sk) and every message m in the corresponding plaintext space, it holds
that Pr[Ver(pk,m,Sign(sk,m)) �= 1] ≤ negl(n).
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Security Notion for Signature Scheme (SS): A Signature Scheme SS =
(Gen,Sign,Ver) is said to achieve existential unforgeability against chosen mes-
sage attack (UF-CMA) if any probabilistic polynomial-time adversary A has
negligible chance of winning against a challenger C in the following game:

1. Given the security parameter, C generates a key pair (pk, sk) and returns pk
to A.

2. A is given oracle access to the signing oracle.
3. A outputs a message-signature pair (m∗, s∗).

A wins the game if s∗ is a valid signature on m∗ and if m∗ was never queried to
the signing oracle.

3 Plaintext Checkable Signcryption (PCSC)

In this section, we formally define Plaintext Checkable Signcryption (PCSC) and
frame its security notions based on the requirements of the proposed scenario.

Plaintext Checkable Signcryption (PCSC) consists of five-tuple of ppt. algo-
rithms (Setup, KeygenA, KeygenB,Signcrypt,Unsigncrypt, PCheck) such that

1. The setup algorithm Setup, takes as input a security parameter 1n and returns
common parameter par required by the PCSC scheme.

2. The key generation algorithm for the sender A, KeygenA, takes as input the
common parameters par and outputs a public-key/private-key pair (pkA, skA).

3. The key generation algorithm for the receiver B, KeygenB, takes as input the
common parameters par and outputs a public-key/private-key pair (pkB , skB).

4. The signcryption algorithm Signcrypt takes as input common parameters par,
sender’s secret key skA, receiver’s public key pkB and a message m to output
a signcryptext c := Signcrypt(par, skA, pkB ,m).

5. The unsigncryption algorithm Unsigncrypt takes as input common parameter
par, sender’s public key pkA, receiver’s secret key skB , a signcryptext c to
output a message m := Unsigncrypt(par, pkA, skB , c) or an error symbol ⊥.

6. The plaintext checking algorithm, PCheck, takes as input common parameter
par, sender’s public key pkA, receiver’s public key pkB , a plaintext m and a
signcryptext c to output 1 or 0, i.e.,

PCheck(par, pkA, pkB ,m, c) = 1 or 0.

Correctness: It is required that for every n, every (pkA, skA), (pkB , skB), every
message m in the corresponding plaintext space, it hold that

Unsigncrypt(skB , pkA,Signcrypt(par, skA, pkB ,m)) = m and

PCheck(par, pkA, pkB ,m,Signcrypt(skA, pkB ,m)) = 1.
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3.1 Security Notions for PCSC

As mentioned earlier in Sect. 1.2, PCSC can not achieve indistinguishability of
signcryption even against chosen plaintext attack. Thus, as an alternative, we
define unlinkability of signcryptions through the following game between an
adversary and a challenger. The game combines both the features of insider
security of (ordinary) signcryption scheme as well as unlinkability of encryptions
of a plaintext checkable encryption scheme [5].

Unlinkability: A Plaintext Checkable Signcryption Scheme (PCSC) is said
to achieve unlinkability (UNLINK-PCSC) if any probabilistic polynomial-time
adversary A = (Af , Ag) has negligible advantage against a challenger C in the
following game:

1. Given the security parameter, C generates common parameter par and then
with that generates a sender’s key-pair (pkA, skA) using KeyGenA and a
receiver’s key-pair (pkB , skB) using KeyGenB.

2. Af is given par, skA, pkA, pkB . Af outputs a pair of distinct messages m0,m1

from the associated plaintext space.
3. C chooses b ∈R {0, 1}, computes and sends the challenge signcryptexts c0 =

Signcrypt(par, skA, pkB ,mb) and c1 = Signcrypt(par, skA, pkB ,m1) to Ag;
4. Ag outputs a bit b′.

The advantage Advunlink
A,PCSC(n) is defined to be |Pr[b′ = b] − 1/2|.

It is assumed that Af and Ag share neither coins nor state (e.g., the messages
m0,m1 chosen by Af in the find stage are not known to Ag in the guess stage),
and the messages are to be drawn from a high min-entropy space, as otherwise
the notion is not satisfiable by a PCSC scheme, since the adversary could simply
check all messages.

Unforgeability: A Plaintext Checkable Signcryption Scheme (PCSC) is said
to achieve existential signcryptext unforgeability against chosen message attack
in UF-PCSC-CMA sense if any probabilistic polynomial-time adversary A has
negligible chance of winning against a challenger C in the following game:

1. Given the security parameter, C generates common parameter par and then
with that generates a sender’s key-pair (pkA, skA) using KeyGenA and a
receiver’s key-pair (pkB , skB) using KeyGenB.

2. A is given par, pkA, pkB , skB as well as access to the signcryption oracle
Signcrypt(par, skA, pkB , ·). For each signcryption query m, the oracle answers
it with c = Signcrypt (par, skA, pkB , m).

3. A outputs a signcryptext c∗.

A wins the game if m∗ ← Unsigncrypt(par, pkA, skB , c∗) satisfies m∗ �=⊥ and
if its underlying plaintext m∗ was never submitted to the signcryption oracle
Signcrypt(par, skA, pkB , ·).
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4 The Proposed Generic Construction

In this section, we propose a generic construction of a plaintext checkable signcryp-
tion scheme (PCSC) from a public-key encryption scheme (PKE) and a signature
scheme (SS). The construction is based on “Encrypt-then-Sign” paradigm.

Let Π=(Gen, Enc, Dec) be a probabilistic PKE scheme with message space
{0, 1}k1 and randomness space {0, 1}k, and SS=(Gen′, Sign, Ver) be a signa-
ture scheme. We construct a PCSC scheme given by (Setup,KeygenA, KeygenB,
Signcrypt,Decrypt, PCheck) as follows:

1. Setup: Setup(1n) → par.
2. KeyGenA: Gen′(par) → (pkA, skA).
3. KeyGenB:

(a) Gen(par) → (pkB , skB).
(b) Choose a hash function H : {0, 1}k1+k2 → {0, 1}k.
(c) The receiver B publishes pkB ,H and keeps skB as his decryption key.

4. Signcrypt: For a given message m ∈ {0, 1}k1 ,
(a) Choose r ∈R {0, 1}k2 .
(b) Compute ρ = H(m||r).
(c) Set c = Enc(pkB ,m, ρ) and σ = Sign(skA, c||r).
(d) Output signcryptext c = (c, σ, r).

5. Unsigncrypt: For a given signcryptext c = (c, σ, r),
(a) If Ver(pkA, c||r, σ) = 0 or Dec(skB , c) =⊥, return ⊥.
(b) Else compute Dec(skB , c) = m′ and ρ′ = H(m′||r).
(c) If Enc(pkB ,m′, ρ′) = c, return m′, else return ⊥.

6. PCheck: For a given c = (c, σ, r) and a message m′,
(a) Compute ρ′ = H(m′||r)
(b) If c = Enc(pkB ,m′, ρ′) and Ver(pkA, c||r, σ) = 1, return 1, else return 0.

Remark 2. The proposed construction is almost as efficient as the standard
encrypt-then-sign approach of constructing signcryption schemes, only computa-
tional overhead being evaluation of one hash value and the need of the transmitting
the value r along with the signcryptext obtained by standard encrypt-then-sign
approach. However, as PCSC is a signcryption scheme with an additional feature of
plaintext checkability, its computational overhead and ciphertext expansion factor
can not be better than the typical generic constructions of signcryption schemes.

Remark 3. From the point of view of size of the signcryptext c, we would like
to minimize the size of r, i.e., k2. But, it should be done in accordance with the
constraint that there should be an efficient hash function compressing k1 + k2
bit strings to k bit strings.

5 Security Analysis of Construction

In this section, we provide the security analysis of the proposed construction
along the security model described in Sect. 3.1.
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Theorem 1. The proposed PCSC is UNLINK in random oracle model if Π is
PTOW.

Proof. We will construct an algorithm B which finds a partial pre-image of EncΠ

using an UNLINK adversary A = (Af , Ag) against PCSC. As an input, B is fed
with pkR of Π and a challenge ciphertext c∗ generated by EncΠ , whose partial
pre-image is sought. B runs KeyGenA to output (pkA, skA). Finally, B simulates
Af with pkR, pkA, skA and answers the H oracle queries of Af as follows:

Simulation of H-oracle: When Af submits a H-query mi||ri, B chooses a
random ρi ∈ {0, 1}k and returns ρi to A. For each returned value, B maintains
a list called H-list containing (mi, ri, ρi). For subsequent queries, B checks the
H-list whether the query has been previously answered or not. For repeated
queries, same value of ρi is returned whereas new queries are recorded in H-list.

Once the first query phase is over, Af returns two plaintexts m0,m1 ∈ {0, 1}k1

to B. B randomly chooses b ∈R {0, 1}, r0, r1 ∈R {0, 1}k2 , ρ1 ∈R {0, 1}k, sets c0 =
c∗ and computes c1 = Enc(m1, ρ1), σ0 = Sign(skA, c0||r0), σ1 = Sign(skA, c1||r1).
Finally, B simulates Ag with c0 = (c0, σ0, r0) and c1 = (c1, σ1, r1).

In the second query phase, Ag is allowed to make H-queries as before. After
the second query phase is over, Ag outputs a guess b′ to B and B returns the set
S consisting of the first coordinates of all the entries in the H-list.

The theorem now follows immediately from the following lemma.

Lemma 1. If ε be the advantage that given a valid signcryptext, Ag can correctly
guess the bit b, then a partial pre-image of c∗ is in S with probability greater
than ε/2.

Proof. Let us assume that c∗ = Enc(pkB ,m∗, ρ∗) for some (m∗, ρ∗). Because of
injectivity of Enc, if such a pair exists, it is unique. In view of the simulated
game, we define AskH to be the event that m∗||r0 is queried to the H-oracle,
where r0 is randomly chosen while simulating c0 = (c0, σ0, r0) and Ask′H to be
the event that m∗||r′ is queried to the H-oracle for some r′ ∈ {0, 1}k2 .

We say that the attacker wins the simulated game if AskH occurs or b = b′.
With above simulation of H-oracle, it is clear that the above game perfectly
simulates the real UNLINK game unless AskH occurs. Thus, AdvsimA ≥ AdvrealA = ε.
However, as no advantage can be gained without AskH, Pr[Winssim] = Pr[b′ =
b] + Pr[AskH]. As c0 is independent of the hidden bit b, Pr[b′ = b] = 1

2 . Thus,
Pr[Winssim] = 1

2 + Pr[AskH]. Therefore,

ε ≤ AdvsimA = 2Pr[Winssim] − 1 = 2Pr[AskH] < 2Pr[Ask′H]

i.e., Pr[Ask′H] >
ε

2
.

This means that with probability greater than ε
2 , m∗ lies in the set S con-

sisting of all first coordinate entries in the H-list. 
�

Remark 4. The proposed PCSC can also be shown to satisfy UNLINK in random
oracle model if Π is taken to be IND-CPA secure. The proof technique is almost
similar to that of Theorem 1 in [5].
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Theorem 2. PCSC is insider existential signcryptext unforgeable against cho-
sen message attack in UF-PCSC-CMA sense in standard model if the underlying
signature scheme SS is UF-CMA secure.

Proof. We construct an UF-CMA adversary B against SS using an UF-PCSC-
CMA adversary A against PCSC. B takes as input the common parameter par,
a sender’s public-key pkA and a signing oracle OSign(skA, ·). B runs KeyGenB

(par) → (pkB , skB) and chooses a hash function H of the form H : {0, 1}k1+k2 →
{0, 1}k and feeds A with par, pkA, skB , pkB and H. In the query phase, when
A submits a signcryption query for mi, B chooses ri ∈R {0, 1}k2 and computes
ρi = H(mi||ri) and ci = Enc(pkB ,mi, ρi). Then B queries the OSign(skA, ·) with
ci||ri to get a response σi and finally returns (ci, σi, ri) to A. B also maintains
a list, S-list, consisting of the queried messages, mi’s. Once the query phase is
over, A outputs a signcryptext (c∗, σ∗, r∗) to B. B returns (c∗||r∗, σ∗) to the
UF-CMA challenger C.

Let U be the event that σ∗ is a valid signature on c∗||r∗ i.e., Ver(pkA, c∗||r∗,
σ∗) = 1 and c∗||r∗ has not been queried to the signing oracle OSign and V be the
event that (c∗, σ∗, r∗) is a valid signcryptext i.e., Unsigncrypt(pkA, skB , (c∗, σ∗,
r∗)) = m∗ �=⊥ and m∗ has not been queried to the signcryption oracle OSigncrypt.
Note that, if m∗, the underlying message of c∗, has not been submitted to
the signcryption oracle OSigncrypt(skA, pkB , ·), then, as Enc is an injection,
c∗||r∗ has not been queried to the signing oracle OSign(skA, ·), i.e., as per
the simulation, the event U occurs only if the event V occurs. Hence, we have
Pr[B wins] = Pr[U ] ≥ Pr[V ] = Pr[A wins]. 
�

6 Conclusion

In this paper, we have introduced a new primitive called Plaintext Checkable
Signcryption (PCSC) and discussed its applications in certain functionalities. It
was also noted that the proposed generic construction is almost as efficient as
the standard encrypt-then-sign approach of constructing signcryption schemes,
only overhead being evaluation of one hash value. A challenging issue for further
research in this direction could be to construct a designated checker version of
the above primitive, as in [8] along with its appropriate security notions.
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Abstract. In Asiacrypt 2010, Knellwolf, Meier and Naya-Plasencia pro-
posed distinguishing attacks on Grain v1 when (i) Key Scheduling
process is reduced to 97 rounds using 227 chosen IVs and (ii) Key Schedul-
ing process is reduced to 104 rounds using 235 chosen IVs. Using similar
idea, Banik obtained a new distinguisher for 105 rounds. In this paper,
we show similar approach can work for 106 rounds. We present a new
distinguisher on Grain v1 for 106 rounds with success probability 63 %.

Keywords: Differential cryptanalysis · Distinguisher · Grain v1 ·
Stream cipher

1 Introduction

The Grain v1 is a well-known hardware-efficient, synchronous and bit oriented
stream cipher. Designed in 2005 by Hell, Johansson and Meier [18], it has been
widely studied for nearly a decade mostly because of its simplistic structure
and selection in the eStream hardware profile (profile 2) portfolio [14]. In order
to prevent the correlation attacks [6] on Grain v0, the modified versions Grain
v1 [18] was proposed after incorporating certain changes. Grain 128 and Grain
128a are inspired from Grain v1, and use a similar structure.

Küçük et al. [9] proposed related key-IV attack on Grain v1. They observed
that for any (K, IV ) pair, there exist related (K ′, IV ′) pair with probability 0.25
that generates 1-bit shifted keystream. Bjørstad [7] showed that Grain v1 has
a low resistance to BWS sampling. Other cryptanalytic results related to this
cipher have been presented in [15,16,19,24,25,27,28].

In [8], an attack on nonlinear filter generators with linear resynchronization
and filter function with few inputs is presented. To avoid such attacks, the ini-
tialization of stream ciphers should be designed carefully. The common design
paradigm (including the Grain family) of stream ciphers is as follows. The key K
and initialization vector IV are loaded into the state along with some padding
bits. Next, state update function is applied to the internal state iteratively for a
number of rounds without producing any output (key-stream). Hence, the num-
ber of rounds is important for both security and efficiency of the cipher, since
increasing the number of rounds will slow down the cipher, but at the same time
c© Springer International Publishing Switzerland 2015
S. Jajodia and C. Mazumdar (Eds.): ICISS 2015, LNCS 9478, pp. 334–344, 2015.
DOI: 10.1007/978-3-319-26961-0 20
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likely to increase the security. Hence, finding the minimal number of rounds that
would ensure the conjectured security level is a critical task, and studying the
ciphers in its reduced variant (i.e., treating as if the key-streams are available
just after the key & IV are loaded to the register).

Trivium [10], another candidate in the hardware profile of eStream, has been
cryptanlysed for reduced round by many researchers. Englund et al. [15] showed
statistical weaknesses on Trivium for 736 rounds. Aumasson et al. [1] were able
to build a distinguisher on Trivium after 790 round. Independently Knellwolf
et al. [21] built a distinguisher up to 806 rounds.

Grain v1 is studied extensively for reduced round. In [2], a non-randomness
for 81 round has been reported. In [20], Knellwolf et al. proposed a distinguisher
for 97 rounds and 104 rounds. However results of [20] were based on experi-
ments only. Later, Banik [3] proved a theoretical result for 97 rounds. Recently
a distinguisher for 105 round has been proposed in [4]. These attacks on Grain
v1 are known as Conditional Differential Cryptanalysis (CDC), which was first
introduced by Ben-Aroya and Biham [5] for block cipher cryptanalysis. It studies
the output frequency of derivatives of output bit on specifically chosen IV .

However, in recent terminology, CDC on stream cipher can be described
as dynamic cube attack. Cube attacks, introduced by Dinur and Shamir [12],
have been used in cryptanalysis. Although cube attack works [11,13] success-
fully on Grain 128, its performance on Grain v1 is not that effective. Using CDC,
Knellwolf et al., in their Asiacrypt 2010 paper [20] obtained a practical distin-
guisher on Grain 128 for 215 rounds. Higher order conditional differential attacks
on Trivium and Grain 128 have been studied in [22]. CDC has been applied suc-
cessfully in [23] on Grain 128a. In this paper, we show that one can attack Grain
v1 up to 106 rounds using CDC method.

The paper is organized as follows. In Sect. 2, we describe the design of Grain
v1. We present our experimental results in Sect. 3. Section 4 gives a new distin-
guisher on Grain v1 up to 106 rounds. Conclusion is presented in Sect. 5.

2 Brief Description of Grain v1

Grain v1 has 80 bit key K and 64 bit initialization vector IV . The structure
of the Grain v1 is depicted in Fig. 1. The state consists an 80-bit LFSR and an
80-bit NFSR. The update function of the LFSR is given by: yt+80 = f(Yt), where
Yt = [yt, yt+1, . . . , yt+79] is an 80-bit vector that denotes the LFSR state at the
tth clock interval and f is a linear function on the LFSR state bits obtained
from a primitive polynomial in GF (2) of degree 80. The NFSR state is updated
as xt+80 = yt ⊕ g(Xt). Here, Xt = [xt, xt+1, . . . , xt+79] is an 80-bit vector that
denotes the NFSR state at the tth clock interval and g is a non-linear function
of the NFSR state bits.

The output keystream is produced by combining the LFSR and NFSR bits
as zt = h′(Xt, Yt) =

⊕
a∈A xt+a ⊕ h(Xt, Yt), where A is some fixed subset of

{0, 1, 2, . . . , n − 1}. Below we present the detailed description.
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As stated, the key-stream generation of Grain v1 consists of three phases. In
the first phase, the key & IV bits are loaded to the state register in the Key Load-
ing Algorithm routine; then the state bits are updated during the Key Scheduling
Algorithm routine; and next the Pesudo-Random Generation Algorithm routine
produces the key-streams. These routines are described as follows.

Key Loading Algorithm (KLA). The key (80-bits) is loaded in the NFSR
and the IV(64-bits) is loaded in the 0th to the 63th bits of the LFSR. The
remaining 64th to 79th bits of the LFSR are loaded with 1.

Key Scheduling Algorithm (KSA). After the KLA, for the first 160 clocks,
the keystream produced at the output point of the function h′ is XOR-ed to
both the LFSR and NFSR update functions. So during the first 160 clock
intervals, the LFSR and the NFSR bits are updated as yt+80 = zt ⊕ f(Yt),
xt+80 = yt ⊕ zt ⊕ g(Xt).

Pseudo-Random Keystream Generation Algorithm (PRGA). After the
completion of the KSA, zt is no longer XOR-ed to the LFSR and the NFSR but
it is used as the Pseudo-Random keystream bit. Hence in this phase, the LFSR
and NFSR are updated as yt+80 = f(Yt), xt+80 = yt ⊕ g(Xt).

NFSR LFSR

g(Xt) f(Yt)

h(Xt, Yt)/

/

zt

Fig. 1. Structure of stream cipher in grain family

The LFSR update rule is given by yt+80 = yt+62 ⊕ yt+51 ⊕ yt+38 ⊕ yt+23 ⊕
yt+13⊕yt. The NFSR state is updated as xt+80 = yt⊕g(xt+63, xt+62, xt+60, xt+52,
xt+45, xt+37, xt+33, xt+28, xt+21, xt+15, xt+14, xt+9, xt), where,

g(xt+63, xt+62, xt+60, xt+52, xt+45, xt+37, xt+33, xt+28, xt+21, xt+15, xt+14, xt+9, xt)

= xt+62 ⊕ xt+60 ⊕ xt+52 ⊕ xt+45 ⊕ xt+37 ⊕ xt+33 ⊕ xt+28

⊕ xt+21 ⊕ xt+14 ⊕ xt+9 ⊕ xt ⊕ xt+63xt+60 ⊕ xt+37xt+33 ⊕ xt+15xt+9

⊕ xt+60xt+52xt+45 ⊕ xt+33xt+28xt+21 ⊕ xt+63xt+45xt+28xt+9
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+ xt+60xt+52xt+37xt+33 ⊕ xt+63xt+60xt+21xt+15

⊕ xt+63xt+60xt+52xt+45xt+37 ⊕ xt+33xt+28xt+21xt+15xt+9

⊕ xt+52xt+45xt+37xt+33xt+28xt+21.

The key-stream is produced by combining the LFSR and NFSR bits as:

zt =
⊕

a∈A

xt+a ⊕ h(yt+3, yt+25, yt+46, yt+64, xt+63),

where, A = {1, 2, 4, 10, 31, 43, 56} and h(s0, s1, s2, s3, s4) = s1⊕s4⊕s0s3⊕s2s3⊕
s3s4 ⊕ s0s1s2 ⊕ s0s2s3 ⊕ s0s2s4 ⊕ s1s2s4 ⊕ s2s3s4.

3 Biases Beyond 105 Rounds of KSA

As evident from the description, the NFSR update function used in Grain v1 is
of degree 6. So symbolic expressions (treating the key & IV as symbolic variables
and then doing the state update operation) of Grain v1 grow very fast. In Fig. 2,
we show the number of monomials in key-stream expression of Grain v1 over
some initial rounds.
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Fig. 2. Growth of key-stream expression of Grain v1

As mentioned, Knellwolf et al. [20] observed a new distinguisher on Grain v1.
Now we briefly explain how one can interpret the idea of [20] as a dynamic cube
attack. Recall from Sect. 2 that Grain v1 contains 80-bit key k0, . . . , k79 and
64-bit IV v0, . . . , v63. Grain v1 is initially loaded with X0 = [k0, . . . , k79] and
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Y0 = [v0, . . . , v63,

16
︷ ︸︸ ︷
1, . . . , 1] (here X0 corresponds to NFSR and Y0 corresponds to

LFSR).
Next start with NFSR X ′

0 = [k0, . . . , k79] but different LFSR Y ′
0 = [v0, . . . , 1⊕

v37, v63,

16
︷ ︸︸ ︷
1, . . . , 1]. That is, in cube attack terminologies, v37 is chosen as cube.

Thus two states S0 and S′
0 initialized by (X0, Y0) and (X ′

0, Y
′
0) are different

only at one position. Suppose zi and z′
i are the key stream bits for S0 and

S′
0 respectively at i-th round of KSA. They observed experimentally that if

z12 = z′
12, z34 = z′

34, z40 = z′
40 in KSA and KSA is reduced to 97 rounds, the

first output bit in PRGA will be same with probability more than 0.5. In ACISP
2014, Banik [3] gave the theoretical justification for this result.

Recently, Banik [4] showed a distinguishing attack for 105 round. Instead
of 37-th bit of IV, he chose 61-bit of IV for the differential. In his work, it is
considered the equality of z15 = z′

15, z36 = z′
36, z39 = z′

39 and z42 = z′
42 in KSA.

In this paper, we experiment for all single IV differential. Thus we have a
total of 64 differentials. For any such differential, in the initial rounds of KSA,
it is highly likely that zi = z′

i is satisfied. We load symbolically with X0 =

[k0, . . . , k79] in NFSR and Y0 = [v0, . . . , v63,

16
︷ ︸︸ ︷
1, . . . , 1] in Sage [26]. Next we run

KSA for few rounds, and find zi as a polynomial of k0, . . . , k79, v0, . . . , v63. For
each vj , we identify first four rounds where coefficient of vj in zi is not constant
for 0 ≤ j ≤ 63. We identify these rounds using Algorithm 1. In step 3 of the
algorithm, IA corresponds to the ideal generated by a set of polynomials in A.

Input: vj , zi and an empty array A
Output: An array A

1 i = 0 ;

2 while

(
Coefficient cij of vj in zi is nonconstant & |A| < 4

)
do

3 if ci,j /∈ IA then
4 Include ci,j in A ;

end
5 i = i + 1 ;

end

Algorithm 1. Generating polynomial equations in KSA

Conditions for each differential are presented in Appendix A. We find the
probability of the equality of the first output keystream bits for each KSA round
105 to 128. Our probability is taken over 230 random key-IV.

Our experimental values have been presented in Fig. 3 for rounds 105 to 110.
Here x axis corresponds to the rounds of KSA, y corresponds to each differential
and z corresponds the equality of output keystream bits. From the Fig. 3, it is
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Fig. 3. Basies from 105 to 110 rounds of KSA for each single bit differential on IV

clear we may get distinguisher using the similar idea of [20] for 106 and 107
rounds. In fact, we observe

P
(
z105 = z′

105

∣
∣ z15 = z′

15 & z36 = z′
36 & z39 = z′

39 & z42 = z′
42

)
= 0.500365,

P
(
z106 = z′

106

∣
∣ z16 = z′

16 & z34 = z′
34 & z37 = z′

37 & z40 = z′
40

)
= 0.500245,

P
(
z107 = z′

107

∣
∣ z17 = z′

17 & z35 = z′
35 & z38 = z′

38 & z41 = z′
41) = 0.500246,

when differentials are given on v61, v62 and v63 respectively.
After 107 rounds, all curves become almost flat. Thus it seems beyond 107

rounds, it might not be possible to attack Grain v1 using single differentiable.

4 New Result on Grain v1: Distinguisher upto 106
Rounds

Grain v1 is first intialised with X0 = [k0, . . . , k79] and Y0 = [v0, . . . , v63,

16
︷ ︸︸ ︷
1, . . . , 1].

Here X0 corresponds to NFSR and Y0 corresponds to LFSR.
Now choose v62 as cube. Hence start with NFSR X ′

0 = [k0, . . . , k79] but

different LFSR Y ′
0 = [v0, . . . , 1 ⊕ v62, v63,

16
︷ ︸︸ ︷
1, . . . , 1].

Thus two states S0 and S′
0 initialized by (X0, Y0) and (X ′

0, Y
′
0) different only

at one position. But when more and more KSA rounds are completed, more and
more positions of the states will differ. The idea is to delay the diffusion of the
differential for as many KSA rounds as possible, by imposing many algebraic
conditions over key and IV. We find algebraic expressions using Sage [26]. The
conditions may be classified in to two types:
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– Type 1: Conditions only on IV
– Type 2: Conditions on both Key and IV.

Let zt and z′
t be the bit produced in the t-th KSA round when states are

loaded by (X0, Y0) and (X ′
0, Y

′
0). Recall for r-th reduced version of Grain v1, all

bits zi, z
′
i are unknown to the attacker for i < r. But giving Type 1 and Type 2

conditions, attacker can guarantee that zi ⊕ z′
i = 0 for few initial rounds. The

attack idea is as follows:

1. For i = 0, . . . , 15, it is not difficult to show that zi = z′
i. Hence we do not

need any condition to make zi ⊕ z′
i = 0 for 0 ≤ i ≤ 15.

2. When i = 16, zi ⊕ z′
i is polynomial degree 2 over Key and IV. Now we set

v19 = v41 = 1, v46 = 0 and v0 = k1 ⊕ k2 ⊕ k4 ⊕ k10 ⊕ k31 ⊕ k43 ⊕ k56 ⊕
v3 ⊕ v13 ⊕ v23 ⊕ v25 ⊕ v38 ⊕ v51. Then z16 = z′

16. Thus we have three Type
1 conditions v19 = v41 = 1, v46 = 0 and one Type 2 condition C1 : v0 =
k1 ⊕ k2 ⊕ k4 ⊕ k10 ⊕ k31 ⊕ k43 ⊕ k56 ⊕ v3 ⊕ v13 ⊕ v23 ⊕ v25 ⊕ v38 ⊕ v51.

3. For i = 17, . . . , 26, zi will be always equal to z′
i.

4. When i = 27, z27 will be always different from z′
27. So by imposing any

conditions, we can not make z27 ⊕ z′
27 = 0.

5. zi will be always equal to z′
i for i = 28, . . . , 33.

6. When i = 34, z34 ⊕ z′
34 will be an algebraic expression on Key and IV.

However if attacker sets 17 Type 1 conditions v2 = v15 ⊕ v18 ⊕ v25 ⊕ v31 ⊕
v40⊕v53⊕v56⊕v59, v63 = 0, v14 = v24⊕v39⊕v52, v13 = v23⊕v38⊕v51, v17 =
v42, v43 = 0, v47 = 0, v38 = 0, v4 = 0, v1 = 0, v5 = 0, v20 = 0, v21 = 0, v26 =
0, v27 = 0, v37 = 0, v48 = 0 and one Type 2 condition

C2 : v59 = f1(K),

where f1(K) is a polynomial over Key of degree 16 and 9108 monomials,
z34 = z′

34.
7. We have zi = z′

i for i = 35, 36.
8. When i = 37, again z37 ⊕ z′

37 will be an algebraic expression on Key and IV.
Now attacker sets 7 Type 1 conditions v15 = v18 ⊕ v25 ⊕ v31 ⊕ v53 ⊕ v55 ⊕
v56 ⊕ v59, v16 = v54, v49 = 1, v28 = 0, v6 = 0, v50 = 0, v23 = v45 and two Type
2 conditions

C3 : v3 = k4 ⊕ k5 ⊕ k7 ⊕ k13 ⊕ k34 ⊕ k46 ⊕ k59 ⊕ k66

C4 : v7 = v29 ⊕ f2(K),

where f2(K) is a polynomial over Key of degree 15 and 1535 monomials.
Then we have z37 = z′

37.
9. We have zi = z′

i for i = 38, 39.
10. If we set 7 Type 1 conditions v58 = v7, v57 = v44⊕v29, v51 = 0, v52 = 0, v10 =

0, v32 = 0, v53 = 0 and 2 Type 2 conditions

C5 : v9 = k7 ⊕ k8 ⊕ k10 ⊕ k16 ⊕ k37 ⊕ k49 ⊕ k62 ⊕ v31

C6 : v8 = f3(K),

where f3(K) is a polynomial over Key of degree 15 and 1572 monomials,
z40 = z′

40.
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Thus we have a total of 34 Type 1 conditions and 6 Type 2 conditions
C1, . . . , C6. We can rewrite the Type 2 conditions as

C1 : v0 = K1 ⊕ v3 ⊕ v13 ⊕ v23 ⊕ v25 ⊕ v38 ⊕ v51,
C2 : v59 = K2,
C3 : v3 = K3,
C4 : v7 = K4 ⊕ v29,
C5 : v9 = K5 ⊕ v31,
C6 : v8 = K6,

where Kis are function of Key only for 1 ≤ i ≤ 6. Hence for fixed Key, Kis are
fixed.

Now since attacker does not know the values K1, . . . , K6, he has to consider
all combinations. Let U = [K1,K2,K3,K4,K5,K6]. Then for each U ∈ {0, 1}6,
attacker chooses such that

{

v19 = v41 = 1, v46 = 0, v63 = 0, v14 = v24 ⊕ v39 ⊕ v52,

v13 = v23 ⊕ v38 ⊕ v51, v17 = v42, v43 = 0, v47 = 0, v38 = 0,

v4 = 0, v1 = 0, v5 = 0, v20 = 0, v21 = 0, v26 = 0, v27 = 0,

v37 = 0, v48 = 0, v49 = 1, v28 = 0, v6 = 0, v50 = 0,

v23 = v45, v51 = 0, v52 = 0, v10 = 0, v32 = 0, v53 = 0,

v0 = K1 ⊕ v3 ⊕ v13 ⊕ v23 ⊕ v25 ⊕ v38 ⊕ v51

v59 = K2, v3 = K3, v7 = K4 ⊕ v29, v9 = K5 ⊕ v31, v8 = K6

}

Hence for the correct choice of K1, . . . , K6, we have z16 = z′
16, z34 = z′

34, z37 =
z′
37 and z40 = z′

40.
Note that due to Type 1 conditions, IV space is reduced to {0, 1}64−34 =

{0, 1}30. Corresponding to 6 Type 2 conditions, attacker divides this space
into 26 = 64 partitions. Here free IV variables are: v11, v12, v18, v22, v24, v25, v29,
v30, v31, v33, v34, v35, v36, v39, v40, v42, v44, v45, v54, v55, v56, v60, v61.

Since there are 6 expressions on the unknown key, the attacker chooses all 64
options. Among these 64 options, one must be correct. For each option, attacker
takes the dynamic variables v0, v59, v3, v7, v9, v8 accordingly. So for fixed key, we
have 64 values corresponds to the probability P (z106 = z′

106) for each Type 2
condition. We use the idea as follows.

We consider only those probabilities for which P (z106 = z′
106) > 0.5, and

we add all such probabilities. Let the sum of these probabilities be S. For the
random case, this sum will be

SR = 64 × 1√
2πσ

∫ N

Np

e− (x−μ)2

2σ2

(
x

N
− p

)

dx, (1)

where N is the size of sample space, μ = N
2 , σ2 = N

4 and p = 0.5. For N = 223,
value of SR will be 0.0044.
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From our experiment with 1000 random keys, we observe that for 63 % situ-
ations, the sum in Eq. (1) for Grain v1 is greater than 0.0044 when we are using
all 23 free IV variables. Thus we can distinguish Grain v1 from random source
up to 106 rounds with success probability 0.63.

We try similar idea for 107 rounds. But the algebraic expressions for 107
rounds are much more complicated. Hence getting constraints on Key and IV
i.e., Type 1 and Type 2 conditions would be very difficult for this case.

5 Conclusion

In this paper, we have first presented experimental results for all single bit differ-
ential on IV. From these experiments, it seems that one may find a distinguisher
on Grain v1 for 106 and 107 rounds. Then we have presented our result Grain v1
for 106 rounds. We have shown that it is possible to divide the search space into
64 partitions so that for one partition of IV values the differential of key stream
bits at certain positions will be zero. Experiments show that one can distinguish
Grain v1 for 106 rounds with 63 % success probability.

From our experiments, it seems one may attack Grain v1 up to 107 rounds.
However, in this case the conditions are much more complicated. We leave this
as an open problem.

Appendix A: Condition on Key-Stream for Different
Locations

Shaded conditions for 37 and 61 are previously explored by others [4,20]. In this
paper, we consider the conditions for 62 (Table 1).

Table 1. Different KSA round numbers for different IV locations.

Location Rounds

0 16 17 34 35
1 17 18 35 36
2 19 34 35 36
3 0 20 35 36
4 1 21 36 37
5 2 22 37 38
6 3 23 38 39
7 4 24 39 40
8 5 25 40 41
9 6 26 41 42
10 7 27 42 43
11 8 28 43 44
12 9 29 44 45
13 10 16 30 34
14 11 17 31 35
15 12 32 34 35

Location Rounds

16 13 33 35 36
17 14 34 36 37
18 15 34 35 37
19 16 35 36 38
20 17 36 37 39
21 18 37 38 40
22 19 38 39 41
23 16 20 34 39
24 17 21 35 40
25 0 22 34 35
26 1 23 35 36
27 2 24 36 37
28 3 25 37 38
29 4 26 38 39
30 5 27 39 40
31 6 28 34 40

Location Rounds

32 7 29 35 41
33 8 30 36 42
34 9 31 37 43
35 10 32 38 44
36 11 33 39 45
37 12 34 40 46
38 13 16 34 35
39 14 17 35 36
40 15 34 35 36
41 16 34 35 36
42 17 35 36 37
43 18 36 37 38
44 19 37 38 39
45 20 38 39 40
46 0 21 39 40
47 1 22 40 41

Location Rounds

48 2 23 41 42
49 3 24 42 43
50 4 25 43 44
51 5 16 26 34
52 6 17 27 35
53 7 28 34 35
54 8 29 35 36
55 9 30 36 37
56 10 31 34 37
57 11 32 35 38
58 12 33 36 39
59 13 34 37 40
60 14 35 38 41
61 15 36 39 42
62 16 34 37 40
63 17 35 38 41
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Abstract. In Internet of Things (IoT), several smart devices (accom-
panied with sensors) integrate real world information at central server.
Providing security and privacy, the collected information can be used
for various analytical tasks like mining of data, taking intelligent deci-
sion to control machines, issuing alerts/notifications etc. In this paper, we
present a framework for efficient utilization of centralized data while pro-
tecting data confidentiality and data privacy in IoT infrastructure. We
have combined the concept of attribute based cryptography and func-
tional encryption to process data with efficient access control. To show
theoretical and empirical analysis, we have used a candidate area of IoT
application viz. E-Health care system.

Keywords: Internet of Things (IoT) · Security Architecture of IoT ·
Functional encryption

1 Introduction

Internet of Things (IoT) is the interconnection of uniquely identifiable smart
objects (an object with an associated sensor) through Internet. Each object
in IoT is considered as virtual entity which produces or consumes data. The
objective of an IoT infrastructure is to provide an environment for easy col-
laboration among objects towards common goal [1,22,26]. The major appli-
cation areas of IoT involve ubiquitous computing where information collected
from various sources are integrated at centralized location for further process-
ing. Since all objects in IoT are interconnected through global communication
network (i.e. Internet), security of collected data as well as communication among
devices is crucial aspect in IoT. The security challenges are ranging from deploy-
ment of smart objects to maintaining users’ privacy and data privacy. Moreover,
confidentiality of communicated information, authenticity of users, integrity of
exchanged data and access control are most obvious security requirements in an
IoT system [15,17,20].

Having vast data collection, a central system is indeed an information repos-
itory in IoT infrastructure. This information can be used for various statistical
c© Springer International Publishing Switzerland 2015
S. Jajodia and C. Mazumdar (Eds.): ICISS 2015, LNCS 9478, pp. 345–363, 2015.
DOI: 10.1007/978-3-319-26961-0 21
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analysis and performing different activities. For example; in smart city system,
traffic related data are continuously being sent to central system and based on
their analysis, a traffic control authority can make necessary traffic plan for
next hour. In health-monitoring system, a patient’s body information (blood
pressure, pulse rate, temperature etc.) is periodically sent to central system for
caring out analysis; medical staff can provide treatment or send notifications to
that patient. To perform such analysis, IoT system requires an automation tool
or a service at central site which processes collected data without compromising
data security and privacy. In this paper, we have designed a framework which
provides such services at central system. Our system processes centralized data
in secure manner and thus be useful for diversified IoT applications.

1.1 Background

As IoT is a network of smart objects, it involves varieties of devices and com-
munication technologies. To precisely describe security issues, authors of [12,23–
25] divided IoT infrastructure into three layers (i) Physical Layer, (ii) Network
Layer, (iii) Application layer as shown in Fig. 1.

Fig. 1. IoT Security Architecture

The physical layer is comprised of various data collector devices viz. sen-
sors, RFID readers, cameras etc. The common threats at this layer are device
capturing, malicious substitution of a device, cloning of a device, device abnor-
malities, radio interference etc. [14,23,24]. Different cryptographic software pro-
tocols [10,11,27,30] can be used for basic security service like confidentiality,
integrity, authentication. The collected data from physical layer are available
at network layer through diverse communication networks like wired/wireless
network, mobile network etc. This layer is generally formed by cloud or grid
computing technology and responsible for data processing, classification, broad-
casting/multicasting etc. [12,24]. Application layer is the topmost layer which
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directly deals with end users (may be persons or machines) and provides dif-
ferent services based on the various applications. A device authentication and
users’ authentication are some of the key concerns at this layer.

Numerous works have been proposed to improve security of IoT systems. In
2009, Mayer [17] had analyzed security and privacy sensitivity by categorizing
various technologies (like sensors, storages, actuators, processes, devices etc.).
The protocol given in [20] demonstrates the use of secure multiparty computation
to preserve privacy in several ubiquitous applications of IoT. Various protocols
[13,15,19,29] for secure authentication and access control system in IoT exist.
The schemes described in [13,15,19] are based on access control using elliptic
curve cryptography and mutual authentication while the other [29] is based on
attribute based access control [18,28]. A notable point is that all these schemes
are designed for devices at physical layer of IoT infrastructure.

1.2 Motivation

The existing methods for secure IoT infrastructure allow legitimate users to
access resources and information as well as decline malicious persons or an
attacker. But they neither provide any mechanism to protect integrated data
at network layer nor even any technique to process the collected data. Our main
objective is to propose a framework for network layer of IoT infrastructure to
secure centralized data as well as utilize them for various analytical processing.
To accomplish this, we use a combine approach of an ciphertext policy attribute
Based Encryption (CPABE) [3] and a Functional Encryption (FE) [5,21]. With
the use of CPABE, we propose privacy preservation with access control of cen-
tralized data and with FE, we are able to execute various analytical functions
on an encrypted data. To explain our system, we use an effective application
of IoT i.e. E-Health system which is an online health monitoring and analyzing
system. To the best of our knowledge, ours is the first attempt to propose such
approach.

1.3 Organization

The sequel of this paper is as follows: Sect. 2 gives brief overview of some prelim-
inary technologies. In Sect. 3, we have described the detailed architecture of our
proposed approach with security model. Section 4 shows working of our system
with the help of an illustration. Finally, Sect. 5 includes performance evaluation
with results and analysis followed by conclusion.

2 Preliminaries

Before discussing the detailed architecture of our proposed framework, some pre-
liminary concepts of Attribute Based Encryption (ABE) and Functional Encryp-
tion (FE) are required. This section describes the brief synopsis of both these
concepts.
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2.1 Attribute Based Encryption (ABE)

Attribute Based Encryption is a refined version of public key cryptography
(PKC). In ABE, a public key is formed by various attributes (in terms of string)
related to user instead of a long random integer as in traditional PKC. ABE pro-
vides fine grained access control where a sender can define an access policy for
receiver and thus could control accessibility of data. ABE comes in either forms:
Key Policy ABE (KPABE) or Cipher text Policy ABE (CPABE). In CPABE
[3], a policy is associated with ciphertext and a list of attributes is associated
with a secret key whereas in KPABE [9], a reverse concept is used. The entire
ABE system is defined by four algorithms: (i) Setup: To initiate system, generate
system wide public key Pk and master secret key Mk. (ii) Extract : To extract
private key Sk for the requesting user, it uses master secret key Mk in addition
to policy Pol (in case of KPABE)/a list l of attributes (in case of CPABE).
(iii) Encrypt : Generate ciphertext C from an input message M using Pk and a
list l of attributes (in case of KPABE)/Pol (in case of CPABE). (iv) Decrypt :
By decrypting available C using Sk, a receiver could get plaintext message M .

2.2 Functional Encryption (FE)

Functional Encryption (FE) [5,6,8,21] is a generalization of existing public key
encryption technologies like Identity based encryption (IBE), Attribute based
encryption (ABE), Homomorphic encryption (HE), Predicate Encryption (PE),
Searchable Encryption (SE) etc. In FE, original data are encrypted and then
predefined functions can run on encrypted data. Instead of generating plaintext
as output, the decryption phase runs a function on ciphertext and returns the
result. The functional encryption can be defined by four algorithms: (i) Setup:
By taking security parameters, it generates system public key Pk and master
private key Pr. (ii) Encrypt : To encrypt a message M , this algorithm uses Pk

and generates functional ciphertext FC. (iii) GenTok : This algorithm constructs
a token Tfi

for a function fi using Pr. (iv) Execute: To run a function fi, this
algorithm applies token Tfi

onto ciphertext FC. The output is just the result of
function fi and neither ciphertext nor plaintext.

2.3 Bilinear Map

To formally define our system (given in Sect. 3.5), we use groups with efficiently
computable bilinear maps [3]. Let we have two multiplicative cyclic groups G1

and G2 of prime order p. Let g is the generator of G1. The pairing among elements
of these groups can be performed using a bilinear map e: G1 × G1 → G2 which
has following properties:

1. Computable: Given g, h ∈ G1, there is a polynomial time algorithms to com-
pute e(g, h) ∈ G2.

2. Bilinear: For any integers x, y ∈ [1, p] we have e(gx, gy) = e(g, g)xy.
3. Non-degenerate: if g is a generator of G1 then e(g, g) is a generator of G2.
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3 Proposed Approach

3.1 Problem Formulation

The main objective of proposed framework is to design a dynamic central system
at network layer of IoT infrastructure, that collects data from various sources,
stores them with impregnable security and processes them to perform numerous
intelligent tasks. Moreover, it provides fine-grained access control of centrally
integrated data.

Generally, security of data is provided by central service provider at network
layer but it is not trust worthy. A most common approach is to forward already
encrypted information to server and thus the server would be the repository of
huge amount of encrypted information. These information can be used for various
analytical approaches i.e. generate reports and charts, statistical computations,
forecasting etc.

The idea behind our scheme is to work with encrypted data by running
different functions on them and generate desired results. The outcome of our
approach is that an end user would be able to perform various tasks without
bothering about processing. This will be aiding to users who possess resource
constrained devices i.e. mobile, tablet etc. Moreover, all data at central system
are in encrypted form and only authorized users can access them so data privacy
can be preserved.

3.2 Basic Idea

In IoT infrastructure, a central system contains large amount of critical infor-
mation. Apart from an individual usage, these data can be used for various
analytical processing. The main purpose of our approach is to efficiently utilize
vast collection of data available at the central server. In this paper, we define a
framework which stores encrypted data on server and do further processing on
them to generate necessary results. Although our system runs numerous analyt-
ical functions on data, it preserves data privacy as well as owners privacy.

To represent our framework, we use an effective IoT application i.e. E-Health
system which is an online health monitoring and analyzing system. An E-Health
system collects data and stores them to central servers. These data are then uti-
lized by research centers, government offices, hospitals, doctors, patients or any
other user. In detail, E-Health system gathers records from various sources like
sensors attached with patient’s body, mobile devices used by patients, desktop
machines used by hospitals or doctors etc. These assembled data may then be
used either by medical staff (nurse, doctor, ward boy etc.) to provide necessary
treatment to any patient or by analyst at research centre to generate various
kinds of analytical reports. In the former usage of data, a doctor may require to
see detailed history of any patient while in the later case, an analyst would per-
form statistical computations on a bunch of data without seeing internal detail
of any record. The integrated data at centralized system may contain critical
private information about patients and thus security and privacy of data are key
concerns.
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Here, we design a dynamic central system which is facilitated by Functional
Virtual Machine (FVM). An FVM is a software process responsible for execution
of different functions on encrypted data. Apart from this, FVM supports fined
grained access control by providing ciphertexts which could be accessible only by
authorized users. To implement this scheme, we combine the concept of CPABE
and FE systems. In our system, data owner creates FE ciphertext by applying
functional encryption on CPABE ciphertext. An FVM supports two different
queries: (i) query for function execution, (ii) query for CPABE ciphertext. A user
queries FVM by presenting a token for function or data; and gets corresponding
response. These tokens can be issued to authenticate user by trusted authority.
In response of function execution query, FVM runs a requested function and
forwards the result to requester while in case of CPABE ciphertext query, FVM
separates out CPABE ciphertext from FE ciphertext and send it to requester.
To get plaintext from a CPABE ciphertext, one can use CPABE secret key.

A vital property of our proposed idea is our system provides relevant informa-
tion according to users’ requirements. Also an FE ciphertext available on server
serves multiple functions and uploading of new FE ciphertexts doesn’t affect
existing functions. Moreover, inclusion of a new function in system is completely
independent from available ciphertexts. This proves the dynamic nature of our
framework. All data at central system are in encrypted form and so our scheme
maintains confidentiality and data owners’ privacy. The functions supported by
FVM are based on a set of keywords defined at the time of system setup. So any
new function must be based on this set of available keywords. The following are
examples of some functions:

– Count the number of patients taking treatment in ‘Apollo’ hospital in month
of February 2015. Here an analyst will keep his focus on count without being
keen to know patients name or his decease.

– How many hospitals are being visited by ‘Dr. Desai’? Here, analyst will only
be interested in number of hospitals and not in internal detail of a doctor or
of any hospital.

– Count the number of hospitals available in city ‘Delhi’.
– Find out the number of patients suffering with ‘Cancer’ and taking consulta-

tion from Dr. Shah.
– How many ‘Cancer Specialist’ are available in ‘Mumbai’.
– So on..

Assumptions: (i) We have resource rich central system accompanying with
several processing servers and storage servers. (ii) All data owners as well as
data users are authentic entities. (iii) All key materials are transmitted using
secure channel among trusted authorities and authorized users.

3.3 Strengths and Limitations

The major strengths of our proposed framework are
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– Fine grained access control: As data at central system are encrypted using
CPABE technique, only authorized users (who satisfy the policy for CPABE
ciphertext) can access corresponding plaintexts.

– Privacy preservation: All data available at central server are in encrypted
form and so neither an unauthorized user nor an authorized central server
would be able to access plaintext for any ciphertext. Thus, privacy of data is
preserved.

– Functional system: As our centralized system can process integrated data
by running various functions on them, we achieve a functional system at net-
work layer of IOT. Our system runs heavy weight processes (i.e. functions)
on a central server only and generates functions’ output without revealing
plaintexts. Such system is beneficial to end users (like doctor, nurse etc.) who
possess resource constraint devices.

– Dynamic environment: As there is no dependency of any ciphertext to
any function, dynamic insertion of new ciphertexts as well as new functions
is possible.

The main limitation of our proposed framework is the use of double encryp-
tion. To create FE ciphertext, we use already encrypted data (i.e. CPABE cipher-
text) as payload. But this issue will be suppressed by the benefits and usefulness
of our system.

3.4 Architecture

The general architecture of our proposed system is shown in Fig. 2. The owners
of data can be patients(P), doctors(D), hospitals(H) or any other entity who
owns data. The data/function requesters are the people who make request either

Fig. 2. Architecture of proposed framework
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for plaintext data or for function execution. Normally, data can be requested by
doctors(D) or patients(P) while analyst(A) makes request for function execution.
The centralized server system contains two main entities: Storage Servers (SS)
and Functional Virtual Machine (FVM). Our system involves a trusted authority
(TA) who is responsible for entire system setup. The general flow of our approach
is as follows (as shown in Fig. 2):

1. TA sets up the system by publishing public parameters.
2. Data owners create functional ciphertexts (FCi) and forward them to the

central storage server.
3. A Data/Function requester asks TA for a token by presenting single keyword

(Ki) or function id (Fid).
4. TA issues a token (Tki or TFid) to a the requester.
5. A Data/Function requester presents an available token to the FVM.
6. FVM either runs a function Fid and returns the result ResFid or extracts Ci

from FCi and sends it to the requester.

To perform above steps, our proposed E-Health system works in 5 phases:
(1) System Setup, (2) User Registration, (3) Data Encryption, (4) Function
Execution, (5) CPABE Decryption. The notations used in defining our system
is given in Table 1.

System Setup. A trusted authority TA generates system-wide parameters to
setup CPABE and FE system using following algorithms:

– SET ABE(): With this algorithm, TA defines M and AL and generates CPABE
public-private key pair (Apk, As).

– SET FE(): Using this algorithm, TA defines a universe of keywords UF. For
each keyword Wi ∈ UF , TA creates a public-private key pair (Wip,Wir).
Moreover, it defines a list of functions FL and prepares an FVM for all avail-
able functions. Moreover, TA periodically resets an FVM with new timestamp
TFV M to prevent reuse of same token multiple times.

User Registration. Three types of users are supported by our system: (i) Data
owner: One who owns plaintext data and creates FE ciphertexts (ii) Data
requester: One who queries for plaintext, (iii) Function requester: One who
queries for execution of any available function. Based on a user’s category, three
types of registrations are supported by our system:

– REG OW(): Registration as data owner. Once registration is confirmed, TA
returns (M, AL, Apk, UF, {Wip for each Wi ∈ UF}).

– REG DR(): Registration as data requester. Once registration is confirmed,
TA returns (AL, UF).

– REG FR(): Registration as function requester. Once registration is confirmed,
TA returns (AL, FL).

For all types of registration, TA can use any authentication protocol to check
the validity of users.
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Table 1. Notations

Entity Description

TA Trusted authority for CPABE and FE
system setup

SS Storage Server

FVM Functional Virtual Machine

(Apk, As) CPABE master (public, private) key pair

M Message Space for defining input message

mi Message from patient Pi

AL List of attributes to define policy for
CPABE encryption

Poli Policy used for CPABE encryption of
message mi

Apri CPABE decryption key for user i

UF List of keywords to express functions

(Wip, Wir) (Public, Private) key pair for the keyword
Wi

FL = {Fid(Lid)} Set of functions supported by FVM where
each function Fid is defined by a list of
keywords Lid ⊆ UF

WLi List of keywords used for functional
encryption for Ci and WLi ⊆ UF

WLip List of public keys for keywords in WLi

TFid A token for function Fid

Ci CPABE cipher text for message mi

ResFi Result of a function Fi

nAL Total number of attributes available in AL

nFun Total number of functions available in FL

nUF Total number of keywords available in UF

nLid Total number of keywords used for defining
Fid

nFCi Number of keywords used for functional
encryption

Ts Timestamp associated with TFid

TFV M Timestamp associated with FVM

Tw Token for plaintext data

Data Encryption. After data collection, an owner creates functional ciphertext
using combined approach of ciphertext policy attribute based encryption and
functional encryption. The followings are the algorithms.
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– ABE ENC(Apk, mi, Poli): The plaintext message mi gets encrypted using
master public key Apk and CPABE policy Poli with the encryption technique
given in [3]. This algorithm generates CPABE ciphertext Ci.

– FE ENC(Ci, WLi, WLip): A functional ciphertext FCi is created by associat-
ing encrypted keyword(s) with Ci. Each keyword Wi ∈ WLi is encrypted with
its public key Wip ∈ WLip using public key searchable encryption (PEKS)
technique [4].

At the end, a functional ciphertext FCi is uploaded to central server system.

Function Execution. A function requester can execute any function using
following algorithms.

– TOK GEN(Fid): TA issues a token TFid for a function (Fid) to a function
requester. TFid is created based on the keywords list Lid defining function
Fid. With each TFid, a timestamp Ts is associated, so a token can be reused
within fix time period.

– FUN EXE(TFid): FVM first checks the freshness of a given TFid against his
timestamp TFV M . For a fresh TFid, FVM runs a function Fid and forwards
the result ResFi to the function requester. FVM is facilitated by definition of
different functions at system setup time. The code for each function includes
search over encrypted keywords available in functional ciphertexts using TFid

and also some analytical processing. Finally, the result ResFi is available to
an end user.

CPABE Decryption. A data requester can access plaintext message mi from
FCi using following algorithms:

– TOK GEN(W’): A data requester asks TA for data token by sending W’. If
TA finds W’ ∈ UF, a data token Tw is issued to data requester.

– CIP RET(Tw): For a given Tw, FVM do single keyword search over each FCi.
It returns C = {Ci for all FCi where it found match for Tw}

– ABE DEC(C, Apri): A data user can access only those plaintext from avail-
able C for which he has secret key Apri. TA issues a secret key Apri to data
requester only if requester satisfies the policy associated with that ciphertext.
Once Apri is available, a requester could get plaintext from Ci by CPABE
decryption algorithm [3].

3.5 Security Model

In this section, we describe a security model for proposed framework. Like cipher-
text policy attribute based encryption [3], our security model allows an attacker
to query for tokens of available functions with the restriction that any issued
token can not be used to run a function over challenge ciphertext.

We claim that our proposed approach is semantically secure against an active
attacker A who is able to obtain token TFid for any function Fid of his choice.
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We prove this by ensuring that our scheme doesn’t reveal any information about
function Fi unless TFid is available to him. Moreover, with our functional encryp-
tion scheme, an attacker wouldn’t be able to distinguish a ciphertext FCi with
the list of keywords Si from a ciphertext FCj with the list of keywords Sj . The
formal definition of security for our approach is given by the following game
between an active attacker A and a challenger.
1. The challenger runs the SET FE() algorithm and provides a public key for

each keyword Wi ∈ UF and all available functions Fid to an attacker A.
2. An attacker A adaptively asks for token TFid of function Fid to challenger. A

token TFid contains a set of token values of all keywords used for function Fid.
3. At some point in between, an attacker A asks the challenger for functional

encryption using a set of keywords S0 and S1 as a challenge for which he
doesn’t know any token TFid. In response, the challenger randomly selects i
and gives an FCi using set Si.

4. An attacker A applies TFid on FCi and finds the result. He can continue to
ask for available token TFid of keywords S until S �= {S0, S1}

5. At the end, the attacker A outputs S′ ∈ {0, 1} and wins the game if S = S′.

Our proposed approach is semantically secure, if the attacker A could correctly
guess whether the given S is for S0 or S1 and wins the game. To break our
system, the advantage for an attacker A can be defined as follows.

AdvA(s) = |Pr[S′ = S] − 1
2
|

We say that our proposed approach is semantically secure against an adap-
tive chosen keyword attack if for any polynomial time attacker A we have that
AdvA(s) is a negligible function.

3.6 Formal Definition

To define functional encryption concept, we combine two cryptographic schemes
CPABE and FE. To implement FE, we have modified the existing public key
encryption for keyword search (PEKS) [4] which is a method for single keyword
search over encrypted data. We have extended it for multiple keywords search.
Though we use CPABE algorithms [3] directly in our scheme, we just skip their
internal details. We use bilinear pairing (as discussed in Sect. 2.3) to formally
define our framework. Our framework supports the following algorithms:

System Setup

– SET ABE(): Select AL = {ai|1 ≤ i ≤ nAL} and run original Setup() algo-
rithm of CPABE [3].

– SET FE(): Select UF = {Wi|Wi ∈ AL, 1 ≤ i ≤ nUF}. Take generator g of
G1 and for each Wi take a random αi ∈ Zp

∗. Create a public key hi for each
Wi as hi = gαi .

Also define a list of functions FL = {Fid where 1 ≤ id ≤ nFun} where each
function Fid is defined with a list of keywords Lid ⊆ UF . Prepare FVM available
on server with definition of each function Fid.
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User Registration. As discussed in Sect. 3.4, different types of users make
registration with TA based on their role. TA uses any authentication algorithm
for validity of a user. As our main purpose is to create functional virtual machine,
the selection of authentication protocol is out of focus for this paper.

Data Encryption

– ABE ENC(Apk, mi, Poli): Run Encrypt() algorithm of CPABE [3]. As a
result, for a message mi, we get CPABE ciphertext Ci.

– FE ENC(Ci, WLi, WLip): Take a random r ∈ Zp
∗. For each keyword Wj ∈

WLi, compute tj = e(H1(Wj), hj
r) where hj = WLip. Then, output FCi =

(A, (B1, . . . , BnFCi)) ‖ Ci where A = gr and Bj = H2(tj) and 1 ≤ j ≤ nFCi.
The ‖ denotes concatenation symbol.

Function Execution

– TOK GEN(Fid): For each Wi ∈ Lid of Fid, create si = H1(Wi)
αi . Then output

a token TFid = ((s1, s2.., snLi), Ts).
– FUN EXE(TFid): For given TFid, FVM checks whether Ts ≥ TFV M . If ‘Yes’

then TFid is fresh. For a fresh TFid, for each available FCi, FVM performs
the following test:
For each sj in TFid, (where 1 ≤ j ≤ nLi)

For each Bk in FCi (where 1 ≤ k ≤ nFCi)
If (H2(e(sj , A)) = Bk) is true, Then do analytical processing corre-

sponding to function Fid.

CPABE Decryption

– TOK GEN(W ′): Instead of Fid, if TA finds single keyword in token gener-
ation request, he takes α (from available set of α) for that W’ and outputs
Wid = H1(W ′)α.

– CIP RET (Wid): For each available FCi, FVM performs the following test:
For each Bk in FCi (where 1 ≤ k ≤ nFCi)

If (H2(e(Wid, A) = Bk) is true,
then extract payload Ci from FCi and compute C = C‖Ci.

Return C.
– ABE DEC(C): Run KeyGen() algorithm [3] to get CPABE secret key Apri.

For each Ci ∈ C
Apply CPABE decryption() algorithm [3] to get plaintext message mi.

A data requester can access plaintext from only those Ci for which he has Apri.

4 An Illustration

To precisely describe our framework, we have taken an example and showed
working of each phase of our proposed approach in the following section.
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4.1 Setup

In setup phase, message space M, attributes list AL for policy definition and
keywords list UF for functions’ definitions are defined.

Let our system supports 3 different types of entities (Data Owners):
Patients(P), Doctors(D) and Hospitals(H). The message space M is a gener-
alized set of attributes of data owner and AL,UF ⊆ M . For our discussion, we
have selected AL and UF as given in Table 2. The capitalized word in bracket
with each attribute shows the keyword we use for functional encryption and
decryption.

4.2 User Registration

Our system supports different types of data owners. An owner may be the data
requester or the functions requester. So each user does registration in a suitable
category as per his requirements.

Table 2. Example: Entities and associated AL,UF

Patient (P) AL Doctor Name (PDN), Doctors Registration (DREG),
Doctors Specialization (DSP1), Patient Name
(PN), Patient Mobile No (PMN)

UF Ow type (OT), Patient City (PC), Patient State
(PS), Patient Hospital (PH), Descease1 (PD1),
Desease2 PD2), Consulting Doc1 (PDoc1),
Consulting Doc2 (PDoc2)

Doctor (D) AL Head of Medical Council (HMC), Member of
Doctor’s Association (MDA), Doctor Name (DN),
Doctor Mobile No (DMN)

UF Ow type (OT), Doctor Name (DN), Visiting
Hospital1 (DH1), Visiting Hospital2 (DH2),
Specialization1 (DSP1), Specialization2 (DSP2)

Hospital (H) AL Doctor Name (DN), Hospital RegNo. (HREG)

UF Ow type (OT), Hospital Name (HN), Hospital City
(HC), Hospital State (HS), ACRooms (HACR),
DlRooms (HDLR), Number of Doctors (HNoD)

4.3 Encryption

Let’s we work for 5 patients (P1, P2, P3, P4, P5), 2 Doctors (D1,D2) and 2 Hospi-
tals (H1,H2). First we perform CPABE encryption on plaintext message mi from
patient Pi with associated policy Poli given in Table 3. The result of encryption
of mi is Ci.
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Table 3. Example: CPABE policies

Patients Policies (Poli)

P1 (DN = ‘Dr. Shah’ AND DREG = ‘D101010’ AND DSP1 = ‘Cancer’)

P2 (DN = ‘Dr. Desai’ AND DREG = ‘D208990’)

P3 (DSP1 = ‘Cancer’ OR DSP1 = ‘LungSpecialist’)

P4 (DN = ‘Dr. Mark’ OR DN = ‘Dr. Desai’)

P5 (DN = ‘Dr. Desai’ AND DREG = ‘D20899’)

Once Ci is generated, we apply functional encryption using keywords from
UF . The Table 4 shows list of keywords WLi used for each Ci for performing
functional encryption.

As a result of functional encryption, we get functional ciphertext FCi which
is uploaded to server.

4.4 Function Execution

Now suppose our FVM supports a set FL = {F1, F2, F3} where each Fid is
associated with Lid as shown in Table 5.

To run any function, FVM checks Lid against WL of each ciphertext. The
following Table 6 shows the output of each of the above listed function.

4.5 CPABE Decryption

For the above example, details about patient P1 can be seen only by ‘Dr.Shah’
whose registration number is ‘D101010’ and who is specialist for ‘Cancer’ dis-
eases. Same way, detail case of P2 can be studied by ‘Dr. Desai’ with Registration

Table 4. Example: Keywords used for functional encryption

Patients Keywords (WLi)

P1 OT = Patient, PC = Surat, PS = Gujarat,
PH = Apollo, PD1 = Cancer, PDoc1 =
Dr.Shah

P2 OT = Patient, PC = Surat, PS = Gujarat,
PH = Apollo, PD1 = Cancer, PD2 =
Brain, PDOC1 = Dr.Desai, PDOC2 =
Dr.Shah

P3 OT = Patient, PC = Madras, PS = TN,
PH = Apple, PD1 = Cancer, PD2 =
Eye, PDOC1 = Dr.Mark

P4 OT = Patient, PC = Kolkata, PS = WB,
PH = Apollo, PD1 = Heart, PDOC1 =
Dr.Mark

P5 OT = Patient, PC = Surat, PS = Gujarat,
PH = Apollo, PD1 = Cancer, PDOC1 =
Dr.Desai, PDOC2 = Dr.Shah
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number ‘D208990’. Though P1, P2 be the part of execution of functions F1 and
F2, their internal details are hidden from function requester.

Table 5. Example: Functions with associated Lists

Fid Lid

Functions Description List Description

F1 Count all patients suffering with ‘Cancer’ L1 PD1 = ‘Cancer’

F2 How many patients are currently admitted
in hospital ‘Apollo’ located in city ‘Surat’

L2 PH = ‘Apollo’,
PC = ‘Surat’

F3 Find out number of patients consulted by
‘Dr. Mark’ in city ‘Madras’

L3 PDOC1 =
‘Dr.Mark’, PC
= ‘Madras’

Table 6. Example: Results of Functions

Function (Fi) ResFi Remark

F1 ResF1 = 4 Match found for Patients P1, P2, P3, P5

F2 ResF2 = 3 Match found for Patients P1, P2, P5

F3 ResF3 = 1 Match found for Patient P3

5 Performance Evaluation and Analysis

To evaluate the performance of our approach, we have used the cpabe toolkit [2]
and Pairing-Based Cryptography (PBC) Library [16]. We run the experiments
on a server running Linux with a 32-bit, 2.10 GHz Pentium Core 2 Duo CPU.
To perform group operations, we use type A curve supported by PBC Library.
The type A curve has group order r = 160 bits which provides 80-bit security
strength.

5.1 Experimental Setup

To create CPABE ciphertext, we use cpabe toolkit [2] directly. The concept
of FVM is implemented using PBC library [16] with gcc compiler. To generate
functional ciphertext using various keywords, we have worked with Nursery data
set from the UCI Machine Learning Repository [7]. The Nursery data set has
8 categorical attributes with 27 different values and we consider these values as
keywords for functions supported by FVM.

To define our system for nursery data set, the setup phase generates 27
pairs (one pair per value) of public/private keys. For performance evaluation
of proposed approach, we have implemented 9 different functions Fid (where
1 ≤ id ≤ 9). Also to define a function Fid, we have used id number of keywords.
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5.2 Results

We have given time analysis of three important phases of our scheme i.e. Func-
tional encryption and Function token generation and Function execution in
Figs. 3, 4 and 5 respectively.

The results in Fig. 3 depict that time taken by functional encryption is
O(nm) where n = total number of plaintext records and m = nFCi. Here,
the encryption time includes the time required for CPABE encryption also. The
most important point here is the encryption time is completely independent from
all available functions in system.

Fig. 3. Timing analysis for functional encryption

Fig. 4. Timing analysis for token generation

The results in Fig. 4 proves that time required to generate token for a func-
tion Fid = O(nLid). This shows that time is increasing linearly with increase
in number of keywords in Lid. The timing analysis for execution of different
functions in system is shown in Fig. 5. These results shows that for a function
Fid, execution time = O(pq) where p = total number of functional ciphertexts
available in system and q = nLid.
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Fig. 5. Timing analysis for functional execution

5.3 Analysis

Data Privacy. As per data encryption phase, each functional ciphertexts is
blinded by user’s secret value r. As r is completely random, collusion attack
becomes impossible. Also, a payload of functional ciphertext is CPABE cipher-
text and so a malicious user will not be able to access plaintext by getting
functional ciphertext.

User Privacy. By making proper choice of keywords to define UF, we could
achieve user privacy. In the other words, the field related to more sensitive infor-
mation should not be the part of UF, rather can be used for defining policies for
CPABE ciphertexts. As per our scheme, we allow data owner to choose a set of
keywords from UF to create functional ciphertext and thus based on his privacy
requirements, an owner selects different set of keywords for different functional
encryption.

Function Privacy. As per Sect. 3.4, all available functions’ identity are issued
to valid function requester, so no unauthorized user can make query to run any
function. A user possessing a function token can run that function for fix time
period as with each token a time stamp is associated. Moreover, at function
definition time, each keyword wi ∈ Lid is blinded by random secret value αi. So
even by knowing a single keyword wi, an attacker would not be able to get the
knowledge of entire Lid for a function Fid.

As our proposed approach allows multiple functions with different definitions
and insertion of a new function (based on available UF) into system at any time,
we claim that our system has versatile and flexible architecture. In addition,
entire processing task (function execution) is done at central system, our scheme
is more beneficial to an end user having resource constrained devices.

6 Conclusion

An E-Health online medical system is one of the biggest application areas of IoT
where critical medical information of patient(s) is available at centralized system.
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To securely process these data, functional encryption is an ideal mechanism.
With this paper we propose an idea to build a secure E-Health IoT system
which supports varieties of functions while providing data confidentiality as well
as data privacy preservation.
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Abstract. In this paper, we study error-decodable secret-sharing
schemes against general adversaries in the asynchronous communication
setting. Previously, such schemes were designed in the synchronous com-
munication setting. As an application of our scheme, we present the first
single round asynchronous perfectly-secure message transmission proto-
col against general adversaries.

1 Introduction

Secret sharing [Sha79,Bla79] is one of the fundamental problems in distributed
cryptography. In its simplest form, it allows a special party D called dealer to
share a secret among a set P = {P1, . . . , Pn} of n parties. The sharing is done
in such a way that certain designated subsets of parties called access sets can
reconstruct the secret by pooling their shares; on the other hand, subsets of
parties which does not constitute an access set get no information about the
shared secret. The latter condition holds even if the parties in the non-access
sets are computationally unbounded. The set of access sets and non-access sets
are represented by Σ and Γ respectively; these sets are called access structure and
adversary structure respectively. It is assumed that there exists a computationally
unbounded adversary A, who selects a set from Γ for corruption and passively
corrupts the parties in that set.

Error-decodable secret-sharing (EDSS) is a special type of secret sharing,
which allows robust reconstruction of the secret, even in the presence of a mali-
cious A. More specifically, it ensures that the honest parties reconstruct the
correct secret even if the corrupted parties produce incorrect shares during the
reconstruction process. Such schemes are more practically relevant because in
practice it is a very strong assumption that adversary will do only passive cor-
ruption. A popular adversary structure which is widely studied in the literature
is the threshold adversary structure, where it is assumed that A can corrupt at
most t parties out of the n parties; for such an A, the set Γ is the set of all
possible

(
n
t

)
subsets of t parties. It is well known that EDSS against a threshold

adversary is possible if and only if t < n/3 [MS81].
A non-threshold adversary is a generalization of threshold adversary, where

Γ consists of subsets of arbitrary size. The motivation for studying non-threshold
adversaries is that in certain scenarios, threshold adversaries may be un-realistic.
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For example, certain computer viruses, such as the ILOVEYOU [Mis00] virus and
the Internet virus/worm [ER89] spreads only to Windows and Unix respectively.
An attacker who can exploit a weakness in one platform, can with al most the
same ease attack many computers, if not all, on that same platform. Such a
scenario is more naturally captured by a non-threshold adversary instead of a
threshold adversary.

EDSS against non-threshold adversaries are first studied in [Kur11], where
it is shown that EDSS is possible if and only if P satisfies Q(3) condition with
respect to Γ (see Definition 4); informally this means that the union of every
three sets from Γ is a proper subset1 of P. The sufficiency is shown by designing
an efficient EDSS scheme for Q(3) adversary structures, whose complexity is
polynomial in n and the size of the underlying monotone span program (MSP)
realizing Γ (see the next section for the definition of MSP).

Our Motivation and Results: All the results discussed above are in the syn-
chronous communication setting, where it is assumed that the parties are syn-
chronized via a global clock and hence there exists strict upper bound on message
delays. Unfortunately, real-world networks like the Internet does not provide such
synchronization and the messages can be arbitrarily delayed. Motivated by this,
[BCG93] introduced the asynchronous communication setting, where the mes-
sages can be arbitrarily delayed. Compared to the protocols in the synchronous
setting, asynchronous protocol are highly complex. This stems from the fact that
in a completely asynchronous protocol, it is impossible to distinguish between a
slow but honest sender, whose messages are delayed arbitrarily and a corrupted
sender, who does not send any message at all. As a result, at any stage of the
protocol, no party can afford to listen from all the n parties, as this may turn
out to be endless. Hence as soon as a party receives communication from “suf-
ficient” number of parties2, it has to proceed to the next stage, ignoring the
communication from the rest of the parties. However, the ignored parties may
be potentially honest parties.

Even though the asynchronous communication model is practically relevant,
to the best of our knowledge nothing is known in the literature about EDSS in
the asynchronous setting. Motivated by this, in this work we initiate the study of
asynchronous EDSS (AEDSS). Specifically, we design an AEDSS scheme for Q(3)

adversary structures. The scheme is obtained by modifying the EDSS scheme
of [Kur11] to adapt it to the asynchronous setting. Interestingly, the adaptation
is not straight forward and requires the parties to iteratively perform certain
steps in an “online” fashion upon the disclosure of every share, to deal with the
asynchronous nature of the communication (more on this later).

EDSS is very closely related to one round perfectly-secure message trans-
mission (PSMT) [Kur11]. On a high level, a PSMT protocol allows a distrib-
uted sender and a receiver to carry out reliable and secure communication
1 Note that this is a generalization of the condition t < n/3 for the threshold setting.
2 For example, in the threshold setting, a party has to proceed to the next step after

listening from n − t parties, as t corrupted parties may decide not to send any
communication.
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over n channels, some of which may be under the control of a computation-
ally unbounded malicious adversary [DDWY93]. Given an EDSS scheme, one
can easily design a one round PSMT protocol. As an application of our AEDSS,
we present the first one round asynchronous PSMT (APSMT) protocol toler-
ating a generalized adversary. This significantly improves upon the previous
best APSMT protocol against non-threshold adversary [SKR02], which requires
O(|A|) rounds of interaction between the sender and the receiver; here |A|
denotes the cardinality of the set of channels corrupted by the adversary in
the protocol.

Overview of Our AEDSS: We follow [Kur11] and first design a weaker prim-
itive called weak secret sharing (WSS). Informally a WSS scheme is similar to
EDSS, where sharing is done with respect to a designated party, say Pi, who is
given the shared secret as well as the randomness used to compute the shares of
the secret. The reconstruction protocol is now invoked by this designated Pi, who
publicly reveals the assigned secret and the randomness, which is then compared
with the shares disclosed by the individual share holders. If Pi is honest, then it
correctly discloses the secret and the randomness. And this will be “consistent”
with the individual shares of all but the parties belonging to an access set. Based
on this observation, the parties can accordingly decide to accept or reject the
secret disclosed by the designated Pi. It is ensured that a secret is accepted if
and only if the secret (and the associated randomness) are revealed correctly by
the designated Pi [Kur11]. Given a WSS scheme, [Kur11] designed their EDSS
as follows: the dealer first computes the shares of the secret and the shares are
distributed to the respective share holders. In addition, each individual share is
further shared via WSS, where the randomness used for WSS is assigned to the
corresponding share holder. Later during the reconstruction phase, each share
holder reveals its share via the reconstruction algorithm of the WSS. The prop-
erties of WSS ensure that only the correctly revealed shares are accepted, which
ensures robust reconstruction.

To design our AEDSS, we first extend the WSS of [Kur11] to the asynchro-
nous setting. Here we need to deal with two issues due to the asynchronous
nature of the communication. First, the designated Pi with respect to which
WSS is executed may not invoke the reconstruction algorithm if Pi is corrupted.
As a result, the reconstruction protocol of WSS may not terminate for a cor-
rupted Pi. Second, even if the designated Pi invokes the reconstruction protocol
by revealing the secret and the randomness, the individual shares of the share
holders will be revealed asynchronously and hence may not be available simul-
taneously. As a result, each time a new share is revealed, the parties need to
verify the consistency of the revealed secret and the corresponding shares in an
online fashion. So unlike the synchronous setting, the reconstruction protocol
of the asynchronous WSS will no longer be a single step process, but rather an
iterative process. Once we have an asynchronous WSS, we obtain AEDSS as
follows: the dealer first computes the shares of the secret and each share is fur-
ther shared via our AWSS. During the reconstruction phase, each share holder
reveals its share by executing the reconstruction protocol of the AWSS. However
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due to the asynchronous nature of the communication, the parties cannot afford
to terminate the reconstruction of all the AWSS instances. Hence as soon as the
parties terminate the AWSS instances of a set of parties belonging to an access
set, they reconstruct the secret by using the shares revealed in those instances.

2 Preliminaries

We assume a set P = {P1, . . . , Pn} of n parties and an external dealer D �∈ P.
The parties are connected by pair-wise private and authentic channels. There
exists a finite field F and all computation are assumed to be performed over F.
We denote by S the set of all possible secrets that can be shared. The distrust
among the parties is modeled by a centralized adversary A, who can corrupt a
subset of parties from P. The set of potential subsets of corruptible parties is
denoted by an adversary structure Γ , where Γ ⊆ 2P . Adversary A is assumed
to be static, who decides the subset of parties to corrupt at the beginning of the
execution of a protocol; the corrupted subset is one of the elements of Γ . The
adversary is computationally unbounded and can force the corrupted parties to
deviate from the protocol instructions in any arbitrary fashion. The dealer D is
always assumed to be honest. Let Σ = Γ c, where Γ c denotes the complement
of Γ ; we call the set Σ access structure and the elements in Σ are called access
sets. We next define secret-sharing scheme.

Secret-Sharing Scheme: In a secret-sharing scheme, D has a secret which it
wants to share among P. The sharing needs to be done in a way that the parties
in any access set can reconstruct the secret by combining their shares, while the
parties in any set belonging to the adversary structure gets no information about
the secret. More formally:

Definition 1 (Secret-Sharing Scheme [Kur11]). Asecret-sharing scheme over
the adversary structure Γ and access structure Σ = Γ c is a pair of algorithms
(Sh,Rec) where:

– (Share1, . . . ,Sharen) ← Sh(s, r): the sharing algorithm Sh takes the secret s to
be shared along with some randomness r and computes the shares Share1, . . . ,
Sharen, with Sharei designated for the party Pi, for i = 1, . . . , n.

– Rec is the reconstruction algorithm such that:

Rec(A,ShareA) =
{

s, if A ∈ Σ
⊥, if A ∈ Γ

where ShareA = {Sharei|Pi ∈ A}.
– The following holds:

H(S|SHAREA) =
{

0, if A ∈ Σ
H(S), if A ∈ Γ

where H is the entropy function [CT06], S is a random variable induced by s
and SHAREA is a random variable induced by ShareA.

We next define monotone access structures.
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Definition 2 (Monotone Access Structure). An access structure Σ is called
monotone provided the following holds:

if A ∈ Σ and A′ ⊇ A, then A′ ∈ Σ.

In [CDM00] it is shown how to design a secret-sharing scheme for any given
monotone access structure Σ using monotone span programs (MSP); we briefly
recall the same in the sequel.

Linear Secret-Sharing Scheme (LSSS) and MSP [CDM00]: On a very high
level, an MSP M is an � × d matrix over F, with � ≥ d and � ≥ n, where

M =

⎛

⎜
⎝

m1

...
m�

⎞

⎟
⎠.

There exists a labeling function ψ : {1, . . . , �} → P and we say row j is associated
with party Pi if ψ(j) = Pi. For a subset of parties A ⊆ P, let MA be the sub-
matrix of M consisting of the rows mi such that ψ(i) ∈ A. Matrix M has the
property that A is an access set if and only if the vector (1, 0, . . . , 0) is in the
linear span of MA. Given such an M , an LSSS can be designed as follows:

Algorithm Sh: To share a secret s ∈ F, the dealer D does the following:

– Select a random vector r ∈ Fd−1 and compute a vector

v = M ×
(

s
r

)

where v = (v1, . . . , v�)T .
– Let LSSS(s, r)

def
= (Share1, . . . ,Sharen), where Sharei = {vj |ψ(j) = Pi}.

Dealer D gives Sharei to party Pi for i = 1, . . . , n.

Algorithm Rec: Let A ∈ Σ be an access set. To reconstruct s, the parties in A
do the following:

– Let μA be a row vector such that μA ·MA = (1, 0, . . . , 0); such a μA is bound to
exist as (1, 0, . . . , 0) is in the linear span of MA. Given such a μA, the parties
in A reconstruct s by computing:

s = μA · ShareA, where ShareA = {Sharei|Pi ∈ A}.

We say that the above (M,ψ) is an MSP which realizes3 Γ . In [CDM00] it is
shown how to design an MSP realizing any monotone access structure. More-
over, it is also shown that the above pair of algorithms (Sh,Rec) indeed constitute
a valid secret-sharing scheme.
3 Readers familiar with the classical (n, t) Shamir secret-sharing scheme [Sha79] can

see that M for the Shamir’s scheme is the n × (t + 1) Vandermonde matrix. The
vector (s, r)T constitutes the coefficients of the sharing polynomial of degree at
most t, with s as the constant term. The reconstruction vector µA consists of the
Lagrange’s reconstruction coefficients.
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In our protocols, we use the following metric to check the locations at which
two vectors of shares match.

Definition 3. Let Share = (Share1, . . . ,Sharen) and Share� = (Share�
1, . . . ,

Share�
n) be two vectors of shares, where Sharei,Share

�
i are associated with party

Pi, for i = 1, . . . , n. Then Match(Share,Share�)
def
= {Pi|Sharei = Share�

i }.

In our protocol, we will use the following property of LSSS, which simply follows
from the property of MSP that the shares of the parties in an access set uniquely
determine the shared secret.

Lemma 1 ([CDM00,Kur11]). Let Share and Share� be two vectors of shares,
where Share = LSSS(s, r),Share� = LSSS(s�, r�) and Σ is the underlying access
structure. If Match(Share,Share�) ∈ Σ, then s = s�.

In our protocols, we often require to verify whether a given set of parties A is
an access set. This can be done in time polynomial in the size of the underlying
MSP by verifying whether the row vector (1, 0, . . . , 0) is in the linear span of
MA. We next present the following definition of Q(k) condition from [HM97].

Definition 4 (Q(k) Condition [HM97]). Let S ⊆ P be a set and Γ be an
adversary structure over P. We say that S satisfies Q(k) condition with respect
to Γ if there exists no k sets B1, . . . ,Bk ∈ Γ , such that S ⊆ B1 ∪ . . . ∪ Bk.

Finally we note that like the standard secret-sharing schemes, we assume a fixed
set of n parties. However it is well known in the literature how to deal with
situations where the set of parties changes dynamically (see for example [NS13]);
similar techniques are applicable even against generalized adversary.

2.1 The Asynchronous Model and Definitions

Our protocols are designed in the asynchronous communication setting, where
there exists no global clock and the channels between the parties have arbitrary
delays; thus there are no strict upper bounds within which messages reach to
their destinations. The only guarantee in this model is that the messages sent by
the honest parties will eventually reach to their destinations. The order of the
message delivery is decided by a scheduler. To model the worst case scenario, we
assume that the scheduler is under the control of the adversary. The scheduler
can only schedule the messages exchanged between the honest parties, without
having access to the “contents” of these messages. We consider a protocol exe-
cution in the asynchronous setting as a sequence of atomic steps, where a single
party is active in each such step. A party is activated when it receives a message.
On receiving a message, it performs an internal computation and then possibly
sends messages on its outgoing channels. The order of the atomic steps are con-
trolled by the scheduler. At the beginning of the computation, each party will be
in a special start state. A party is said to terminate/complete the computation if
it reaches a halt state, after which it does not perform any further computation.
A protocol execution is said to be complete if all the honest parties terminate
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the computation. For an excellent introduction to the asynchronous protocols,
see [Can95].

We next define asynchronous error-decodable secret-sharing scheme (AEDSS).
Informally such a scheme consists of two protocols, a sharing protocol and a
reconstruction protocol. The sharing protocol allows the dealer D to share a
secret among P. The reconstruction protocol allows the parties to reconstruct
the shared secret, even if the corrupted parties provide incorrect shares. Both
the protocols terminate for the honest parties. Formally:

Definition 5 (AEDSS). Let (AEDSS-Sh,AEDSS-Rec) be a pair of asynchro-
nous protocols for the dealer D and the set of parties P. Dealer D has a private
input s ∈ F for the protocol AEDSS-Sh, which it wants to share among P. Then
(AEDSS-Sh,AEDSS-Rec) is called an AEDS scheme for the adversary structure
Γ if the following are satisfied for every possible A:

– Termination. Every honest party eventually terminates AEDSS-Sh,
AEDSS-Rec.

– Correctness. Every honest party upon terminating AEDSS-Rec outputs s.
– Privacy. No information about s is revealed to A during AEDSS-Sh.

To design our AEDSS, we actually require a weaker primitive called asynchro-
nous weak secret-sharing (AWSS). Like AEDSS, an AWSS scheme also consists
of a sharing protocol and a reconstruction protocol. During the sharing protocol,
D shares a secret s among P; additionally the secret s is also handed over to
a designated party Pi ∈ P. The reconstruction protocol allows Pi to reveal s
to a designated party PR ∈ P. The sharing protocol always terminate for the
honest parties. But the reconstruction protocol need not always terminate for
Pi and PR; however it always terminates if Pi and PR are honest. Moreover, it
is required that if an honest PR terminates the reconstruction protocol, then the
reconstructed value is the same as distributed by D to Pi. More formally:

Definition 6 (AWSS). Let (AWSS-Sh,AWSS-Rec) be a pair of asynchronous
protocols for a pair of designated parties Pi, PR ∈ P, the dealer D and the set of
parties P. Dealer D has a private input s ∈ F for the protocol AWSS-Sh, which
it wants to give to Pi and share it among P. Party Pi has a private input s� for
AWSS-Rec, which it wants to reveal to party PR. Then (AWSS-Sh,AWSS-Rec)
is called an AWSS scheme for the adversary structure Γ if the following are
satisfied for every possible A:

– Termination. All the following should be satisfied:
• Every honest party eventually terminates AWSS-Sh.
• Every honest party in P \{Pi, PR} eventually terminates AWSS-Rec. More-

over, if Pi and PR are honest then they also eventually terminate AWSS-Rec.
– Correctness. The following holds:

• If Pi is honest then it obtains s at the end of AWSS-Sh.
• If PR is honest and terminates AWSS-Rec, then s� = s.

– Privacy. If Pi is honest then no information about s is revealed during
AWSS-Sh.
• If PR is honest then no information about s is revealed during AWSS-Rec.



Asynchronous Error-Decodable Secret-Sharing and Its Application 371

3 Asynchronous Weak Secret-Sharing Scheme (AWSS)

Let P satisfies Q(3) condition with respect to Γ . We present an AWSS scheme for
Γ . The AWSS scheme consisting of protocols AWSS-Sh (for the sharing phase)
and AWSS-Rec (for the reconstruction of the secret by a designated party) is
presented in Fig. 1. Protocol AWSS-Sh is straight forward: let (M,ψ) be an MSP
realizing Γ , where M is of size � × d. The dealer then computes the shares
according to the LSSS and distributes it among the parties. In addition, the
secret along with the randomness used in the LSSS are handed to the designated
party Pi. The protocol eventually terminates for every honest party.

During AWSS-Rec, party Pi first reveals the secret along with the randomness
to the designated party PR. Hence the participation of Pi is very crucial for the
termination of AWSS-Rec; a corrupted Pi may choose not to participate in the
protocol, in which case the protocol does not terminate for PR. Independently,
every party hands over their shares to PR. Party PR on receiving the secret
and randomness from Pi, itself computes the shares of all the parties according
to the LSSS. It then matches these shares with the ones it received from the
corresponding parties. The comparison is performed till the matching occurs for
all but a set of parties belonging to the adversary structure. This ensures that
the matching occurs for a set of parties satisfying Q(2) condition. Note that the
shares of the parties reach asynchronously to PR. Hence PR needs to perform the
comparison every time it receives a new share. The idea here is that the set of
honest parties in P satisfy Q(2) condition and their shares will eventually reach
to PR. Moreover, if Pi is honest, it correctly reveals the secret and randomness
to PR; so eventually the shares sent by the honest parties will match with the
corresponding shares, computed by PR itself from the revealed secret and the
randomness. On the other hand, if Pi is corrupted and the matched set satisfies
Q(2) condition, then also it is ensured that Pi has revealed the correct secret.
This is because among these matched set of parties, the set of honest parties will
constitute an access set, whose shares uniquely determine the original secret.

The properties of AWSS-Sh and AWSS-Rec are stated in Theorem 1.

Theorem 1. Let A be an adversary specified by an adversary structure Γ over P,
such that P satisfies Q(3) condition with respect to Γ . Then (AWSS-Sh,AWSS-Rec)
constitutes a valid AWSS scheme for Γ . Protocol AWSS-Sh runs in time polynomial
in |S| and �. Protocol AWSS-Rec runs in time polynomial in |S|, � and n.

Proof (Termination). Since D is honest, protocol AWSS-Sh eventually termi-
nates for every honest party. During AWSS-Rec, every honest party in the set
P\{Pi, PR} terminates after sending its share to PR. Next we consider an honest
Pi and PR. If Pi is honest, then PR eventually receives (s, r) from Pi. Moreover,
the set of honest parties in P satisfies Q(2) condition with respect to Γ . Fur-
thermore, the shares of each honest party eventually reaches PR. Given this, it
is easy to see that PR eventually finds that the set P \ Match(Y,Y′) ∈ Γ and
terminates.
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Fig. 1. Asynchronous weak secret-sharing scheme

Correctness. We have to consider an honest PR. Since PR terminates, it implies
that P \ Match(Y,Y′) ∈ Γ . This further implies that Match(Y,Y′) satis-
fies Q(2) condition with respect to Γ . If not, then the set Match(Y,Y′) ∪ P \
Match(Y,Y′) = P fails to satisfy Q(3) condition, which is a contradiction. Let
PR receives (s�, r�) from Pi, implying Y = LSSS(s�, r�). Note that if Pi is honest
then (s�, r�) = (s, r). Let Com = Match(Y,Y′) and let Com-Hon be the set of
honest parties in the set Com. It is easy to see that Com-Hon is an access set, as
otherwise this will contradict the fact that Com satisfies Q(2). Now this implies
that LSSS(s, r) and LSSS(s�, r�) are the same, with respect to the parties in
Com-Hon. This from Lemma 1 implies that s� = s.

Privacy. During AWSS-Sh, the dealer D just distributes the shares computed
according to LSSS and there is no interaction among the parties. So it follows
from the properties of LSSS that if Pi is honest, then no information about s is
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revealed to A. During AWSS-Rec, all the shares are sent only to PR, along with
(s, r). So if PR is honest, then the privacy of s is preserved.

Efficiency. During AWSS-Sh, computing the shares costs time polynomial in |S|
and � for D. During AWSS-Rec, party PR has to verify if the set P\Match(Y,Y′)
∈ Γ ; moreover this verification may need to be performed n times in the worst
case. So overall this costs time polynomial in n and � for PR. �

4 Asynchronous Error-Decodable Secret-Sharing Scheme
(AEDSS)

Let P satisfy Q(3) condition with respect to Γ and let (M,ψ) be an MSP realizing
Γ , where M is of size � × d; we present an AEDSS tolerating A. Note that
P satisfying Q(3) is a necessary condition for the existence of EDSS even in
the synchronous communication setting. So obviously it is necessary even for
AEDSS. The AEDSS scheme consisting of protocols AEDSS-Sh (for the sharing
phase) and AEDSS-Rec (for the public reconstruction of the secret) is presented
in Figure. 2. For simplicity and without loss of generality, we assume that � = n
and ψ(i) = i for i = 1, . . . , n.

During AEDSS-Sh, the dealer first computes the shares of the secret according
to the LSSS and distributes the shares among the parties. In addition, for each
share, it executes an instance of AWSS-Sh to further share the share; as a result,
each party will have a share of each share. The protocol eventually terminates
for the honest parties. During AEDSS-Rec, each share holder Pj executes an
instance AWSS-Recji of AWSS-Rec to reveal its share to every other party Pi.
Party Pi waits to terminate AWSS-Rec instances corresponding to the parties in
an access set. Once it terminates those many instances, it reconstructs the secret
using the shares revealed at the end of those instances. The idea here is that
the instances AWSS-Recji executed by each honest Pj eventually terminates for
each honest Pi and the set of honest parties constitute an access set. Moreover,
for every instance AWSS-Recji terminated by Pi, the share revealed by Pj is the
same as distributed by the dealer; this is true even if Pj is corrupted (follows
from the properties of AWSS-Rec). So every honest Pi eventually terminates the
protocol with the correct secret.

The properties of AEDSS-Sh and AEDSS-Rec are stated in Theorem 2.

Theorem 2. Let A be an adversary specified by an adversary structure Γ over
P, such that P satisfies Q(3) condition with respect to Γ . Then (AEDSS-Sh,
AEDSS-Rec) constitutes a valid AEDSS for Γ . Both protocols run in time poly-
nomial in |S|, n and �.

Proof (Termination). SinceD is honest, the instancesAWSS-Sh1, . . . ,AWSS-Shn

eventually terminates for every honest party and so every honest party eventually
terminates AEDSS-Sh. We next claim that AEDSS-Rec also terminates eventually
for every honest party Pi. This follows from the fact that theAWSS-Recji instances
invoked by honest parties Pj corresponding to Pi eventually terminates (follows
from Theorem 1) and the set of honest parties constitutes an access set.
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Fig. 2. Asynchronous error-decodable secret-sharing scheme

Correctness. Let Pi be an honest party. For correctness, we need to argue
that if Pj ∈ Ci then Sharej obtained at the end of the instance AWSS-Recji is
indeed correct. However, this follows from the correctness property of AWSS-Rec
(follows from Theorem 1).

Privacy. During AEDSS-Sh, the adversary gets no information about the shares
of the honest parties, as they are shared via AWSS; this follows from the privacy
property of AWSS. Given this, it is easy to see that s remains private during
AEDSS-Sh.

Efficiency. In the protocol, n instances ofAWSS-Sh and n2 instances ofAWSS-Rec
are executed. It now follows easily that both AEDSS-Sh and AEDSS-Rec runs in
time polynomial in |S|, n and �. �
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Notation 1. In the next section, while using AEDSS-Sh and AEDSS-Rec we will
use the following notation:

– AEDSS-Sh(s, r) = (Ŝhare1, . . . , Ŝharen): this denotes D executing AEDSS-Sh
with secret s and randomness r and computing all the information to be dis-
tributed among the parties. Here Ŝharej denotes all the information distributed
by D to the party Pj. Thus Ŝharej = (Sharej , rj , {Shareij}n

i=1).
– AEDSS-Reci(·) = s: this denotes party Pi reconstructing s by executing its part

of the code of AEDSS-Rec(s). This is an online process, where Pi asynchro-
nously receives information from various parties and performs computation
on them, till it receives sufficient information to reconstruct s.

5 Application of AEDSS to Asynchronous
Perfectly-Secure Message Transmission (APSMT)

In the model of perfectly-secure message transmission (PSMT), there exists a
sender S and a receiver R connected by n channels W = {w1, . . . , wn}, some
of which may be under the control of a computationally unbounded malicious
adversary A. There exists a message m ∈ F, which S wants to reliably and
privately communicate to R over the n channels, even in the presence of the
adversary. In [SKR02], asynchronous PSMT (APSMT) is studied in the pres-
ence of a non-threshold adversary. In the asynchronous model, the channels are
not synchronized and there can be arbitrary delays; the only guarantee is that
information sent over honest channels reach to their destination eventually. The
non-threshold adversary is characterized by an adversary structure Γ over W,
which denotes the set of possible subsets of channels which can be potentially
corrupted by A; during the execution of a protocol, adversary can select any
subset of channels from Γ for corruption. In [SKR02] it is shown that APSMT
tolerating A is possible if and only if W satisfies Q(3) condition with respect
to Γ . To prove the sufficiency of the Q(3) condition, they presented a protocol,
which requires O(|A|) rounds of interaction between S and R, where |A| denotes
the cardinality of the set of channels corrupted by A in the protocol. We present
an APSMT protocol, which requires only one round of interaction between S
and R, thus significantly improving the protocol of [SKR02].

Our APSMT protocol called APSMT (see Fig. 3) is adapted from our AEDSS,
where S plays the role of the dealer and W is treated as P, with wi playing the
“role” of party Pi. Specifically, S considers m as the secret to be shared among
P and computes the information to be distributed among the parties as part
of AEDSS-Sh; the information that needs to be given to party Pi is sent over
the channel wi. Receiver R asynchronously receives information over the channels
and recovers m by executing the steps of AEDSS-Rec that an honest party would
have executed to recover m.

The properties of APSMT are stated in Theorem 3, which simply follow from
the protocol steps and the properties of AEDSS-Sh,AEDSS-Rec.
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Fig. 3. Single round APSMT protocol

Theorem 3. Let A be an adversary specified by an adversary structure Γ over W,
such that W satisfies Q(3) condition with respect to Γ . Then APSMT constitutes a
valid APSMT protocol. Protocol APSMT runs in polynomial time in |M|, � and n,
where M is the set of all possible messages that can be communicated.

6 Open Problems

Our AEDSS requires computation time polynomial in the size of the underlying
MSP. In the worst case, the underlying MSP may be exponential in n. On the
other hand, certain access structures like the threshold access structures have
very efficient MSP and hence error-decoding mechanism, requiring computation
time polynomial only in n. It is a very interesting open problem to design AEDSS
for arbitrary access structures with running time polynomial in n.

Acknowledgement. The author would like to thank the anonymous referees for their
useful feedback.
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Abstract. Attribute Based Encryption (ABE) has found enormous
scope in data confidentiality and fine-grained access control of shared
data stored in public cloud. Classical ABE schemes require attaching the
access policy along with the ciphertext, where the access policy describes
required attribute values of a receiver. As attributes of a receiver (i.e.,
user) could relate to the identity of users, it could lead to reveal some
sensitive information of the ciphertext (e.g. nature of plaintext, action
sought from of receiver) for applications like healthcare, financial con-
tract, bureaucracy, etc. Therefore, anonymizing attributes while sending
ciphertext in use of ABE schemes, known as Anonymous ABE (AABE),
is a promising primitive for enforcing fine-grained access control as well
as preserving privacy of the receiver. In ASIACCS 2013, Zhang et al.
proposed an AABE scheme using the match-then-decrypt [1] technique,
where before performing decryption, the user performs a match oper-
ation that ensures a user whether he is the intended recipient for the
ciphertext or not. We found that Zhang et al.’s scheme [1] is not secure,
in particular, it fails to achieve receiver’s anonymity. In this paper, we
discuss the security weaknesses of Zhang et al.’s scheme. We show that
an adversary can successfully check whether an attribute is required to
decrypt a ciphertext, in turn, reveal the receiver’s identity. We also sug-
gest an improved scheme to overcome the security weakness of Zhang
et al.’s scheme.

Keywords: Attribute based encryption · Anonymity · Bilinear pairing ·
Access structure

1 Introduction

Cloud infrastructure provides important features to service providers and con-
sumers such as high data availability, reliability and low-cost maintainability
of stored data in cloud server. While storing data in third party cloud server
and accessing it over public channel security of users data and privacy of data
access are become an active research problem in recent times. Attribute Based
Encryption (ABE) [2–4] is a public-key cryptographic primitive suitable for data
confidentiality and fine-grained access control enforced in public cloud. ABE is
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more flexible than conventional public-key encryption, as ABE supports one-to-
many encryption instead of one-to-one. With ABE, a data owner can share the
data with multiple designated users by sending ciphertext, pertaining to target
user’s attributes. There are two kinds of ABE – (1) Key-Policy Attribute Based
Encryption(KP-ABE) [2,4]; and (2) Ciphertext-Policy Attribute Based Encryp-
tion (CP-ABE) [3]. In KP-ABE, each ciphertext is labeled by the encryptor with
a set of descriptive attributes and the private key of a user is associated with
an access structure that specifies which type of ciphertext the user can decrypt.
Whereas, in CP-ABE a user is identified by a set of attributes which are included
in his private key, and a data owner can decide the access policy for decrypting
ciphertext intended to the user. The encrypted message must specify an associ-
ated access policy over attributes. A user can only able to decrypt a ciphertext
if the user’s attributes pass through the ciphertext’s access policy.

Although ABE scheme supports fine-grained access control, it discloses
receiver’s identity by which an adversary can guess the purpose of the message
from the ciphertext by seeing receiver’s attributes. For example, the adversary
can guess that the receiver is a faculty if some of the attributes are question
paper, student, first year, discipline, etc. Therefore, protecting receiver’s identity
while using ABE is a challenging research problem.

Anonymous ABE (AABE) is introduced in [5–8] as a promising public-key
primitive that allows sender in achieving receiver anonymity in ABE. In anony-
mous CP-ABE, access policy is hidden in the ciphertext. A user requires to
decrypt a ciphertext using secret key belongs to his attributes. If his secret key
matches with the access policy, the user can successfully decrypt the ciphertext.
If the attribute set associated with the secret key does not match with the access
policy, then the user cannot get what access policy is specified by the encryptor.
Therefore, the user in AABE schemes is required to perform the whole decryp-
tion procedure in order to verify if he is the intended receiver of the ciphertext
or not, which results into a large overhead on the user when the ciphertext is
not intended to him, but the user is engaged with the decryption procedure for
the ciphertext.

In ASIACCS 2013, Zhang et al. [1] proposed an AABE scheme to address
receiver anonymity by adding one matching phase before decryption of the
ciphertext. The user performs the match-then-decrypt procedure using his secret
key components and ciphertext components to check if he is the intended recip-
ient of the ciphertext. The scheme of Zhang et al. is efficient than other AABE
schemes in the sense that all receiver do not engage in full decryption procedure
used in other schemes, instead after the partial decryption (i.e., match-then-
decrypt phase) the intended receiver goes for the final decryption procedure in
Zhang et al.’ scheme. However, we found that Zhang et al.’s scheme is not secure,
that is, it does not support receiver’s anonymity. Any user of the system or an
outsider (say, adversary) can successfully check whether an attribute is required
to decrypt a ciphertext, in turn, reveal receiver’s identity.

In this paper, we show the security weaknesses of Zhang et al.’s scheme.
We propose an improved scheme to mitigate the security weakness of
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Zhang et al.’s scheme. We show that the improved scheme is secure with respect
to the security claim of the Zhang et al.’s scheme.

The remainder of the paper is organized as follows. Section 2 gives some
preliminaries. Section 3 reviews Zhang et al.’s scheme [1]. Section 4 discusses the
security flaws of Zhang et al.’s scheme [1]. Section 5 presents the improved scheme
followed by its analysis in Sect. 6. Section 7 provides the performance analysis of
the improved scheme. We conclude the paper in Sect. 8.

2 Preliminaries

In order to make the paper self-contained, we provide some preliminaries that
have been used throughout the paper.

2.1 Bilinear Mapping

Let G and GT be two multiplicative cyclic groups of prime order p. Let g be a
generator of G and e be a bilinear map, e : G × G → GT . The bilinear map e
has the following properties:

– Bilinearity: for all u, v ∈ G and a, b ∈ Zp, we have e(ua, vb) = e(u, v)ab.
– Non-degeneracy: e(g, g) �= 1.
– e: G × G → GT is efficiently computable.

2.2 Complexity Assumption

Decisional Linear (D-Linear) Assumption. Let z1, z2, z3, z4, z ∈ Zp be
chosen at random and g be a generator a cyclic group G. The decisional Linear
assumption [9] is that no probabilistic polynomial-time algorithm P can distin-
guish the tuple (Z1 = gz1 , Z2 = gz2 , Z3 = gz1z3 , Z4 = gz2z4 , Z = gz3+z4) from
the tuple (Z1 = gz1 , Z2 = gz2 , Z3 = gz1z3 , Z4 = gz2z4 , Z = gz) in G with more
than a negligible advantage ε.

The advantage of P is Pr[P (Z1, Z2, Z3, gz3+z4) = 0] - Pr[P(Z1, Z2, Z3, gz) =
0] = ε where the probability is taken over the random choice of the generator g,
the random choice of z1, z2, z3, z4, z ∈ Zp, and the random bits consumed by P.

For the proof of our proposed improved scheme we consider a variant of D-
Linear Assumption [7] which states that no probabilistic polynomial-time algo-
rithm P can distinguish the tuple (Z1 = gz1 , Z2 = gz2 , Z3 = gz3+z4 , Z4 = gz2z4 ,
Z = gz1z3) from the tuple (Z1 = gz1 , Z2 = gz2 , Z3 = gz3+z4 , Z4 = gz2z4 , Z =
gz) in G with more than a negligible advantage ε.

Decisional Diffie-Hellman (DDH) Assumption. Let a,b,z ∈ Zp be chosen
at random and g be a generator of a cyclic group G. The decisional Diffie Hellman
assumption is that no probabilistic polynomial-time algorithm B can distinguish
the tuple (g, P = ga, Q = gb, R = gab) from the tuple (g, P = ga, Q = gb, R = gz)
with more than a negligible advantage ε.

The advantage of P is Pr[P(g,ga,gb,gab) = 0] - Pr[P(g,ga,gb,gz) = 0] = ε
where the probability is taken over the random choice of the generator g, the
random choice of a, b, z ∈ Zp, and the random bits consumed by P.
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2.3 Access Structure

Let there be n attributes in the universe and each attribute i (for all 1 ≤ i ≤ n)
has value set Vi = {vi,1, vi,2, · · · , vi,ni

}. L = [L1,L2, · · · , Ln] is an attribute list,
where each Li represents one value from the value set of attribute i. A ciphertext
policy W = [W1,W2, · · · ,Wn] where Wi ⊆ Vi for 1≤ i ≤ n. Each Wi represents
the set of permissible values of an attribute i in order to decrypt the ciphertext.
An access structure W is a rule that returns 1 when given a set L of attributes
if L satisfies W, else, it returns 0. An attribute list L satisfies W, if Li ∈ Wi for
all 1≤ i ≤ n.

3 Zhang et al.’s Scheme

3.1 Scheme Definition

Zhang et al.’s scheme [1] consists of four algorithms – Setup, KeyGen, Encrypt,
and Decrypt, which are defined as follows:

– Setup(1l) → (PK,MK ): The setup algorithm is run by the attribute center.
On input a security parameter l it returns public key PK which is distributed
to users, and the master key MK which is kept private.

– KeyGen(PK,MK,L) → SKL: This algorithm is run by the attribute center.
On input the public key PK, the master key MK and an attribute List L, it
outputs SKL as the attribute secret key associated with the attribute list L.

– Encrypt(PK, M, W ) → CTW : An encryptor runs this probabilistic algorithm.
The input to the algorithm is public key PK, a message M, and a ciphertext
policy W, and output is a ciphertext CTW which is a encryption of M with
respect to W.

– Decrypt(PK,CTW , SKL) → M or ⊥: The decryption algorithm is determin-
istic and it involves two phases, attribute matching detection and decryption
phase. When user provides as input the system public key PK, a ciphertext
CTW and a secret key SKL associated with L, the algorithm proceeds as
follows:
1. Matching Phase: If the attribute list L associated with SKL matches with

the ciphertext policy W of CTW then it initiates Decryption phase, else,
it returns ⊥ and terminates decryption.

2. Decryption Phase: It returns message M.

3.2 Detailed Construction

– Setup(1l): Let G,GT be cyclic multiplicative groups of prime order p, and e :
G×G → GT be a bilinear map. H : {0, 1}∗ → G is a map-to-point function that
takes a string as input and outputs a point on elliptic curve. The attribute center
chooses y ∈R Zp, g, g1, g2 ∈R G, and computes Y = e(g1, g2)y. The system
public key is PK = 〈g, g1, g2, Y 〉, and the master key is 〈y〉.
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– KeyGen(PK,MK,L): Let L = [L1, L2, · · · , Ln] be the attribute list for the
user who requires a secret key. The attribute center chooses r1, r2, · · · , rn−1 ∈R

Zp and computes rn = y −
∑n−1

i=1 ri (mod p). Then the attribute center
chooses r ∈R Zp and {r̂i, λi, λ̂i ∈R Zp}1≤i≤n, sets r̂ =

∑n
i=1 r̂i and com-

putes [D̂0,DΔ,0] = [gy−r̂
2 , gr

1]. For 1≤ i ≤ n, the attribute center computes
[DΔ,i,Di,0,Di,1, D̂i,0, D̂i,1] = [gr̂i

2 H(i||vi,ki
)r, gλi

2 , gri
1 H(0||i||vi,ki

)λi , gλ̂i
1 , gri

2

H(1||i||vi,ki
)λ̂i ] where Li = vi,ki

.
The secret key is SKL = 〈D̂0,DΔ,0, {DΔ,i,Di,0,Di,1, D̂i,0, D̂i,1}1≤i≤n〉.

– Encrypt(PK,M,W ): For encryption of a message M with respect to access
control policy W, encryptor selects s, s′ and, s′′ ∈R Zp and computes C̃ =
MY s, CΔ = e(g, g)sY s′

, C0 = gs, Ĉ0 = gs′
1 , C1 = gs′′

2 , Ĉ1 = gs−s′′
1 . Then for

1≤ i ≤ n and 1 ≤ j ≤ ni the encryptor computes [Ci,j,Δ, Ci,j,0, Ĉi,j,0] as fol-
lows: If vi,j ∈ Wi then [Ci,j,Δ, Ci,j,0, Ĉi,j,0] = [H(i||vi,j)s′

,H(0||i||vi,j)s′′
,H(1||

i||vi,j)s−s′′
] else if vi,j /∈ Wi then [Ci,j,Δ, Ci,j,0, Ĉi,j,0] are random elements.

The encryptor prepares CTW = 〈 CΔ, C0, Ĉ0, C̃, C1, Ĉ1, {{Ci,j,Δ, Ci,j,0,

Ĉi,j,0}1≤j≤ni
}1≤i≤n〉.

– Decrypt(PK,CTW , SKL): A receiver of the ciphertext tests and decrypts
the ciphertext CTW using his secret key SKL as follows:

1. Matching Phase: Receiver checks if his attributes L satisfies W or not by
checking if following equality holds true. In the following equation the Ci,j

denotes the cipher component related to jth value of an attribute i which
a receiver possesses.

CΔ

e(g, C0)
=

e(Ĉ0, D̂0

∏n
i=1 DΔ,i)

e(
∏n

i=1 Ci,j,Δ,DΔ,0)

If the equality holds false then decryption procedure is aborted; otherwise,
the Decryption Phase is initiated.

2. Decryption Phase: The receiver recovers message M using following com-
putation

M =
C̃

∏n
i=1 e(Ci,j,0,Di,0)e(Ĉi,j,0, D̂i,0)

∏n
i=1 e(C1,Di,1)e(Ĉ1, D̂i,1)

.

4 Security Flaws in Zhang et al.’s Scheme

The authors of the scheme [1] proposed a cost-effective decryption procedure
with a matching phase operation before the decryption procedure. The authors
in [1] claimed that the scheme provides anonymity, and the ciphertext does not
disclose the identity of the receiver. They have also stated that if any receiver
succeeds in decryption of a message, he is not be able to identify who else can
decrypt the same ciphertext. However, the authors did not provide the security
proof for the matching phase elements and match operation. The security proof
presented in their scheme primarily focused on the matter that the ciphertext
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is not distinguishable from any other random element, if the adversary does
not possess the corresponding attribute secret key. We found that the cipher
components for matching phase themselves discloses the underlying ciphertext
access policy. In this section we show that the scheme [1] does not provide
receiver’s anonymity

We consider as an adversary, any user inside the system or any outsider, who
has knowledge of universe of attributes. The adversary can successfully check
if a particular attribute is included in ciphertext. In particular, the attributes
which make the attack successful are Ĉ0 and {{Ci,j,Δ}1≤j≤ni

}1≤i≤n. To check
whether an attribute vi,j is included in ciphertext or not, the adversary calculates
D′

Δ,i,j = H(i||vi,j). Then, the adversary checks if following equation returns true
for an attribute vi,j .

e(Ĉ0,D
′
Δ,i,j) = e(Ci,j,Δ, g1)

If the above equality holds true, the adversary can conclude that the attribute
used in the equation is included in ciphertext access policy. With this, the adver-
sary now checks if a specific attribute which may be an identity of a user is
integrated in access policy or not.

For example, suppose a University has three different departments “Computer
Science, Electrical Engineering, and Mechanical Engineering”. The attribute cat-
egories and their corresponding value sets are as follows.

– For the attribute “Role” WRole = {Dean, Teacher, Student,Administrative
Staff}

– For the attribute “Department” WDept = {CS,EL,ME}
– For the attribute “Course” WCourse = {PhD,MS,BS}

When the Dean sends some confidential notice to all teachers in an encrypted
form using the scheme [1], the Dean generates an encrypted message with fol-
lowing ciphertext components. For simplicity, we do not show all ciphertext
components. Instead, we provide the ciphertext components for the attribute
“Role”.

CΔ = e(g, g)sY s′

C0 = gs

Ĉ0 = gs′
1

C̃ = MY s

C1 = gs′′
2

Ĉ1 = gs−s′′
1

{CRole,Teacher,Δ, CRole,Teacher,0, ĈRole,Teacher,0}
= {H(Role‖Teacher)s′

,H(0‖Role‖Teacher)s′′
,H(1‖Role‖Teacher)s−s′′}

Random values are provided for other attributes such as Student, Dean and
Administrative staff.
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The adversary now checks whether a Teacher is the intended recipient of the
ciphertext with following equation.

e(Ĉ0,H(Role‖Teacher)) = e(CRole,Teacher,Δ, g1).

The correctness of the equation is shown below.

e(Ĉ0,H(Role‖Teacher))

= e(gs′
1 ,H(Role‖Teacher))

= e(H(Role‖Teacher)s′
, g1)

= e(CRole,Teacher,Δ, g1)

To recover the whole access policy the adversary requires ni × n bilinear
pairing operations. Let m = max (ni)1≤i≤n. Therefore, to disclose the receiver’s
identity the adversary requires at most O(mn) bilinear pairing operations.

5 An Improved Scheme

The security weakness of the scheme in [1] occurs in the matching phase. The
authors in [1] do not provide any security proof for the matching phase compo-
nents. In the improved scheme we provide an improved matching phase that can
be incorporated with any existing Anonymous ABE schemes. We do not include
the cipher components and key components required for encryption and decryp-
tion of a message as it depends on the AABE scheme used for encryption and
decryption of a message. The proposed modified scheme uses a set of parameters
which is isolated from the parameters used for the encryption and decryption
of a message. The underlying access structure for the improved scheme is as
described in Sect. 2.3.

5.1 Scheme Definition

Like Zhang et al.’s scheme [1], the improved scheme consists of Setup, KeyGen,
Encrypt, and Decrypt phases, which are defined as follows.

Setup(1l): The Setup algorithm takes as input a security parameter l. The
output of this phase is Master Secret Key MSK and Master Public Key MPK.

KeyGen(MSK ,MPK ,L): On input of an attribute list L, MSK and MPK,
the algorithm outputs user’s secret key SKL.

Encrypt(MPK ,W ):TheEncrypt algorithmtakes as input the ciphertext access
policy W required for decryption and MPK. The output of this algorithm is cipher
components CTW , which are used for matching phase.

Match(MPK ,SKL,CTW ): Match phase enables the receiver to check whether
he is the intended receiver or not. It takes as input MPK, SKL, CTW , and returns
whether the SKL is matched with CTW or not. The output of the algorithm will
guide the receiver as he should perform the decryption of the received ciphertext
or not.
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5.2 Detailed Construction

The scheme works as follows.

– Setup(1l): The Attribute Center (AC) performs the setup phase. It selects
two groups G and GT of prime order p whose bit-length is l and a bilinear
mapping function e : G × G → GT . The AC chooses two random generators
g1 and g2 from group G and one hash function H is defined as H: {0, 1}∗ →
G. The master secret key MSK is chosen as 〈α, β ∈R Zp〉. The corresponding

master public key MPK
〈
g1, g2, g

α
1 , gβ

2 , e(g1, g2)α
〉

is published.
– KeyGen(MSK,MPK,L): Let L=[L1, L2, · · · , Ln] be the attribute list for the

user who requires a secret key. Here Li represents a value vi,j that a user
possess for attribute i. A user possess exactly one value vi,j for each attribute
i where 1 ≤ i ≤ n. For every user in the system the AC picks a random value
ρ and generates a user’s secret key SKL for performing the matching phase
operation as follows.

D = (g2
∏n

i=1
H(i||vi,j))α · gρ

2 where Li = vi,j .

D̄ = g
ρ
β

1

– Encrypt(MPK,W ): We provide the construction of cipher components for
matching phase only. Therefore, we have not included encryption of mes-
sage. The algorithm takes the access policy W and public key MPK as input.
Here, W ={W1,W2, · · · Wn} where Wi {1 ≤ i ≤ n} is the set of values per-
missible for decryption. To prepare the cipher components for matching phase
the encryptor takes secret values s and t from Zp and makes n portions of t
as ti such that

∑n
i=1 ti = t. For attribute values from each set Wi create the

following cipher components.
– If vi,j ∈ Wi C̃i,j = gti

2 H(i‖vi,j)st

– If vi,j /∈ Wi C̃i,j is a random value.
The other cipher components are Ĉ = gst

1 ,C̄ = gstβ
2 and C ′ = e(g1, g2)α(s−1)t.

– Match(MPK,SKL, CTW ): A user performs the match operation before going
for decryption of an encrypted message. The user checks if his set of attribute
values L satisfies access policy W or not by checking if following equality holds
true. User collects the relevant C̃i,j cipher components. Here C̃i,j denotes
cipher component related to value vi,j for an attribute i which a receiver
possesses.

C ′ =
e(Ĉ,D)

e(
∏n

i=1 C̃i,j , gα
1 )e(C̄, D̄)

If the equality does not hold true, the decryption procedure for a message
is aborted, otherwise, the user initiates a decryption procedure related to
encryption scheme used for encrypting a message.
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Correctness: The correctness of the matching phase is as follows.

e(Ĉ,D)
e(

∏n
i=1 C̃i,j , gα

1 )e(C̄, D̄)

=
e(gst

1 , (g2
∏n

i=1 H(i||vi,j))α · gρ
2)

e(
∏n

i=1 (gti
2 H(i||vi,j)st), gα

1 )e(gstβ
2 , g

ρ
β

1 )

= e(g1, g2)(α(s−1))t

= C ′

After the matching phase, the receiver goes for the final decryption procedure
as in [1] to obtain the message.

6 Security Analysis

6.1 Security Model

We consider the IND-sCP (Indistinguishability against selective ciphertext pol-
icy) model to analyze the proposed improved scheme. In the analysis we exclude
the encryption and decryption of a message as they are not part of the proposed
matching scheme. The improved scheme is simulated with the following security
game.

Init: The adversary A commits two ciphertext Policies W ∗
0 and W ∗

1 that he
wishes to be challenged upon.

Setup: The challenger B chooses l as a security parameter and chooses α at
random from Zp. B also defines a bilinear mapping function from G × G → GT

and chooses two generators from G as g1, g2. The master private key is α. The
public parameters g1, g2, gα

1 , gβ
2 and e(g1, g2)α are sent to A.

The game has following four steps.

Step 1. Preprocessing Phase. With this phase A issues polynomially bounded
number of queries and gathers following items from the challenger.
– Secret key SKL for attribute set L such that L satisfies either both

challenge ciphertext policies W ∗
0 and W ∗

1 or satisfies none of them.
– matching phase elements for different access policies W.

Step 2. Challenge Phase. The challenger C randomly picks a bit ν = 0 or 1
and submits the ciphertext elements for matching phase related to W ∗

ν

using two random secret values s, t from Zp.
Step 3. Post Processing Phase. The adversary A is allowed to run a number

of queries as done in preprocessing phase.
Step 4. Guess: The adversary A outputs a guess ν′. A wins the game if ν′ = ν.

The advantage of A in this game is defined as AdvA(l)=
|Pr[ν′ = ν] − 1/2|.
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We show that the improved scheme is secure in the IND-sCP model. We prove
the security of the scheme relies on the hardness of D-Linear Assumption and
Decisional Diffie-Hellman assumption. We prove the security of proposed scheme
in two theorems. In first theorem we prove that unless a valid decryption key is
available, the adversary is not able to find a valid match. In the second theorem
we prove that receiver anonymity is preserved in the improved scheme. We show
that even if an adversary is able to get a valid key and find the match successfully,
he can not find out the underlying access policy.

The security model consists of a Challenger C, a Simulator S and an
Adversary A.

Theorem 1. If an adversary can break the proposed improved scheme in the
random oracle model, then a simulator can be constructed who can break the
D-Linear assumption with a non-negligible advantage.

Proof. We show that without a correct decryption key A is not able to compute
any function of C ′. If an adversary is able to succeed in doing so with non-
negligible advantage ε1, then we are able to design a simulator S that can play
the D-Linear game with advantage ε1

2 . For the proof we consider a variant of D-
Linear assumption. The simulation proceeds as follows: We first let the challenger
set the groups G and GT of prime order p, with an efficient bilinear map, e and
generator g. The challenger flip a fair binary coin μ, outside of S’s view. If μ =
0, the challenger sets (g, Z1, Z2, Z3, Z4, Z) = (g, gz1 , gz2 , gz2z4 , gz3+z4 , gz1z3),
otherwise it sets (g, Z1, Z2, Z3, Z4, Z) = (g, gz1 , gz2 , gz2z4 , gz3+z4 , gz) for values
z1, z2, z3, z4 and z chosen randomly from Zp.

Init: The simulator S runs A. A commits two access policies W ∗
0 and W ∗

1 for
which he wishes to be challenged upon.

Setup: S takes the following values: g1 = ga, g2 = g, gα
1 = gaα with the

assumption that α =z1. Here a is chosen randomly from Zp. With the selec-
tion of random value β from Zp, gβ

2 is calculated as gβ . H(i‖vi,j) is assumed as
g

1
nz1

+H′(i‖vi,j). Here n denotes the number of attribute categories and H ′(i||vi,j)
is computed from random oracle, producing an element of Zp in output. The
simulator S announces the public key as g1 = ga, g2 = g, gα

1 = gaz1 , gβ
2 = gβ ,

e(g1,g2)α = e(g,g)az1 .

Preprocessing Phase: The adversary A gathers following information from
the simulator S.

– Whenever A makes its kth key generation query for the set Sk of attributes
such that Sk satisfies neither W ∗

0 nor W ∗
1 . The simulator S selects a random

value ρ ∈ Zp and the resultant key components are generated as follows.

D = (g2
n∏

i=1

H(i‖vi,ji
))α · gρ

2

= (g
n∏

i=1

g
1

nz1
+H′(i‖vi,ji

))z1 · gρ
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= gz1 · g1+
∑n

i=1 (H′(i‖vi,ji
)z1) · gρ

= Z1 · g · Z
∑n

i=1 (H′(i‖vi,ji
))

1 · gρ

D̄ = g
ρ
β

1 = g
aρ
β

– When A issues queries for ciphertext elements related to any access policy W ,
then the simulator S chooses random values s and t from Zp and provides the
output of matching phase components incorporating access policy W .

Challenge: Let the two challenge ciphertext policies submitted by the adversary
A are W ∗

0 = [W0,1,W0,2, · · · ,W0,n] and W ∗
1 = [W1,1,W1,2, · · · ,W1,n].

Now S does following. S flips a random coin ν, and computes the cipher com-
ponents for W ∗

ν as follows. S assumes st=z1z3, with the assumptions that s =
z1z3

z4(z2+1) and t = z4(z2+1). For the values which are included in W ∗
ν , C calculates

C̃i,j = gti
2 H(i||vi,ji

)st = g
z2z4+z4

n g(
1

nz1
+H′(i||vi,ji

))z1z3 = Z
1
n
4 Z

1
n
3 ZH′(i||vi,ji

).
For other attribute values which are not included in W ∗

ν , C̃i,j are random
values. Subsequent cipher components are calculated by S as Ĉ = gst

1 = Za,
C̄ = gstβ

2 = Zβ and C ′ = e(Za
1 ,Z)e(g,Z)

e(Za
1 ,Z4)e(Z1,Z3)

. C ′ is correct cipher component only

if Z = gz1z3 . Else C ′ is a random element. Ciphertext components C̃, C̄, Ĉ, C ′

are given to A.

Post Processing Phase: A is allowed to run a number of queries for attribute
keys and ciphertext components for matching phase with the same conditions
as imposed in the preprocessing phase.

Guess: A submits a guess ν′ of ν. If ν′ = ν, then S outputs μ=1 to indicate
that it was given a valid D-Linear tuple, else it outputs μ=0 to indicate that
the ciphertext is a random element. Therefore, A gains no information about ν,
in turn, Pr[ν �= ν′|μ = 0]= 1

2 . As the simulator guesses μ′=0 when ν �= ν′,
Pr[μ = μ′|μ = 0] = 1

2 . If μ = 1, then the adversary A is able to view a valid
matching phase components with advantage ε1(l), a negligible quantity in secu-
rity parameter in l. Therefore, Pr[ν = ν′|ν = 1] = 1

2 + ε1(l). Similarly, the sim-
ulator S guesses μ′=1 when ν = ν′, in turn, Pr[μ′ = μ|μ = 1] = 1

2 + ε1(l). The
overall advantage of the simulator in D-Linear game is 1

2 × Pr[μ = μ′|μ = 0] +
1
2 × Pr[μ = μ′|μ = 1] - 1

2 = 1
2 × 1

2 + 1
2×( 12 + ε1(l)) - 1

2 = ε1(l)
2 .

Therefore, if the A has a non-negligible advantage ε1(l) in the above game
then we can build a simulator (S) which can break the D-Linear problem with
non-negligible quantity ε1(l)

2 . Hence, the theorem. �

Theorem 2. The proposed improved scheme provides receiver anonymity in
IND-sCP game under the DDH assumption if there is no polynomial time adver-
sary A who can distinguish a valid ciphertext and a random element with non-
negligible advantage AdvA(l) in security parameter l.

Proof. In the second theorem we prove that the cipher components provides
receiver anonymity. We prove in the following game that even if an attacker
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gains a valid decryption key, he is only able to find a correct match with C ′. The
attacker can not find out the underlying access policy. This proof strengthen our
claim that even if any user is able to find himself as the intended recipient for a
ciphertext, he is not able to find out who else are the other intended recipients
for the same ciphertext. We show that the cipher components generated for an
access policy are indistinguishable from an element chosen randomly from the
group.

We first let the challenger set the groups G and GT of prime order p, with
an efficient bilinear map, e and generator g. The challenger flips a binary coin μ
outside of S view and assigns a tuple (g,A = ga,B = gb, Z) to A. If μ = 1 then
the challenger sets Z as gab else a random value with equal probability.

Init: The simulator S runs A. A commits two access policies W ∗
0 and W ∗

1 for
which he wishes to be challenged upon.

In W ∗
0 and W ∗

1 for one attribute λ, W ∗
0,λ �= W ∗

1,λ. There is at least one value
vλ,r from value set of attribute λ, such that vλ,r /∈ W ∗

0,λ and vλ,r ∈ W ∗
1,λ. Here

1 ≤ r ≤ nλ. For rest of the attributes W ∗
0,i = W ∗

1,i where 1 ≤ i ≤ n and i �= λ.

Setup: S takes the following values: g1 = g, g2 = gx2 . Here, x2 is chosen ran-
domly from Zp. H(i‖vi,j) is computed as an output of an random oracle. Another
two random secret values are chosen as α and β. The simulator S announces the
public key as: g1 = g, g2 = gx2 , gα

1 = gα, gβ
2 = gx2β , e(g1,g2)α = e(g,g)x2α.

Preprocessing Phase: The attacker A collects following results in response of
his queries made to simulator.

– Whenever A makes its kth key generation query for the set Lk of attributes
such that F (Lk, W ∗

0 ) = F (Lk,W ∗
1 ). That is, A is allowed to issue a valid secret

key for which the match procedure returns true with the challenge ciphertext
components. However the restriction is imposed as the key should match with
both the challenge access structure W ∗

0 and W ∗
1 . The simulator S selects a

random value ρ and the key components are generated as follows.

D = (g2
n∏

i=1

H(i‖vi,ji
))α · gρ

2 = (gx2 · gH′(i‖vi,j))α · gx2ρ

D̄ = g
ρ
β

1 = g
ρ
β

– For the matching phase, S chooses random values s, and t from Zp. Then S
provides the output of matching phase components for access policies W .

– The attacker issues the query for H(i‖v(i, j)). For all the attribute values
except vλ,r, The simulator S runs the random oracle function and provides
as output an element from G. The simulator S records the queries and its
outputs. So that if any query is repeated by attacker then the same result
as given for that query previously is repeated in output. For an query for
H(λ‖vλ,r) the output returned is B = gb.
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Challenge: Then S flips a random coin ν.

– S sets st as a and t is selected as any random value chosen from Zp. This
results in gst

1 = ga = A and gstβ
2 = gx2aβ = Ax2β .

– The simulator S generates n shares of value t and use each share ti for encrypting
thevalues for attribute i. For all the cipher componentsW ∗

ν,i where 1≤ i≤nand i

�=λ the cipher components C̃i,j aregeneratedasgti
2 H(i‖vi,j)st =gx2tigH′(i‖vi,j)a.

– For values vλ,j of attribute W ∗
ν,λ which are included in both W0,λ and W1,λ,

the cipher components ˜Cλ,j are generated as in the real scheme using the
value of tλ.

– For the value vλ,r which makes a differentiation between W0,λ and W1,λ, the
cipher component ˜Cλ,r is calculated as follows.
• If ν = 0 then ˜Cλ,r will be a random value. This is valid because ˜Cλ,r is not

in T0,λ as per definition.
• If ν = 1 then ˜Cλ,r is set as gx2tλZ. Here we have taken the output of

H(λ‖v(λ, j)) from random oracle as gb. If Z is a valid element with value
gab then ˜Cλ,r will be a correct element else it will be a random element.

– C ′ is calculated as e(g,g)ax2α.

The adversary will be given ciphertext components 〈C′, Ĉ, C̄, {{C̃i,j}1≤j≤ni}1≤i≤n〉.
At the end of the challenge phase the adversary uses following values 〈 gst

1 = ga,
H(λ‖v(λ, r))= gb, Cλ,r 〉 to find out the underlying access policy. If Cλ,r is a
correct cipher component then it represents the value gtλ

2 ·gab else it is a random
value.

Postprocessing Phase: A is allowed to run a number of queries for attribute
keys and ciphertext components for the matching phase with the same conditions
as imposed in the preprocessing phase.

Guess: A submits a guess ν′ of ν. If ν′ = ν, then S outputs μ=1 to indicate that
it was given a valid DDH-tuple, else it outputs μ=0 to indicate that the ciphertext
is a random element. Therefore, A gains no information about ν, in turn, Pr [ν �=
ν′ | μ=0] = 1

2 . As the simulator guesses μ′=0 when ν �= ν′, Pr [μ = μ′ | μ=0] = 1
2 .

If μ = 1, then the adversary A is able to view a valid cipher components with advan-
tage ε2(l), a negligible quantity in security parameter in l. Therefore,
Pr[ν = ν′|μ = 1] = 1

2 + ε2(l). Similarly, the simulator S guesses μ′=1 when ν = ν′,
in turn, Pr[μ′ = μ|μ = 1] = 1

2 + ε2(l). The overall advantage of the simula-
tor in DDH game is 1

2 × Pr[μ = μ′|μ = 0] + 1
2 × Pr[μ = μ′|μ = 1] − 1

2 =
1
2 × 1

2 + 1
2 × ( 12 + ε2(l)) − 1

2 = ε2(l)
2 .

Therefore, if the A has a non-negligible advantage ε2(l) in the above game
then we can build a simulator (S) which can break the DDH problem with
non-negligible quantity ε2(l)

2 . Hence, the theorem. �
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7 Performance Analysis

We have experimented the proposed scheme on a Linux system with Intel core-i3
processor running at 2.30 GHz and 3 GB RAM. Pairings are constructed on the
curve y2 = x3 + x over the field Fq for some prime q = 3 mod 4. The order p
of the groups G and GT is a prime number 160 bits, while the length of q is 512
bits. The resultant time required in matching phase operation is around 0.04 to
0.08 s with respect to total number of attributes values ranging from 10 to 100.

The improved scheme facilitates a receiver to find out whether he is the
intended recipient or not with just n multiplication operations and three bilin-
ear pairing operations. Here, n denotes the number of attribute categories. The
operation complexity of matching phase is O(n) + O(1) ≈ O(n). While com-
paring the improved scheme with Zhang et al.’s scheme we found the following
results with respect to matching phase operation (Table 1).

Table 1. Comparison of the matching phase

Parameters (Used for match operation) Zhang et al.’s scheme [1] Proposed scheme

Number of user key components n+2 2

Number of cipher components ni · n + 3 ni · n + 3

Number of bilinear mapping operations 3 3

Number of multiplication operations 2·n n

Here, n denotes the attribute categories in the system and ni denotes the
number of attribute values in ith category (1 ≤ i ≤ n).

We note that the performance comparison is done for the matching operation
of the Zhang et al.’s scheme and the proposed improvement. The other AABE
schemes [5–8] do not provide matching operation, as a result, the decryption
procedure of these schemes are not efficient. The proposed improved scheme
can be used with any existing AABE scheme to make the decryption procedure
efficient.

8 Conclusion

We discussed anonymous attribute based encryption (AABE) schemes and found
security flaws in a recently proposed AABE scheme [1]. The security weakness of
the scheme [1] occurs in its matching phase that discloses the identity of the user.
We proposed an improved scheme for the matching phase that keeps the scheme’s
anonymity feature intact. The proposed improved scheme can be incorporated
in any AABE scheme in order to improve the efficiency of decryption procedure.
User accountability is another important concern in AABE scheme, which can
also be integrated in the proposed improvement and we left this as an interesting
future scope of the proposed work.
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Abstract. Type-based information-flow analyses provide strong end-to-
end confidentiality guarantees for programs. Yet, such analyses are not
easy to use in practice, as they require all information containers in a
program to be annotated with security types, which is a tedious and
error-prone task — if done manually. In this article, we propose a new
algorithm for inferring such security types automatically. We implement
our algorithm as an Eclipse plug-in, which enables software engineers to
use it for verifying confidentiality requirements in their programs. We
experimentally show our implementation to be effective and efficient.

We also analyze theoretical properties of our security-type inference
algorithm. In particular, we prove it to be sound, complete, minimal, and
of linear time-complexity in the size of the program analyzed.

1 Introduction

We present a solution for verifying confidentiality requirements in Java programs.
Our solution consists of a type system for verifying information-flow security, a
language for annotating sources, sinks, and other information containers, and
an algorithm for inferring such annotations. We implement our solution as an
Eclipse plug-in, and our experimental evaluation shows that it significantly out-
performs prior solutions. We prove that our solution is sound and minimal.

Our solution runs in O(n) time, where n is the size of the input program. It
requires annotations of sources to be fixed, while allowing annotations of sinks
and all other information containers to be flexible. Other solutions that run in
O(n) time require either annotations of all information containers to be fixed
(see, e.g., [30]), or at least annotations of all sources and sinks to be fixed (see,
e.g., [10]). On the other side of the spectrum, principal types [12,13,29] provide
enough information for verifying a program against arbitrary annotations of
sources and sinks. A disadvantage of principal types is that their construction
requires O(nv3) time, where n is the size of the input program and v is the
number of its variables [13]. A conceptual novelty of our solution is that, despite
it runs in O(n) time, it achieves minimality, similarly to principal types.

The soundness of our security analysis might not be a distinctive feature
because there are other information-flow analyses that have been proven sound
(e.g., [1,2,12,29–31]), but it is an important one. However, there are also
well-known information-flow analyses for which no soundness result exists
c© Springer International Publishing Switzerland 2015
S. Jajodia and C. Mazumdar (Eds.): ICISS 2015, LNCS 9478, pp. 395–415, 2015.
DOI: 10.1007/978-3-319-26961-0 24
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(e.g., [4,8,18]). We consider soundness a crucial attribute, because without it,
the guarantees established by a security analysis are unclear.

We implemented our solution as an Eclipse plug-in Adele (Assistant for
Developing Leak-free Programs). It supports developers in writing Java pro-
grams with secure information flow. Adele analyzes the source code in the
background, fully automatically, and reports detected information leaks. Due to
the minimality result, Adele provides developers with an overview of all poten-
tial sinks to which the confidential information flows. This overview enables an
informed navigation in the decision space for refactoring the program into a
leak-free one.

We experimentally evaluated our solution at a spectrum of Java programs. We
observed that for a single manually annotated information container, our algo-
rithm infers security types for up to 128 other containers. Hence, our algorithm
reduces the burden of manual security-type annotation by up to two orders of mag-
nitude. Regarding performance, our experiments suggest that our solution needs,
on average, less than 0.02 ms to analyze a line of source code. We also wanted
to compare, in practice, the performance of our solution with that of principal
types. Unfortunately, we did not find any implementation of principal types that
we could have used in an experimental comparison. The other most flexible sound
algorithm for inferring security types [27], that we are aware of, is implemented
in SecJ [26]. Hence, we used it as a point of comparison. We experimentally com-
pared the performance of our solution and SecJ, which revealed ours to be two
orders of magnitude faster (in addition to being more flexible).

In summary, the novelties of this article are both conceptual and practical.
Conceptually, we show how to achieve minimality without having to use principal
types. Practically, we present a solution for the verification of confidentiality
requirements in Java programs that is sound and flexible, and we experimentally
demonstrate it to be effective and efficient.

The article is structured as follows. In Sect. 2, we define the Java subset
that we focus on. In Sect. 3, we present our language for annotating informa-
tion containers, our type system for verifying information-flow security, and a
soundness result for the type system. In Sect. 4, we introduce our type-inference
algorithm. In Sect. 5, we provide soundness, completeness, minimality, and com-
plexity results for our algorithm. In Sect. 6, we present the implementation of our
solution. In Sect. 7, we experimentally evaluate our solution. After a discussion
of related work in Sect. 8, we conclude in Sect. 9.

Adele, its source code, and our benchmark programs are available for down-
load under the MIT license at www.mais.informatik.tu-darmstadt.de/adele.

2 Programming Language

We focus on a sequential object-oriented fragment of Java with recursive method
calls. Let underspecified sets C, M, F , and X denote the sets of class, method,
field, and variable names, respectively. Let M∩F = ∅, let this, result ∈ X , and
let Object ∈ C. We define the sets of data types T, expressions E, statements

www.mais.informatik.tu-darmstadt.de/adele
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S, method definitions M, and class definitions C by the BNF in Fig. 1, where
C,D∈C, x∈X , f ∈F , m∈M, and overlined terms, e.g., T x, denote arbitrarily
but finitely many repetitions of the term. We define a program as P ⊆ C.

Fig. 1. Programming language syntax.

A data type is the primi-
tive type boolean or a class
name from C. An expression
is a literal expression null,
true, or false, a variable
access x, a field access e.f , an
equality check e1 == e2, a
type check e instanceof C,
or a cast ((C) e). A state-
ment is a field assignment
e1.f = e2, variable assign-
ment x = e, instance creation
x = new C(), method call x = e.m(e1, . . . , en), variable declaration T x = e; S,
conditional branching if (e) {S1; } else {S2; }, or sequential composition S1;S2.
In a method definition T m(T1 x1, . . . , Tn xn){T result; S; return result; },
m denotes the method name, T1 x1, . . . , Tn xn denote the for-
mal parameters with their data types, S denotes the method body,
and T denotes the data type of the return value. In a class definition
class C extends D {T1 f1; . . . ; Ti fi; M1 . . . Mj}, C denotes the class
name, D denotes the name of the immediate superclass of C, T1 f1, . . . , Ti fi

denote the field declarations of C with their data types, and M1, . . . , Mj denote
the method definitions of C.

Class definitions specify the inheritance hierarchy: For all classes C,D ∈ C
defined in a program P , C is a subclass of D, written C ≤P D, if and only
if D = C or another class D′ ∈ C is defined, such that D′ is the immediate
superclass of C and D′ ≤P D. A subclass C of a class D inherits all field
declarations and method definitions from D. If C defines a method with the
same name as in D, then the method is overridden by the new definition from
C. We assume that Object is the common superclass of all classes in a program,
and that it does not declare any fields or define any methods.

We call a program well-formed if (1) it satisfies type-safety conditions com-
monly imposed by Java compilers, (2) each class has a unique name, fields and
methods have unique names within each class, and local variables and formal
parameters have unique names within each method, and (3) field names declared
in a class are not reused in field declarations of its subclasses, and methods are
only overridden by methods that declare the same formal parameters with the
same data types. In this article, we assume all programs to be well-formed.

The uniqueness of names allows identifying classes within a program P by
elements of C, fields by elements of FID = F ×C, methods by elements of MID =
M×C, and variables by elements of VID = X ×M×C. For all C ∈ C and f ∈ F ,
the partial function fieldsofP : C ⇀ P(F) is defined, such that C ∈ dom(fieldsofP )
if and only if P contains a definition of class C, and f ∈ fieldsofP (C) if and only
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if class C in P declares or inherits field f . For all C ∈ C and m ∈ M, the partial
function methodsofP : C ⇀ P(M) is defined, such that C ∈ dom(methodsofP ) if
and only if P contains a definition of class C, and m ∈ methodsofP (C) if and
only if class C in P defines or inherits method m. For all C ∈ C, m ∈ M, and
x ∈ X , the partial function varsofP : MID ⇀ P(X ) is defined, such that (m,C) ∈
dom(varsofP ) if and only if m ∈ methodsofP (C), x ∈ varsofP (m,C) if and only
if formal parameter x is declared by method m defined or inherited by class C
in P , or local variable x is declared by method m defined by class C in P . The
set of defined identifiers in P is namesP = {(x,m,C)∈VID | x∈ varsofP (m,C)}
∪{(f, C) ∈ FID | f ∈ fieldsofP (C)} ∪ {(m,C) ∈ MID | m ∈ methodsofP (C)}.

The semantics of the language in Fig. 1 corresponds to that of a syntactically
equivalent Java subset.

3 A Type System for Verifying Information-Flow
Security

We define a security type system in the spirit of [1] for the language from Sect. 2.
This type system ensures that confidential information does not flow to untrusted
sinks during a program execution. Which containers store confidential and which
store public information is specified by security-type annotations.

3.1 An Annotation Language and Information-Flow Policy

To specify between which information containers information may flow, every
information container in a program may be annotated with a security-type anno-
tation @High or @Low. Such annotations induce an information-flow policy.

An information-flow policy (brief: policy) defines a set of security domains
D, an interference relation �⊆ D × D, and a domain assignment da : VID ∪
FID ⇀ D. The security domains (brief: domains) from the set D denote abstract
levels of confidentiality. The interference relation is a partial order on secu-
rity domains that specifies between which domains information may flow. The
domain assignment associates some information containers in a program with a
security domain. A policy defines the permitted flows of information between the
information containers: For any two containers a, b ∈ VID ∪ FID with da(a) = d
and da(b) = d′, information from a may be written into b if and only if d � d′. We
assume a two-level information-flow policy (D, da,�) with the security domains
D = {low, high} and the interference relation �= {(low, low), (low, high),
(high, high)}. This policy allows expressing that confidential information must
not leak to untrusted sinks of a program. While we focus on the two-level policy,
an extension to arbitrary lattices is straightforward.

The domain assignment is induced from the security-type annotations of a
concrete program as follows. For any program P with security-type annotations,
the annotation-induced domain assignment da : VID ∪ FID ⇀ D is defined, such
that for all x ∈ X , m ∈ M, C ∈ C, and f ∈ F : (1) da(f, C) is defined if and
only if program P contains class C that declares field f , and the declaration is
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annotated with either @High or @Low, (2) if da(f, C) is defined, da(f, C) = high
if the declaration of field (f, C) in program P is annotated with @High, and
da(f, C) = low otherwise, (3) da(x,m,C) is defined if and only if program P
contains class C that defines method m, and in the definition, the declaration of
variable x is annotated with either @High or @Low, (4) if da(x,m,C) is defined,
da(x,m,C) = high if the declaration of variable (x,m,C) is annotated with
@High, and da(x,m,C) = low otherwise. An information-flow policy (D, da,�)
with an annotation-induced domain assignment intuitively requires for an anno-
tated program that information obtained from information containers annotated
with @High shall not flow to those annotated with @Low.

Due to inheritance and overriding, certain identifiers in namesP can be aliases
of the same information container. To ensure that a domain assignment does not
associate different security domains with such identifiers, we require any domain
assignment for P to be consistent for P . For any set X, a partial function
g : namesP ⇀ X is consistent for P if and only if for all C,D ∈ C with C ≤P D
it holds: (1) for all f ∈ fieldsofP (D), if (f, C) ∈ dom(g) and (f,D) ∈ dom(g)
then g(f, C) = g(f,D), (2) for all m ∈ methodsofP (D), if (m,C) ∈ dom(g) and
(m,D) ∈ dom(g), then g(m,C) = g(m,D), (3) for all m ∈ methodsofP (D) and
x ∈ {x | (x1, . . . , xn) = parsP (m,D) ∧ ∃i ∈ {1, . . . , n}.x = xi}, if (x,m,C) ∈
dom(g) and (x,m,D) ∈ dom(g), then g(x,m,C) = g(x,m,D), where the partial
function parsP : MID ⇀ X ∗ is defined for T m(T1 x1, . . . , Tn xn){. . .} in the
definition of any class C ∈ C in P , such that parsP (m,C) = (x1, . . . , xn), and
parsP (m,C) = parsP (m,D) if C inherits m from superclass D ∈ C.

3.2 A Security Type System

A domain assignment assigns security domains to a subset of fields and variables
in a program. Our security type system requires the domain assignment to be
extended, so that all defined identifiers of fields, methods, and variables are
associated with a security domain. A complete typing (brief: typing) of a program
P is a function t : namesP → D that is consistent for P . Intuitively, a typing
of a program associates all variables, fields, and methods of the program with
security domains, such that all identifiers that could be aliases of the same field,
method, or variable are assigned the same domain. We call typing t compatible
with domain assignment da if and only if for all a ∈ dom(da) it holds t(a) = da(a).

Fig. 2. Data types of expressions.

Our type system uses a
function typeP to determine
data types of information con-
tainers and expressions in a
given program P .The defini-
tion of typeP relies on the par-
tial functions ftypeP : FID ⇀
T and vtypeP : VID ⇀ T to
determine data types of fields
and local variables, respectively. ftypeP (f, C) is defined if and only if f ∈
fieldsofP (C), and ftypeP (f, C) = T if f is declared with data type T in C,
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and otherwise ftypeP (f, C) = ftypeP (f,D), where D is the immediate super-
class of C. vtypeP (x,m,C) is defined if and only if x ∈ varsofP (m,C), and
vtypeP (x,m,C) = T if x is declared with data type T in method m defined by
C, and otherwise vtypeP (x,m,C) = vtypeP (x,m,D), where D is the immediate
superclass of C. Finally, the partial function typeP : E × MID ⇀ T is defined in
Fig. 2, where e, e1, e2 ∈ E, T ∈ T, x ∈ X , f ∈ F , m ∈ M, and C ∈ C.

For a given program P and function γ : namesP → Y , we use method
signatures msigγ

P : MID ⇀ Y ∗ to denote the values that γ associates with a
method’s formal parameters, return value, and heap effect, e.g., in the signature
msigtP (m,C) = 〈dt, (d1, . . . , dn) dh−→ dr〉 of method (m,C) wrt. typing t, dt and
dr denote the security domains associated with this and result, respectively,
d1, . . . , dn denote the domains associated with the method’s parameters, and dh

denotes the domain associated with the method’s heap effect.
Whether a program is typable wrt. a typing is defined by a set of security

typing rules. A selection of our security typing rules corresponding to object-
oriented features is presented in Fig. 3. In these rules, the judgment for expres-
sions is denoted by m,C, P ; t � e : d, where m,C, P denote the context in
which the expression e is evaluated, and d denotes the security domain of the
value the expression evaluates to wrt. typing t of P . The judgment for state-
ments is denoted by m,C, P ; t � S : (d′, κ′), where S ∈ S denotes a statement
and d′, κ′ ∈ D denote security domains. The judgment for method definitions is
denoted by C,P ; t � M , where C denotes the class of program P in which the
method is defined. The judgment for typing program P wrt. complete typing t
of P is denoted by t � P . It is derivable if the judgment for method definitions
is derivable wrt. t, for all method definitions in all class definitions in P . We say
that program P is accepted by our security type system wrt. complete typing
t : namesP → D for P if and only if the judgment t � P is derivable.

If a program is accepted by the type system wrt. a complete typing of the pro-
gram, the typing is an approximation of the possible distribution of confidential

Fig. 3. Selected security typing rules.
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information during program’s execution. Intuitively, (1) each security domain
associated by the typing with an information container is an upper bound on
the security domains of containers from which information may flow into this
one, and (2) each security domain associated by the typing with a method is a
lower bound on all security domains of fields that the method may write.

3.3 Soundness of the Security Type System

We prove the soundness of our security type system wrt. a security property
in the style of Noninterference [9]. For an execution of a single method, our
noninterference-like security property intuitively requires that the information
stored in low return values and low object fields on the resulting heap is inde-
pendent from the information stored in high formal parameters and high object
fields on the initial heap. Which information containers are low or high is given
by a typing. If all executions of a method respect our noninterference-like secu-
rity property, we call such a method noninterfering wrt. a typing. A program is
noninterfering wrt. a typing, if all its methods are noninterfering wrt. the typing.

Theorem 1 (Soundness of the Security Type System). Let P ⊆ C be a
program and t : namesP → D be a complete typing for P . If t � P is derivable,
then P is noninterfering wrt. t.

4 Our Security-Type Inference Algorithm

The type system from Sect. 3 requires a complete typing of a program for verifi-
cation of the program’s information-flow security. In this section, we define our
security type inference algorithm to automatically infer, for a given program and
a domain assignment, a complete typing for the program that is compatible with
the domain assignment. The algorithm consists of four steps: (1) Assignment of
security type variables: Associate each information container and method in the
program not associated with a security domain by the domain assignment with
a type variable. (2) Derivation of constraints: Derive constraints from the pro-
gram that an inferred typings has to satisfy, so that the program is accepted wrt.
the inferred typing by the security type system. (3) Constraint solving: Assign
a domain to each type variable, so that all constraints are satisfied. (4) Infer-
ring a typing: If constraint solving was successful, output a typing, and an error
value indicating failure, otherwise. Sections 4.1, 4.2, 4.3 and 4.4 present Step 1
to Step 4, respectively.

4.1 Assignment of Security Type Variables

Let V denote the infinite set of type variables. Each information container and
method in a given program, not associated with a domain by a given domain
assignment, is associated with a type variable by the security context of the
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program and domain assignment. Let typevar : VID ∪ FID ∪ MID → V be an
arbitrary but fixed injective function assigning type variables to identifiers of
variables, fields, and methods. A security context for program P and domain
assignment da is a function σ : namesP → D ∪ V, such that:

– for all (f, C) ∈ FID∩namesP it holds that (1) if D ∈ C exists, so that (f,D) ∈
dom(da) and C ≤P D ∨ D <P C, then σ(f, C) = da(f,D), else (2) if D ∈ C
exists, so that f ∈ fieldsofP (D) and C <P D, then σ(f, C) = σ(f,D), and (3)
σ(f, C) = typevar(f, C), otherwise,

– for all (m,C) ∈ MID ∩ namesP it holds that (1) if D ∈ C exists, so that m ∈
methodsofP (D) and C <P D, then σ(m,C) = σ(m,D), and (2) σ(m,C) =
typevar(m,C), otherwise, and

– for all (x,m,C) ∈ VID ∩ namesP it holds that (1) if (x,m,C) ∈ dom(da),
then σ(x,m,C) = da(x,m,C), else (2) if D ∈ C exists, so that (x,m,D) ∈
dom(da), C <P D ∨ D <P C, and x ∈ {x | (x1, . . . , xn) = parsP (m,D) ∧
∃i ∈ {1, . . . , n}.x = xi}, then σ(x,m,C) = da(x,m,D), else (3) if D ∈ C
exists, so that m ∈ methodsofP (D), C <P D, and x ∈ {x | (x1, . . . , xn) =
parsP (m,D) ∧ ∃i ∈ {1, . . . , n}.x = xi}, then σ(x,m,C) = σ(x,m,D), and (4)
σ(x,m,C) = typevar(x,m,C), otherwise.

The first condition requires the security context to assign to each field iden-
tifier (1) the same security domain that da assigns to an alias of the field, (2) the
same security type variable the security context assigns to the same field in
a super class, or (3) a unique security type variable if the field is declared in
the class denoted by the identifier. The second and third conditions impose
similar requirements for method identifiers and variable identifiers, respectively.
The third condition distinguishes between formal parameters and local variables,
since only parameters can be aliases of each other, whereas local variables are
only accessible within the declaring method definition.

A security context agrees with the corresponding domain assignment for all
field and variable identifiers, for which the domain assignment is defined, by
construction. All identifiers that are not associated with a security domain based
on the domain assignment are assigned a security type variable. The set of type
variables in the range of σ is denoted by typevarsσ = {α ∈ V | α ∈ rng(σ)}.
The set typevarsσ denotes the set of type variables for which constant security
domains have to be inferred to obtain a complete typing of the program P .

4.2 Derivation of Constraints

In the second step of our security-type inference algorithm, constraints on type
variables are derived that a typing of a program has to satisfy, so that the
program is accepted wrt. the typing by the security type system from Sect. 3.
We use the notation for constraints and derivations rules in the spirit of [27].

Constraints. We denote constraints on type variables by constraint formulas.
A constraint formula (brief: constraint) is a term λ � λ′, where � is a binary
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relation symbol and λ, λ′ ∈ D ∪ V are either security domains or type variables.
The set KV of all constraint formulas over some set of type variables V ⊆ V
is defined by KV = {λ � λ′ | λ, λ′ ∈ D ∪ V }. Intuitively, a constraint formula
λ � λ′ requires that information is permitted to flow from the security domain
denoted by λ to the security domain denoted by λ′. A constraint scheme is a pair
(V,K) of a finite set of type variables V ⊆ V and a set of constraint formulas
K ⊆ KV over the type variables in V . The set S of all constraint schemes is
defined by S = {(V,K) | V ⊆ V ∧ |V | ∈ N0 ∧ K ⊆ KV }.

Constraint Derivation Rules. We define a set of derivation rules that analyze
the possible flow of information through the program and generate a constraint
scheme with constraints imposed on an acceptable typing of the program. Most of
the rules impose constraints on auxiliary type variables that are not in the secu-
rity context. To ensure the uniqueness of these type variables, all rules, except
the rule for programs take a set V0 of already used type variables, to exclude
when selecting a new auxiliary type variable. Selected constraint derivation rules
for object-oriented features of our language are given in Fig. 4.

The judgment for deriving constraint schemes from expressions is of the form
m,C, P ;σ;V0 � e : α � (V,K). It denotes that expression e in method (m,C)
of program P under security context σ is associated with type variable α, and
constraint scheme (V,K) specifies requirements on the security domain that α
denotes. Intuitively, the constraint scheme derived from an expression requires
that the domain denoted by α is an upper bound on the domains of all informa-
tion containers from which information flows into the expression’s value.

The judgment for deriving constraint schemes from statements is of the form
m,C, P ;σ;V0 � S : (α, β) � (V,K). It denotes that statement S in method
(m,C) of program P under security context σ is associated with type variables α
and β, and imposes constraints specified by constraint scheme (V,K). Intuitively,
the derived constraints require that the auxiliary type variable α denotes a lower
bound on all security domains of variables that the statement may write, β
denotes a lower bound on all security domains of fields that the statement may
write, and all security domains of information containers that the statement may
write denote upper bounds on the security domains of the information written
into the respective information container.

The judgment for deriving constraint schemes from method definitions is of
the form C,P ;σ;V0 � T m(. . . ) { T result; S; return result; } � (V,K).
It denotes that the definition of method (m,C) in program P under security
context σ imposes the constraints specified by constraint scheme (V,K). This
constraint scheme contains the constraints derived from the body of the method
and one additional constraint λh � β1, requiring that the security domain of the
method’s heap effect is a lower bound on the domains of the fields the execution
of the method’s body may write.

The constraint scheme derived from the definition of a class is comprised
of the constraints imposed by the definitions of the methods of this class. The
constraint scheme derived from a program is the union of all constraints of all
defined methods of all classes in the program.
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Fig. 4. Selected constraint derivation rules.

4.3 Constraint Solving

In the third step of our security-type inference algorithm, the constraints in a
derived constraint scheme are solved. The objective is to determine a variable
valuation associating the type variables in the constraints with security domains,
so that all constraints are satisfied if interpreting the binary relation � as �. A
variable valuation is a total function I : V → D, where V ⊆ V and V is finite.
We denote the set of all variable valuations by I. A variable valuation I is lifted
to Î : V ∪D → D so that for all λ ∈ V ∪D that Î(λ) = λ if λ ∈ D and Î(λ) = I(λ),
otherwise. Hence, Î associates all domains with themselves.

A constraint formula λ � λ′ ∈ KV is satisfied by a variable valuation I,
denoted by I |= λ � λ′, if and only if Î(λ) � Î(λ′). For a set of constraint
formulas K ⊆ KV , we write I |= K to denote that I |= λ � λ′ for all λ � λ′ ∈ K.
Intuitively, constraint formula λ � λ′ is satisfied by variable valuation I, if the
interference relation � permits flows from the domain that I associates with the
left operand to the domain that I associates with the right operand. A variable
valuation satisfies a set of constraints if it satisfies all constraints in the set.

To solve a constraint scheme, we adopt a constraint solving algorithm of
Rehof and Mogensen [21]. The algorithm takes a constraint scheme and either
computes variable valuation I satisfying all constraints, or it determines that the
constraint set is not satisfiable and outputs an error value ⊥. We model this
algorithm by the function solve : S → I ∪ {⊥}.



An Automatic Inference of Minimal Security Types 405

4.4 Inferring a Typing

In the fourth step of our security-type inference algorithm, the results from the
other steps are combined to infer a typing based on a program and a domain
assignment. Our security-type inference algorithm takes a program and a domain
assignment for the program as input, and either outputs a complete typing of the
program, or an error value denoting that no typing could be inferred. We model
our algorithm by the function infer : P(C) × (VID ∪ FID ⇀ D) → (namesP →
D) ∪ {⊥} that is defined for any P ⊆ C and da : VID ∪ FID ⇀ D for P by

(1) infer(P, da) = Î ◦ σ if (V,K) ∈ S and I : V → D exist so that solve(V,K) = I
and σ � P � (V,K) is derivable under the security context σ : namesP →
D ∪ V for P and da, and by

(2) infer(P, da) = ⊥, otherwise.

5 Soundness, Completeness, Minimality, Complexity

In this section, we present the soundness, completeness, minimality and com-
plexity results for our security-type inference algorithm.

5.1 Soundness

If our security-type inference algorithm infers a typing for a given program and
domain assignment, then the program is accepted wrt. the inferred typing by
the security type system from Sect. 3.

Lemma 1 (Correctness). Let P ⊆ C be a program, and da : VID ∪ FID ⇀ D
be a domain assignment for P . If a complete typing t : namesP → D of P exists,
such that infer(P, da) = t, then t � P is derivable.

In order to express the soundness of our security-type inference algorithm,
we need to lift our notion of noninterference from Sect. 3 to one wrt. a domain
assignment. For a program P and a domain assignment da : VID ∪ FID ⇀ D for
P , P is noninterfering wrt. da if and only if a complete typing t : namesP → D
exists, such that t is compatible with da and P is noninterfering wrt. t. If a
program is noninterfering wrt. a typing t and t is compatible with a domain
assignment da, then all outputs of the program into information containers that
da associates with low are independent from information stored in containers
that da associates with high. This holds because t agrees with da on all identifiers
for which da is defined, and a noninterfering program wrt. t is guaranteed to have
no flows of information from information containers that t associates with high
to containers that t associates with low. If our algorithm infers a typing for a
given program and domain assignment, then the program is noninterfering wrt.
the domain assignment.

Theorem 2 (Soundness). Let P ⊆ C be a program, and da : VID ∪ FID ⇀ D
be a domain assignment for P . If a complete typing t : namesP → D exists, such
that infer(P, da) = t, then P is noninterfering wrt. da.
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5.2 Completeness

The completeness result guarantees that our security-type algorithm always out-
puts a typing for a program and domain assignment, if the domain assignment
can be extended to a complete typing of the program, such that the program is
accepted wrt. the typing by our security type system.

Theorem 3 (Completeness). Let P ⊆ C be a program, and da : VID∪FID ⇀
D be a domain assignment for P . If t : namesP → D exists, so that t is a complete
typing of P , t is compatible with da, and t � P is derivable, then infer(P, da) �= ⊥.

5.3 Minimality

In order to define the minimality of typings, we first introduce the interference
relation �P ⊆ (namesP → D) × (namesP → D) on typings of a program P ,
that is defined, such that for all typings t, t′ : namesP → D, t �P t′ if and
only if t(a) � t′(a) for all a ∈ namesP . For program P and domain assignment
da : VID ∪ FID ⇀ D for P , a complete typing t : namesP → D is minimal for P
and da, if and only if for all typings t′ : namesP → D, such that t′ is a complete
typing of P , t′ is compatible with da, and t′ � P is derivable, it holds that
t �P t′. Intuitively, a typing is minimal for a program and domain assignment,
if it is a lower bound on all typings of the program that are compatible to the
domain assignment and under which the program is accepted by our security
type system. Our inference algorithm only infers typings that are minimal.

Theorem 4 (Minimality). Let P ⊆ C be a program, and da : VID∪ FID ⇀ D
be a domain assignment for P . If a typing t : namesP → D exists such that
infer(P, da) = t, then t is minimal for P and da.

Intuitively, an inferred typing for a given program and domain assignment
associates a domain with each information container that is a least upper bound
on all domains of containers from which information may flow into this container.
This offers two appealing opportunities for using our security-type inference
algorithm (1) to explore where the confidential information in a program may
flow, and (2) to verify a program against arbitrary annotations of sinks.

Exploring Flows of Confidential Information. To use our security-type inference
algorithm for exploring where confidential information in a program may flow,
one annotates sources of confidential information, i.e., information containers
from which confidential information is read, in the program with @High. Then
the security-type inference algorithm infers the security domain high for all
information containers to which these confidential inputs may flow, and low for
all other information containers.

Verifying a Program Against Arbitrary Annotations of Sinks. As long as the
sources annotated with @High remain the same, one inferred typing for a pro-
gram allows to verify the program against different annotations of sinks. Given
an annotation-induced domain assignment da : VID∪ FID ⇀ D for a program P
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and an inferred typing t : namesP → D for a domain assignment that associates
the same identifiers of sources with high as da, P is noninterfering wrt. da if
t(a) � da(a) for all identifiers a ∈ dom(da).

5.4 Computational Complexity

Our security-type inference algorithm and security type system analyze a pro-
gram with a worst case time-complexity that is linear in the size of the program.
As the size of a program, we consider the number of nodes in the program’s
abstract syntax tree.

Theorem 5 (Complexity). For any program P ⊆ C and domain assignment
da : VID ∪ FID ⇀ D for P , given a precomputed security context σ : namesP →
D ∪ V for P and da, the security-type inference and security type checking take
O(n) time, where n is the size of the program.

6 Implementation as an Eclipse Plug-In

We implemented our solution as an Eclipse plug-in Adele (Assistant for Devel-
oping Leak-free Programs). It leverages our security-type inference algorithm and
security type system for the development of Java programs with secure informa-
tion flow. Adele integrates into the Eclipse IDE, analyzes the source code in
the background, fully-automatically, and reports detected information leaks.

User Interface: Input. Adele allows its user to control two parameters of the
analysis: the location of the source code to analyze and the information-flow
policy. The location of the source code can be specified by selecting a source
directory or a package containing Java source files within the current workspace
of Eclipse. Selecting a package within a larger program allows focusing the analy-
sis on a security-critical part of a given program. The information-flow policy
is specified directly in the source code with Java annotations @High and @Low.
The usage and semantics of these annotations are as described in Sect. 3.

User Interface: Output. The output of Adele consists of (1) a report on detected
information leaks, and (2) inferred security types for information containers.
Adele displays this information in the views “Information Flow Problems” and
“Inferred Security Types”, respectively. The view “Information Flow Problems”
(see Fig. 5(a)) lists detected leaks together with information that could be help-
ful for mitigating them, e.g., the location of the leak in the code, and sources and
sinks relevant for the leak. The detected leaks are also marked in the source code
editor of Eclipse. In the view “Inferred Security Types” (see Fig. 5(b)), informa-
tion containers are structured into categories “Sources”, “Sinks”, and “Tran-
sit Nodes”. “Sources” groups information containers from which information is
read but not written to. “Sinks” groups information containers to which flows
within the program exist, but which are never read. “Transit Nodes” contains
information containers that are read and written. Within these three categories,
the identifiers are grouped by whether they are manually annotated or have an
inferred security type, and by their security types.
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(a) Reporting detected information leaks. (b) Exploring inferred
security types.

Fig. 5. User interface of Adele.

7 Evaluation

The experimental evaluation of our solution has the goal of answering the fol-
lowing three questions: (i) What is the ratio between manually annotated and
automatically inferred types, in practice? (ii) What is the performance of our
solution, in practice? (iii) What is the relationship between the performance of
our solution and that of SecJ [26], an implementation of a security-type infer-
ence algorithm [27] for a programming language similar to the one that we use?

Our Benchmark Applications. We conduct our evaluation on four conceptual
Java applications that we developed ourselves, inspired by real-world applica-
tions with similar functionality. We decided to develop applications ourselves in
order to introduce information leaks into some of them, purposely, and investi-
gate how the implementation of our solutions detects these leaks. Application
“Blood Pressure History” (short: BPH) allows its user to record blood pressure
values and to view previously recorded values. The application automatically
informs a physician if the measured values are critical. The security concern is
that the user’s blood pressure values leak to third parties. Application “Company
Strategy” (short: CS) allows a company to send resource requests to a supplier
in order to pursue an internal strategy with certain resource requirements. The
security concern is that confidential details about the company’s internal strategy
leak to the supplier. Application “Job Finder” (short: JF) searches a database
for jobs that match the user’s keywords. The security concern is that the user’s
keywords leak to an employer. Application “Online Shop” (short: OS) allows its
users to maintain a wish list that their friends can use for selecting gifts. The
security concern is that confidential information about user’s purchases leaks
to friends. Applications BPH and CS are analyzed in three variants each with
modifications of the code that affect their security.
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Our Experimental Setup. We run all our experiments on a typical laptop with
Intel Core i7 CPU at 2.50 GHz × 4 and 8 Gb of RAM. We use Ububtu 12.04
and Oracle Java Platform SDK in version 1.8.0 45 for 64-bit Linux.

7.1 Ratio Between Manually Annotated and Inferred Types

For evaluating the ratio between manually annotated and inferred security types,
we annotated each of our benchmark applications with information-flow policies
that reflect the aforementioned security concerns. This results in annotating one
or several information containers that correspond to a source with @High, and
one or several containers that correspond to a sink with @Low. Altogether the
number of such manually annotated information containers ranges from 2 to 5 in
our experiments. Our solution infers security types for all remaining information
containers. Table 1 presents the results of our experiments.

Our solution successfully verifies the information-flow security of applications
“Blood Pressure History 1” (BPH 1) and “Company Strategy 3” (CS 3). All
remaining applications are insecure, and our solution successfully detects infor-
mation leaks in them. In Table 1, we observe that the ratio between manually
annotated information containers and those containers for which security types
are inferred by our solution varies between 1 :17 and 1 :128 in our experiments.
This suggests that our security-type inference algorithm reduces the burden of
manual security-type annotation by up to two orders of magnitude.

Table 1. Number of security types in our benchmark applications: M denotes the
number of manually annotated information containers, I denotes the number of inferred
security types for other information containers.

# Application LoC Leak M I �M : I�
1 BPH 1 135 No 4 89 1:22

2 BPH 2 135 Yes, explicit 5 88 1:17

3 BPH 3 136 Yes, explicit 4 89 1:22

4 CS 1 147 Yes, explicit 4 89 1:22

5 CS 2 151 Yes, implicit 4 88 1:22

6 CS 3 307 No 4 190 1:47

7 JF 311 Yes, implicit 3 187 1:62

8 OS 410 Yes, implicit 2 256 1:128

7.2 Performance

For evaluating the performance of our solution we use the same benchmark appli-
cations and information-flow policies as in Subsect. 7.1. We collect 1000 samples
of our solution’s running time on each benchmark application, from which we
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compute the estimated mean running time. We measure the running time in the
steady state of the JVM using System.nanoTime() timer. To reduce the inter-
ference of the garbage collection with the measurements, System.gc() is called
before each run of the analysis. Table 2 presents the results of our performance
evaluation (see section “Adele” of the table).

Table 2. Estimated mean running time of Adele and SecJ, in milliseconds.

# Application LoC Estimated mean running time

Overall Inference Collecting Solving Overall
per LoC

Inference
per LoC

Adele

1 BPH 1 135 2.6600 1.0302 0.9526 0.0776 0.0197 0.0076

2 BPH 2 135 2.6865 0.8723 0.7833 0.0890 0.0199 0.0065

3 BPH 3 136 2.8716 1.0279 0.9318 0.0961 0.0211 0.0076

4 CS 1 147 2.8797 1.1081 0.9704 0.1376 0.0196 0.0075

5 CS 2 151 2.7458 1.0189 0.8581 0.1608 0.0182 0.0067

6 CS 3 307 4.6359 2.0526 1.9852 0.0674 0.0151 0.0067

7 JF 311 5.1064 2.5773 2.2175 0.3598 0.0164 0.0083

8 OS 410 6.8985 3.6433 3.2686 0.3748 0.0168 0.0089

SecJ

1 BPH 1 135 775.9983 24.1443 20.7841 3.3602 5.7481 0.1788

2 BPH 2 135 736.9718 24.3384 21.3163 3.0221 5.4591 0.1803

3 BPH 3 136 801.3648 26.8502 23.1533 3.6968 5.8924 0.1974

4 CS 1 147 745.5113 27.7995 24.2680 3.5315 5.0715 0.1891

5 CS 2 151 757.0713 30.7687 26.6143 4.1543 5.0137 0.2038

6 CS 3 307 1169.3359 130.2044 118.6230 11.5814 3.8089 0.4241

7 JF 311 1279.5666 160.5022 140.3807 20.1215 4.1144 0.5161

8 OS 410 1655.0694 284.5710 249.6445 34.9265 4.0368 0.6941

The overall time corresponds to the running time of the analysis from parsing
to reporting. It includes the time of the type inference, the sum of the times of
constraint collecting and solving. By dividing the running times estimated during
the analysis of each application by the corresponding number of the source code
lines, we compute the running time per line of code for the overall analysis, and
for the type inference. We observe: (1) the overall running time of our solution,
averaged among the benchmark applications, lies below 0.02 ms per line of code,
and (2) the running time required for the type inference, averaged among the
benchmark applications, lies below 0.008 ms per line of code. Taking into account
that our solution has a linear time-complexity in size of the analyzed program
(see Theorem 5), our experimental results suggest that our solution shall also be
efficient when analyzing significantly larger applications.
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7.3 Relationship to SecJ wrt. Performance

For evaluating the relationship of our solution to SecJ wrt. performance, we run
the experiments from Subsect. 7.2 also for SecJ [26]. Table 2 presents the results
of this performance evaluation (see section “SecJ” of the table). By comparing
the running time values observed in our experiments for Adele and SecJ, we
conclude: (1) overall, our solution is two order of magnitude faster than SecJ,
and (2) the implementation of our security-type inference algorithm is an order
of magnitude faster than the type inference in SecJ.

public JobRecord makeChoice(JobList jobs) {
@High Element job = jobs.getFirst();
@Low JobRecord choice = (JobRecord)job;
return choice;

}

Leak Not Detected by SecJ. Dur-
ing our experiments, we found that
the information leak in the applica-
tion “Job Finder” is not detected by
SecJ. In the code snippet, the con-
fidential result of a job search job is converted into an instance of JobRecord
and written to untrusted sink choice. Hence, there is an information leak from
job to choice. SecJ, however, accepts this example as secure. We inspected
the implementation of SecJ and suspect an error in its constraint derivation for
the type casting, which results in the undetected leak. It seems that the error is
caused by a wrong type variable in the implementation.

8 Related Work

The certification of programs for secure information flow [6] is a long-standing
line of research. Starting from the work of Volpano, Irvine, and Smith [30],
security type systems have attracted a lot of attention for such certification.
Sabelfeld and Myers provide in [22] a comprehensive overview of this area until
the beginning of 2000s. Since then, a notable branch of this area focused on
making security type systems applicable for realistic object-oriented languages,
like Java. We limit this paragraph to security type systems for such languages,
as we focus on a subset of Java in this article. Strecker [24] formalizes a security
type system for MicroJava in Isabelle/HOL. Banerjee and Naumann [1] pro-
pose a security type system for a Java-like programming language extended
with access-control features. We drew inspiration from their work when we
were defining our programming language and our security type system. Barthe
et al. [2] propose a security type system for a Java-like language that supports
exceptions. Rafnsson et al. [20] propose a security type system that addresses
dynamic class loading and the initialization of static fields. The aforementioned
security type systems have been proven sound in [1,2,20,24], respectively. There
are also type-based information-flow analyses [4,8,16,18] that target programs
written in larger fragments of Java, some — even full Java. Yet, they are not
accompanied by formal soundness proofs, to the best of our knowledge.

Security type systems require all information containers in a program to be
annotated with security types. Doing such annotations manually is a tedious
and error-prone task. Security-type inference algorithms have a goal of inferring
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such annotations automatically. Type inference, in general, has a long-standing
tradition (see, e.g., [7,17,25]). Starting from Volpano and Smith’s type infer-
ence algorithm [31] for the security type system from [30], there has been a
growing interest for type-inference algorithms tailored to information-flow analy-
ses [3,5,10–14,19,23,27,28,32]. In Table 3, we list attributes of twelve well-known
security-type inference algorithms and compare them to our algorithm.

Table 3. Attributes of security-type inference algorithms. (A dash means that the
respective article does not provide information on the attribute.)

Type-inference

algorithm of

Imperative,

object-

oriented

language

Soundness

result

Completeness

result

Minimality

result

Time-

complexity

Volpano/Smith [31] No Yes Yes No –

Pottier/Simonet [19] No Yes Yes No –

Sun et al. [27] Yes Yes Yes No O(n)

Deng/Smith [5] No Yes Yes No O(n2)

Hristova et al. [10] No No No No O(n)

Hunt/Sands [12,13] No Yes Yes Yes O(nv3)

Smith/Thober [23] Yes Yes Yes No O(nn5
)

King et al. [14] Yes No No No –

Terauchi [28] No Yes No No Polynomial

Bedford et al. [3] No Yes Yes No –

Weijers et al. [32] No No No No –

Huang et al. [11] Yes No No No O(n3)

Our algorithm Yes Yes Yes Yes O(n)

A conceptual novelty of our algorithm over other security-type inference algo-
rithms is that it is accompanied by a formally proven minimality result without
having to use principal types [12,13,29]. Hunt and Sands [12] show how to infer
principal types for programs written in a simple while-language. Their principal
types describe, for each variable, all possible flows of information through the
variable. This description is so fine-grained that is provides enough information
for checking a program’s compliance with an arbitrary information-flow policy.
In [13], Hunt and Sands provide an algorithm for computing principal types
in O(nv3), where n is the size of an input program and v the number of its
variables. In a recent work [29], their principal type system is lifted to support
dynamic policies. Generally, the idea of extending principal types to support an
object-oriented Java-like programming language seems rather appealing. Yet, at
this time it is not clear how to achieve this at low computational costs.

The security-type inference algorithm of Sun et al. [27] is the closest to our
algorithm, supporting a programming language with the same features. The algo-
rithms differ, most notably, in the following two technical aspects: (1) The algo-
rithm of Sun et al. [27] maintains a type environment to dynamically read and
keep track of the security types of local variables and formal parameters. We use a
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predefined security context to access security types of all information containers.
(2) The algorithm of Sun et al. [27] conducts data type inference for local variables
and expressions in parallel to the derivation of constraints for security types. As
a consequence, all constraint derivation rules for expressions have to capture also
inference of data types, and the type environment has to store data types of local
variables and formal parameters, in addition to their security types. In contrast,
we use results of a separate data-type inference algorithm just in those rules that
require it, i.e., rules for a field access, field assignment, and method call. Modelling
both the type environment and the inference of data types by separate functions
enables implementation of our algorithm in a clean, modular fashion.

Sun et al. [27] do not comment whether their algorithm infers minimal typ-
ings. We conjecture that it probably does, at least if no polymorphism is used.
However, due to the additional complexity coming with polymorphic classes, we
cannot intuitively assess the minimality of their full algorithm without having
to conduct a formal proof.

9 Conclusion

We presented a new algorithm for inferring security types in Java programs. We
proved it to be sound, complete, minimal, and of linear time-complexity in the size
of the program analyzed. The minimality of our algorithm allows flexible security
analyses, in the sense that programs can be analyzed wrt. information-flow poli-
cies that fix only the annotations of sources, while leaving the annotations of sinks
flexible. Based on our algorithm, we developed a solution for verifying confiden-
tiality requirements in Java programs. We implemented or solution as an Eclipse
plug-in, and experimentally showed that it is effective and efficient.

As future work, we plan to deploy the presented algorithm, after necessary
adaptations, in our information-flow analysis for Dalvik bytecode [15].
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Abstract. Wireless Sensor Networks (WSNs) are used in various
applications mostly in hostile and emergency environments e.g. battle
field surveillance, monitoring of nuclear activities, etc. The unattended
deployment of WSNs, unreliable wireless communication and inherent
resource constraints necessitate addressing the security of the WSNs in
an efficient and economical way. In this paper, a node program integrity
verification protocol is proposed in which the cluster heads are equipped
with Trusted Platform Module (TPM) and serve as the verifiers. The
protocol aims to first ensure the authentication of the verifier by a node,
thereby, only an authenticated verifier is allowed to verify the authen-
ticity and the integrity of the program of a node within its cluster. The
proposed protocol also ensures that capture of one node does not reveal
the secret of any other node in the network to the adversary. In addition
to this, the protocol is secured against node collusion, man-in-the-middle
and impersonation attacks. Since, the proposed protocol considers TPMs
only at the cluster heads, unlike fully TPM enabled WSN, the overall net-
work deployment cost is reduced. The aim of the proposed protocol is to
provide program integrity verification for detecting node capture attack
in a WSN with reduced computational, communication and storage cost
overhead compared to the existing protocols for program integrity veri-
fication. The performance analysis and the simulation results verify the
performance improvement.

Keywords: Wireless sensor network · Node capture attack · Trusted
platform module · Program integrity verification

1 Introduction

A Wireless Sensor Network (WSN) consists of a large number of sensor nodes
which cooperatively monitor the physical or environmental conditions such as
temperature, sound, vibrations, pressure and motion [2]. Sensor nodes have
inherent constraints of memory, computation power, and energy. In a WSN,
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there are usually one or more base stations, which are assumed to be more pow-
erful in terms of storage capacity, computation and communication capabilities,
as compared to sensor nodes and be physically protected. Base station acts as
a central trusted authority and also serves as the data sink/processor and as
the interface between sensor network and the external world. WSNs are usually
deployed unattended in hostile terrains for applications such as military sur-
veillance and disaster management and therefore, the security of wireless sensor
network (WSN) has been a matter of concern.

The threat to security of WSN is influenced by various factors such as the
underlying key management scheme used in WSN, the topology of the network
and the density of the network [3], the level of tamper-resistance of a node and
the capability of an attacker being the decisive factors.

Various aspects of WSN security have been dealt with in the literature. Over
the years, the key management schemes have been improved in order to improve
the security. However, the major security threat that is still of concern is the node
capture attack because of unattended deployment of nodes in hostile environ-
ments. Node capture attack is the ability of an attacker to access (and eventually
change) the program running on a sensor node [2]. An attacker gains full con-
trol over a sensor node through a direct physical access and then easily extracts
cryptographic primitives, obtains unlimited access to the information stored on
the memory chip of the captured node through a reverse engineering process,
subsequently causing substantial damage to the entire WSN [3].

The node capture attack has different level of severity depending upon the
adversary capability and the time available with an adversary to carry out an
attack. Becher et al. [4] has given the classification of node capture attack based
on severity and duration of attack. Starting from simply manipulating the radio
communications, influencing sensor readings, reading out RAM or program mem-
ory in whole or in part, the severity of attack can go up to adversary gaining
complete read/write access to the micro-controller. The attack may involve cre-
ating plug-in connections and transferring few data in less than 5 mins, termed
as short attacks or some mechanical work such as soldering carried out within
30 min (medium attack). Long attacks are possible only in specialized labs by
skilled personnel that may take hours or days depending on the intended damage.

The node capture attack in wireless sensor networks (WSNs) can be decom-
posed into three stages: physical capture of node, redeployment of compro-
mised node, and rejoining the network for various insider attacks [12]. Although
resilience to node capture threat has improved with the improved key man-
agement, addressing the threat of node capture still remains a major research
challenge.

Motivation and Contribution. Typically, it is assumed that in physical
attacks, attacker has unsupervised access to a node for an extended period
of time. However, in normal WSN operation, nodes keep communicating with
their neighboring nodes and if a node is continuously absent then it is an
unusual condition that neighbors can notice and if time needed to perform an
attack is known, the neighbors can monitor each other periodically. The existing
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protocols to detect the node capture [8–13] are based on monitoring of the nodes
through base station, cluster head, group manager or peer nodes. Even with the
continuous monitoring, it is possible that the malicious neighbors collude and
the detection is bypassed, resulting in node capture. For example, consider a
scenario in which a set of nodes are monitoring a neighbour node. Now, suppose
two or more of the monitoring node goes malicious (a node may act malicious
even without being capture) and the adversary captures the monitored node.
The malicious nodes may report the captured node to be present in the net-
work, though it is not there and the absence of the node in the threshold time
may go unnoticed.

After the capture, a node may be reprogrammed by the adversary and later
be used to launch various insider attacks. In order to prevent an attacker from
deploying a reprogrammed node for carrying out insider attacks, various attes-
tation and program integrity verification protocols have been proposed [14–19].
The protocols that rely completely on software attestation require strict time
measurement and in multi-hop wireless networks, it is impractical to achieve the
same. Software based program integrity verification such as [15] expose all node
program codes to adversary on verifier compromise. The hardware based pro-
tocols, for example [19], require specialized hardware such as Trusted Platform
Module (TPM) [5] at all the sensor nodes, which may not be desirable in large
sensor networks where cost is a major constraint.

The need of efficiently and securely detecting the node capture attack by
verifying the integrity of a node program while ensuring the optimal overall net-
work cost is the motivating factor for proposing a cost effective secure program
integrity verification protocol. In this paper, a protocol is proposed for verifying
the integrity of a node program in a secure and cost-effective manner. In the
proposed protocol, a clustered network is setup with TPM enabled cluster heads
each having a set of sensor nodes within its cluster. A cluster head acts as a
TPM enabled Verification Server (TVS) that verifies the integrity of the sensor
node program to ensure the node program is not tampered with by an adversary.

Although, the main goal of the protocol is to verify the integrity of a sensor
node program to detect if a node is a victim of node capture attack, there is a
possibility that the verifier itself is compromised. Therefore, the cluster heads
are equipped with the TPM [5]. Whenever a sensor node is asked to prove the
integrity of its program, node first ensures that TVS itself is not tampered with
and it is authentic. Once a node is assured of the authenticity of TVS, it presents
itself to TVS that executes the program integrity verification protocol to ensure
the integrity of the program residing in the node’s program memory.

The analysis of the proposed protocol shows that it is secure and efficient
in terms of communication, computation and storage cost as compared to the
existing software based attestation protocols. The simulation results show that
the average energy consumption and communication latency is reduced with
the proposed protocol. Moreover, even though the protocol uses TPM enabled
cluster heads, the network cost overhead is found lesser in comparison to the
hardware based attestation protocols [19].
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The rest of the paper is organized as follows: In Sect. 2, we reviewed the
exiting protocols used to detect/prevent node capture attack. In Sect. 3, the
details of the proposed protocol are presented. In Sect. 4, we analyze the protocol
for the security and performance. In Sect. 5, the work is concluded.

2 Related Work

Seshadri et al. [16] created a SoftWare-based ATTestation technique (SWATT),
a code attestation algorithm that is executed solely through software means to
externally verify the code running on embedded devices. They also proposed a
protocol called SCUBA [17] to recover the sensor nodes after compromise, which
uses two-authenticated channel between a node and the base station. Both these
protocols require the trusted verifier (in case of WSN, the base station) to contin-
uously be in communication with the nodes. The verification procedure loaded
in node memory can itself be corrupted, if a node is compromised. Also these
protocols depend on accurate time measurements and optimal program code.

Park and Shin [14] proposed a software solution using randomized hash func-
tions in which base station is needed to authorize the Program Integrity Verifi-
cation Servers (PIVS). The communication between a PIVS and a node happens
on public channel which may cause man-in-the-middle attack resulting in a valid
node failing the verification. Later Chang and Shin [15] suggested using PIV with
distributed authentication, called Distributed Authentication Protocol of PIVSs
(DAPP), wherein a set of PIVSs authenticates a PIVS to node and then the
node uses this authenticated PIVS to present its program code for verifying the
integrity. All the PIVSs keep the entire program code of all nodes in the network
to verify the integrity of node programs. In case a PIVS itself is compromised,
all node programs are available to the adversary. In the DAPP protocol [15], a
polynomial share is stored at node which is used to compute a pair-wise key with
verification servers in the network. If a node is captured, the polynomial share
is disclosed and the adversary can use the captured node to communicate with
any other node/server in the network. Moreover, a prover node needs to com-
pute a polynomial based pair-wise key with the verifying server as well as for all
the PIVSs who have provided the authentication tickets to the verifying PIVS,
resulting in computation and storage overhead for a resource constrained node.

Subsequently, many hardware attestation techniques have been proposed that
use Trusted Platform Module (TPM) [6,7]. To make the paper self-sufficient, a
brief overview of the TPM is given. A TPM is capable of protecting the system
from malicious activities and unauthorized changes. The shielded memory of
TPM can not be accessed by any other entity other than the TPM itself. Each
TPM has a unique Endorsement Key (EK) used to identify the TPM. It is
typically a pair of public-private keys and the private key is embedded into the
TPM and never leaves it. TPM has a unique feature in terms of the Secure
Platform Configuration Registers (PCR). PCRs store the integrity metrics that
are used to measure the integrity of any code prior to its execution. This code
may be BIOS or an application code.
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TPM provides a unique capability of Sealing any data block with TPM’s
platform configuration. This feature can be used to secretly store the data in
TPM and also verify the integrity of the device which is embedded with TPM.
TPM provides TPM Seal() and TPM Unseal() commands for this purpose. The
data is encrypted with the public key of the TPM. This encrypted data is bound
with the current platform configuration (stored in PCR) of the same TPM.
In order to retrieve this data block, not only the private key of the TPM is
needed, but at the time of retrieval, TPM has to be in the same configuration
using which the data was sealed. TPM Unseal() command takes the sealed data
block, TPM’s private key and the current platform configuration and if the
current configuration matches the initial configuration, it will unseal the data
block.

A simple abstraction of TPM Seal() and TPM Unseal() is defined as [18]:

PSeal(Platform Configuration at sealing time, public key of TPM, data to be sealed)
PUnSeal(Platform Configuration at unsealing time, private key of TPM, sealed data)

Kraus et al. [18] had proposed two attestation protocols using which a cluster
head can prove to a node, the validity of its platform configuration i.e. the
software components including applications. The proposed protocols work in
multi-hop WSNs as well. Recently, Tan et al. [19] suggested attaching TPM to

Table 1. Comparison of the existing proposals

Features →
Scheme ↓

Resistance to
node
collusion

Resistance to
Man-in-the-
Middle attack

Works with-
out reliance
on node
response time

Program
integrity
verifica-
tion

Verifier
secure

Works
without
central
authority

Software
attestation
[16]

Yes Yes No Yes Yes No

Soft tamper
proofing
[14]

No No No Yes No Yes

Distributed
program
integrity
verification
[15]

Yes Yes No Yes No Yes

TPM enabled
server
attestation
[18]

Yes Yes Yes No Yes Yes

TPM enabled
mutual
attestation
[19]

Yes Yes Yes Yes Yes No
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all the sensor nodes, using which a node can verify the integrity of any peer node.
However, [18] does not address the main objective of verifying the integrity of
node program. For large WSNs, the proposal of [19] of equipping all the nodes
with TPM will result in increased network cost. Moreover, Tan el al scheme
[19] needs a node to interact with base station for each verification, which is a
communication overhead.

Table 1 gives a comparison of the existing proposals.

3 Proposed Protocol

To detect node capture attack through verification of the integrity of a sensor
node program in a distributed environment, the protocol proposes the verifica-
tion using TPM enabled verification servers. A node can authenticate a verifi-
cation server before its own program integrity verification by that server. In the
subsequent subsections we discuss the details of the proposed protocol.

3.1 System Model

The WSN comprises of two types of nodes. One small set of nodes called cluster
heads that act as node program integrity verification servers and the rest of the
nodes are normal sensor nodes with limited resources (Fig. 1).

Fig. 1. Proposed network model

Each verification server is equipped with TPM chip (will be referred as TPM
enabled Verification Server (TVS) in the rest of the paper). TVSs are more
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Fig. 2. Program memory space

powerful in terms of storage, communication and computation, as compared to
the normal cluster nodes. Overall control and interaction with outside world is
done by a resourceful trustworthy central authority called Base Station.

The nodes are loaded with the program securely by the base station prior
to deployment. The program memory’s free space is filled with unique random
incompressible bit strings for each node, thus making the program memory space
unique for each node (Fig. 2).

Prior to deployment, the base station stores the copy of program memory
contents of each node securely at each TVS in the network. Since, only the free
space filled with unique random incompressible bit strings is different for each
node, each TVS has only the free space contents for each node and one common
copy of the rest of the program memory content. The program memory content
of a node stored at TVS is sealed with the initial platform configuration of
TPM embedded in that TVS. Immediately after deployment, the nodes associate
themselves with a cluster head nearest within their transmission range.

A node moving away from its cluster informs its cluster head, who in turn
informs the move to other nodes in its cluster as well as to the head of new cluster
which the moving node decides to join. In DAPP [15], a bi-variate polynomial
based secret key is used for communication between a node and a server. If a
node is captured, the key is disclosed to the adversary. If a node is not captured
by an adversary, then even the contents of its program memory remain secret.
Therefore, in the proposed protocol, we have utilized the secrecy of the program
memory content and the hash of program memory content of a node is used as
initial secret between the node and its cluster head.
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For example, as shown in Fig. 2, suppose there are two nodes A and B.
Assume that the incompressible bit strings stored in the free space of node A
are SA1, SA2 and SA3. Similarly, a different set of incompressible bit strings is
stored in the free space of node B, These strings are SB1, SB2 and SB3. These
bit strings are loaded in the respective nodes prior to deployment of the nodes
and will not be known to the adversary.

The overall program memory content of node A will be different than the
program memory content of node B. Therefore, the hash code computed over
the entire memory content of node A will be different from the hash code for
node B. In case, an adversary captures node A, it will certainly have access to
the entire memory content of the node A. However, the adversary does not know
the overall content of program memory of node B, since the incompressible bit
strings SB1, SB2 and SB3 are different than SA1, SA2 and SA3 stored in node A.
Hence, the secret hash code of node B is not revealed to adversary on capture
of node A.

In our proposal, we assume that sensor nodes have separate user(or data)
memory and program memory. The application related data is managed in user
(or data) memory, program memory is fixed that contains boot code, main appli-
cation code. (For details of the program memory structure, please refer Fig. 2).
In order to update software in the node, the main application code needs to
be changed. If the new code is bigger than the existing code, the free space is
utilized and adjusted accordingly.

3.2 Goal and Assumptions

Goal. The goal of the proposed TPM enabled Program Integrity Verification
(TPIV) protocol is to ensure:

– TVS authentication by a node - A node does not run the node authen-
tication and program integrity verification protocol with a TVS that fails
authentication.

– Node authentication and program integrity verification by TVS - A TVS
declares a node to be captured, if the node fails the program integrity
verification.

– Resilience to node capture - A captured node does not reveal the secret of
other nodes.

Assumptions. The WSN is assumed to have a base station as the central
trusted authority. The free space in the program memory of each node is filled
with unique incompressible bit strings to avoid memory compression attack and
have overall program memory content unique for each node. The cluster heads
keep a copy of the program memory contents of nodes in a secured space sealed
within their TPMs. We assume the presence of an adaptive adversary. The details
of the capabilities of such an adversary is given in Sect. 4.1 as Adversary Model.
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3.3 Preliminaries and Notations

The proposed protocol is based on one way hash function (OWHF) and message
authentication code (MAC) [1]. A one-way hash function h converts an input x of
an arbitrary finite bit-length into output h(x) of fixed bit-length n such that h()
is easy to compute and for a given y, it is computationally infeasible to find any
pre-image x′ such that h(x′) = y. Message authentication code (MAC) is used to
ensure the integrity of the source of the message as well as the message itself. A
MAC algorithm is a family of functions hk with a secret key k as parameter. It
is computationally infeasible to compute the MAC without knowing the secret
key k. The notations used in the rest of the paper are given in Table 2 below.

The proposed protocol comprised of three phases: System setup phase, Mon-
itoring phase and Authentication and code verification phase.

3.4 System Setup Phase

Prior to deployment, each node X in the network is assigned a unique iden-
tity, IDX , by the base station. All the nodes are equipped to perform hash

Table 2. Notations used in the protocol

Notation Description

Zq Finite field of order q, q is a large prime

IDA Unique identity of a node A

CHi Unique identity of a cluster head (TVS) i

tlastA Time of last transmission heard from node A

tnew
A Time of latest new transmission heard from node A

Tt Threshold time to decide the absence of a node from network

PA Program memory content of node A

h() Public one-way function to compute hash

Ni ∈R Zq Nonce chosen at random by TVS i from Zq

(xi, yi) Public-private key pair for TPM of TVS i

PC0
i Initial platform configuration of TPM at TVS i

PSeal() Abstraction of function TPM Seal() for sealing

PUnseal() Abstraction of function TPM Unseal() for unsealing

PCt
i Platform configuration of TPM at TVS i during unsealing of PA

at time t

MAC() Public function to compute Message Authentication Code -
MACkey(data)

PIV Challenge Message sent by TVS i to node A to challenge the integrity of
A’s program

PIV Response Response of node A to TVS i for proving A’s program integrity

X → Y : M Entity X sends message M to entity Y
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operation h() and MAC operation MACk(), where k is the MAC key. The base
station also assigns a unique identity CHi to TVS i and TVSs can also perform
hash h() and MAC operation MACk(). Each TVS shares a pair-wise secret with
other TVSs in the network. A unique non-migratable public-private key pair
(xi, yi) always resides in protected storage within TPM that is attached to each
TVS i.

When TVS i is initially switched on, its initial platform configuration PC0
i

(at time t=0) is stored in the PCRs of the TPM attached to i. The program
memory content PX for node X is stored by the base station in each TVS’s
memory where it is sealed within the associated TPM with the PSeal() function
using the initial platform configuration and the TPM’s public key.

For example, within the TPM of TVS i, the program memory content PX is
stored as:

{PX}xi

PCi
= PSeal(PC0

i , xi, PX)

The unsealing of {PX}xi

PCi
can take place at any time t, if the platform configu-

ration PCt
i of TVS i at time t is same as PC0

i and can be done as:

PX = PUnseal(PCt
i , yi, {PX}xi

PCi
).

3.5 Monitoring Phase

In the proposed clustered network, a cluster head keeps track of the transmissions
from the nodes of its own cluster. For this purpose, the cluster head maintains
a record of the time of last transmission heard tlastA from each node A within its
cluster. If the cluster head hears next transmission from node A at time tnewA

which is at the time interval beyond the set threshold time T , tnewA - tlastA ≥ T ,
then it is suspected to be captured and the cluster head requests the node to
prove the integrity of its program space. If the program integrity verification fails
or if the node is not heard again and cluster head does not get the intimation
of its move to some other cluster, the node is considered to be captured and
revoked.

3.6 Authentication and Code Verification

A TVS asks a node within its cluster to prove the integrity of its program at
periodic intervals or whenever a TVS suspects a node to be a victim of node
capture attack. On a verification query from the TVS, a sensor node needs to
ensure that the TVS itself is valid, before the node can present its program for
the integrity verification by the querying TVS. This process helps a sensor node
ensuring the authenticity of a TVS. Once the TVS is authenticated, node can
present itself for its program integrity verification.

Table 3 below gives the notations for intermediate terms obtained through
computations in the protocol.

The protocol is explained in two sub phases: TVS Authentication by node
and Node Authentication and Program Integrity Verification by TVS.
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Table 3. Intermediate terms

Notation Description

K = h(PA), key used as an initial secret between node A and TVS i

PSA = PSeal(PC0
i , xi, PA), sealing of PA using xi and PC0

i

P ′
A = PUnseal(PCt

i , yi, PSA), unsealing of PSA using yi and PCt
i

(P ′
A = PA, if PCt

i = PC0
i , else unsealing operation fails)

n0 = Ni ⊕ K, Response nonce of TVS i XORed with the shared key K

m0 = MACK(Ni, IDA, CHi), MAC from TVS i, for node A to authenticate
TVS i

KA = h(PA, Ni, IDA, CHi), new key computed by node A

m1 = MACK(Ni), MAC from A, to confirm correct receipt of nonce Ni

KI = h(P ′
A, Ni, IDA, CHi), new key computed by TVS i

MA = MACKA(IDA, CHi, Ni), MAC computed by node A using key KA

MI = MACKI (IDA, CHi, Ni), MAC computed by TVS i using key KI

TVS Authentication by Node. In this first phase of the protocol, node A
authenticates the TVS i. The message exchange in this phase is as follows:

(PIV Challenge) TVS i → Node A: CHi, IDA, n0, m0

In order to challenge a node A to prove the integrity of its program memory,
TVS i unseals program memory block related to node A to retrieve the program
memory content of node A as P ′

A sealed within TPM. (A TVS can only retrieve a
data block value if TVS’s current platform configuration matches with its initial
platform configuration which was used to seal that data block).

TVS i calculates the secret K by computing the hash of P ′
A (= PA) i.e.

K = h(PA). TVS randomly chooses a nonce Ni and computes program integrity
verification challenge (PIV Challenge) by XORing Ni with K. It also computes
MAC of identities and nonce Ni using key K. TVS sends the “PIV Challenge”
message to node A. Node A retrieves TVS’s nonce Ni and computes the MAC. It
verifies the computed MAC with the received MAC to confirm the authenticity
of TVS. Only if, TVS had access to K, it could have computed m0 using the key
K. If the TVS does not get any response from the challenged node A within the
expected time period (round trip time plus the time needed to do the processing
by node A), then TVS resends the challenge assuming the message is corrupted
on the way and MAC verification has failed. If TVS does not get the response of
PIV challenge message even after three trials and also does not get any intimation
of node’s move to another cluster, a link/node failure or an adversary’s presence
in the network is suspected and appropriate action is taken. The detailed protocol
for TVS authentication by node is given in Fig. 3.

Node Authentication and Program Integrity Verification by TVS.
After the node has authenticated the TVS, the node considers that TVS to
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Cluster Head i (TVS) Sensor Node A

1. Unseals program memory content for node A:

P ′
A (=PA)

If Unsealing fails then

“TVS itself is Invalid”, EXIT

2. Sets round = 1

3. Computes secret K

4. Selects a nonce Ni ∈R Zq

5. Computes n0 and MAC m0

6. PIV Challenge:

CHi, IDA, n0, m0

7. Computes secret K

8. Extracts nonce of TVS as:

Ni = n0 ⊕ K

9. Computes MAC to compare with m0:

if m0 �= MACK(Ni,IDA,CHi) then

“Msg Corrupted/TVS Invalid” EXIT

else “TVS Authentication Successful”

Fig. 3. TVS authentication protocol

be a valid TVS to communicate with. In this phase, TVS i authenticates and
verifies the program integrity of node A. The communication between TVS i
and node A in this phase is as below:

(PIV Response) Node A → TVS i: IDA, CHi, m1, MA

Node A takes the nonce Ni just received from TVS during TVS authentica-
tion. Node A computes a new hash value of its program memory content (PA)
using the nonce Ni i.e. KA = h(PA, Ni, IDA, CHi) and computes the MAC
of IDs using this new key. It also computes MAC of Ni using the old key K
which was used in the “PIVS Challenge” message. This is to ensure that node
had received the correct Ni that it used to compute the new key. Node A sends
“PIV Response” (program integrity verification response) to TVS i.

On receiving “PIV Response”, TVS i first constructs the MAC of Ni using
K and compares it with the corresponding MAC received. After ensuring the
correct receipt of Ni by node A, TVS i computes the new key as KI by cal-
culating new hash at its end, computes the MAC using KI and checks the
integrity of the received values by comparing this computed MAC with the cor-
responding received MAC. If MAC verification succeeds, TVS CHi considers the
node to be authenticated and its program integrity verification to be successful.
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Cluster Head i (TVS) Sensor Node A

1. Picks the nonce Ni received from CHi

2. Computes new key KA

3. Computes MACs MA and m1

4. PIV Response:

IDA, CHi, m1, MA

5. Unseals program block P ′
A (=PA)

if Unsealing fails then

“TVS becomes invalid”, EXIT

6. Computes MAC to compare with m1:

if(m1 = MACK(Ni)) then Go To Step 7

else “Nonce Ni received incorrectly”

if round ≤ 3 then

Increment round by 1

Repeat “PIV Request”

7. Sets round =1

8. Computes new secret KI

9. Computes MAC MI

10. Compares MI with MA:

if(MA = MI) then

“Program Integrity Verification Successful”

else “Message corrupted”

if round ≤ 3 then

Increment round by 1

Repeat “PIV Request”

else

“Node Captured. Process Revocation”

Fig. 4. Node authentication and program integrity verification protocol

Figure 4 presents the details of the protocol for node authentication and program
integrity verification by TVS.

Once node A is successfully authenticated and its program integrity is verified
by TVS i, both A and i delete the nonce values shared. The new key KA (= KI)
computed will now serve as the new secret between TVS i and node A. In case,
node A moves out of the cluster headed by TVS i, it informs i about the move
and the new cluster it joins that is headed by some TVS j. TVS i, then informs
all nodes in its cluster about this move and also informs the new cluster head j.
TVS i also shares the new secret KA (= KI) of node A secretly with the new
cluster head j using the pair wise shared key between these two TVSs.
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4 Analysis

4.1 Security Analysis

The protocol security analysis is carried out against the adversary model as given
below:

Adversary Model. The proposed protocol considers the existence of an adap-
tive adversary who is capable of tapping all the links in the wireless network with
sufficient resources at his disposal for computation, communication and storage.
The adversary can record the messages being transmitted on the communication
channel and has adequate energy needed to steal the secret information from a
captured node. Once the adversary gets hold of the node physically and obtains
the secret information of the node, the adversary can take part in the network
operations by assuming the identity of a valid node. Adversary is also capa-
ble of reprogramming and redeploying the captured nodes in order to launch
various insider attacks such as Sybil attack and selective forwarding. Although,
an adversary having adequate hardware resources and time at his disposal can
carry out medium attacks, in this protocol, we assume that the adversary does
not have enough hardware support and time to add memory to a captured node.

The security analysis is carried out using the formal analysis tool ProVerif
[22] to prove the security of the proposed protocol against man-in-the-middle
attack, impersonation attack and threats due to redeployment of the node after
capture and reprogramming. The results are presented in the form of theorems.
The notations used in the proof of a theorem are as given below:

The protocol claims that if the TVS itself is captured, then any modification
in its platform configuration makes it invalid and the TVS authentication by
node would fail. Similarly, if the node is captured, then any alteration in its
program would result in the failure of node authentication and its program
integrity verification by TVS.

Theorem 1. A reprogrammed captured node does not pass the node authentica-
tion and program integrity verification by a valid TVS.

Proof. The proof of the theorem is shown using proof by contradiction technique.
The attacker’s knowledge at various states, before and during the execution of
the protocol, is given to reach the conclusion.

Initial State. In the initial state, the attacker knows unique identities of nodes
and TVSs through network topology. So, the attacker knows the identities of
node A and the TVS i. Attacker also knows the public functions and has access
to a public channel used in the protocol run. Thus:
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Intermediate State. After capturing a node A, an adversary gets the secret K (i.e.
hash code of node’s program memory h(PA)). As the attacker reprograms this
node, the program memory PA changes to PnewA because memory constraint
does not allow an attacker to keep both the original and the modified program.
Since the free space in the memory is filled by incompressible random bitstrings,
an adversary can not insert code pieces while keeping the original program intact.
Therefore:

It is claimed that since TVS is valid, the attacker successfully authenticates
TVS i and obtains nonce Ni from TVS i to further achieve its goal of authen-
tication and program integrity verification for captured node A. To prove this
claim, protocol steps are traced back as below:

Attacker(Ni)
⇒ Attacker(Ni ⊕ K)
⇒ Attacker(n0) ∧ Attacker(K)
⇒ Attacker(c) ∧ Attacker(K) [from Step 5 of protocol provided in Fig. 3]
⇒ True [using assertions 1.4 and 1.5]

As a result, the attacker has Ni.

Now, it is assumed that the attacker achieves its goal of authentication and
program integrity verification for a captured node A by valid TVS i after repro-
gramming the captured node. With this assumption and above stated assertions,
node authentication and program integrity verification protocol is traced back
to resolve the assumption to be true.

Attacker(NVA)
⇒ Attacker(MA(=MI))
⇒ Attacker(KA(=KI)) ∧ Attacker(MACK()) ∧ Attacker(IDA)

∧ Attacker(CHi) ∧ Attacker(Ni)
⇒ Attacker(h(PA, Ni) ∧ True [using assertions 1.6, 1.1, 1.2 and 1.8

respectively]
⇒ Attacker(h()) ∧ Attacker(PA) ∧ Attacker(Ni)
⇒ True ∧ False ∧ True [using assertions 1.3, 1.7 and 1.8 respectively]
⇒ False
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This is a contradiction. Thus, the assumption that the attacker successfully gets
the authentication and program integrity verification for captured node A by a
valid TVS i even after reprogramming the captured node is false.

Therefore, the theorem is proved �

Lemma 1. Node program integrity verification fails, if an adversary inserts a
new piece of code into program memory.

Proof. As assumed in the adversarial model, the adversary is not capable of
adding memory to the node. The free space in the program memory is filled
with incompressible bit strings, so the adversary can not use the free space to
insert the code. Therefore, to insert a new piece of code, an adversary needs to
either modify the program code or replace the incompressible bit strings. Either
of these actions would result in the change in the program memory content i.e.
for a node A, the program memory content will change from PA to PAnew. The
new computed hash would be different than expected by the verification server
and the verification protocol fails. Thus, an attempt to insert a new piece of
code into program memory would result in the failure of node program integrity
verification.

Theorem 2. AcompromisedTVSdoes not pass the authentication by a valid node.

Proof. The proof is given using proof by contradiction technique. The attacker’s
knowledge at various states is given below:

Initial State. In the initial state, the attacker knows unique identities of nodes
and TVSs through network topology. So, the attacker knows the unique identities
of node A and the TVS i. Attacker also knows the public functions and public
channel. Moreover, TVS i is TPM enabled, so any changes in the TVS program
results in the change in the platform configuration of TPM on TVS i and also
attacker does not have access to the platform configuration stored in PCRs.
Thus:

Intermediate State. The attacker has compromised the TVS, i, so its platform
configuration has changed.

It is assumed that the attacker achieves its goal of successfully passing the
authentication of an invalid/captured TVS i by a valid node A. This implies
that attacker can send the “PIV challenge” message to node A and receives the
“PIV response” from A. With this assumption and above stated assertions, TVS
authentication is traced back to resolve the assumption to be true.

Attacker(PIV Response)
⇒ Attacker(c) ∧ Attacker(IDA) ∧ Attacker(CHi) ∧ Attacker(m1) ∧

Attacker(MA)



Detecting Node Capture Attack in Wireless Sensor Network 435

⇒ True ∧ Attacker(m1) ∧ Attacker(MA) [using assertions 2.4, 2.1, 2.2
respectively]

⇒ Attacker(K) (only if attacker had key K, it could compute m1 and MA)
⇒ Attacker(h()) ∧ Attacker(PA)
⇒ True ∧ Attacker(PCt

i (=PC0
i )) [using assertion 2.3]

⇒ False [using assertion 2.5]

This is a contradiction. Thus, the assumption that the attacker successfully
passes the authentication of an invalid/captured TVS i by a valid node A is
false.

Therefore, the theorem is proved �

If a node is captured, its aim is to pass its own authentication and program
integrity verification. Whether a TVS is authenticated or not, is of no significance
to a captured node.

Theorem 3. Capturing a node will not reveal the secret hash code of any other
node.

Proof. The free space of program memory of a node is filled with some unique
random incompressible bit strings. Therefore, even if the application program
code is same for any two nodes, the overall program memory content remains
unique to each node. Thus, for any node X other than node A in the network
the overall program memory content is different. Now, Assume that an attacker
captures a node A. Thus:

Let us suppose that capture of node A reveals the hash code of another
node B.

⇒ Attacker(h(PB))
⇒ Attacker(h(PA)=h(PB)) ∨ (Attacker(h()) ∧ Attacker(PB))
⇒ False ∨ (Attacker(h()) ∧ Attacker(PB)) [by definition of h()]
⇒ True ∧ Attacker(PB)) [using assertion 3.2]
⇒ Attacker(PB(=PA))
⇒ False [using assertion 3.1 and 3.3]

Thus, even if an adversary captures one node, the secret hash code of any other
node is not revealed to adversary.

Therefore, the theorem is proved �
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4.2 Performance Analysis

The proposed protocol is analyzed with respect to storage, computation and
communication overhead and compared with existing protocols. The Table 4
gives the comparison of the proposed protocol with other related protocols. The
terms used in the comparison table are described below.

In this comparison, the overhead that occurs at the verifier and the prover
end, for the purpose of program memory integrity verification and TVS authen-
tication associated with the verification, is considered.

The proposed protocol allows a resource constrained sensor node to carry
out TVS authentication and pass the node program integrity verification process
with only one XOR, three MAC and two un-keyed hash operations. These oper-
ations are computationally efficient [20,21] as compared to encryption, decryp-
tion, signature generation and verification required in the existing protocols. The
node needs to transmit just one message for the complete protocol. This is a sig-
nificant reduction in communication cost as compared to the existing software
based program integrity verification [15]. Furthermore, the proposed protocol
does not require any pair-wise or group key to be stored in the node unlike in
[15] where a unique polynomial share is stored at each node and node needs
to compute the pair-wise key for NAuth + 1 PIVSs to complete the protocol.
Since the capture of node would reveal the key to the adversary along with its
program code, we saved on the cost of storing and computing the keys using
polynomial operations. With the TPM enabled TVS, the overall performance
and security as compared to the software based scheme such as [15] is improved
and at the same time the cost of equipping all the nodes with the TPM chip as
in [19] is saved.

Simulation Results. A simulation has been carried out using Castalia Simu-
lator [23] to compare the performance of the existing software based Distributed
Authentication and PIV protocol(DAPP) [15] and the proposed protocol. A uni-
formly distributed clustered network set up is considered, in which some nodes
designated as clustered heads are made to behave as verification servers and
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Table 4. Performance comparison

Features →
Protocol ↓

Prover

or

verifier

Storage (bits) Computation Communication

(No. of messages

transmitted)

Distributed

program

integrity

verification

(DAPP) [15]

Verifier (k+s)log q (Nauth+s+5)*Tm+2te +

Th+(s+1)*Tp

Nauth+6

Prover (k+ Nauth+2)

log q)

(Nauth+4)*Tm+2Td

+Th+(Nauth+1)*Tp

6

TPM enabled server

attestation [18]a
Verifier log q Tu+Td+Te 1

Prover log q Td+Te 1

TPM enabled

mutual

attestation [19]

Verifier 3*log q Tu+2Td+Te+Trv+Tv 2

Prover log q Tu+Td+Te+Trv+Ts 1

Proposed protocol Verifier log q 2Tu+2Th+Tx+2Tm 1

Prover log q 2Th+Tx+3Tm 1
aAs the scheme given in [18] does not describe the node program integrity verification by the Veri-

fier, the data in the comparison includes only the overhead incurred during verifier authentication

process for that scheme.

Table 5. Simulation parameters

Parameter Value

Simulation time 100 s

Node transmission output power 0 dBm

CCA threshold −95 dBm

Field size 100 X 100m2

Radio range 25 m

Node deployment Uniform

the remaining nodes act as normal nodes whose program integrity verification is
to be done. The node-to-server and server-to-server communication takes place
at one-hop distance which is determined by the radio transmission range. The
simulation parameters used are given in Table 5.

The simulation is carried out with varied number of nodes with 10 servers
in a field of size 100 by 100. Under the similar network conditions, we mea-
sured the performance in terms of average energy consumption and the average
communication latency for both the protocols (DAPP and proposed). The com-
munication latency is the communication time taken starting from sending the
first message and receiving the last message to complete one run of the proto-
col. The average energy consumption includes the radio energy plus the static
node baseline power of 6 mW (as specified in the simulator used). The graphs in
Fig. 5 show that with the TPIV protocol, while the average energy consumption
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(a) Average Node Energy Consumption (b) Average Communication Latency

Fig. 5. Performance comparison of proposed protocol and DAPP [15]

reduction is about 4 % (Fig. 5(a)), the communication latency improvement is
more than 100 % (Fig. 5(b)). The reason is that in DAPP protocol, a complete
run of protocol needs 4 rounds of to and from communication between the node
and the server, whereas, in TPIV protocol, only 1 round is needed. As we are
using TMAC as MAC protocol in this simulation, the sleep schedule of nodes
affects the latency. When the number of nodes is too high (say 1000), almost all
the nodes remain awake for most of the time, as they are continuously getting
signals from the neighboring nodes. In TPIV, a node can respond back to the
server challenge immediately, while in DAPP, the node still has to wait for the
server to collect authentication tickets from other servers.

5 Conclusion

We discussed a protocol to verify the integrity of a sensor node program to detect
node capture attack in a distributed WSN setup. We analyzed the proposed pro-
tocol for security and performance and found that the protocol provides authen-
tication of a node and verification of the program integrity that helps detecting
the node capture attack (capture, reprogramming and redeployment of a node)
with less overhead as compared to the existing program integrity verification pro-
tocols. Prior to node program integrity verification, a node can authenticate the
verification server. Since each verification server is equipped with trusted plat-
form module (TPM), the proposed protocol also overcomes the threat of attacker
knowing the node program stored at the verifier. The protocol also ensures that
capture of a node does not reveal the secret of any other node in the network.
Thus, additional security is provided as compared to the pure software based
protocols with significant reduction in communication, computation and storage
overhead on the nodes as evident from the performance analysis. The simulation
results also verify the performance improvement in program integrity verification
with proposed protocol. Moreover, the cost of equipping all the nodes with the
TPM chip is saved, resulting in the overall reduced cost of network deployment
and maintenance.
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Abstract. In collaborative sensing, a cognitive radio node cooperates
with others in the spectrum sensing process for a more accurate sensing
decision. A malicious node may launch Spectrum Sensing Data Falsi-
fication (SSDF) in which the local sensing report is falsified before it
reaches the fusion center (FC). The task of FC is to aggregate local sens-
ing reports from the collaborating nodes, thereby arriving at a final sens-
ing decision. In this paper, we propose two attack-resistant trust-based
decision rules: WMR (Weighted Majority Rule) and WMRR (Weighted
Majority Rule with Redemption). These rules are based on the weighted
majority game. The key feature in these rules is that the contribution of a
sensing report in the final decision depends not merely on the report but
also on the trust that the FC has on the node sending out the report. We
support the validity of the proposed rules through extensive simulation
results.

Keywords: Cognitive radio network · Collaborative spectrum sensing ·
SSDF attack · Decision rule

1 Introduction

Cognitive Radio Network is a rapidly emerging technology that holds promises
for solving the wireless spectrum scarcity problem. The available frequency spec-
trum is limited and is divided into licensed and license-free bands. With the
proliferation of technologies that offer services which operate in the license-free
bands, making bands crowded which will eventually lead to a radio traffic jam.
On the other hand, we only expect more technologies that operate in the license-
free bands to increase in the future. Added to this, population of wireless devices
is on the rise. Thus, the spectrum scarcity problem is a significant challenge that
researchers face.

A Cognitive Radio Network (CRN) is a network of wireless cognitive radio
devices [1,2]. These devices are called cognitive because they can sense the envi-
ronment and adapt to it. They make opportunistic use of the licensed bands. When
a device finds that the frequency band it is using currently is no longer available,
it can search for a free band and use it. Thus, it can hop opportunistically from
c© Springer International Publishing Switzerland 2015
S. Jajodia and C. Mazumdar (Eds.): ICISS 2015, LNCS 9478, pp. 441–460, 2015.
DOI: 10.1007/978-3-319-26961-0 26
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band to band instead of sticking to a particular band. CRN is becoming a reality
with the 802.22 standard established by FCC (USA), for opportunistically avail-
ing of TV white spaces [3]. The users who have been allocated the licensed bands
are known as primary users (PUs) whereas those who make opportunistic use of
the licensed bands are known as secondary users (SUs).

One important function of a cognitive radio is spectrum sensing, i.e., sensing
spectrum to determine whether a particular channel is free or not. An erroneous
sensing decision will result in a channel being used when it is busy causing
unwanted interference to the PU, or not using a channel when it is free leading
to lower utilization. A cognitive radio senses the spectrum using techniques such
as energy detection [4]. Since energy detection method is the simplest, it is
used most widely. Instead of depending on its sensing decision alone, a cognitive
radio (Secondary User) may cooperate with others to come to a decision. For
this reason, in a infrastructure-based CRN, a fusion center (FC) takes care of
combining the individual sensing decisions and generating the final decision.
Several decision schemes are available in the literature such as OR rule, Majority
rule, etc. Most of these are variants of the k-out-of-n decision Rule. In this rule, if
the number of results reporting ‘channel busy’ is at least k out of the n Secondary
Users (SUs), then the final decision is ‘channel busy’, otherwise the final decision
is ‘channel idle’.

One major disadvantage of the above group of decision rules is that the FC
simply uses the sensing reports from the SUs regardless of the trustworthiness
of the SUs who send them. This gives ample room for malicious SUs to falsify
sensing reports with the aim of disrupting the final sensing decision. However, we
contend that the sensing reports sent by the SUs must not carry the same weight,
just as the way it is in social relationships. In social relationships, information
coming from a trusted friend has more weight than the same information from
an acquaintance. In other words, we give more weight to a sensing report from a
more trustworthy SU than to a sensing report from a less trustworthy SU. The
trustworthiness of an SU can be established by monitoring its past behavior. In
our proposed approach, we learn about the trustworthiness of SUs through the
reports they send to the FC over time. We measure the trustworthiness of SUs
using weights, and dynamically update the weights based on their behaviour.

The contribution of our work can be summarized as follows:

– We propose two attack-resistant trust-based decision rules: WMR (Weighted
Majority Rule) and WMRR (Weighted Majority Rule with Redemption) based
on the weighted majority game.

– We propose an algorithm for updating of trust values such that the power
index of a malicious node in the weighted majority game is minimized.

– We show the validity of the proposed schemes through extensive simulation
and also conclude that colluding attacks degrade performance more than inde-
pendent attacks.

Furthermore, the reports provided by the SUs to the FC can be of two types:
(a) continuous (e.g. power estimation from an energy detector) or (b) binary
(e.g. PU signal is absent/present). Our work is for binary-type reporting.
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2 Recent Works

In recent days, spectrum sensing security in CRN has attracted the attention
of many researchers. Some binary-reporting schemes that propose to handle the
SSDF attack are reported. Wang et al. [6] proposed a two-type robust detection
scheme that combines the suspicious level and the trustworthiness of the users.
However, only one adversary is considered. Rawat et al. [7] presented a scheme in
which multiple attackers are considered. Moreover, limits in terms on the fraction
of the attackers that can make the FC inoperable are presented. However, the
reputation metric is not restored. A detection scheme is presented by Chen et al.
in [8]. In this scheme, the reputation metric is restored and multiple attackers
are considered. Like in our work, a weighted reputation scheme is used so not all
users’ observations are treated equally. However this scheme uses WSPRT. Noon
et al. [9] proposed a technique in which an attacker with an adaptive strategy
is used, the number of the attackers vary. However, the disadvantage is that
the reputation metric is not restored. Moreover, it is assumed that the attacker
successfully eavesdrops on the other users and the FC. Another detection scheme
is given by Li et al. [10] in which two attack strategies are considered depending
on whether attacker knows the reports sent by other users. Besides, multiple
attackers are considered and SUs are regarded as adversaries if their behavior is
very close to that of the correctly behaving users, which may increase the false
alarm rate.

Several detection schemes for continuous reporting are also found in the lit-
erature [13,14]. Many trust and reputation management schemes have been pro-
posed to combat vicious behavior of malicious users in CRNs [15–19]. A trust
management model is proposed in [20], in which energy efficiency is achieved by
reducing total number of sensing reports. Another trust based scheme is proposed
in [21], where malicious users are deterred efficiently from reporting false sens-
ing result under different attack scenarios. In [22], a dynamic trust management
scheme is proposed to dependably detect and extenuate SSDF attack. A mali-
cious behaviour resistance mechanism is presented in [23], where the authors
have stated that without any prior knowledge on users’ reputation, forbidding
malicious behavior of an intelligent malicious users can be difficult, since, genuine
users may be misjudged as malicious user.

Our proposed work is for binary reporting. We have considered multiple
attackers. Restoration of reputation is also considered in our approach. It is
based on the weighted majority game [5] and is simple to compute.

The rest of the paper is organized as follows: In Sect. 3, we define the system
model, which is followed by the attack model in Sect. 4. Then, the proposed
schemes are presented in Sect. 5. Section 6 gives the simulation performance and
analysis. Finally, conclusions are drawn in Sect. 7 suffixed by references.

3 System Model

We consider a cognitive radio network consisting of n secondary users. A single-
channel system is assumed for simplicity. A SU senses the spectrum to determine
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the presence of the PU signal. For each SU, each frame slot is divided into three
sub-frame slots: (a) sensing sub-slot for spectrum sensing, (b) reporting sub-slot
for reporting the result to FC, and (c) transmission sub-slot for transmitting
data. We assume that each SU employs an energy detector [4] locally to sense
the presence of the PU and sends it sensing report to the FC. The FC aggregates
the sensing reports, makes a decision using a decision rule and then feeds it back
to the SU. We assume a dedicated and reliable control channel for carrying the
reports and decision to and fro the SUs and the FC.

The FC has no information about whether malicious SUs are present. Fur-
ther, if they are present, it has no idea how many are present. We assume that
the SUs and the FC are located together in a small area and hence they have the
same spectrum occupancy. We denote by Ppu the probability that the PU signal
is present. We assume that the local observations at different SUs are mutually
independent. Moreover the misdetection (Pm) and false alarm (Pfa) probabili-
ties of the local detection at the SUs are the same. During any frame slot, the
channel can be in either one of the two states: busy (1), i.e., PU is transmitting,
or idle (0), i.e., PU is not transmitting. The sensing result of a SU during the
slot can be either one of the two: busy (1) or idle (0).

4 Attack Model

Several types of SSDF attacks are found in the literature [11,15]. The following
attacks are considered in our work.

– “Always Yes” Attack: The malicious node always sends the sensing report
‘1’ to the FC, whatever may be its local sensing result. This is done with
the intention that the FC will be possibly influenced into making the final
sensing result as ‘1’. Thus, even when the channel is free, it may be left free
by the other SUs. This free channel then may be used by the malicious node
or wasted.

– “Always No” Attack: The malicious node always sends the sensing report ‘0’
to the FC, whatever may be its local sensing result. This is done with the
intention that the FC will be possibly influenced into making the final sensing
result as ‘0’. Thus, even when the channel is busy, other SUs may try to use
it causing interference to the PU.

– “Always False” Attack: The malicious node sends a report to the FC which is
opposite of its local sensing decision. In this case, both misdetection and false
alarm rates are expected to rise. Both user interference and resource wastage
are expected to occur.

– “Randomly False” Attack: The malicious node sends a report to the FC which
is opposite of its local sensing decision with a probability of β. Thus, “Always
False” attack is a special case of “Randomly False” attack in which β = 1.

– “Randomly Yes” Attack: The malicious node sends the sensing report ‘1’ to
the FC regardless of its local sensing result with a probability of β. Thus,
“Always Yes” attack is a special case of “Randomly Yes” attack in which
β = 1.
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– “Randomly No” Attack: The malicious node sends the sensing report ‘0’ to
the FC regardless of its local sensing result with a probability of β. Thus,
“Always No” attack is a special case of “Randomly No” attack in which
β = 1.

Attacks may again be classified based on the collaboration between the
attackers as follows:

– Independent attack: Malicious users are autonomous i.e. they launch attacks
based on their own decision. They do not require to have any prior knowledge
about the report of other SUs or any reports from other existing malicious
users.

– Colluding attack: Malicious users work in cooperation to launch an attack
[24].

There is no difference in the effects of launching the first three attacks:
“Always Yes”, “Always No” and “Always False” either independently or col-
laboratively. Hence, we focus on the other attacks. In the independent attack
scenario, each malicious SU launches the “Randomly False”, “Randomly Yes”
and “Randomly No” independently as shown above. However, the malicious
nodes could collude to launch the following attacks. We assume that they share
a covert channel through which they are able to convey information to each
other.

– Colluding Randomly False attack: Here, one of the colluding nodes acts as a
leader and inverts its sensing result with a probability of α. Then, the rest of
the colluding nodes copy the leader’s sensing report.

– Colluding Randomly No attack: In this attack, the leader among the colluding
nodes updates its sensing result as ‘0’ with a probability of α. Then, the rest
of the colluding nodes copy the leader’s sensing report.

– Colluding Randomly Yes attack: In this attack, the leader among the colluding
nodes updates its sensing result as ‘1’ with a probability of α. Then, the rest
of the colluding nodes copy the leader’s sensing report.

5 Weighted Majority Game Rule

We propose a spectrum sensing rule based on the weighted majority game [5].
A weighted majority game, written [q;w1, w2, .., wn] is a game (N, v), where
w1 ≥ 0, w2 ≥ 0, .., wn ≥ 0 and

v(S) =
{

1 if (the sum of the weight of S) ≥ q
0 otherwise (1)

where N is the set of players in the game and S ⊂ N . Here, N is the set of SUs.
Here, S is a winning coalition if v(S) = 1.

We apply the weighted majority game to collaborative sensing with some
modification. A weighted majority game is associated with each sensing slot.
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In each slot k, the FC maintains a trust value (weight) for each of the n SUs,
represented by a vector (wk

1 , wk
2 , .., wk

n). Hence, the weighted majority game asso-
ciated with slot k is given by {q, wk

1 , wk
2 , .., wk

n}. For determining the final decision
by the FC, we consider the set S of weights of SUs which report ‘1’ to the FC.
If S forms a wining coalition, (i.e., v(S) = 1), then the final decision of the FC
is ‘1’, otherwise it is ‘0’.

We consider q = n/2 and initially set the value of each weight to 1. Thus,
the sum of weights of all SUs is n. At each slot, the weights of the SUs are
updated so that a new weighted game is generated for the next slot. A larger
weight denotes higher trust, whereas a smaller weight denotes lower trust. The
trust value of a SU reduces if its sensing report is different from the final sensing
result. When the weight of a SU is reduced by a certain amount, this amount is
equally distributed to the rest of the SUs. This is done so that the sum of the
weights of the SUs remain the same (i.e., n) throughout the slots. Moreover, this
depicts the situation in which when the trust of a player in a group goes down
due to bad behaviour, the trust of others go up.

5.1 Updation of Weights

Let the sensing reports received by the FC in a slot k be represented by a vector
(rk1 , rk2 , .., rkn). If a sensing report is not received from SU in slot k, then we
consider rki = 0. Let Xk denote the final decision at slot k.

The updation of wk
i of SU i in slot k is performed as follows:

Weight Updation Algorithm:-

Step 1. count = 0;
for each SU i

if rki �= Xk then begin
count = count + 1;
wk

i = wk
i − ε;

end
Step 2.
for each SU i

if rki = Xk then begin
wk

i = wk
i + (count × ε)/(n − count);

end

In the above algorithm, the variable count gives a count of the number of SUs
whose sensing reports do not match the final decision. In step 1, count is ini-
tialized to 0. Then, for each SU whose sensing report does not match the final
decision, the value of ε is deducted from its weight. Here, ε is a predefined value
(0 < ε < 1), which denotes the reduction in the amount of trust the FC has
on a SU under the said condition. In step 2, the total amount that is deducted
in step 1 (i.e., count × ε) is distributed among the SUs whose report match the
final decision. The above updation scheme ensures that sum of the weights of
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the SUs remain the same throughout the lifetime of the network. The weight of
each SU is initialized to 1. Hence, the sum of the weights remains n throughout.
The idea behind this is to normalize the weights. Hence, in the scenario where
no malicious SUs are present and the sensing reports are affected only by local
sensing error, the weights of the SUs will remain more or less the same. However,
when malicious SUs are present, there will be data skew in the weights.

The running time of the updation algorithm is O(n) since the frequency of
execution of the for loop in step 1 as well as in step 2 is n.

5.2 Shapley-Shubik Power Index

The shapley value of a player in a weighted majority game constitutes a good
index of the player’s power in the game [5]. This index is known as the
Shapley-Shubik power index. Numerical analysis of this index for the proposed
weighted majority game supports the validity of the algorithm for updation of
weights discussed in the last subsection. In a weighted majority game of n play-
ers, a player’s Shapley value is [5]:

Frequency with which player is pivotal over all possible orders

=
number of times player is pirotal
number of possible orders(n!)

(2)

A player is called a pivotal player in a certain order, if his marginal contribution
in that order is 1 [5].

Fig. 1. Shapley index vs. slot numbers

To illustrate, we consider a game of 5 players (SUs) in which SU3 and SU5
are malicious and launch the always yes attack while the rest are legitimate SUs.
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Fig. 2. Weight vs. slot numbers

The weights are updated using the algorithm in the last section. We assume ε
to be 0.01. As the weights of the SUs get updated at each slot, a new weighted
majority game emerges at each slot. Here, Ppu = 0.4, Pfa = Pm = 0.05.

Figure 1 shows the shapley value of each SU at different slots. From the
graph, we observe that the shapley values of the malicious SUs, SU3 and SU5
become less than those of the other honest SUs. This illustrates the reduction
in the power of the malicious SUs, which in turn minimizes the influence of the
malicious SUs in the final sensing decision. The corresponding changes in the
weights of the SUs is shown in Fig. 2.

5.3 Detection of Malicious Nodes

Once the weight of a SU becomes 0, it is detected as malicious and it automati-
cally stops contributing to the final decision. We proposed the following schemes
for handling nodes detected as malicious.

Isolation. Once the weight of any SU becomes 0, it remains 0. In other words,
its contribution to the final decision process is nil henceforth. Moreover it is
isolated from the weight updation process. This scheme follows the policy: once
convicted, convicted forever.

Redemption. One disadvantage with the Isolation method is that once the
FC has lost trust completely on a SU (weight becomes 0), improvement in the
behavior of the SU at later instances is disregarded. Hence, in instances such as
the hidden terminal problem, the SU may be ‘convicted’ as malicious forever.
A hidden terminal problem is one in which the PU signal is hidden from a SU,
whereas the SU is able to send reports to the FC.
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To overcome this disadvantage, we introduce the Redemption method in
which a ‘convicted’ SU can be later ‘redeemed’ if its behavior improves. In this
method, once the weight of a SU becomes zero, we observe the behavior of the
SU for the next S slots and calculate the estimated true positive rate, (ETPRS)
and the estimated true negative rate (ETNRS) corresponding to the SU. Hence,
the following algorithm is implemented S slots after the weight wk

i of SU i has
become 0.

Here, ETPRS is a ratio. It is the number of slots out of the S slots in which
the SU reports 1 when the final decision is 1 divided by S. Similarly, ETNRS

is a ratio. It is the number of slots out of the S slots in which the SU reports 0
when the final decision is 0 divided by S. We also define accepted ETPRS and
ETNRS values which are denoted by λ1 and λ2 respectively. If ETPRS ≥ λ1

and ETNRS ≥ λ2, then the weight of the SU is set to δ in the current slot.
Here, δ (0 < δ ≤ 1) is assigned as the weight of the SU to let it start over
again as it showed normal behavior in the past S slots. Then, an amount δ/b is
deducted from each benign SU (i.e., whose weights are greater than 0) where b is
the number of benign SUs. Moreover, λ1, λ2, δ and S are predefined thresholds.
Here, λ1 and λ2 represent the acceptable true positive and true negative rates.

The above process is repeated until the convicted SU is redeemed (i.e., weight
is set to δ) or the lifetime of the SU is over (i.e., the SU persistently shows mali-
cious behavior and thus is never redeemed).

Redemption Algorithm:-

repeat until wk
i �= 0 [k denotes the current slot]

begin
Calculate ETPRS and ETNRS ;
if ETPRS ≥ λ1 and ETNRS ≥ λ2

wk
i = δ;

end

6 Simulation and Performance Evaluation

In this section, we present the numerical simulation results of the proposed
schemes for a CRN of 20 SUs. Let Pm, Pf and Ppu denote the local misdetection
probability, the local false alarm probability and the probability of presence of
the PU signal respectively. In our simulations, we let Pm = 0.05, Pf = 0.05 (as
Pm and Pf must be less than 0.1 [12]) and Ppu = 0.50. Moreover, λ1 = 0.95, λ2 =
0.95, δ = 0.5 and s = 20. The results shown are averaged over 100 iterations.

The SU’s report their local decisions to the FC. We present the simulation
results for the scenarios when FC employs the proposed schemes viz., weighted
majority rule (WMR) and weighted majority rule with redemption (WMRR) as
compared to that of majority rule (MR). In majority rule, FC concludes that
the PU signal is present if the number of 1’s received from the SU’s is greater
than or equal to n/2, where n is the number of SUs. The number of slots used
in the simulation is 160. In each slot, SU’s report the local sensing decisions to
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the FC, which subsequently arrives at the final decision depending on the fusion
rule being employed. The performance metrics used are the detection rate (true
positive rate, TPR) and the false detection rate (false positive rate, FPR). The
detection rate is the ratio of the number of slots for which the final decision is ‘1’
when the PU signal is actually present to the number of slots during which the
PU signal is actually present. The false detection rate is the ratio of the number
of slots for which the final decision is ‘1’ when the PU signal is actually absent
to the number of slots during which the PU signal is actually absent.

We assume a simulation scenario in which the percentage (%) of malicious
nodes increases w.r.t. time. This is done to check whether the proposed schemes
adapt well to the increase in the percentage of malicious nodes. Initially, we
start with 10 % of the total number of SUs being malicious. This is based on
the assumption that in the initial stages of the lifetime of a CRN, we don’t
expect a heavy presence of malicious SUs. Since the number of benign nodes
(90 %) is more that the number of malicious nodes, the malicious nodes are
correctly identified and assigned appropriate weights. If the % of malicious nodes
in the initial stage is higher than that of benign nodes, the final sensing decision
would be erroneous and consequently, there will be a reduction in the weight
(trust) of benign nodes and an increase in the weight (trust) of malicious nodes.
The updation of weights in the initial stages is significant since the updation of
weights in later stages depends on it.

The simulation results are divided into two parts. First, we illustrate the
performance comparison of the three rules under the independent attack scenario
for the following attack types: always yes, always no, always false and randomly
false in Figs. 3, 4, 5, 6, 7, 8, 9 and 10. Next, we show the same under both the
independent and the colluding attack scenarios for the following attack types:
randomly yes, randomly no and randomly false in Figs. 11, 12, 13 and 14.

First, we consider only independent attacks. Figure 3 illustrates the TPR
vs. % of malicious nodes for the always yes attack. In the graph, the plot labeled
‘MR’ denotes the plot when the basic majority rule is used. The plots labeled
‘WMR’ and ‘WMR-R’ denote the plots when the proposed weighted majority
rule is used without redemption and with redemption respectively.

At slot number 20, the % of malicious SUs is 10 %, which increases to 20 % at
slot number 40 and so on. The True Positive Rate (TPR) shown at slot number
20 is based on the sensing reports received by the FC from slot number 1 to 20.
Similarly, the detection rate shown at slot number 40 is based on the sensing
reports received by the FC from slot numbers 21 to 40, and so on. As the % of
malicious nodes increases from 10 % to 80 %, the detection rate remains the same
at 1 for all the three rules. In the always yes attack, the malicious SUs report
always 1 whatever may be their local sensing decision. Hence, the number of 1’s
increases as the % of malicious SUs increases and consequently, the detection
rate is very good under all three rules.

Figure 4 illustrates the FPR vs. % of malicious nodes for the always yes
attack. Here, we observe that WMRR gives the best false detection rate. Even
when the % of malicious nodes is 80 %, the FPR is only 0.05. The weighted
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Fig. 3. True Positive Rate (TPR) vs. % presence of malicious SUs

Fig. 4. False Positive Rate (FPR) vs. % presence of malicious SUs
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majority rule shows good FPR of 0.05 up to 70 % presence of malicious nodes.
In comparison, majority rule performs the worst. It shows acceptable FPR
(about 0.05) only up to when the % of malicious SUs is less that 50 %. Hence, we
see that WMRR and WMR outperform MR when the % of malicious nodes goes
beyond 50 % in the always yes attack scenario.

Fig. 5. True Positive Rate (TPR) vs. % presence of malicious SUs

Next, we compare the performance of the three rules in the always no attack
scenario. Figure 5 illustrates the TPR as the % of malicious nodes increases. We
observe that WMRR, WMR and MR maintain a good detection rate (about
0.95) up to when the presence of malicious SUs is 80 %, 70 % and 30 % respec-
tively. Hence, we conclude that our proposed approaches outperform even in the
presence of a high % of malicious nodes.

Figure 6 illustrates the FPR vs. % of malicious nodes in the always no attack
scenario. We observe that all three rules maintain a very good FPR (0) even
when the % of malicious nodes is very high (80 %). In the always no attack,
the malicious SUs report always 0 whatever may be their local sensing decision.
Hence, the number of 0’s increases as the % of malicious SUs increases and
consequently, the FPR is negligible.

The performance results of the three rules under the always false attack
scenario are shown in Figs. 7 and 8. The WMRR give the best TPR as compared
to the other two. Even when there is a 50 % presence of malicious nodes, it gives a
TPR of about 1, which decreases minimally to about 0.9 when the % of malicious
SUs is 80 %. However, WMR and MR give TPR of 0.93 and 0.90 at 50 % and
40 % presence of malicious nodes respectively.
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Fig. 6. False Positive Rate (FPR) vs. % presence of malicious SUs

Figure 8 illustrates the FPR vs. % of malicious nodes under the always false
attack scenario. Here, we observe that WMRR outperforms the other two rules.
Even when the % of malicious nodes is 80 %, this rule gives a FPR of about
0.05 while maintaining a FPR of 0 till 50 % presence of malicious nodes. Both
WMR and MR maintain a FPR of 0 till 40 % presence of malicious nodes. The
weighted majority rule maintains good FPR (0) up to 40 % presence of malicious
nodes, but shows a FPR of 0.05 when there is 50 % presence of malicious nodes.
In comparison, majority rule performs the worst. It maintains a FPR of 0
up to 40 % presence of malicious nodes, but the FPR degrades very severely
beyond 40 %.

Figures 9 and 10 shows the effect of changing the value of β under randomly
attack case. Due to lack of space, we show only the randomly false attack sce-
nario. We show the results for β = 0.70 and β = 0.30. As explained earlier, β
is the probability with which a malicious SU inverts (i.e., from 0(1) to 1(0)) its
local sensing report before sending it to the FC. When β = 0.30, all three rules
maintain good TPR (about 1) for varying presence of malicious SUs (Fig. 9).
Since the proportion of sensing reports being inverted is less (0.30), it does not
affect the TPR. However, when β = 0.70, both WMRR and WMR maintain a
good TPR (about 1) up to when the presence of malicious SUs is 80 % and 70 %
respectively. Comparatively, a TPR of about 1 is generated by MR only up to
when the % of malicious nodes is 40 %.

Figure 10 shows the FPR vs. % of malicious nodes as the number of mali-
cious nodes increases under the randomly false attack scenario. We observe that
when β = 0.30, all the three rules exhibit good FPR (around 0). This is because
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Fig. 7. True Positive Rate (TPR) vs. % presence of malicious SUs

Fig. 8. False Positive Rate (FPR) vs. % presence of malicious SUs
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Fig. 9. True Positive Rate (TPR) vs. % presence of malicious SUs

Fig. 10. False Positive Rate (FPR) vs. % presence of malicious SUs
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Fig. 11. True Positive Rate (TPR) vs. % presence of malicious SUs

a lower value of β results in generation of less number of false reports, which
consequently does not affect the performance. However, when β = 0.70, both
Weighted Majority rule and MR maintain a good FPR (a maximum of 0.05)
up to 70 %. In comparison, MR maintains a good FPR (a maximum of 0.05)
only up to 50 % presence of malicious nodes is 40 %. From the above two graphs,
we observe that a higher value of β results in higher performance degradation.
This is expected since a higher value of β results in more number of false reports
reaching the FC. From the above graphs, we conclude that under the four inde-
pendent attacks considered, WMRR outperforms both WMR and MR. Besides,
WMR performs better than MR. In the following graphs, we show the effect of
colluding attacks as compared to that of independent attacks for all three rules.

First, We compare the performance of the three rules in the randomly false
attack scenario. Figure 11 illustrates the TPR vs. % of malicious nodes for both
independent and colluding attacks. For all three rules, we observe that the TPR
is higher when malicious nodes attack independently as compared to when they
collude and attack. This is expected as collusion is done so as to increase the
adverse effect on the final sensing decision. Under randomly false colluding
attack, WMRR gives the best TPR (about 1 till 80 % presence of malicious
nodes), WMR gives the second best TPR and MR the least TPR.

Figure 12 shows the FPR vs. % of malicious nodes under the same attack
scenarios. We observe that the FPR is lower when malicious nodes attack inde-
pendently as compared to when they collude and attack for all three rules. The
reason is as explained earlier. Under randomly false colluding attack, WMRR
gives the best FPR (not more that 0.06 till 80 % malicious presence) as compared
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Fig. 12. False Positive Rate (FPR) vs. % presence of malicious SUs

Fig. 13. True Positive Rate (TPR) vs. % presence of malicious SUs
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Fig. 14. False Positive Rate (FPR) vs. % presence of malicious SUs

to WMR and MR. However, WMR gives a better FPR than MR as the % of
presence of malicious nodes increases.

Next, we compare the performance of the three rules for the randomly no
attack in both the independent and colluding attack scenarios. Figure 13 illus-
trates the TPR vs. % of malicious nodes. As seen in the previous results, col-
luding attack is more harmful than independent attack for this attack type too.
Under colluding attack scenario, WMRR gives the best TPR, WMR gives the
second best and MR gives the least as the % of malicious presence increases.
From the graph, we conclude that WMMR and WMR are resilient to a heavy
presence of attackers.

In this randomly no attack, the value of β is 0.70. Thus, the malicious SUs
report 0 with a probability of 0.70 whatever may be their local sensing deci-
sion. Consequently, much more number of 0’s than 1’s are reported and hence,
the FPR for both colluding and independent attack scenarios are both low. The
graphs are not shown due to lack of space.

Finally, the performance comparison for the randomly yes attack in both the
independent and colluding attack scenarios is given in Fig. 14. The malicious SUs
report 1 with a probability of 0.70 whatever may be their local sensing decision.
Consequently, much more number of 1’s are reported than 0’s and hence, the
TPR is 1 for all rules.The graph is not shown due to lack of space. Figure 14
shows the FPR vs. % of malicious nodes under the above scenario. We observe
that FPR under colluding attack scenario is more than under independent attack
scenario for all rules. Under randomly yes colluding attack, WMRR gives the
best FPR (not more that 0.1 till 80 % malicious presence) as compared to WMR
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and MR. However, WMR gives a better FPR than MR as the % of presence
of malicious nodes increases. From the performance analysis given above, we
conclude that WMRR gives the best performance, WMR gives the second best
performance and MR gives the lowest performance under all the considered
attack scenarios (both independent and colluding). We also find that WMMR
and WMR are resilient to a heavy presence of attackers.

7 Conclusion

Based on the weighted majority game, we propose two attack-resistant trust-
based fusion rules: WMR (Weighted Majority Rule) and WMRR (Weighted
Majority Rule with Redemption). The trust values of the SUs are represented
by the weights in the game. These weights are updated by monitoring its past
behaviour in such a way that the power index of an attacker is minimized in
the game. This is turn minimizes the effect of an attacker in the final sens-
ing decision. Through simulation results, we conclude that our proposed schemes
provide a secure way of aggregation of the sensing reports such that even when
more than half of the SUs are malicious, the true positive rate and the false pos-
itive rate are quite good. Moreover, even when malicious SUs collude, still the
proposed schemes show good performance. Additionally, we conclude that col-
luding attacks degrade the performance of decision rules more than independent
attacks.
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Abstract. It is well known that correlation based watermarking schemes
are vulnerable to attacks specifically designed for it. One such attack
was proposed in Das et al. [11]. Subsequently, they also proposed a
robust Modified Differential Energy Watermarking (MDEW) scheme in
the same paper. However, we could show that so called robust schemes
like MDEW, which is specifically designed to overcome those vulner-
abilities is also not secure. In this paper we show that generic water-
mark removal attack on a correlation-based watermarking scheme may
be extended to a general to forgery attack even if the watermark removal
strategy is a weak one. We prove our case by mounting such an attack
on MDEW.

Keywords: Correlation-based scheme · Digital Watermarking · Forgery
attack · Watermark removal · Cryptanalysis

1 Introduction

Digital Watermarking is a method to insert secret user-specific information
in a digital object (e.g., image, video, audio, etc.) that may later be used
to ensure authenticity of the content. For some of the security aspects like
forgery or traitor tracing, an image watermarking scheme produces marked
copies I(1), I(2), . . . , I(n) of an original image I, to be sold to authentic buyers
B1, B2, . . . , Bn, respectively. There are many standard image processing bench-
marks to study whether an image watermarking scheme is robust or not [4] and
most of the proposed schemes pass those benchmarks. However, from the point of
view of cryptology, the scenario is considerably different, as the standard bench-
marks mostly work on general image processing ideas, and are not customized
to attack a specific watermarking scheme.

In case of a correlation-based watermarking scheme, the marked copies are
created from the original image I as follows. For each authentic buyer Bi,
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where i = 1, 2, . . . , n, the owner of the image I first fixes a buyer-specific fin-
gerprint s(i). Using the watermarking algorithm W , the i-th buyer-specific fin-
gerprint s(i) is inserted within the original image I to produce the watermarked
copy I(i) ← W (I, s(i)), specifically to be sold to the i-th buyer Bi. For each
buyer Bi, fingerprint s(i), and hence the marked copy I(i), is unique.

From the point of view of cryptanalysis, it is assumed that the watermarking
algorithm W is public and only the watermark information or the fingerprint s(i)

is secret. It is also assumed that an attacker possesses one or more watermarked
copy of the original image I. This may be possible if an authentic buyer turns out
to be a potential attacker, or if a group of authentic buyers collude to produce
pirated copies of the image. The correlation based watermarking techniques are
known to be vulnerable to collusion attack [3]. This strategy, however, requires
O(

√
n ln n) number of watermarked copies of the original image, where n is

the effective length of the document. Naturally, if n is large, then the required
number of copies is also large, and this many copies may not be available to
the attacker. Thus it is more practical to consider attacks based on a single
watermarked copy.

The general objective of a single-copy attack against the correlation-based
schemes is either of the following.

– Watermark Removal: Given a single watermarked image I(i), remove the
watermark information s(i) from the copy, and retrieve the original image I.

– Watermark Forgery: Given a single watermarked image I(i), produce a forged
watermarked image I(i,#) such that the forgery cannot be traced back to its
origin, I(i).

The attacker, assumed to be Bi in our case, has complete information about the
watermarking algorithm W , and his/her own watermarked copy I(i). However,
Bi does not possess any information about the secret fingerprint s(i), or any
other secret buyer-specific bits used in the process of watermarking. Of course,
Bi does not possess the original image I either, or otherwise the attacks would
be trivial.

Our Motivation: For correlation-based watermarking sche-mes, some single-copy
attacks are already studied in the literature [10–12]. Especially, in [10], the
authors have proposed a single-copy forgery attack on correlation-based water-
marking schemes. They had illustrated the effectiveness of their strategy by
attacking the Cox-Kilian-Leighton-Shamoon (CKLS) algorithm, and later
extended the same idea in [11] to cryptanalyse the optimal Differential Energy
Watermarking (DEW) scheme, proposed in [5]. However, the attack model
proposed in [10,11] is not completely general, as it does not work against the
watermarking scheme they have themselves proposed in [11] – the MDEW water-
marking algorithm. In fact, the authors of [11] have presented the MDEW scheme
as a conscious design to avoid this kind of attacks. It remains an open question
whether there exists a general strategy to cryptanalyse correlation-based water-
marking schemes, and mount single-copy forgery attacks on them. We tackle this
question in our current work.
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Our Result: In this paper, we propose a strategy that converts a single-copy
watermark removal attack on any correlation-based scheme to a single-copy
forgery attack on the same. In particular, we show that if a correlation-based
watermarking scheme, like MDEW [11], has the chance of even a very weak
single-copy watermark removal attack, the same strategy may be extended to
obtain a strong single-copy forgery attack.

We choose MDEW as our target as it has a conscious design principle that
tries to avoid straight-forward but customized single-copy forgery attacks, as
claimed in [11] by the designers of MDEW. However, the conscious design of
MDEW [11] scheme, towards having better security, is shown to be vulnerable
against our general watermark removal-to-forgery attack.

Organization of the Paper: In Sect. 2, we present our idea for extending a water-
mark removal strategy to forgery against a specific example – MDEW water-
marking scheme, as proposed in [11]. In Sect. 3, we present detailed experimental
results, and extend our strategy to propose similar attack against correlation-
based watermarking schemes in general. Finally, Sect. 4 concludes our paper.

2 Forgery Against MDEW Watermarking Scheme

MDEW [11] works alike most of the correlation-based watermarking schemes, as
in [5,6]. Let the original image be I, and the owner wants to sell authentic copies
of I to buyers B1, B2, . . .. Then, the embedding and extraction of the watermark
is performed by the owner as follows.

2.1 Watermark Embedding and Extraction in MDEW

Let the size of the original image I be N × N . First the owner applies 8 × 8
block-wise DCT on I to get the DCT-transformed image Id. Then, the owner
performs a random grouping on the 8 × 8 DCT blocks of Id, considering it as a
two-dimensional array. One may perform this random grouping using a random
permutation P on the blocks of Id. An example of the random grouping, as a
result of applying the random permutation P on Id, is illustrated in Fig. 1 over
a matrix of size 8×8. The groups, each consisting of n blocks, are termed as ‘lc-
regions’, and in Fig. 1, we have four n = 16 size lc-regions marked with different
colors.

Every lc-region is again subdivided into two lc-subregions A and B, as illus-
trated in Fig. 1 by the symbols ∗ and $ respectively, and the energies EA and EB

of the lc-subregions are calculated. The expressions for the energies are given by

EA(q, n) =

n
2 −1∑

b=0

q∑

j=1

|θj,b|, EB(q, n) =
n−1∑

b=n
2

q∑

j=1

|θj,b| (1)

where |θj,b| is the absolute value of DCT coefficient of the 8 × 8 DCT block b in
that lc-subregion (A or B), corresponding to frequency j, where j = 0 means the
DC coefficient of the block that is not considered in the sum. Note that we write
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(a) DCT Image (b) Permuted DCT Image

Fig. 1. DCT images where numerals represent blocks of 8 × 8.

EA(q, n), EB(q, n) as EA, EB , where the values of n, q are implicitly understood
for a specific image I.

The condition in MDEW is that the initial random grouping P and the
subdivision into lc-subregions A and B for the DCT image Id has to be performed
in such a fashion that

|EA − EB | ≤ Δ, (2)

where Δ is a predetermined small threshold. In fact, all that we require is a
margin with which the condition EA ≈ EB is satisfied after grouping. This may
not be true for all random permutations, and hence P is chosen over a few
iterations such that this condition is satisfied. The information regarding this
lc-region and lc-subregion distribution can be stored in a matrix, π, say. This
information, π, is determined by the owner for every image I, and is kept secret
during the whole process. In fact, π is the same for all the buyers of image I,
and serves as the primary key for the MDEW scheme.

For each legitimate buyer Bi, the watermark signal or fingerprint is generated
as a pseudo-random bit string s(i) of length l, where l = G/n denotes the number
of lc-regions in the DCT image Id, which has a total G number of 8 × 8 DCT
blocks and each lc-region is of size n. Now, the goal of watermark embedding is
to insert each bit of s(i) into one lc-region of Id. This modified DCT image, I

(i)
d ,

may then be subjected to inverse DCT transform to obtain the watermarked
image I(i), to be sold to buyer Bi.

Note that we have EA ≈ EB for each lc-region of Id, after grouping according
to π. To embed a bit of s(i) in an lc-region, the owner introduces the following
modifications in the energies of the individual blocks:

Embed 0: E′
A(q, n) =

n
2 −1∑

b=0

q∑

j=1

(1 + α1)|θj,b|, and

E′
B(q, n) =

n−1∑

b=n
2

q∑

j=1

(1 − α2)|θj,b|; (3)
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Embed 1: E′
A(q, n) =

n
2 −1∑

b=0

q∑

j=1

(1 − α2)|θj,b|, and

E′
B(q, n) =

n−1∑

b=n
2

q∑

j=1

(1 + α1)|θj,b|, (4)

where α1, α2 > 0 are chosen such that E′
A − E′

B > Δ′ if bit 0 is embedded, and
E′

B − E′
A > Δ′ if bit 1 is embedded, where Δ′ is once again a predetermined

threshold. The parameters α1, α2 should be small so that after the modification
of the DCT values, the image quality is not degraded.

During watermark extraction for the i-th buyer, note that the owner does
not specifically require the original image I. All he/she requires is the group-
ing information (or the secret key) π, the predetermined threshold Δ′, and the
watermarked image I(i) corresponding to the i-the buyer Bi. To extract the fin-
gerprint s(i), the owner first takes the DCT-transform of I(i) to obtain I

(i)
d , say.

Then the owner may apply the grouping π on I
(i)
d , and examine the polarity of

E′
A − E′

B with respect to Δ′ in each lc-region. This will reveal the exact bit-
stream s(i) embedded in the image, and the owner may now verify the identity
of the buyer by searching for this s(i) in the database of legitimate buyers. If
s(i) does not match with any fingerprint produced by the owner, then it may be
concluded that the specific watermarked copy I(i) is not created by the owner
and that I(i) may be a forged copy.

2.2 Formal Model of Forgery Attack on MDEW

Based on the discussion so far, we may frame the model of forgery attack on
MDEW scheme as follows. The watermark embedding algorithm is denoted as
W , and the watermark extraction algorithm is denoted by W−1, to imply the
inverse of the embedding process. Let F denote the algorithm for forgery, as used
by an attacker, and T be the algorithm that the owner uses to trace the attacker
in case a forgery has been made. If there are NB legitimate buyers in total,
including the attacker, then the advantage of the owner in tracing the attacker
from a forged copy of the image F (I(i)) may be defined as

Adv(I(i,#)) :=
∣
∣
∣
∣Pr

(
T

(
W−1(F (I(i)))

)
= Bi

)
− 1

NB

∣
∣
∣
∣.

In general terms, the above expression denotes the probability with which the
owner can trace back the attacker, above the probability of a random guess, 1

NB
.

The goal of a forger is to lower the value of owner’s advantage, Adv(I(i,#)), and
the attack is completely successful if Adv(I(i,#)) = 0.

In general, the algorithm T that the owner uses to trace the attacker in such
case of forgery is as follows:

1. Step I: Extract the watermark fingerprint from the forged image I(i,#) =
F (I(i)) to get s(i,#) ← W−1(I(i,#)).
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2. Step II: Find the correlations between s(i,#) and all valid owner-generated
s(i) in the buyer database.

3. Step III: Identify Bj as the attacker if s(i,#) has significantly high (far from
0) correlation with s(j).

Under this consideration, we may simplify the attack model to say that the
attacker will be successful in forgery if the correlation between s(i,#) and s(i) is
considerably low, that is, numerically close enough to 0, and the advantage of
the owner may be expressed as:

Adv(I(i,#)) :=
∣
∣
∣Cor

(
s(i),W−1(F (I(i)))

)∣
∣
∣. (5)

The attacker, Bi in this case, will be successful in untraceable forgery if there
exists a j for which

∣
∣
∣Cor

(
s(j),W−1(F (I(i)))

)∣
∣
∣ > Adv(I(i,#)).

However, we impose a stricter condition than what is required, and call a forgery
F successful only if Adv(I(i,#)) ≈ 0.

2.3 General Forgery Attack on MDEW

The performance of MDEW scheme is quite robust against the standard signal
processing attacks, as experimented in [11]. Certain statistical analysis had also
been made in [11] to explain the security parameters. We further perform some
analysis on MDEW to set the base for a general forgery attack. For a simplified
analysis, we assume α1 = α2 = α.

Note that the DCT values of neighboring blocks in an image may be cor-
related, but after the random distribution π is made, the values in the DCT
blocks, whether or not neighboring, can always be assumed to be independent.
We assume that the energies of the 8 × 8 DCT blocks of Id are i.i.d. random
variables Xb, for 0 ≤ b ≤ G − 1, satisfying

Xb ∼ N

(

μ =
1
G

G−1∑

b=0

Xb, σ
2 =

1
G − 1

G−1∑

b=0

(Xb − μ)2
)

.

The energy difference D between the two lc-subregions A and B within a specific
lc-region is given by

D =
n/2∑

k=1

XAk
−

n/2∑

k=1

XBk
, (6)

where XAk
is the energy of the k-th block of the subregion A and XBk

is the
energy of the k-th block of subregion B. D is a linear combination of i.i.d. random
variables, and thus itself a random variable satisfying D ∼ N(0, nσ2) (see [11]
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for details). After inserting watermark bits, the energy difference in the lc-region
will change to

D′ =
n/2∑

k=1

XAk
(1 + α) −

n/2∑

k=1

XBk
(1 − α), (7)

where the value of α could be positive or negative depending on whether 0 or
1 is inserted in the corresponding region. The expectation of D′, the modified
energy difference, will be

E(D′) = E

⎛

⎝
n/2∑

k=1

XAk
(1 + α) −

n/2∑

k=1

XBk
(1 − α)

⎞

⎠ = nαμ, (8)

and the variance of D′ will be

V (D′) = V

⎛

⎝
n/2∑

k=1

XAk
(1 + α) −

n/2∑

k=1

XBk
(1 − α)

⎞

⎠

=
n/2∑

k=1

(
(1 + α)2V (XAk

) + (1 − α)2V (XBk
)
)

= n(1 + α2)σ2. (9)

Now that we have all statistical properties of the important parameters, we may
device and analyze a naive forgery attack on the MDEW scheme.

First note that the distribution of lc-regions/subregions is coded in a permu-
tation π, unknown to the attacker. After taking the DCT transform of water-
marked image I(i), suppose that the attacker finds G = 2ω many 8 × 8 DCT
blocks in I

(i)
d , and let each lc-region consists of n = 2

ω
2 such blocks. In this case,

the number of all possible groupings comes to
(

G

n

)

·
(

G − n

n

)

·
(

G − 2n

n

)

· · ·
(

n

n

)

=
(2ω)!

((2
ω
2 )!)2

ω
2

.

For large values of ω (≥ 4), we have (2ω)!

((2
ω
2 )!)2

ω
2

> 22
ω

. One should further consider

the possibilities of creating two subregions inside each lc-region. Naturally, this
makes a naive guessing of π impossible in all respects, and we may safely assume
that π remains an unknown random permutation of the DCT blocks from the
point of view of the attacker.

Once the distribution π is unknown, the attacker has only one choice left –
that is to look into each of the blocks and try to modify the energies. The idea
for forgery is as follows.

General Forgery Attack on MDEW
Input – Authentic watermarked image I(i)

Output – Forged watermarked image I(i,#)

Preprocessing – Take DCT transform of I(i) to get I
(i)
d
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Algorithm – For each block of I
(i)
d , do the following

– Guess whether the energy of the block had been increased or decreased during
watermark embedding.

– Depending on the guess, modify the DCT values to reverse the effects of water-
mark embedding. That is, if the energy of the block was increased (respectively
decreased), then decrease (respectively increase) the energy.

The effectiveness of this forgery will directly depend on the correctness of the
initial guess for each block. If the attacker knew π, each of these guesses would
be correct, and the attacker could completely reverse the effect of watermarking.
However, with π an unknown random permutation, the guessing strategy is of
prime importance.

2.4 Forgery on MDEW Using Random Guess

An adversary can obviously try a naive approach of random guessing. In random
guessing the probability of every correct guess is 1

2 . In this strategy, we randomly
decide, with equal probability, whether to increase or decrease the DCT values of
each 8×8 DCT block in I

(i)
d , and construct the forged image I(i,#), as illustrated

in Algorithm 1.

Algorithm 1. Forgery on MDEW using Random Guess

1: Apply 8 × 8 DCT on I(i) to obtain I
(i)
d .

2: for y = 1 to G do
3: Generate a random bit d by tossing an unbiased coin.
4: if d = 1 then
5: Decrease DCT values θj,y ← θj,y · (1 − α′

1) for the known subset of coefficients
j = 1, 2, . . . , q.

6: else
7: Increase DCT values θj,y ← θj,y · (1 + α′

2) for the known subset of coefficients
j = 1, 2, . . . , q.

8: end if
9: end for

10: Apply inverse 8 × 8 DCT to construct forged image I(i,#).

We model the random guess strategy by a binomial random variable Z, where
Z = 1 if the guess is correct and Z = −1 if the guess is incorrect. Thus the
distribution of Z is as follows:

Z =

{
1 ; prob. = 1/2 E(Z) = 0

−1 ; prob. = 1/2 V (Z) = 1
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If after forgery, the energy difference between the lc-subregions A and B is
denoted by D′′, then Eq. (10) represents the effect of Z on D′′, where we assume
α′
1 = α′

2 = α′.

D′′ =
n/2∑

k=1

XAk
(1 + α)(1 − sgn(α)α′Zk)

−
n/2∑

k=1

XBk
(1 − α)(1 + sgn(α)α′Z ′

k). (10)

Here 0 < α′ < 1, and sgn(.) is the signum function, i.e., sgn(α) = 1 if α > 0
and sgn(α) = −1 if α < 0. Furthermore, Zk, Z ′

k (where 1 ≤ k ≤ n
2 ) are i.i.d.

random variables with the same distribution as Z, i.e., E(Zk) = E(Z ′
k) = 0,

V (Zk) = V (Z ′
k) = 1. Then,

E(D′′) = E

⎛

⎝
n/2∑

k=1

XAk
(1 + α)(1 − sgn(α)α′Zk)

−
n/2∑

k=1

XBk
(1 − α)(1 + sgn(α)α′Z ′

k)

⎞

⎠

= nμ (α − sgn(α)α′E(Zk)) = nαμ = E(D′), (11)

and the variance of D′′ is

V (D′′) = V

⎛

⎝
n/2∑

k=1

XAk
(1 + α)(1 − sgn(α)α′Zk)

−
n/2∑

k=1

XBk
(1 − α)(1 + sgn(α)α′Z ′

k)

⎞

⎠

=
n/2∑

k=1

(
(1 + α)2V (XAk

(1 − sgn(α)α′Zk))

+(1 − α)2V (XBk
(1 + sgn(α)α′Z ′

k)
)
. (12)

Now, we may compute the variance V (XAk
(1 − sgn(α)α′Zk)) rigorously as

E(X2
Ak

)E((1−sgn(α)α′Zk)2) − (E(XAk
)E(1−sgn(α)α′Z ′

k))2 = σ2α′2+μ2α′2+
σ2, and similarly obtain V (XAk

(1 + sgn(α)α′Zk)) = σ2α′2 + μ2α′2 + σ2. From
Eq. (12), we get

V (D′′) =
n

2
(
(1 + α)2 + (1 − α)2

)
(σ2α′2 + μ2α′2 + σ2)

= n(1 + α2)(σ2α′2 + μ2α′2 + σ2). (13)
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In the above analysis, we have considered a random region [SR(A), SR(B)]
and analyzed the effect of forgery based on random guess. Since the expectation
of the energy difference D′′ in case of the forged image I(i,#) is the same as that
in case of the authentic copy I(i), the reversal of energy polarity (E′

A−E′
B) in the

lc-region considered above will be insignificant. Thus, the correlation between
s(i) ← W−1(I(i)) and s(i,#) ← W−1(I(i,#)) will be considerably high, and hence
we prove that the random guess strategy is not useful for mounting a forgery
attack on MDEW.

The variance of D′′ changes from that of D′, and the change is proportional
to the square of the parameter α′ which is used to reverse the effect of α. The
change in variance only signifies the increased dispersion of energies in the forged
image.

2.5 Forgery on MDEW Using Informed Guess

Suppose that there is some information available to the attacker that helps
him/her to guess the increase/decrease in energy per block with probability
slightly higher than that in case of random guess. In particular, the attacker
can guess correctly, whether the DCT values in a block has been increased or
decreased, with probability 1

2 + ε, for some non-negligible ε > 0. That is, the
distribution of the random variable Z, in this strategy, is:

Z =

{
1 ; prob. = 1

2 + ε E(Z) = 2ε

−1 ; prob. = 1
2 − ε V (Z) = 1 − 4ε2

In this case of an informed guess, the expectation of D′′ is

E(D′′) = E

⎛

⎝
n/2∑

k=1

XAk
(1 + α)(1 − sgn(α)α′Zk)

−
n/2∑

k=1

XBk
(1 − α)(1 + sgn(α)α′Z ′

k)

⎞

⎠

=
n/2∑

k=1

((1 + α)E(XAk
)(1 − sgn(α)α′E(Zk))

−(1 − α)E(XBk
)(1 + sgn(α)α′E(Z ′

k)))

=
nμ

2
((1 + α)(1 − 2sgn(α)α′ε)

−(1 − α)(1 + 2sgn(α)α′ε))
= nμ(α − 2sgn(α)α′ε)
= E(D′) − 2sgn(α)nμεα′, (14)
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and the variance of D′′ is given by

V (D′′) = V

⎛

⎝
n/2∑

k=1

XAk
(1 + α)(1 − sgn(α)α′Zk)

−
n/2∑

k=1

XBk
(1 − α)(1 + sgn(α)α′Z ′

k)

⎞

⎠

=
n/2∑

k=1

(
(1 + α)2V (XAk

(1 − sgn(α)α′Zk))

+(1 − α)2V (XBk
(1 + sgn(α)α′Z ′

k)
)
. (15)

After simplifying the above expression, we get V (D′′) as n(μ2α′2(1 + α2)(1 −
4ε2) + σ2((1 + α2)(1 + α′2) - 8sgn(α)αα′ε)).

From Eq. (14), it is obvious that expectation of D′′ differs from that of D′,
and the difference depends on ε, α, μ and α′. Among these parameters, the
attacker has control only over α′, the amount of increase/decrease in the DCT
values while forging the image. The other parameters α, μ and ε are fixed, either
by the owner of the image, or by the information the attacker has got to base
his/her guesses on.

If the attacker can obtain any significant information that makes ε > 0,
he/she may tune the parameter α′ to create a large enough difference between
D′ and D′′, possibly to the extent that the energy difference polarity is reversed.
This helps the attacker to mount a successful forgery attack on the MDEW
scheme, and constitutes the main theme of our work.

2.6 Watermark Removal Attack Extended to Forgery on MDEW

So far we have seen that if the attacker gets a good guessing probability for each
block of the DCT domain image I

(i)
d , by some strategy, then the probability of

success for the forgery increases. Suppose that there exists a weak watermark
removal attack against MDEW that produces a not-so-good approximation of
the original image I from I(i). Let us denote the estimate of I as IC . If the
attacker possesses both I(i) and the approximate original image IC , then he/she
may transform both to the DCT domain, compare I

(i)
d with IC

d block by block,
and take a good guess as to whether the DCT values for each block were increased
or decreased during watermark embedding. The closer the approximate image
IC is to I, the better will be the guess probability, that is, ε, for the attacker. We
know from the previous subsection that even if the watermark removal attack
is weak, that is, even if it provides only a very small ε, the attacker may still
magnify its effects in the final forgery attack, by tuning other parameters.

This provides a general platform to extend any watermark removal attack on
MDEW to a forgery attack on the same scheme. In fact, even a very weak and
practically unusable watermark removal technique for MDEW can be exploited
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against the scheme, quite effectively, in such a forgery attack. We substantiate
our claim through the following example.

2.7 Median Filter Based Forgery on MDEW

Watermark embedding on any image I is generally considered as adding noise
in the image where the watermark fingerprint is treated as noise. Thus, any
suitable noise removal filter may work as a naive watermark removal strategy
that approximates I from a marked copy I(i). Median filter is one of the simplest
examples that could be applied on the noisy image I(i) to get back IC , a very
crude approximation of I.

The attacker may now exploit the knowledge of I(i) and IC together to form
his/her guesses. The attacker takes both the images I(i) and IC to the trans-
formed domain by applying 8 × 8 DCT. In the DCT domain, he/she compares
the energy X of the corresponding blocks in both the images and tries to guess
whether the energy of that specific block has been increased or decreased dur-
ing watermark embedding process. After the guess is finalized, the attacker may
try to reverse the embedding effect by modifying the DCT values towards the
opposite polarity with respect to the embedding process, so that a forged copy
I(i,#) is created.

Let |θw
j | and |θm

j | represent the absolute values of the DCT coefficients corre-
sponding to frequency j in a specific block of I(i) and IC , respectively. Similarly,
let XΦ and XΨ represent the energy corresponding to a specific block of I(i) and
IC , respectively. Then the median filter based forgery may be summarized as in
Algorithm 2.

Algorithm 2. Median Filter based Forgery on MDEW

1: Apply median filter with dimensions r × s on I(i) and store the resultant image as
IC , an approximation to I.

2: Apply 8 × 8 DCT on both I(i), IC to obtain I
(i)
d and IC

d .
3: for y = 1 to G do
4: Calculate XΦ,y =

∑q
j=1 |θ(i)

j,y|, XΨ,y =
∑q

j=1 |θC
j,y|.

5: if XΦ,y > XΨ,y then
6: Decrease DCT values θw

j,y ← θw
j,y · (1 − α′

1) for the known subset of coefficients
j = 1, 2, . . . , q.

7: else
8: Increase DCT values θw

j,y ← θw
j,y · (1 + α′

2) for the known subset of coefficients
j = 1, 2, . . . , q.

9: end if
10: end for
11: Apply inverse 8 × 8 DCT to construct forged image I(i,#).

In case of median filtering, we notice that the extra margin in the probability
of guessing, ε, is not just a constant, but it depends directly on the energy of a
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block, that is X. In fact, ε behaves proportional to the value of X, and gives a
better guessing probability for the high energy blocks. From our experiments, we
have found that the relation between ε and X can be modeled as ε = X

2M , where
M = max{X}. Thus, the bias in the guessing probability can be modeled as

Z =

{
1 ; prob. = 1

2 + X
2M

−1 ; prob. = 1
2 − X

2M ,

and the expectation and variance of Z can be computed as

E(Z) = E(E(Z|X)) = E(X)/M = μ/M, and

V (Z) = E(Z2) − (E(Z))2 = E(E(Z2|X)) − (E(E(Z|X))2

= V (X)/M2 = σ2/M2.

Now we may calculate the expected value of D′′ as follows:

E(D′′) = E

⎛

⎝
n/2∑

k=0

XAk
(1 + α)(1 − sgn(α)α′Zk)

−
n/2∑

k=0

XBk
(1 − α)(1 + sgn(α)α′Z ′

k)

⎞

⎠

=
n/2∑

k=0

((1 + α)E(XAk
(1 − sgn(α)α′Zk))

−(1 − α)E(XBk
(1 + sgn(α)α′Z ′

k))).

We have the distribution of Zi and Z ′
i identical to Z, and hence dependent on

X. Thus, we may compute E(D′′) as

E(D′′) =
n/2∑

k=0

((1 + α)E(E(XAk
(1 − sgn(α)α′Zk)|XAk

))

−(1 − α)E(E(XBk
(1 + sgn(α)α′Z ′

k)|XBk
)))

=
n/2∑

k=0

((1 + α)E(XAk
)(1 − sgn(α)α′E(XAk

/M))

−(1 − α)E(XBk
)(1 + sgn(α)α′E(XBk

/M))) ,

which, in turn, provides

E(D′′) =
nμ

2
((1 + α)(1 − sgn(α)α′μ/M))

−(1 − α)(1 + sgn(α)βμ/M))
= nμ (α − sgn(α)α′μ/M)

= E(D′) − sgn(α)nα′μ2/M. (16)
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Since the mean value of E(D′′) is changed from E(D′) by the factor pro-
portional to α′μ/M . So if the attacker chooses the parameter α′ > |αM

μ |, the
polarity of the energy difference in the specific lc-region will get reversed.

Note that we want the probability of polarity reversal in the lc-regions to be
close to 1

2 , as in that case, the two watermark fingerprints s(i) ← W−1(I(i)) and
s(i,#) ← W−1(I(i,#)) will have about half of the bits matching. This condition
makes the correlation between s(i) and s(i,#) close to zero, or negligible, as
desired in a forgery attack.

In the next section, we present the experimental results of our forgery attacks
on MDEW, in both cases – random guess and median filter based guess – to
illustrate the power of extending a weak watermark removal technique to a
strong forgery attack on correlation-based watermarking schemes.

3 Experimental Results and Generalized Model

Tables 1 and 2 enlist our experimental observations. We have used some bench-
mark gray level test images of size 512 × 512 available in uncompressed TIFF
at [7]. We choose the watermark embedding parameters α1 = α2 = 0.1, and
various values for the forgery parameters α′

1 and α′
2 such that the image quality

remains acceptable. The quality of the forged image I(i,#) is tested against the
original image I and the watermarked copy I(i), using the perceptual quality
parameters Q(#) and Q(i,#) respectively, represented in terms of PSNR in dB
(see [9], p. 112). Cor(s(i), s(i,#)) is calculated as β−δ

l where β and δ represent the
number of matches and mismatches between the corresponding bits of s(i,#) and
s(i) respectively, and l represents the total bit-length of the fingerprints. The last
two columns illustrate the experimental values of ε, the bias in correct guess, on
an average, as well as for the high energy blocks, which have more effect on the
polarity reversal process of the energy difference.

Table 1. Results of forgery attack on MDEW based on random guess

Image Forgery values Quality factors (dB) Cor(s(i), s(i,#)) Guess probability (1/2 + ε)

α′
1 α′

2 Q(#) Q(i,#) (mean) (SD) (mean) (high energy blocks)

Watermark embedding parameters: α1 = 0.1 and α2 = 0.1.

Lena 0.200 0.200 37.800 38.760 0.980 0.010 0.501 0.500

Lena 0.270 0.270 35.620 36.180 0.970 0.020 0.500 0.500

Cameraman 0.270 0.270 34.400 34.800 0.870 0.040 0.500 0.500

Lake 0.270 0.270 33.000 33.440 0.970 0.020 0.500 0.500

Peppers 0.270 0.270 35.300 35.800 0.920 0.030 0.500 0.500

Jetplane 0.270 0.270 34.100 34.660 0.940 0.030 0.500 0.500

Lena 0.300 0.300 34.820 35.280 0.960 0.020 0.500 0.500

Cameraman 0.300 0.300 33.550 34.000 0.790 0.050 0.500 0.500

Lake 0.300 0.300 32.100 32.540 0.930 0.040 0.500 0.500

Peppers 0.300 0.300 34.500 34.930 0.910 0.040 0.499 0.499

Jetplane 0.300 0.300 33.300 33.800 0.870 0.040 0.500 0.500
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Table 2. Results of forgery attacks on MDEW based on median filter guess

Image Forgery values Quality factors (dB) Cor(s(i), s(i,#)) Guess probability (1/2 + ε)

α′
1 α′

2 Q(#) Q(i,#) (mean) (SD) (mean) (high energy blocks)

Watermark embesdding parameters: α1 = 0.1 and α2 = 0.1.

Lena 0.200 0.200 39.660 38.740 0.660 0.080 0.590 0.659

Lena 0.270 0.270 37.100 36.150 -0.050 0.100 0.590 0.660

Cameraman 0.270 0.270 35.120 34.500 0.300 0.090 0.540 0.610

Lake 0.270 0.270 34.050 33.390 0.340 0.100 0.575 0.637

Peppers 0.270 0.270 37.000 35.670 -0.300 0.090 0.600 0.696

Jetplane 0.270 0.270 35.400 34.600 0.140 0.100 0.560 0.642

Lena 0.300 0.300 36.130 35.240 -0.240 0.120 0.590 0.651

Cameraman 0.300 0.300 34.190 33.600 0.200 0.100 0.540 0.609

Lake 0.300 0.300 33.120 32.500 0.200 0.110 0.570 0.639

Peppers 0.300 0.300 36.000 34.770 -0.450 0.090 0.600 0.700

Jetplane 0.300 0.300 34.500 33.690 -0.010 0.100 0.560 0.635

Each row in Tables 1 and 2 represents the mean and SD of the data for
over 100 iterations of the forgery algorithms, with different random watermark
fingerprint s(i) in each case. The image key π is calculated uniquely for each
image, and then maintained over all the iterations with that image. The values
l = 64, Δ = 100, and q = 5 are kept fixed for all cases. In all experiments listed
in Table 2, the additional parameters r = 3, s = 3 are chosen to perform the
median filtering.

Discussion on Table 1: One may note that the guessing probability in each case
is approximately 0.5, including that for the higher energy blocks. This implies
that ε ≈ 0, which is in line with the relation derived in Eq. (11). Cor(s(i), s(i,#))
is quite significant in each case, and hence, the forgery can easily be traced back
to the attacker. This proves the robustness of MDEW against naive based on
random guess.

Discussion on Table 2: One may note that the probability of correct guess, (1/2+
ε), is significantly greater than 0.5 in all the cases and the mean value of ε is
approximately 0.07. It is high enough to assist the attacker in guessing whether
the significant DCT coefficients of a block have been increased or decreased.
The value of ε is even greater for the high energy blocks. High energy blocks
contribute more significantly to create energy differences D′ with a particular
polarity. So if the attacker can guess those blocks correctly and apply forgery on
the same, then the chances of reversing the polarity of D′′ with respect to D′

increases significantly. This, in turn, leads to significant decrease in the value of
Cor(s(i), s(i,#)), as evident from the data. The value of Cor(s(i), s(i,#)) ranges
close to 0 in most of the cases, thus making attacker-tracing very hard. Values
of Q(#) and Q(i,#) are significantly greater than 30 dB in all cases, keeping the
image quality satisfactory even after the forgery attack.
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Generalized Model: Consider the space of all possible watermark fingerprints
s(i) to be S. The origin in space S may be defined as s(0) ≡ 0, the zero vector,
which represents the original image I. Suppose that there exists a definition of
distance between two fingerprints s(i) and s(j) in S, which, in case of MDEW,
is the regular Hamming distance between vectors. Then, our generalized forgery
model proposes that

If there exists a single-copy watermark removal method that reduces the
distance d(s(0), s(i)) from the knowledge of only the watermarked image
I(i) ← W (I, s(i)), then the same technique can be amplified to mount
a single-copy that reduces the distance d(s(j), s(i)), for any arbitrary j,
using only the knowledge of I(i).

This may be exploited against any correlation based scheme, similar to the attack
that we have proposed for MDEW. Only the details of forgery implementation
have to be customized for each scheme, and every other principle of this attack
will remain the same as our general approach. To the best of our knowledge,
such a general scheme for extending a single-copy watermark removal method to
a single-copy on correlation based watermarking schemes has not been proposed
in the literature. It will be interesting to observe the ramifications of this attack
on the new dirty-paper-based watermarking schemes [1,2,8,13], if any at all.

4 Conclusion

In this paper, we have proposed a general framework that converts a single-
copy watermark removal attack on any correlation-based scheme to a single-
copy forgery attack on the same. We like to point out here that such a strategy
assumes significance when the watermark removal strategy itself is a weak one
and may not succeed in removing the watermark completely. However, in this
scenario also, one could use our strategy for mounting a successful . We have
substantiated our claims through an attack on MDEW, and complete theoretical
analysis and experimental verification of the same. Success of our strategy raises
serious doubt about the very existence of correlation based watermarking meth-
ods proposed elsewhere and in future, we need a paradigm shift in the design of
new watermarking schemes.
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Abstract. Reversible Image Watermarking is a technique to losslessly
embed and retrieve information (in the form of a watermark) in a cover
image. We have proposed and implemented a reversible color image
watermarking algorithm in the YCoCg-R color space, based on histogram
bin shifting of the prediction errors, using weighted mean based prediction
technique to predict the pixel values. The motivations for choosing the
YCoCg-R color space lies in the fact that its transformation from the
traditional RGB color space is reversible, with higher transform coding
gain and near to optimal compression performance than the RGB and
other reversible color spaces, resulting in considerably higher embedding
capacity. We demonstrate through information theoretic analysis and
experimental results that reversible watermarking in the YCoCg-R color
space results in higher embedding capacity at lower distortion than RGB
and several other color space representations.

1 Introduction

Digital watermarking [1] is an important technique adopted for copyright protec-
tion and authentication. Digital watermarking is the act of hiding secret infor-
mation (termed a “watermark”) into a digital “cover” medium (image, audio
or video), such that this information may be extracted later for authentica-
tion of the cover. However, the process of watermark embedding in the cover
medium usually leads to distortion of the latter, even if it is perceptually negli-
gible. Reversible watermarking [2,3,10] is a special class of digital watermarking,
whereby after watermark extraction, both the watermark and the cover medium
remain unmodified, bit-by-bit. In traditional reversible watermarking schemes,
the watermark to be embedded is usually generated as a cryptographic hash of
the cover image. Reversible watermarking is most widely used in industries deal-
ing with highly sensitive data, such as the military, medical and legal industries,
where data integrity is the major concern for users [10]. In this paper we focus
on reversible watermarking algorithms for digital images.
c© Springer International Publishing Switzerland 2015
S. Jajodia and C. Mazumdar (Eds.): ICISS 2015, LNCS 9478, pp. 480–498, 2015.
DOI: 10.1007/978-3-319-26961-0 28
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A large number of reversible image watermarking algorithms have been pre-
viously proposed [2–4]. Most of them have been developed for grayscale images.
Although the algorithms developed for grayscale images may trivially be modi-
fied to work with for color images, most of the times the performance achieved
by such trivial extension is not satisfactory. Relatively few works have been pro-
posed for reversible color image watermarking. Moreover, in the existing litera-
ture, almost all reversible color image watermarking algorithms [4–7] utilize the
RGB color space. Tian et al. [2] introduced Difference Expansion based reversible
watermarking for grayscale images. Allatar used that concept for reversibly
watermarking color images using difference expansion of triplets [5], quads [6],
and later formulated a generalised integer transform [4]. However, these schemes
embed watermark into the individual color components of the RGB color space.
Li et al. [7] proposed a prediction error expansion based color image watermark-
ing algorithm where prediction accuracy is enhanced by exploiting the correla-
tion between color components of the RGB color space. Published literature on
reversible color image watermarking in other (non-RGB) color spaces are very
rare. Investigation of color image watermarking in a non-RGB color space is
something that we aim to investigate in this paper.

In this paper, we propose a reversible watermarking technique, specifically
meant for color images, providing considerably high embedding capacity. by
systematically investigating the following questions:

1. What theoretical considerations should determine selection of a color space
for reversible watermarking of color images?

2. Which color space is practically the best suited in this context?
3. Is there any additional constraint for selecting color space to ensure reversibil-

ity of the watermarking scheme?

Our key observation in this paper is that, instead of the tradi-
tional RGB color space, if we choose a color space having higher
transform coding gain (i.e., better compression performance), then
the reversible watermarking capacity will be increased significantly.
Moreover, better compression along color components increases intra-
correlation of individual color components. Hence, prediction accu-
racy of such prediction based watermarking scheme improves, which
additionally enhances the embedding capacity of the reversible water-
marking scheme.

In this paper, we propose a reversible watermarking algorithm for color
images, which utilizes the YCoCg-R color space (a modification of the YCoCg
color space) having higher transform coding gain and near to optimal compres-
sion performance. The transformation from RGB to YCoCg-R, and the reverse
transformation from YCoCg-R to RGB, are integer-to-integer transforms which
guarantee reversibility [8], and are also implementable very efficiently. The pro-
posed algorithm is based on the principle of histogram–bin–shifting, which is
computationally one of the simplest reversible watermarking technique. Specifi-
cally, we use a newer and more efficient enhancement of histogram-bin-shifting,
which performs histogram modification of pixel prediction errors [2,9]. In this
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technique image pixel values are predicted from their neighbourhood pixel val-
ues, and the prediction error histogram bins are shifted to embed the watermark
bits. This technique provides much higher embedding capacity compared to the
traditional frequency-histogram shifting.

The rest of the paper is organised as follows. We investigate an information
theoretic analysis of watermarking embedding capacity maximization in Sect. 2.
The proposed reversible watermarking algorithm is presented in Sect. 3. Exper-
imental results and related discussions are presented in Sect. 4. We conclude in
Sect. 5 with some future research directions.

2 Principle of Embedding Capacity Maximization

Embedding capacity maximization is one of the major challenges in reversible
watermarking, given the reversibility criterion. In this section, we explore suc-
cessively two approaches to enhance embedding capacity:

1. Selection of the target color space offering higher watermarking performance,
and,

2. Selection of the watermark embedding algorithm.

2.1 Color Space Selection

We consider the selection of the color space from three perspectives: information
theory, reversibility and compressibility in the transformed color space, and ease
of implementation of the color space transformation. We start with the review
a relevant information theoretic result.

Information Theoretic Justification. The following theorem is of funda-
mental importance:

Theorem 1 (Sepain-Wolf Coding Theorem). Given two correlated finite alpha-
bet random sequences X and Y , the theoretical bound for lossless coding rate for
distributed coding of two sources are related by:

RX ≥ H(X|Y ),
RY ≥ H(Y |X),
RX + RY ≥ H(X,Y ).

(1)

Thus, ideally the minimum total rate (RX,Y ) necessary for lossless encoding of
the two correlated random sequences X and Y , is equal to their joint entropy
(H(X,Y )), i.e. RX,Y = H(X,Y ).

The significance of the above result is that for three correlated random
sequences X, Y , Z, the total rate RX,Y,Z = H(X,Y,Z) is sufficient for an ideal
lossless encoding. This theorem can be extended to a finite number of correlated
sources. It can be shown that the same result holds even for the i.i.d and ergodic
processes [11].

We make the following proposition related to the selection of color space on
the embedding capacity of reversible watermarking:
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Fig. 1. Venn diagram to explain the impact of color space transformation on entropy
and mutual information.

Proposition 1. If the cover color image is (losslessly) converted into a different
color space with higher coding gain (i.e. better compression performance) before
watermark embedding, then the watermark embedding capacity in the transformed
color space is greater than the original color space.

Consider the color components for color images to be finite discrete random
variables. Let X,Y ,Z be three random variables as depicted in a Venn diagram
in Fig. 1, where the area of each circle (corresponding to each random variable)
is proportional to its entropy, and the areas of the intersecting segments are
proportional to the corresponding mutual information values of the relevant
random variables.

Now consider a bijective transformation T applied to the point (X,Y ,Z)
in the original sample space, to transform it to another point (X ′,Y ′,Z ′) in
the transformed sample space, corresponding to the three random variables
X ′,Y ′,Z ′:

T : (X,Y,Z) → (X ′, Y ′, Z ′) (2)

such that the image in the transformed sample space has higher coding gain.
Since higher coding gain implies better compression performance, hence, each
element of X ′,Y ′ and Z ′ is the compressed version of the corresponding element
in X, Y and Y respectively. Moreover, let T be an invertible, lossless and it
maps integers to integers.
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As a consequence of the properties of the transformation T, both the sample
spaces are discrete and contain the same number of points. The values of the
pixels in the transformed color space (i.e. X ′, Y ′ and Z ′) get “closer” to each
other, as these are the compressed version of the pixel color channel values in the
original sample space (i.e. X,Y and Z). This implies that the random variables
corresponding to the color channels in the transformed color space (X ′,Y ′ and
Z ′), become more correlated among themselves than those in the original sample
space (X, Y and Z). Since for individual random variables higher correlation
between values implies lesser entropy [11], the entropies of the variables X ′, Y ′

and Z ′ in the transformed domain are relatively lesser compared to those of X,
Y and Z. i.e.,

H(X ′) ≤ H(X)
H(Y ′) ≤ H(Y )
H(Z ′) ≤ H(Z)

(3)

This is depicted by having the circles corresponding to X ′, Y ′ and Z ′ have
lesser areas compared to the circles corresponding to X, Y and Z in Fig. 1.
Joint entropy of X, Y and Z, i.e., H(X,Y,Z) is depicted by the union of the
three circles corresponding to X,Y and Z. Now, as the circles corresponding to
X ′, Y ′ and Z ′ have lesser areas than those corresponding to X, Y and Z, it is
evident that area of the union of these circles corresponding X ′, Y ′ and Z ′ (i.e.,
H(X ′, Y ′, Z ′)), must be smaller than that corresponding to X, Y and Z, i.e.,

H(X ′, Y ′, Z ′) ≤ H(X,Y,Z) (4)

We can draw an analogy between lossless (reversible) watermarking and loss-
less encoding, since in reversible watermarking, we have to losslessly encode
the cover image into the watermarked image such that the cover image can be
retrieved bit by bit. So, in that sense we can apply the Sepian-Wolf Theorem
to estimate the embedding capacity of the reversible watermarking scheme. For
lossless encoding of a color image I consisting of color channels X,Y and Z, we
need a coding rate greater than equal to H(X,Y,Z). The total size of the cover
image is a constant, say N bits. Then, after an ideal lossless encoding of the
image I which can encode it in H(X,Y,Z) bits, there remains (N −H(X,Y,Z))
bits of space for auxiliary data embedding. Hence, theoretical embedding capac-
ity of the reversible watermarking schemes in the two color spaces are given by:

C = N − H(X,Y,Z) (5)

and
C ′ = N − H(X ′, Y ′, Z ′) (6)

Since H(X ′, Y ′, Z ′) ≤ H(X,Y,Z), hence we can conclude that C ′ ≥ C. Hence,
we conclude that a color space transformation T with certain characteristics can
result in higher embedding capacity.
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Compressibility in Transformed Color Space and Reversibility of
Transformation. When we transform the representation of a color image from
one color space to another, the Transform Coding Gain is defined as the ratio of
the arithmetic mean to the geometric mean of the variances of the variables in
the new transformed domain coordinates, scaled by the norms of the synthesis
basis functions for non-unitary transformations [8]. It is usually measured in dB.
Transform coding gain is a metric to estimate compression performance [8] –
higher transform coding gain implies more compression among the color chan-
nels of a color image representation. In general, the Karhunen-Loeve Transform
(KL Transform), Principle Component Analysis (PCA) etc. might also be used to
decorrelate color channels. However, for reversible watermarking we need
to choose an integer-to-integer linear transformation. If C1 = (X,Y,Z)T

denote the color components in the original color space, and C2 = (X ′, Y ′, Z ′)T

denote the color components in the transformed color space after a linear trans-
formation, then we can write C2 = TC1, where T is the transformation matrix.
Similarly, the reverse transformation is expressed as C1 = T−1C2, It is desirable
that detT = 1, which is a necessary condition for optimal lossless compression
performance [8].

Ease of Color Space Transformation. Color space transformation dur-
ing watermark embedding/extraction processes is a computational overhead.
Another consideration that determines the selection of a candidate color space
is the ease of implementation of the computations involved in the color space
transformation, i.e. multiplication by the transformation matrix T. If the opera-
tions involved are only integer addition/subtractions and shifts, the color space
transformation can be implemented extremely efficiently in both software and
hardware.

From the discussion so far, our color space selection for performing the
reversible watermarking operations is guided by the following criteria:
– Lower correlation among the color channels.
– Reversibility of transformation from the RGB color space.
– Higher transform coding gain, and,
– Ease of implementation of the transformation.

Some of the reversible color space transformations available in the litera-
ture [13,14] are described below in brief.

RCT Color Space. Reversible Color Transform (RCT) is used for lossless color
transformation in JPEG 2000 standard [14]. It is also known as “reversible YUV
color space”. This color space transformation equations are simple, integer-to-
integer and invertible:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Yr =
⌊

R + 2G + B

4

⌋

Ur = R − G

Vr = B − G

⇐⇒

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

G = Yr −
⌊

Ur + Vr

4

⌋

R = Ur + G

B = Vr + G

(7)
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O1O2O3 Color Space. This is another color space with higher compression
performance, while maintaining integer-to-integer reversibility [13]. Here, the R,
G, and B color channels are transformed into O1, O2, O3 color channels, and
conversely:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

O1 =

⌊
R+G+B

3
+ 0.5

⌋

O2 =

⌊
R − B

2
+ 0.5

⌋

O3 = B − 2G+R

⇐⇒

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

B = O1 − O2 +

⌊
O3

2
+ 0.5

⌋

−
⌊
O3

2
+ 0.5

⌋

G = O1 −
⌊
O3

3
+ 0.5

⌋

R = O1 +O2 +O3 −
⌊
O3

2
+ 0.5

⌋

−
⌊
O3

2
+ 0.5

⌋

(8)

Our Selection: The YCoCg-R Color Space. In our case, X, Y and Z corre-
spond to the R, G and B color channels of the RGB color space, and X ′, Y ′ and
Z ′ correspond to the Y , Co and Cg color channels in the YCoCg-R color space.
The well-known YCoCg color space decomposes a color image into three compo-
nents – Luminance (Y ), Chrominance orange (Co) and Chrominance green (Cg)
respectively. YCoCg-R is the integer to integer reversible version of YCoCg. The
transformation T (for RGB to YCoCg-R), and the inverse transformation are
given by [8]:

Co = R − B,
t = B +

⌊
Co
2

⌋
,

Cg = G − t,

Y = t +
⌊

Cg
2

⌋
(9)

and similarly,
t = Y −

⌊
Cg
2

⌋
,

G = Cg + t,
B = t −

⌊
Co
2

⌋
,

R = B + Co

(10)

Notice that rolling out the above transformation equations allows us to write
the direct transformation equations:

⎡

⎣
Co
Cg
Y

⎤

⎦ = T

⎡

⎣
R
G
B

⎤

⎦ =

⎡

⎣
1 0 −1

− 1
2 1 − 1

2
1
4

1
2

1
4

⎤

⎦

⎡

⎣
R
G
B

⎤

⎦ (11)

and hence detT = 1, which is desirable for achieving optimal compression ratio,
as mentioned in Sect. 2.1. A close look would reveal that the transformations are
nothing but repeated difference expansion of the color channels.

To summarize, selection of the YCoCg-R color space has the following con-
sequences:

– Repeated difference expansion of the color channels makes the resultant color
channels less correlated in the YCoCg-R color space. It is known that the
YCoCg-R representation has higher coding gain [8].
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– The RGB to YCoCg-R transformation is an integer-to-integer reversible trans-
form.

– YCoCg-R achieves close to optimal compression performance [8].
– The arithmetic operations of the transformation are simple integer addi-

tions/subtractions and shifts, and hence extremely efficiently implementable
in hardware and software.

We establish the superiority of our choice of the YCoCg-R color space over
other color space representations through detailed experimental results in Sect. 4.
We next discuss the impact of the embedding scheme on the embedding capacity.
We justify the selection of a scheme used by us, which is a combination of the
well-known histogram-bin-shifting scheme with pixel prediction techniques.

2.2 Embedding Scheme Selection for Capacity Enhancement

Ni et al. [3] introduced the histogram-bin-shifting based reversible watermarking
scheme for grayscale images. In this scheme, first the statistical mode of the
distribution, i.e., the most frequently occurring grayscale value, is determined
from the frequency histogram of the pixel values, let us call the pixel value to
be the “peak point”. Now, the pixels with grayscale value greater than the peak
value are searched, and their corresponding grayscale values are incremented by
one. This is equivalent to right shifting the frequency histogram for the pixels
having grayscale value greater than the peak point by one unit. Generally, all
images from natural sources have one of more pixel values which are absent in the
images, let us call these “zero points”. The existence of zero points ensure that
the partial shift of the frequency histogram do not cause any irreversible change
in the pixel values. The shift results in an empty frequency bin just next to the
peak point in the image frequency histogram. Next, the whole image is scanned
sequentially and the watermark is embedded into the pixels having grayscale
value equal to the peak point. When the watermark bit to be embedded is ‘1’,
the watermarked pixel occupies the empty bin just next to the peak value in
the histogram, and when it is ‘0’, the watermarked pixel value is left unmodified
at the peak point. The embedding capacity of the scheme is limited by the
number of pixels having the peak grayscale value. Figure 2 shows an example
of the classical histogram-bin-shifting based watermarking scheme for an 8-bit
grayscale image, where the peak point is 2 and the zero point is 7.

To improve the embedding capacity histogram-bin-shifting is blended with
pixel prediction method [9]. In the pixel prediction technique, some of the cover
image pixel values are predicted based on their neighbourhood pixel values. Such
prediction gives prediction errors with respect to the original cover image. Gen-
erally, the frequency distribution of such prediction error resembles an Laplacian
distribution [9], with peak value at zero as shown in Fig. 3. Watermarking bits
are embedded into the prediction errors by histogram shifting of bins “close to
zero”, where the closeness is pre-defined with respect to some threshold. The bins
that are “close to zero” in the prediction error histogram can be both right or
left shifted to embed watermark bits. This two-way histogram shifting enhances
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Fig. 2. Operations in the Histogram-bin-shifting reversible scheme proposed by Ni.
et. al [3]: (a) histogram before shifting with peak point=2 and zero point=7; (b) his-
togram after shifting the pixels; (c) histogram after watermark embedding.

the capacity of the scheme significantly, compared to the classical histogram-
bin-shifting case. The embedding in error histogram is shown in Fig. 3. During
extraction, prediction errors are computed from the watermarked image, and
the watermark bits are extracted from the errors. After watermark extraction,
the error histogram bins are shifted back to their original position. The retrieved
errors are combined with the predicted pixel values to get back the original cover
image losslessly.

3 Proposed Algorithm

Our proposed algorithm consists of the following main steps:

1. Transformation of the cover color image from RGB color space to the YCoCg-
R color space, using transformation-(9).

2. Pixel prediction based watermark embedding in the YCoCg-R color space.
3. Watermark extraction and lossless retrieval of original cover image.
4. Reconversion from YCoCg-R color space to RGB color space, using

transformation-(10).

The first and the last steps have already been discussed. We now describe
the remaining steps.
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Fig. 3. Steps of watermark embedding using histogram shifting of prediction error:
(a) prediction error histogram; (b) histogram shifting; (c) watermark embedding.

3.1 Pixel Prediction Based Watermark Embedding

We use Weighted Mean based Prediction [2] in the proposed scheme. In this
scheme two levels of predicted pixel values are calculated exploiting the correla-
tion between the neighboring pixels. One out of every four pixels in the original
cover image is chosen as a “base pixel”, as shown in Fig. 4, and the values of these
pixels are used to predict the values of their neighboring pixels. Positions of next
levels of predicted pixels are also shown in Fig. 4. Neighborhood of the pixels are
partitioned into two directional subsets which are orthogonal to each other. We
calculate the “first level predicted pixels” and the “second level predicted pixels”
by interpolating the “base pixels” along two orthogonal directions: the 45◦ diag-
onal and the 135◦ diagonal as shown in Fig. 5. The first level predicted pixels,
occupying coordinates (2i, 2j) are computed as follows:

1. First, interpolated values along directions 45◦ and 135◦ are calculated. Let
these values be denoted by p′

45 and p′
135, and calculated as shown in Fig. 5:

p′
45 = (p(i, j + 1) + p(i + 1, j))/2

p′
135 = (p(i, j) + p(i + 1, j + 1))/2 (12)
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Fig. 4. Locations of (a) base pixels (‘0’s), (b) predicted first set of pixels (‘1’s),
(c) predicted second set of pixels (‘2’s).

Fig. 5. (a) Prediction along 45◦ and 135◦ diagonal direction; (b) Prediction along 0◦

and 90◦ diagonal direction.

2. Interpolation error corresponding to the pixel at position (2i, 2j) along direc-
tions 45◦ and 135◦ are calculated as:

e45(2i, 2j) = p′
45 − p(2i, 2j)

e135(2i, 2j) = p′
135 − p(2i, 2j) (13)

3. Sets S45 and S135 contain the neighbouring pixels of the first level predicted
pixel along the 45◦ and 135◦ directions respectively, i.e.,

S45 = {p(i, j + 1), p′
45, p(i + 1, j)}

S135 = {p(i, j), p′
135, p(i + 1, j + 1)} (14)

4. The mean value of the base pixels around the pixel to be predicted, is denoted
by u, and calculated as:

u = p(i,j)+p(i+1,j)+p(i,j+1)+p(i+1,j+1)
4

(15)

5. In the weighted mean based prediction, weights of the means are calculated
using variance along both diagonal direction. Variance along 45◦ and 135◦

are denoted as σ(e45) and σ(e135), and calculated as:

σ(e45) =
1
3

3∑

k=1

(S45(k) − u)2 (16)

and

σ(e135) =
1
3

3∑

k=1

(S135(k) − u)2 (17)
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6. Weights of the means along 45◦ and 135◦ directions are denoted by w45 and
w135, and calculated as

w45 = σ(e135)
σ(e45+σ(e135))

w135 = 1 − w45

(18)

7. We estimate the first level predicted pixel value p′, as a weighted mean of the
diagonal interpolation terms p′

45 and p′
135:

p′ = round (w45 · p′
45 + w135 · p′

135) (19)

Once the first level pixel values are predicted, the values of the second level
pixels can be computed from the base pixels and the first level predicted pixels.
A similar procedure as described above is used, but now pixel values along the
horizontal and vertical directions are used for prediction, i.e. the values along
the 0◦ and 90◦ directions are used, as shown in Fig. 5. In this way, we can predict
the entire image (other than the base pixels) using interpolation and weighted
mean of interpolated pixels along two mutually orthogonal directions.

Embedding Algorithm. After the given color cover image is transformed
into the YCoCg-R color space, the given watermark bits are embedded into the
color channels Co, Cg and Y in order. We preferentially embed watermarks into
the Chroma components (Co and Cg), and then to the Luma component (Y ),

Algorithm 1. EMBED WATERMARK

/* Embed watermark bits into the prediction errors */
Input: Color cover image of size M × N pixels in YCoCg-R color space (I), Watermark bits (W ),

Embedding Threshold (T )
Output: Watermarked image Iwm in the YCoCg-R color space
1: for Color channels P ∈ {Co, Cg, Y } in order do
2: if W is not empty then
3: for i = 1 to M do
4: for j = 1 to N do
5: if P (i, j) is not a base pixel then
6: P ′(i, j) ← PredictweightedmeanP (i, j)
7: Compute prediction error eP (i, j) = P (i, j) − P ′(i, j)
8: if eP (i, j) ≥ 0 then
9: sign(eP (i, j)) ← 1
10: else
11: sign(eP (i, j)) ← −1
12: end if
13: if |eP (i, j)| ≤ T then
14: e′

P (i, j) ← sign(eP (i, j)) × [2 × |eP (i, j)| + next bit of W ]
15: else
16: e′

P (i, j) ← sign(eP (i, j)) × [|eP (i, j)| + T + 1]
17: end if
18: Pwm(i, j) ← P ′(i, j) + e′

P (i, j)
19: else
20: Pwm(i, j) ← P (i, j)
21: end if
22: end for
23: end for
24: end if
25: end for
26: Obtain watermarked image Iwm by combining the watermarked color channels Ywm, Cowm and

Cgwm.
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to minimize the visual distortion. Moreover, as human vision is least sensitive
to changes in the blue color [12], so among the chroma components, the Co
component (mainly combination of orange and blue) is embedded first, and then
we embed in the Cg component (mainly combination of green and violet).

In each of the color channels, we apply the weighted mean based pixel pre-
diction technique separately. Let P (i, j) denote the value of the color channel
at coordinate (i, j) with P ∈ {Co,Cg, Y }, and let P ′(i, j) be the corresponding
predicted value of P (i, j):

P ′(i, j) ← Predictweightedmean(P (i, j)) (20)

Then, the prediction error at the (i, j) pixel position for the P color channel
is given by:

eP (i, j) = P (i, j) − P ′(i, j), where P, P ′ ∈ {Co, Cg, Y } (21)

Next the frequency histograms of the prediction errors are constructed. For
watermark embedding, prediction errors which are close to zero are selected
considering a threshold T ≥ 0. Hence, the frequency histogram of the prediction
errors in the range [−T, T ] are histogram-bin-shifted to embed the watermark
bits. Rest of the histogram-bins are shifted away from zero by a constant amount
of (T + 1) to avoid any overlap of absolute error values.

For embedding watermark bits, prediction errors eP (i, j) are modified due to
histogram shifting to e′

P (i, j) according to the following equation:

e′
P (i, j) =

{
sign(eP (i, j)) × [2 × |eP (i, j)| + b] if |eP (i, j)| ≤ T

sign(eP (i, j)) × [|eP (i, j)| + T + 1] otherwise
(22)

where b ε [0, 1] is the next watermarking bit to be embedded, and sign(eP (i, j))
is defined as:

sign(eP (i, j)) =

{
+1 if eP (i, j) ≥ 0
−1 otherwise

(23)

Finally, the modified prediction errors e′
P (i, j) are combined with the pre-

dicted pixels P ′(i, j) in the corresponding color space to obtain the watermarked
pixels Pwm(i, j):

Pwm(i, j) = P ′(i, j) + e′
P (i, j) (24)

The same procedure is applied in the three color channels (Co, Cg, Y ) of
YCoCg-R color space. Hence, YCoCg-R color channels are watermarked. Now
we transform Pwm from Y CoCg−R to RGB losslessly by Eq. 10 to finally obtain
the watermarked image Iwm.

The proposed watermark embedding algorithm is presented as Algorithm 1.

3.2 Extraction Algorithm

The extraction algorithm just reverses the steps of the embedding algorithm.
Watermark extraction is done in order from the Co, Cg and Y color channels
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respectively as used for embedding. In the extraction phase, we also predict the
pixels except the base pixels for each color channel P ∈ {Co,Cg, Y }. At each
pixel position (i, j) of color channel P of the watermarked image, P ′

wm(i, j) is
calculated to be the predicted value of Pwm(i, j):

P ′
wm(i, j) ← Predictweightedmean(Pwm(i, j))) (25)

Then prediction error at (i, j)-th position of the P color channel is denoted
by ePwm

(i, j). Then,

ePwm
(i, j) = P ′

wm(i, j) − Pwm(i, j) (26)

Then the prediction error frequency histogram is generated and the water-
mark bits are extracted from the frequency histogram bins close to zero, as
defined by the embedding threshold T :

|ePwm
(i, j)| ≤ (2T + 1) (27)

Hence, the watermark bit b is extracted as:

b = |ePwm
(i, j)| − 2 × 	 |ePwm (i,j)|

2 
 if |ePwm
(i, j)| ≤ (2T + 1) (28)

After extraction, all bins are shifted back to their original positions, so the
prediction errors in their original form are restored as given in following equation:

e′
Pwm

(i, j) =

{
sign(ePwm(i, j)) ×

⌊ |ePwm (i,j)|
2

⌋
if |ePwm(i, j)| ≤ (2T + 1)

sign(ePwm(i, j)) × (|ePwm(i, j)| − T − 1) otherwise

(29)

where the restored error e′
Pwm

(i, j) is exactly same as the prediction error eP (i, j).
Next, the predicted pixels (P ′

wm(i, j)) are combined with the restored errors
(e′

Pwm
(i, j)) to obtain each of the retrieved color channels (Pret(i, j)) losslessly,

Pret(i, j) = P ′
wm(i, j) + e′

Pwm
(i, j) = P ′

wm(i, j) + eP (i, j) = P (i, j) (30)

where P ∈ {Co,Cg, Y }. After we retrieve the color channels Y , Co and Cg
losslessly, we transform the cover image to the RGB color space by the loss-
less YCoCg-R to RGB transformation. The extraction algorithm is presented as
Algorithm 2.

3.3 Handling of Overflow and Underflow

An overflow or underflow is said to have occurred if the watermark pixel Pwm(i, j)
as obtained in Eq. 24 is such that Pwm(i, j) /∈ {0, 255}. The underflow condition
is: Pwm(i, j) < 0 and the overflow condition is : Pwm(i, j) > 255. In embed-
ding phase, we do not embed watermark into such above stated pixels to avoid
overflow and underflow.

In extraction phase, we first find out which of the pixels cause overflow and
underflow. These pixels indicate two types of possibilities:
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Algorithm 2. EXTRACT WATERMARK

/* Embed watermark bits into the prediction errors */
Input: Color watermarked image of size M × N pixels in YCoCg-R color space (Iwm), Embedding

Threshold (T )
Output: Retrieved cover image (Iret), Watermark (W )
1: for Color channels P ∈ {Co, Cg, Y } in order do
2: for i = 1 to M do
3: for j = 1 to N do
4: if Pwm(i, j) is not a base pixel then
5: P ′

wm(i, j) ← PredictweightedmeanPwm(i, j)
6: Compute prediction error ePwm (i, j) ← Pwm(i, j) − P ′

wm(i, j)
7: if ePwm (i, j) ≥ 0 then
8: sign(ePwm (i, j)) ← 1
9: else
10: sign(ePwm (i, j)) ← −1
11: end if
12: if |ePwm (i, j)| ≤ (2T + 1) then

13: (Next bit of W ) ← |ePwm (i, j)| − 2 × 	 |ePwm
(i,j)|

2 

14: e′

Pwm
(i, j) ← sign(ePwm (i, j)) × 	 |ePwm

(i,j)|
2 


15: else
16: e′

Pwm
(i, j) = sign(ePwm (i, j)) × [|ePwm (i, j)| − T − 1]

17: end if
18: Pret(i, j) = P ′

wm(i, j) + e′
Pwm

(i, j)

19: else
20: Pret(i, j) = Pwm(i, j)
21: end if
22: end for
23: end for
24: end for
25: Obtain original cover image Iret in YCoCg-R color space by combining the Yret, Coret and

Cgret color components

Fig. 6. Test images used in our experiments: (a) Bird; (b) Cap; (c) Cycle; (d) House;
(e) Sea; and (f) Nature.

1. During embedding, it caused overflow or underflow, and hence was not used
for embedding.

2. Previously the pixel did not causes overflow or underflow, hence watermark
bit was embedded. However, after watermark embedding the pixel causes
overflow or underflow.
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To correctly distinguish between which one of the cases have occurred, a
binary bit stream, called a location map is generally used [9,10]. We assign ‘0’
for the first case and ‘1’ for the second case respectively, in the location map. If
none of the cases occur the location map remains empty. Now during extraction,
if a pixel with overflow or underflow occurs we check the next location map. If
the location map bit is ‘0’, we do not use the corresponding pixel for extraction
and it remains unchanged. On the other hand, if the location map bit is ‘1’, we
use the corresponding pixel for extraction using Algorithm 2. Size of the location
map is generally small and we can further reduce the size of the location map
using lossless compression. The compressed location map is then inserted into
the LSBs of the base pixels starting from the last base pixel. The original base
pixel LSBs are concatenated at the beginning of the watermark and embedded
into the cover image, before replacement with the location map bits.

4 Results and Discussion

The proposed algorithm was implemented in MATLAB and tested on several
images from the Kodak Image Database [15]: Bird, Cap, Cycle, House, Sea and
Nature, as shown in Fig. 6. The performance measurement for our proposed
scheme is done with respect to the following:

1. Maximum embedding capacity, and,
2. distortion of the watermarked image with respect to the original cover image.

Maximum embedding capacity can be estimated as the number of pure water-
mark bits that can be embedded into the original cover image. To make the
comparison independent of the size of the cover image, we normalized the embed-
ding capacity with respect to the size of the cover image, and report it as the
average number of bits that can be embedded per pixel, measured in units of

Fig. 7. Comparison of embedding capacity in different color space for several test
images.
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Fig. 8. Distortion characteristics of test images: (a) Bird; (b) Cap; (c) Cycle; (d) House;
(e) Sea; and (f) Nature.

bits-per-pixel (bpp). Distortion of the watermarked image is estimated by the
“Peak-Signal-to-Noise-Ratio” (PSNR), which is defined as:

PSNR = 10 log10

(
MAX2

MSE

)

dB (31)

where MAX represent the maximum possible pixel value. “Mean Square Error”
(MSE) for color images is defined as:

MSE =
1

3 · M · N

M∑

i=1

N∑

j=1

[(R(i, j) − R′(i, j))2 + (G(i, j) − G′(i, j))2

+ (B(i, j) − B′(i, j))2] (32)

where R(i, j), G(i, j) and B(i, j) represent the red, green and blue color com-
ponent values at location (i, j) of the original cover image; R′(i, j) , G′(i, j) and
B′(i, j) represent the corresponding color component values of the watermarked
image, and the color image is of size M × N .

The result of watermarking in the YCoCg-R color space using the proposed
algorithm, and those obtained by watermarking using the same prediction-based
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histogram-bin-shifting scheme in the RGB, RCT [14] and O1O2O3 [13] color
space representations are compared for the test images, as given in Fig. 7. The
comparison clearly demonstrates that the embedding capacity is higher in the
YCoCg-R color space representation than the RGB, RCT and O1O2O3 color
spaces.

Distortion characteristics (i.e., variation of PSNR vs. Embedded bpp) for sev-
eral test images are shown in Fig. 8. Note that the maximum bpp value attempted
for each color space corresponds to their embedding capacity. The plots also
suggest that the distortion of the images with increasing amount of embedded
watermark bits is the least for the YCoCg-R color space representation in most
cases. Since no color space representation can reach the embedding capacity of
the YCoCg-R representation, overall we can conclude that the YCoCg-R color
space is the best choice for reversible watermarking of color images. This observa-
tion was found to hold for most of the images in the Kodak image database [15].

5 Conclusions

In this paper we have proposed a novel reversible watermarking scheme for color
images using histogram-bin-shifting of prediction errors in the YCoCg-R color
space. We used a weighted mean based prediction scheme to predict the pixel val-
ues, and watermark bits were embedded by histogram-bin-shifting of the predic-
tion errors in each color channel of the YCoCg-R color space. The motivations for
the choice of the YCoCg-R color space over other color space representations
were justified through detailed theoretical arguments and experimental results
for several standard test images. Our future work would be directed towards
exploiting other color space representations, and comparison of watermarking
performance among them through theoretical and empirical techniques.
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Abstract. Web application firewalls (WAFs) are the primary front-end
protection mechanism for Internet-based infrastructure which is con-
stantly under attack. This paper therefore aims to provide more insights
into the performance of the most popular open-source WAFs, including
ModSecurity, WebKnight, and Guardian, which we hope will complement
existing knowledge. The key contribution of this work is an in-depth app-
roach for conducting such a study. Specifically, we combine three testing
frameworks: the Imperva’s proprietary benchmark, a generic benchmark
using both FuzzDB and Burp test-beds, and testing for common vulner-
abilities and exposures (CVE) known exploits. Our experiments show
that open source WAFs are not yet totally reliable for protecting web
applications despite many advances in the field. ModSecurity appears to
be the most balanced open-source solution.

Keywords: Web application firewalls · Information security · ModSe-
curity · WebKnight · Guardian · Imperva WAF testing framework

1 Introduction

The last decade has seen an increasing popularity of web applications as primary
delivery of services over the Internet [6]. This popularity has been built on an
evolution of web technologies such as Javascript, Java, Flash, Silversight, XML
(client side) and PHP, Ajax (server side). These technologies allow sophisticated
and content-rich applications to be built upon and delivered ubiquitously and
simply through a web browser, which provides seamless experience to users [14].
The rising popularity of web applications also comes with serious security con-
cerns. Web applications are now the primary targets of cyber attacks, causing
financial losses, disruption of services [7]. Popular types of attacks such as cross-
site scripting (XSS), SQL injection, and remote command execution are now the
most challenging problem for web application developers and Internet security
personnels [15]. In the early days, the security responsibility primarily belonged
to the web application developers and/or owners. In the academic literature, the
focus was largely on developing tools and methods for detecting vulnerabilities
with web applications [5,9–12].

More recently, the focus has transitioned from developing those tools for
checking vulnerabilities in web applications to firewalls, which take a more
c© Springer International Publishing Switzerland 2015
S. Jajodia and C. Mazumdar (Eds.): ICISS 2015, LNCS 9478, pp. 501–510, 2015.
DOI: 10.1007/978-3-319-26961-0 29



502 S. Prandl et al.

pro-active defence role [4,6]. However, existing knowledge on how actually the
existing WAFs perform is presently dispersed in somewhat fragmented and lim-
ited academic studies and industry-based technical whitepapers. Furthermore,
as sophisticated attacks also evolve rapidly, more frequent and up-to-date studies
on existing WAFs are of urgent need.

Motivated by such a need, this work presents such an in-depth study of sev-
eral popular open-source WAFs, including ModSecurity [2], WebKnight [3], and
Guardian [1]. They are selected for their popularity, strong community support,
and sufficient documentation. The approach we use in this particular study is
to measure the performance of these WAFs using a wide range of latest testing
frameworks. This means that the types of attacks to be simulated are more com-
prehensive and thorough than studies that were based on a single testing bench-
mark. In addition, we also construct specialized scripts to generate friendly and
non-trivial traffic that is challenging for over-conservative WAFs. By examining
WAFs from these different perspectives, we argue that more detailed pictures
can be revealed. In addition, we also focus on the qualitative analysis of the
results with in-depth discussions to be given subsequently. Our intensive tests
reveal that none of the WAFs produced ideal performance that is absolutely reli-
able. Each of the solutions still have their own strengths and weaknesses, though
ModSecurity appears to be the most balanced overall.

The paper is organized as follows. Section 2 discusses in more detail the pro-
posed study and network setup. Experimental results are provided in Sect. 3.
Further discussion is given in Sect. 4 before concluding remarks are detailed in
Sect. 5.

2 Proposed Study

We propose to investigate the functionality of three popular web application
firewalls. These firewalls are ModSecurity [2], WebKnight [3], and Guardian
[1]. The firewalls would be tested with a combination of both generic attacks,
including XSS, SQL injection, RFI/LFI, and LDAP attacks; and also known
exploits as tested in previous studies [8,13]. Generic attacks would be sourced
from Imperva’s Web Application Firewall Testing Framework, and from the Fuz-
zDB web application exploit database. Known exploits would be sourced from
previous studies and exploit database websites.

2.1 Motivation

There are two questions we would like to address in this work are:

– How effective are the freeware WAF solutions currently available and can they
be considered as a real alternative to commercial WAFs?

– Are there any classes of attacks that the freeware WAFs are effective at block-
ing and are there any types of malicious patterns that consistently manage to
bypass the WAFs?
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In order to determine the effectiveness of these free WAFs, we have built
a set of test patterns that thoroughly covers the types of attacks which have
been deployed against web applications. The evaluation was done based on four
criteria: (1) the number of attacks that were blocked by the WAFs, (2) the
number of errors made by the respective defences in term of missed attacks,
(3) the number of errors in terms of blocked friendly traffic, and (4) the delay
introduced by the traffic analysis.

Fig. 1. Network setup for the study.

2.2 Detailed Setup

Tests were performed in a miniature network of virtualised machines as shown in
Fig. 1. The setup consisted of a network consisting of four virtual machines con-
nected to a central virtual router: an attack machine, a WAF gateway machine,
a webserver machine, and a network analysis machine. The network analysis
machine was configured with Wireshark and promiscuous mode networking such
that all packets on the network would be routed to the network analysis machine
as well as their intended destinations.

The WAFs were configured with their default security settings. For Guardian
and WebKnight, this meant no alterations of the starting configuration or rules.
For ModSecurity, this meant loading the “Base” OWASP rules configuration
folder Tests consisted of five parts; Imperva Web Application Firewall test-
ing attacks, Fuzz-DB project based attacks, Burp project based XSS and SQLi
attacks, friendly traffic, and finally known exploits.

2.3 Combined Approach

The testing process involved the use of Imperva Testing Framework and the
Burp Suite Community version software tools.
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Imperva WAF Testing Framework. The Imperva Web Application Firewall
testing suite was used as a starting point in our analysis. The framework provides
a good range of malicious patterns but attacks classes such as LDAP are not
covered. The Imperva framework also generates friendly traffic, but it should
be noted that the friendly traffic is designed to fully test the WAF’s capacity
to distinguish malicious activities from normal traffic. The key to providing a
detailed evaluation is the thoroughness of the testing patterns. For this reason,
we have generated an additional separate test set that covered attacks that were
not included in the Imperva testing suite.

Additional WAF Test Sets. The Imperva test set was augmented by using
a combination of two other test sets: the Burp test set and the FuzzDB test set.
There was an overlap between the three sets in the sense that all covered the
XSS, SQL Injection and RFI types of attacks. The reason for the overlap was
to try and determine if there was a difference between the way that the WAFs
react to the attacks in Fuzz-DB, which are more readily available than the ones
in Imperva’s framework.

The LDAP, directory disclosure, integer overflow types of attacks used in our
testing were only found in the Burp and FuzzDB sets. The attacks sets generated
by using Imperva, Burp and FuzzDB required only single-stage interactions with
the target system (such as a basic SQLi POST query). In addition to evaluating
how the single-stage attacks were handled, we were also interested in determining
whether the free WAFs had the capacity to handle multi-stage malicious traffic
as well as to detect some well-known web-based exploits that were not found in
the patterns provided by either Imperva, Burp or FuzzDB. For this reason, we
added a set of patterns that included login & service access traffic to the target
system, and we have also used a set of four exploits that are well established in
the web application testing community.

The known exploit attacks consisted of four known exploits selected from
previous papers [8,13]. The chosen attacks were the Practico CMS 13.7 Auth
bypass SQL attack, the CLansphere 2011.3 Local File Inclusion attack, the Seo
Panel 2.2.0 cookie-rendered persistant XSS attack, and the WebsiteBaker 2.6.5
SQL injection attack. All exploits were executed in the manner stated on their
exploit report.

In addition to the Imperva friendly traffic, we also generated normal traffic
that used POST or GET queries based on four templates. The aim was to emu-
late real user usage, rather than traffic that specifically attempts to break the
WAF, something that we believe that Imperva’s test suite lacked. The vulnerable
application running on the target machine took the form of a simple guestbook,
and thus the GET requests were to the index, to a page with a select element
(that was vulnerable to cookie tampering and query string XSS injection), or
to a page that allowed the viewing of the guestbook entries. The POST request
followed a users posting to the guestbook, first making a textttGET request to
the guestbook form page, then posting to the guestbook post page, and then
making a GET request to the view guestbook page. Each step was broken up by
a delay of up to 10 s, trying to emulate an actual user.
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Friendly traffic was simulated using a custom built friendly traffic simula-
tor that performed POST and GET requests using random selections from a full
dictionary of English words against the same vulnerable web application as the
previous two tests. Friendly traffic also included tests for known web applica-
tions, in this case PHPMyAdmin and Wordpress.

The results obtained from the three test sets are covered in detail in the next
section followed by a discussion on the overall effectiveness of each of the three
WAFs.

3 Experimental Results

3.1 Imperva Testing Framework Suite Results

The results from the first set of test done using the Imperva Test Framework
are shown in Tables 1 and 2. From Table 1, we can see that both WebKnight
ModSecurity were able to block all attacks generated by the test suite whereas
Guardian failed to detect any of the attacks. The friendly traffic testing produced
a contrasting set of results. All WAFs blocked friendly traffic with WebKnight
being the worst performing solution. ModSecurity blocked 52 % of the crafted
friendly packets with Guardian allowing blocking only around 5 % of the packets.

Overall, ModSecurity has the best performance as it blocked the attacks gen-
erated by the Imperva Framework but it also blocked a large number of friendly
packets. This is significant as an effective WAF needs to allows friendly traf-
fic through otherwise the user experience will be severely affected. WebKnight
was effective at blocking the attacks but also blocked all but one of the spe-
cially crafted friendly traffic packets which indicates that its usefulness with
real applications would be severely limited. Guardian was the worst performing
WAF overall for this test set. Though it did not generate so many false positives,
Guardian was the only solution that generated false negatives instead, missing
all of the attacks generated.

Table 1. Performance of open-source Web Application Firewalls against Imperva test
framework attacks

Imperva Attack Tests Mod Security WebKnight Guardian@Jumperz

Total XSS tests 22 22 22

XSS Bypased 0 0 22

XSS Blocked 22 22 0

Total SQLi tests 19 19 19

SQLi Bypased 0 0 19

SQLi Blocked 19 19 0

Total RFI/LFI tests 19 19 19

RFI/LFI Bypased 0 0 19

RFI/LFI Blocked 19 19 0
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Table 2. Performance of open-source Web Application Firewalls against Imperva test
framework friendly packets

Imperva Friendly Tests Mod Security WebKnight Guardian@Jumperz

Total Friendly tests 148 148 148

Friendly Blocked 76.5 147 6.1

Friendly Passed 71.5 1 141.9

3.2 Additional Test Results

The second set of patterns used for testing consisted of the patterns from the
Fuzz-DB site while the third set was the Burp Suite in built one. Unlike the
previous set of results, we present the friendly traffic results in a combined format
as in both cases the same type of traffic was used.

FuzzDB and Burp Combined Attack Patterns Results. The combined
results obtained from the Burp and Fuzz-DB sets are shown in Table 3. The
results show that WebKnight has overall the best performance blocking 85.6 %
of the attacks. ModSecurity has as lightly lower performance with 79.7 % of the
attacks blocked. Guardian, however, performed poorly with most attacks with
an overall blocking rate of 56 %.

Given the significant differences between the combined results from Fuzz-DB
& Burp and the Imperva Testing Framework, it was important to determine the
cause of the differences observed.

When considering the three types of attacks - XSS, SQLi and RFI/LFI, the
results show that the WebKnight and ModSecurity’s effectiveness is very similar
to the one observed in the Imperva tests. WebKnight has overall the best per-
formance blocking 99.93 % of the attacks. ModSecurity has similar performance
with 99.89 % of the attacks blocked.

Friendly Traffic Results. The results from the friendly traffic are shown in
Tables 4 and 5 and cover both single-stage interactions as well as multi-stage
application specific usage traffic.

Table 4 shows that again WebKnight had major difficulties in distinguishing
between normal and malicious traffic. Specifically, even with less difficult to cate-
gorise friendly traffic, WebKnight blocked slightly more than half of all randomly
generated normal traffic. ModSecurity, on the other hand, did not generate any
false positives and thus is clearly the best performing WAFs from the point of
view of friendly traffic.

In terms of web application usage shown in Table 5, WebKnight and Mod-
Security both blocked login and post attempts on Wordpress. In PHPMyAdmin
however, ModSecurity allow the log in, while WebKnight blocked everything
owing to it’s proclivity to block POST requests. Guardian did not block any
friendly traffic.
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Table 3. Overall performance of open-source Web Application Firewalls

WAF Tests Mod Security WebKnight Guardian@Jumperz

Total XXS tests 223 223 223

XSS Bypased 3 1 89

XSS Blocked 220 222 134

Total SQLi tests 43 43 43

SQLi Bypased 0 1 24

SQLi Blocked 43 42 19

Total RFI/LFI tests 26 26 26

RFI/LFI Bypased 0 0 26

RFI/LFI Blocked 26 26 0

Total Debug/Admin Flag Attacks 40 40 40

Debug/Admin Flag Bypased 40 40 40

Debug/Admin Flag Blocked 0 0 0

Total Directory Disclosure Attacks 10 10 10

Directory Disclosure Bypased 9 5 9

Directory Disclosure Blocked 1 5 1

Total HTTP Manipulation Attacks 115 115 115

HTTP Manipulation Bypased 25 0 0

HTTP Manipulation Blocked 98 115 115

Total Integer Overflow Attacks 36 36 36

Integer Overflow Bypased 13 28 36

Integer Overflow Blocked 23 8 0

Total LDAP Attacks 27 27 27

LDAP Bypased 16 0 15

LDAP Blocked 11 27 12

Table 4. WAF performance with randomly generated friendly traffic.

Friendly Traffic Types Mod Security WebKnight Guardian@Jumperz

Total Random GET/POST Traffic 2369 3681 3467

Random GET/POST Traffic Blocked 0 1865 89

False Positive Rate 0% 50.60% 0%

Table 5. WAF performance with basic application authentication traffic.

Friendly Traffic Types Mod Security WebKnight Guardian@Jumperz

Wordpress Login Blocked Blocked Passed

Wordpress Post Submission Blocked Blocked Passed

PHPMyAdmin Login Passed Blocked Passed

PHPMyAdmin Query Blocked Blocked Passed
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3.3 Known Exploits

The final set of tests involved four well known web application exploits and the
results are show in Table 6. Both ModSecurity and WebKnight were successful
in blocking all the known exploit attacks. However, it should be noted that in
all cases WebKnight blocked the attack by blocking application functionality.
ModSecurity blocked the attack, but still allowed the application to function.
Guardian did not succeed in blocking any of the four known exploit attacks.

Table 6. WAF performance with well known web application exploits.

Application & Vulnerability Mod Security WebKnight Guardian

Practico CMS 13.7 AuthBypass SQL Injection Blocked Blocked Passed

Clansphere 2011.3 Local File Inclusion Blocked Blocked Passed

Seo Panel 2.2.0 Cookie-Rendered Persistent XSS Blocked Blocked Passed

WebsiteBaker Version¡2.6.5 SQL Injection Blocked Blocked Passed

4 Discussion

When considering the results from all tests, the best overall free WAF is ModSe-
curity. It offers the best balance between blocking malicious traffic and allowing
normal traffic through. If one compares ModSecurity with WebKnight from the
point of view of attack blocking, ModSecurity is less effective with a substantially
larger number of attacks bypassing it. However, WebKnight has a tendency to
block a large proportion of the traffic observed by default.

Our tests also show that Guardian is not an effective solution but this was
not unexpected given that is rule set does not cover the more recent malicious
patterns. Guardian allowed through a large number of malicious packets, and
was not successful in blocking any known exploits. In addition, it was also very
slow in our tests, adding about a second of time in routing the packets to the
application server. This slowdown is enough to be noticeable, and could have
negative user experience implications, as well as not actually defending against
known attacks. This contrasts markedly with the performance of the ModSecu-
rity and WebKnight, which showed no significant slowdown in the traffic.

WebKnight is also not an effective solution. It was the most effective in
blocking malicious attacks, however, WebKnight was discovered to be blocking
all POST requests, regardless of their content. While this allows it to be more
effective at defending against malicious attacks, it also results in an unacceptably
large number of false positives. In summary, WebKnight may block nearly all
incoming attacks, but does so at the cost of application functionality.

The question of whether ModSecurity is a possible alternative to a commer-
cial solution is dependant largely on the type of application to be protected
and the overall setup. If the application is likely to face SQL, XSS or RFI/LFI
attacks, then ModSecurity will provide a very effective option. From this point
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of view, the block success rate is very similar to the commercial solutions out-
lined in the NSS labs report which showed that most solutions had a detection
rate of over 98 %. On the other hand, if the application is likely to face LDAP
or Integer Overflow attacks, then ModSecurity falls well short of the level of
performance seen in commercial solutions. However, it should be stressed that if
a malicious packet was able to pass through the WAF does not necessarily result
in the application being compromised and in many cases knowing the type of
patterns cause the WAF failure can be handled with other mitigation measures
on the target server.

5 Conclusion

We have investigated the performance of three free Web Applications Firewalls
(WebKnight, ModSecurity and Guardian) with a number of test sets covering
both malicious and friendly traffic. Our aim was determine how effective free
WAFs are overall and whether they could be considered as viable alternatives to
commercial solutions. The results have shown that ModSecurity is the best free
WAF solution available as it can handle a significant number of attacks while
generating a small number of false alarms. When compared with the commercial
solutions, ModSecurity is less effective with the commercial WAFs reportedly
blocking on average over 99 % of the attacks whereas ModSecurity could only
block around 80 % of the attacks generated for this investigation. ModSecurity
is very effective at blocking commonly occurring attacks such as XSS, SQLi
and RFI/LFI but does not fare well when faced with attacks involving HTTP
Manipulation, Integer Overflow or Debug/Admin flags.

However, despite the problems that ModSecurity has with some less common
types of attacks, it can still provide a substantial amount of protection against
popular attacks such as XSS. The other two free WAFs on the other hand,
WebKnight and Guardian could not be considered as being effective or applicable
enough in real world scenarios. WebKnight’s drawback is that does not have the
capacity to handle friendly traffic whereas Guardian offers very little protection
from a wide range of attacks.
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Abstract. Branch predictors play a critical role in achieving high per-
formance in many modern pipeline processors. A branch predictor at
runtime predicts the direction which a branch instruction will take and
begins fetching, decoding and executing instructions using this predic-
tion even before the result of the branch condition is known. This greatly
reduces delay and increases CPI (cycles per instruction) of a program.
The branch predictor is therefore, a crucial piece inside any modern
pipelined processor. This paper presents an empirical exploration of dif-
ferent state-of-the-art branch predictors with respect to their vulnerabil-
ities and the resulting effect on processor performance.

1 Introduction

Branch predictors play a critical role in achieving high performance in many
modern pipeline processors. Modern processors do not wait till the direction of
a branch condition gets resolved as taken or not-taken. In contrast, they use a
speculative strategy to guess the branch direction even before the branch condi-
tion is actually evaluated. However, if a processor incorrectly predicts a branch
target direction, it may cause a serious problem. As a penalty of incorrect predic-
tion, the pipeline has to be flushed for all the incorrectly speculated instructions
and results and instructions from the correct branch target addresses have to
be fetched and executed. Flushing of instructions and results from a pipeline is
expensive and causes a delay of several cycles. This delay significantly degrades
system performance, if these incorrect predictions occur frequently. For exam-
ple, in the Pentium 4 family of processors, branch mis-predictions are much
more expensive than on previous generations of microprocessors and it takes
a substantial number of processor cycles to recover from a mis-prediction [2].
Designing efficient branch predictors with low mis-prediction rate is therefore, a
fundamental research challenge in computer architecture.

Dynamic branch predictors which reside inside the processor and operate at
run-time, keep different pieces of information about branches and their corre-
lations to be able to accurately predict the direction of future branches. These
information may vary from the direction of a branch to the history of preceding
branches, with the motivation of being able to predict correctly the direction of
c© Springer International Publishing Switzerland 2015
S. Jajodia and C. Mazumdar (Eds.): ICISS 2015, LNCS 9478, pp. 511–520, 2015.
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a future branch using this information, since studies have shown a substantial
degree of correlation among branch directions [7]. The information is stored in
processor registers. The objective of this study is to analyze the effect of an
attack on these internal registers with respect to their effect on processor per-
formance and accuracy of prediction. A simple piece of malware which is active
when a given program runs, may tamper the contents of the processor registers
and easily achieve this objective. An illegal change in the contents of a register
which a predictor uses for keeping information can alter the number of correct
predictions, and thereby, increase the mis-prediction rate, and affect the overall
performance of execution of a given user program. In this paper, we perform
a detailed empirical study on the effect of an attack on the branch predictor
on a processor’s performance. We consider a number of contemporary branch
predictors and identify the amount of information needed at runtime (which
the processor needs to store) for these predictors to work correctly. We change
these registers in a controlled fashion, and show the resulting change in predic-
tion and performance. To the best of our knowledge, this is the first such work
which attempts to study the effect of an attack on the branch prediction piece
inside the processor hardware. We observe the performance variations for differ-
ent branch predictors using an architectural simulator. Specifically, we alter the
register contents inside the simulator and observe the outcomes. The simulation
outputs for every predictor are measured in terms of performance in respect of
prediction accuracy, number of processor cycles needed and power consumption
for that processor.

The rest of the paper is organized as follows: Sect. 2 describes the back-
grounds and related works done on this theme. In Sect. 3, we have identified
different types of attacks on different branch predictors. Section 4 describes the
experimental set-up used as well as the results of our experiment. Section 5 con-
cludes the paper and introduces new ideas for future research.

2 Background and Related Work

In a pipelined architecture, instructions typically go through an assembly line
while a program executes, as shown in Fig. 1. Figure 1 shows a simplified view
of a pipelined processor, wherein each instruction goes through different stages
(omitted the memory stage for simplicity) to reach the end of execution. Thus
every clock cycle, a new instruction can be fetched, while other instructions
transit through the different stages inside the pipeline. This leads to improved
execution by overlapping instruction latencies and different instructions can be
in flight, resulting in improved performance. Branch instructions in this pipeline
typically get resolved in the second/third stage, thus it is a tricky task to decide
which instruction to fetch next, when a branch instruction is encountered as
the current instruction. The processor may still go ahead and load instructions
from the immediate next instruction, but if the branch gets resolved in the else-
path, the entire instruction stream loaded has to be flushed off. To improve
the performance of program execution, efficient predictors are employed inside a
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Fig. 1. Architecture of a pipelined processor

modern processor which guide the processor to predict the direction of a branch
and start fetching, decoding and executing instructions before the result of the
branch condition is evaluated as shown in Fig. 1.

It is observed that incorrect predictions can cause significant performance
degradation due to high mis-prediction penalty. For example, P4 and P4E proces-
sors take minimum 24 clock cycles and around 45 micro-operations as a mis-
prediction penalty [2]. Apparently, the processor cannot cancel an unnecessary
micro-operation before it has reached the retirement stage. This means that if
we have a lot of micro-operations with long latency or poor throughput, then
the penalty for a mis-prediction may be as high as 100 clock cycles or more. In
the discussion below, we present a brief summary of the underlying principles of
some of the state-of-the-art branch predictors.

2.1 Branch Prediction

In this paper, two popular state-of-the-art dynamic branch predictors, namely,
the Two-Level Adaptive Branch Predictor and the TAGE predictor are chosen
to perform this study. In this section, we describe the internal configurations of
these predictors which are needed at the time of prediction and can be considered
as the targets of different attacks.

Two-Level Adaptive Branch Predictor: The Two-Level Adaptive Branch
Predictor was proposed by Yah and Patt in 1991 [10,11] to make the prediction
using two levels of branch history information. The first level stores the history
of the last n branches encountered. The second level is the branch behavior for
the last k occurrences of the same pattern of these n branches. Prediction is done
on the basis of branch behavior for the last k occurrences of the pattern. This
predictor uses two main data structures, the Branch History Register (BHR)
and the Pattern History Table (PHT). BHR is a n bit shift register which shifts
in bits to represent the branch outcomes of the most recent n branches (or the
last n occurrences of the same branch). Since, the BHR has n bits, at most
2n different patterns can appear in this history register. For each of these 2n

patterns, there is a corresponding entry in the PHT which is achieved by using
an indexing function. Each PHT entry contains the branch result for the last k
times the same output of the indexing function appears. A two bit saturating up-
down counter [4] is used to perform this operation. When a conditional branch
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Fig. 2. Two-bit saturating counter

is predicted, the content of the BHR is used as one of the inputs of the indexing
function to address the pattern history table. The pattern history bits at that
particular address in the PHT are then used for predicting the branch. After a
conditional branch is resolved (at a later stage in the pipeline when the actual
branch direction gets known exactly), the BHR is left shifted by one bit and
the branch outcome is recorded at the least significant bit position in the BHR.
This new updated BHR is also used to update the corresponding pattern history
table entry by changing the current state of the saturating counter.

The two-bit saturating counter is considered as a finite state machine for
most of the branch predictor designs since it was introduced for dynamic branch
prediction [10,11]. It has four different states (00, 01, 10 and 11) defined by
the 2 bits of it as shown in Fig. 2. The counter transitions from one state to
another in response to a taken (T) or not-taken (NT) outcome resulting from
the execution of one or more branch instructions that are assigned to the index
value of the predictor. Each bit of the two-bit counter plays a different role.
The most significant bit, called the direction bit is used to track the direction of
branches. If the counter is in states 01 or 00, the branch is predicted as NT. When
it is in states 10 and 11, the prediction is T. The least significant bit provides
a hysteresis which prevents the direction bit from immediately changing when a
mis-prediction occurs.

In our work, we consider Two-Level Adaptive Branch Prediction, and in
particular, the GShare and PAp predictors.

TAgged GEometric (TAGE) History Length Branch Predictor: TAGE
is considered as the state-of-the-art branch predictor which uses several different
history lengths to capture the correlation from very remote branch outcomes as
well as very recent branch history [9]. The TAGE predictor uses a base predic-
tor T0 and a set of (partially) tagged components Ti. The base predictor is a
simple PC-indexed 2-bit counter which is used to provide the default prediction.
The tagged predictor components Ti, 1 ≤ i ≤ M are indexed using different
history lengths that form a geometric series [8]. Each entry of a tagged com-
ponent contains a partial tag, an unsigned counter u and a signed counter ctr
with the sign providing the prediction. At prediction time, the base predictor
and the tagged components are accessed simultaneously. If no matching in the
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tagged component is found, the base predictor is used to provide the default
prediction. In the next section, we discuss the vulnerabilities of these predictors
in more detail.

2.2 Related Work

In past years, several articles have addressed the problem of finding different
hardware resources which are sensitive to an attack and different types of attacks
which can be performed on them. For example, in 2000, John Kelsey, Bruce
Schneier, David Wagner, and Chris Hall introduced cache attacks, which proved
that a cache memory is vulnerable to side-channel attacks [3]. Debdeep et al.
[1] showed that Linear Feedback Shift Registers (LFSRs), which are used as a
building block of many stream ciphers are also vulnerable to power attacks. To
the best of our knowledge, this is the first study that addresses this theme.

3 Detailed Methodology

For branch prediction, almost every branch predictor uses the two-bit saturating
counter, the BHR, the PC and the PHT, as discussed in Sect. 2. This gave us the
motivation to explore how a branch prediction policy gets affected by attacking
and changing these data structures in the following way-

– Target of an attack: two-bit saturating counter. The two bit counter
is very crucial for branch prediction since it provides the final prediction for
branch direction. Some of the possible ways in which this counter can be
affected are as described below-
• Most Significant Bit (MSB) of all states are flipped: As explained already,

the MSB provides the direction for a branch prediction. If we flip this bit,
the branch direction is inverted. So taken branches now become not-taken
branches and vice versa and this is expected to have an impact on branch
prediction accuracy.

• Least Significant Bit (LSB) of all states are flipped: The LSB, when paired
with the direction bit, provides hysteresis which prevents the direction bit
from immediately changing when a mis-prediction occurs. If we flip this
bit, it changes the current state of this two-bit counter and a strongly
taken:00 (strongly not-taken:01) state becomes a weakly taken:01 (weakly
not-taken:10) state and vice versa. As a result, states which used to take
two consecutive mis-predictions to alter the branch direction, now take only
one mis-prediction. This again has an impact on prediction accuracy and
performance.

• Counter length changed: The two-bit saturating counter can also be replaced
by any n-bit counter (n �= 2). We already discussed the effect it has if the
two-bit counter is changed to a 1-bit one, However, if the counter length
is increased, there is a chance to improve the prediction accuracy as well
as overall system performance. We did this in our experiments and found
interesting consequences.
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– Target of an attack: BHR. BHR is a n-bit shift register which stores the
history of the last n branches (global history) or the last n outcomes of the
same branch instruction (local history). For example, to do the prediction,
the GShare and the TAGE predictors use the global history whereas the PAp
predictor uses the local history. The BHR is used to address an entry in a
PHT which keeps a two-bit counter to give the final prediction. If this BHR is
changed, the branch predictor will index a wrong PHT entry to get the final
prediction. This BHR can be affected by its content or its length as discussed
below-
• MSB or LSB of BHR is flipped: This flipping changes the original value of

the BHR and a different PHT entry is accessed by the predictor to get the
final prediction for branch direction. For example, a 4-bit BHR with a value
1001 becomes 0001, if MSB is flipped. Now in a PAp predictor, instead of
an entry in 1001, 0001 entry will be accessed to get the prediction for a
branch, which can vary prediction accuracy. So, this change can be taken
as an attack to fluctuate the overall performance.

• Length of BHR is changed: If BHR length is changed, the indexing used to
address an entry in PHT can differ and as a result a wrong PHT entry will
be picked up for the final prediction. For example, consider a 8-bit BHR
with a value 11101001. In a PAp predictor, this 8-bit is used to index an
entry in a 28 entry PHT. If we select only the lower 4 bits of this BHR i.e.
1001 to index a PHT entry, then instead of 11101001, the 00001001 entry
will be accessed for prediction. So this can alter the prediction accuracy
as well.

– Target of an attack: PC. The program counter contains the branch address
and is used by different prediction mechanisms. In PAp, each PC has its own
BHR as well as own PHT. If the number of bits of a PC which are taken to
select this Branch History Table (BHT) and PHT is changed, a different BHT
entry (or BHR) and as well as PHT will be accessed to get the final prediction.
However, in case of the GShare predictor, this PC value is used as one input
of an indexing function to find an entry in the PHT. So this length change
of PC will result in a different output for the same indexing function and as
a result, a wrong PHT entry will be chosen to give the prediction. Similarly,
for the case of the TAGE predictor, a wrong predictor component or incorrect
entry of the base predictor will be accessed for the branch prediction. So this
change also can be taken as an attack to alter the performance.

Along with these, the TAGE predictor also has tagged components whose signed
counter (sign bit) is used to make the prediction. Any change on this counter
(e.g. flipping of sign bit) will make an impact on the prediction accuracy.

4 Experiments and Results

In this section, we present the details of our simulation framework, along with
a discussion on the benchmark datasets used for experimentation.
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Table 1. Performance statistics for GShare Predictor (MSB Flipped): Performance
degradations seen for all benchmarks

Benchmark Prediction accuracy(%) Clock cycles Energy

Original
MSB

Flipped
MSB

Original
MSB

Flipped
MSB

Original
MSB

Flipped
MSB

403.gcc 66.27 33.6931 86754099 96932134 2454452.3728 2635708.1682

400.perlbench 63.75 36.2364 11766325 12867838 339602.8584 359208.8278

458.sjeng 99.92 0.0706 283822066 497448050 5526430.3942 9328972.9094

Table 2. Performance statistics for PAp, TAGE Predictor (MSB of Counter Flipped):
Performances are varied for all benchmarks

Predictor Benchmark Prediction

accu-

racy(%)

Clock cycles Energy

Original

MSB

Flipped

MSB

Original

MSB

Flipped

MSB

Original

MSB

Flipped

MSB

PAp 403.gcc 75.346 24.6208 83385248 99911660 2394376.5798 2688633.8706

400.perlbench 69.8519 30.1486 11389779 13426984 332899.9548 369160.4722

458.sjeng 99.947 0.053 283502111 497505905 5520735.1952 9330002.7284

TAGE 403.gcc 85.93 88.0023 80209030 79442840 2337946.489 2324347.3642

400.perlbench 83.23 86.4732 10589517 10720538 318653.5596 320985.7334

458.sjeng 99.93 99.9307 283196974 283122778 5515303.7566 5513983.0678

Table 3. Performance statistics for GShare Predictor (LSB Flipped): Performance
degradations seen for all benchmarks except 429.mcf

Benchmark Prediction accuracy(%) Clock cycles Energy

Original
MSB

Flipped
MSB

Original
MSB

Flipped
MSB

Original
MSB

Flipped
MSB

403.gcc 66.27 64.0966 86754099 87023273 2454452.3728 2459165.9404

400.perlbench 63.75 63.0858 11766325 11796034 339602.8584 340131.2938

458.sjeng 99.92 0.2276 283822066 497415305 5526430.3942 9328390.0484

4.1 Experimental Setup

For performing the attack simulations, we used the Tejas architectural simulator.
Tejas [5] is an open source, Java based multicore architectural simulator. At the
end of each execution, it reports various statistics related to cache utilization,
branch prediction accuracy, energy expenditure, etc.

We used Tejas to generate the branch profile for the SPEC CPU 2000 bench-
mark. The simulator was modified to record the behavior of each branch for
different prediction strategies with different configurations. In this work, we
considered three different branch prediction strategies, namely, Gshare [6], PAp
[11] and TAGE [9]. However, to limit simulation time, only the first 30 million
instructions from each benchmark were simulated.
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Table 4. Performance statistics for PAp and TAGE Predictors (LSB of Counter
Flipped): Performance variations seen for all benchmarks

Predictor Benchmark Prediction accuracy(%) Clock cycles Energy

Original

MSB

Flipped

MSB

Original

MSB

Flipped

MSB

Original

MSB

Flipped

MSB

PAp 403.gcc 75.346 64.0929 83385248 87046670 2394376.5798 2459550.2762

400.perlbench 69.8519 63.1424 11389779 11781463 332899.9548 339871.3528

458.sjeng 99.947 0.2631 283502111 497379990 5520735.1952 9327761.4414

TAGE 403.gcc 85.93 86.3175 80209030 79715714 2337946.489 2329132.7562

400.perlbench 83.23 84.1727 10589517 10636708 318653.5596 319495.6758

458.sjeng 99.93 99.9299 283196974 283338969 5515303.7566 5517831.2676

Table 5. Performance statistics for GShare, PAp, TAGE Predictor (Counter Length
Changed): Performances are varied with counter lengths

Predictor Benchmark Prediction accuracy(%) Clock cycles

1-bit 2-bit 3-bit 4-bit 1-bit 2-bit 3-bit 4-bit

GShare 403.gcc 61.96 66.27 67.92 68.62 87517041 86754099 86322007 85356433

400.perlbench 58.8 63.75 66.27 66.4 11660939 11766325 11357031 11593328

458.sjeng 99.89 99.92 99.92 99.92 283320350 283822066 283552210 283606701

PAp 403.gcc 69.8066 75.346 76.9188 76.85 85849140 83385248 82786622 83092197

400.perlbench 65.244 69.8519 72.3361 72.6049 11326321 11389779 11121986 11252867

458.sjeng 99.9348 99.947 99.9416 99.9338 283460925 283502111 283202229 283268135

TAGE 403.gcc 79.83 85.93 87.44 87.6 82189182 80209030 79472066 79754141

400.perlbench 74.9 83.23 85.97 86.56 11175555 10589517 10754710 10422707

458.sjeng 99.91 99.93 99.93 99.93 283681764 283196974 283581362 283144095

Table 6. Performance statistics for GShare, PAP, TAGE Predictors (Counter Length
Changed)

Branch
predictor

Benchmark Energy

1-bit 2-bit 3-bit 4-bit

GShare 403.gcc 2467992.3364 2454452.3728 2446727.0804 2429563.9132

400.perlbench 337726.9876 339602.8584 332318.0024 336524.089

458.sjeng 5517499.8494 5526430.3942 5521626.9574 5522596.8972

PAp 403.gcc 2438333.713 2394376.5798 2383780.681 2389245.1204

400.perlbench 331770.4024 332899.9548 328132.6622 330462.344

458.sjeng 5520002.0844 5520735.1952 5515397.2956 5516570.4224

TAGE 403.gcc 2373177.2254 2337946.489 2324840.8434 2329799.6332

400.perlbench 329085.036 318653.5596 321593.995 315684.3416

458.sjeng 5523933.0186 5515303.7566 5522145.863 5514362.5104
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Table 7. Performance statistics for GShare and PAp Predictors (LSB of BHR is
Flipped) little improvements seen for all benchmarks (except 429.mcf for PAp)

Predictor Benchmark Prediction accuracy(%) Clock cycles Energy

Original

MSB

Flipped

MSB

Original

MSB

Flipped

MSB

Original

MSB

Flipped

MSB

GShare 403.gcc 66.27 66.2889 86754099 86186566 2454452.3728 2444335.47

400.perlbench 63.75 63.7644 11766325 11508252 339602.8584 335007.04

PAp 403.gcc 75.346 75.3677 83385248 83209708 2394376.5798 2391358.1726

400.perlbench 69.8519 69.853 11389779 11589839 332899.9548 336459.2912

Table 8. Performance statistics for GShare, PAp, TAGE Predictors (Length PC and
BHR Changed): Performances are varied with lengths of PC and BHR

Predictor Benchmark Prediction accuracy(%) Clock cycles

N = 1 N = 4 N = 6 N = 8 N = 1 N = 4 N = 6 N = 8

GShare 403.gcc 61.4186 66.2913 71.474 77.2345 87836252 85920228 84338856 82805824

400.perlbench 59.9311 63.7636 68.0441 74.5646 11628160 11707093 11614214 10895872

PAp 403.gcc 64.7491 75.346 84.8665 89.1641 86674276 83385248 80058058 79309951

400.perlbench 61.8533 69.8519 78.422 81.6467 11425903 11389779 11202170 11097707

TAGE 403.gcc 85.5172 85.9951 87.2236 89.0868 80540126 80209030 79766975 79398784

400.perlbench 83.3496 83.4818 85.5783 87.907 10651077 10589517 10557308 10612129

Table 9. Performance statistics for GShare, PAp, TAGE Predictor (Length PC and
BHR Changed)

Predictor Benchmark Energy

N = 1 N = 4 N = 6 N = 8

GShare 403.gcc 2473697.9574 2439608.3146 2411368.8878 2384063.4098

400.perlbench 337143.1366 338547.5668 336894.8978 324107.833

PAp 403.gcc 2452949.1762 2394376.5798 2335240.717 2321893.436

400.perlbench 333542.962 332899.9548 329560.5146 327701.0732

TAGE 403.gcc 2343866.1642 2337946.489 2330080.9884 2323536.6162

400.perlbench 319750.482 318653.5596 318081.971 319057.7848

Table 10. Performance statistics for TAGE Predictor (Sign Bit for Prediction compo-
nent is Flipped): Significant performance degradations seen for all benchmarks

Benchmark Prediction accuracy(%) Clock cycles Energy

Original
sign-bit

Flipped
sign-bit

Original
sign-bit

Flipped
sign-bit

Original
sign-bit

Flipped
sign-bit

403.gcc 85.93 43.4541 80209030 94350717 2337946.489 2589703.342

400.perlbench 83.23 48.7298 10589517 12224435 318653.5596 347757.7936

458.sjeng 99.93 98.5902 283196974 283495606 5515303.7566 5520619.4062



520 M. Das et al.

4.2 Experimental Results

We now report our experience of using our methods on the GShare, PAp and
TAGE predictors on the benchmarks. Performances are shown in terms of pre-
diction accuracy, number of processor cycles needed and energy consumption. In
all the tables, the column labeled as energy shows the dynamic energy expen-
diture in nanojoules measured by Tejas. We present below the results of our
experiments performed for the different predictors using the different attack
methodologies on different registers (Tables 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10).

As can be seen from the experimental records, a significant amount of per-
formance and prediction accuracy changes are observed when these attacks are
performed.

5 Conclusion and Future Work

In this paper, our experiment shows, how vulnerable a branch predictor can be in
response to an attack. We also present a methodology to identify which internal
registers can be selected as the target of an attack. Going forward, we plan to do
this experiments on more branch predictors and investigate these attacks in real
hardware. We will also explore the correlation of our attacks with side channel
analysis.
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Abstract. We present an efficient decentralized Attribute-Based Encry-
ption (ABE) that supports any Monotone Access Structure (MAS) with
faster decryption capability in the key-policy setting. We further extend
our MAS construction to Non-Monotone Access Structure (nonMAS) in
order to support negative attributes. A notable advantage of our non-
MAS construction is that the computation cost during encryption and
decryption, and the size of ciphertext are linear to the number of author-
ities involved in the system, not to the number of attributes used in the
respective process unlike existing schemes. In addition, our schemes pro-
vide user privacy, enabling any user to obtain secret keys without dis-
closing its unique identity to the authorities. The security reduction of
both the schemes rely on the decisional Bilinear Diffie-Hellman Exponent
problem.

Keywords: Key-policy · Decentralized · Attribute-Based · User privacy

1 Introduction

Chase [4] devised the first collusion-resistant multi-authority Attribute-Based
Encryption (ABE) to address the key escrow problem in single Central Author-
ity (CA) based schemes where the CA is able to decrypt every ciphertext since it
holds the system’s master secret. However, Chase assumed multiple (attribute)
authorities and one fully trusted CA. Consequently, the scheme is subject to
the key escrow problem. The first CA-free or decentralized multi-authority ABE
was suggested by Lin et al. [3]. Thereafter, Chase and Chow [1] removed the
functionality of the CA from [4]. Interestingly, they addressed the notion of
user privacy, where the authority cannot get any information regarding user’s
identity during key generation phase. Han et al. [2] proposed a novel decentral-
ized multi-authority ABE with user privacy, where all authorities work indepen-
dently. However, Ge et al. [6] showed that this scheme is vulnerable to collusion
attacks. All the above multi-authority ABE are in key-policy setting (termed as
KP-ABE) that support only threshold policies and selectively secure under deci-
sional Bilinear Diffie-Hellman (dBDH) problem. Li et al. [5] introduced a decen-
tralized KP-ABE for expressive Non-Monotone Access Structure (nonMAS), the
c© Springer International Publishing Switzerland 2015
S. Jajodia and C. Mazumdar (Eds.): ICISS 2015, LNCS 9478, pp. 521–531, 2015.
DOI: 10.1007/978-3-319-26961-0 31
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Table 1. Comparison of computation cost and ciphertext-size

Key generation Encryption Decryption Ciphertext-Size

Exp. Exp. Exp. Pair

MAS [3] O(N · φk) O(N · φc) O(N · φd) O(N · φd) BGT
+ O(N · φc) · BG

[2] O(N · φk) O(N · φc) O(N · φd) O(N · φd) BGT
+ O(N · φc) · BG

[1] O(N2 + N · φk) O(N · φc) O(N · φd) O(N · φd) BGT
+ O(N · φc) · BG2

Our O(N2 + N · φ2
k) O(N · φc) - O(N) BGT

+ BG2 + O(N · φc) · BG1
nonMAS [5] O(N2 + N · n2) O(N · φc) O(N · φc) O(N) BGT

+ BG2 + O(1) · BG1
Our O(N2 + N · u2

max) O(N) - O(N) BGT
+ BG2 + O(N) · BG1

N = number of authorities, φk = maximum number of attributes that user holds from
each authority, φc = maximum number of ciphertext attributes from each authority, φd =
minimum number of attributes required for decryption from each authority, n = maximum
bound for the number of ciphertext attributes (N · φc ≤ n) and umax = maximum number
of attributes managed by every authority and BD = bit size of an element in a group D,
where D ∈ {G1,G2,GT }.

selective security of which relies on decisional Bilinear Diffie-Hellman Exponent
(dBDHE) assumption.

Our Contribution: In this article, we focus on constructing a decentralized KP-
ABE inspired by [1] with lower computation cost during encryption and decryp-
tion, still realizing expressive access policies. We first propose a decentralized
KP-ABE that works for monotone access structure (MAS). In our construction,
the key generation algorithm generates user personalized secret key (other than
attribute related keys) jointly by conducting anonymous key issuing protocol
(AKIP) following [1] between user and authorities, whereas the attribute secret
keys are computed solely according to Linear Secret-Sharing Scheme (LSSS)
realizable MAS over user attributes. Our scheme leads to better decryption effi-
ciency than previous schemes [1–3] as illustrated in Table 1. More precisely, the
proposed scheme executes only 2N + 1 pairings to decrypt any ciphertext, thus
computation cost is independent of the number of underlying attributes, where
N is the number of authorities. This is significantly better than the decryption
requirements for existing schemes which consist of O(N ·φd) exponentiations and
O(N · φd) pairings. Here φd is the minimum number of attributes required for
decryption from each authority. The complexity of encryption is similar to that
of [1–3]. However, the size of secret key increases by a factor of φk, the max-
imum number of attributes that user holds from each authority. The security
holds under dBDHE assumption in the selective model.

We further extend the decentralized KP-ABE for MAS employing the tech-
nique that represents nonMASs in terms of MASs with negative attributes. The
selective security of this scheme is proved under dBDHE assumption. The con-
struction in [5] for nonMAS achieves constant-size ciphertext. However, the
encryption and decryption are very costly in terms of exponentiations due to
the fact that the scheme additionally requires O(N · φc) exponentiations to
encrypt a message or decrypt a ciphertext, where φc is maximum number of
attributes from each authority listed in ciphertext. As illustrated in Tables 1
and 2, the proposed new schemes are of independent interest as they exhibit
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Table 2. Comparison of different properties

AAs communication
during setup

User
privacy

Access structure Security
model

Assumption

MAS [3] Yes No Threshold Selective dBDH

[2] No Yes Threshold Selective dBDH

[1] Yes Yes Threshold Selective dBDH

Our Yes Yes LSSS realizable Selective dBDHE

nonMAS [5], Our Yes Yes LSSS realizable Selective dBDHE

AA = attribute authority and dBDH(E) = decisional Bilinear Diffie-Hellman (Exponent).

significant performance in terms of both computation and communication over-
head than the best known solutions [1–3,5] so far with similar security levels.

2 Preliminaries

Notation: x ∈R X denote x is randomly selected from the set X, [N ] =
{1, 2, . . . , N}, [N \ j] = [N ] \ {j} and [N \ j1, j2] = [N ] \ {j1, j2}.

Access Structure. Let U be the universe of attributes. Let P(U) be the col-
lection of all subsets of U. Every non-empty subset of P(U) \ {∅} is called an
access structure. An access structure A is said to be monotone access structure
(MAS) if {C ∈ P(U) : C ⊇ B, for some B ∈ A} ⊆ A.

Linear Secret-Sharing Scheme (LSSS). A secret-sharing scheme ΠA for the
access structure A over U is called linear (in Zp) if ΠA consists of the following
two polynomial-time algorithms, where M is a matrix of size � × τ, called the
share-generating matrix for ΠA and ρ : [�] → IU is a row labeling function that
maps each row of M to an attribute in A, IU being the index set of U.

• Distribute(M, ρ, α): This algorithm takes as input the share-generating matrix
M, row labeling function ρ and a secret α ∈ Zp which is to be shared. It
randomly selects z2, z3, . . . , zτ ∈R Zp and sets v = (α, z2, z3, . . . , zτ ) ∈ Z

τ
p . It

outputs a set {Mi · v : i ∈ [�]} of � shares, where Mi ∈ Z
τ
p is the i-th row of

matrix M. The share λρ(i) = Mi · v belongs to an attribute ρ(i).
• Reconstruct(M, ρ,W ): This algorithm will accept as input M, ρ and a set of

attributes W ∈ A. Let I = {i ∈ [�] : ρ(i) ∈ IW }, where IW is index set of the
attribute set W. It returns a set {ωi : i ∈ I} of secret reconstruction constants
such that

∑
i∈I ωiλρ(i) = α, if {λρ(i) : i ∈ I} is a valid set of shares of the

secret α according to ΠA.

Bilinear Maps. Let G1,G2,GT be multiplicative cyclic groups of same prime
order p and g1, g2 be generators of G1,G2, respectively. A mapping e : G1×G2 →
GT is said to be bilinear if e(ua, vb) = e(u, v)ab, for all u ∈ G1, v ∈ G2 and a, b ∈
Zp and non-degenerate if e(g1, g2) �= 1T , where 1T is the unit element in GT .
Let F2,1 : G2 → G1 be efficiently computable isomorphisms with F2,1(g2) = g1.
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User u (with ID) Authority A (with α, β, γ)

1. ϑ1 ∈R Zp
2PC←−−−−−−−−→ σ = (β + ID)ϑ1

2.
B1,B2,PoK(α,τ,σ)←−−−−−−−−−−− τ ∈R Zp, B1 = gτ/σ, B2 = hατ

3. ϑ2 ∈R Zp, ˜B = (Bϑ1
1 B2)

ϑ2
˜B,PoK(ϑ2)−−−−−−−−−−→

4.
˜B′,PoK(γ,τ)←−−−−−−−−−−− ˜B′ = ˜Bγ/τ

5. D = ( ˜B′)1/ϑ2 = (hαg1/(β+ID))γ

Fig. 1. Anonymous key issuing protocol (AKIP) [1]

We employ the following anonymous key issuing protocol from [1] to achieve
user privacy.

Anonymous Key Issuing Protocol (AKIP). In this protocol, a user u with
identity ID ∈ Zp (which is treated as its secret value) and an authority A with
secret parameters α, β, γ ∈ Zp are jointly compute the term D = (hαg1/(β+ID))γ

for commonly known g, h ∈ G1. Only the user receives the final output D.
The protocol is presented in Fig. 1, where PoK denotes a proof of knowledge of
the secret values used in the computation and the statements being proved are
omitted for simplicity. The overview of the protocol is as follows.

1. The user u and the authority A engage in a secure (arithmetic) 2PC protocol
that takes (ID, ϑ1) from u and β from A, and sends the secret output σ =
(β + ID)ϑ1 to A.

2. A samples τ ∈R Zp and computes B1 = gτ/σ, B2 = hατ . A sends (B1, B2) to
the user and proves that it knows (α, τ, σ) in zero-knowledge.

3. If the proof is correct, u selects ϑ2 ∈R Zp and sends B̃ = (Bϑ1
1 B2)ϑ2 to the

authority. The user proves that it knows ϑ2 to A in zero-knowledge.
4. Again, if the proof is correct, A sends B̃′ = B̃γ/τ and proves that it knows

(γ, τ) to u in zero-knowledge.
5. If the proof is correct, the user can compute its secret key D = (B̃′)1/ϑ2 =

(hαg1/(β+ID))γ .

3 Our Decentralized KP-ABE Scheme for MAS

In this section, we present a decentralized KP-ABE construction that uses LSSS
realizable access structures to generate attribute related user secret keys adapt-
ing the multi-authority framework of [1].

A decentralized KP-ABE system is composed mainly of a set A of author-
ities, a trusted initializer (TI) and users. The only responsibility of TI is gen-
eration of system global public parameters GP once during system initializa-
tion, which are system wide public parameters available to every entity in the
system. We fix the set of authorities involved in the system ahead of time.



Privacy-Preserving Decentralized KP-ABEs with Fast Decryption 525

All authorities pairwise communicate once in the initial system setup to decide
on system public parameters PubK. Each authority Aj ∈ A controls a differ-
ent set U j of attributes and issues corresponding secret attribute keys to users.
Each user in the system is identified with a unique global identity ID and is
allowed to request secret attribute keys from the different authorities. To achieve
user privacy while obtaining secret key from authorities, each user performs the
anonymous key issuing protocol (AKIP) [1] with the authority and gets person-
alized secret key (other than attribute keys) without exposing its identity ID
to the authority. Consequently, key escrow is eliminated as multiple authorities
together cannot recognize the complete key structure of any user in the sys-
tem and hence unable to decrypt any ciphertext. This makes our scheme user
privacy-preserving. On the other hand, the attribute secret keys are computed
solely by authority according to suitable access structure.

Let A = {A1, A2, . . . , AN} be the set of authorities participated in the system
and U j = {aj,t} be the set of attributes managed by the authority Aj . In the
attribute aj,t ∈ U j , the subscript j indicates an identifier of the controlling
authority Aj and t denotes the index of the attribute within the set U j . Let the
user identity space be Zp. Secure communication channels are assumed between
every pair of authorities (Aj , Ak), j, k ∈ [N ]. Our N -authority decentralized KP-
ABE scheme is a set of the following five algorithms that works as described
below.

System Initialization(κ,A): The TI generates global public parameters GP =
(p,G1, g1,G2, g2,GT , e, F2,1) according to the implicit security parameter κ and
are made available to every entity in the system.

• Each authority Aj samples αj ∈R Zp and transmits Yj = e(g1, g2)αj to all
other authorities. Consequently, every authority individually can compute
Y =

∏
j∈[N ] Yj = e(g1, g2)

∑
j∈[N] αj which, with some randomness, is used

to bind every message in the system.
• In addition, each Aj picks xj ∈R Zp and sets yj = g

xj

1 . The parameter yj is
made public and xj is kept secret by Aj .

• Every pair (Aj , Ak) of authorities agrees on a pseudorandom function (PRF)
seed sjk, defined as sjk = skj , via a 2-party key exchange protocol that is only
known to them but not to any other Ai /∈ {Aj , Ak}. Define a PRF, PRFjk(ξ) =
g

xjxk/(sjk+ξ)
1 .TheauthorityAj cancompute thePRFasPRFjk(ξ) = y

xj/(sjk+ξ)
k ,

while the same forAk isPRFkj(ξ) = y
xk/(skj+ξ)
j .Note thatPRFjk(ξ) = PRFkj(ξ)

provided sjk = skj . Consequently, PRFjk(ξ) is computable only by Aj and Ak

which have the common PRF seed sjk.
• The system public parameters are published as PubK = 〈GP, Y, y1, y2, . . . , yN 〉

and each authority Aj keeps MkAj = 〈αj , xj , {sjk : k ∈ [N \ j]}〉 as its master
secret key. (Note that the parameters {yj : j ∈ [N ]} are only used by the
authorities in order to compute PRFs.)

Authority Setup(GP, U j): Every authority runs autonomously this algorithm
during system setup. Each Aj ∈ A controls a set of attributes U j . For each
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attribute aj,t ∈ U j , Aj selects hj,t ∈R G1 and outputs its public key as PubAj =
{hj,t : aj,t ∈ U j}.

Authority KeyGen(PubK, ID, (Mj , ρj),MkAj): It is performed in two phases.

Personalized Secret Key Generation. Similar to [1], when a user u wishes to
obtain the decryption key from Aj without revealing its identity ID ∈ Zp to the
authority, it performs AKIP executions with Aj for each authority k ∈ [N \ j],
and obtains the personalized secret key component Djk which is an output of
the AKIP for g = y

xj

k , h = g1, α = δjkRjk, β = sjk, γ = δjk, where Rjk ∈R Zp is
sampled by Aj and δjk = 1 if j > k and −1 otherwise. Hence,

Djk =

{
g

Rjk

1 · y
xj/(sjk+ID)
k = g

Rjk

1 · PRFjk(ID), if j > k,

g
Rjk

1 /y
xj/(sjk+ID)
k = g

Rjk

1 /PRFjk(ID), if j < k.

Finally, the user with identity ID gets its personalized secret key as D̃j = {Djk :
k ∈ [N \ j]} from the authority Aj .

Attribute Secret Key Generation. Authority Aj creates a LSSS realizable access
structure (Mj , ρj) over the attribute set U j according to the role of user in the
system and computes the attribute secret keys as follows. Here Mj is a share-
generating matrix of size, say, �j × τj and ρj is a mapping from each row i of
Mj (denoted as Mj,i ) to an attribute aj,ρj(i).

• Set αj,ID = αj −
∑

k∈[N\j] Rjk as its master secret share for the user with
identity ID.

• Run Distribute(Mj , ρj , αj,ID) and obtain a set {λρj(i) = Mj,i · vj : i ∈ [�j ]} of
�j shares one for each row of Mj , where vj ∈R Z

τj
p such that vj · 1 = αj,ID,

1 = (1, 0, . . . , 0) being a vector of length τj .

• For each row i ∈ [�j ], select rj,i ∈R Zp and compute Bj,i = g
λρj(i)

1 h
rj,i

j,ρj(i)
,

B′
j,i = g

rj,i

2 , B′′
j,i =

{
B′′

j,i,t : B′′
j,i,t = h

rj,i

j,t ,∀aj,t ∈ Lj \ {aj,ρj(i)}
}
,

where Lj is the set of attributes used in the access structure (Mj , ρj).
• Set SK(Mj ,ρj) = 〈(Mj , ρj), {Bj,i, B

′
j,i, B

′′
j,i : i ∈ [�j ]}〉 and send the secret key

SK(Mj ,ρj) to the user u with identity ID.

Let SKj,ID = 〈D̃j ,SK(Mj ,ρj)〉 be the secret key of a user u with identity ID received
from the authority Aj . After receiving all {SKj,ID : j ∈ [N ]}, the user u computes

DID =
∏

j∈[N ]

∏

Djk∈D̃j

Djk =
∏

(j,k)∈[N ]×[N\j]

Djk = g
∑

(j,k)∈[N]×[N\j] Rjk

1 .

All the PRF terms are cancelled due to the choice of δjk and finally the user
obtains its whole secret key as SKID = 〈DID, {SK(Mj ,ρj) : j ∈ [N ]}〉.
Encrypt(PubK,M,W, {PubAj}j∈[N ]): To encrypt a message M ∈ GT under
a set of attributes W = {W1,W2, . . . , WN}, where Wj ⊂ U j , the encryptor
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samples s ∈R Zp and constructs a ciphertext CT = 〈W,C,C1, {C2,j : j ∈ [N ]}〉
using system public parameters and public key of each authority by setting
C = MY s, C1 = gs

2, C2,j = {C2,j,t : C2,j,t = hs
j,t,∀aj,t ∈ Wj}.

Decrypt(GP,CT,SKID): When a decryptor with identity ID receives a ciphertext
CT, the decryptor first checks whether each access structure (Mj , ρj) associated
with its secret key SKID accepts the corresponding attribute set Wj embedded
in CT. If some (Mj , ρj) is not satisfied by respective Wj , decryption will fail.
Otherwise, the decryptor performs the following steps for each Aj , j ∈ [N ].

• run Reconstruct(Mj , ρj ,Wj) and obtain a set {ωj,i : i ∈ Ij} of secret recon-
struction constants, where Ij = {i ∈ [�j ] : aj,ρj(i) ∈ Wj}. Note that since
Wj satisfies the access structure (Mj , ρj),

∑
i∈Ij

ωj,iλρj(i) = αj,ID = αj −
∑

k∈[N\j] Rjk. The secret shares {λρj(i)}i∈Ij
are not known to the decryptor.

• compute E1,j =
∏

i∈Ij

(
Bj,i·

∏
aj,t∈W ′

j ,t�=ρj(i)
B′′

j,i,t

)ωj,i

, E2,j =
∏

i∈Ij
(B′

j,i)
ωj,i ,

C ′
2,j =

∏
aj,t∈W ′

j
C2,j,t, where W ′

j = {aj,t ∈ Wj : ∃ i ∈ Ij  ρj(i) = t}.

• extract Zj = e(g1, g2)s(αj−∑k∈[N\j] Rjk) by computing e(E1,j , C1)/e(C ′
2,j , E2,j).

Finally, the message M is recovered by computing
C

e(DID, C1) ·
∏

j∈[N ] Zj
= M.

Note that for boolean formulas, ωj,i are either 0 or 1 and hence the decryption
is free from exponentiations.

Correctness. For each j ∈ [N ], Wj satisfies (Mj , ρj), we have
∑

i∈Ij

ωj,iλρj(i) =

αj −
∑

k∈[N\j]

Rjk.

E1,j =
∏

i∈Ij

(
g

λρj(i)

1 h
rj,i

j,ρj(i)
·

∏

aj,t∈W ′
j ,t�=ρj(i)

h
rj,i

j,t

)ωj,i

= g

∑

i∈Ij

ωj,iλρj(i)

1

∏

i∈Ij

( ∏

aj,t∈W ′
j

h
rj,i

j,t

)ωj,i

= g

αj− ∑

k∈[N\j]
Rjk

1

( ∏

aj,t∈W ′
j

hj,t

) ∑
i∈Ij

rj,iωj,i

E2,j =
∏

i∈Ij

(B′
j,i)

ωj,i =
∏

i∈Ij

g
rj,iωj,i

2 = g

∑
i∈Ij

rj,iωj,i

2

C′
2,j =

∏

aj,t∈W ′
j

C2,j,t =
∏

aj,t∈W ′
j

hs
j,t =

( ∏

aj,t∈W ′
j

hj,t

)s

Zj =
e(E1,j , C1)
e(C ′

2,j , E2,j)
= e(g1, g2)s(αj−∑k∈[N\j] Rjk)

C

e(DID, C1) · ∏
j∈[N ]

Zj
=

MY s

e(g
∑

(j,k)∈[N]×[N\j] Rjk

1 , gs
2) · ∏

j∈[N ]

e(g1, g2)
s(αj−∑k∈[N\j] Rjk)

=
M · e(g1, g2)s

∑
j∈[N] αj

∏
j∈[N ] e(g1, g2)

sαj
= M.
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3.1 Proof of Security

The following selective ciphertext indistinguishability under chosen plaintext
attack (IND-CPA) security game is similar to the one described in [1,2]. The
challenger plays the role of all authorities and answers the adversary’s queries
by executing relevant algorithms of N -authority KP-ABE system as follows.

Init. The adversary ADV announces an attribute set W ∗ = {W ∗
1 ,W ∗

2 , . . . , W ∗
N},

where W ∗
j ⊂ U j , and a set of corrupt authorities Acorr ⊂ A. Let Icorr be the

index set of Acorr, i.e., Icorr ⊂ [N ].

Setup. The challenger C performs System Initialization and Authority Setup
algorithms of KP-ABE, and sends the information including PubK, {PubAj}j∈[N ],
{MkAj}j∈Icorr

to ADV.

Key Query Phase 1. The adversary ADV can request secret keys for the sets of
access structures coupled with user global identities such as (ID1, {A1,j}j∈[N ]),
(ID2, {A2,j}j∈[N ]), . . . , (IDq1 , {Aq1,j}j∈[N ]) with the restriction that for each secret
key query (IDr, {Ar,j}j∈[N ]), there must be at least one honest authority Ak ∈
A \ Acorr such that W ∗

k does not satisfy Ar,k.

Challenge. ADV sends two equal length messages M0 and M1 to C. The chal-
lenger flips a random coin μ ∈ {0, 1} and encrypts Mμ under W ∗. The resulting
challenge ciphertext CT∗ is given to ADV.

KeyQueryPhase 2.The adversary can obtain more secret keys for user identity,
set of access structures pairs (IDq1+1, {Aq1+1,j}j∈[N ]), (IDq1+2, {Aq1+2,j}j∈[N ]),
. . . , (IDq, {Aq,j}j∈[N ]) subject to same constraint stated in Key Query Phase 1.

Guess. ADV outputs a guess bit μ′ ∈ {0, 1} for μ and wins if μ′ = μ.
The advantage of an adversary in the above selective IND-CPA game is

defined to be |Pr[μ′ = μ] − 1
2 |, where the probability is taken over all random

coin tosses of both adversary and challenger.

Definition 1. An N -authority KP-ABE system is said to be (T , n, qSK, ε)-IND-
sCPA secure if all T -time adversaries corrupting at most n (n < N) authorities
that make at most qSK secret key queries have advantage at most ε in the above
selective IND-CPA game.

The proofs of the following theorems will be given in full version of this paper.

Theorem 1. If each honest authority controls at most m attributes, then our N -
authority decentralized KP-ABE system is (T , N − 2, qSK, ε)-IND-sCPA secure,
assuming that the decisional m-BDHE problem in (G1,G2,GT ) is (T ′, ε/2)-
hard. Where T ′ = T + O

(
N · Γ + qSK · (N2 + N · �2max)

)
· Texp + 5 · Tpair, here

Γ = max{m, |U j | : Aj is a corrupt authority}, �max is the maximum number
of attributes queried by the adversary for all authorities among all secret key
queries, Texp denotes the maximum of running time for an exponentiation in G1

and that in G2, and Tpair denotes the running time of one pairing in GT .
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Theorem 2. [1] The AKIP is a secure 2PC protocol for computing the compo-
nent D = (hαg1/(β+ID))γ , assuming the underlying (arithmetic) 2PC and zero-
knowledge proofs are secure. It is also secure against corrupt user under the
eXternal Diffie-Hellman (XDH) assumption.

From Theorems 1 and 2, we have the following theorem.

Theorem 3. Our N -authority privacy-preserving decentralized KP-ABE con-
struction for MAS is secure in the selective security model when at most N −
2 authorities are corrupted, under m-BDHE and XDH assumptions, and the
assumption that the underlying (arithmetic) 2PC and zero-knowledge proofs are
secure.

4 Our Decentralized KP-ABE Scheme for nonMAS

In order to handle negative attributes in user’s secret key policy, called as
Non-Monotone Access Structure (nonMAS), we exploit the technique that rep-
resents nonMASs in terms of MASs with negative attributes. We denote the
negative attribute of a (positive) attribute iciss as ¬iciss. Let U be a set of posi-
tive attributes.

Given a family F = {ΠA : A ∈ MA} of LSSSs for a set MA of possible MASs
and Ũ = U

⋃
{¬a : a ∈ U} is the underlying attribute universe for each MAS

A ∈ MA, a family NM of nonMASs can be defined as follows. For each access
structure A ∈ MA over Ũ , one defines a possibly nonMAS NA over U in the
following way−(i) For every set W ⊂ U, set N(W ) = W

⋃
{¬a : a ∈ U \W} ⊂ Ũ .

(ii) Define NA by saying that W satisfies NA iff N(W ) satisfies A, i.e., W |= NA

iff N(W ) |= A. The family of nonMASs is NM = {NA : ΠA ∈ F}. The nonMAS
NA will have only positive attributes in its access sets.

System Initialization(κ,A): We refer to System Initialization in Sect. 3.

Authority Setup(GP, U j): For each attribute aj,t ∈ U j , Aj selects hj,t, h
′
j,t,∈R

G1 and outputs its public key as PubAj = {hj,t, h
′
j,t, : aj,t ∈ U j}.

Authority KeyGen(PubK, ID, Ãj ,MkAj): This is similar to Authority KeyGen
of MAS construction given in Sect. 3, but the attribute secret key generation is
performed differently as described subsequently. The authority Aj

• creates a nonMAS Ãj such that Ãj = NAj
for some MAS Aj over the attribute

set Ũ j = {aj,t,¬aj,t : aj,t ∈ U j} and associated with a LSSS ΠAj
= (Mj , ρj),

where Mj is a matrix of size �j × τj and the mapping ρj assigns each row i of
Mj , Mj,i to an attribute ãj,ρj(i) ∈ {aj,ρj(i),¬aj,ρj(i)}.

• calls Distribute(Mj , ρj , αj,ID), where αj,ID = αj −
∑

k∈[N\j] Rjk, and obtains
{λρj(i) = Mj,i · vj : i ∈ [�j ]}, where vj ∈R Z

τj
p such that vj · 1 = αj,ID.

• samples rj,i ∈R Zp for each row i ∈ [�j ] and compute Bj,i = g
λρj(i)

1 h̃
rj,i

j,ρj(i)
,

B′
j,i = g

rj,i

2 , B′′
j,i =

{
B′′

j,i,t : B′′
j,i,t = h̃

rj,i

j,t ,∀aj,t ∈ U j \ {aj,ρj(i)}
}
,

where, for each aj,t ∈ U j , h̃j,t =
{

hj,t, if ãj,ρj(i) = aj,ρj(i),
h′

j,t, if ãj,ρj(i) = ¬aj,ρj(i).
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• sets SK
Ãj

= 〈Ãj , {Bj,i, B
′
j,i, B

′′
j,i : i ∈ [�j ]}〉 and send the secret key SK

Ãj
to

the user u with identity ID.

Encrypt(PubK,M,W, {PubAj}j∈[N ]): To encrypt a message M ∈ GT for W =
{W1,W2, . . . , WN}, where Wj ⊂ U j , the encryptor chooses s ∈R Zp and com-
putes C = MY s, C1 = gs

2, C2,j =
( ∏

aj,t∈Wj
hj,t

)s
, C3,j =

( ∏
aj,t∈Wj

h′
j,t

)s
,∀j ∈

[N ]. The ciphertext is CT = 〈W,C,C1, {C2,j , C3,j : j ∈ [N ]}〉.
Note that the size of ciphertext is BGT

+BG2 +2N ·BG1 which is independent
of the number of attributes used in the encryption.

Decrypt(GP,CT,SKID): The secret key is parsed as SKID = 〈DID, {SK
Ãj

: j ∈
[N ]}〉 and the ciphertext CT is parsed as above. If some Wj �|= Ãj , the decryption
fails. Otherwise, since Ãj = NAj

for some MAS Aj over Ũ j associated with a
LSSS ΠAj

= (Mj , ρj), we have N(Wj) |= Aj , for each j ∈ [N ]. The decryptor
carries out the following steps for each authority Aj , j ∈ [N ].

Execute Reconstruct(Mj , ρj ,N(Wj)) and receive a set {ωj,i : i ∈ Ij} of recon-
struction constants such that

∑
i∈Ij

ωj,iλρj(i) = αj,ID = αj −
∑

k∈[N\j] Rjk,

where Ij = {i ∈ [�j ] : ãj,ρj(i) ∈ N(Wj)}.

Let I+j = {i ∈ [�j ] : ãj,ρj(i) = aj,ρj(i) ∈ N(Wj)} and I−
j = {i ∈ [�j ] : ãj,ρj(i) =

¬aj,ρj(i) ∈ N(Wj)}. Then Ij = I+j
⋃

I−
j . Compute E3,j =

∏
i∈I−

j
(B′

j,i)
ωj,i , E1,j =

∏
i∈Ij

(
Bj,i ·

∏
aj,t∈Wj ,t�=ρj(i)

B′′
j,i,t

)ωj,i

, E2,j =
∏

i∈I+
j

(B′
j,i)

ωj,i .

ObtainZj = e(g1, g2)
s(αj− ∑

k∈[N\j]
Rjk)

= e(E1,j , C1)/(e(C2,j , E2,j)e(C3,j , E3,j)).

The message M is obtained by computing
C

e(DID, C1) ·
∏

j∈[N ] Zj
= M.

Theorem 4. If each honest authority controls at most m attributes, then our
N -authority decentralized KP-ABE system for nonMAS is (T , N−2, qSK, ε)-IND-
sCPA secure, assuming that the decisional m-BDHE problem in (G1,G2,GT ) is
(T ′, ε/2)-hard. Where T ′ = T +O

(
N · Γ + qSK · (N2 + N · �2max)

)
·Texp+5·Tpair.

Theorem 5. Our N -authority privacy-preserving decentralized KP-ABE for
nonMAS is secure in the selective security model when at most N −2 authorities
are corrupted, under m-BDHE and XDH assumptions, and the assumption that
the underlying (arithmetic) 2PC and zero-knowledge proofs are secure.

5 Conclusion

In this paper, we propose efficient privacy-preserving decentralized KP-ABE
schemes for both MAS and nonMAS wherein the number of pairings is inde-
pendent of the number of underlying attributes. CPA security against selec-
tive adversary is reduced to the dBDHE problem in standard model. Proposed
schemes outperform the existing schemes in terms of computation cost during
encryption and decryption.
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Abstract. In this paper we have proposed a perfect (k, n) multi secret
sharing scheme based on YCH scheme. The YCH method shares m
secrets at a time and it publishes (n + 1) data (or (n + m − k + 1)
data) as public values when m ≤ k (or m > k). Our method requires to
publish no public values for m ≤ k and (m− k) public values for m > k.
In the proposed method a special binary matrix is used to generate the
secret shadows for the participants. The secret shadows are generated in
such a way that the GCD of k or more such shadows generate r while
less than k such generate r.d, where d > 1. We have also proved that the
scheme is a secure one.

Keywords: Multi secret sharing · One way function · Secret shadow ·
GCDn

1 Introduction

Secret sharing is a technique to protect sensitive information from getting lost
or misuse by wrong hands. Secret sharing started its journey as a research wing
in the field of information security after the individual proposals by Shamir [1]
and Blakley [2] in 1979. The former proposal [1] is based on polynomial interpo-
lation and the later [2] is based on hyperplane geometry. Both the proposals are
(k, n) threshold secret sharing scheme, where n is the number of participant and
k is the minimum number of participant to reconstruct the secret. In threshold
secret sharing scheme secret holder is known as dealer and s/he has the authority
of generating shares and distribute them among the authenticated participants.
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used the western naming convention, with given names preceding surnames. This
determines the structure of the names in the running heads and the author index.
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Person having the right to reconstruct the secret is known as combiner. In infor-
mation theoretic sense Shamir scheme is a perfect secret sharing as (k − 1) or
fewer participants cannot get any information about the secret from their shares.

Multi-secret sharing scheme shares multiple secrets in one sharing process [3].
This has several advantages like (i) sharing more than one secret among the
same group of participants (ii) the amount of data needed to share more than
one secret is same as sharing a single secret. Multi secret sharing scheme can be
classified into two types- one time use scheme and multi use scheme [4]. In one
time use scheme fresh shares are issued by the dealer to every participant after
reconstruction of some or all secrets. But in multi use scheme every participant
only need to keep one share.

A multistage secret sharing (MSS) using one way function and public shift
technique is presented in [5] where m.n data are published as public values (m is
the number of secrets to be shared). Public shift technique is used to obtain the
true shadows and the secret is reconstructed stage by stage in a special order by
successive use of one way function. A proposal on dynamic multi secret sharing
using two variable one way function is available in [6]. Authors proved that
the method prevents disclosing the secret shadows among the participants. A
proposal of multi secret sharing by Chien et al. [3] came up with systematic block
codes. It is a matrix based method with the application of two variable one way
function and has several advantages like parallel reconstruction of secrets, multi
use scheme, dynamic determination of the distributed shares etc. The method
has few public values but computation cost is high due to the reconstruction
of several simultaneous equations constructed from the matrix. In 2004 another
multi secret sharing scheme was proposed by Yang, Chang and Hwang [7] (known
as YCH scheme). Two variable one way function is used as backbone in YCH
scheme. The scheme has two parts (i) m ≤ k and (ii) m > k, where m is the
number of secrets to be shared. Number of public values required for case (i) is
(n+1) and for case (ii) is (n+m− t+1). Pang et al. [8] proposed another multi
secret sharing scheme based on Shamir method [1]. A Hermite interpolation
based multi secret sharing scheme is presented in [9]. This scheme also uses two
variable one way function but fails to put light for the case when number of
secrets is more than the threshold value. A dynamic multi secret sharing scheme
is presented in [10]. In the scheme each participant need to keep only one master
secret share, using which different group secrets are reconstructed based on the
number of threshold values. The scheme provides security by applying successive
one way hash function and the exclusive OR operation. In [11] a multi use multi
secret sharing scheme is presented. The scheme is based on the one way collision
resistant hash function which provides securities against conspiracy attacks even
by somehow pseudo-secret shares are compromised. Bai [12] proposed a multi
secret sharing in form of image secret sharing based on matrix projection. In
the method, a random matrix is taken and its projection is calculated. The
projection is subtracted from another matrix containing the image pixel. The
resultant is known as remainder matrix. The main disadvantage of the scheme
is that the secret matrix and the projection matrix are square matrices and
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thus the remainder is also square. A modified version of multi secret sharing
based on matrix projection is available in [13]. In [14] a new multi secret sharing
scheme is proposed where each secret has constant length. The scheme has been
used to derive two new cryptographic functionalities, multi policy signature and
multi policy decryption. A perfect multi secret sharing based on monotone span
programs (MSP) is proposed in [15]. Few recent proposals [16–18] on multi secret
sharing schemes came up with Chinese Remainder Theorem. Few multi image
secret sharing schemes are available in [19,20].

Verifiability in secret sharing is an important issue. It covers the identification
of cheater or any type of cheating done in secret sharing process. Few propos-
als have included verifiability with multi secret sharing to make it sure that
right secrets are retrieved in reconstruction process. Tentu et al. [21] proposed
a verifiable multi secret sharing based on YCH scheme. LFSR based public key
cryptosystem is used in [22] to detect a variety of forgery or cheating actions in
multi secret sharing performed by Lagrange interpolation. An updated version
of this scheme is presented in [23] which uses non-homogeneous linear recursions
with LFSR based public key cryptosystem. One dimensional cellular automata
can be used in verifiable multi secret sharing [24]. The authors have proved that
the sharing can be done in linear time complexity using this method.

In the paper we have proposed a multi secret sharing scheme which uses
YCH scheme. The proposed scheme publishes no public value for m ≤ k and
(m − k) public values for m > k. We have used a binary participation matrix
to generate the secret shadows swi. For any subset of k or more secret shadows
GCD is r but any subset of less than k such give GCD as r.d where d > 1. r is
one variable of the two variable one way function and it need not to be made
public. We have also proved that the proposed scheme is secure and a perfect
secret sharing scheme.

The rest of the paper is organized as follows. YCH method is described in
Sect. 2. The proposed scheme is presented in Sect. 3. Security analysis of the
proposed method is made in Sect. 4. Finally the conclusion is drawn in Sect. 5.

2 YCH Method

Yang, Chang and Hwang proposed a multi secret sharing scheme which is well
known as YCH scheme [7]. The share generation of this scheme is based on the
application of two variable one way function in polynomial.
A two variable one way function is an important primitive, mainly used in cryp-
tography. This type of functions is easy to compute but hard to find inverse. The
following properties make it suitable for application in cryptographic techniques.
For a two variable one way function f(r, s)

(a) It is easy to compute f(r, s) for a given r and s.
(b) It is hard to find r if f(r, s) and s are known.
(c) r is known. Till computation of f(r, s) is hard without any knowledge of s.
(d) For a given s it is hard to find two distinct r such that f(ri, s) = f(rj , s).
(e) It is hard to find s for a given r and f(r, s).
(f) For a given pair ri and f(ri, s), it is difficult to compute f(r′, s) for r′ �= ri.
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In YCH multi secret sharing scheme a two variable one way function f(r, s)
maps a public value r and a secret shadow s to a fixed length bit string. According
to the scheme (S1, S2, . . . , Sm) are m secrets (belong to prime field q) to be
shared among n participants. In the secret sharing process the dealer chooses n
secret shadows (sw1, sw2, . . . , swn) randomly and sent swi to participanti using
a secret channel.

(I) If m ≤ k
(a) Dealer construct a (k − 1)th degree polynomial h(x)mod q as follows

h(x) = S1+S2x
1+· · ·+Smxm−1+c1x

m+c2x
m+1+· · ·+ck−mxk−1mod q

(1)
(b) yi = h(f(r, swi))mod q is computed for i = 1, 2, . . . , n
(c) (r, y1, y2, . . . , yn) are published using some authenticated manner such

that those are in [25,26].
Total number of public values is (n + 1).

(II) if m > k
(a) Dealer constructs a (m − 1) degree polynomial h(x)mod q as follows

h(x) = S1 + S2x
1 + · · · + Smxm−1mod q (2)

(b) yi = h(f(r, swi))mod q is computed for i = 1, 2, . . . , n.
(c) h(i)mod q for i = 1, 2, . . . , (m − k) is computed.
(d) Using some authenticated manner (r, h(1), h(2), . . . , h(m − k), y1,

y2, . . . , yn) are published such that those are in [25,26].
Total number of public values is (n + m − k + 1).

3 Proposed Scheme

In this paper we have proposed a multi secret sharing scheme which publishes
less data as public values than YCH scheme. In the proposed scheme the secret
shadows swi, i = 1, 2, . . . , n are computed by the dealer, except choosing them
randomly. To generate swi we have taken a binary random matrix and secret
shadows are generated in such a way that any subset of k or more swi give r as
GCD while any subset of less than such shadows produce r.d, where d > 1 as
GCD. In reconstruction phase r is calculated by cyclic GCD computation from
swi, belonging to the chosen subset of participants. There is no need to make
the integer r as public.

Following subsections present the proposed method in detail.

3.1 Share Generation

The share generation process of the proposed secret sharing scheme is divided
into two steps

(A) Secret shadow generation.
(B) Final Share generation.
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(A) Secret shadow generation. The secret shadow generation process starts
with construction of n distinct keys. Each key is production of some prime
numbers ∈ pr and obeys the following two properties. Let keyi is the key
for generating secret shadow for partitipanti. Then
(a) GCD(keyi1 , keyi2 , . . . , keyik−u

) > 1 for u ≥ 1 and
(b) GCD(keyi1 , keyi2 , . . . , keyik+u

) = 1 for u ≥ 0
The participance of the prime numbers ∈ pr in the key generation process
is represented by a binary matrix Mn×c. The ith row of M define keyi for
swi and keyi is computed as

keyi =
∏

1≤j≤r,mi,j=1

pj (3)

It must be noted that if the jth column of M is 1 then prj contributes as
a factor of keyi. If each column of M contains (k − 1) 1’s and n − (k − 1)
0’s then the condition that the GCD of any k keys is 1, is ensured. With
this condition satisfied there will be

(
n

k−1

)
different combinations, hence

c =
(

n
k−1

)
. If pri is a factor of keyi then the occurrence of prti , t ≥ 1 as

a factor in keyi does not violate the above two conditions. Therefore the
binary matrix M is modified to M ′ by replacing the non-zero entries of M
by arbitrary integers. The key construction process for n=5 and k=3 and
the matrices M5×10 and M ′

5×10 are presented in Tables 1 and 2.

Table 1. The matrix M for (n = 5, k = 3)

Rows Prime numbers

pr1 pr2 pr3 pr4 pr5 pr6 pr7 pr8 pr9 pr10

1 1 1 1 1 0 0 0 0 0 0

2 1 0 0 0 1 1 1 0 0 0

3 0 1 0 0 1 0 0 1 1 0

4 0 0 1 0 0 1 0 1 0 1

5 0 0 0 1 0 0 1 0 1 1

The keys constructed from Table 2 are as follows:

key1 = pr21.pr
3
2.pr

2
3.pr

4
4

key2 = pr21.pr
3
5.pr

2
6.pr

5
7

key3 = pr22.pr5.pr
3
8.pr9

key4 = pr43.pr6.pr
5
8.pr10

key5 = pr44.pr
3
7.pr9.pr

2
10

From the matrix given in Tables 1 and 2 it is clear that no prime number
is a common factor of any 3 or more keys but a single prime number is a
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Table 2. The matrix M ′ for (n = 5, k = 3)

Participant Prime numbers

pr1 pr2 pr3 pr4 pr5 pr6 pr7 pr8 pr9 pr10

1 2 3 2 4 0 0 0 0 0 0

2 2 0 0 0 3 2 5 0 0 0

3 0 2 0 0 1 0 0 3 1 0

4 0 0 4 0 0 1 0 5 0 1

5 0 0 0 4 0 0 3 0 1 2

common factor of any two keys. A randomly selected number r is multiplied
with each key to get the secret shadow.

swi = keyi ∗ r (4)

This ensures that r will be found as GCD for any k or more secret shadows
but less than k secret shadows generate some number > r as GCD. The
prime field q is chosen in such a way that all swi are member of it. Finally
swi is sent to participanti through a secret channel.

(B) Final Share Generation. Let (S1, S2, . . . Sm) are m secrets to be shared
among n participants with threshold value k. f(x, y) is a two variable one
way function. In the share generation process two cases may appear (I)
m ≤ k and (II) m > k.

Case I: m ≤ k:
(a) Dealer constructs a (k − 1)th degree polynomial h(x)mod q as follows

h(x) = S1+S2x
1+· · ·+Smxm−1+c1x

m+c2x
m+1+· · ·+ck−mxk−1mod q

(5)
where ci are random co-efficients.

(b) Shi = h(f(r, swi))mod q is computed for i = 1, 2, . . . , n
(c) Shi is sent to participanti.

Case II: m > k:
(a) Dealer constructs a (m − 1) degree polynomial h(x) mod q as follows

h(x) = S1 + S2x
1 + · · · + Smxm−1mod q (6)

(b) Shi = h(f(r, swi))mod q is computed for i = 1, 2, . . . , n
(c) h(i)mod q is computed for i = 1, 2, . . . , (m − k)
(d) Shi is sent to participanti and h(1), h(2), . . . , h(m−k) are made public.

It is noted that each participant are assigned a distinct participant number from
1, 2, . . . , n and the number is known to the participant. This number is required
in secret reconstruction phase while computing the GCD of the swis belonging
to their possession.
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3.2 Secret Retrieval

In retrieval phase the trusted combiner selects k or more participants. The
selected participants retrieve r from the swis belonging to their possession. From
the available two variable one way function each participant computes f(r, swi)
for i = 1, 2, . . . , k. Finally Shi and f(r, swi) for i = 1, 2, . . . , k are sent to the
combiner. The GCD computation and the secret retrieval are discussed in the
following subsections.

3.2.1 GCD Computation
Selected participants communicate themselves and arrange themselves in ascend-
ing order according to their participant number. The participant with first rank
in the list sends its sw to the second rank holder. This person computes the
GCD of the two secret shadows, let as r′. r′ is sent to the third rank holder and
it computes the GCD of its sw and r′. Let the GCD is r′′ and it is send to the
fourth rank holder. This process continues upto kth participant and the final
GCD r is found. The process can be represented mathematically as follow.

r = GCD(. . . (GCD(GCD(sw1, sw2), sw3) . . . ), swk) (7)

r is send to each selected participant by participantk. Now participanti com-
putes f(r, swi) and it is sent to the combiner along with Shi.

Like share generation, two cases are possible for secret retrieval.

Case I: m ≤ k

(a) Combiner collects the pair (f(r, swi), Shi) for i = 1, . . . , k from k partici-
pants.

(b) The secrets are collected from the co-efficients of the polynomial generated
using Lagrange Interpolation from (f(r, swi), yi). It is denoted as follows.

h(x) =
k∑

i=1

Shi

k∏

j=1,j �=i

x − f(r, swj)
f(r, swi) − f(r, swj)

mod q

= S1 + S2x
1 + · · · + Smxm−1 + c1x

m + c2x
m+1 + · · · + ck−mxk−1mod q

Case II: m > k

(a) Combiner collects the pair (f(r, swi), Shi) for i = 1, . . . , k from k partici-
pants.

(b) (m − k) public values h(i) are pooled by the combiner.
(c) The (t− 1) degree polynomial h(x) is uniquely determined using k pairs of

(f(r, swi), Shi) and (m − k) pairs of (i, h(i)) as follows.

h(x) =
k∑

i=1

Shi

k∏

j=1,j �=i

x − f(r, swj)
f(r, swi) − f(r, swj)

+
m−k∑

i=1

h(i)
m−k∏

j=1,j �=i

x − j

i − j
mod q

= S1 + S2x
1 + · · · + Smxm−1mod q
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4 Security Analysis

The share generation and secret reconstruction of our scheme is like YCH scheme
but requires less number of values to be made public. In the following section
we have analyzed the security of our scheme.

(1) In our scheme if m ≤ k then number of public values is 0. In the retrieval
process trusted combiner only chooses k or more participants. Participants
communicate themselves to find r. Finally pair of (f(r, swi), Shi) are col-
lected from at least k participants (as done in shamir method) by the com-
biner. If m > k then number of public values is (m − k) and all those are
required in the reconstruction process.

(2) If (k − 1) or fewer participants are chosen by the combiner, the computed
GCD will be r′ = r.d where (d > 1). This generates f(r′, swi) which fails
to retrieve the secrets as there is no sufficient number of pairs to generate
(k − 1) degree polynomial. Thus less than k subset of participants has no
information about the secrets. This makes the scheme a perfect secret sharing
scheme.

(3) Participants communicate with themselves to find r only. The shares Shi

hold by them are not disclosed to each other. The combiner is sent the pair
(f(r, swi), Shi), hence the value of r and swi are not available outside the
participant group. The combiner only knows the set of participants in the
secret sharing process. Polynomial is constructed by the trusted combiner
and no participant has any role (except sending the pair (f(r, swi), Shi))
in the reconstruction process. Hence there is no chance of disclosure of the
secrets by corrupted participant/s.

5 Conclusion

In this paper we have proposed a multi secret sharing scheme based on YCH
scheme. A special binary matrix is used to generate the secret shadows except
taking them random. Any subset of k or more such secret shadows generate r
as GCD but any subset of less than k such produce r.d where (d > 1) as
GCD. This r is used in the computation of values from two variable one way
function and there is no need to make r as public. When the participants pool
their secret shadows and retrieve the secret there is a chance to disclosure of the
secrets to some unauthorized persons by some corrupted participant. Assigning
a trusted combiner in our scheme removes this threat. Less number of public
values makes the scheme simple and easy to handle. In the retrieval process two
groups are assigned for two separate jobs. The group of k participants generate
r, and f(r, swi) is computed by each participant; whereas combiner retrieves the
secrets. participanti have no information about the shares of participantj , j �= i.
So no participant can get any information about secrets. Combiner also have no
information about r and swi. The main disadvantage of the scheme is the compu-
tation of swi by the dealer and the distribution of fresh swi to each participants
before a new secret sharing process. Disclosure of swi to participantj (where i
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and j are first two participants in the selected subset of participant) at the time
of GCD computation is another disadvantage of our scheme.

Cheating by the participants is a great concern in secret sharing scheme.
Development of a cheating detection and cheater identification technique over
the proposed scheme is left for future work.

References

1. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
2. Blakley, G.R.: Safeguarding cryptographic keys: Proc. Natl. Comput. Conf. 48,

313–317 (1979)
3. Chien, H.-Y., Jan, J.-K., Tseng, Y.-M.: A practical (t, n) multi-secret sharing

scheme. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 83(12), 2762–
2765 (2000)

4. Jackson, W.-A., Martin, K.M., O’Keefe, C.M.: On sharing many secrets. In: Safavi-
Naini, R., Pieprzyk, J.P. (eds.) ASIACRYPT 1994. LNCS, vol. 917. Springer,
Heidelberg (1995)

5. He, J., Dawson, E.: Multistage secret sharing based on one-way function. Electron.
Lett. 30(19), 1591–1592 (1994)

6. He, J., Dawson, E.: Multisecret-sharing scheme based on one-way function. Elec-
tron. Lett. 31(2), 93–95 (1995)

7. Yang, C.-C., Chang, T.-Y., Hwang, M.-S.: A (t, n) multi-secret sharing scheme.
Appl. Math. Comput. 151(2), 483–490 (2004)

8. Pang, L.-J., Wang, Y.-M.: A new (t, n) multi-secret sharing scheme based on
shamir’s secret sharing. Appl. Math. Comput. 167(2), 840–848 (2005)

9. Tan, X., Wang, Z.: A new (t, n) multi-secret sharing scheme. In: ICCEE 2008
Computer and Electrical Engineering, pp. 861–865. IEEE (2008)

10. Lin, H.-Y., Yeh, Y.-S.: Dynamic multi-secret sharing scheme. Int. J. Contemp.
Math. Sci. 3(1), 37–42 (2008)

11. Das, A., Adhikari, A.: An efficient multi-use multi-secret sharing scheme based on
hash function. Appl. Math. Lett. 23(9), 993–996 (2010)

12. Bai, L.: A reliable (k, n) image secret sharing scheme. In: 2nd IEEE International
Symposium on Dependable, Autonomic and Secure Computing, pp. 31–36. IEEE
(2006)

13. Radu, V.: Application. In: Radu, V. (ed.) Stochastic Modeling of Thermal Fatigue
Crack Growth. ACM, vol. 1, pp. 63–70. Springer, Heidelberg (2015)

14. Herranz, J., Ruiz, A., Sez, G.: New results and applications for multi-secret sharing
schemes. Des. Codes Crypt. 73(3), 841–864 (2014)

15. Hsu, C.-F., Cheng, Q., Tang, X., Zeng, B.: An ideal multi-secret sharing scheme
based on MSP. Inf. Sci. 181(7), 1403–1409 (2011)

16. Subha, R., Bhagvati, C.: CRT based threshold multi secret sharing scheme. Int. J.
Netw. Secur. 16(4), 249–255 (2014)

17. Dong, X.: A multi-secret sharing scheme based on the CRT and RSA. Int. J. Netw.
Secur. 2(2), 69–72 (2015)

18. Endurthi, A., Bidyapati Chanu, O., Naidu Tentu, A., Venkaiah, V.C.: Reusable
multi-stage multi-secret sharing schemes based on CRT. J. Commun. Softw. Syst.
11(1), 15–24 (2015)

19. Dastanian, R., Shahhoseini, H.S.: Multi secret sharing scheme for encrypting two
secret images into two shares. In: International Conference on Information and
Electronics Engineering IPCSIT, vol. 6. IEEE, Washington (2011)



A (k, n) Multi Secret Sharing Scheme 541

20. Chen, T.-H., Chang-Sian, W.: Efficient multi-secret image sharing based on boolean
operations. Sig. Process. 91(1), 90–97 (2011)

21. Tentu, A.N., Rao, A.A.: Efficient verifiable multi-secret sharing based on YCH
scheme. In: Cryptography and Security Systems, pp. 100–109. Springer, Heidelberg
(2014)

22. Hu, C., Liao, X., Cheng, X.: Verifiable multi-secret sharing based on LFSR
sequences. Theoret. Comput. Sci. 445, 52–62 (2012)

23. Mashhadi, S., Dehkordi, M.H.: Two verifiable multi secret sharing schemes based
on nonhomogeneous linear recursion and LFSR public-key cryptosystem. Inf. Sci.
294, 31–40 (2015)

24. Eslami, Z., Ahmadabadi, J.Z.: A verifiable multi-secret sharing scheme based on
cellular automata. Inf. Sci. 180(15), 2889–2894 (2010)

25. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. Adv. Cryptology, pp. 10–18. Springer, Heidelberg (1985)

26. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)



Robustness of Score Normalization
in Multibiometric Systems

Radhey Shyam(B) and Yogendra Narain Singh

Department of Computer Science and Engineering,
Institute of Engineering and Technology, 226 021 Lucknow, India

{shyam0058,singhyn}@gmail.com

Abstract. This paper presents an evaluation of normalization tech-
niques of matching scores on the recognition performance of a multibio-
metric system. We present two score normalization techniques, namely
modified-linear-tanh-linear (MLTL) and four-segments-double-sigmoid
(FSDS) that are found to be robust in achieving the recognition per-
formance to the optimum value. The techniques are tested in fusion of
the two face recognition methods Fisherface and A-LBP on the dataset of
uncontrolled environments. In particular, AT & T (ORL) face dataset is
used in this experiment. The performance of the MLTL and FSDS score
normalization techniques are compared with the existing normalization
techniques, for instance min-max, tanh and linear-tanh-linear (LTL). The
proposed normalization techniques show the significant improvement in
the recognition performance of the multibiometric system over the known
techniques.

Keywords: Face recognition · Multibiometric · Normalization ·
Identification

1 Introduction

The unibiometric system that is based on a single source of information suf-
fers from the problems like lack of uniqueness, non-universality, and spoofing
attacks. On the contrary, a multibiometric system harnesses relevant informa-
tion obtained from multiple biometric cues. A strategic combination of these
relevant information obtained from multiple biometric cues may overcome some
of the problems of unibiometric systems [1–3].

Our concern is to combine several unibiometric systems to achieve a multi-
biometric system that meets the characteristics of a robust system i.e., optimum
recognition accuracy and less falsifications [4–6]. In order to achieve these charac-
teristics the matching scores obtained from different unibiometric systems need
transformation and mapping before their fusion. The objective of transformation
and mapping operations that refers the normalization process in the biometric
terminology, is to supplement the information received at the matching score
level of the biometric systems, so that the performance of the combined sys-
tem improves. Therefore, score normalization is an intrinsic problem. It plays a
c© Springer International Publishing Switzerland 2015
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peculiar role in transforming and mapping the heterogeneous scores of distinct
biometric cues into a homogeneous scale.

In literature, the normalization techniques has been found congenial in trans-
forming the heterogeneous score to a homogeneous scale. An evaluation of nor-
malization techniques of matching scores in multibiometric systems has been
done by Singh and Gupta [7]. They reported the performance of linear-tanh-
linear(LTL) and four-segments-piecewise-linear (FSPL) are better than min-max
(MM), z-score and tanh normalization techniques. They also found that MM
and z-score normalization techniques are susceptible to outliers. Therefore, it
is needed to devise robust and efficient normalization technique that achieves
optimum accuracy results.

In [7], let OT
k = {rTk1

, rTk2
, ..., rTkN

} be the set of true scores of N individuals
and OI

k = {rIk1
, rIk2

, ..., rIkn
} be the set of impostor scores of those individuals

where, n = N × (N − 1) for biometric cue k. The composite set of matching
scores is denoted as Ok (i.e., Ok = OT

k ∪ OI
k and |OT

k ∪ OI
k| = N + n = N2).

The distance scores (r
′
ki

) of user i for biometric cue k can be converted into
similarity scores in the typical scale, suppose it should be [0, 1] using the formula:

rki
=

max(OT
k , OI

k) − r
′
ki

max(OT
k , OI

k) − min(OT
k , OI

k)
(1)

whereas rki
is the similarity scores of biometric cue k. Otherwise, if the distance

scores lies in the range [min(Ok),max(Ok)] then they are simply converted to
similarity scores by subtracting them from max(Ok) (e.g., max(Ok − r

′
ki

)). The
precise summarization of these normalization techniques which transform the
raw scores in the typical range of [0, 1], including double-sigmoid (DS), piecewise-
linear (PL) are rendered in Table 1.

This paper proposes two new normalization techniques and evaluated their
performance by fusing two face recognition methods in uncontrolled environ-
ments, namely Fisherface and augmented local binary pattern (A-LBP) [8–13].
The description of techniques are given in Sect. 2. A short discussion of fusion
techniques is found in Sect. 3. The effect of normalization techniques on recog-
nition performance achieved by a multibiometric system is reported in Sect. 4.
Finally, the conclusions are outlined in Sect. 5.

2 Proposed Score Normalization Techniques

This section proposes two new normalization techniques that transform hetero-
geneous scores to homogeneous scores. The new formulations of normalizing the
matching scores are named as: (i) Modified-linear-tanh-linear (MLTL) which
is formulated over tanh and linear-tanh-linear (LTL) normalization techniques
along with the conversion of linear function into sigmoid function and (ii) Four-
segments-double-sigmoid (FSDS) cleaves the regions of true and impostor scores
into four segments and map each segment using piecewise sigmoid functions.
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Table 1. Summary of the existing normalization techniques

Normalization
Formula

Technique

Min-max(MM) nki =
rki − min(Ok)

max(Ok) − min(Ok)

Z-score nki =
rki − μOk

σOk

DS
nki =

⎧
⎪⎨

⎪⎩

1

1+exp

(
−2

(
rki

−tk

tkL

)) if rki < tk,

1

1+exp

(
−2

(
rki

−tk

tkR

)) otherwise.

Tanh nki =
1
2

∗
[

tanh

{

0.01 ∗
(

rki − μOT
k

σOT
k

)}

+ 1

]

PL
nki =

⎧
⎪⎨

⎪⎩

0 if rki ≤ min(OT
k ),

1 if rki ≥ max(OI
k),

rki−min(OT
k )

max(OI
k)−min(OT

k )
otherwise.

LTL nki =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if rki ≤ min(OT
k ),

1 if rki ≥ max(OI
k),

1
2

∗
[

tanh

{

0.01 ∗
(

rki − μOT
k

δOT
k

)}

+ 1.5

]

otherwise.

FSPL nki =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 if rki ≤ min(OT
k ),

rki − min(OT
k )

tk − min(OT
k )

if min(OT
k ) < rki ≤ tk,

1 +
rki − tk

max(OI
k) − tk

if tk < rki ≤ max(OI
k),

2 if rki > max(OI
k).

2.1 Modified-Linear-Tanh-Linear (MLTL)

This normalization technique reinforce the strength of the characteristic resulted
from tanh and linear-tanh-linear (LTL) function as illustrated in Fig. 1(a). Nor-
malization function of it corresponds the non overlap region of the impostor
scores to a constant value 0 and non overlap region of the true scores to a con-
stant value 1. The overlapped region between OI

k and OT
k is mapped to a sigmoid

function using tanh and LTL evaluator as,
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(a) (b)

Fig. 1. Proposed score normalization techniques (a) Modified-linear-tanh-linear
(MLTL), and (b) Four-segments-piecewise-sigmoid (MSPS).

nki
=

⎧
⎪⎨

⎪⎩

0 if rki
< min(OT

k ),
1 if rki

> max(OI
k),

1
(1 + exp(−2 ∗ (0.1 ∗ z)))

otherwise.
(2)

where z =
rki

− μOT
k

δOT
k

; and μOT
k

, σOT
k

are respectively the mean and standard

deviation of the true matching scores of biometric cue k. The nki
is the normal-

ized scores of biometric cue k.

2.2 Four-Segments-Double-Sigmoid (FSDS)

FSDS normalization technique cleaves the regions of true and impostor scores
into four segments and map each segment using piecewise sigmoid functions as
illustrated in Fig. 1(b). A reference point tk is chosen between the overlapping
regions of OT

k and OI
k. The scores between two extremities of the overlap region

are mapped using two sigmoid functions separately in the range of [0, 1] towards
left and right of tk accordingly as,

nki
=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 if rki
< min(OT

k ),
1

(1 + exp(−2 ∗ (0.1 ∗ z)))
min(OT

k ) ≤ rki
≤ tk,

1
(1 + exp(−2 ∗ (0.5 ∗ p)))

tk < rki
≤ max(OI

k),

1 if rki
> max(OI

k)

(3)

where z =
rki

− μOT
k

δOT
k

and p = 2 ∗
(

rki
− min(OT

k )
max(OI

k) − min(OT
k )

)

− 1, the tk is the

threshold of biometric cue k.
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3 Fusion Techniques

Kittler et al. [14], have developed a theoretical framework for reconciling the
evidence achieved from more than one classifier schemes. These fusion rules are,
such as sum, max, min, and product. Two more different fusion strategies namely
strategy A and strategy B have been evaluated by Singh and Gupta in their
studies [7]. In order to use these schemes, the matching scores are converted
into posteriori probabilities conforming to a true user and an impostor. They
consider the problem of classifying an input pattern Z into one of m possible
classes based on the evidence presented by R different classifiers. Let xi be the
feature vector provided to the ith classifier. Let the outputs of the respective

Table 2. Summary of the existing fusion techniques

Fusion Rule Formula

Sum c = argmax
j

R∑

i=1

p(wj|xi)

Max c = argmax
j

max
i

p(wj|xi)

Min c = argmax
j

min
i

p(wj|xi)

Product c = argmax
j

R∏

i=1

p(wj|xi)

Fusion Strategy A [7] wk =

(
t∑

k=1

1
ek

)−1

∗ 1
ek

Fusion Strategy B [7]

dk =
μOT

k
− μOI

k√(
σOT

k

)2

+
(
σOI

k

)2

and

wk =

(
t∑

k=1

dk

)−1

∗ dk

where the fused score fi for user i is computed as follows:

fi =
t∑

k=1

wk ∗ nki ; (∀i)

where, 0 ≤ wk ≤ 1, (∀k);
∑t

k=1 wk = 1 .



Robustness of Score Normalization in Multibiometric Systems 547

classifiers be p(wj |xi), i.e., the posteriori probability of the pattern Z belonging
to class wj given the feature vector xi. Let c ∈ {1, 2, ...,m} be the class to
which the input pattern Z is finally assigned. Whereas in verification (one to
one map) the value of m is 2 and in identification (one to many) the value of m
is n − 1. The following fusion rules have been simplified by Jain et al. [15] for
computing the value of class c that are given Table 2.

4 Experimental Results

The efficacy of the proposed normalization techniques are tested on fusion of the
two face recognition methods in uncontrolled environments on AT & T (ORL)
face dataset [16]. The images of this dataset suffers from the variations, such
as pose, facial expression, and eye glasses. A total of 400 images are used to
recognize 40 distinct individuals from the dataset. The system is trained for
independent dataset composed of 40 true scores and 40 × 39 (i.e., 1560) impos-
tor scores, whereas the test image is selected randomly from the given images for
each individual and the performance is computed. The threshold value tk is com-
puted as the median of overlapped true and impostor scores. The performance
of the proposed normalization technique is analyzed using equal error rate that
is an error where the likelihood of acceptance is assumed to be same as to the
likelihood of rejection of the people who should be correctly verified. This error
is subtracted from 100 to compute the recognition accuracy. The performance of
the proposed normalization techniques are also verified by the receiver operating
characteristic (ROC) curves. The ROC curve is a two dimensional measure of
classification performance that plots the likelihood of the true acceptance rate
(TAR) against the likelihood of the false acceptance rate (FAR).

The recognition accuracies achieved by the score normalization techniques
are rendered in Table 3. The accuracy values (%) for our proposed score normal-
ization techniques i.e., FSDS (MLTL) are found better than other existing nor-
malization techniques. For example, these values are 99.62(98.11), 97.21(96.89),

Table 3. Performance accuracies (%) of normalization techniques under different fusion
criterions on AT & T (ORL) face dataset.

Methods Normalization
techniques

Accuracies(%)

Fusion techniques

Sum Max Min Product Strategy A Strategy B

Min-max 97.95 97.50 97.50 97.92 97.98 97.98

Fisherface Tanh 98.01 96.86 97.50 98.01 97.92 97.98

+ LTL 95.64 96.86 96.31 96.31 97.50 97.47

A-LBP MLTL 98.11 96.89 97.56 98.11 97.98 98.11

FSDS 99.62 97.21 97.79 99.62 99.55 99.65
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(a) (b)

(c) (d)

(e) (f)

Fig. 2. Receiver operating characteristic curves show the performance of different nor-
malization techniques of matching scores obtained from Fisherfaces and A-LBP meth-
ods using different fusion criterions on AT & T (ORL) face dataset.

97.79(97.56), 99.62(98.11), 99.55(97.98), 99.65(98.1), respectively for the fusion
techniques, such as sum, max, min, product, strategy A and strategy B.

The receiver operating characteristic curves of the proposed score normaliza-
tion techniques are plotted in accordance with their fusion techniques i.e., sum,
max, min, product, strategy A, and strategy B as shown in Fig. 2. For example
using sum rule, the proposed techniques FSDS (MLTL) render the TAR value
of 80 % (83 %) at 0 % of FAR. The TAR value reaches to 100 % at 0.5 % (1.2 %)
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of FAR for FSDS (MLTL) normalization technique. These values of TAR are
far better than the other existing score normalization techniques as shown in
Fig. 2(a). Next, under max rule of fusion the proposed technique FSDS (MLTL)
shows the TAR value of 80 % (83 %) at 0.2 % of FAR. The TAR value reaches
to 100 % at 3.3 % (4.4 %) of FAR for FSDS (MLTL) normalization technique.
These values of TAR are better than the other existing normalization techniques
as shown in Fig. 2(b).

Similarly, using min rule of fusion the proposed technique FSDS (MLTL)
renders the TAR of 83 % (87 %) at 0 % of FAR. The TAR value reaches to 100 %
at 1.9 % (2.1 %) of FAR for FSDS (MLTL) normalization technique. These values
of TAR are far better than the other existing normalization techniques as shown
in Fig. 2(c). The proposed technique FSDS (MLTL) shows the TAR value of
85 % (83 %) at 0 % of FAR using product rule of fusion. The TAR value reaches
to 100 % at 0.9 % (1.4 %) of FAR for FSDS (MLTL) normalization technique.
The reported values of TAR are better than the other existing normalization
techniques using product rule as shown in Fig. 2(d).

For fusion strategy A, the normalization technique FSDS (MLTL) shows
the TAR of 77 % (75 %) at 0 % of FAR. The TAR value reaches to 100 % at
0.8 % (1.7 %) of FAR for FSDS (MLTL) normalization technique. These values
of TAR are better than the other normalization techniques as shown in Fig. 2(e).
Same results are also reported for fusion strategy B e.g., the FSDS (MLTL)
normalization technique reported the TAR of 83 % (80 %) at 0 % of FAR. The
TAR reaches to 100 % at 0.7 % (1.3 %) of FAR for FSDS (MLTL). The reported
values of TAR are found better than the other normalization techniques using
the fusion strategy B as shown in Fig. 2(f).

The recognition accuracy results of the suggested techniques i.e., MLTL and
FSDS indicate that these score normalization techniques can contribute a pecu-
liar role in the design of a robust multibiometric system.

5 Conclusion

This paper has presented two novel techniques of score normalization namely,
modified-linear-tanh-linear (MLTL) and four-segments-double-sigmoid (FSDS).
The performance of these proposed score normalization techniques has been
evaluated and the fusion of face recognition methods Fisherface and A-LBP. The
performance of the proposed score normalization techniques have found better
than the existing min-max, tanh and linear-tanh-linear (LTL) normalization
techniques. This evaluation of score normalization techniques of matching scores
insinuates that the proposed techniques may play an important role in evaluating
the performance of a multibiometric system.
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for their partial financial support to carry out this research under the Technical Edu-
cation Quality Improvement Programme (TEQIP-II) grant.
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Abstract. The primary aim of web application development frame-
works like Django is to provide a platform for developers to realize appli-
cations from concepts to launch as quickly as possible. While Django
framework provides hooks that enable the developer to avoid the com-
mon security mistakes, there is no systematic way to assure compliance
of a security policy while developing an application from various compo-
nents. In this paper, we show the security flaws that arise by considering
different versions of an application package and then show how, these
mistakes that arise due to incorrect flow of information can be overcome
using the Readers-Writers Flow Model that has the ability to manage
the release and subsequent propagation of information.

1 Introduction

Web applications are increasingly becoming the primary curators of personal
and corporate data. Social media applications like Facebook [2], LinkedIn [3]
and Twitter [4] have transformed how users communicate with each other, while
online document suites like Google Docs [5] or Office Online [6] have made online
collaboration the norm. Much of the success of such Web applications is due to
the flexibility in allowing third-party vendors to extend user experiences.

Most of today’s web applications do not give users end-to-end security on
their data. Lampson [7] describes most of the real word problems regarding the
gold standard: authentication, authorization and auditing. This means that if a
user A decides to share a piece of important/private information with another
user B in the system, there is no way of tracking an information leak if, user B
decides to make it public or share it with C, who could benefit from it and in
turn harm or invade A’s privacy.

In the age of a social web and semantic web [8], data belonging to one user
might be accessible to an application installed by another user, introducing even
more complexity. Due to the complex interactions that are possible in collabo-
rative systems such as social networks, it is important to not only control the
c© Springer International Publishing Switzerland 2015
S. Jajodia and C. Mazumdar (Eds.): ICISS 2015, LNCS 9478, pp. 551–561, 2015.
DOI: 10.1007/978-3-319-26961-0 34
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release of information (achieved through access controls), but also to control the
flow of information among the various stakeholders involved. This is achieved
through information flow control (IFC). It is a well established fact that the
traditional discretionary access controls are prone to attacks by Trojan horses
that can cause indirect usage of data beyond the observation of access controls.
IFC which is a form of mandatory access control prevents these types of indirect
data misuse.

In this paper, we first experimentally demonstrate that current access con-
trols in web applications are prone to Trojan horses. Then, we demonstrate how
addition of simple checks using the RWFM model on the application permits
us to enforce information flow control that resist Trojan horses. Fewer than 120
lines of code was needed to achieve this, and more importantly this is all the
code needed to protect any application, thus, leading to an extremely scalable
solution.

A summary of the contributions of this paper follows:

– Established that Trojan horse type attacks are very much possible in current
security architectures.

– Provided an effective way in which practical concepts of authorization are
mapped onto the label model.

– Illustrated the simplicity and efficiency of RWFM for securing data sharing in
web applications; even the interference between two sessions of the same user
are prevented.

– Simplified policy compliance and audit trials.

The rest of the paper is organized as follows: Sect. 2 provides an overview of
current approaches to secure data sharing in web applications. Section 3 presents
a quick introduction to our RWFM model. Experimental demonstration of the
possibility of Trojan horse like attacks in an open source Django based web
application, and its mitigation using RWFM are discussed in Sect. 4. Section 5
provides concluding remarks.

2 Overview of Currently Used Access Controls in Web
Applications

Historically, access control [9–11] has been the main means of preventing infor-
mation from being disseminated. One of ways in which web development teams
handle security policies is by decoupling their business logic from their autho-
rization logic by externalizing authorization [12]. Externalizing authorization is
possible using many access control paradigms like, XACML (eXtensible Access
Control Markup Language) [13], ACL (Access Control Lists), and RBAC [10].

However, for simplicity web developers often use ad-hoc security to enforce
and implement complex policies, that leads to a lot of problems like:

– the specified policy is intertwined throughout code which is error prone and
is not scalable,
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– makes the policy of an application difficult to “prove” for audit or quality
assurance purpose, and

– causes new code to be pushed each time an access control policy needs to be
changed.

The rapid progress of Web 2.0 [14] technologies have brought in a whole
new category of web services which are content rich and allow users to interact
and share information with each other easily. In addition, web applications pub-
lish APIs that enable software developers to easily integrate existing data and
functions to create mashups which provide users enriched experience instead of
building them by themselves. A lot of research is being conducted for securing
web applications from third party extensions and mashups [15–18].

This calls for a model which is able to track and regulate information flow in
a web application. An IFC model with a consistent labelling framework unifying
both mandatory and discretionary access control is required. In the web setting,
it must also enable formal assessment of conformance to security and privacy
policies. Further, as advocated by Woo and Lam [30], and Abadi [29], the label
must capture the entire essence of the transaction history in a succinct manner
to cater to the practical performance.

3 Readers-Writers Flow Model

The first mathematical model for tracking information flow was given by Denning
[26]. The lattice model was the first step in the right direction to understand
the dynamic nature of information flows. A lot of work has been done in this
field and a large body of literature has sprung up [19–22], yet information flow
based enforcement/implementation mechanisms have not been used widely in
the industry. Steve Zdancewic [23] presents the challenges for practical imple-
mentation of IFC.

In this section, we introduce the Readers-Writers Flow Model (RWFM) [27,28]
which is a novel model for information flow control. RWFM is obtained by recasting
the Denning’s label model [26], and has a label structure that: (i) explicitly
captures the readers and writers of information, (ii) makes the semantics of
labels explicit, and (iii) immediately provides an intuition for its position in the
lattice flow policy.

Definition 1 (Readers-Writers Flow Model (RWFM)). RWFM is defined as a
five-tuple (S,O, S × 2S × 2S , (∗,⊇,⊆), (∗,∩,∪)), where S and O denote the set
of subjects and objects in the information system respectively, S × 2S × 2S is the
set of security labels, (∗,⊇,⊆) denotes the can-flow-to ordering amongst labels,
and (∗,∩,∪) denotes the label combining operator.

The first component of a RWFM label denotes the ownership of information,
second component denotes the permissible readers of information, and third
component denotes the set of principals that influenced the information. For
example, the RWFM label of Alice’s private key would be (S, {A}, {A,S}), indi-
cating that S created it, A is the only permissible reader of it, and both A and
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S have influenced it, where A denotes Alice and S denotes key server/certificate
authority.

Theorem 1 (Completeness). RWFM is a complete model, w.r.to Denning’s lat-
tice model, for studying information flows in an information system.

RWFM follows a floating-label approach for subjects, with (s, S, {s}) and
(s, {s}, S) as the “default label” and “clearance” for a subject s respectively,
where S is the set of all the subjects in the system. RWFM follows a static labelling
approach for objects, with the exception of downgrading, which is allowed to
change the label of an object by adding readers.

RWFM provides a semantics of secure information flow through Information
Flow Diagram (IFD), which presents significant advantages and preserves useful
invariants. IFD is a state transition system defined as follows:

Definition 2 (State of Information System). State of an information sys-
tem is defined by the triple (S,O, λ) denoting the set of current subjects and
objects in the system together with their current labels.

State transitions of an information system are defined by RWFM considering
the need for supporting the following operations: (i) subject reads an object,
(ii) subject writes an object, (iii) subject downgrades an object, and (iv) subject
creates a new object.

RWFM describes the conditions under which an operation is safe as follows:

READ Rule. Subject s with label (s1, R1,W1) requests read access to an object
o with label (s2, R2,W2).
If (s ∈ R2) then

change the label of s to (s1, R1 ∩ R2,W1 ∪ W2)
ALLOW

Else
DENY

WRITE Rule. Subject s with label (s1, R1,W1) requests write access to an
object o with label (s2, R2,W2).
If (s ∈ W2 ∧ R1 ⊇ R2 ∧ W1 ⊆ W2) then

ALLOW
Else

DENY

DOWNGRADE Rule. Subject s with label (s1, R1,W1) requests to downgrade
an object o from its current label (s2, R2,W2) to (s3, R3,W3).
If (s ∈ R2 ∧ s1 = s2 = s3 ∧ R1 = R2 ∧ W1 = W2 = W3 ∧ R2 ⊆ R3 ∧
(W1 = {s1} ∨ (R3 − R2 ⊆ W2))) then

ALLOW
Else

DENY



Enforcing Secure Data Sharing in Web Application 555

CREATE Rule. Subject s labelled (s1, R1,W1) requests to create an object o.
Create a new object o, label it as (s1, R1,W1) and add it to the set of objects O.

Given an initial set of objects on a lattice, IFD accurately computes
the labels for the newly created information at various stages of the
transaction/workflow.

4 Securing Information Flow Among Users in Web
Applications with RWFM

In this section, we illustrate simultaneously the simplicity and the power of
RWFM for controlling and tracking information flow among users in web appli-
cations. Simplicity of RWFM enables an intuitive mapping of actions in the
application to the operations of read and write in the abstract model.

For demonstrating the information flow control imposed by RWFM we chose
an open source web application called DBpatterns [24]1 written in python using
Django, a high-level Python Web Framework. We choose Django because it
encourages rapid development, has a clean pragmatic design and is very pop-
ular among web developers. DBpatterns is an application that allows users to
create, share and explore database schemas on the web. Further, this applica-
tion supports features like collaboration with remote users, sharing information
with fellow users, and ability to make information public or private, and also
embodies a RESTful design by giving API endpoints for accessing data and cer-
tain functions. This fits well with the problem discussed before. By analysing
the flow of information in this system and applying the RWFM, we show that a
series of attacks that exists in the current architectures are resolved and propose
that this model is easy to use and can be integrated with any web application.

4.1 Overview of DBpatterns

DBpatterns is web application which helps users in creating, sharing and explor-
ing database schemas or models. The main features of the application are:

– User account creation and user authentication.
– User can explore database schemas which are public using public feed.
– User has the ability to fork public viewable schemas created by other members.
– User can create schemas and can set visibility to either public or private.
– User can add collaborators for a schema, and can grant view, edit permission

or both.
– Users receive notification if they have been assigned any access in private or

public schema documents.

1 DBpatterns is a service that allows you to create, share, and explore database models
on the web. Uses Django, Tastypie, Backbone and MongoDB.
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Access Control Logic in DBpatterns. The access control policy is written
using ad-hoc security policies. The main access control related definitions are
stored in the database with the schema document itself. It consists of,

– isPublic is a boolean value which specifies the visibility of the document.
– Assignees is an array which holds the assigned users for the document with

their access permission like canView or canEdit.

Using these two attributes, access control checks are implemented throughout
the application. This kind of implementation common in many web applications.

We have studied the access control logic implementation and experimented on
possible attacks that might occur targeting the application’s lack of controlling
information flow. Section 4.2 gives a detailed account for the possible attack
scenarios.

4.2 Attack Scenarios in DBpatterns

Here we give a brief summary of the kind of attacks that were carried out on
the DBpatterns web application.

Let the users of the system be Jack, Alice and Bob.

Attack 1 (Read - Attack). Jack shares a document, say D1, with Alice. Alice
forks D1 and makes a local copy, call it D2. Alice now owns D2 and can set access
restrictions on it. Alice gives read permission on D2 to Bob. This way Jack will
be unaware of an information leak and Bob who did not have authorization to
view D1 can now read D2 which essentially has the same information as D1.
These kind of attacks that bypass access control logic are called Trojan horses.
The screenshots of attack 1 are depicted in Fig. 1.

Note that the attacks described in this section are possible on any discre-
tionary access control mechanism, and are not specific to this web application.

4.3 Mitigating the Attacks Using RWFM

The flaws discussed in Sect. 4.2 exist in most web applications. Using an IFC
based approach, we have successfully implemented RWFM in conjunction with
the existing access control logic of DBpatterns and our implementation of RWFM
will help web developers mitigate such attacks and also give them a clear picture
of both subject and object labels at any given point of time.

RWFM automatically labels subjects and objects as the information flows
in the system, given the initial state of DBpatterns application. Using the read,
write, and create rules of RWFM, our implementation efficiently tracks informa-
tion flow for all possible user interactions with the application and successfully
resists the attacks presented in Sect. 4.2.

According to OWASP Top 10 Security Vulnerabilities of 2013 [25], Broken
Authentication and Session Management was ranked second, our implementation
takes into account, user sessions and protects the application from IFC related
attacks through session fixation and manages multiple sessions from the same
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(A)

(B)

(C)

Fig. 1. (A) Alice grants Bob read access to document D2. (B) Bob logs into the appli-
cation, and (C) views schema document D2.
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(A)

(B)

Fig. 2. (A) Information flow diagram for attack 1. (B) RWFM mitigates attack 1, by
not showing D2 in Bob’s view.
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user. In our implementation on DBpatterns, user sessions are treated as subjects,
and documents are treated as objects.

Notation: u1, u2 and u3 denote Jack, Alice, and Bob respectively. S =
{u1, u2, u3} denotes the set of all the users of the system. Entity (subject or
object) e with label l is denoted el.

Information flow diagram for the scenario of attack 1 and its mitigation by
RWFM is depicted in Fig. 2. Note that in the last transition in Fig. 2(A), u3 is not
allowed to read D2, because u3 is not a member of readers of D2 (second com-
ponent of its label). The screenshot in Fig. 2(B) shows that our implementation
denies user u3 view of D2. Compare this to the original application screenshot
in Fig. 1(C), where u3 is permitted to view D2.

4.4 Discussion

In [14], authors show how cross-domain access to sensitive information can be
enabled by using IFC on the client side. However, their approach forbids propaga-
tion of sensitive information which limits its usability. Their technique facilitates
DOM (Document Object Model) operations and function calls within scripts at
the add-on level, thus, enabling effective control over existing channels for cross-
domain communication. A further limitation of their approach is that users will
have to label and identify information important to them, thus resulting in a
huge burden.

Client side mashup security is discussed in [16]. A security lattice of syntactic
labels is used to label the classified objects, where an object’s label corresponds
to the origin from which it is loaded, and are used to track information flow
within the browser. Their approach supports usage of a range of techniques,
such as static and/or dynamic analysis to ensure that information from one origin
does not flow to another one unless the information has been declassified. Using
syntactic labels and purely discretionary downgrading rules leads to corrosion of
flow lattice.

Salient Features of RWFM Implementation are:

1. Our implementation complements the existing access control logic.
2. No major code revisions have to be done for implementing this model.
3. Our implementation does works with any access control mechanism.
4. Subject and Object labels can be accessed at any point of time, this can play

a vital role during a security audit.
5. RWFM accurately handles dynamic label changes automatically.
6. This model can scale on par with any web application project with minimal

development overhead.

5 Conclusions

In this paper, through a case study, we have clearly demonstrated the possible
attacks that might occur in web applications if we don’t follow proper infor-
mation flow control, and demonstrated how these can be overcome easily by
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using the RWFM model. Based on the experiences of this work, we plan to build
a general-purpose re-usable IFC implementation to protect information flow in
web applications developed using Django, such that any Django web application
developer with the knowledge of information entering and leaving the objects in
the system can easily and automatically enforce proper information flow restric-
tions by invoking this package at appropriate points in the application.
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Abstract. Security is a major concern for a large fraction of sensor net-
work applications. Douceur first introduced the notion of Sybil attack [5],
where a single entity (node) illegitimately presents multiple identities. As
the nodes in sensor networks can be physically captured by an adversary,
Sybil attack can manifest in a severe form leading to the malfunction of
basic operational protocols. It is also pointed out in [5] that Sybil attack
could be prevented if each honest identity possesses an unforgeable cer-
tificate issued by a trusted authority. The identity is mandated to pro-
duce the certificate as a proof of authenticity before it takes part in any
network activity. Since ordinary certification schemes are not suitable for
sensor networks due to some typical incompatibility features, we propose
a symmetric key based threshold certification scheme specially designed
to defend Sybil attack in sensor networks.

Keywords: Sybil attack · Symmetric key cryptography · Threshold
scheme · Secret share · Certificate

1 Introduction

Sensor networks are now being widely deployed in planned or ad hoc basis to
monitor and protect different targeted infrastructures including life-critical appli-
cations such as wildlife monitoring, military target tracking, home security mon-
itoring and scientific exploration in hazardous environments. Unlike in general
data networks, the nodes of sensor networks may be physically captured by an
adversary and thus can induce different modes of harmful attacks in addition
to active and passive eavesdropping. This typical feature also makes the design
of cryptographic primitives for sensor networks extremely challenging. Douceur
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first introduced the notion of Sybil attack [5], where a single entity illegitimately
claims multiple identities. Physically captured nodes claiming superfluous mis-
behaving identities could control a substantial fraction of the system leading to
malfunction of basic operational protocols including routing, resource allocation
and misbehavior detection. An excellent taxonomy of Sybil attacks in sensor net-
works and their detrimental effects are presented in [9], along with some defense
mechanisms.

Sybil attack could be prevented if each honest identity possesses an unforge-
able certificate issued by some trusted Certifying Authority (CA) and it is man-
dated to produce that certificate as a proof of authenticity before the identity
takes part in any network activity. This condition implies that for inducing Sybil
attack the adversary has to necessarily forge valid certificates. It is also clearly
pointed out in [5] that the existence of a logically trusted CA is a must to defend
Sybil attack except under extreme and unrealistic assumptions. But certification
schemes designed for general purpose networks are not suitable for sensor net-
works due to some typical incompatibility features. So, our basic motivation is
to suitably design a certification scheme for sensor network so that it can defend
Sybil attack.

In public key cryptography, forgery of identity by fake nodes is prevented by
having a trusted CA that issues a digital certificate to each node. The certificate
is a node’s identity and its public key information signed by the secret key of
the CA. Each node in the network can verify the validity of any other node’s
certificate with the CA’s public key. Typically, the nodes of a sensor network are
resource constrained devices in terms of storage, computation and transmission
power as they are battery powered. A public key based scheme requires expensive
computation and long message transmission that quickly depletes the battery of
the sensor nodes. On the other hand, symmetric key based schemes are orders
of magnitude cheaper and thus are well suited for sensor network applications.

Another typical property of sensor networks that creates trouble in providing
security services is its inherent intrusion model. There can be physical capture
of the nodes by an adversary in addition to active or passive eavesdropping. So,
a centralized trusted CA is not suitable, since the CA node could be physically
captured leading to a single point of failure. Therefore, aim should be to logically
distribute CA’s functionality uniformly to each sensor node in the network. Thus
we choose to adopt a (t, n) threshold technique for our certification scheme. Any
t out of n nodes in the sensor network together can perform the functions of a
trusted CA and provide individually verifiable certificate for each honest identity
in the network. The network continues to function correctly as long as number
of captured nodes are less than t.

Again, nodes in sensor networks are generally deployed in large numbers and
can join or leave the network on the fly at any time. So while designing the certifi-
cation scheme we need to make sure that the scheme is scalable and also robust in
a dynamic network. Finally, as a node needs to get its certificate validated every
time it initiates some network activity, the validation procedure should be reason-
ably fast so that the network performance is not too compromised. However, the
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scheme can afford to be a bit expensive while generating such certificates, as this
activity is carried out infrequently.

Summarizing all the points, what we are looking for is a symmetric key based
threshold certification scheme with some special features for sensor networks. In
this paper, we propose realization of such a scheme. The organization of the
paper is as follows. Section 2 describes a summary of the existing works and
Sect. 3 presents the basic concepts and terminologies. Section 4 illustrates the
proposed certification scheme along with an evaluation of its effectiveness with
respect to typical attack model. And finally Sect. 5 concludes this work.

2 Related Work

Sybil attack was first introduced by Douceur in [5], wherein a direct valida-
tion method of a node’s identity, based on resource testing, was proposed. The
basic idea of the scheme is to estimate the resource (e.g., computation, storage
and communication) associated with each identity and thereby deciding whether
each identity possesses an exclusive hardware piece. Though the scheme works
fine for general P2P networks, it is not appropriate for sensor networks where
an adversary may bring in very powerful devices, in terms of computation, stor-
age and communication, to defeat the scheme. Karlof et al. analyzed different
attacks including Sybil attack in [6] for wireless sensor network and described
some countermeasures against them. In their scheme each node is provided with
a unique symmetric key which it shares with a trusted base station. Two nodes
then verify each other’s identity using symmetric Needham-Schroeder [1] proto-
col. The solution thus relies on the existence of a trusted third party. However,
there are some attacks [3] against Needham-Schroeder protocol in which case
the proposed solution fails.

Wang et al. [7], introduced the concept of trust graph in mobile ad hoc net-
work, which facilitates establishing trust relationship between communicating
nodes and considers the possibility of having heterogeneous CAs. Assumption
here is that if CAi trusts CAj then CAi also trusts identities certified by CAj .
It is interesting to note here that this assumption and mechanism can safeguard
against Sybil attack as long as none of the CAs is compromised. Their scheme
also demands each node to have moderately high storage and computational
capability and also charges high communication cost and thus remains unsuit-
able for sensor networks. Newsome et al. in their work [9] established a taxonomy
of different kinds of Sybil attack and have provided a series of methods including
radio resource testing, key validation for random key pre-distribution, position
verification and registration, to verify whether a node’s identity is a Sybil iden-
tity.

Kong et al. proposed a public key cryptography based distributed threshold
certification scheme [4] which establishes trust relationship between communicat-
ing nodes via unforgeable, renewable and globally verifiable certificates carried
by each node in the network. Though not explicitly mentioned in their work, it
can stand against Sybil attack, as otherwise attacker has to guess valid certificate
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of the claimed identity. But, their work is based on public key cryptography and
targeted to meet the needs of wireless ad hoc networks. It does not readily suit
well in resource constrained sensor networks. [8,11] also talks about defending
sybil attack using public key cryptography and authentication mechanism and
in these solutions signatures are combined with digital signatures. But in sensor
networks, it is difficult to deploy PKI since there is no gurantee of the pres-
ence of appropriate infrastucture and also individual nodes are computationally
resource constrained devices.

Zhang et al. in [10] have proposed an identity certificate based scheme to
defend against Sybil attack in sensor networks. Their method associates each
node’s identity with an unique identity certificate, where Merkle hash tree has
been used as the basic means of computing identity certificates. Main drawback
of the scheme is that it it is not scalable as it does not allow nodes to join the
network on the fly because of huge computational overhead. Method also can
not stand against Sybil attack launched by colluding nodes. We follow a similar
line as that of Kong et al. to prevent Sybil attack and propose a symmetric key
cryptography based threshold certification scheme specially designed for sensor
networks.

3 Preliminaries

We first define some of the pivotal concepts that will be used frequently in the
subsequent sections. We also point out some terminologies essential to properly
qualify them.

3.1 Symmetric Key Based Certificates

The concept of certificates is well established in asymmetric key cryptography.
On the other hand, in symmetric key cryptography the concept of signature is
hazy. We can view a certificate in symmetric key cryptography domain as some
unforgeable object provided by the trusted CA to each entity that validates only
the authenticity of its identity. But the problem is, once a node X produces its
certificate to some other node Y for validation, unlike in public key domain, Y
can pretend as identity X to some other node Z with X’s certificate and get
successfully validated. So, it is customary to get this validation done with partial
information about the certificate, i.e., X only produces the partial information
that is of interest to Y and Y validates based on that. This prevents Y to pretend
as X, since Y does not know about the partial information of X’s certificate that
is of interest to Z. Since it turns out to be a partial validation of certificate, the
scheme needs to ensure that it is reasonably improbable for some fake nodes
to convince others. One more problem is that every time a particular node X
is validated by different nodes A1, A2, . . . , Ak, some partial information about
the certificate is leaked and thus the whole certificate of X would be revealed
in course of time. The scheme can stand in spite of such a phenomenon, if
refreshment of certificate related information in regular interval be possible.
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3.2 Threshold Certification Scheme

Nodes of a sensor network can be physically captured and thus keeping a central-
ized CA may lead to single point of failure. Thus our basic aim is to distribute
the CA’s functionality uniformly among each of the n nodes of the sensor net-
work (in terms of some “secret-shares” provided by a trusted Dealer) so that,
any s, s ≥ t, nodes together can issue valid certificates to new nodes. We would
like to go one step further to rule out the existence of a central trusted Dealer
who provides secret-shares to each node. In fact, the functionality of the trusted
Dealer also would be uniformly distributed amongst the nodes with a similar
condition, i.e., any s, s ≥ t, nodes together can issue valid secret-shares to new
nodes. These two features qualify the certification scheme to be truly distributed
and self-sufficient. Let us define a few terms before we proceed further.

1. Identity Certificate (IC) and Secret Share (SS): Each working node
contains both of these components. IC is basically an analog of certificate in
the symmetric key domain. Each working node in the sensor network holds
an IC and other nodes rely on those ICs to validate the authenticity of the
nodes. The sole purpose of SS is to validate and generate ICs.

2. Partial Certificate (PC) and Partial Share (PS): PC and PS are the
partial information about a node’s IC and SS. A requesting node receives PC
(or PS) from t other nodes, and can uniquely construct its IC (or SS) with
those t different PCs (or PSs). The helping nodes construct the PCs (or PSs)
for the requesting node using their respective SS (or IC) without revealing
the SS (or IC) itself.

3. Per Node Certificate Information (PNCI): As each working node con-
tains both IC and SS as its certificate related information, we will refer them
together as PNCI. The components IC and SS are complementary to each
other as one validates and generates the other.

Basic purpose of a certification scheme is to provide a mechanism for each node
to validate others certificate (IC) individually. But, since our certification scheme
will use the notion of threshold cryptography in the symmetric key domain, so
following additional points are required to be addressed.

1. Any s, s ≥ t, out of n honest nodes should be able to provide a
unforgeable certificate to a requesting node: This is to replace a central
CA from the network and distribute the functionality of CA uniformly across
the nodes so that any t out of n nodes together can perform like CA whereas
less than t nodes can not perform the same.

2. Any s, s ≥ t, out of n working nodes should be able to provide a
SS to a new node: This feature rules out the existence of a central trusted
Dealer who provides secret shares to each node. Rather, the functionality of
the Dealer is also uniformly distributed across the nodes. Here also the same
restriction is enforced, i.e., any t out of n nodes cumulatively can perform
like a Dealer whereas less than t nodes can not.
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3. Any t out of n working nodes should be able to initiate a PNCI
refreshment phase: As any (t, n) threshold scheme can withstand at most
(t − 1) number of physical capture of the nodes. It is necessary to refresh the
PNCI at regular intervals. Given an unbounded time-window, an adversary
can gradually break into the network and physically capture t or more nodes.
On the other hand, a regular PNCI refreshment policy leaves small quantum
of time for the adversary to physically capture t or more nodes within that
refreshment interval. This triggers the need to tune the refreshment interval
that suits a particular sensor network the best.

4. The requesting node should be able to verify the received PCs and
PSs individually: This is to ensure that the requesting node should be able
to verify the correctness of the PC or PS received from each of the nodes
of a chosen t member coalition for constructing its IC or SS. Otherwise,
the requesting node could be cheated in the process leading to incorrect
construction of IC or SS and will not be reliable and functional.

4 The Certification Scheme

Before describing the scheme, we will list down the set of underlying assumptions
which are kept at a very minimal and reasonable set, as mentioned below.

1. Every node has in its possession a unique identification (ID) which we assume
to be tamper-resistant. It is reasonable to assume that the IDs are unique
even though the nodes are manufactured by different vendors.

2. Depending on the spatial density of nodes and vulnerability of the deployed
region, the threshold parameter t can be chosen to make sure each node in
the sensor network has at least t number of 1-hop neighboring nodes. Thus
a new node can choose a group of t 1-hop away working nodes around it, to
construct its SS and IC.

3. There is no man-in-the-middle attack. Since there are standard cryptographic
primitives to handle it independently.

Our scheme is based on an extension of Shamir’s threshold secret sharing
scheme [2]. Unlike using (t − 1) degree single-variate polynomial, here we use a
bi-variate polynomial of degree (t − 1) both in x and y as the pivotal element of
the scheme.

f(x, y) =
t−1∑

i=0

t−1∑

j=0

aijx
iyj(mod p),

where p is a large prime and aijs are randomly chosen from Z
∗
p for all i, j. We

do not require the bi-variate polynomial to be symmetric unlike many other
cryptographic protocols [12].

Each working node k (i.e., node having ID = k, 1 ≤ k < p) in the network
holds two (t − 1) degree single-variate secret polynomials, namely Sk(x) and
Ck(y), acting respectively as SS and IC, and are defined as Sk(x) = f(x, k) and
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Ck(y) = f(k, y). Note that, since f is not symmetric, so Sk(j) �= Ck(j), but
Sk(j) = Cj(k) = f(j, k). Sk(x) and Ck(y) are both single variate polynomials of
degree (t − 1). Hence each node has to store t coefficients for each of SS and IC,
i.e., associated space complexity per node is O(t).

It is worth observing that the family of ICs and SSs form a grid like structure.
Any t number of SS can provide t number of points on a particular IC and
thus can uniquely construct it by Lagrange’s interpolation method, since each
IC is a (t − 1) degree single variable polynomial. The argument equally holds
to justify that any t number of IC can uniquely construct any SS. These two
fundamental properties are explored to get rid off trusted CA and Dealer. Note
that (t, n) threshold scheme works independently only when there are already
at least t working nodes. Thus initializing the first t nodes has to be carried out
under human supervision. We will now show how the scheme serves the set of
requirements spelt out so far and present the associated security features.

4.1 Certificate Should be Individually Verifiable

Suppose, an honest node A wants to verify node B’s certificate. Node A first
calculates SA(B) and then asks node B to furnish CB(A). Node A accepts node
B’s certificate if CB(A) matches with SA(B), since SA(B) = CB(A) = f(B,A).
Otherwise A rejects B’s certificate. Here node A verifies node B’s certificate at
y = A only and thus the verification process is very fast.

On verifying the value of B’s IC at a single point A accepts the fact that
B actually possesses the appropriate IC, namely CB(y). But it really does not
weaken the scheme as Ck(y)s, 1 ≤ k < p, are derived from the original random
bi-variate polynomial f(x, y) and thus CB(A) can assume any value in Z

∗
p with

uniform probability. Thus B can convince A, without really possessing the IC,
namely, CB(y), with probability 1

p−1 , since |Z∗
p| = p − 1. The probability is

reasonably low as it decreases exponentially with the size of p. This remains
true even if up to (t − 1) misbehaving nodes form a coalition transparently and
try to convince node A that they possess B’s IC (without really having it).
Since the coalition can at most manage to get (t − 1) different points on CB(y)
with their respective SSs, they can not uniquely construct CB(y). In fact the
coalition gets no information about the value of CB(A). So the probability of a
valid certificate being forged by a group of (t − 1) misbehaving nodes does not
improve and the scheme justifies it to be a perfect1 scheme.

Another important criterion is how long an honest node can get its IC vali-
dated before the IC itself is revealed. An honest node would delete the PC infor-
mation once the validation is over, misbehaving nodes might present different
identities to a targeted node and try to accumulate as much partial informa-
tion (i.e., points on its IC polynomial) as possible about its IC. So as soon as
the misbehaving nodes together accumulate t different points on the IC, they

1 A (t, n) threshold scheme is perfect if the probability of guessing some secret with
(t − 1) or less number of partial information about the secret is identical to the
probability of guessing the secret with no information.
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can uniquely construct it using Lagrange’s interpolation method. So, our scheme
exhibits (t − 1)-tolerance against the IC exposure problem. Let us estimate how
many successful validations a node’s IC can withstand before it is suspected to
be exposed.

We model the scenario with the following assumptions:

1. If node X wants to talk to node Y , it is node X who has to get its certificate
validated by Y . This is a realistic scenario and it rules out the possibility
for the misbehaving nodes to take initiative to get some honest nodes IC
exposed.

2. Number of already captured nodes is (t − 1) and they transparently form a
coalition so that they are indistinguishable.

Now the probability of an honest node’s certificate getting validated by some
captured node is t−1

n−1 . Let us now calculate the probability Pi that an honest
node’s certificate is getting exposed by the captured nodes at the ith, i ≥ t,
validation of its certificate. Pi can then be viewed as, an honest node’s IC being
validated by captured nodes (t − 1) times (in any order) in the first (i − 1)
Bernoulli trials followed by the ith validation once again by some captured node.
Hence, from binomial probability distribution it follows,

Pi =
(

i − 1
t − 1

)(
t − 1
n − 1

)t−1(
n − t

n − 1

)i−t(
t − 1
n − 1

)

Hence, the expected Number of Validations (NoV) required to expose an
honest node’s certificate is given by,

E(NoV ) =
∞∑

i=t

i.Pi =
∞∑

i=t

i

(
i − 1
t − 1

)(
t − 1
n − 1

)t(
n − t

n − 1

)i−t

The series evaluates to
(

t
t−1

)
(n−1) = Θ(n), for t ≥ 2. As nodes of the sensor

networks are generally deployed in a large scale, typically the value of n is pretty
huge. Thus the worst case analysis illustrates that an honest node can safely get
its IC validated, even if misbehaving nodes are around, for a reasonably large
number of times in a typical scenario.

4.2 Any t Out of n Nodes Should be Capable to Generate an IC

We assume that SS is the first thing that is given to a new node followed by
IC. So, when a node requests for IC, it already holds the SS. Let, B be a new
node and Ais, 1 ≤ i ≤ t − 1, be the one-hop neighbors jointly issuing IC to
B, i.e., they work together to help node B construct CB(y). On verifying the
authenticity of the node B, each node Ai, 1 ≤ i ≤ (t−1), individually calculates
the PC for B, namely, SAi

(B) and sends it to the new node B as their respective
contribution and B itself calculates SB(B) with its SS. Node B thus receives t



570 S. Banerjee et al.

ordered pairs (Ai, SAi
(B)), 1 ≤ i ≤ (t − 1) and (B,SB(B)). Since SX(B) =

CB(X), these ordered pairs all correspond to different points on B’s IC, namely
CB(y). Knowledge of t points on a (t − 1) degree single variable polynomial
is sufficient to construct the polynomial uniquely using Lagrange’s interpolation
method. Thus B can successfully generate its IC with these t ordered pairs. Note
that, (t− 1) other nodes are needed, since B can generate one PC for itself with
its SS. But the scheme remains a (t, n) threshold scheme as the requesting node
also participates in the process with other (t − 1) helping nodes.

Since t many different points on the polynomial CB(y) are necessary to
uniquely construct it and a fewer number of points simply do not reveal any
information about the certificate - it is not possible for any coalition of (t − 1)
or fewer nodes to issue a certificate to a new node as well as to guess other’s
certificate. On the other hand, B can not guess SAi

(x)s also with the received
PCs, due to same reason as presented in Sect. 4.1. This certificate issuing scheme
clearly demonstrates that it can cope up with the scenario where nodes of a sen-
sor network join and drop out on the fly. The certificate construction operation
is slightly expensive but happens very infrequently.

4.3 Any t Out of n Nodes Should be Capable to Generate a SS

When a node requests for SS, it does not hold any certificate related information
at this time and so has to rely on t other nodes to help it construct its SS. Let,
B be a new node and Ais, 1 ≤ i ≤ t, be the one-hop neighbors jointly issuing
a SS to B, i.e., they will work together to help node B calculate SB(x). The
process of constructing SS is similar in nature with creation of IC. Here on
verifying node’s authenticity, each node Ai, 1 ≤ i ≤ t, individually calculates the
PS for B, namely CAi

(B), and sends it to the new node B as their respective
contribution. Thus node B receives t ordered pairs (Ai, CAi

(B)). These ordered
pairs all correspond to t different points on the SS of B, namely SB(x), since
CAi

(B) = SB(Ai). Now as SB(x) is a (t − 1) degree single variable polynomial,
B can uniquely construct it using Lagrange’s interpolation method.

Since t many points on the polynomial SB(x) are necessary to uniquely con-
struct it, it is impossible for any coalition of (t−1) or fewer nodes to issue SS to
a new node and to guess other’s SS as well. Here also, B can not guess CAi

(y)s
with the PS received, due to same reason as presented in Sect. 4.1. This mech-
anism also can cope up with the situation where the nodes join or leave on the
fly, as long as the number of working nodes are at least t. This operation also
happens very infrequently, when some new node joins the network and at the
beginning of each PNCI refreshment interval.

4.4 Any t Out of n Nodes Should be Able to Start PNCI
Refreshment

Let, Ais, 1 ≤ i ≤ t, be the t nodes who would like to initiate a PNCI refresh-
ment phase. They would securely form a coalition under human supervision
and randomly choose another bi-variate polynomial of degree (t − 1) in both
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x and y, say, fref (x, y) over Z
∗
p as the pivotal element. Then each node of

the coalition calculates its SS and IC with the original restriction SAi
(x) =

fref (x,Ai) and CAi
(y) = fref (Ai, y) and becomes refreshed. Each of the remain-

ing nodes then behaves as a new node and gets its SS and IC from already
refreshed nodes in the same way as described in Sects. 4.2 and 4.3.

4.5 PC and PS Should be Individually Verifiable

As the authenticity of a new node can be verified by some out-of-bound physical
proof or biometric measures by the group of t member it chooses, the new node
in turn can also adopt the same strategy to verify whether each member of
the coalition is also authentic, i.e., they would not cheat while giving their
contributions to the new node.

The performance of the certification scheme is dependent on the selection of
the threshold parameter. The parameter t has to be judiciously chosen, since
its choice influences a number of important components of the scheme like -
(i) per node storage requirement; (ii) computation cost while creating IC and
SS; (iii) expected number of times an honest node can get its IC validated, before
the IC itself is compromised and (iv) PNCI refreshment interval.

5 Conclusion

In this paper we have justified that the certification scheme that best suits
for sensor networks to defend Sybil attack should be based on symmetric key
and threshold cryptography. In fact we have defined certificate in the symmet-
ric key cryptographic domain and presented a realization of a symmetric key
based (t, n) threshold certification scheme specially designed for sensor networks.
A few important issues related to the proposed certification scheme have also
been addressed. The effectiveness of the proposed scheme is also quantitatively
measured under typical attack model. We have plan in future to simulate the
proposed certification scheme to evaluate its performance in a parameterized
setting.
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Abstract. Data security means protecting data, such as a database, file,
from destructive forces and the unwanted actions of unauthorized users.
Since the use of internet is getting popular day by day, data security for
efficient and reliable communication has become an important issue. This
is the first step towards the introduction of modern day cryptography,
steganography and watermarking. Discrete Wavelet Transform Difference
Modulation (DWTDM) can be used to embed data by adjusting the pixel
values and thus the data can be hidden and the human eye will not be
able to notice the hidden text in the cover image. This paper explains
the DWTDM with some modified strategies in order to minimize the
distortion of the stego image from the cover image. We also show that
our work withstand the statistical attacks as well as the benchmark like
stirmark.

Keywords: Data hiding · Discrete wavelet transformation · Frequency
domain · Seed matrix · Steganography

1 Introduction

Digital data transmission is now posing serious problems as the transmitted data
can be retrieved by any third party for exploitation purpose. So, some efficient
techniques are required to be developed in order to embed these data to be
transmitted through a medium so that no third party is able to retrieve this
data. Cryptography plays an important role in this field of security. Along with
it, a new technique steganography throws challenges towards data security. Data
security techniques like cryptography, steganography, digital watermarking has
gained its importance over the time due to the increasing demand of securing
the data to be transmitted.

Cryptographic methods try to protect the data to be transmitted simply
by modifying it whereas Steganography deals with hiding the data to be trans-
mitted in such a way so that only the sender and the receiver know about the
c© Springer International Publishing Switzerland 2015
S. Jajodia and C. Mazumdar (Eds.): ICISS 2015, LNCS 9478, pp. 573–582, 2015.
DOI: 10.1007/978-3-319-26961-0 36
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existence of the message [9]. Hiding messages in the pixel intensities of an image
has been popular. If these messages are embedded in selective part of the image,
particularly in the places where a large change in intensity occurs. This ensure
minimal visual disturbance [10]. This basic idea is based on the lattice spin glass
model of Ising of physics [4]. But these data security methods can be more useful
when applied in the transformation domain. One such method is called Discrete
Wavelet Transformation (DWT). The DWT is a linear transformation that oper-
ates on a data vector whose length is an integer power of two. It transforms the
data vector into a numerically different data vector of the same length [3]. It is
a tool that separates data into different frequency components, and then studies
each component with resolution matched to its scale.

For a long period of time, Least Significant Bit (LSB) substitution has been
in use for hiding the secret message to be transmitted. In LSB substitution, the
least significant bit of the pixel is modified as per the bits of the secret message in
a certain pattern. Here the LSB of each pixel of the cover image is replaced with
the binary bits of the secret message. This ensures that the change in each pixel
is minimum since the LSB is substituted and hence restoring the quality of the
image [11]. Hossain et al. have proposed a method on pixel value differencing and
LSB substitution. This proposed method increases the embedding capacity and
decreases the image degradation making it a better method for hiding data [6].
Chan et al. have proposed a data hiding scheme by applying an optimal pixel
adjustment process to the stego-image obtained by the simple LSB substitution
method which improves the image quality of the stego image with extra com-
putational complexity [2]. Masud Karim et al. have enhanced the existing LSB
substitution method by substituting the LSB of RGB true color image. Their
method suggests an encryption of a secret key in the LSB of the pixels of the
image from which the actual position of the hidden information can be retrieved,
thus their method provides an extra layer of protection with good Peak Signal-
to-Noise Ratio (PSNR) [8]. DWT is preferred over Discrete Cosine Transforms
(DCT) because image in low frequency at various levels can offer corresponding
resolution needed. A one dimensional DWT is a repeated filter bank algorithm,
and the input is convolved with high pass filter and a low pass filter [5]. In DWT,
time domain is passed through low-pass and high pass filters and the high and
low frequency wavelet coefficients are generated by taking the difference and
average of the two pixel values respectively. The operation of Haar DWT on the
cover image results in the formation of 4 sub-bands, namely the approximate
band (LL), horizontal band (HL), vertical band (LH) and the diagonal band
(HH). The approximate band contains the most significant information of the
spatial domain image and other bands contain the high frequency information
such as edge details. Thus, the DWT technique describes the decomposition of
the image in four non overlapping sub-bands with multi-resolution [7]. Verma
et al. have proposed a method for implementing image steganography using
2-Level DWT Technique. DWT is performed on the input image and then again
DWT is performed on the approximation matrix obtained from the first level
DWT. The embedding of secret message will take place in the matrices obtained
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from the 2-level DWT. This will ensure more secured transmission of data [13].
Torres et al. proposed an image steganography method in which the data hiding
is realized in bit planes of sub band wavelets coefficients using Integer Wavelet
Transform (IWT). This proposed method shows a high data embedding capacity
while restoring the fidelity of the stego image [12].

2 Proposed Method

The proposed method concentrates on embedding data in frequency domain
using DWT. A discrete wavelet transform (DWT) is a transform for which the
wavelets are discretely sampled. As with other transforms, a key advantage is
that it can captures both frequency and location information (location in time).
The existing paper [1] implemented the embedding of data in the frequency
domain using DWT but with greater deviations from the original image. In
this work, the secret message is embedded by adjusting the range of difference
between the adjacent pixels in the seed matrix. The extraction method involves
checking of the range of the difference between the adjacent pixels in the trans-
form domain and hence retrieving the data. In our proposed work, we have tried
to minimize the deviation of the stego image from the cover image. Here we
discuss the embedding procedure followed by the extraction procedure.

2.1 Embedding Method

In this proposed work the secret text is taken in the form of a string and 7 bit
ASCII of each character is considered. During embedding 8 bits are inserted
within a seed matrix at a time. Thus after concatenating 7 bits of each character
if the bit stream is not multiple of 8 then pad one 0 at the end to make it
multiples of 8. Three major steps are followed during embedding those are Seed
Matrix Generation, position identification for data hiding and the last the data
embedding.

(i) Seed Matrix Generation: Here during embedding the 2-level DWT trans-
form of cover image is done. This will result in the formation of four bands, i.e.,
LL, HL, LH and HH shown in Fig. 1. Then we take HL, LH and HH matrices
and select a 4 × 4 seed matrix from these bands such that no two seed matrix
overlaps each other as shown in Fig. 2. Here seeds are identified by X.

(ii) Position Identification for Data Embedding: Now for each 3× 3 seed
matrix all the pixel except the seed pixel is selected for hiding the secret data.
Each adjacent pixels within the seed matrix are selected. Suppose D1 D2 D3

D4 D5 D6 D7 D8 are eight bits from target bit stream. Now these are embedded
within the seed matrix according to the following Fig. 3.

(iii) Data Embedding: Now for each of the message bits, we have to calculate
(B-A). If the difference is according to the Table 1 then leave these pixels without
any modification otherwise modify them according to the sign and magnitude
of Table 1.
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Fig. 1. 2-Level DWT. Fig. 2. Selection of the
seeds.

Fig. 3. Embedding the
data.

Input: Cover Image (size M × N), Secret Text.
Output: Stego Image.

1 Convert the secret message into bit stream (length should be divisible by 8) by
considering 7 bit for each character;

2 Perform the 2-level Discrete Wavelet Transformation (DWT) of the cover image
with haar wavelet, to obtain the four components of DWT namely [LL, LH, HL,
HH] each of size M/2 × N/2;

3 For each component LL, LH, HL and HH starting with LH and leaving LL,
theres going to be [M × N/256] blocks within each of the DWT components and
normalize the DWT coefficients;

4 Do step 5-7, until the entire secret message characters are embedded successfully
on LH, HL and HH matrices;

5 Identify 3 × 3 seed matrix such that no two seed matrices overlap;
6 Now virtually enumerate the coefficients as given in Figure 1;
7 Perform subtraction between two adjacent pixels shown in Figure 3 and adjust

the difference according to Table 1;
8 After mapping is complete, restore the fractional components of DWT

coefficients and transform back from wavelet domain to spatial domain by
inverse DWT to get Stego Image;

9 Output the transformed image component;

Algorithm 1. Embedding Algorithm

Now in this way, we adjust all the 3× 3 matrices until the entire secret data
is embedded. Then IDWT (Inverse DWT) is performed to get the Stego image
and send it to the receiver side.

2.2 Extracting Method

Extraction also follows the three steps Seed Matrix Generation, Position Identi-
fication for data hiding and the data extraction. Here also before applying these
steps stego image is transform into its Discrete Wavelet form two times.

Table 1. DWT coefficients while Encoding.

Message bit Decimal equivalent Modified sign of
DWT difference

Modified magnitude
of DWT difference

00 0 Negative 2

01 1 Positive 7

10 2 Negative 7

11 3 Positive 2
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Input: Stego Image.
Output: Secret Text.

1 Perform the DWT of the cover image with haar wavelet to get LL, LH, HL and
HH matrices and normalize the DWT coefficients;

2 Repeat the remaining steps until the entire secret message characters are
extracted on LH, HL and HH matrices;

3 Identify 3 × 3 seed matrix such that no two seed matrices overlap;
4 Now assume the coefficients to be named as given in Figure 3;
5 From each [A B] combination extract 2 bits of secret binary message stream as

given in Figure 3 and Table 2 and store the extracted bits in an array;
6 Now characters of secret message are formed to get actual secret message at the

receiver side;
7 Output the transformed image component;

Algorithm 2. Extraction Algorithm

(i) Seed Matrix Identification. At the receiver side, we have taken the Stego
image in which the hidden message is embedded. Now we apply 2-level DWT
to the image. After DWT, we get 4 sub matrix of the Image, [LL LH HL HH]
respectively. Now we select 3 × 3 seed matrices from LH, HL and HH matrices
(bands) as shown in Fig. 1.

(ii) Position Identification for Data Extraction. Now we select all the
adjoining elements of each seeds. So we get the 3 × 3 matrices. Now for each
matrix, we select all the elements except the seed elements shown in Fig. 2.

(iii) Retrieving the Data. Now, for each B and A, calculate (B − A) and
extract the message bits according to Table 2. Repeat this process until the end
of the matrix of the cover image.

Table 2. DWT coefficients while Decoding.

Sign of DWT difference Magnitude of DWT difference Extracted message bits

Positive −4 to 0 00

Negative 5 to 9 01

Negative −9 to −5 10

Positive 0 to 4 11

3 Experimental Result and Analysis

The efficiency of proposed techniques is tested based on 300 images [14] and
more. Out of which some of them are shown in Fig. 4. Also the quality of stego
images are analyzed based on MSE, PSNR, NK. At the same time the perfor-
mance is also tested based on StirMark benchmark 4.0. If embedding is done by
considering CA block then the quality of the stego audio will be hampered. Thus
this technique is also modified by not considering CA block during embedding as
well as extraction but in this time the capacity of stego image is compromised.
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Fig. 4. Cover images (at left), stego images with CA (at center) and stego images
without CA (at right).

3.1 Capacity Analysis

The proposed method consists of two types of embedding data-one is embedding
data with approximation matrix obtained on applying DWT on the cover image.
Since the approximation (CA) matrix contains the most of the information the
image so, embedding data by adjusting the difference between two consecutive
pixels in the seed matrix brings about a comparable changes in the stego image.
On the other hand, restricting the embedding of data in the CA matrix would
improve the image quality, but at the same time decreases the embedding capac-
ity. In the normal case, for each 3 × 3 seed matrix out of 4 × 4 selected matrix
only 8 bits of the binary form of the secret message can be embedded.Thus a
character can be embedded for every 4 × 4 matrix.

3.2 Histogram Analysis

In image processing, histogram of an image refers the histogram of its intensity
values. Histogram of an image shows the number of pixels in the image at each
different intensity value. Figure 5 shows the histogram of a cover image and its
corresponding stego image. Both the histograms are almost same, which shows
that the deviation of the stego image from the cover image is less.

Fig. 5. Histogram of cover image (at left), stego image with CA (at center)and stego
image without CA (at right).
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3.3 Bit Plane Analysis

Bit plane slicing consists on splitting the original image with 256 gray levels
into its equivalent 8 binary images. The method is used for true RGB color
images by displaying each color plane as a gray scale image and applying the
same algorithm for the former case to convert any intensity level into a byte of
8 bits. Figure 6 depicts the bit planes 0 to 7 of a cover image on the left, its
corresponding stego image with CA at the center and stego image without CA
on the right respectively.

Fig. 6. Bit planes of cover image (left), stego image with CA (center), stego image
without CA (right).

3.4 MSE and PSNR

The quality of the stego image is measured by calculation of certain quality
measurement metrics.

Mean Square error (MSE) is defined as the average of the square of the
difference between the intensities of the stego image and the cover image.

MSE =
1

MN

M∑

i=1

N∑

j=1

(f(i, j) − f ′(i, j))2 (1)

where f(i, j) is the cover image, f ′(i, j) is the stego image, M and N are the
dimension of the cover image. Table 4 depicts the calculated MSE values of the
pair of cover and stego images obtained from the existing algorithm and new
algorithm. Table 3 demonstrate these values.

Peak Signal to Noise Ratio (PSNR) is a metric used to distinguish between
the cover image and the stego image. More the PSNR value, more preferred is
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Table 3. MSE values of different Images

Image Existing algorithm Proposed algorithm with LL ProposedAlgorithm without LL

Small Medium Large Small Medium Large Small Medium Large

Landscape 97.851 171.570 230.651 48.190 84.395 112.872 21.774 37.267 53.801

Text 1231.4 1231.4 1231.4 240.089 487.450 659.960 66.537 139.268 213.358

Map 310.43 310.43 310.43 56.407 117.222 151.580 16.687 36.985 53.106

Lena 72.822 72.822 72.822 8.566 24.422 32.367 1.639 3.670 4.828

Object 48.504 48.504 48.504 9.601 17.420 22.548 2.891 4.986 6.439

Crowd 168.99 168.99 168.99 7.539 62.464 84.296 7.003 21.447 23.638

Fire 93.622 93.622 93.622 14.403 29.343 42.553 6.382 12.616 22.024

Cartoon 196.95 196.95 196.95 28.369 73.016 96.871 7.340 15.749 24.024

Fast 64.458 64.458 64.458 3.832 25.673 28.335 1.128 6.691 7.336

the stego image.

PSNR = 10 log
2552

MSE
(2)

Table 4. PSNR values of different Images

Image Existing algorithm Proposed algorithm with LL ProposedAlgorithm without LL

Small Medium Large Small Medium Large Small Medium Large

Landscape 28.259 25.820 24.535 31.335 28.901 27.638 34.785 32.451 30.856

Text 17.260 17.260 17.260 24.361 21.285 19.969 29.934 26.726 24.873

Map 23.245 23.245 23.245 30.651 27.474 26.358 35.940 32.484 30.913

Lena 29.542 29.542 29.542 38.836 34.286 33.063 46.018 42.517 41.326

Object 31.307 31.307 31.307 38.341 35.754 34.633 43.554 41.186 40.076

Crowd 25.886 25.886 25.886 39.391 30.208 28.906 39.711 34.850 34.428

Fire 28.451 28.451 28.451 36.580 33.489 31.875 40.114 37.155 34.735

Cartoon 25.221 25.221 25.221 33.636 29.530 28.302 39.507 36.192 34.358

Fast 30.071 30.071 30.071 42.329 34.069 33.641 47.638 39.909 39.510

Table 4 depicts the PSNR values of the pair of cover and stego images obtained
from the existing [1] and new Algorithm which consists of two types, one in which
data is embedded in the approximation matrix obtained on applying DWT and
the other in which data is not embedded in approximation matrix for restoring
the quality of the stego image obtained. The Existing [1] algorithm uses a wide
range of values to be adjusted between the adjacent pixels resulting in more
deviation of the stego image.

The proposed algorithm works with only two magnitude values of DWT
difference compared to four magnitude values of DWT difference in the existing
work as evident from Table 1. This also results in less deviation of the stego
image from the cover image which is evident from the values of MSE, PSNR and
NK of the cover and stego images obtained from both the algorithms (existing
as well as proposed) as shown in Tables 3 and 4. In this proposed work the cover
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image may be .bmp as well as .jpg and the most highlighting features that the
target text is extracted correctly from .jpg stego image also.

Normalised Correlation (NK) measures the similarity between the two images,
i.e. the original image and the stego image. Larger values of NK indicate poorer
image quality. Its value tends to one as the difference between the two images
tends to zero. Normalised Correlation is formulated as:

NK =

∑M
i=1

∑N
j=1[f(i.j).f ′(i, j)]

∑M
i=1

∑N
j=1 f(i, j)2

(3)

The Normalised Correlation is calculated for stego images obtained from the
existing algorithms and it is concluded that the value of NK for most of the
stego images comes to 1. Moreover the difference between the NK of the cover
and the stego image comes to zero which is preferred.

Table 5. Benchmark values of sample test images

Analysed Image
Existing Proposed with LL Proposed without LL
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Landscape 76.34 58.1 109.38 81.76 76.26 58.74 108.97 81.44 76.24 58.77 58.19 81.44
Map 155.54 86.81 163.01 121.95 155.14 86.75 162.42 121.5 155.09 86.62 74.7 121.5
Lena 119.57 59.01 112.04 83.81 119.66 59.25 112.08 83.84 119.62 58.97 59.04 83.85

Object 47.72 99.08 176.98 132.38 47.35 99.38 176.86 132.29 47.35 99.33 79.06 111.6
Crowd 93.43 82.23 149.17 111.56 93.47 82.31 149.21 111.6 93.49 82.35 70.76 134.88

Cartoon 179.78 89.77 165.97 124.14 179.84 89.78 166.08 124.17 105.49 89.43 75.71 124.17

3.5 StirMark Benchmark Analysis

In computing, a benchmark is the act of running a computer program, a set of
programs, or other operations, in order to assess the relative performance of an
object, normally by running a number of standard tests and trials against it. The
term “benchmark” is also mostly utilized for the purposes of elaborately designed
benchmarking programs themselves. Below table shows the benchmarking values
of some test pictures. Table 5 demonstrates the values of Existing Algorithm,
Proposed Algorithm with CA and Proposed Algorithm without CA.

4 Conclusion

The proposed algorithm is much more efficient than the state-of-the-art works.
Though, the capacity of embedding data is reduced by restricting the embedding
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data in the CA matrix obtained on applying DWT on the cover image. This is
done to ensure the quality of the stego image. Hence the distortion in the stego
image is less than that obtained from the existing algorithm. Moreover, the range
to be adjusted for embedding the data in frequency domain is less as compared
to the existing paper in order to have less distortion.
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