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Abstract
Invasion of various tissues and vessels
depends on distinct cellular structures
involved in cell adhesion, initiation of tissue
invasion, and degradation of the extracellular
matrix (ECM). These structures are generally
summarized under the term invadosomes,
which in turn comprises the two major types
of these specialized structures, i.e.,
podosomes and invadopodia. Podosomes are
matrix-degrading adhesive structures formed
by certain normal cells, such as macrophages
and endothelial cells, and by invading cancer
cells. The generation of podosomes strongly
depends on protein kinase C-related signaling
pathways. Podosomes can degrade ECM
components through the shedding of wide
array of proteases, specifically matrix
metalloproteinases (MMPs). A special type
of podosomes is invadopodia, which mediates
basement membrane and tissue invasion of
cancer cells. These protrusions are actin-
based dynamic structures or “organelles” of
transformed cells that are critically required
for tumor cell invasion and extravasation.
Tumor cells can extend invadopodia through
the endothelial lining of vessels to the extra-
vascular space prior to extravasation and met-
astatic growth.

Tissue Invasion: Invadosomes
as Pacemakers of Invasion

Recent findings led to the identification of special-
ized cellular structures involved in adhesion, ini-
tiation of tissue invasion, and matrix degradation.
These structures are generally summarized under
the term invadosomes, which in turn contains the
two major types of these structures, i.e.,
podosomes and invadopodia (Block et al. 2008).
Podosomes and in particular invadosomes are
characterized by the production of a wide array
of enzymes that serve as histolytic factors that
degrade tissues and specifically the extracellular
matrix of tumors.

Podosomes

General Aspects

Podosomes (“feet bodies/particles”) are matrix-
degrading adhesive structures formed by invading
normal cells, specifically macrophages, osteo-
clasts, and dendritic cell (Linder and
Aepfelbacher 2003; Linder and Kopp 2005; Stylli
et al. 2008; Symons 2008; Gawden-Bone
et al. 2010; Murphy and Courtneidge 2011;
Starnes et al. 2011; Schachtner et al. 2013).
Podosomes or podosome rosettes also play a sig-
nificant role in endothelial cell biology where they
are involved in sprouty angiogenesis (Schlaepfer
et al. 2004). Podosomes are induced by factors
activating protein kinase C (Tatin et al. 2006),
such as diacylglycerols and phorbol esters, and
can, following their complete formation and acti-
vation, degrade EMC components through the
shedding of proteases (Linder 2007). Podosomes
are cylindrical cell protrusions located to the outer
surface of the cell membrane, measuring up to
2 μm in diameter. Both podosomes and the similar
invadopodia are actin-based structures that
develop from the ventral cell membrane of cells
in contact with a substratum. Podosomes carry the
lipid membrane of the cell surface region from
which they emerge (Yamaguchi and Oikawa
2010). In locomoting cells, podosomes are situ-
ated at the front border (leading edge) between
lamellipodia and the lamellum. Podosomes have a
central role in migration and invasion of matrix
mediated by matrix degradation and therefore are
important structures in inflammation and cancer.
In contrast to invadopodia, which are small struc-
tures, podosomes grow to relatively large struc-
tures. Podosomes are usually visualized by
phalloidin staining, this toxic cyclopeptide bind-
ing to filamentous actin/F-actin. In phalloidin or
antibody staining, podosomes appear as isolated
punctate structures on the ventral surface of cells.
They are often localized behind the leading edge
in case of podosomes, while invadopodia are
more often clustered under the nucleus.
Podosomes consist of a central core structure
containing F-actin and actin regulators and a
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peripheral ring structure (the podosome ring)
showing integrins, vinculin, paxillin, and other
proteins (Wernimont et al. 2008). In podosome
rings, plectin, alpha-II spectrin, talin, and focal
adhesion kinase are present, while these proteins
are absent in invadopodia (Takkunen et al. 2010).
In the course of the formation of a podosome ring,
plectin accumulates at the early ring domain of the
cell surface, whereby this deposition requires
myosin contractility (Gad et al. 2008). In part of
cells, including cancer cells, podosomes are clus-
tered in the form of ringlike arrangements, the
podosome rosettes. Rosette formation is strongly
stimulated by Src kinases, protein kinase C, Rho
family GTPases, ezrin, and certain integrins
(review: Murphy and Courtneidge 2011). Forma-
tion of podosome rosettes is stimulated by ezrin
interacting with cortactin and associated with
adhesion of cells to fibronectin (Kocher
et al. 2009). Furthermore, phosphorylation of
moesin by Jun N-terminal kinase is important for
podosome rosette formation (Pan et al. 2013a).
Podosome rosette formation is stimulated by
focal adhesion kinase (Pan et al. 2011) and by
hepatoma-derived growth factor through the acti-
vation of the phosphatidylinositol 3-kinase/Akt
pathway (Kung et al. 2012). Podosome rosette
formation is suppressed by protein tyrosine phos-
phatase SHP2 (Pan et al. 2013b), and Src-induced
rosette formation is inhibited by p53 via the
upregulation of caldesmon (Mukhopadhyay
et al. 2009).

Biogenesis and Morphogenesis
of Podosomes

Podosomes contain a complex set of proteins
making part of the actin-based engine, including
actin, myosin IIA, the Arp2/3 complex, N-WASP,
cortactin, gelsolin, and cofilin. For the generation
of podosomes, actin cytoskeleton remodeling
through Arp2/3-mediated actin polymerization
and dynamic microtubules are required (Linder
et al. 2000; Snyder et al. 2011; van den Dries
et al. 2013). Rapid and spatially restricted
remodeling of the actin cytoskeleton is a crucial

step in the initiation of podosome formation. The
site of first appearance is a surface microdomain
where actin-containing stress fibers and focal
adhesions intersect (Kaverina et al. 2003). Certain
actin-associated proteins are involved in this pro-
cess. A central role is played by the Arp2/3 path-
way, whereby the Arp2/3 complex promotes actin
assembly and competes with caldesmon in this
function (Morita et al. 2007). Other actin-
associated protein comprises Src-cortactin
(Luxenburg et al. 2006; Clark et al. 2007),
WASP (Tsuboi 2007), caldesmon, and paxillin
(Badowski et al. 2008). Caldesmon has an impor-
tant role in podosome biogenesis and function.
Ectopic expression of caldesmon reduces the
number of both podosomes and invadopodia
(Yoshio et al. 2007). Furthermore, the actin-
mediated morphogenesis of podosomes is modu-
lated by integrins located at the podosome site.
Integrin-linked kinase/ILK, located in an area sur-
rounding the actin-rich podosome core, regulates
podosome maturation (Griera et al. 2014). WASP
(Wiskott-Aldrich syndrome protein) is an adaptor
protein critical for podosome formation (Dovas
et al. 2009) and operates in conjunction with the
WASP-interacting protein/WIP. WIP is responsi-
ble for the stability and localization of WASP to
sites of actin assembly in podosomes (Chou
et al. 2006; Garcia et al. 2012) and is involved in
ruffle formation (Banon-Rodriguez et al. 2013).
WASP also interacts with the F-BAR domain
protein, FBP17, a protein that promotes actin
nucleation (Tsujita et al. 2013). Integrins can pre-
vent the Src-induced cell rounding, but cannot
impair the formation of podosomes (Huveneers
et al. 2008).

It is suggested that an actin-microtubule cross
talk in the cytoskeleton is critical for the morpho-
genesis of podosomes. There is evidence that pro-
trusion of the podosome depends on the activity
and function of the microtubule-associated
kinesin motor component, KIF1C (Kopp
et al. 2006). In early sites of podosome formation,
vimentin deposition colocalizes at the stress fiber-
focal adhesion interface, and plectin colocalizes
with vimentin. Plectin is an important protein in
cytoskeleton organization (Wiche 1998). Apart
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from well-known members of the actin assembly
engine, podosomes also contain other proteins,
such as the cytoplasmic scaffold protein Tks5
(synonym: Fish), which accumulates in
podosomes under stimulation by Src. The pres-
ence of Trk5 in podosomes is required for cell
invasion (Courtneidge et al. 2005). In the process
of podosome formation, Tks5 recruits AFAP-110,
p190RhoGAP, and cortactin, essential for
podosome morphogenesis (Crimaldi et al. 2009).
The early morphogenesis of podosomes is pre-
ceded by the formation of cell surface ruffles at
the dorsal surface of cells. Ruffle formation is
associated with morphogenesis of podosomes
and depends on an interaction between palladin
and the receptor tyrosine kinase, Eps8, this inter-
action promoting assembly of the actin cytoskel-
eton (Goicoechea et al. 2006). Palladin is a protein
that promotes podosome formation and assembly
(Goicoechea et al. 2009), but it also regulates cell
and ECM interactions via maintenance of a nor-
mal actin cytoskeleton architecture (Liu
et al. 2007). Podosome size and number are reg-
ulated in macrophages by the Rho GTPase effec-
tor PAK4, a member of the p21-associated kinase
family, and its regulator alphaPIX
(PAK-interacting exchange factor), two factors
which induce highly localized changes in actin
dynamics (Gringel et al. 2006).

Podosome Functions

Podosomes are dynamic mechanosensors that
sense torsional tractions underneath the
podosome rings, whereby interactions between
myosin tension and actin dynamics are essential
for podosome regulation (Collin et al. 2008).
Podosomes play an important role in the degrada-
tion of extracellular proteins. Podosomes express
sets of proteases that hydrolyze several proteins
and glycoproteins of the ECM. In dendritic cells,
protrusive podosomes employ MMP-14 for
matrix degradation and endocytosis (Gawden-
Bone et al. 2010). Fully developed podosomes
operate within a network of stimulatory and
inhibiting factors. Podosome-mediated degrada-
tion of basement membrane collagen is induced

by TGF-beta (Rottiers et al. 2009). Other proteins
known to modulate podosome function are the
Cdc42 regulators. Cdc42 GTPase-activating pro-
tein/CDC42GAP regulates podosome-associated
cell motility through mediation of extracellular
signal-related kinase/ERK activity (Szczur
et al. 2006).

Invadopodia

General Aspects

There are several structures at the cell surface that
are specialized in creating distinct intercellular
and cell-matrix adhesions. A long-known exam-
ple is the focal adhesion, which contains clusters
of transmembrane integrin receptors which are
tethered at one end to the ECM and at the other
end to stress fibers of the actin network. A second
adhesion structure which is critically involved in
cancer invasion is the invadopodia.

Selected References (Gimona and Buccione
2006; Weaver 2006; Yamaguchi et al. 2006;
Gimona et al. 2008; Stylli et al. 2008; Albiges-
Rizo et al. 2009; Buccione et al. 2009; Saltel
et al. 2011; Bravo-Cordero et al. 2012; Klemke
2012; Sibony-Benyamini and Gil-Henn 2012;
Yamaguchi 2012; Génot and Gligorijevic 2014;
Paz et al. 2014).

Invadopodia mediate basement membrane and
tissue invasion of cancer cells and are character-
ized by the integration of several cytoskeletal
processes that involve modulation of contractile
forces and mechanotransduction (Lohmer et al.
2014; Tokui et al. 2014). Invadopodia are actin-
based protrusions or “organelles” of transformed
cells and tumor cells that form distinct cell-matrix
adhesion sites. Invadosomes are critically
required for cancer cell extravasation. In the
course of intravascular spread of tumor cells,
these cells can, after homing to distant endothelial
surfaces, extend invadopodia through endothe-
lium into the extravascular space prior to their
extravasation and metastatic growth (Leong
et al. 2014).
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Invadopodia share several features with
podosomes, but are morphologically different
from podosomes, as they have a different struc-
ture, occur in larger numbers, and are more active
in their capability to degrade matrix (Tolde
et al. 2010; Artym et al. 2011). Adhesion rings
surround invadopodia, a feature shared with
podosomes (Branch et al. 2012). Typical
invadopodia are smaller than podosomes and
occur in larger numbers per cell. They measure
from 0.1 to 0.8 μm in diameter and can reach a
length of 2 μm or more. Invadopodia can form
clusters around membrane invaginations close to
the site of the Golgi complex.

Molecular Composition and Biogenesis
of Invadopodia

Similar to podosomes, invadopodia possess a
complex microfilament machinery regulating F/
G-actin switching mediated by a now impressive
number of actin-associated proteins, including
N-WASP, cortactin, tensin, formins, Src kinases,
the Arp2/3 complex, paxillin, cofilin, and gelsolin
(Gimona 2008; Albiges-Rizo et al. 2009).
Invadopodia are constructed of an N-WASP-
dependent branched actin network and a Rho
GTPase Cdc42-based pathway involved in
invadopodial-membrane protrusion (Albiges-
Rizo et al. 2009). The actin network of
invadopodia, which contains cortactin, is regu-
lated by a multimolecular complex containing
Src kinase, the formin mDia1, actin, and Spire1,
a protein which serves as the connection to Rab3A
GTPase (Weaver 2008; Lagal et al. 2014). As an
important component of the invadopodial
machine, myosin 1e is located to the invadopodial
core where it may act as a scaffold, linking the
plasma membrane to the actin cytoskeleton
(Oudekirk and Krendel 2014). In their interaction
with the extracellular matrix, invadopodia are
potently induced by dense fibrillar collagen via a
kindlin2 serine phosphorylation signaling path-
way (Artym et al. 2015). Furthermore,
invadopodia are equipped with a complex set of
regulatory and signaling proteins (Table 1). In
particular, pathways leading to invadopodia

formation are linked with a signaling cascade
that also critically affects cell proliferation and
differentiation, Wnt/beta-catenin signaling. Spe-
cifically, the Wnt5a-Ror2 axis is involved in
enhanced formation of invadopodia (Endo
et al. 2015). Biogenesis of invadopodia is strongly
induced by Cdc42, while the adaptor protein is
required for the degradative activity of
invadosomes (Di Martino et al. 2014). A further

Table 1 Molecular composition of invadopodia

Cytoskeletal components

Actin

N-WASP

ARP2/3

Cortactin

Tensin

Gelsolin

Cofilin

Paxillin

Formin

VASP

Actopaxin

Adhesion-related proteins

Integrins

CD44

Vinculin

Signaling proteins

RhoGTPase/Cdc42

Wnt/beta-catenin signaling

ARF

GTPase-activating proteins

Focal adhesion kinase/FAK

Tyrosine kinases

Src kinases

Protein kinase Cmu

Abl interactor 1

EGFR

ASAP1/AMAP1

Dynamin 2

Tks5/Fish

Matrix-degrading enzymes and associated proteins

Metalloproteinases (mainly MMP-2, MMP-9, and
MT1-MMP)

Tissue inhibitors of metalloproteinases/TIMPs

ADAMs

ADAMTS and ADAMTS-like proteins

Serine proteinase (seprase)

Dipeptidyl dipeptidase
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protein which markedly promotes formation of
invadopodia is the cytoskeletal protein WAVE3,
which induces cancer cell invasion and metastasis
via induction of MMP-9 and other MMPs
(Davuluri et al. 2014). Invadopodia biogenesis
depends on diaphanous-related formins
(Lizarraga et al. 2009). Paxillin, which plays a
role in several steps of invadopodia biogenesis
and function, is a focal adhesion-associated,
phosphotyrosine-containing protein that pos-
sesses several domains for protein-protein inter-
actions. These domains are the necessary docking
site for several cytoskeletal proteins, including
vinculin and actopaxin, tyrosine kinases and ser-
ine/threonine kinases, and GTPase-activating pro-
teins and numerous adaptor proteins (Turner
2000; Schaller 2001; Pignatelli et al. 2012b).
Paxillin is associated with the paxillin kinase
linker/PKL, a protein regulating directed cell
migration (Yu et al. 2009). At sites of ECM deg-
radation, an invasion-related complex constructed
of paxillin, cortactin, and protein kinase Cmu
associated with invadopodia (Bowden
et al. 1999). For the function of the actin-based
network, the atypical GTP-binding protein
dynamin is required, dynamin being a central
modulator of cellular protrusive events (McNiven
et al. 2004). In the protruding edge of invadopodia
and similar structures, actin-associated proteins
are accumulated. The interaction of these proteins
is coordinated by a member of the F-BAR family
of proteins, CIP4/Cdc42-interacting protein 4, in a
Rac1/WAVE1-dependent manner (Saengsawang
et al. 2013).

Induction and Regulation
of Invadopodia in Cancer Cells

In cancer cells, numerous factors can elicit the
biogenesis of invadopodia. A major role is played
by a complex interaction of cancer cells with the
extracellular matrix (ECM) located to tumor
stroma. Invadopodia are strongly induced upon
contact of tumor cells with distinct domains of
the ECM (review: Hoshino et al. 2013a). This
contact promotes the activity of several signaling
pathways that induce actin cytoskeleton

rearrangement, the recruiting of actin-associated
proteins, and the generation of cell protrusions
(Destaing et al. 2011; Linder et al. 2011). Similar
to lamellipodia and related cell protrusions, for-
mation of invadopodia depends on interactions
between focal adhesions and the actin cytoskele-
ton. Via focal adhesions and integrin receptors,
invadopodia interact with proteins in the extracel-
lular matrix/ECM. Among ECM proteoglycans
and proteins, hyaluronan interacting proteins
RHAMM play a role in invadopodia induction
(Gurksy et al. 2012). Generally, adhesion signal-
ing has a central role in invadopodia formation,
with the critical involvement of protein kinase C
and Src kinases (Destaing et al. 2011). Src signal-
ing to induced invadopodia is a regulated protein
involved in cell migration and invasion, TM4SF5/
transmembrane 4 L six family member 5 (Jung
et al. 2013). Src kinase associates with diaphanous
formin-1, actin, and Spire-1 in a complex that
contributes to invadopodia biogenesis (Lagal
et al. 2014). Invadopodia formation is stimulated
by proteins that induce epithelial-mesenchymal
transition/EMT, e.g., Twist1 (Eckert et al. 2011)
and the focal adhesion protein Hic-5, a paxillin
homologue (Pignatelli et al. 2012a), linking EMT
with mechanisms that determine tissue invasion.
Invadopodia are induced by Src-mediated phos-
phorylation of ASAP1 (Bharti et al. 2007) and by
the activation of Cdc42, e.g., by the stromal cell-
derived protein palladin (Goicoechea et al. 2014).
Src kinases orchestrate several steps of
invadopodia biogenesis in a distinct spatiotempo-
ral pattern (Boateng and Huttenlocher 2012). The
latter mechanism illustrates the close interaction
between tumor cell and matrix for the induction of
invadosomes. Invadopodia are induced by a key
regulator of the F/G-actin switch mechanism, Abl
interactor 1/Abi 1, which affects invadopodia for-
mation in an Src-dependent manner (Sun
et al. 2009). Formation of invadopodia depends
on the activity of GTPases, e.g., RhoGTPases,
which provide signals to the cytoskeleton through
small G proteins of the Rho family (Spuul
et al. 2014). Invadopodia contain the Arf
GTPase-activating protein ASAP1, whereas
ASAP3 is not expressed (Ha et al. 2008). The
contact between cancer cells and ECM also
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involves a complex mode of pH sensing. Several
pH regulators such as V-ATPases and Na(+)/H(+)
exchangers are expressed in invadosomes, and
these sensors/regulators control the acid microen-
vironment to provide a milieu for appropriate
activation of MMPs and other degradases
(Brisson et al. 2012).

A second major pathway that induces
invadopodia in cancer cells is epithelial-
mesenchymal transition (EMT). Formation of
invadopodia is stimulated by EMT taking
place upon contact of tumor cells with the
extracellular matrix. Apart from its central role
in EMT induction, the transcription factor
Twist1 is capable to induce invadopodia forma-
tion, probably via its transcriptional target,
PDGFRalpha (Eckert et al. 2011). Also the
EMT-inducing factor TGF-beta induces
invadopodia formation via ectopic expression
of the focal adhesion protein, Hic-5 (Pignatelli
et al. 2012a). In the setting of EMT, podosome-
like structures occurring in noninvasive carci-
noma cells switch to actin comet-embedded
invadopodia containing MMP-1. In the course
of this transition, the podosomes become
smaller and achieve the shape of numerous
invadopodia, structures in which talin is
replaced by tensin. Therefore, EMT can induce
the production of the potent degrading engine
required for cancer invasion (Takkunen
et al. 2010). Invadopodia are also induced by
a factor involved in the regulation of EMT,
CD147/basigin (Grass et al. 2012).

Invadopodia maintenance and function are reg-
ulated by integrins, Src tyrosine kinase signaling,
cortactin, AMAP/ASAP1, the adaptor protein
Tks5/Fish, receptor tyrosine kinases, Rho family
GTPases, ARF6, and dynamin 2. Beta1 integrins
are required for the formation of competent
invadopodia, whereby beta1 integrin interacts
with the tyrosine kinase Arg and stimulates
Arg-dependent phosphorylation of cortactin
(Beaty et al. 2013). Beta1A integrin is a master
regulator of podosome and invadopodia organiza-
tion and function (review: Destaing et al. 2010).
ASAP1 is an Arf GTPase-activating protein/GAP
containing a BAR domain and is a substrate for
Src kinase.

Tissue and Matrix Destruction
(Histolysis) as a Major Mechanism
of Cancer Invasion

Introduction

Both invadopodia and lamellipodia engage in
contacts with the underlying extracellular matrix
(ECM) and are then stimulated to secrete matrix
metalloproteinases (MMPs; see below; Coussens
and Werb 1996; Stamenkovic 2000; Linder 2007;
Linder et al. 2011; van Horssen et al. 2013). The
contact between invadopodia and ECM is a com-
plex process that involves signals from matrix
rigidity and myosin II-FAK/Cas pathways (Alex-
ander et al. 2008). Typical MMPs produced by
invadopodia are MMP-2 and MMP-9 and in part
of neoplasms also MT1-MMP (Watanabe
et al. 2013). Expression and secretion of these
enzymes causes pericellular proteolysis in cancer
(Sevenich and Joyce 2014). Invadopodia express
latent MMP-2 and membrane type 1 MPP at the
cell surface, where they are activated (Chen and
Wang 1999). ECM degradation by invadopodia is
regulated by the action of the phosphoinositide-
binding protein, ZF21, a protein that promotes
cancer cell migration and invasion (Hoshino
et al. 2013b). The function of invadopodia also
requires several types of ADAMs, which interact
with integrins in invadopodia and cooperate with
certain invadopodial adaptor proteins, such as
Tks5/Fish. Physiological type I collagen can
induce a special type of invadosomes, the linear
invadosomes. Linear invadosomes, cortactin- and
N-WASP-containing protrusions that can degrade
matrix, result through replacement of podosomes
or invadopodia upon contact with type I collagen
present in collagen-rich ECMs (Juin et al. 2012).

Matrix Metalloproteinases (MMPs):
Types and Classification

Matrix metalloproteinases (MMPs) are enzymes
that are implicated in remodeling of the extracel-
lular matrix (EMC), including the basement mem-
branes (Deryugina and Quigley 2006; Friedl and
Wolf 2009; Shiomi et al. 2010). MMPs are
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classified as two main types of proteases, i.e.,
those that are anchored to the cell surface mem-
brane and a second group that is secreted into the
extracellular space (Table 2).

General Roles and Regulation of MMPs
in Liver Cancer

Generally, MMPs play pleiotropic roles in cancer,
exceeding aspects of mere “degradomics” but also
including effects on cell adhesion, growth signal-
ing, and other pathways (Kleiner and Stetler-
Stevenson 1999; Overall and Dean 2006). The
activity of MMPs is regulated and controlled at
several levels, such as enzyme activation or inhi-
bition at the cell surface, complex formation, and
compartmentalization in various subcellular com-
partments. Within normal and cancer cells, MMPs
can be localized at the cell surface, in the cytosol,
and in organelles and the nucleus. The role of
intracellular MMPs has not yet been clarified in
detail (review: Mannello and Medda 2012).
Downregulation of the Notch signaling pathway
impairs HCC cell migration (Zhou et al. 2013b)
and inhibits HCC cell invasion by inactivating
MMP-2 and MMP-9 expression via the extracel-
lular signal-regulated kinases 1 and 2 (ERK1/2)
signaling pathways (Zhou et al. 2012), while high
levels of Notch1 augment MMP-2 and MMP-9
and promote a highly invasive HCC phenotype.
Conversely, sonic hedgehog, a ligand of hedge-
hog, is frequently expressed in HCC cells and
decreases the expression of MMP-9 via the ERK
pathway (Lu et al. 2012). High Notch1 expression
in HCCs was correlated with tumor size, tumor
grade, venous invasion, and the metastatic state
(Zhou et al. 2013a). In its inhibitory action on
migration and invasion, Notch1 operates by reg-
ulating CD44v6, E-cadherin, MMPs, and uPAvia
the COX-2 and ERK1/2 pathways (Zhou
et al. 2013). Downregulation of Notch1 inhibits
HCC cell invasion by inactivating the COX2/
Snail/E-cadherin pathway involved in EMT
(Zhou et al. 2013c). Secretion of multiple MMPs
is promoted by HGF via the transcription factor
Ets-1 which activates MMP transcription (Ozaki
et al. 2003). Secretion ofMMPs by stromal cells is
stimulated by CD147 (EMMPRIN; basigin), a
cell surface glycoprotein that belongs to the
immunoglobulin superfamily and is strongly
expressed on the surface of many tumor cell
types. Basigin exists in several isoforms with dif-
ferential functions. Basigin stimulates the

Table 2 Types of metalloproteases (MMPs) and their
substrates

Type of MMP Substrate(s)

Membrane-bound MMPs

MT1-MMP (MMP-14) Collagens I–III, gelatins,
aggrecan, laminin

MT2-MMP (MMP-15) Nidogen, tenascin,
aggrecan, perlecan, laminin

MT3-MMP (MMP-16) Collagen III, gelatins,
fibronectin

MT4-MMP (MMP-17) Gelatins, fibrinogen

MT5-MMP (MMP-24) Proteoglycans

MT6-MMP (MMP-25) Collagen IV, gelatins,
laminin, fibronectin

MMP-23 Gelatin

GPI-linked MMP

Secreted MMPs

MMP-1 (interstitial
collagenase)

Collagens I–III, VII, and X,
gelatins, proteoglycans

MMP-2 (gelatinase A) Gelatins, collagens,
laminin, fibronectin

MMP-3 (stromelysin-1) Gelatins, laminin,
fibronectin, proteoglycans

MMP-7 (matrilysin-1) Proteoglycans, gelatins,
elastin, tenascin, entactin

MMP-8 (neutrophil
collagenase)

Collagens I–III, gelatins,
aggrecan

MMP-9 (gelatinase B) Gelatins, collagens III–V,
aggrecan, elastin

MMP-10 (stromelysin-2) Aggrecan, laminin,
fibronectin, collagens III–V

MMP-11 (stromelysin-3) Fibronectin, laminin,
aggrecan, gelatins

MMP-12
(metalloelastase)

Elastin, aggrecan,
fibronectin, collagen IV

MMP-13 (collagenase-3) Collagens I–IV, IX, X, and
XIV, aggrecan, tenascin

MMP-19 (RASI-1) Collagen IV, gelatin,
fibronectin, tenascin

MMP-20 (enamelysin) Amelogenin, aggrecan,
gelatin

MMP-21 ?

MMP-26 (matrilysin-2) Gelatin, collagen IV,
fibronectin, vitronectin

MMP-27 ?

MMP-28 (epilysin) ?
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secretion of VEGF and hyaluronan, promoting
angiogenesis and anchorage-independent growth
(Nabeshima et al. 2006). These effects are
abolished by depletion of CD147, mainly
downregulating MMP-11 and VEGF (Jia
et al. 2007). CD147 exerts its pro-metastatic
effects also in HCCs (Xu et al. 2007; Zhang
et al. 2007c; Jia et al. 2008). In HCC cells,
downregulation of CD147 inhibits gelatinase pro-
duction, interferes with tumor cell adhesion to
type IV collagen, and alters cytoskeletal structure
(Qian et al. 2008). One basigin isoform, basigin-3,
inhibited proliferation of HCC cells and MMP
induction (Liao et al. 2011). CD147 interacts
with integrin alpha6beta1, stimulating invasion
and MMP secretion in HCC cells (Dai
et al. 2009). A further protein with which CD147
interacts is annexin, a Ca(2+)- and phospholipid-
binding protein subject to phosphorylation by
tyrosine kinases and protein kinase C. This inter-
action promotes migration and MMP-mediated
invasion of HCC cells. The pro-invasive and
pro-metastatic effect of basigin/CD147 is
counteracted by the basigin isoform, basigin-3,
in HCC (Liao et al. 2011).

Expression of the Diverse
Metalloproteinases in Liver Cancer

Several members of the large MMP family are
expressed or overexpressed in HCCs and
cholangiocarcinomas and affect the development
of a metastatic phenotype (Yamamoto et al. 1999;
Bodey et al. 2000; Giannelli et al. 2002; McKenna
et al. 2002; Ishii et al. 2003; Ozaki et al. 2003;
Matsunaga et al. 2004; Okamoto et al. 2005; Gao
et al. 2006; Altadill et al. 2009). Generally, expres-
sion of MMPs in cancer cells is augmented by
EMT. The EMT factor, Twist1, activates MMPs
and by this induces tumor cell invasion (Zhao
et al. 2011). Snail, an inducer of EMT, accelerates
cancer invasion by an EMT-associated up-
regulation of MMPs (Miyoshi et al. 2004, 2005).
Expression of MMPs increases as a function of
increasing stage (Gao et al. 2006). Secretion of
MMPs by stromal myofibroblasts is suppressed
by TGF-beta1, while the hormone relaxin binding

to its cognate receptor, relaxin family peptide
receptor 1, upregulates MMPs (Chow et al. 2012).

MMP-1

MMP-1 is involved in both tumor cell invasion
and the generation of metastases, also in HCCs
(Ogasawara et al. 2005). MMP-1 proteolytically
activates protease-activated receptor-1 (PAR-1).
In HCCs, the MMP-1/PAR-1 signaling axis is
strongly activated and associated with tumor inva-
sion and progression (Liao et al. 2011, 2012).
Increased expression of MMP-1 and MMP-2 in
HCCs is correlated with tumor differentiation
(Ogata et al. 1999). However, other studies
arrived at different results. For example, high
levels of MMP-1 transcripts were detected in
well-differentiated cancer cells of early HCCs,
but not in moderately to poorly differentiated
HCCs, suggesting an MMP-1-mediated role in
early invasive processes, such as destruction of
portal tracts (Okazaki et al. 1997).

MMP-2

Expression ofMMP-2 is involved inHCC invasion,
and its activity is influenced by several genetic
variants that modulate the enzyme’s effects in the
invasive pathway (Wu et al. 2008). Expression of
MMP-2 in HCCs is associated with dedifferentia-
tion in HCC (Ogata et al. 1999) and was correlated
with intra- and extrahepatic metastases (Liu
et al. 2003). Expression of MMP-2 predicted
lymph node metastasis in HCCs (Xiang
et al. 2011). The secretion of MMP-2 is stimulated
by the transcription factor, Snail, which is expressed
inHCC cells andmediates EMT. On the other hand,
downregulation of Snail in HCC cells is associated
with increased expression of the adhesionmolecule,
E-cadherin, and downregulation of MMP-2 (Chen
et al. 2012a). MMP-2 is also upregulated by
osteopontin (Chen et al. 2011a,b), through the
SDF-1/CXC4 axis (Zhang et al. 2011), via Notch
signaling (Zhou et al. 2012), by secreted clusterin
(Chen et al. 2012a), Rock2 (Huang et al. 2014), and
by sonic hedgehog signaling through focal
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adhesion kinase/AKTsignaling (Chen et al. 2013a).
Osteopontin itself is downregulated by microRNA-
181a (Bhattacharyya et al. 2010). The activity of
MMP-2 in HCC is strongly controlled by TIMP-2
(Musso et al. 1997; Giannelli et al. 2002). MMP-2
expression is downregulated by microRNA-29b, a
microRNA that suppresses angiogenesis, invasion,
and metastasis (Fang et al. 2011). As with other
MMPs, MMP-2 is regulated by tissue inhibitor of
metalloproteinase-2/TIMP-2. Strong expression of
TIMP-2 in hilar cholangiocarcinomas is associated
with inhibition of cancer invasion and metastasis
(Xiao et al. 2004). MMP-2 is also expressed in
subsets of gallbladder carcinoma (Karadag
et al. 2008).

MMP-3

Expression of MMP-3 is associated with the
prognosis of HCV-related HCCs (Okamoto
et al. 2010). In HGF-induced invasion of HCC
cells, MMP-3 is involved, in that HGF stimulates
the secretion of pro-MMP-3 (Monvoisin
et al. 2002). Upregulation of MMP-3 in hepa-
toma cells is associated with a downstream medi-
ation of autocrine motility factor (Yu et al. 2004).
MMP-3 is also induced by HBV X protein,
which is a known promoter of cell migration
(Yu et al. 2005). The pro-metastatic activity of
MMP-3 depends on its genetic polymorphism, in
that the MMP-3 5A allele was the most promi-
nent MMP-3 enzyme to promote invasion
(Okamoto et al. 2010). Expression of MMP-3 in
HCC cells is reduced by microRNA-30a-3p
(Wang et al. 2014).

MMP-7

Similar to other MMPs, MMP-7 has recently
been demonstrated to act in the invasion cascade,
also in metastatic HCCs (Gao et al. 2006). In
particular, MMP-7 expression is a prognostic
factor in cholangiocarcinoma, whereby cho-
langiocarcinoma cells show strong immunoreac-
tivity for this enzyme (Miwa et al. 2002).
Expression of MMP-7 is associated with poor

prognosis in patients with intrahepatic
cholangiocarcinoma (Hirashita et al. 2012) and
is an unfavorable postoperative prognostic factor
in perihilar, hilar, and extrahepatic cholangio-
carcinomas (Itatsu et al. 2008), and serum
MMP-7 seems to be a valuable diagnostic marker
in discrimination of cholangiocarcinomas from
reactive biliary pathologies (Leelawat
et al. 2009). One non-synonymous variant of
MMP-7 was found to confer risk of liver cirrho-
sis in patients with HCC (Hung et al. 2009).
MMP-7 engages in a signaling pathway together
with beta-catenin. Upregulation of MMP-7
expression by beta-catenin is promoted by
DKK1, which is overexpressed in HCCs (Chen
et al. 2013b). Similar to sclerostin, DKK1
(Dickkopf-related protein 1) is an antagonist of
the Wnt/beta-catenin signaling cascade. DKK1
promotes invasion and metastasis in HCCs, asso-
ciated with increased RhoA and JNK levels (Tao
et al. 2013). In cholangiocarcinomas, DKK1 is
related to lymphatic metastasis and an aggressive
course (Shi et al. 2013). This phenomenon may
be caused by the induction of an invasive pheno-
type by DKK1. MMP-7 expression is
downregulated in HCCs by the tumor suppres-
sor, fibulin-5 (Tu et al. 2014).

MMP-9

MMP-9 has an important role in HCC invasion (Arii
et al. 1996; Sun et al. 2005; Nart et al. 2010; Tao
et al. 2010; Yeh et al. 2010; Thieringer et al. 2012)
and is also involved in invasion of hilar cholangio-
carcinoma (Li et al. 2005). Upregulation of MMP-9
is found in a majority of HCCs and is subject to
MMP-9 gene polymorphism (El-Samanoudy
et al. 2014). Overexpression of MMP-9 mRNA
may be associated with the progression of small
HCCs with a diameter of <=2 cm (Sakamoto
et al. 2000). MMP-9 expression is a significant
predictor of recurrence after liver transplantation in
HCC patients (Zhang et al. 2006). TheMMP family
members, MMP-2 and MMP-9, are critical for the
invasive potential of numerous malignancies,
including HCC. Overexpression of MMP-9 in
HCCs is correlated with growth and invasion in
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small tumors already (Sakamoto et al. 2000) and is
associated with macrovessel invasion in larger
tumors (Nart et al. 2010). High expression of
MMP-9 was associated with both time to recurrence
and overall survival, while high expression of
MMP-2 was only correlated with time to recurrence
(Chen et al. 2012b). MMP-9 cleaves osteopontin to
produce a fragment that is essential for osteopontin-
induced invasion ofHCCcells (Takafuji et al. 2007).
MMP-9 is also expressed in tumor-associated mac-
rophages (TAMs) located at the invasive front of
murine HCC (Roderfeld et al. 2010). MMP-9 coop-
erates with focal adhesion kinase (FAK), whereby
this mechanism that is active in HCC cell migration
is stimulated by activated hepatic stellate cells (Han
et al. 2014). In addition to its role as mediators of
histolysis, MMPs may cause other biologic effects,
e.g., angiogenesis in cancers (Bergers et al. 2000). In
mice, hepatocyte-specific expression of MMP-9
promoted liver tumor development (Thieringer
et al. 2012).

The induction and localization of MMP-9 are
regulated by several factors. MMP-9 signaling in
HCC is promoted by activated hepatic stellate cells
(Han et al. 2014), which occur in tumor stroma.
MMP-9 activity for mediating invasion is regulated
by the calcium-binding protein S100A4 (Zhang
et al. 2013) and is strongly regulated by protein
kinase C-dependent NF-kappaB activation in HCC
cells (Hah and Lee 2003). Trafficking ofMMP-9 in
invadopodia is regulated by Rab GTPases, specif-
ically Rab40b (Jacob et al. 2013). Induction of
MMP-9 expression in HCC is stimulated by inter-
leukin 23 through NF-kappaB induction
(Li et al. 2012). Expression of MMP-9 is promoted
by the PRL (phosphatase of regenerating liver)
phosphatase, a group of distinct protein tyrosine
phosphatases. Activation of MMPs is mediated by
Twist-induced EMT, whereby specifically MMP-2
and MMP-9 are secreted (Zhao et al. 2011). The
activity ofMMP-9 andMMP-2 is attenuated by the
protein, RECK (reversion-inducing cysteine-rich
protein with Kazal motifs), an important regulated
metalloproteinase. Downregulating of RECK in
cholangiocarcinomas is associated with enhanced
MMP-2/MMP-9 activity and a metastatic pheno-
type (Namwat et al. 2011). HBV viral X protein
induces MMP-9 gene expression via activation of

ERK and PI-3K/AKT pathway activation (Chung
et al. 2004), whereas hepatitis C virus NS3 protein
enhances cancer cell invasion by activating
MMP-9 activity (Lu et al. 2015). MicroRNA-
133a inhibits HCC cell migration and invasion by
targeting MMP-9 (Chen et al. 2015). The expres-
sion of MMP-9 is inhibited by microRNA-491,
which also blocks EMT in HCC (Zhou
et al. 2013d). MMP-9 is upregulated in other
hepatic and biliary tract cancers, including
cholangiocarcinoma. In cholangiocarcinomas,
MMP-9 expression is enhanced by downregulation
of microRNA-138 (Wang et al. 2013b). MMP-9
expression is enhanced in gallbladder carcinoma
(Karadag et al. 2008).

MMP-10

Strong immunoreactivity for MMP-10 was found
in HCCs, especially in the extracellular matrix
adjacent to blood vessels (Bodey et al. 2000).
MMP-10 can be activated by C-terminal-trun-
cated HBV X protein, a process stimulating
HCC invasion (Sze et al. 2013).

MMP-11

MMP-11 is strongly expressed in both tumor cells
and stromal cells surrounding cancer. There is
evidence that MMP-11 is a tumor lymphatic
metastasis-associated MMP (Jia et al. 2007).
MMP-11 is downregulated by CD147 (basigin),
affecting the lymphatic metastasis pattern of HCC
in a mouse model (Jia et al. 2007). Expression and
secretion of MMP-11, together with VEGF, is
inhibited in HCCs by ectopic expression of
microRNA-125a (Bi et al. 2012).

MMP-12

Overexpression of MMP-12 was found in 58 % of
human HCCs, and its expression was significantly
correlated with an invasive phenotype
(in particular venous invasion) and poor prognosis
in HCC (Ng et al. 2011).

Tissue and Matrix Destruction (Histolysis) as a Major Mechanism of Cancer Invasion 3361



MMP-14

Membrane type 1 MPP (MT1-MMP, MMP-14)
promotes invasiveness in HCC cell lines
(Murakami et al. 1999), is overexpressed in highly
invasive HCCs (Harada et al. 1998), and induces
metastases in HCC, but MMP-14 gene polymor-
phisms also contribute toHCC susceptibility (Chen
et al. 2011c). Increased MMP-14 mRNA expres-
sion by tumor cells in HCCs may have prognostic
significance (M€a€at€a et al. 2000). An aggressive
phenotype is observed in HCCs that show atypical
localization of MT1-MMP in the tumor cell nuclei
(Ip et al. 2007). By its enzymatic activity, it not
only degrades extracellular matrix but it also
induces a signaling pathway stimulating cell adhe-
sion and proliferation (Ip et al. 2005). MT1-MMP
confers a proteolytic activity to invadopodia (see
above), particularly upon tumor cell contact with
ECM. This activity is regulated by the v-SNARE
TI-VAMP/VAMP7 (Steffen et al. 2008). The cell
surface level and endocytosis of MMP-14 are also
regulated by the planar cell polarity-associated pro-
tein, VANGL2, a protein that also induced
invadopodium formation (Williams et al. 2012).
In tumor cells, endocytosis of MT1-MPP by
clathrin- and caveolae-dependent pathways is
counteracted by mechanisms stabilizing the
enzyme at the cell surface (Poincloux et al. 2009).
MT1-MPP is targeted by microRNA-150-5p
which inhibits HCC migration and invasion. In
metastasizing liver cancers, expression of this
MiR is reduced (Li et al. 2014). MT1-MMP can
be upregulated by HBV X protein (Ou et al. 2007).
Similar to MT1-MMP, alsoMT3-MMP expression
was associated with an invasive phenotype in
HCCs (Arai et al. 2007).

Tissue Inhibitors
of Metalloproteinases (TIMPs) in Liver
Cancer

Tissue inhibitors of metalloproteinases (TIMPs;
four members, TIMP-1, TIMP-2, TIMP-3, and
TIMP-4) are important regulator proteins that
interfere with the activity of certain MMPs.
TIMP-1 inhibits MMP-9, while TIMP-2 inhibits

MMP-2. Both TIMPs were detected in HCC tumor
cells, stromal cells, and endothelial cells, whereby
expression signals were stronger for TIMP-1 than
for TIMP-2 (Joo et al. 2000; Matsumoto
et al. 2004), which is of special interest in the
light of the MMP expression patterns in HCCs.
In one study, TIMPwas preferentially expressed in
the capsule of HCCs (Fukuda et al. 1991). Meta-
static HCCs showed lower levels of TIMPs (Gao
et al. 2006), and HCC tissue expression levels of
TIMP-2were higher in patients without metastases
(Giannelli et al. 2002). However, TIMP-1 can cre-
ate a premetastatic niche in the murine liver
through stromal cell-derived factor 1/CXCR4-
dependent neutrophil recruitment (Seubert
et al. 2015). Expression of TIMPs is heteroge-
neous and varies considerably among HCC nod-
ules, but there was no clear correlation between the
TIMP expression levels, differentiation grade, and
invasion, although TIMP expression was also
detectable in HCC metastases (Nakatsukasa
et al. 1996). In cholangiocarcinoma, expression
of TIMP-1 was strong and was associated with
the extent of invasion (Nakatsukasa et al. 1996).
In cultured cells, expression of TIMP-1 was nega-
tively regulated by the EMT effector, Twist1
(Okamura et al. 2009). In addition to TIMP-1 and
TIMP-2, TIMP-3 is involved in the regulation of
cancer invasion. Transfection of TIMP-3 in HCC
cell lines suppresses invasive capacity (Zhang
et al. 2007b). In HBV-associated HCC, TIMP3
can be epigenetically silenced (Lai and Lo 2005).

There are protease inhibitors different from
TIMPs. The serine protease inhibitor, clade B,
member 1/SERPINB1, is a member of the
SERPINB family involved in suppression of
migration and invasion in various cancers.
SERPINB1 expression in HCCs is correlated
with tumor invasion and an aggressive course
(Cui et al. 2014).

Metzincin Superfamily Members:
ADAMs

Adisintegrin andmetalloproteinases (ADAMs) or
MDCs (metalloprotease-like, disintegrin-like,
cysteine-rich proteins) are membrane-bound
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metzincins and the adamalysin subfamily.
Twenty-two members of ADAM family are
known (reviews: Porter et al. 2005; Edwards
et al. 2008). ADAMs possess a domain structure
similar to that of MMPs, but in contrast to the
latter, ADAMs display a cysteine-rich domain,
an epidermal growth factor-like repeat domain,
and the disintegrin domain, but lack the
hemopexin-like domain of MMPs (review: Klein
and Bischoff 2011). The main functional activity
of ADAM metalloproteases is ectodomain shed-
ding of various receptors, growth factors, Notch,
cytokines, and other signaling substances
involved in cellular homeostasis (“ADAM
sheddases”). For example, ADAM17 is critically
involved in post-shedding activation of pro-TNF-
alpha and is therefore also termed tumor necrosis
factor-alpha convertase or TACE. For several cell
membrane signaling proteins, cleave by ADAM
sheddases prepares what is called regulated
intramembrane proteolysis or RIP, resulting in
intracellular domains that can be translocated to
the nucleus for the regulation of gene transcription
(Edwards et al. 2008).

Various malignant neoplasms express several
species of ADAMs, particularly ADAM8,
ADAM9, ADAM10, ADAM12, ADAM15,
ADAM17, ADAM19, and ADAM28 (review:
Mochizuki and Okada 2007; Duffy et al. 2009).
In cancer invasion and spread, the critical function
of ADAMs is the metalloproteinase activity of
these enzymes (Rocks et al. 2008). Similar to
MMPs, the metalloprotease domain is shielded
by a pro-domain that involves the cysteine switch
mechanism. For activation of the protease, this
protecting shield is removed in the trans-Golgi
network by the action of proprotein convertases,
such as furin (Klein and Bischoff 2011). ADAM8
is overexpressed in HCCs in comparison with
normal liver. Expression levels were positively
correlated with tumor size, grade, recurrence,
and metastasis (Zhang et al. 2013).
Downregulation of ADAM10 expression inhibits
invasiveness and metastasis of human HCC cells,
associated with increased E-cadherin protein
levels and a related change in cell migration
(Yue et al. 2013). ADAM12 mediates the shed-
ding of the epidermal growth factor receptor

(EGFR) ligand, heparin-binding EGF-like growth
factor/HB-EGF, in a Notch-dependent manner.
Released EB-EGF induces the formation of
invadopodia under hypoxic conditions (Diaz
et al. 2013). ADAM17 is involved in the cleavage
of the ectodomain of numerous transmembrane
proteins. ADAM17 is overexpressed in HCC
under hypoxic conditions and enhances the phos-
phorylation of the EGFR (Wang et al. 2013a).
ADAM17 is targeted by microRNA-145 which
suppresses invasion of HCC cells (Yang
et al. 2014). In HCCs, ADAM17 is also regulated
by microRNA-122, a tumor suppressor
microRNA (Tsai et al. 2009). ADAM28 is impli-
cated in tumor growth and progression in several
human cancers (Mochizuki and Okada 2009). It
operates through cleavage of the proapoptotic von
Willebrand factor. Tumor cells with low expres-
sion levels of ADAM28 display a higher rate of
apoptosis (Mochizuki et al. 2012).

ADAMTS and ADAMTS-Like Proteins

ADAMTS (a disintegrin and metalloprotease with
thrombospondin motifs) are a family of extracel-
lular proteases that is distinguished from ADAM
metalloproteases by the presence of multiple cop-
ies of thrombospondin 1-like repeats. ADAMTS
bind to and process various components of ECM
proteins and proteoglycans, including heparin;
procollagens I, II, and II; aggrecan; brevican;
versican; decorin; fibronectin; and von
Willebrand factor. ADAMTS are involved in the
regulation of critically important processes such
as morphogenesis, angiogenesis, and carcinogen-
esis. For example, of the at least 20 members in
this family, ADAMTS2 is a procollagen
N-proteinase; ADAMTS4 and ADAMTS5 are
aggrecanases active in the hydrolysis of cartilage
aggrecan (review: Tang 2001). Overexpression of
ADAMTS1 results in shedding of semaphorin 3C
from the ECM, a step that stimulates cell migra-
tion (Esselens et al. 2010). The seven ADAMTS-
like proteins are proteins that lack proteolytic
activity but possess ADAMTS ancillary domains.
The proteins have important regulatory roles in
the ECM (review: Apte 2009).
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Other Proteases Involved in Cancer
Invasion and Progression

In invadopodia, few other proteolytic enzymes
are expressed, including serine proteinase/
seprase, aspartate proteases, threonine proteases,
dipeptidyl dipeptidase, and cysteine cathepsins
(Jevnikar et al. 2012; Rakashanda et al. 2012). A
group of calcium-dependent cysteine proteases is
the calpains, enzymes involved in several
homeostatic mechanisms. Among the various
calpain members, m- and m-calpain are involved
in regulating cell migration and invasion. In
comparison with normal hepatocytes, these two
calpains are elevated in HCC cells and regulate
HCC cell migration and invasion (Chen
et al. 2013c).

Several types of enzymes active on matrix pro-
teins are produced and secreted by leukocytes
infiltrating the tumor stroma. Macrophages
express a distinct metalloelastase, a member of
the MMP family. Expression of metalloelastase
by tumor-associated macrophages in HCC is cor-
related with angiostatin generation and survival,
in that tumors having no metalloelastase expres-
sion and hence a reduced angiostatin showed
poorer survival (Gorrin Rivas et al. 1998).
Human neutrophils produce an elastase that can
degrade TIMP-1, a process accelerated by heparin
(Nunes et al. 2011).

HCCs can express and secrete various
ectopeptidases, including neprilysin (CD10), ami-
nopeptidase N (CD13), and angiotensin-I-
converting enzyme (CD143), whereby this expres-
sion differs considerably between normal liver and
HCCs. In HCCs, neprilysin immunoreactivity is
found on canalicular domains, a feature with diag-
nostic significance (Borscheri et al. 2001). In com-
parison with normal parenchyma, CD10 is low in
HCCs, while CD13 and CD143 were mildly
increased. CD13 may be involved in the regulation
of cell polarity, whereas CD143 may influence
angiogenesis (Rocken et al. 2004).

Thrombin can induce cell migration in
HCCs. HCCs express several proteinase-acti-
vated receptors (PAR), mainly the thrombin
receptors PAR(1), PAR(3), and PAR(4). PAR
form a novel G-protein-coupled receptor

subfamily. Stimulation of HCC cells in vitro
with thrombin increased migration across a col-
lagen barrier (Kaufmann et al. 2007). The uro-
kinase system involves three key components,
urokinase-type plasminogen activator (uPA),
uPA receptor (uPAR), and plasminogen activa-
tor inhibitor type 1 (PAI-1). This system is
activated in several tumor types and potently
affects tumor invasion and metastasis.
Urokinase-type plasminogen activator (uPA) is
a key protein in the plasminogen activation
system and is critically involved in proteolytic
steps in tumor invasion. In human HCCs, uPA
and c-met overexpression are coordinated in a
complex fashion. Following its binding to its
c-met receptor, HGF can upregulate uPA in a
dose-dependent manner and by this mechanism
augments HCC invasion (Lee et al. 2008). High
levels of uPA in HCCs were correlated with
macrovessel invasion and metastasis, and in
tumors expressing uPA, uPAR, and PAI-1, a
more prominent invasion phenotype was
observed (Zheng et al. 2000). Overexpression
of microRNA-23b in HCC cells leads to uPA
and c-met downregulation and to decreased
migration (Salvi et al. 2009). Plasmin- and
trypsin-mediated activation of MMPs is
inhibited by TFPI-2 (tissue factor pathway
inhibitor), an extracellular matrix-associated
Kunitz-type serine proteinase inhibitor. TFPI-2
inhibits the invasion of HCC cells
(Xu et al. 2011).

Non-protease Proteins Involved
in ECM Degradation

In the setting of the invasion process, heparan
sulfate chains of heparan sulfate proteoglycans
located in the ECM are cleaved by the
endoglycosidase heparanase. Heparanase is
upregulated in HCCs with an invasive-metastatic
phenotype (El-Assal et al. 2001; Xiao et al. 2003;
Edovitsky et al. 2004; Zhang et al. 2007a). In
these neoplasms, heparanase also promotes angio-
genesis (Ilan et al. 2006). HCCs also synthesize
heparin-degrading sulfatases, sulfatase 1 (SULF1)
and sulfatase 2 (SULF2). These two enzymes
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desulfatize heparan sulfate proteoglycans local-
ized to cell surface and ECM. SULF1 and
SULF2 are differentially expressed in HCCs, in
that SULF1 is downregulated in up to a third of
HCCs, while SULF2 is upregulated in up to 60 %
of primary HCCs, and SULF2 activates MAP
kinase and AKT pathways, promoting HCC
growth and invasion (Lai et al. 2008).

In the invasion process, several nonstructural
proteins of the extracellular matrix play a signifi-
cant role. These proteins are called matricellular
proteins and belong to various protein families.
Well-known members include CCN family mem-
ber cysteine-rich angiogenic inducer 61 (Cyr61/
CCN1), CCN6, osteopontin, secreted protein
acidic and rich in cysteine (SPARC),
angiopoietin-like protein 4 (ANGPTL4), and
thrombospondin-1 and thrombospondin-2
(review: Chong et al. 2012).
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