
Methods for Job Scheduling on Computational
Grids: Review and Comparison

Edson Flórez1(&), Carlos J. Barrios1, and Johnatan E. Pecero2

1 High Performance and Scientific Computing Center - SC3UIS, Universidad
Industrial de Santander, Bucaramanga, Colombia

edson.florez@correo.uis.edu.co, cbarrios@uis.edu.co
2 Computer Science and Communications Research Unit, University

of Luxembourg, Luxembourg City, Luxembourg
johnatan.pecero@gmail.com

Abstract. This paper provides a review of heuristics and metaheuristics
methods, to solve the job scheduling problem in grid systems under the ETC
(Expected Time to Compute) model. The problem is an important issue for
efficient resource management in computational grids, which is performed by
schedulers of these High Performance Computing systems. We present an
overview of methods and a comparison of the results reported in the papers that
use ETC model. The best methods are identified according to Braun et al.
instances [8], which are ETC model instances most used in literature. This
survey can help new researchers to lead them directly at the best scheduling
algorithms already available to perform deep future works.

Keywords: High performance computing � Grid computing � Combinatorial
optimization � Energy efficiency � Heuristics � Scheduling

1 Introduction

High performance computing systems such as grid computing are managed with a
Resource Management System (RMS) [5], which typically has a resource manager and
a task scheduler to guarantee both quality of service (QoS) provided to users and the
requirements of the system administrator [4]. Therefore, an efficient scheduling algo-
rithm is essential to fully exploit grid systems resources [10].

The purpose of this review article is analyze heuristic and metaheuristic approaches
to solve job scheduling problem present in grid systems, according to the ETC model,
which is a computation model for grid scheduling that allow to formalize, implement
and evaluate different scheduling algorithms [20]. For this purpose, the job scheduling
context in grid computing is introduced to provide a clear image of the optimization
problem tackled, constraints and test cases. Furthermore, the most important heuristic
and metaheuristic methods are briefly described.

Then, the analysis focuses on the works that reported their results with the most used
ETC model instances, which were proposed by Braun et al. [8], in order to identify the
best heuristics accurately. Comparison tables of performance and energy consumption
of the reported results are provided. Finally, the outstanding job scheduling algorithms

© Springer International Publishing Switzerland 2015
C. Osthoff et al. (Eds.): CARLA 2015, CCIS 565, pp. 19–33, 2015.
DOI: 10.1007/978-3-319-26928-3_2



are investigated from different points of view, describing the distinctive characteristics
of each algorithm, adaptation to the problem, strategies to face the complexity of the
problem, etc. However, because a survey of an immense area such as grid scheduling
has to focus on certain aspects and neglect others, the scope of the review reported in this
article is only the ETC model, therefore, our selection of the best algorithms is only valid
in this specific context, the results can be very different with other models and problems.

The paper is organized as follows. Section 2 presents an overview of scheduling
problem in grid systems. We have summarized the main heuristics and metaheuristic
methods for scheduling in Sect. 3, and we compare and analyze this methods in Sect. 4,
delving into the most highlighted. Finally, Sect. 5 presents the main conclusions and
lines for future work.

2 Overview of Job Scheduling Problem in Grid Systems

The need of high performance computing in today’s society continues to increase and
so does the datacenters size and their energy demand, which leads to a rise in the
operating costs and carbon emissions. This paper seeks to identify efficient heuristics to
allocate independent jobs in the resources of high performance computing systems,
with the aiming to minimize energy consumption without affecting the system
throughput.

Grid computing infrastructures are typically homogeneous, but the current trend is
towards infrastructures with heterogeneous resources, that have nodes with different
processing capacity and architectures to run applications or heterogeneous tasks, which
gives them a great advantage over homogeneous platforms that deny service to users
with different requirements. In heterogeneous infrastructures, job scheduling problem
becomes even more complex and essential to the efficient use of resources.

Due to the high complexity of the job scheduling problem (NP-hard [2]) is not
possible to determine the optimal solution, because the huge search space cannot be
fully explored in reasonable time (polynomial) [18]. This requires approximation
methods to find good quality solutions with high computational efficiency instead of
algorithms that perform exhaustive searches that require a considerable computing time
and resources. Among these are included heuristics and metaheuristic methods of
artificial intelligence, such as the Genetic Algorithm (GA) [2].

2.1 Scheduling Problem in Grid Systems

Grid computing infrastructures may be focused on system or users. When is
system-centred, the overall performance of the cluster is optimized as disk space,
access range and energy consumption, so don’t satisfy the users requirements. Instead,
when is user-centred, criteria related utility achieved by users are evaluated, such as
cost and execution time of their tasks, which can degrade system performance. The
balance point (which covers the interests of the user and system administrator) is
maximize the resource utilization holding good response times for users requests.

20 E. Flórez et al.



Performance metric most studied in the literature of grid scheduling is the make-
span [3, 38], its minimization is a system administrator requirement because it allows to
maximize resource usage, while improves the quality of service provided to the user, by
reducing of the flowtime or length of the time interval between the release time and
completion time of the task [9], which is related to the response times. The makespan is
the maximum completion time Ci of the tasks [16, 17], is the time when the last task is
finished, i.e., the ending time (or length) of the schedule [6]. Moreover, the energy
efficiency is a very important issue for system administrator, established as perfor-
mance per power consumption, to reduce high costs of operating the computing
infrastructure, caused by high energy consumption of its multiple processors and the
necessity of cooling to dissipate the heat produced.

Types of Job Scheduling. A job is defined as a monolithic application (i.e., a single
task) or a collection of tasks, which can be dependent or independent [14]. Tasks are
indivisible computational workload units, if they are dependent tasks, have to
accomplish a predefined order dependencies between them, and if they are independent
tasks, task doesn’t require any communication with others [39].

Resources of HPC infrastructures are managed with Resource Management System
(RMS), which defines how the computing resources are used to execute the user’s
tasks, by a dynamic or static scheduling. The dynamic scheduling takes into account
the changing resources state, so schedule is modified on-line [11], by adding or
removing processors to the jobs. In static scheduling is considered that the resources
are available during a time interval (between two successive activations scheduler) and
all jobs are known a priori [11], so the schedule is produced off-line, i.e., before starting
its execution (and is not modified during execution).

Similarly, job processing can be batch type or immediate [20]; in immediate
scheduling or on-line, jobs are assigned individually regardless the tasks that arriving
after to the system, without resource planning. Instead, batch scheduling has a compute
phase of tasks schedule, where these are grouped into batches, and then at the assign
phase, tasks are allocated to selected resources according to the planning of the
scheduler [20]. Due to jobs are assigned in groups, each job must wait for the next time
interval when the scheduler get activated again. An immediate scheduling algorithm is
most appropriate for clusters with low concurrence (which have good availability of
resources), i.e., the job arrival rate is small having thus available resources to execute
jobs immediately [20], at the time they are submitted by user, without any waiting time
in queue. However, batch scheduling can take advantage of job information and
compatible resources characteristics, for resource planning where determines which job
is most suited to allocate to each resource, thus resulting in better makespan than
immediate scheduling [6]. We considered static job scheduling type batch with
instances produced under the ETC model [31].

2.2 ETC Computational Model

ETC is a computational model for grid scheduling, with which problem instances are
easily represented, helping to the implementation and evaluation of scheduling

Methods for Job Scheduling on Computational Grids 21



algorithms. It is based on a normal distribution or gamma to produce ETC matrices that
contain estimated processing time of each task in each machine of the system [31].

Formal Definition of the Problem. A computational grid composed by a set of
t independent tasks to be assigned and m machines available for planning, with an
execution time ETC[ti][mj] previously known [2], which represents tasks and machines
characteristics such as the computing capacity of machines and the workload of tasks.
The workload of real applications can be obtained from specifications provided by the
user, historical data or predictions [20].

Objective function:Minimize energy consumptionE andmakespanCmax ¼ max
i2tarea

Cið Þ
Constrains: Problem is subject to constrains that guarantee that each task is

assigned at least once [6], and that each machine only execute a task at a time [19].

Problem Instances. The problem instances are matrices ETC of size txm (t tasks and
m machines) [17]. ETC model is characterized by the parameters consistency, machine
heterogeneity and task heterogeneity [31]. Table 1 has a high variation along the
column that is the high heterogeneity of tasks, and in Table 2, the large variation along
a row represents high heterogeneity of machines.

Consistency is defined by the relation between a task and how it is executed in the
machines according to heterogeneity of each one [8]. ETC matrix is consistent if a
given machine mj executes any task ti faster than machine mk, then machine mj executes
all tasks faster than machine mk [31], as in Tables 1 and 2. If this occurs only partially,
i.e., it has an inconsistent matrix that include a consistent sub-matrix, the matrix is
considered semi-consistent. And if it does not have at least consistent submatrices, then
it is an inconsistent instance.

Instances are labeled as x_ttmm [17], where x indicates the type of matrix con-
sistency (c for consistent, s for semi-consistent, i for inconsistent), tt indicates the
heterogeneity of tasks and mm indicates the heterogeneity of machines. For machines
and tasks, “hi” and “lo” mean high and low heterogeneity respectively. With these
heterogeneity and consistency features, twelve types of ETC instances are obtained.

Table 1. High heterogeneity of tasks and low heterogeneity of machines in ETC matrix of size
10 × 5

m1 m2 m3 m4 m5

t1 11648,23 11803,25 13198,95 14208,43 15309,41
t2 12826,31 13439,28 13326,27 15145,01 15323,84
t3 10394,73 10543,99 10629,78 12025,45 14339,22
t4 508,99 561,11 567,35 766,93 858,48
t5 5084,65 5288,79 5872,92 6503,83 7001,72
t6 1808,62 1869,03 1936,83 1987,72 2229,49
t7 877,99 901,28 956,57 1039,97 1044,57
t8 5331,69 5858,57 6379,28 6985,41 7339,16
t9 25250,93 25747,22 25785,37 26322,56 26332,69
t10 3905,32 4012,28 4016,58 4511,21 4521,13

22 E. Flórez et al.



The most used instances are twelve ETC matrices of size 512 × 16 proposed by Braun
et al. [8], one for each type of ETC instance.

2.3 Energy Model

Energy consumption of the objective function is determined through an energy model,
which calculates the energy consumed by each processor in a time interval. Energy
consumption by processors is defined as [2]:

E ¼ P �
Xm

i¼1

CTi ð1Þ

Energy consumption depends of processor power P (watts) and how long it is
operational CT (Completion Time). Operating system can self-regulate dynamically the
supply voltage and clock frequency of the processor with techniques such as DVFS
(Dynamic Voltage Frequency Scaling) [7, 13], to save energy and produce less heat. This
is represented by discrete values of power, and processor power is adjusted to a minimum
power when idle, and switches to the maximum power when processing a task.

In the work of Pinel and Bouvry [7], they proposed a more comprehensive energy
model defined in Eq. 2, where BL is a constant power term, N is the number of
machines powered on (a machine which is not used is considered powered off) [7],
Phigh y Plow is the CPU power consumption when operating at maximum y minimum
voltage/frequency respectively.

E ¼ BL � N � Cmax þ
Xm

i¼1

ðPhigh � CTi þPlow � ðCmax � CTiÞÞ ð2Þ

Table 2. Low heterogeneity of tasks and high heterogeneity of machines in ETC matrix of size
10 × 5

m1 m2 m3 m4 m5

t1 896,03 1033,62 3276,71 16061,46 25993,39
t2 913,99 1573,82 2928,01 18939,34 27081,67
t3 802,42 1220,04 2489,74 17588,49 25076,18
t4 764,43 1389,37 2733,12 17863,56 27848,96
t5 987,75 1524,07 3622,65 16750,89 24889,36
t6 658,35 1379,73 2940,43 16916,91 23134,42
t7 844,28 1437,73 2571,79 14899,55 25771,68
t8 702,05 1504,82 2955,61 17555,64 25156,15
t9 642,51 1053,21 3156,67 15995,97 26244,13
t10 866,42 1589,23 2233,13 15738,73 26766,26

Methods for Job Scheduling on Computational Grids 23



3 Heuristic and Metaheuristic Methods for Job Scheduling
in Grids

3.1 Heuristics of Job Scheduling

Some heuristic algorithms generate solutions from scratch by adding components to a
partial solution, step by step, according to a transition rule until a solution is complete.
The job scheduling problem present in clusters has been resolved by low complexity
heuristics, which consume less time and memory to generate a schedule. A well-known
heuristic is Min-Min, which begins with the set of all unmapped tasks, then the min-
imum expected completion time for each task of the set is establish, and the task with
the lowest minimum completion time is selected and assigned to the corresponding
machine, next the newly mapped task is removed from the set, and the process repeats
until all tasks are mapped [8]. Max-Min works the same way that Min-Min, but
according to the maximum expected completion time.

In a recent paper, Diaz et al. [17] compare Min-Min with low complexity heuristics
Max-Max-Min, Avg-Max-Min and Min-Max-Min in Heterogeneous Computing Sys-
tems (HCS), and implemented Task Priority Diagram (TPD) algorithms. TPD defines a
graph to set the precedence for each task based on the ETC value, using a Hasse
diagram. Regarding makespan metric, low complexity heuristics were the best in in-
consistent and semi-consistent scenarios, in consistent scenarios the TPD-based
heuristics were better. Díaz et al. [15] compare Min-Min with the algorithms Min-Min-
Min, Min-Mean-Min y Min-Max-Min, and were evaluated performance, energy effi-
ciency and scalability in large-scale systems. Among this algorithms family were not
presented significant differences in performance metrics (makespan and flowtime) and
scalability, however, regarding the energy efficiency Min-Min was highlighted over the
others.

Others specialized heuristics for job scheduling problems in distributed systems are
Opportunistic Load Balancing (OLB), Minimum Execution Time (MET), Minimum
Completion Time (MCT), Sufferage and High Standard Deviation First. In the
extensive work of Braun et al. [8], where eleven heuristics are evaluated using the ETC
model, a genetic algorithm obtained the lowest makespan, MCT heuristic outperformed
to MET, and OLB got the worst makespan. OLB try to keep all machines as busy as
possible, assigns each task to the next machine that is expected to be available,
however, due to OLB does not consider expected task execution times, can result in a
very long makespan [8]. MET try to assigns each task to the machine where is execute
faster, i.e., the machine with the best expected execution time for that task, but because
regardless of that machine’s availability (current workload), this can cause a severe
load imbalance across machines. MCT try to assigns each task to the machine with the
minimum expected completion time for that task, in this manner seek to avoid the
circumstances in which OLB and MET perform poorly [8]. But this causes some tasks
to be assigned to machines that do not have the minimum execution time for them.

High Standard Deviation First (MaxStd) assigns first the task with the highest
standard deviation of the expected execution time of the task, to the machine that has
the minimum completion time, since the delay produced by their allocation will not

24 E. Flórez et al.



affect too much the total makespan. This standard deviation represents the amount
variation in task execution time on different machines [2].

Sufferage is the difference between the best and the second-best minimum com-
pletion time of the task [2, 32]. Task with the highest sufferage is assigned to the task’s
second most favourable machine, because in other way would be the most delay.

3.2 Metaheuristics of Job Scheduling

HPC literature has more complex techniques known as metaheuristics, approaches that
have been used to solve many optimization problems, and could be a basis to design
efficient grid schedulers [20]. These find sub-optimal solutions of high quality, with
less evaluations of solutions for combinatorial optimization problems, however, usually
require long run times [20], much higher than run times of heuristics. The main
metaheuristics that have been applied in job scheduling are shown in Table 3, along
with their basic characteristics and related works. Some of these works follow the ETC
model and most are about job scheduling in grid.

Some metaheuristics have random components, such as mutations in Evolutionary
Algorithms, and additional information produced by itself, such as pheromone in Ant
Colony Optimization, to guide and diversify the search for solutions. Even so, it cannot
guarantee the finding of optimal solution, only can find approximate solutions. These
methods depend much of quality and diversity of the initial solution, which is usually
generated randomly to ensure diversity. Some methods are multi-boot, to explore other
solutions to direct the search towards regions of the search space where the global
optima is located, instead of getting stuck in a local optima. Metaheuristics can be
based in local search and population.

Metaheuristics Based in Local Search. A local search heuristic start from some
initial solution and iteratively try to replace the current solution by a better solution in
an appropriately defined neighborhood of the current solution [12]. Local Search

Table 3. Basic characteristics of metaheuristics [12]

Metaheuristic Characteristics References

Simulated annealing Acceptance criterion 30
Cooling schedule

Tabu search Neighbor choice (tabu list) 29
Aspiration criterion

Evolutionary algorithms Recombination 2, 8, 21, 22, 23, 24
Mutation
Selection

Ant colony optimization Probabilistic construction
Pheromone update

25, 26, 27

Particle swarm optimization Population-based 28
Social coefficient

Methods for Job Scheduling on Computational Grids 25



(LS) is performed until a stopping condition is met, such as a number of consecutive
iterations without changing current solution or until the maximum execution time runs
out. It only requires a few specifications as an evaluation function and an efficient
method for exploring neighbourhood. This deterministic and memoryless method can
find solutions quickly, but the final solution strongly depends on the initial solution to
avoid getting stuck in the local optima and ensure convergence to suboptimal or
optimal solutions.

Tabu Search (TS) in every iteration can accept higher cost solutions to explore
other areas of the search space [35], taking into account a tabu list that prevents
repeated moves. Xhafa et al. implemented this method under the ETC model [29].

Greedy Randomized Adaptive Search Procedure (GRASP) is a random iterative
search method [31], which changes the current solution with a restricted candidate list
(RCL) of the best options available, and ends when reach a stopping condition, e.g.,
achieve a given number of iterations.

Simulated Annealing (SA) is a stochastic search algorithm without any memory
[30], inspired by the annealing process in metallurgy. In this process a material (such as
steel) is heated to a specific temperature, the heat causes that atoms to increase their
energy, and thus can easily move from their initial positions to explore the search
space. Then it is gradually cooled until temperature environment, seeking to reach the
global optima where material acquires desired physical properties (such as ductility,
toughness, etc.). Algorithm starts from a random initial solution and a high probability
(initial temperature) to allow any random move, which may be a worst quality solution
than current solution, in order to escape the local minima and explore the search space.
The probability to accept any movement gradually decrease (cooling) during the
search, until become an iterative algorithm that accepts only current solution changes if
there is an improvement. Cooling rule may change during the execution of the algo-
rithm, in order to adjust the balance between diversification and intensification of
search to converge to a solution [12].

Population-Based Metaheuristics. In population-based metaheuristics, the solution
space is explored through a population of individuals. Main metaheuristics in this
category are Evolutionary Algorithms, Ant Colony Optimization and Particle Swarm
Optimization.

Evolutionary Algorithms (EA) are inspired by the evolution of living beings, so it
uses selection and combination mechanisms. The most used of this family algorithms
are genetic algorithms (GA), where from an initial population of chromosomes (solu-
tion), it seeks to find the most suitable (solution with the best cost in objective function)
over the course of several generations, through crossover of chromosomes, random
mutations of genes and selection of chromosomes that survive to produce the next
generation. Genetic algorithms for the scheduling problem in grid has been quite used,
e.g., by Braun et al. [8], Zomaya and Teh [21], Gao et al. [22] and Carretero et al. [23].
Pinel et al. [2] implemented a Genetic Algorithm in a conventional cluster, to which was
added millicomputers to reduce power consumption. This algorithm is called PA-CGA
(Parallel Asynchronous - Cellular Genetic Algorithm) and was proposed along with a
heuristic called 2PH (Two Phase Heuristic), it consists of two phases, Min-Min followed
by Local Search. Both algorithms were evaluated against Min-Min, achieving better

26 E. Flórez et al.



performance (makespan) with a low runtime. In the work of Nesmachnow et al. [37],
proposed the Parallel Micro CHC (Cross generational elitist selection, Heterogeneous
recombination and Cataclysmic mutation) algorithm and they obtained an excellent
makespan for grid scheduling.

Other evolutionary computation algorithm is the Memetic Algorithm (MA), a
hybrid algorithm that combines evolution ideas with local search, through memes
(cultural information unit) similar to genes, common information of a population is
transmitted to the next generation. Few works have implemented this algorithm for grid
scheduling problem because it is a recent algorithm, such as Xhafa et al. [24] that
proposes a Cellular MA (cMA) for scheduling under the ETC model.

In the literature several algorithms have been proposed following the Ant Colony
Optimization (ACO) probabilistic method, to find approximate solutions to the com-
binatorial optimization problems as the tackled in our work. The first ACO algorithm
was Ant System (AS) proposed by Marco Dorigo, and have been used to solve a
similar problem called Job Shop Scheduling [26]. Recent versions gave better results,
as the Max-Min Ant System (MMAS) [27]. An implementation of ACO for job
scheduling in grid was conducted by Chang et al. [25].

Particle Swarm Optimization (PSO) is similar to ACO algorithm, which seeks to
copy the swarming behavior of different living beings (bees, birds, fish, etc.). Abraham
et al. proposed an approach for scheduling problem using a fuzzy PSO algorithm [28].

Also have implemented hybrid metaheuristics, mainly with Tabu Search. Other
metaheuristic is executed first, e.g., a genetic algorithm that search a good quality
solution, and then Tabu Search tries to improve it, exploring the neighborhood of that
solution. In works that reported results with the Braun et al. instances [8], have been
implemented hybrid metaheuristics MA + TS [34] and ACO + TS [36].

4 Comparison of Scheduling Algorithms

The instances used of Braun et al. benchmark are twelve of 512 jobs and 16 machines,
which correspond to the twelve different types of ETC instances. The metrics analyzed
in this work are makespan as the indicator of performance, and power consumption to
establish energy efficiency according to the achieved performance. Energy efficiency
was only determined for algorithms implemented by the Luxembourg University [15,
17], through the execution of algorithms using Braun et al. instances and the energy
model (and parameters values) defined by Guzek et al. [40], because only the makespan
is reported in most papers reviewed.

4.1 Comparative Analysis

The best makespan obtained for reported algorithms are compared in Table 4, which
highlights the evolutionary algorithms Parallel CHC [33] and Parallel Micro CHC [37],
the latter achieves the best makespan in all instances. Also it is highlighted Min-Min
heuristic [1, 32], as it requires a very low running time to obtain good quality solutions,
an issue in which the evolutionary metaheuristics are not very strong. The complete

Methods for Job Scheduling on Computational Grids 27



results of all heuristics and metaheuristics are reported in the website http://forge.sc3.
uis.edu.co/redmine/documents/1. There you can see that Min-Min is better than all
heuristics as Sufferage and Max-Min, and it is known that Min-Min is also better than
MET, MCT and OLB heuristics, according to the comparison graphs presented in the
work of Braun et al. [8].

Makespan results of Min-Min and Max-Min reported in [32], agree with those
obtained in the execution of algorithms provided by the Luxembourg University [15,
17]. Analyzed the makespan for each type of consistency, Min-Min and Sufferage
heuristics have a long makespan in consistent and semi-consistent instances, Paral-
lel CHC algorithm is the second best makespan in six of twelve instances, which
mostly belong to the type of semi-consistent and inconsistent instances. In the
remaining instances is overcome by Tabu Search [35], ACO + TS [36] and PA-CGA
[38]. Although the hybrid metaheuristics (ACO + TS and cMA + TS) are not the best in
this case, they are a good alternative to be further investigated.

In algorithms that we have the necessary information to assess the multi-objective
function, which aims to minimize energy consumption and makespan simultaneously, a
score function SF is used [7, 17]. It represents the energy efficiency, also known as
fitness function [20], to set the importance of the two objectives with a weight
parameter α as follows:

SF ¼ a � Cmax þ 1� að Þ � E ð3Þ

Therefore, the aim will be to minimize the score function. If the priority of both
objectives are the same, we can set α at 0.5 to have a balanced weight or importance of
makespan and energy. Moreover, it is required to normalize the values of each metric
for appropriate calculation of the score (because metrics have different measure units),
so the value of makespan and energy obtained by each algorithm is divided by the
maximum value of all algorithms [15]. Normalized values are in the range [0,1], where
1 is the worst performance value. The score obtained from the executed algorithms is
compared in Fig. 1. Min-Min algorithm is better in all instances with a balanced α at
0.5, and as well with α between 0.1 and 0.9 approximately. Also is outstanding the
energy efficiency of Min-Mean-Min and Min-Max-Min. In contrast, Max-Min has one
of the worst performance, especially in inconsistent instances where it has the highest
energy consumption and makespan.

4.2 Analysis of the Highlighted Algorithms

The highlighted algorithms according to the makespan are Parallel Micro CHC and
Parallel CHC algorithms. These evolutionary algorithms have in common its basics
characteristics (selection, recombination and mutation), and achieve to find the best
solutions for grid scheduling problem, because they have a good balance between
random and guided search. Starting from a random initial solution (or obtained with
fast heuristics as Min-Min, MCT and Sufferage), explore the search space guided by
the information contained in a population of chromosomes. For this is defined a rule to
select the fittest individuals, which are recombine to generate new individuals

28 E. Flórez et al.

http://forge.sc3.uis.edu.co/redmine/documents/1
http://forge.sc3.uis.edu.co/redmine/documents/1


T
ab

le
4.

B
es
t
m
ak
es
pa
n
of

al
go

ri
th
m
s

In
st
an
ce

51
2
×
16

M
in
-M

in
[3
2]

Su
ff
er
ag
e

[3
2]

T
S
[3
5]

cM
A

[2
4]

G
A

[3
3]

Pa
ra
lle
l

G
A

[3
3]

PA
-C
G
A

[3
8]

C
H
C
[3
3]

Pa
ra
lle
l

C
H
C
[3
3]

Pa
ra
lle
l

M
ic
ro
-C
H
C

[3
7]

M
A

+
T
S

[3
4]

A
C
O

+
T
S

[3
6]

u_
c_
hi
hi
.0

8.
46
0.
67
4

10
.9
08
.6
98

7.
44
8.
64
1

7.
70
0.
93
0

7.
65
9.
87
9

7.
57
7.
92
2

7.
43
7.
59
1

7.
59
9.
28
8

7.
46
1.
81
9

7.
38
1.
57
0

7.
53
0.
02
0

7.
49
7.
20
1

u_
c_
hi
lo
.0

16
1.
80
5

16
7.
48
3

15
3.
26
3

15
5.
33
5

15
5.
09
2

15
4.
91
5

15
4.
39
3

15
4.
94
7

15
3.
79
2

15
3.
10
5

15
3.
91
7

15
4.
23
5

u_
c_
lo
hi
.0

27
5.
83
7

34
9.
74
6

24
1.
67
3

25
1.
36
0

25
0.
51
2

24
8.
77
2

24
2.
06
2

25
1.
19
4

24
1.
51
3

23
9.
26
0

24
5.
28
9

24
4.
09
7

u_
c_
lo
lo
.0

5.
44
1

5.
65
0

5.
15
5

5.
21
8

5.
23
9

5.
20
8

5.
24
8

5.
22
6

5.
17
8

5.
14
8

5.
17
4

5.
17
8

u_
i_
hi
hi
.0

3.
51
3.
91
9

3.
39
1.
75
8

2.
95
7.
85
4

3.
18
6.
66
5

3.
01
9.
84
4

2.
99
0.
51
8

3.
01
1.
58
1

3.
01
5.
04
9

2.
95
2.
49
3

2.
93
8.
38
1

3.
05
8.
47
5

2.
94
7.
75
4

u_
i_
hi
lo
.0

80
.7
56

78
.8
28

73
.6
93

75
.8
57

74
.1
43

74
.0
30

74
.4
77

74
.2
41

73
.6
40

73
.3
78

75
.1
09

73
.7
76

u_
i_
lo
hi
.0

12
0.
51
8

12
5.
68
9

10
3.
86
6

11
0.
62
1

10
4.
68
8

10
3.
51
6

10
4.
49
0

10
4.
54
6

10
2.
12
3

10
2.
05
1

10
5.
80
9

10
2.
44
6

u_
i_
lo
lo
.0

2.
78
6

2.
67
4

2.
55
2

2.
62
4

2.
57
7

2.
57
5

2.
60
3

2.
57
7

2.
54
9

2.
54
1

2.
59
7

2.
55
4

u_
s_
hi
hi
.0

5.
16
0.
34
3

5.
57
4.
35
8

4.
16
8.
79
6

4.
42
4.
54
1

4.
33
2.
24
8

4.
26
2.
33
8

4.
22
9.
01
8

4.
29
9.
14
6

4.
19
8.
78
0

4.
10
3.
50
0

4.
32
1.
01
5

4.
16
2.
54
8

u_
s_
hi
lo
.0

10
4.
37
5

10
3.
40
1

96
.1
81

98
.2
84

97
.6
30

97
.5
06

97
.4
25

97
.8
88

96
.6
23

95
.7
87

97
.1
77

96
.7
62

u_
s_
lo
hi
.0

14
0.
28
5

15
3.
09
4

12
3.
40
7

13
0.
01
5

12
6.
43
8

12
5.
71
7

12
5.
57
9

12
6.
23
8

12
3.
23
7

12
2.
08
3

12
7.
63
3

12
3.
92
2

u_
s_
lo
lo
.0

3.
80
7

3.
72
8

3.
45
1

3.
52
2

3.
51
0

3.
48
0

3.
52
6

3.
49
2

3.
45
0

3.
43
4

3.
48
4

3.
45
5

A
ve
ra
ge

1.
50
2.
54
5

1.
73
8.
75
9

1.
28
1.
54
4

1.
34
5.
41
4

1.
31
9.
31
7

1.
30
3.
87
5

1.
29
0.
66
6

1.
31
1.
15
3

1.
28
4.
60
0

1.
26
8.
35
3

1.
31
0.
47
5

1.
28
4.
49
4

N
ot
e:

B
ol
d
va
lu
es

ar
e
th
e
be
st
re
su
lts

Methods for Job Scheduling on Computational Grids 29



(offspring), and with the passing of generations (iterations) it allows to reach a high
quality solution. Mutations that occur randomly in traditional evolutionary algorithms,
to overcome local optima and diversify the search, in these algorithms are replaced by a
mating restriction between very similar individuals and a reset process when the search
tends to quickly converge to local optima.

Both algorithms differ mainly in that Parallel Micro CHC includes additional
concepts of Micro Genetic Algorithm (μ-GA) [41], to avoid getting stuck in by the lack
of diversity in the solutions when small populations are used, through the maintenance
of an elite population used to reset the main population each specific number of
generations.

Between the heuristics, Min-Min got a good balance between energy consumption
and makespan, due to it always first assigns the task to the machine with the overall
minimum completion time [8], therefore, the system has more available machines to
execute tasks in the best corresponding machine, i.e., the machine with the lowest ETC
for the task. Min-Min likely can assign more tasks to their best ETC than Max-Min,
which first assigns the tasks to the machine with the maximum completion time.
Min-Min heuristic assigns the first task ti to the machine that finishes it earlier and
executes it faster, and for every task assigned after ti, Min-Min changes the machine
availability status by the least possible amount for every assignment. The expectation is
that a smaller makespan can be obtained if more tasks are assigned to the machines that
complete them the earliest and also execute them the fastest [8].

Fig. 1. Energy efficiency of algorithms

30 E. Flórez et al.



5 Conclusions and Future Works

This article presented an overview of the most important heuristic and metaheuristic
methods to solve the job scheduling problem in grid computing. The algorithms have
been compared and analyzed in terms of job scheduling under the ETC model (with the
most common instances). In these terms, the evolutionary algorithm Parallel
Micro CHC is the best method identified according to the makespan, and full results
reported suggest that the evolutionary algorithms are well suited to face the complexity
of scheduling problem. The main heuristics are also compared according to the energy
efficiency, where the Min-Min algorithm stands out over the other heuristics executed.

With this review article, new researchers can determine the heuristics most
prominent nowadays, to implement their diverse search strategies in related combi-
natorial optimization problems. The main lines for future work include design an
evolutionary algorithm of low-complexity to get an appropriated execution time on a
low-power computational infrastructure, and minimize both the makespan and energy
consumption. The purpose is get a better balance in all types of instances and improve
the energy efficiency in HPC resources, so we are working on an ARM-based pro-
cessors cluster and we will propose an energy model based in experimental data
obtained using this platform.

Acknowledgments. The authors thank to the University of Luxembourg for providing us with
algorithms to test their performance with instances of Braun et al. benchmark.

References

1. Pinel, F., Pecero, J.E., Khan, S.U., Bouvry, P.: Energy-efficient scheduling on milliclusters
with performance constraints. In: Proceedings of the 2011 IEEE/ACM International
Conference on Green Computing and Communications, pp. 44–49 (2011)

2. Pinel, F., Dorronsoro, B., Pecero, J.E., Bouvry, P., Khan, S.U.: A two-phase heuristic for the
energy-efficient scheduling of independent tasks on computational grids. Cluster Comput. 16
(3), 421–433 (2013)

3. Izakian, H., Abraham, A., Snasel, V.: Comparison of heuristics for scheduling independent
tasks on heterogeneous distributed environments. In: International Joint Conference on
Computational Sciences and Optimization, vol. 1, pp. 8–12 (2009)

4. He, X., Sun, X., Von Laszewski, G.: QoS guided min-min heuristic for grid task scheduling.
J. Comput. Sci. Technol. 18(4), 442–451 (2003)

5. Iqbal, S., Gupta, R., Lang, Y.: Job scheduling in HPC clusters. Power Solutions, pp. 133–
135 (2005)

6. Dutot, P.F., Eyraud, L., Mounié, G., Trystram, D.: Bi-criteria algorithm for scheduling jobs
on cluster platforms. In: Proceedings of the Sixteenth Annual ACM Symposium on
Parallelism in Algorithms and Architectures, pp. 125–132 (2004)

7. Pinel, F., Bouvry, P.: A model for energy-efficient task mapping on milliclusters. In:
Proceedings of the Second International Conference on Parallel, Distributed, Grid and Cloud
Computing for Engineering, pp. 1–32 (2011)

Methods for Job Scheduling on Computational Grids 31



8. Braun, T.D., Siegel, H.J., Beck, N., Bölöni, L.L., Maheswaran, M., Reuther, A.I., Freund, R.
F.: A comparison of eleven static heuristics for mapping a class of independent tasks onto
heterogeneous distributed computing systems. J. Parallel Distrib. Comput. 61(6), 810–837
(2001)

9. Diaz, C.O., Guzek, M., Pecero, J.E., Danoy, G., Bouvry, P., Khan, S.U.: Energy-aware fast
scheduling heuristics in heterogeneous computing systems. In: 2011 International
Conference on High Performance Computing and Simulation (HPCS), pp. 478–484 (2011)

10. Leung, J.Y. (ed.): Handbook of Scheduling: Algorithms, Models, and Performance Analysis.
CRC Press, Boca Raton (2004)

11. Ali, S., Braun, T.D., Siegel, H.J., Maciejewski, A.A., Beck, N., Bölöni, L., Yao, B.:
Characterizing resource allocation heuristics for heterogeneous computing systems. Adv.
Comput. 63, 91–128 (2005)

12. Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: overview and conceptual
comparison. ACM Comput. Surv. (CSUR) 35(3), 268–308 (2003)

13. Valentini, G.L., Lassonde, W., Khan, S.U., Min-Allah, N., Madani, S.A., Li, J., Bouvry, P.:
An overview of energy efficiency techniques in cluster computing systems. Cluster Comput.
16(1), 3–15 (2013)

14. Hussain, H., Malik, S.U.R., Hameed, A., Khan, S.U., Bickler, G., Min-Allah, N., Rayes, A.:
A survey on resource allocation in high performance distributed computing systems. Parallel
Comput. 39(11), 709–736 (2013)

15. Diaz, C.O., Guzek, M., Pecero, J.E., Bouvry, P., Khan, S.U.: Scalable and energy-efficient
scheduling techniques for large-scale systems. In: 11th International Conference on
Computer and Information Technology (CIT), pp. 641–647 (2011)

16. Barrondo, A., Tchernykh, A., Schaeffer, E., Pecero, J.: Energy efficiency of knowledge-free
scheduling in peer-to-peer desktop Grids. In: 2012 International Conference on High
Performance Computing and Simulation (HPCS), pp. 105–111 (2012)

17. Diaz, C.O., Pecero, J.E., Bouvry, P.: Scalable, low complexity, and fast greedy scheduling
heuristics for highly heterogeneous distributed computing systems. J. Supercomputing
67(3), 837–853 (2014)

18. Dong, F., Akl, S.G.: Scheduling algorithms for grid computing: state of the art and open
problems. School of Computing, Queen’s University, Kingston, Ontario (2006)

19. Lindberg, P., Leingang, J., Lysaker, D., Bilal, K., Khan, S.U., Bouvry, P., Li, J.: Comparison
and analysis of greedy energy-efficient scheduling algorithms for computational grids. In:
Energy-Efficient Distributed Computing Systems, pp. 189–214 (2011)

20. Xhafa, F., Abraham, A.: Computational models and heuristic methods for grid scheduling
problems. Future Gener. Comput. Syst. 26(4), 608–621 (2010)

21. Zomaya, A.Y., Teh, Y.H.: Observations on using genetic algorithms for dynamic
load-balancing. IEEE Trans. Parallel Distrib. Syst. 12(9), 899–911 (2001)

22. Gao, Y., Rong, H., Huang, J.Z.: Adaptive grid job scheduling with genetic algorithms.
Future Gener. Comput. Syst. 21(1), 151–161 (2005)

23. Carretero, J., Xhafa, F., Abraham, A.: Genetic algorithm based schedulers for grid
computing systems. Int. J. Innovative Comput. Inf. Control 3(6), 1–19 (2007)

24. Xhafa, F., Alba, E., Dorronsoro, B., Duran, B., Abraham, A.: Efficient batch job scheduling
in grids using cellular memetic algorithms. In: Metaheuristics for Scheduling in Distributed
Computing Environments, pp. 273–299 (2008)

25. Chang, R.S., Chang, J.S., Lin, P.S.: An ant algorithm for balanced job scheduling in grids.
Future Gener. Comput. Syst. 25(1), 20–27 (2009)

26. Colorni, A., Dorigo, M., Maniezzo, V., Trubian, M.: Ant system for job-shop scheduling.
Belg. J. Oper. Res. Stat. Comput. Sci. 34(1), 39–53 (1994)

32 E. Flórez et al.



27. Stützle, T., Hoos, H.H.: MAX–MIN ant system. Future Gener. Comput. Syst. 16(8), 889–
914 (2000)

28. Liu, H., Abraham, A., Hassanien, A.E.: Scheduling jobs on computational grids using a
fuzzy particle swarm optimization algorithm. Future Gener. Comput. Syst. 26(8), 1336–
1343 (2010)

29. Xhafa, F., Carretero, J., Dorronsoro, B., Alba, E.: A tabu search algorithm for scheduling
independent jobs in computational grids. Comput. Inform. 28, 237–250 (2009)

30. Kirkpatrick, S., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598),
671–680 (1983)

31. Ali, S., Siegel, H.J., Maheswaran, M., Hensgen, D., Ali, S.: Representing task and machine
heterogeneities for heterogeneous computing systems. Tamkang J. Sci. Eng. 3(3), 195–208
(2000)

32. Xhafa, F., Barolli, L., Durresi, A.: Batch mode scheduling in grid systems. Int. J. Web Grid
Serv. 3(1), 19–37 (2007)

33. Nesmachnow, S., Cancela, H., Alba, E.: Heterogeneous computing scheduling with
evolutionary algorithms. Soft. Comput. 15(4), 685–701 (2010)

34. Xhafa, F.: A hybrid evolutionary heuristic for job scheduling on computational grids. In:
Hybrid Evolutionary Algorithms, pp. 269–311 (2007)

35. Xhafa, F., Carretero, J., Alba, E., Dorronsoro, B.: Design and evaluation of tabu search
method for job scheduling in distributed environments. In: Proceedings of the 22th
International Parallel and Distributed Processing Symposium, pp. 1–8 (2008)

36. Ritchie, G., Levine, J.: A hybrid ant algorithm for scheduling independent jobs in
heterogeneous computing environments. In: Proceedings of the 23rd Workshop of the UK
Planning and Scheduling Special Interest Group, pp. 178–183 (2004)

37. Nesmachnow, S., Cancela, H., Alba, E.: A parallel micro evolutionary algorithm for
heterogeneous computing and grid scheduling. Appl. Soft Comput. 12(2), 626–639 (2012)

38. Pinel, F., Dorronsoro, B., Bouvry, P.: A new parallel asynchronous cellular genetic
algorithm for scheduling in grids. In: 2010 IEEE International Symposium on Parallel
Distributed Processing, Workshops and PhD Forum, pp. 1–8 (2010)

39. Bardsiri, A.K., Hashemi, S.M.: A comparative study on seven static mapping heuristics for
grid scheduling problem. Int. J. Softw. Eng. Appl. 6(4), 247–256 (2012)

40. Guzek, M., Pecero, J.E., Dorronsoro, B., Bouvry, P.: Multi-objective evolutionary
algorithms for energy-aware scheduling on distributed computing systems. Appl. Soft
Comput. 24, 432–446 (2014)

41. Coello Coello, C.A., Toscano Pulido, G.: A micro-genetic algorithm for multiobjective
optimization. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.)
EMO 2001. LNCS, vol. 1993, pp. 126–140. Springer, Heidelberg (2001)

Methods for Job Scheduling on Computational Grids 33


	Methods for Job Scheduling on Computational Grids: Review and Comparison
	Abstract
	1 Introduction
	2 Overview of Job Scheduling Problem in Grid Systems
	2.1 Scheduling Problem in Grid Systems
	2.2 ETC Computational Model
	2.3 Energy Model

	3 Heuristic and Metaheuristic Methods for Job Scheduling in Grids
	3.1 Heuristics of Job Scheduling
	3.2 Metaheuristics of Job Scheduling

	4 Comparison of Scheduling Algorithms
	4.1 Comparative Analysis
	4.2 Analysis of the Highlighted Algorithms

	5 Conclusions and Future Works
	Acknowledgments
	References


