
123

Carla Osthoff
Philippe Olivier Alexandre Navaux
Carlos Jaime Barrios Hernandez
Pedro L. Silva Dias (Eds.)

Second Latin American Conference, CARLA 2015
Petrópolis, Brazil, August 26–28, 2015
Proceedings

High Performance
Computing

Communications in Computer and Information Science 565

Communications
in Computer and Information Science 565

Commenced Publication in 2007
Founding and Former Series Editors:
Alfredo Cuzzocrea, Dominik Ślęzak, and Xiaokang Yang

Editorial Board

Simone Diniz Junqueira Barbosa
Pontifical Catholic University of Rio de Janeiro (PUC-Rio),
Rio de Janeiro, Brazil

Phoebe Chen
La Trobe University, Melbourne, Australia

Xiaoyong Du
Renmin University of China, Beijing, China

Joaquim Filipe
Polytechnic Institute of Setúbal, Setúbal, Portugal

Orhun Kara
TÜBİTAK BİLGEM and Middle East Technical University, Ankara, Turkey

Igor Kotenko
St. Petersburg Institute for Informatics and Automation of the Russian
Academy of Sciences, St. Petersburg, Russia

Ting Liu
Harbin Institute of Technology (HIT), Harbin, China

Krishna M. Sivalingam
Indian Institute of Technology Madras, Chennai, India

Takashi Washio
Osaka University, Osaka, Japan

More information about this series at http://www.springer.com/series/7899

http://www.springer.com/series/7899

Carla Osthoff • Philippe Olivier Alexandre Navaux
Carlos Jaime Barrios Hernandez

• Pedro L. Silva Dias (Eds.)

High Performance
Computing
Second Latin American Conference, CARLA 2015
Petrópolis, Brazil, August 26–28, 2015
Proceedings

123

Editors
Carla Osthoff
LNCC
National Laboratory for Scientific

Computing
Rio de Janeiro
Brazil

Philippe Olivier Alexandre Navaux
Instituto de Informática
Universidade Federal do Rio Grande do Su
Porto Alegre
Brazil

Carlos Jaime Barrios Hernandez
High Performance and Scientific Computing
Universidad Industrial de Santander
Bucaramanga
Chile

Pedro L. Silva Dias
LNCC
National Laboratory for Scientific

Computing
Rio de Janeiro
Brazil

ISSN 1865-0929 ISSN 1865-0937 (electronic)
Communications in Computer and Information Science
ISBN 978-3-319-26927-6 ISBN 978-3-319-26928-3 (eBook)
DOI 10.1007/978-3-319-26928-3

Library of Congress Control Number: 2015940735

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

The Latin American High-Performance Computing Conference, CARLA (http://www.
ccarla.org) is a joint conference of the High-Performance Computing Latin America
Community – HPCLATAM – and the Conferencia Latino Americana de Computación
de Alto Rendimiento – CLCAR. In 2015 both major HPC Latin-American workshops
joined again in CARLA 2015, and were held at the Laboratório Nacional de Com-
putação Científica (http://www.lncc.br), in Petrópolis, Brazil.

HPCLATAM (http://hpclatam.org) gathers a young but growing community of
scientists and practitioners in the HPC area in Latin America. The past events proved
that the HPC community in the region is steadily growing. HPCLATAM aims to bring
together researchers, developers, and users of HPC to discuss new ideas, experiences,
and problems. The main goal of HPCLATAM is to provide a regional forum fostering
the growth of the HPC community in Latin America through the exchange and dis-
semination of new ideas, techniques, and research in HPC.

The CLCAR (http://www.cenat.ac.cr/) conference has been held since 2007 and is
driven by a group of researchers from universities and research centers in Latin
America that seek to promote a space for discussion of new knowledge and trends in
the area. A further aim is to coordinate initiatives and efforts toward the development of
technologies for high-performance computing that can contribute to solving common
problems of social and economic relevance to the region. CLCAR is an event for
students and scientists and is dedicated to the areas of high-performance computing,
parallel and distributed systems, e-science and its applications to real-life problems, but
especially focused on Latin American researchers.

The CARLA 2015 symposium featured invited talks from academy and industry
speakers, with short- and full-paper sessions presenting both mature work and new
ideas in research and industrial applications in HPC. This conference was co-located
with the First Rio de Janeiro High-Performance Computing School – ERAD-RJ 2015
(http://eradrj2015.lncc.br) – held during August 24–25, 2015, and the Second HPCAC
Brazil Conference (http://hpcadvisorycouncil.com/events/2015/brazil-workshop), held
August 26, 2015.

Topics of interest from this edition include:

• Scientific Computing Applications
• GPU and MIC Computing: Methods, Libraries and Applications
• Grid and Cloud Computing

The CARLA 2015 website (http://www.ccarla.org) provides access to the talks at
the meetings and to photos of the activities. The website (http://www.ccarla.org) also
gives information on the latest event. This book contains the best papers from CARLA
2015, including ten technical papers. The paper by Aline Paes and Daniel Oliveira,

http://www.ccarla.org
http://www.ccarla.org
http://www.lncc.br
http://hpclatam.org
http://www.cenat.ac.cr/
http://eradrj2015.lncc.br
http://hpcadvisorycouncil.com/events/2015/brazil-workshop
http://www.ccarla.org
http://www.ccarla.org

“Running Multi-relational Data Mining Processes in the Cloud: A Practical Approach
for Social Networks,” was selected for the Best Paper Award. All technical papers were
peer reviewed by at least three different members of the Program Committee.

October 2015 Carla Osthoff
Philippe Olivier Alexandre Navaux

Carlos Jaime Barrios Hernandez
Pedro L. Silva Dias

VI Preface

Organization

General Chair

Pedro L. Silva Dias LNCC, Laboratório Nacional de Computação Cientifica,
Brazil

Co-chairs

Carlos Jaime Barrios Universidad Industrial de Santander, Colombia
Gonzalo Hernandez Universidad Técnica Federico Santa Maria, Chile
Wagner Meira Universidade Federal de Minas Gerais, Brazil
Carla Osthoff Laboratório Nacional de Computação Cientifica, Brazil
Alvaro Coutinho Universidade Federal do Rio de Janeiro, Brazil
Phillippe Navaux Universidade Federal do Rio Grande do Sul, Brazil

Technical Program Committee

Tracks Coordinators

GPU and MIC Computing

Nicolás Wolowick Universidad Nacional de Córdoba, Argentina
Esteban Clua Universidade Federal Fluminense, Brazil

Grid and Cloud Computing

Carlos García-Garino Universidad Nacional de Cuyo, Argentina
Francisco Brasileiro Universidade Federal de Campina Grande, Brazil

Scientific Computing and Computing Applications

Isidoro Gitler CINVESTAV, México

Technical Program Committee Members

Carlos Couder
Castañeda

CINVESTAV, México

Russlan Gobassov Autonomous University of Hidalgo, Mexico
Emmanuel Nicolas

Millan
Universidad Nacional de Cuyo, Argentina

Nirvana Belen Caballero Universidad Nacional de Córdoba, Argentina
Marcelo Zamith Universidade Rural do Rio de Janeiro, Brazil

Manuel Ujaldon Universidad de Málaga, Spain
Flavio Colavecchia Comision Nacional de Energia Atomica, Argentina
Javier Iparraguirre Universidad Tecnológica Nacional, Argentina
Carlos Couder

Castañeda
CINVESTAV, México

Russlan Gobassov Autonomous University of Hidalgo, Mexico
Santiago Iturriaga Universidad de la República, Uruguay
Esteban Mocskos Universidad de Buenos Aires, Argentina
Gerson Cavalheiro Universidade Federal de Pelotas, Brazil
Jairo Panetta Instituto de Tecnologia da Aeronáutica, Brazil
Raul Ramos Universidad Industrial de Santander, Colombia
Tadeu Gomes Laboratório Nacional de Computação Científica, Brazil
Alejandro Kolton Comision Nacional de Energia Atomica, Argentina
Daniel Madeira Universidade Federal de São João Del-Rei, Brazil
Jorge Sánchez Universidad Nacional de Córdoba, Argentina
Carlos Bederián Universidad Nacional de Córdoba, Argentina
Flavio Colavecchia Comision Nacional de Energia Atomica, Argentina
Emilio Francesquini Universidade de São Paulo, Brazil
Harold Castro Universidad de los Andes, Colombia
Hermes Senger Universidade Federal de São Carlos, Brazil
Tomas Perez Arce Universidad de Chile, Chile
Isidoro Gitler CINVESTAV, México
Eduardo

C. Vasconcellos
Universidade Federal Fluminense, Brazil

João Gazolla Universidade Federal Fluminense, Brazil

VIII Organization

Contents

Grid and Cloud Computing

Running Multi-relational Data Mining Processes in the Cloud: A Practical
Approach for Social Networks . 3

Aline Paes and Daniel de Oliveira

Methods for Job Scheduling on Computational Grids: Review
and Comparison . 19

Edson Flórez, Carlos J. Barrios, and Johnatan E. Pecero

Cloud Computing for Fluorescence Correlation Spectroscopy Simulations . . . 34
Lucía Marroig, Camila Riverón, Sergio Nesmachnow,
and Esteban Mocskos

Porting a Numerical Atmospheric Model to a Cloud Service 50
Emmanuell D. Carreño, Eduardo Roloff, and Philippe O.A. Navaux

Determining the Real Capacity of a Desktop Cloud. 62
Carlos E. Gómez, César O. Díaz, César A. Forero, Eduardo Rosales,
and Harold Castro

Improvements to Super-Peer Policy Communication Mechanisms 73
Paula Verghelet and Esteban Mocskos

GPU and MIC Computing: Methods, Libraries and Applications

Asynchronous in Situ Processing with Gromacs: Taking Advantage
of GPUs . 89

Monica L. Hernandez, Matthieu Dreher, Carlos J. Barrios,
and Bruno Raffin

Solving Linear Systems on the Intel Xeon-Phi Accelerator via
the Gauss-Huard Algorithm . 107

Ernesto Dufrechou, Pablo Ezzatti, Enrique S. Quintana-Ortí,
and Alfredo Remón

On a Dynamic Scheduling Approach to Execute OpenCL Jobs on APUs 118
Tiago Marques do Nascimento, Rodrigo Weber dos Santos,
and Marcelo Lobosco

http://dx.doi.org/10.1007/978-3-319-26928-3_1
http://dx.doi.org/10.1007/978-3-319-26928-3_1
http://dx.doi.org/10.1007/978-3-319-26928-3_2
http://dx.doi.org/10.1007/978-3-319-26928-3_2
http://dx.doi.org/10.1007/978-3-319-26928-3_3
http://dx.doi.org/10.1007/978-3-319-26928-3_4
http://dx.doi.org/10.1007/978-3-319-26928-3_5
http://dx.doi.org/10.1007/978-3-319-26928-3_6
http://dx.doi.org/10.1007/978-3-319-26928-3_7
http://dx.doi.org/10.1007/978-3-319-26928-3_7
http://dx.doi.org/10.1007/978-3-319-26928-3_8
http://dx.doi.org/10.1007/978-3-319-26928-3_8
http://dx.doi.org/10.1007/978-3-319-26928-3_9

Scientific Computing Applications

Fine-Tuning Xeon Architecture Vectorization and Parallelization
of a Numerical Method for Convection-Diffusion Equations 131

Frederico Luís Cabral, Carla Osthoff, Diego Brandão,
and Mauricio Kischinhevsky

Parallel Performance Analysis of a Regional Numerical Weather Prediction
Model in a Petascale Machine . 145

Roberto Pinto Souto, Pedro Leite da Silva Dias, and Franck Vigilant

Author Index . 151

X Contents

http://dx.doi.org/10.1007/978-3-319-26928-3_10
http://dx.doi.org/10.1007/978-3-319-26928-3_10
http://dx.doi.org/10.1007/978-3-319-26928-3_11
http://dx.doi.org/10.1007/978-3-319-26928-3_11

Grid and Cloud Computing

Running Multi-relational Data Mining
Processes in the Cloud: A Practical Approach

for Social Networks

Aline Paes and Daniel de Oliveira(&)

Instituto de Computação, Universidade Federal Fluminense – IC/UFF,
Niterói, Brazil

{alinepaes,danielcmo}@ic.uff.br

Abstract. Multi-relational Data Mining algorithms (MRDM) are the appro-
priate approach for inferring knowledge from databases containing multiple
relationships between non-homogenous entities, which are precisely the case of
datasets obtained from social networks. However, to acquire such expressivity,
the search space of candidate hypotheses in MRDM algorithms is more complex
than those obtained from traditional data mining algorithms. To allow a feasible
search space of hypotheses, MRDM algorithms adopt several language biases
during the mining process. Because of that, when running a MRDM-based
system, the user needs to execute the same set of data mining tasks a number of
times, each assuming a different combination of parameters in order to get a final
good hypothesis. This makes manual control of such complex process tedious,
laborious and error-prone. In addition, running the same MRDM process several
times consumes much time. Thus, the automatic execution of each setting of
parameters throughout parallelization techniques becomes essential. In this
paper, we propose an approach named LPFlow4SN that models a MRDM
process as a scientific workflow and then executes it in parallel in the cloud, thus
benefiting from the existing Scientific Workflow Management Systems.
Experimental results reinforce the potential of running parallel scientific work-
flows in the cloud to automatically control the MRDM process while improving
its overall execution performance.

1 Introduction

Social networks technologies have enabled the insertion of new practices in our society
[1]. By using social networks, their members are allowed to exchange information,
promote events and debates, etc. [1]. However, there is some information about the
social networks that is not always directly, such as how an individual connects to
another one. Let us consider as an example a social network composed of students,
professors, projects and courses of a university as proposed by Richardson and
Domingos [2]. Each one of these entities has properties to specialize them, such as “a
course is advanced, intermediary or basic”. Also, they may have a relationship with
each other, for example, “a professor teaches a course in a specific semester”. Now,
suppose we need to find out which professors are advising students starting from these
properties and relationships, a task known as link prediction [32]. Through the data we

© Springer International Publishing Switzerland 2015
C. Osthoff et al. (Eds.): CARLA 2015, CCIS 565, pp. 3–18, 2015.
DOI: 10.1007/978-3-319-26928-3_1

can find out that “if a professor X taughts a course C in the semester Q, C is a
graduation course and Y is a research assistant of X in the course, then Y is advised by
X”. As the dataset is composed of several instances of entities, their properties and
relationships, it is not trivial to manually discover this conceptualization of relation-
ships. To automatically achieve this we need data mining algorithms [3].

However, there is a problem in using the traditional data mining algorithms for
analyzing structures such as social networks. Traditional data mining algorithms
assume that data is homogeneous, independent of each other and described in the
attribute-value form [3–6]. Since data obtained from social networks is commonly
multi-related, structured and sampled from complex relationships (e.g., the afore-
mentioned example of professor-student social network), using traditional data mining
algorithms on them is not feasible, as they fail to correctly capture and describe how
individuals in social networks are related.

On the other hand, the research area of Multi-Relational Data Mining [7, 8] (i.e.,
MRDM) aims at automatically inducing hypotheses from data arranged in multiple
related tables. Thus, MRDM algorithms are quite adequate to discover patterns and
describe characteristics of relationships embedded in social networks, for example. In
this context, the area of Inductive Logic Programming (ILP) [8–10] is attracting a lot of
attention for running complex MRDM analyses, being the intersection of machine
learning and knowledge representation. In ILP, the hypotheses are induced in the
format of logic programs and thus benefit from the power of expressivity of First-Order
Logic [11]. In addition to the examples, a preliminary knowledge about the problem,
known as background knowledge, described in first-order logic language, can also be
provided as input to the ILP algorithms.

However, to infer expressive and refined hypotheses, ILP algorithms take into
account complex search spaces and strategies for induction, which are usually less
computationally efficient than those used in traditional data mining approaches. In ILP,
for example, the hypothesis refinement requires logical proof of the examples from the
current hypothesis and the informed preliminary knowledge [8–10]. Thus, to reduce the
space of possible hypotheses to be refined, it is necessary to provide bias to the
language and to the algorithm refinement process. These inputs and parameters are not
trivially defined, which makes important to try several values for the many different
combination of parameters involved in the entire analysis.

Each combination of parameter values has to be tested in the MRDM process. Once
all possible values for the parameters have been evaluated, we have a higher probability
that good hypotheses are obtained. However, as the evaluation of all possible com-
binations of parameter values tends to be a computing intensive and error-prone task (if
performed manually), analysts commonly choose not to evaluate all possible combi-
nations. This simplification introduces a risk to the analysis process as a whole, since
valid and important results are commonly discarded. This way, data mining analysts
need an infrastructure that allows them to automatically and systematically execute all
possible combinations of parameters in a feasible time.

Over the last decade, the e-science community has been working on techniques for
modeling and managing a coherent flow of scientific programs, the well-known con-
cept of scientific workflows [12–14]. Since a MRMD process is composed by several
applications with a certain data dependency among them, it is intuitive that we can

4 A. Paes and D. de Oliveira

model a MRMD process as a scientific workflow and benefit from the facilities already
provided by existing Scientific Workflow Management Systems (SWfMS). In fact,
modeling a traditional data mining process was already proposed [15] (without con-
sidering MRDM and parallelism issues). Many of these SWfMS include support for
parallel executions in High Performance Computing (HPC) environments such as HPC
clouds, which can provide the MRDM analyst the opportunity to explore all possible
combinations of parameters in a feasible time by executing tasks in parallel using
several virtual machines. Additionally, SWfMSs provide the so-called data provenance
[16, 17] that record a complete execution history of the workflow. This provenance
data is useful for the data-mining analyst to perform a post-mortem analysis of their
MRDM process, including validating the results. Thus, we can use scientific workflows
systems and techniques as a way to improve the management of MRDM knowledge
discovery process.

However, too much effort may be needed for MRDM analysts to model a scientific
workflow. Substantial expertise may be required to install and configure the several
dependent software programs and the data dependencies among them. Thus, a solution
that empowers and integrates parallel execution of the workflow and MRDM analysts
is needed to bridge this gap. In this context, this paper presents LPFlow4SN, a sci-
entific workflow deployed in the cloud that allows managing the parallel execution of a
MRDM workflow based on ILP algorithms. LPFlow4SN is modeled on the top of
SciCumulus workflow system [18–20] and it is deployed on the Amazon EC2 envi-
ronment1. Using this approach, the MRDM analyst does not have to worry about
modeling the analysis process as a workflow. Instead, he/she should only inform the
dataset to be used. The proposed approach checks which combinations of parameters
must be processed within an ILP system and then executes the entire process into
multiple virtual machines in parallel in the cloud. To the best of our knowledge, this is
the first approach capable of performing experiments with multi-relational data rep-
resented in logic using scientific workflows.

This paper is organized into four sections besides this introduction. Section 2
presents a conceptual survey of scientific workflows and inductive logic programming.
Section 3 presents the proposed approach. Section 4 presents the case study performed
with LPFlow4SN. Finally, Sect. 5 concludes this paper and points out future work.

2 Background Knowledge

Inductive Logic Programming. Traditional data mining algorithms usually processes
information expressed in a format of propositional representation in the sense that they
search for patterns from homogeneous data sampled from simple relations [3]. How-
ever, data from social networks and many other domains contain multiple entities,
typically arranged in several related tables. The Inductive Logic Programming is a
subarea of Machine Learning [21], which enables mining of multi-relational data by

1 http://aws.amazon.com/.

Running Multi-relational Data Mining Processes in the Cloud 5

http://aws.amazon.com/

combining machine learning techniques and knowledge representation to induce
expressive hypotheses described as logic programs.

An ILP system receives as input a set of examples, divided into positive examples
and negative examples, a background knowledge (BK) and a set of parameters that
specify the language and constrain the search space of a hypothesis. To exemplify, let
us consider the same scenario presented in the introduction: a social network of stu-
dents, professors and employees of a university [2]. Other entities in this domain are the
projects developed in the university; the courses taught and associated publications,
among others. A typical relationship that can be explained within this context is the
advising relation, represented by the logical predicate advisedBy. Thus, the positive
samples would be well-known examples of such a relationship, whereas the negative
examples would be examples of individuals who are not part of such a relation-
ship. Assuming, for example, that person1 is a student and a professor person10
advises person1, we would have the literal advisedBy(person1, person10) as a positive
example. On the other hand, a negative example could be advisedBy(person11, per-
son10), whereas person11 is not advised by person10. Background knowledge consists
of facts and logic clauses [11] that show properties and characteristics of the individuals
in the domain, as well as previously known rules of regularity. In the aforementioned
example, the BK could contain a logical fact projectMember(project1, person10),
which specifies that person10 participates in project1. An example of a logic clause in
this context could be: courseLevel(C, basiclevel):- ta(C,S,Q), inPhase(S,pre_Quals),
student(s), course(C). This logic clause can be read in natural language as follows: “if
S was a teaching assistant in the course C in the semester Q, S is in the pre-qualification
phase, S is a student and C is a course, then C is a basic level course”. Note that C and
S are variables that can be replaced by any instances of entities in the domain, but as
soon as they are replaced by a specific individual in any literal of the rule, another
individual in another literal of the same rule cannot replace it.

The output of an ILP system is a logical program composed of clauses in first-order
logic. In the domain exemplified above, the ILP system could induce the following rule
from the set of examples and BK: advisedBy(S,P):- taughtBy(C,P,Q), courseLevel
(C,graduateLevel), ta(C,S,Q). This indicates that if a professor teaches a postgraduate
course and there is a teaching assistant, the professor advises the teaching assistant.

Scientific Workflows and Provenance Data. Scientific workflows are an attractive
alternative to represent the coherent flow of programs instead of using an ad-hoc
approach based on scripts or manual executions [12]. In the context of this paper, a
scientific workflow may be seen as one of the trials conducted in the context of a
MRDM analysis to evaluate a specific hypothesis. The set of trials represented by each
distinct workflow execution defines one single MRDM analysis. Scientific workflows
can be defined as an abstraction for modelling the flow of activities and data. These
activities are usually programs or services that represent algorithms and robust com-
putational methods [12]. Such workflows are managed by complex systems called
Scientific Workflow Management Systems (SWfMS) [13]. There are several SWfMS,
each one with a main feature as support for visualization, ontologies or parallelism
mechanisms. As the complexity of the scientific workflow grows (e.g., exploration of
thousands of parameters and in many cases using repetition structures over dozens of

6 A. Paes and D. de Oliveira

complex activities), running scientific workflows demands parallelism and powerful
HPC capabilities that can be provided by several types of HPC environments such as
clusters and grids. In 2008, the paradigm of Many Tasks Computing (MTC) was
proposed by Raicu et al. [22] to solve the problem of executing multiple parallel tasks
in multiple processors. This paradigm consists on several computing resources used
over short periods of time to accomplish many computational tasks, which is exactly
the case of MRDM processes where each combination of parameter values executes
over shorts periods of time. Due to the move of scientific experiments to clouds and
increasing demands of those experiments for parallelization, executing parallel scien-
tific workflows in clouds is already provided by several SWfMS [18, 23, 24]. Although
clouds provide elastic resources that can be used to execute parallel instances of a
specific scientific workflow, in the cloud the SWfMS has to manage some new
important aspects such as initialization of virtualized instances, scheduling workflow
activities over different virtual machines, impact of data, etc.

Besides parallelism capabilities, one of the main advantages of SWfMS is to manage
the experiment metadata, called data provenance [16, 17]. Data provenance records the
origin and the history of information in a scientific experiment and it is essential to the
reproducibility and evaluation of results. Thus, Freire et al. define the term as a
description of the origin of a given object and the process by which it arrived in a
database. This metadata is fundamental for MRDM analyses because in the same
analysis, the workflow can be executed n times only varying its parameters. For
example, in a MRDM process a critical component of the refinement process of a
hypothesis is the optimization function used to score the candidate hypotheses.
Commonly, the optimization function used is based on the coverage of examples, i.e., it
takes into account the amount of positive examples correctly inferred by the candidate
hypothesis, and the amount of negative incorrectly inferred. However, if the training
base is unbalanced, i.e., if there are many more negative examples than positive (or
vice-versa), this function will lead to the proposal of a very specific hypothesis, that
proves only a few examples. This seems good considering the large number of negative
examples. However, a downside is that only a few positive examples are going to be
correctly classified. Usually, social networks generate unbalanced datasets, as the
number of not-connected individuals is much larger than the individuals actually
connected to each other. In such cases, the optimization functions that give more
importance to correctly classified positive examples than to the overall coverage, as the
F-measure [25], are more appropriate. It is essential to know exactly what outcome is
associated with which evaluation measure in the analysis, even to disregard in future
analyses that have the same characteristics of the current analysis when the functions
do not produce good hypotheses.

Today, the MRDM analyst commonly performs all these executions and analysis
processes manually, which is time consuming and error-prone. A systematic process of
using scientific workflows is a solution with many advantages, such as the specification
of the tacit knowledge of the MRDM process and possibility of running MRDM
analyses in parallel in HPC environments to produce results in a viable time. For this,
we should use an SWfMS that provides parallelism capabilities in HPC environments
allied to provenance capture and management. However, to model a scientific work-
flow in existing SWfMS requires some expertise and it is not a trivial task to be

Running Multi-relational Data Mining Processes in the Cloud 7

performed. This way, we propose a scientific workflow named LPFlow4SN that allows
for MRDM analysts to execute their analyses using an SWfMS that does not require
much effort from the analyst.

3 A Cloud-Based Approach for Running MRDM Analysis
in Parallel

In this section, we present the LPFlow4SN workflow that is implemented based on the
SWfMS SciCumulus and a MRDM process proposed for social network analysis.

SciCumulus Workflow System. SciCumulus2 is a workflow system that manages the
parallel execution of scientific workflows in cloud environments, such as Amazon EC2
or Microsoft Azure. Based on the workflow specification and the input datasets pro-
vided by scientists, SciCumulus is able to distribute activity executions (that we call
activations [26]) on a set of virtual machines, mapping data to these activations, thus
increasing parallelism. It has a 3-objective weighted cost model [19] where scientists
can inform their preferences for scheduling activations: they can focus on minimizing
the incidence of errors (α2), minimizing execution time (α1) or minimizing financial
costs (α3). This way, SciCumulus distributes the activations according to its estimated
execution time or predicted failure rate to the most suitable virtual machine that is idle
at the moment. Differently from many workflow systems, SciCumulus executes
workflows in static or adaptive modes [19]. In the adaptive mode, SciCumulus is able
to perform a horizontal scaling to overcome problems on the environment or to meet
scientists’ deadlines such as max execution time or max allowed financial cost.
SciCumulus is able to add (or remove) virtual machines from the pool of available
virtual machines during the workflow execution. Since MRDM workflows process
hundreds or even thousands of input files, HPC adaptive mechanisms are likely to be
essential to provide scalability.

For monitoring, SciCumulus has a notification mechanism that identifies pre-defined
events, through queries on provenance data generated at runtime. Notification is a
relevant alternative for long-term “black-box” executions since it is unviable for sci-
entists to stay at a monitor for several hours or even days. Scientists may define
preconfigured events to be notified. Since MRDM workflows can execute for several
hours or days and produce a large variety of events (errors, activity termination, etc.),
monitoring mechanisms are effectively required and were used.

For the analysis of the results, SciCumulus provenance repository provides
fine-grained information about the experiment and the cloud environment. Statistics on
previous executions of scientific workflows are obtained by querying this database.
Provenance data is also the input to the cost model, to estimate the execution time and
adapt the scheduling. Execution information of the provenance model is captured at
each virtual machine involved in the execution and from the cloud environment. This
provenance repository follows the PROV-Wf [27] recommendation and contains
information about elements that represent: (i) MRDM processes executed in the cloud;

2 Download SciCumulus at: https://scicumulusc2.wordpress.com/.

8 A. Paes and D. de Oliveira

https://scicumulusc2.wordpress.com/

(ii) files consumed and produced by the workflow execution, (iii) the temporality of
data and (i.e., when data is produced and consumed), (iv) information about the cloud
environment (e.g., number of VMs, IPs, amount of RAM, amount of disk, etc.).
Besides reproducibility, the provenance repository of SciCumulus allows for moni-
toring, fault-tolerance and adaptation of the workflow execution, which is in sync with
requirements defined by the top researchers in the community as stressed by Ailamaki
et al. [28].

Modeling the MRDM Process as a Scientific Workflow. Different executions of the
hypotheses discovery in social networks using MRDM algorithms require specific
processes to constrain the language and to reduce the search space when finding the
best hypothesis parameters. As in the life cycle of a traditional scientific experiment
[12], the MRDM analyst should perform all stages of a MRDM process in a controlled
manner. The power of expression obtained with MRDM algorithms and systems comes
with complex search spaces. For the process to be viable then becomes necessary to
define parameters guiding the search space of hypotheses. A specific combination of
parameters may cause the MRDM process to return hypotheses that are more accurate
(or not). However, there is not a set of parameters that can be effectively used to any
domain and finding the best combination to use (or at least a good enough combina-
tion), is far from trivial. Thus, although the idea behind the workflow presented in this
section may be considered simple, it requires a high computational power, because
there maybe hundreds or even thousands combinations of parameters to be evaluated
before returning the final hypothesis to the analyst. In addition to the various combi-
nations of parameters to be explored, to minimize the possibility of overfitting the
hypothesis, the experimental process in data mining makes use of the mechanism of
cross-validation [3]. In cross-validation, the input dataset is divided into k partitions
and the experimental procedure is performed k times. Although this mechanism is
essential to produce hypotheses that generalize the set of examples, its usage introduces
an additional element of complexity in the experimental process, since each iteration of
the MRDM process is performed k times. By modeling the process as a workflow and
executing it using a workflow system such as SciCumulus, the hypothesis induction
guided by each configuration of parameters can be performed in parallel on multiple
virtual machines in the cloud, reducing the total execution time of the workflow (and
often making it feasible).

In the proposed and developed workflow, the used MRDM system was Aleph
(A Learning Engine for Proposing Hypothesis) [10]. The Aleph system was originally
developed to induce hypotheses using the paradigm of inverse resolution, but in the last
years, it evolved to emulate several other ILP algorithms.. Due to this fact, Aleph is
currently the most used system for implementing and validating new algorithms
developed in the area of ILP. Moreover, as its code is free and open source, the Aleph
is a de facto system for development and exploration of new MRDM approaches. All
these reasons make the Aleph system ideal for composing the workflow proposed and
analyzed in this paper. To run Aleph we need YAP which is a Prolog compiler. The
input provided to the Aleph system is organized in three Prolog files: (i) a file with the
extension *.f containing the positive examples; (ii) a file with the extension *.n that
contains negative examples and (iii) a file with the extension *.b containing the

Running Multi-relational Data Mining Processes in the Cloud 9

background knowledge of facts and/or rules, restrictions of the language and of the
search space and any other directives understood by a Prolog interpreter. All infor-
mation contained in this latest file can also be transferred directly to the Prolog
interpreter via parameters.

The Aleph system has several parameters that must be explored in order to find
results with good accuracy. For example, Aleph assumes by default that the maximum
size of a rule is 5 literals. However, in ILP, larger clauses may generate hypotheses that
are more specific and therefore covering less negative examples. Thus, in some areas, it
may be useful to generate more than 5 clauses literals, but we have to set a maximum
size so that the inference is not too computational costly. With clauselength parameter
is possible to set this maximum size. Again, different problems may require clauses
with different maximum sizes. Another parameter that may influence the induction of
rules is the one that defines the optimization function to be used during the search,
called evalfn. Some possible values for this parameter are coverage, which tries to
improve the coverage of positive examples while not covering negative examples;
accuracy, which prefers hypothesis that maximizing the number of correctly classified
examples. Another example that typically generates very diverse hypotheses is the
noise parameter, whose function is to establish a maximum negative to be covered by a
clause, so that a clause does not become too specific. The Aleph system accommodates
many other variations of parameters. For a complete description of the parameters,
please refer to the Aleph manual3.

Thus, we used the Aleph system to develop the LPFlow4SN workflow. The
workflow presented in Fig. 1 allows for any combination of values of any parameters.
To allow an extensive experimental process, exploring all the possibilities of the Aleph

Fig. 1. Conceptual definition of the MRDM workflow

3 http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/aleph.html.

10 A. Paes and D. de Oliveira

http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/aleph.html

configuration, the proposed workflow associates an activation to each combination of
parameters values. The workflow consists of three activities as presented in Fig. 1.

The first activity of the workflow (Data and Rules Extraction) aims at generating
the configuration files to be used in MRDM approach (for Aleph). This activity is
implemented by a Python script that “crawls” the structure of the social network,
identifies and extracts the positive examples, negative examples and the background
knowledge. Importantly, this script must be customized for each type of social network
to be analyzed. For example, data from Facebook™ are different from Twitter™. After
this extraction, the script sets this information in the facts and/or rules so that a Prolog
interpreter can process them. The workflow system should not perform this activity in
parallel because this activity is not computing intensive. The second activity of the
workflow is the activity responsible for generating parameter combinations. With the
information produced by the first activity, the second activity (Generation of Combi-
nations) examines which parameters should be explored and what are the possible
values associated with them. For each combination of parameter values, the workflow
system should generate an activation to be executed in parallel in the third activity
(induction of knowledge). In the third activity, the Aleph framework is invoked on
multiple virtual machines in parallel where each machine performs a combination of
different parameter values. In the example of Fig. 1, each type of virtual machine
(according to the existing virtual machine types in Amazon EC2) is displayed in a
different color. Thus, the first two activities are not parallelized and run on the m3.
xlarge virtual machine. The third activity is amenable to parallelization and runs on m3.
xlarge, m1.medium, m1.small, and t1.micro virtual machines, where each consumes a
combination of parameter values.

In the context of this paper, the workflow was modeled and executed using
SciCumulus workflow system. SciCumulus receives a workflow modeled by the user
(in a XML format), transforms it into algebraic expressions (following the workflow
algebra proposed by Ogasawara et al. [26]), generates an workflow execution plan and,
while executing the workflow, it represents all data involved in the execution as
relations and relationships in a database. This way, each combination of parameter
values to be consumed by each activity of the workflow is represented in tables in the
database as presented in Fig. 2.

As presented in Fig. 2, the first activity consumes only the parameters namedataset
and path. The first one represents the name of the dataset to be processed and the latter
the path where it can be accessed or downloaded. Since there is only one tuple in the
table (where the dataset name is uwcse) only one activation is generated and executed.
When this activation has been executed and the dataset was converted into Prolog rules,
the second activity is performed. The second activity then creates several tuples in the
database to perform the cross-validation. Each tuple is associated with an activation.
This way, after execution of the second activity, all combinations of parameter values
are generated to be processed in the third activity. All parameters values in SciCumulus
are stored in a relational database, which makes SciCumulus a provenance-oriented
workflow system. A partial extraction of the tables involved in a workflow execution
with SciCumulus can be viewed in Fig. 2. In addition, in Fig. 2 the colored circle near
to each row of the table indicate which virtual machine processed the combination of
parameter values.

Running Multi-relational Data Mining Processes in the Cloud 11

Thus, for the analyst to define the workflow in SciCumulus, he/she should create an
XML file format that can be parsed by SciCumulus. In this XML file, we need to
inform the workflow configuration parameters and environment, e.g., the database
where data will be stored. Another important parameter is the workflow tag that reg-
isters the name of the workflow run and defines its activities. Each activity has a
workflow Activity tag associated with their input relations (Relation), which are
composed of parameters (Field). With the modeled XML in hands, the analyst can now
run the LPFlow4SN workflow and analyze their results.

4 Experimental Evaluation

This section presents the results obtained from the performance evaluation of the
analysis of an academic social network with the proposed LPFlow4SN workflow. We
used the social network composed by the advising relationship between students and
professors in the Department of Computer Science at the University of Washington,
presented in the introduction. The advising relationship (or lack of it) leads to the
positive (or negative) examples, represented by the advisedby predicate. When there is
more than one entity involved, we have a relationship. When only one entity is listed,
we have a property associated with that entity. The used database contains 114 positive
examples and 2,438 negative examples, 5,058 facts without logical variables associated
within 10 predicates. These predicates are other relationships between entities pro-
fessors, courses, students and academic semesters, as well as properties of entities, such
as the position of a professor at the university.

Fig. 2. Extraction of relations in a workflow execution

12 A. Paes and D. de Oliveira

To assess the quality of different hypothesis induced from different restrictions we
varied the values of parameters clauselength, evalfn and noise in the workflow exe-
cution. In the first case, the parameter values ranged from 5 to 10 as a literal of
maximum size induced rules. In the second case, the following optimization functions
were considered cover, mestimate and compression. In the third case, the value of the
noise parameter ranged from 0 to 100, from 10 in 10. More details concerning these
parameters can be found in Aleph manual. All other parameters remained at their
default values in all activities. All these parameters and their associated values lead to
198 possible combinations. Thus, in a single execution of the workflow, SciCumulus
creates a pipeline for each of the 198 combinations of parameters and executes them in
parallel on virtual machines.

The entire workflow was executed 5 times in order to guarantee a 95 % confidence
interval. Next, we describe the computing environments used in all workflow execu-
tions and results of the experiments. For each execution we created a virtual cluster
composed by virtual machines of the same type. The workflow was executed in 2
different types of virtual machines in Amazon Cloud following the types of virtual
machines types recommended in the work of Coutinho et al. [29] and Jackson et al.
[30]. Table 1 shows the hardware configuration of the virtual machines used in the
experiments.

To conduct the performance evaluation we deployed the workflow in the Amazon
EC2 cloud using SciCumulus workflow system. We varied the amount of VMs from 1
to 8, which allowed us to execute the workflow using from 1 up to 64 virtual cores in
each execution. Before describing the performance results, it is important to provide
important information about the workflow. Basically, LPFlow4SN reads a set of files
that contain the execution parameters, the XML definition of the workflow and the
prolog files that implement Aleph. Depending on the values of parameters and
the virtual machines used for the execution, one combination of parameters within the
workflow may require hours to complete, but for the sake of simplicity and without loss
of generality, in this article each combination of parameters finishes in a few minutes. It
is also important to mention that Aleph (that is the core application of the workflow) is
considered to be CPU-bound, since it has a higher CPU usage than disk usage.
Workflow execution time was analyzed by running on each of the 2 aforementioned
virtual machine types. We also collected information about the CPU, memory and disk
usage. These data were collected using the System Activity Report (SAR) [31]. We
analyzed the average rate of blocks read and written per second from/to the disk. We
also collected the time percentage in which the virtual cores were: (i) idle, (ii) per-
forming user processes, and (ii) running OS processes.

Table 1. Details about virtual machine types

Virtual machine type Processor RAM Disk

c3.2xlarge Xeon E5-2680 2.80 GHz 15 GB 160 GB
m3.2xlarge Xeon E5-2670 2.50 GHz 30 GB 160 GB

Running Multi-relational Data Mining Processes in the Cloud 13

When we analyze the total execution time of the workflow we can state by ana-
lyzing Fig. 3 that there was a reduction of 95.7 % (with the virtual cluster composed by
c3.2xlarge virtual machines) and 94.6 % (with the virtual cluster composed by
m3.2xlarge virtual machines) in the execution time when using 64 cores compared to
the execution time on a single core of each virtual machine type. Although there was a
reduction in the execution time, the associated speedup was 23.64 and 25.28 respec-
tively when using 64 cores. This reduced speedup has a reason: there is a context
switch overhead, since in some occasions there are more threads executing than
available cores, which increases the overhead in context switching.

We have also measured the percentage of CPU usage during the workflow exe-
cution. CPU usage is basically the percentage of time the CPU is actually executing
activations versus in a wait state. In our experiments, the CPU remains idle when
SciCumulus workflow system is scheduling the activities for the several virtual
machines. Thus, the percentage of CPU usage for c3.2xlarge and m3.2xlarge are quite
similar. In the case of c3.2xlarge we had 91.1 % of CPU usage and in the case of
m3.2xlarge we had 90.3 % of CPU usage as presented in Fig. 4.

Likewise the evaluation of total execution time, we also measured the average rate
of blocks read and written per second from/to the disk during the workflow execution.
These values were respectively 1399.2 and 160.4 for c3.2xlarge and 1265.8 and 141.3
for m3.2xlarge. These results show that the OS present in the virtual machines were
able to achieve a relatively efficient access to main memory and disk. These results are
acceptable for workflows executed in clouds as stated by Jackson et al. [30] (Fig. 5).

The last performed analysis was the financial one. We calculated the financial cost
to execute the workflow using these two types of virtual machines when using 64
virtual cores. The financial cost was of US$ 4.20 for c3.2xlarge and US$ 5.60 for

Fig. 3. Execution time of the proposed workflow

14 A. Paes and D. de Oliveira

m3.2xlarge. It is noteworthy that the costs refer to virtual machines allocated US
territory, although Amazon EC2 allows for users to instantiate virtual machines in
different countries. The results point out that the c3.2xlarges virtual machines are more
cost-effective than m3.2xlarge, because besides having a reduced cost per hour, it was
the virtual machine that executed the workflow in the shortest time possible. However,
both financial costs are acceptable (Fig. 6).

Fig. 4. Percentage of CPU usage

Fig. 5. Disk performance during the workflow execution

Running Multi-relational Data Mining Processes in the Cloud 15

5 Conclusions

This paper presented the LPFlow4SNworkflow that aims at inferring knowledge in social
networks through a MRDM process. The modeling of the MRDM process is performed
using ILP techniques associated with the concept of scientific workflow for modeling and
structuring process execution. The experiment presented in this paper showed us that
social network analysis could benefit from features already provided by existing SWfMS.
Because this process can be computing intensive due to the variation of parameter values
on a large scale, we chose to use the SWfMS SciCumulus as the basis for LPFlow4SN,
since it offers parallel execution capabilities besides the possible a posteriori analysis of
the results. The results show that there was a reduction of 95.7 % (c3.2xlarge virtual
machines) and 94.6% (m3.2xlarge virtual machines) in the execution timewhen using 64
cores. Disk access and percentage of CPU usage were also acceptable.

Although we still need various adjustments and improvements in the implemen-
tation to reach a generic solution for the analysis of social networks with LPFlow4SN,
the results show the benefits of the proposed approach. However, the goal of providing
a simple and structured way to run a complex process MRDM process by analysts who
are not experts in parallel processing has been met.

Acknowledgments. The authors would like to thank FAPERJ (grant E-26/111.370/2013) and
CNPq (grant 478878/2013-3) for partially sponsoring this research.

References

1. Bakshy, E., Rosenn, I., Marlow, C., Adamic, L.: The role of social networks in information
diffusion. In: Proceedings of the 21st International Conference on World Wide Web,
pp. 519–528, New York, NY, USA (2012)

Fig. 6. Financial cost of the workflow execution

16 A. Paes and D. de Oliveira

2. Richardson, M., Domingos, P.: Markov logic networks. Mach. Learn. 62(1–2), 107–136
(2006)

3. Han, J., Kamber, M., Pei, J.: Data Mining Concepts and Techniques, 3rd edn. Elsevier,
Amsterdam (2012)

4. Bloedorn, E., Christiansen, A.D., Hill, W., Skorupka, C., Talbot, L.M., Tivel, J.: Data
Mining for Network Intrusion Detection: How to Get Started (2001)

5. Dalal, M.A., Harale, N.D.: A survey on clustering in data mining. In: Proceedings of the
International Conference & Workshop on Emerging Trends in Technology, pp. 559–562,
New York, NY, USA (2011)

6. Hu, X.: Data mining in bioinformatics: challenges and opportunities. In: Proceeding of the
Third International Workshop on Data and Text Mining in Bioinformatics, pp. 1–1,
New York, NY, USA (2009)

7. Džeroski, S., Lavrač, N.: Relational Data Mining. Springer, Berlin, New York (2001)
8. Raedt, L.: Logical and relational learning. In: Proceedings of the 19th Brazilian Symposium

on Artificial Intelligence: Advances in Artificial Intelligence, pp. 1–1. Springer, Berlin,
Heidelberg (2008)

9. Michalski, R.S.: A theory and methodology of inductive learning. Artif. Intell. 20, 111–161
(1983)

10. Muggleton, S.: Inductive logic programming. In: 6th International Workshop, ILP-96,
Stockholm, Sweden, August 1996, Selected Papers. Springer, New York (1997)

11. Nilsson, U., Małuszyński, J.: Logic, Programming, and Prolog. Wiley, Chichester, New
York (1995)

12. Mattoso, M., Werner, C., Travassos, G.H., Braganholo, V., Ogasawara, E., Oliveira, D.D.,
Cruz, S.M.S.D., Martinho, W., Murta, L.: Towards supporting the life cycle of large scale
scientific experiments. Int. J. Bus. Process Integr. Manage. 5(1), 79 (2010)

13. Deelman, E., Gannon, D., Shields, M., Taylor, I.: Workflows and e-Science: an overview of
workflow system features and capabilities. Future Gener. Comput. Syst. 25(5), 528–540
(2009)

14. Taylor, I.J., Deelman, E., Gannon, D.B., Shields, M.: Workflows for e-Science: Scientific
Workflows for Grids, 1st edn. Springer, Berlin (2007)

15. Oliveira, D., Baião, F., Mattoso, M.: MiningFlow: adding semantics to text mining
workflows. In: First Poster Session of the Brazilian Symposium on Databases, pp. 15–18,
João Pessoa, PB, Brazil (2007)

16. Freire, J., Koop, D., Santos, E., Silva, C.T.: Provenance for computational tasks: a survey.
Comput. Sci. Eng. 10, 11–21 (2008)

17. Buneman, P., Khanna, S., Tan, W.-C.: Why and where: a characterization of data
provenance. In: Van den Bussche, J., Vianu, V. (eds.) ICDT 2001. LNCS, vol. 1973,
pp. 316–330. Springer, Heidelberg (2000)

18. Oliveira, D., Ogasawara, E., Baião, F., Mattoso, M.: “SciCumulus: a lightweight cloud
middleware to explore many task computing paradigm in scientific workflows. In: 3rd
International Conference on Cloud Computing, pp. 378–385, Washington, DC, USA (2010)

19. de Oliveira, D., Ocaña, K.A.C.S., Baião, F., Mattoso, M.: A provenance-based adaptive
scheduling heuristic for parallel scientific workflows in clouds. J. Grid Comput. 10(3), 521–
552 (2012)

20. Oliveira, D., Ogasawara, E., Ocaña, K., Baião, F., Mattoso, M.: An adaptive parallel
execution strategy for cloud-based scientific workflows. Concurrency Comput. Pract.
Experience 24(13), 1531–1550 (2012)

21. Alpaydin, E.: Introduction to Machine Learning. MIT Press, Cambridge (2004)
22. Raicu, I., Foster, I.T., Zhao, Y.: Many-task computing for grids and supercomputers.

MTAGS 2008, 1–11 (2008)

Running Multi-relational Data Mining Processes in the Cloud 17

23. Wozniak, J.M., Armstrong, T.G., Wilde, M., Katz, D.S., Lusk, E., Foster, I.T.: Swift/T:
large-scale application composition via distributed-memory dataflow processing. In:
Proceedings of the 13th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGrid), pp. 95–102 (2013)

24. Deelman, E., Mehta, G., Singh, G., Su, M.-H., Vahi, K.: Pegasus: mapping large-scale
workflows to distributed resources. In: Taylor, I.J., Deelman, E., Gannon, D.B., Shields, M.
(eds.) Workflows for e-Science, pp. 376–394. Springer, London (2007)

25. Powers, D.: Evaluation: From Precision, Recall and F-Factor to ROC, Informedness,
Markedness & Correlation (2007)

26. Ogasawara, E., Dias, J., Oliveira, D., Porto, F., Valduriez, P., Mattoso, M.: An algebraic
approach for data-centric scientific workflows. In: Proceedings of the 37th International
Conference on Very Large Data Bases (PVLDB), vol. 4, no. 12, pp. 1328–1339 (2011)

27. Costa, F., Silva, V., de Oliveira, D., Ocaña, K., Ogasawara, E., Dias, J., Mattoso, M.:
Capturing and querying workflow runtime provenance with PROV: a practical approach. In:
Proceedings of the Joint EDBT/ICDT 2013 Workshops, pp. 282–289, New York, NY, USA
(2013)

28. Ailamaki, A.: Managing scientific data: lessons, challenges, and opportunities. In:
Proceedings of the 2011 ACM SIGMOD International Conference on Management of
Data, pp. 1045–1046. New York, NY, USA (2011)

29. Coutinho, R., Drummond, L., Frota, Y., Oliveira, D., Ocaña, K.: Evaluating grasp-based
cloud dimensioning for comparative genomics: a practical approach. In: Proceedings of the
Second International Workshop on Parallelism in Bioinformatics, Madrid, Spain (2014)

30. Jackson, K.R., Ramakrishnan, L., Runge, K.J., Thomas, R.C.: Seeking supernovae in the
clouds: a performance study. In: Proceedings of the 19th ACM International Symposium on
High Performance Distributed Computing, pp. 421–429, New York, NY, USA (2010)

31. Popiolek, P.F., Mendizabal, O.M.: Monitoring and analysis of performance impact in
virtualized environments. J. Appl. Comput. Res. 2(2), 75–82 (2013)

32. Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks. J. Am.
Soc. Inform. Sci. Technol. 58(7), 1019–1031 (2007)

18 A. Paes and D. de Oliveira

Methods for Job Scheduling on Computational
Grids: Review and Comparison

Edson Flórez1(&), Carlos J. Barrios1, and Johnatan E. Pecero2

1 High Performance and Scientific Computing Center - SC3UIS, Universidad
Industrial de Santander, Bucaramanga, Colombia

edson.florez@correo.uis.edu.co, cbarrios@uis.edu.co
2 Computer Science and Communications Research Unit, University

of Luxembourg, Luxembourg City, Luxembourg
johnatan.pecero@gmail.com

Abstract. This paper provides a review of heuristics and metaheuristics
methods, to solve the job scheduling problem in grid systems under the ETC
(Expected Time to Compute) model. The problem is an important issue for
efficient resource management in computational grids, which is performed by
schedulers of these High Performance Computing systems. We present an
overview of methods and a comparison of the results reported in the papers that
use ETC model. The best methods are identified according to Braun et al.
instances [8], which are ETC model instances most used in literature. This
survey can help new researchers to lead them directly at the best scheduling
algorithms already available to perform deep future works.

Keywords: High performance computing � Grid computing � Combinatorial
optimization � Energy efficiency � Heuristics � Scheduling

1 Introduction

High performance computing systems such as grid computing are managed with a
Resource Management System (RMS) [5], which typically has a resource manager and
a task scheduler to guarantee both quality of service (QoS) provided to users and the
requirements of the system administrator [4]. Therefore, an efficient scheduling algo-
rithm is essential to fully exploit grid systems resources [10].

The purpose of this review article is analyze heuristic and metaheuristic approaches
to solve job scheduling problem present in grid systems, according to the ETC model,
which is a computation model for grid scheduling that allow to formalize, implement
and evaluate different scheduling algorithms [20]. For this purpose, the job scheduling
context in grid computing is introduced to provide a clear image of the optimization
problem tackled, constraints and test cases. Furthermore, the most important heuristic
and metaheuristic methods are briefly described.

Then, the analysis focuses on the works that reported their results with the most used
ETC model instances, which were proposed by Braun et al. [8], in order to identify the
best heuristics accurately. Comparison tables of performance and energy consumption
of the reported results are provided. Finally, the outstanding job scheduling algorithms

© Springer International Publishing Switzerland 2015
C. Osthoff et al. (Eds.): CARLA 2015, CCIS 565, pp. 19–33, 2015.
DOI: 10.1007/978-3-319-26928-3_2

are investigated from different points of view, describing the distinctive characteristics
of each algorithm, adaptation to the problem, strategies to face the complexity of the
problem, etc. However, because a survey of an immense area such as grid scheduling
has to focus on certain aspects and neglect others, the scope of the review reported in this
article is only the ETC model, therefore, our selection of the best algorithms is only valid
in this specific context, the results can be very different with other models and problems.

The paper is organized as follows. Section 2 presents an overview of scheduling
problem in grid systems. We have summarized the main heuristics and metaheuristic
methods for scheduling in Sect. 3, and we compare and analyze this methods in Sect. 4,
delving into the most highlighted. Finally, Sect. 5 presents the main conclusions and
lines for future work.

2 Overview of Job Scheduling Problem in Grid Systems

The need of high performance computing in today’s society continues to increase and
so does the datacenters size and their energy demand, which leads to a rise in the
operating costs and carbon emissions. This paper seeks to identify efficient heuristics to
allocate independent jobs in the resources of high performance computing systems,
with the aiming to minimize energy consumption without affecting the system
throughput.

Grid computing infrastructures are typically homogeneous, but the current trend is
towards infrastructures with heterogeneous resources, that have nodes with different
processing capacity and architectures to run applications or heterogeneous tasks, which
gives them a great advantage over homogeneous platforms that deny service to users
with different requirements. In heterogeneous infrastructures, job scheduling problem
becomes even more complex and essential to the efficient use of resources.

Due to the high complexity of the job scheduling problem (NP-hard [2]) is not
possible to determine the optimal solution, because the huge search space cannot be
fully explored in reasonable time (polynomial) [18]. This requires approximation
methods to find good quality solutions with high computational efficiency instead of
algorithms that perform exhaustive searches that require a considerable computing time
and resources. Among these are included heuristics and metaheuristic methods of
artificial intelligence, such as the Genetic Algorithm (GA) [2].

2.1 Scheduling Problem in Grid Systems

Grid computing infrastructures may be focused on system or users. When is
system-centred, the overall performance of the cluster is optimized as disk space,
access range and energy consumption, so don’t satisfy the users requirements. Instead,
when is user-centred, criteria related utility achieved by users are evaluated, such as
cost and execution time of their tasks, which can degrade system performance. The
balance point (which covers the interests of the user and system administrator) is
maximize the resource utilization holding good response times for users requests.

20 E. Flórez et al.

Performance metric most studied in the literature of grid scheduling is the make-
span [3, 38], its minimization is a system administrator requirement because it allows to
maximize resource usage, while improves the quality of service provided to the user, by
reducing of the flowtime or length of the time interval between the release time and
completion time of the task [9], which is related to the response times. The makespan is
the maximum completion time Ci of the tasks [16, 17], is the time when the last task is
finished, i.e., the ending time (or length) of the schedule [6]. Moreover, the energy
efficiency is a very important issue for system administrator, established as perfor-
mance per power consumption, to reduce high costs of operating the computing
infrastructure, caused by high energy consumption of its multiple processors and the
necessity of cooling to dissipate the heat produced.

Types of Job Scheduling. A job is defined as a monolithic application (i.e., a single
task) or a collection of tasks, which can be dependent or independent [14]. Tasks are
indivisible computational workload units, if they are dependent tasks, have to
accomplish a predefined order dependencies between them, and if they are independent
tasks, task doesn’t require any communication with others [39].

Resources of HPC infrastructures are managed with Resource Management System
(RMS), which defines how the computing resources are used to execute the user’s
tasks, by a dynamic or static scheduling. The dynamic scheduling takes into account
the changing resources state, so schedule is modified on-line [11], by adding or
removing processors to the jobs. In static scheduling is considered that the resources
are available during a time interval (between two successive activations scheduler) and
all jobs are known a priori [11], so the schedule is produced off-line, i.e., before starting
its execution (and is not modified during execution).

Similarly, job processing can be batch type or immediate [20]; in immediate
scheduling or on-line, jobs are assigned individually regardless the tasks that arriving
after to the system, without resource planning. Instead, batch scheduling has a compute
phase of tasks schedule, where these are grouped into batches, and then at the assign
phase, tasks are allocated to selected resources according to the planning of the
scheduler [20]. Due to jobs are assigned in groups, each job must wait for the next time
interval when the scheduler get activated again. An immediate scheduling algorithm is
most appropriate for clusters with low concurrence (which have good availability of
resources), i.e., the job arrival rate is small having thus available resources to execute
jobs immediately [20], at the time they are submitted by user, without any waiting time
in queue. However, batch scheduling can take advantage of job information and
compatible resources characteristics, for resource planning where determines which job
is most suited to allocate to each resource, thus resulting in better makespan than
immediate scheduling [6]. We considered static job scheduling type batch with
instances produced under the ETC model [31].

2.2 ETC Computational Model

ETC is a computational model for grid scheduling, with which problem instances are
easily represented, helping to the implementation and evaluation of scheduling

Methods for Job Scheduling on Computational Grids 21

algorithms. It is based on a normal distribution or gamma to produce ETC matrices that
contain estimated processing time of each task in each machine of the system [31].

Formal Definition of the Problem. A computational grid composed by a set of
t independent tasks to be assigned and m machines available for planning, with an
execution time ETC[ti][mj] previously known [2], which represents tasks and machines
characteristics such as the computing capacity of machines and the workload of tasks.
The workload of real applications can be obtained from specifications provided by the
user, historical data or predictions [20].

Objective function:Minimize energy consumptionE andmakespanCmax ¼ max
i2tarea

Cið Þ
Constrains: Problem is subject to constrains that guarantee that each task is

assigned at least once [6], and that each machine only execute a task at a time [19].

Problem Instances. The problem instances are matrices ETC of size txm (t tasks and
m machines) [17]. ETC model is characterized by the parameters consistency, machine
heterogeneity and task heterogeneity [31]. Table 1 has a high variation along the
column that is the high heterogeneity of tasks, and in Table 2, the large variation along
a row represents high heterogeneity of machines.

Consistency is defined by the relation between a task and how it is executed in the
machines according to heterogeneity of each one [8]. ETC matrix is consistent if a
given machine mj executes any task ti faster than machine mk, then machine mj executes
all tasks faster than machine mk [31], as in Tables 1 and 2. If this occurs only partially,
i.e., it has an inconsistent matrix that include a consistent sub-matrix, the matrix is
considered semi-consistent. And if it does not have at least consistent submatrices, then
it is an inconsistent instance.

Instances are labeled as x_ttmm [17], where x indicates the type of matrix con-
sistency (c for consistent, s for semi-consistent, i for inconsistent), tt indicates the
heterogeneity of tasks and mm indicates the heterogeneity of machines. For machines
and tasks, “hi” and “lo” mean high and low heterogeneity respectively. With these
heterogeneity and consistency features, twelve types of ETC instances are obtained.

Table 1. High heterogeneity of tasks and low heterogeneity of machines in ETC matrix of size
10 × 5

m1 m2 m3 m4 m5

t1 11648,23 11803,25 13198,95 14208,43 15309,41
t2 12826,31 13439,28 13326,27 15145,01 15323,84
t3 10394,73 10543,99 10629,78 12025,45 14339,22
t4 508,99 561,11 567,35 766,93 858,48
t5 5084,65 5288,79 5872,92 6503,83 7001,72
t6 1808,62 1869,03 1936,83 1987,72 2229,49
t7 877,99 901,28 956,57 1039,97 1044,57
t8 5331,69 5858,57 6379,28 6985,41 7339,16
t9 25250,93 25747,22 25785,37 26322,56 26332,69
t10 3905,32 4012,28 4016,58 4511,21 4521,13

22 E. Flórez et al.

The most used instances are twelve ETC matrices of size 512 × 16 proposed by Braun
et al. [8], one for each type of ETC instance.

2.3 Energy Model

Energy consumption of the objective function is determined through an energy model,
which calculates the energy consumed by each processor in a time interval. Energy
consumption by processors is defined as [2]:

E ¼ P �
Xm

i¼1

CTi ð1Þ

Energy consumption depends of processor power P (watts) and how long it is
operational CT (Completion Time). Operating system can self-regulate dynamically the
supply voltage and clock frequency of the processor with techniques such as DVFS
(Dynamic Voltage Frequency Scaling) [7, 13], to save energy and produce less heat. This
is represented by discrete values of power, and processor power is adjusted to a minimum
power when idle, and switches to the maximum power when processing a task.

In the work of Pinel and Bouvry [7], they proposed a more comprehensive energy
model defined in Eq. 2, where BL is a constant power term, N is the number of
machines powered on (a machine which is not used is considered powered off) [7],
Phigh y Plow is the CPU power consumption when operating at maximum y minimum
voltage/frequency respectively.

E ¼ BL � N � Cmax þ
Xm

i¼1

ðPhigh � CTi þPlow � ðCmax � CTiÞÞ ð2Þ

Table 2. Low heterogeneity of tasks and high heterogeneity of machines in ETC matrix of size
10 × 5

m1 m2 m3 m4 m5

t1 896,03 1033,62 3276,71 16061,46 25993,39
t2 913,99 1573,82 2928,01 18939,34 27081,67
t3 802,42 1220,04 2489,74 17588,49 25076,18
t4 764,43 1389,37 2733,12 17863,56 27848,96
t5 987,75 1524,07 3622,65 16750,89 24889,36
t6 658,35 1379,73 2940,43 16916,91 23134,42
t7 844,28 1437,73 2571,79 14899,55 25771,68
t8 702,05 1504,82 2955,61 17555,64 25156,15
t9 642,51 1053,21 3156,67 15995,97 26244,13
t10 866,42 1589,23 2233,13 15738,73 26766,26

Methods for Job Scheduling on Computational Grids 23

3 Heuristic and Metaheuristic Methods for Job Scheduling
in Grids

3.1 Heuristics of Job Scheduling

Some heuristic algorithms generate solutions from scratch by adding components to a
partial solution, step by step, according to a transition rule until a solution is complete.
The job scheduling problem present in clusters has been resolved by low complexity
heuristics, which consume less time and memory to generate a schedule. A well-known
heuristic is Min-Min, which begins with the set of all unmapped tasks, then the min-
imum expected completion time for each task of the set is establish, and the task with
the lowest minimum completion time is selected and assigned to the corresponding
machine, next the newly mapped task is removed from the set, and the process repeats
until all tasks are mapped [8]. Max-Min works the same way that Min-Min, but
according to the maximum expected completion time.

In a recent paper, Diaz et al. [17] compare Min-Min with low complexity heuristics
Max-Max-Min, Avg-Max-Min and Min-Max-Min in Heterogeneous Computing Sys-
tems (HCS), and implemented Task Priority Diagram (TPD) algorithms. TPD defines a
graph to set the precedence for each task based on the ETC value, using a Hasse
diagram. Regarding makespan metric, low complexity heuristics were the best in in-
consistent and semi-consistent scenarios, in consistent scenarios the TPD-based
heuristics were better. Díaz et al. [15] compare Min-Min with the algorithms Min-Min-
Min, Min-Mean-Min y Min-Max-Min, and were evaluated performance, energy effi-
ciency and scalability in large-scale systems. Among this algorithms family were not
presented significant differences in performance metrics (makespan and flowtime) and
scalability, however, regarding the energy efficiency Min-Min was highlighted over the
others.

Others specialized heuristics for job scheduling problems in distributed systems are
Opportunistic Load Balancing (OLB), Minimum Execution Time (MET), Minimum
Completion Time (MCT), Sufferage and High Standard Deviation First. In the
extensive work of Braun et al. [8], where eleven heuristics are evaluated using the ETC
model, a genetic algorithm obtained the lowest makespan, MCT heuristic outperformed
to MET, and OLB got the worst makespan. OLB try to keep all machines as busy as
possible, assigns each task to the next machine that is expected to be available,
however, due to OLB does not consider expected task execution times, can result in a
very long makespan [8]. MET try to assigns each task to the machine where is execute
faster, i.e., the machine with the best expected execution time for that task, but because
regardless of that machine’s availability (current workload), this can cause a severe
load imbalance across machines. MCT try to assigns each task to the machine with the
minimum expected completion time for that task, in this manner seek to avoid the
circumstances in which OLB and MET perform poorly [8]. But this causes some tasks
to be assigned to machines that do not have the minimum execution time for them.

High Standard Deviation First (MaxStd) assigns first the task with the highest
standard deviation of the expected execution time of the task, to the machine that has
the minimum completion time, since the delay produced by their allocation will not

24 E. Flórez et al.

affect too much the total makespan. This standard deviation represents the amount
variation in task execution time on different machines [2].

Sufferage is the difference between the best and the second-best minimum com-
pletion time of the task [2, 32]. Task with the highest sufferage is assigned to the task’s
second most favourable machine, because in other way would be the most delay.

3.2 Metaheuristics of Job Scheduling

HPC literature has more complex techniques known as metaheuristics, approaches that
have been used to solve many optimization problems, and could be a basis to design
efficient grid schedulers [20]. These find sub-optimal solutions of high quality, with
less evaluations of solutions for combinatorial optimization problems, however, usually
require long run times [20], much higher than run times of heuristics. The main
metaheuristics that have been applied in job scheduling are shown in Table 3, along
with their basic characteristics and related works. Some of these works follow the ETC
model and most are about job scheduling in grid.

Some metaheuristics have random components, such as mutations in Evolutionary
Algorithms, and additional information produced by itself, such as pheromone in Ant
Colony Optimization, to guide and diversify the search for solutions. Even so, it cannot
guarantee the finding of optimal solution, only can find approximate solutions. These
methods depend much of quality and diversity of the initial solution, which is usually
generated randomly to ensure diversity. Some methods are multi-boot, to explore other
solutions to direct the search towards regions of the search space where the global
optima is located, instead of getting stuck in a local optima. Metaheuristics can be
based in local search and population.

Metaheuristics Based in Local Search. A local search heuristic start from some
initial solution and iteratively try to replace the current solution by a better solution in
an appropriately defined neighborhood of the current solution [12]. Local Search

Table 3. Basic characteristics of metaheuristics [12]

Metaheuristic Characteristics References

Simulated annealing Acceptance criterion 30
Cooling schedule

Tabu search Neighbor choice (tabu list) 29
Aspiration criterion

Evolutionary algorithms Recombination 2, 8, 21, 22, 23, 24
Mutation
Selection

Ant colony optimization Probabilistic construction
Pheromone update

25, 26, 27

Particle swarm optimization Population-based 28
Social coefficient

Methods for Job Scheduling on Computational Grids 25

(LS) is performed until a stopping condition is met, such as a number of consecutive
iterations without changing current solution or until the maximum execution time runs
out. It only requires a few specifications as an evaluation function and an efficient
method for exploring neighbourhood. This deterministic and memoryless method can
find solutions quickly, but the final solution strongly depends on the initial solution to
avoid getting stuck in the local optima and ensure convergence to suboptimal or
optimal solutions.

Tabu Search (TS) in every iteration can accept higher cost solutions to explore
other areas of the search space [35], taking into account a tabu list that prevents
repeated moves. Xhafa et al. implemented this method under the ETC model [29].

Greedy Randomized Adaptive Search Procedure (GRASP) is a random iterative
search method [31], which changes the current solution with a restricted candidate list
(RCL) of the best options available, and ends when reach a stopping condition, e.g.,
achieve a given number of iterations.

Simulated Annealing (SA) is a stochastic search algorithm without any memory
[30], inspired by the annealing process in metallurgy. In this process a material (such as
steel) is heated to a specific temperature, the heat causes that atoms to increase their
energy, and thus can easily move from their initial positions to explore the search
space. Then it is gradually cooled until temperature environment, seeking to reach the
global optima where material acquires desired physical properties (such as ductility,
toughness, etc.). Algorithm starts from a random initial solution and a high probability
(initial temperature) to allow any random move, which may be a worst quality solution
than current solution, in order to escape the local minima and explore the search space.
The probability to accept any movement gradually decrease (cooling) during the
search, until become an iterative algorithm that accepts only current solution changes if
there is an improvement. Cooling rule may change during the execution of the algo-
rithm, in order to adjust the balance between diversification and intensification of
search to converge to a solution [12].

Population-Based Metaheuristics. In population-based metaheuristics, the solution
space is explored through a population of individuals. Main metaheuristics in this
category are Evolutionary Algorithms, Ant Colony Optimization and Particle Swarm
Optimization.

Evolutionary Algorithms (EA) are inspired by the evolution of living beings, so it
uses selection and combination mechanisms. The most used of this family algorithms
are genetic algorithms (GA), where from an initial population of chromosomes (solu-
tion), it seeks to find the most suitable (solution with the best cost in objective function)
over the course of several generations, through crossover of chromosomes, random
mutations of genes and selection of chromosomes that survive to produce the next
generation. Genetic algorithms for the scheduling problem in grid has been quite used,
e.g., by Braun et al. [8], Zomaya and Teh [21], Gao et al. [22] and Carretero et al. [23].
Pinel et al. [2] implemented a Genetic Algorithm in a conventional cluster, to which was
added millicomputers to reduce power consumption. This algorithm is called PA-CGA
(Parallel Asynchronous - Cellular Genetic Algorithm) and was proposed along with a
heuristic called 2PH (Two Phase Heuristic), it consists of two phases, Min-Min followed
by Local Search. Both algorithms were evaluated against Min-Min, achieving better

26 E. Flórez et al.

performance (makespan) with a low runtime. In the work of Nesmachnow et al. [37],
proposed the Parallel Micro CHC (Cross generational elitist selection, Heterogeneous
recombination and Cataclysmic mutation) algorithm and they obtained an excellent
makespan for grid scheduling.

Other evolutionary computation algorithm is the Memetic Algorithm (MA), a
hybrid algorithm that combines evolution ideas with local search, through memes
(cultural information unit) similar to genes, common information of a population is
transmitted to the next generation. Few works have implemented this algorithm for grid
scheduling problem because it is a recent algorithm, such as Xhafa et al. [24] that
proposes a Cellular MA (cMA) for scheduling under the ETC model.

In the literature several algorithms have been proposed following the Ant Colony
Optimization (ACO) probabilistic method, to find approximate solutions to the com-
binatorial optimization problems as the tackled in our work. The first ACO algorithm
was Ant System (AS) proposed by Marco Dorigo, and have been used to solve a
similar problem called Job Shop Scheduling [26]. Recent versions gave better results,
as the Max-Min Ant System (MMAS) [27]. An implementation of ACO for job
scheduling in grid was conducted by Chang et al. [25].

Particle Swarm Optimization (PSO) is similar to ACO algorithm, which seeks to
copy the swarming behavior of different living beings (bees, birds, fish, etc.). Abraham
et al. proposed an approach for scheduling problem using a fuzzy PSO algorithm [28].

Also have implemented hybrid metaheuristics, mainly with Tabu Search. Other
metaheuristic is executed first, e.g., a genetic algorithm that search a good quality
solution, and then Tabu Search tries to improve it, exploring the neighborhood of that
solution. In works that reported results with the Braun et al. instances [8], have been
implemented hybrid metaheuristics MA + TS [34] and ACO + TS [36].

4 Comparison of Scheduling Algorithms

The instances used of Braun et al. benchmark are twelve of 512 jobs and 16 machines,
which correspond to the twelve different types of ETC instances. The metrics analyzed
in this work are makespan as the indicator of performance, and power consumption to
establish energy efficiency according to the achieved performance. Energy efficiency
was only determined for algorithms implemented by the Luxembourg University [15,
17], through the execution of algorithms using Braun et al. instances and the energy
model (and parameters values) defined by Guzek et al. [40], because only the makespan
is reported in most papers reviewed.

4.1 Comparative Analysis

The best makespan obtained for reported algorithms are compared in Table 4, which
highlights the evolutionary algorithms Parallel CHC [33] and Parallel Micro CHC [37],
the latter achieves the best makespan in all instances. Also it is highlighted Min-Min
heuristic [1, 32], as it requires a very low running time to obtain good quality solutions,
an issue in which the evolutionary metaheuristics are not very strong. The complete

Methods for Job Scheduling on Computational Grids 27

results of all heuristics and metaheuristics are reported in the website http://forge.sc3.
uis.edu.co/redmine/documents/1. There you can see that Min-Min is better than all
heuristics as Sufferage and Max-Min, and it is known that Min-Min is also better than
MET, MCT and OLB heuristics, according to the comparison graphs presented in the
work of Braun et al. [8].

Makespan results of Min-Min and Max-Min reported in [32], agree with those
obtained in the execution of algorithms provided by the Luxembourg University [15,
17]. Analyzed the makespan for each type of consistency, Min-Min and Sufferage
heuristics have a long makespan in consistent and semi-consistent instances, Paral-
lel CHC algorithm is the second best makespan in six of twelve instances, which
mostly belong to the type of semi-consistent and inconsistent instances. In the
remaining instances is overcome by Tabu Search [35], ACO + TS [36] and PA-CGA
[38]. Although the hybrid metaheuristics (ACO + TS and cMA + TS) are not the best in
this case, they are a good alternative to be further investigated.

In algorithms that we have the necessary information to assess the multi-objective
function, which aims to minimize energy consumption and makespan simultaneously, a
score function SF is used [7, 17]. It represents the energy efficiency, also known as
fitness function [20], to set the importance of the two objectives with a weight
parameter α as follows:

SF ¼ a � Cmax þ 1� að Þ � E ð3Þ

Therefore, the aim will be to minimize the score function. If the priority of both
objectives are the same, we can set α at 0.5 to have a balanced weight or importance of
makespan and energy. Moreover, it is required to normalize the values of each metric
for appropriate calculation of the score (because metrics have different measure units),
so the value of makespan and energy obtained by each algorithm is divided by the
maximum value of all algorithms [15]. Normalized values are in the range [0,1], where
1 is the worst performance value. The score obtained from the executed algorithms is
compared in Fig. 1. Min-Min algorithm is better in all instances with a balanced α at
0.5, and as well with α between 0.1 and 0.9 approximately. Also is outstanding the
energy efficiency of Min-Mean-Min and Min-Max-Min. In contrast, Max-Min has one
of the worst performance, especially in inconsistent instances where it has the highest
energy consumption and makespan.

4.2 Analysis of the Highlighted Algorithms

The highlighted algorithms according to the makespan are Parallel Micro CHC and
Parallel CHC algorithms. These evolutionary algorithms have in common its basics
characteristics (selection, recombination and mutation), and achieve to find the best
solutions for grid scheduling problem, because they have a good balance between
random and guided search. Starting from a random initial solution (or obtained with
fast heuristics as Min-Min, MCT and Sufferage), explore the search space guided by
the information contained in a population of chromosomes. For this is defined a rule to
select the fittest individuals, which are recombine to generate new individuals

28 E. Flórez et al.

http://forge.sc3.uis.edu.co/redmine/documents/1
http://forge.sc3.uis.edu.co/redmine/documents/1

T
ab

le
4.

B
es
t
m
ak
es
pa
n
of

al
go

ri
th
m
s

In
st
an
ce

51
2
×
16

M
in
-M

in
[3
2]

Su
ff
er
ag
e

[3
2]

T
S
[3
5]

cM
A

[2
4]

G
A

[3
3]

Pa
ra
lle
l

G
A

[3
3]

PA
-C
G
A

[3
8]

C
H
C
[3
3]

Pa
ra
lle
l

C
H
C
[3
3]

Pa
ra
lle
l

M
ic
ro
-C
H
C

[3
7]

M
A

+
T
S

[3
4]

A
C
O

+
T
S

[3
6]

u_
c_
hi
hi
.0

8.
46
0.
67
4

10
.9
08
.6
98

7.
44
8.
64
1

7.
70
0.
93
0

7.
65
9.
87
9

7.
57
7.
92
2

7.
43
7.
59
1

7.
59
9.
28
8

7.
46
1.
81
9

7.
38
1.
57
0

7.
53
0.
02
0

7.
49
7.
20
1

u_
c_
hi
lo
.0

16
1.
80
5

16
7.
48
3

15
3.
26
3

15
5.
33
5

15
5.
09
2

15
4.
91
5

15
4.
39
3

15
4.
94
7

15
3.
79
2

15
3.
10
5

15
3.
91
7

15
4.
23
5

u_
c_
lo
hi
.0

27
5.
83
7

34
9.
74
6

24
1.
67
3

25
1.
36
0

25
0.
51
2

24
8.
77
2

24
2.
06
2

25
1.
19
4

24
1.
51
3

23
9.
26
0

24
5.
28
9

24
4.
09
7

u_
c_
lo
lo
.0

5.
44
1

5.
65
0

5.
15
5

5.
21
8

5.
23
9

5.
20
8

5.
24
8

5.
22
6

5.
17
8

5.
14
8

5.
17
4

5.
17
8

u_
i_
hi
hi
.0

3.
51
3.
91
9

3.
39
1.
75
8

2.
95
7.
85
4

3.
18
6.
66
5

3.
01
9.
84
4

2.
99
0.
51
8

3.
01
1.
58
1

3.
01
5.
04
9

2.
95
2.
49
3

2.
93
8.
38
1

3.
05
8.
47
5

2.
94
7.
75
4

u_
i_
hi
lo
.0

80
.7
56

78
.8
28

73
.6
93

75
.8
57

74
.1
43

74
.0
30

74
.4
77

74
.2
41

73
.6
40

73
.3
78

75
.1
09

73
.7
76

u_
i_
lo
hi
.0

12
0.
51
8

12
5.
68
9

10
3.
86
6

11
0.
62
1

10
4.
68
8

10
3.
51
6

10
4.
49
0

10
4.
54
6

10
2.
12
3

10
2.
05
1

10
5.
80
9

10
2.
44
6

u_
i_
lo
lo
.0

2.
78
6

2.
67
4

2.
55
2

2.
62
4

2.
57
7

2.
57
5

2.
60
3

2.
57
7

2.
54
9

2.
54
1

2.
59
7

2.
55
4

u_
s_
hi
hi
.0

5.
16
0.
34
3

5.
57
4.
35
8

4.
16
8.
79
6

4.
42
4.
54
1

4.
33
2.
24
8

4.
26
2.
33
8

4.
22
9.
01
8

4.
29
9.
14
6

4.
19
8.
78
0

4.
10
3.
50
0

4.
32
1.
01
5

4.
16
2.
54
8

u_
s_
hi
lo
.0

10
4.
37
5

10
3.
40
1

96
.1
81

98
.2
84

97
.6
30

97
.5
06

97
.4
25

97
.8
88

96
.6
23

95
.7
87

97
.1
77

96
.7
62

u_
s_
lo
hi
.0

14
0.
28
5

15
3.
09
4

12
3.
40
7

13
0.
01
5

12
6.
43
8

12
5.
71
7

12
5.
57
9

12
6.
23
8

12
3.
23
7

12
2.
08
3

12
7.
63
3

12
3.
92
2

u_
s_
lo
lo
.0

3.
80
7

3.
72
8

3.
45
1

3.
52
2

3.
51
0

3.
48
0

3.
52
6

3.
49
2

3.
45
0

3.
43
4

3.
48
4

3.
45
5

A
ve
ra
ge

1.
50
2.
54
5

1.
73
8.
75
9

1.
28
1.
54
4

1.
34
5.
41
4

1.
31
9.
31
7

1.
30
3.
87
5

1.
29
0.
66
6

1.
31
1.
15
3

1.
28
4.
60
0

1.
26
8.
35
3

1.
31
0.
47
5

1.
28
4.
49
4

N
ot
e:

B
ol
d
va
lu
es

ar
e
th
e
be
st
re
su
lts

Methods for Job Scheduling on Computational Grids 29

(offspring), and with the passing of generations (iterations) it allows to reach a high
quality solution. Mutations that occur randomly in traditional evolutionary algorithms,
to overcome local optima and diversify the search, in these algorithms are replaced by a
mating restriction between very similar individuals and a reset process when the search
tends to quickly converge to local optima.

Both algorithms differ mainly in that Parallel Micro CHC includes additional
concepts of Micro Genetic Algorithm (μ-GA) [41], to avoid getting stuck in by the lack
of diversity in the solutions when small populations are used, through the maintenance
of an elite population used to reset the main population each specific number of
generations.

Between the heuristics, Min-Min got a good balance between energy consumption
and makespan, due to it always first assigns the task to the machine with the overall
minimum completion time [8], therefore, the system has more available machines to
execute tasks in the best corresponding machine, i.e., the machine with the lowest ETC
for the task. Min-Min likely can assign more tasks to their best ETC than Max-Min,
which first assigns the tasks to the machine with the maximum completion time.
Min-Min heuristic assigns the first task ti to the machine that finishes it earlier and
executes it faster, and for every task assigned after ti, Min-Min changes the machine
availability status by the least possible amount for every assignment. The expectation is
that a smaller makespan can be obtained if more tasks are assigned to the machines that
complete them the earliest and also execute them the fastest [8].

Fig. 1. Energy efficiency of algorithms

30 E. Flórez et al.

5 Conclusions and Future Works

This article presented an overview of the most important heuristic and metaheuristic
methods to solve the job scheduling problem in grid computing. The algorithms have
been compared and analyzed in terms of job scheduling under the ETC model (with the
most common instances). In these terms, the evolutionary algorithm Parallel
Micro CHC is the best method identified according to the makespan, and full results
reported suggest that the evolutionary algorithms are well suited to face the complexity
of scheduling problem. The main heuristics are also compared according to the energy
efficiency, where the Min-Min algorithm stands out over the other heuristics executed.

With this review article, new researchers can determine the heuristics most
prominent nowadays, to implement their diverse search strategies in related combi-
natorial optimization problems. The main lines for future work include design an
evolutionary algorithm of low-complexity to get an appropriated execution time on a
low-power computational infrastructure, and minimize both the makespan and energy
consumption. The purpose is get a better balance in all types of instances and improve
the energy efficiency in HPC resources, so we are working on an ARM-based pro-
cessors cluster and we will propose an energy model based in experimental data
obtained using this platform.

Acknowledgments. The authors thank to the University of Luxembourg for providing us with
algorithms to test their performance with instances of Braun et al. benchmark.

References

1. Pinel, F., Pecero, J.E., Khan, S.U., Bouvry, P.: Energy-efficient scheduling on milliclusters
with performance constraints. In: Proceedings of the 2011 IEEE/ACM International
Conference on Green Computing and Communications, pp. 44–49 (2011)

2. Pinel, F., Dorronsoro, B., Pecero, J.E., Bouvry, P., Khan, S.U.: A two-phase heuristic for the
energy-efficient scheduling of independent tasks on computational grids. Cluster Comput. 16
(3), 421–433 (2013)

3. Izakian, H., Abraham, A., Snasel, V.: Comparison of heuristics for scheduling independent
tasks on heterogeneous distributed environments. In: International Joint Conference on
Computational Sciences and Optimization, vol. 1, pp. 8–12 (2009)

4. He, X., Sun, X., Von Laszewski, G.: QoS guided min-min heuristic for grid task scheduling.
J. Comput. Sci. Technol. 18(4), 442–451 (2003)

5. Iqbal, S., Gupta, R., Lang, Y.: Job scheduling in HPC clusters. Power Solutions, pp. 133–
135 (2005)

6. Dutot, P.F., Eyraud, L., Mounié, G., Trystram, D.: Bi-criteria algorithm for scheduling jobs
on cluster platforms. In: Proceedings of the Sixteenth Annual ACM Symposium on
Parallelism in Algorithms and Architectures, pp. 125–132 (2004)

7. Pinel, F., Bouvry, P.: A model for energy-efficient task mapping on milliclusters. In:
Proceedings of the Second International Conference on Parallel, Distributed, Grid and Cloud
Computing for Engineering, pp. 1–32 (2011)

Methods for Job Scheduling on Computational Grids 31

8. Braun, T.D., Siegel, H.J., Beck, N., Bölöni, L.L., Maheswaran, M., Reuther, A.I., Freund, R.
F.: A comparison of eleven static heuristics for mapping a class of independent tasks onto
heterogeneous distributed computing systems. J. Parallel Distrib. Comput. 61(6), 810–837
(2001)

9. Diaz, C.O., Guzek, M., Pecero, J.E., Danoy, G., Bouvry, P., Khan, S.U.: Energy-aware fast
scheduling heuristics in heterogeneous computing systems. In: 2011 International
Conference on High Performance Computing and Simulation (HPCS), pp. 478–484 (2011)

10. Leung, J.Y. (ed.): Handbook of Scheduling: Algorithms, Models, and Performance Analysis.
CRC Press, Boca Raton (2004)

11. Ali, S., Braun, T.D., Siegel, H.J., Maciejewski, A.A., Beck, N., Bölöni, L., Yao, B.:
Characterizing resource allocation heuristics for heterogeneous computing systems. Adv.
Comput. 63, 91–128 (2005)

12. Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: overview and conceptual
comparison. ACM Comput. Surv. (CSUR) 35(3), 268–308 (2003)

13. Valentini, G.L., Lassonde, W., Khan, S.U., Min-Allah, N., Madani, S.A., Li, J., Bouvry, P.:
An overview of energy efficiency techniques in cluster computing systems. Cluster Comput.
16(1), 3–15 (2013)

14. Hussain, H., Malik, S.U.R., Hameed, A., Khan, S.U., Bickler, G., Min-Allah, N., Rayes, A.:
A survey on resource allocation in high performance distributed computing systems. Parallel
Comput. 39(11), 709–736 (2013)

15. Diaz, C.O., Guzek, M., Pecero, J.E., Bouvry, P., Khan, S.U.: Scalable and energy-efficient
scheduling techniques for large-scale systems. In: 11th International Conference on
Computer and Information Technology (CIT), pp. 641–647 (2011)

16. Barrondo, A., Tchernykh, A., Schaeffer, E., Pecero, J.: Energy efficiency of knowledge-free
scheduling in peer-to-peer desktop Grids. In: 2012 International Conference on High
Performance Computing and Simulation (HPCS), pp. 105–111 (2012)

17. Diaz, C.O., Pecero, J.E., Bouvry, P.: Scalable, low complexity, and fast greedy scheduling
heuristics for highly heterogeneous distributed computing systems. J. Supercomputing
67(3), 837–853 (2014)

18. Dong, F., Akl, S.G.: Scheduling algorithms for grid computing: state of the art and open
problems. School of Computing, Queen’s University, Kingston, Ontario (2006)

19. Lindberg, P., Leingang, J., Lysaker, D., Bilal, K., Khan, S.U., Bouvry, P., Li, J.: Comparison
and analysis of greedy energy-efficient scheduling algorithms for computational grids. In:
Energy-Efficient Distributed Computing Systems, pp. 189–214 (2011)

20. Xhafa, F., Abraham, A.: Computational models and heuristic methods for grid scheduling
problems. Future Gener. Comput. Syst. 26(4), 608–621 (2010)

21. Zomaya, A.Y., Teh, Y.H.: Observations on using genetic algorithms for dynamic
load-balancing. IEEE Trans. Parallel Distrib. Syst. 12(9), 899–911 (2001)

22. Gao, Y., Rong, H., Huang, J.Z.: Adaptive grid job scheduling with genetic algorithms.
Future Gener. Comput. Syst. 21(1), 151–161 (2005)

23. Carretero, J., Xhafa, F., Abraham, A.: Genetic algorithm based schedulers for grid
computing systems. Int. J. Innovative Comput. Inf. Control 3(6), 1–19 (2007)

24. Xhafa, F., Alba, E., Dorronsoro, B., Duran, B., Abraham, A.: Efficient batch job scheduling
in grids using cellular memetic algorithms. In: Metaheuristics for Scheduling in Distributed
Computing Environments, pp. 273–299 (2008)

25. Chang, R.S., Chang, J.S., Lin, P.S.: An ant algorithm for balanced job scheduling in grids.
Future Gener. Comput. Syst. 25(1), 20–27 (2009)

26. Colorni, A., Dorigo, M., Maniezzo, V., Trubian, M.: Ant system for job-shop scheduling.
Belg. J. Oper. Res. Stat. Comput. Sci. 34(1), 39–53 (1994)

32 E. Flórez et al.

27. Stützle, T., Hoos, H.H.: MAX–MIN ant system. Future Gener. Comput. Syst. 16(8), 889–
914 (2000)

28. Liu, H., Abraham, A., Hassanien, A.E.: Scheduling jobs on computational grids using a
fuzzy particle swarm optimization algorithm. Future Gener. Comput. Syst. 26(8), 1336–
1343 (2010)

29. Xhafa, F., Carretero, J., Dorronsoro, B., Alba, E.: A tabu search algorithm for scheduling
independent jobs in computational grids. Comput. Inform. 28, 237–250 (2009)

30. Kirkpatrick, S., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598),
671–680 (1983)

31. Ali, S., Siegel, H.J., Maheswaran, M., Hensgen, D., Ali, S.: Representing task and machine
heterogeneities for heterogeneous computing systems. Tamkang J. Sci. Eng. 3(3), 195–208
(2000)

32. Xhafa, F., Barolli, L., Durresi, A.: Batch mode scheduling in grid systems. Int. J. Web Grid
Serv. 3(1), 19–37 (2007)

33. Nesmachnow, S., Cancela, H., Alba, E.: Heterogeneous computing scheduling with
evolutionary algorithms. Soft. Comput. 15(4), 685–701 (2010)

34. Xhafa, F.: A hybrid evolutionary heuristic for job scheduling on computational grids. In:
Hybrid Evolutionary Algorithms, pp. 269–311 (2007)

35. Xhafa, F., Carretero, J., Alba, E., Dorronsoro, B.: Design and evaluation of tabu search
method for job scheduling in distributed environments. In: Proceedings of the 22th
International Parallel and Distributed Processing Symposium, pp. 1–8 (2008)

36. Ritchie, G., Levine, J.: A hybrid ant algorithm for scheduling independent jobs in
heterogeneous computing environments. In: Proceedings of the 23rd Workshop of the UK
Planning and Scheduling Special Interest Group, pp. 178–183 (2004)

37. Nesmachnow, S., Cancela, H., Alba, E.: A parallel micro evolutionary algorithm for
heterogeneous computing and grid scheduling. Appl. Soft Comput. 12(2), 626–639 (2012)

38. Pinel, F., Dorronsoro, B., Bouvry, P.: A new parallel asynchronous cellular genetic
algorithm for scheduling in grids. In: 2010 IEEE International Symposium on Parallel
Distributed Processing, Workshops and PhD Forum, pp. 1–8 (2010)

39. Bardsiri, A.K., Hashemi, S.M.: A comparative study on seven static mapping heuristics for
grid scheduling problem. Int. J. Softw. Eng. Appl. 6(4), 247–256 (2012)

40. Guzek, M., Pecero, J.E., Dorronsoro, B., Bouvry, P.: Multi-objective evolutionary
algorithms for energy-aware scheduling on distributed computing systems. Appl. Soft
Comput. 24, 432–446 (2014)

41. Coello Coello, C.A., Toscano Pulido, G.: A micro-genetic algorithm for multiobjective
optimization. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.)
EMO 2001. LNCS, vol. 1993, pp. 126–140. Springer, Heidelberg (2001)

Methods for Job Scheduling on Computational Grids 33

Cloud Computing for Fluorescence Correlation
Spectroscopy Simulations

Lućıa Marroig1, Camila Riverón1, Sergio Nesmachnow1,
and Esteban Mocskos2,3(B)

1 Universidad de la República, Montevideo, Uruguay
{lucia.marroig,camila.riveron,sergion}@fing.edu.uy

2 Departamento de Computación, Facultad de Ciencias Exactas y Naturales,
Universidad de Buenos Aires, Buenos Aires, Argentina

emocskos@dc.uba.ar
3 Centro de Simulación Computacional p/Aplic. Tecnológicas/CSC-CONICET,

Godoy Cruz 2390, Buenos Aires C1425FQD, Argentina

Abstract. Fluorescence microscopy techniques and protein labeling set
an inflection point in the way cells are studied. The fluorescence corre-
lation spectroscopy is extremely useful for quantitatively measuring the
movement of molecules in living cells. This article presents the design
and implementation of a system for fluorescence analysis through sto-
chastic simulations using distributed computing techniques over a cloud
infrastructure. A highly scalable architecture, accessible to many users,
is proposed for studying complex cellular biological processes. A MapRe-
duce algorithm that allows the parallel execution of multiple simulations
is developed over a distributed Hadoop cluster using the Microsoft Azure
cloud platform. The experimental analysis shows the correctness of the
implementation developed and its utility as a tool for scientific comput-
ing in the cloud.

Keywords: Scientific computing · Cloud · Fluorescence analysis

1 Introduction

Nowadays, cloud computing is a major paradigm for solving complex prob-
lems [3,13], providing an easy-to-use and ubiquitous platform to process and
store large volumes of data. In recent years, scientific computing systems have
been steadily moving their applications and data to cloud datacenters that pro-
vide a comprehensive number of services, including storage and processing.

In addition, new platforms for developing cloud computing applications have
been introduced. Microsoft Azure [9] is one of the most popular cloud platforms
for building, deploying and managing applications in distributed datacenters.
Azure provides the PaaS and IaaS models for cloud computing [3] and pro-
vides support for many programming languages, tools, and frameworks, includ-
ing those commonly used to build large scientific computing applications.

This project has been partially supported by the Microsoft Azure for Research
Award.

c© Springer International Publishing Switzerland 2015
C. Osthoff et al. (Eds.): CARLA 2015, CCIS 565, pp. 34–49, 2015.
DOI: 10.1007/978-3-319-26928-3 3

Cloud Computing for Fluorescence Correlation Spectroscopy Simulations 35

This article describes a collaborative and interdisciplinary initiative between
institutions in Argentina and Uruguay. The project supports the study of com-
plex processes in early stages of embryonic development, using fluorescence tech-
niques [5]. Due to the growing need to execute complex models and manage large
volumes of data within reasonable times, we aim at developing an efficient sim-
ulation software that models the complex biological reality, supporting multiple
users simultaneously, using cloud computing techniques. The developed system
makes use of distributed computing in the Microsoft Azure cloud to host and
process the simulation software.

The proposed architecture aims for a highly scalable and adaptable design,
taking advantage of the available tools provided by Microsoft Azure, for both,
hosting and managing a distributed environment, and processing and retrieving
to the final user large amounts of data.

The main contributions of the research reported in this article include: (i)
an easy-to-use system, facilitating the usability of a biological software analysis;
(ii) a paradigm for separating the execution of the simulation programs from
the local environment of each user, by applying distributed computing; and (iii)
an innovative architecture and implementation for a scientific application using
the novel Microsoft Azure cloud infrastructure.

2 Biological Problem Description

This section presents a description of the problem, techniques, and software tools
and a brief review of related work.

2.1 Fluorescence Correlation Spectroscopy

Fluorescence Correlation Spectroscopy (FCS) is a well-known technique applied
to obtain quantitative information regarding the motion of molecules in living
cells. It is based on the analysis of intensity fluctuations caused by fluorescence-
labeled molecules moving through the small detection volume of a confocal or
two-photon excitation microscope.

Figure 1 shows a schema of an experiment. Fluorescent tagged molecules
diffuse and some of them emit photons when they are under the observation
volume defined by the laser beam. The photon emission is a stochastic process,
its probability is related to the relative position of the molecule and the beam
center, which is the most probable position, while the probability diminishes
when moving out (Eq. 1), ωxy and ωz are the radial and axial waists of the
point spread function. Standard values for the parameters are: ωxy = 0.2μm
and ωz = 1μm.

g(x, y, z) = exp

(−2(x2 + y2)

ω2
xy

+
−2z2

ω2
z

)
(1)

36 L. Marroig et al.

Fig. 1. Schema of a FCS experiment:
fluorescent labeled molecules can emit
photons under the detection volume.
This photons are then detected by the
optic system and quantified, obtaining
a fluorescent trace of the experiment.

FCS has been applied to study diffu-
sion, transport, binding, and other proc-
esses [5]. In the case of simple scenar-
ios such as molecules passively moving in
a homogeneous media, the FCS analysis
yields analytic functions that can be fitted
to the experimental data to recover the
phenomenological parameters (e.g., diffu-
sion coefficients, chemical rate constants,
etc.). However, many dynamical processes
in cells do not follow these simple mod-
els, so it is not possible to obtain an
analytic function through the theoretical
analysis of a more complex model [5]. In
those cases, the experimental analysis can
be combined with Monte Carlo simula-
tions to help with the interpretation of
the experimental data recovered in FCS
experiments (see for example, [8]). The
comparison between the expectations for
a reduced, simulated model and the experimental data could provide important
clues of the dynamical processes hidden in the FCS data. Despite of being use-
ful, most Monte Carlo tools used to simulate FCS experiments are developed as
sequential ad-hoc programs designed only for specific scenarios.

2.2 Software Components

At cellular scales, a finite number of molecules interact in complex spaces defined
by cell and organelle membranes. In order to simulate stochastic cellular events
(movements, interactions, other reactions) with spatial realism at reasonable
computational cost, specific numerical techniques should be employed.

This allows experimental analysis to be combined with Monte Carlo simu-
lations to aid in interpretation of the data. FERNET (Fluorescence Emission
Recipes and Numerical routines Toolkit) is based on Monte Carlo simulations
and the MCell-Blender platform [1]. This tool is designed to treat the reaction-
diffusion problem under realistic scenarios.

This method enables to set complex geometries of the simulation space, dis-
tribute molecules among different compartments, and define interspecies reactions
with selected kinetic constants, diffusion coefficients, and species brightness.

MCell [2,11,12] is used as the simulation engine in FERNET; one of its
outputs consists in the position of each molecule in the system every time step.
These positions are the input for FERNET, which then generates the fluorescent
trace. This data is then compared against the experimental data and can support
the validation of the proposed model.

Cloud Computing for Fluorescence Correlation Spectroscopy Simulations 37

These two components are integrated using MapReduce programming model
supported by the Azure service HDInsight.

2.3 Related Work

A number of works have studied the application of cloud computing for develop-
ing simulation-based scientific applications. Two of the most relevant and recent
approaches are described next.

Jakovits and Srirama [7] studied how to adapt scientific applications to the
cloud, providing efficiency and scalability, by applying the MapReduce frame-
work. A four-category classification is proposed for cloud algorithms, according
to the adaptability to the model, and the performance of MapReduce is stud-
ied for each category. The main results confirm that MapReduce adapts well to
embarrassingly parallel applications, but fails to efficiently solve complex models
involving a large number of iterations. The authors suggest using the Twister
framework for implementing iterative algorithms in the cloud. At a high level of
abstraction, this article is helpful to orientate researchers seeking to migrate their
applications to the cloud, and the proposed classification is a valuable tool to
decide which framework to use according to the research objectives and features.

Richman et al. [10] studied how cloud computing can be used effectively
to perform large scientific simulations using the parameter sweep paradigm. By
executing in parallel, the approach increases the system performance and allows
solving complex problems in reasonable execution times. As a relevant case-of-
study, the authors describes the implementation of an application to evaluate
the life-cycle energy for 1.080.000 scenarios of houses’ design in Toronto, over the
Amazon Web Services, Simple Storage Service using 24 virtual machines. The
proposed implementation reduced the execution times from 563 days to 28 days,
by using a uniform data decomposition in blocks that demands almost the same
time to be processed. The results show that an appropriate cloud architecture is
able to provide significant reductions in the execution time of simulation-based
scientific applications, allowing to perform exhaustive parameterization analysis.

On the other hand, our research group has been working on the applica-
tion of distributed computing techniques (i.e., grid and cloud) applied to scien-
tific computing. Garcia et al. [6] applied the distributed computing paradigm
for developing and executing scientific computing applications in the GISELA
grid infrastructure, a previous version of nowadays user-oriented grid/cloud sys-
tems. Two applications were migrated, both involving the distributed execution
of simulations, regarding image processing and computational fluid dynamics,
respectively. The study allow us to conclude that efficient processing is a viable
option for scientific applications by using the distributed computing paradigm,
especially when using the parameter sweep approach and scientific simulations.

In Da Silva et al. [4], we studied the first proposal of applying distributed
computing to the simulation of biological processes. MCell and FERNET soft-
ware packages were executed over a volunteer grid/cloud system, using hetero-
geneous computing resources from universities in Argentina, Brazil, Mexico, and

38 L. Marroig et al.

Uruguay. A domain decomposition approach was applied to distribute the sim-
ulations for six problem models, and the results demonstrated that distributing
computing allows performing a large number of simulations in significantly lower
execution times than the ones required by a sequential approach.

In this work, we propose an extension to design and implement a fully cloud
version of a distributed biological application for applying the FCS technique to
study the embryonic development. The application is developed and deployed
over a cloud infrastructure, the Microsoft Azure framework.

3 System Architecture for the Cloud

This section describes the architecture of the proposed distributed application
for FCS simulations.

3.1 Architecture Design and Application Flow

Most scientific applications can be described as batch processes, usually involv-
ing a high CPU and RAM utilization, with very low or even no user intervention.
Both software components we propose to adapt to a cloud environment, MCell
and FERNET, are batch applications with standard features, like reading an ini-
tial file, applying a file processing, and finally post-processing to obtain output
files that store the results. MCell and FERNET can be run in parallel indepen-
dently, thus the problem is classified as embarrassingly parallel, requiring almost
no synchronization between parallel tasks to obtain the final results.

One of the input parameters for a MCell simulation is the definition of reac-
tions, i.e. how molecules act as they approach to each other. Each reaction has an
occurrence probability (rate). The rate parameter might not be known before-
hand, so it is interesting to provide the user the ability to define a range of values
and the step to go from the lower to the higher value for the rate parameter using
a parameter sweep application.

Taking into account the features of both MCell and FERNET, we propose
designing the distributed system for allowing the user to execute independent
simulations and to obtain the results at any time. The architecture seeks to
use the elastic capabilities of the Microsoft Azure cloud for executing a large
number of instances of MCell-FERNET in parallel, and performing more efficient
simulations than in a local execution environment.

The flow of the distributed application is described as follows:

1. Users access the system using a web portal. They configure the scenario to
execute MCell/FERNET (some parameters admit a range of values that gen-
erate multiple simulations). The system returns a job identification (jobID),
allowing the users to monitor tasks and get results.

2. A worker role is used to obtain the parameters and create the input files for
the different simulations. This role also stores the parameter values in order
to make them public and accessible to the other roles.

Cloud Computing for Fluorescence Correlation Spectroscopy Simulations 39

3. Another worker role takes the input files to configure and run the simulations
in parallel by using the MapReduce paradigm in a HDInsight cluster. This role
monitors and stores metadata about the status of running tasks to provide
information to the users during the process.

4. The HDInsight cluster implements and executes multiple simulations. It cre-
ates compressed files that contains the outputs of FERNET that can be
retrieved later by the users.

5. Users can access the website at any time, check the tasks’ status by using the
jobID, and finally get the resulting files from several executions.

Figure 2 describes the main components of the proposed architecture and
the user interaction with the runtime environment to match the described appli-
cation flow. Users access through a friendly interface to set up the simulation
via the Web role. The parameter information is then sent from the web role to
the Message Processing worker role, via a service exposed by this role to send
asynchronous messages, using the Windows Communication Foundation (WCF)
platform. After receiving the message, the Message Processing worker role cre-
ates the input files for the simulations to run in parallel, and stores them in
the storage account, creating blobs for each of them using a RESTful service.
After that, the role calls a WCF service exposed by the Job Creation worker role,
which creates the tasks that are executed on the HDInsight cluster. Job Creation
also monitors the execution of each task, by storing the state of the tasks for
future references. Furthermore, the results and control files generated by tasks
that runs on the HDInsight cluster are also stored under the blob structure.

Users may request information about the simulations status using the jobID
at any time. In this way, the website controls the files created by the worker role
Job Creation, and presents this information in a user friendly interface.

3.2 Storage

Storage is the central component of the architecture. All other components com-
municate with the storage repository at some point in the flow.

An Azure Storage Account using the blob storage format is used. The access
to the storage account is needed for reading, creating, and deleting data. It is
performed by using RESTful services, providing an efficient communication and
allowing the storage component to work without the need of maintaining states.

We use the geo-redundant capabilities of the Azure storage system to miti-
gate the effect of the storage element as a potential single point of failure for the
proposed system. The system keeps copies of the data in six different geographi-
cally distant locations, three of them with at least a distance of 600 km., therefore
the probability that all the storage instances fail simultaneously is almost null.

3.3 Fault Tolerance

Fault tolerance is provided automatically by the Azure platform.

40 L. Marroig et al.

Fig. 2. Diagram of the proposed system architecture over the cloud

The use of page blobs guarantees that each blob is triple-replicated within
the datacenter itself, then geo-replicated to a neighboring datacenter. The SLA
for storage guarantees 99.9 % availability. Regarding communications (message
passing), the use of WCF provides reliable messaging using queues and a send-
retry mechanism. The MapReduce engine in HDinsight has an automatic method
for retrying the execution of failed tasks. Finally, the cloud service itself is of
PaaS type, so the underlying computing infrastructure is completely handled by
the service provider according to the High Availability SLA in Azure (availability
> 99% for each role having two or more instances).

4 Implementation Details

This section provides the main implementation details of the system components.

4.1 Web Role

The web role is the user access point to the application. It has a running instance
of Internet Information Services (IIS), allowing the role to host the project web-
site. A backend is provided to access the blob storage and communicate with
other roles by using WCF. The web role needs to access the storage because
it is in charge of assigning the jobID to each submission, to allow the users to
monitor the status of their tasks and retrieve the results of the simulations.

Cloud Computing for Fluorescence Correlation Spectroscopy Simulations 41

Web roles support a wide number of customers due to horizontal scaling
provided by Azure. The Azure service contract specifies that for all Internet
oriented virtual machines that has two or more deployed instances on the same
availability zone, an external connectivity of at least 99.9 % of the time is granted.

4.2 Message Processing Worker Role

Message processing is implemented by a worker role that reads the user input
and performs a parametric sweep on the parameters to create the input files
for executing MCell/FERNET. Message Processing exposes a service through a
WCF access point, to receive messages sent by the web role. When a message
from the web role arrives, the input files are created, information is stored, and
an access point exposed by the Job Creation role is called using WCF. Since
WCF ensures that each message reaches its recipient, after sending the message
the role returns to idle state awaiting further calls from the web role.

A parameter sweep algorithm generates different combinations of parameter
values to run parallel simulations in the HDInsight cluster. It is defined by:
(i) v: the resulting vector of applying a function to the parameters. For the
current implementation, v is the result of executing MCell using some parameters
combination; (ii) n: the number of parameters over which the parametric sweep
is applied; (iii) p: the vector with the n parameter values that produce results
in v. In the current implementation, it corresponds to the specification for the
different rate values for each reaction, generating the result v from running
MCell; (iv) j: vector of indexes indicating the values for each of the n parameters,
within a set of parameter values; (v) P: a m×n matrix of possible parameter
values, being m the number of possible values for each index j; (vi) L: a Boolean
vector indicating when using a full or selective parametric sweep, according to
Lk �= jk,∀k = 0, (n − 1), then the full parametric sweep is applied, otherwise,
the partial one is applied.

Algorithm 1 describes the parameter sweep. The inival and endval vectors are
used to define the P matrix. After setting the parameters, a MDL file is created
for each parameter combination using threads, since all files are independent
from each other. Each thread creates the MDL file and sends a message to the
Job Creation worker role for executing the simulations in the HDInsight cluster.

4.3 Job Creation Worker Role

The implementation of Job Creation is similar to Message Processing, but
includes the logic to read the MDL file and configures a MapReduce job to
be executed in the HDInsight cluster. The main reason for decoupling Job Cre-
ation and Message Processing is that the former performs task monitoring and
update status to allow task tracking by the users. If Message Processing and Job
Creation were combined in a single worker role, it will use resources continuously,
generating a bottleneck when many users execute jobs in the system at the same
time. The impact of the bottleneck is reduced by separating the roles: (i) Mes-
sage Processing is available to receive new messages from the users, processing

42 L. Marroig et al.

Algorithm 1. Parametric sweep algorithm
1: initialize vectors of initial and final values for each reaction (inival, endval)
2: initialize vector of steps for each reaction (steps)
3: define the Boolean vector L
4: j ← [n]
5: for k = 0 to n − 1 do
6: if k = L[k] then
7: inival[k] ← inival[k] + steps[k]
8: end if
9: j[k] = inival[k]

10: end for
11: subid = 1
12: z = n − 1
13: while z >= 0 do
14: if (j[z] − endval[z]) × steps[z] > 0 then
15: j[z] = inival[z]
16: z = z − 1
17: else
18: NewThread(CreateMDL(subid, parameters))
19: z = n − 1
20: subid = subid + 1
21: end if
22: if z >= 0 then
23: j[z] = j[z] + steps[z] +
24: if z = L[z] then
25: j[z] = j[z] + steps[z]
26: end if
27: end if
28: end while

them automatically and improving the user experience, and (ii) the availability
of Job Creation is supported on the horizontal auto-scaling features of Cloud
Services from Azure, thus a lower overhead is produced when crating job new
instances in the HDInsight cluster.

4.4 HDInsight Cluster

HDInsight is the implementation of Apache Hadoop in Azure. The Hadoop Dis-
tributed File System (HDFS) is mapped to a container in a blob storage in
Azure. The cluster is formed by a master node and several slave nodes that
execute MapReduce tasks and store metadata and results in the blob storage.
HDInsight executes in a set of Azure virtual machines, provisioned when the
cluster is created, and using Azure SQL Database for storing metadata. The
HDInsight Cluster is isolated of the other Azure components, and it is accessed
through a secure gateway that exposes a single endpoint and performs authen-
tication for each component that access the cluster.

4.5 MapReduce

The MapReduce algorithm is organized as follows.
The Main class generates and launches the mapper and reducer tasks

required. It performs some YARN configurations and uploads the required files
to the distributed cache of Hadoop, providing an efficient way to share data

Cloud Computing for Fluorescence Correlation Spectroscopy Simulations 43

(each file is copied only once per task, using the cache to avoid local copies to
hard drives). The required files for a simulation are the MCell and FERNET
executables and configuration files, and the required dynamic libraries for exe-
cution. The InputFormat class in Hadoop is used to split the input data for the
different MapReduce tasks to execute. A chain of two mappers is launched for
each MCell+FERNET execution, each one implementing the execution of the
corresponding software package for a single simulation.

The MCell mapper implements the MCell execution for each simulation sub-
mitted by the users. The class McellMapper.java extends the mapper class in
Hadoop, overriding the map method. McellMapper.java receives (from Job Cre-
ation) a key matching the jobID, the execution mode for FERNET (point for
a single execution or multi for multiple executions), and the MDL file required
for the MCell execution (locally stored with the name inputMCell.mdl on the
slave node executing the map task, and used by the MCell executable, already
loaded in the memory of the node, to launch the execution of the simulation).
The standard output of the execution is stored in a file with type out in a blob
on the storage account, including the jobID and a reference to the owner (user
that submitted the job). The data returned by the MCell mapper (key and name
of the result file) is used for the execution of the correspondent FERNET mapper.

The FERNET mapper executes FERNET application. It is implemented in the
class FernetMapper.java, extending mapper and overriding the map method.
The input parameters are the key and name of the output file of the previous
MCell execution, stored in a blob in the main storage account. The FERNET
configuration file, stored in the Hadoop distributed cache, is also used. The
mapper output is a list of pairs <key,value>, with the same key, and value is a
structure defined in FernetOutput.java that specifies the jobID, and the name
and content of the FERNET output file. Multiple pairs, thus multiple output
files, are returned for the multi execution mode, and only one file is returned for
the point mode.

The Reducer groups all values with the same key and applies post-processes
the results. It is implemented on the ResultReducer.java class, which extends
the reducer class in Hadoop, overriding the reduce method. ResultReducer
receives the jobID and all the associated <key,value> pairs. The post-processing
is related to analyze the results for parameter sweep applications, applying sta-
tistical analysis and generating correlation graphics. A zip file containing the
simulation results and the post-processing results is stored in a blob, inside the
container of the storage account associated to the HDInsight cluster.

An example of execution flow for a simulation is shown in Fig. 3.

4.6 Load Balancer

Different simulations have different execution times, so a dynamic load balancer
was implemented to improve the system performance.

For each instance of each role, the resource utilization (CPU and RAM)
is evaluated to determine the instance load. Network traffic is not evaluated
because all cluster nodes are within the same network. A specific module was

44 L. Marroig et al.

{115.1;point}

{115.1;point;
Mcelloutput-
115.1.dat}

{115.1;point}

Scene.main.mdl-
point-115.1

Scene.main.mdl-
point-115.1

Fig. 3. MapReduce algorithm specification

designed for resource monitoring. We use the Diagnostics component in Azure
to gather the relevant metrics, and for each resource, the moving average (MA)
is computed, considering 10 time periods (in our case, minutes) in the past, for
each metric m and instance n: MA(m,n) =

∑i=n
i=1 mi/t, t = 10.

The MAs are used to decide the instance to assign each submission. Instances
are classified in four categories according to their loads: idle, low, normal, and
high. Two thresholds are defined for the CPU load to avoid continuous changes
of category: the upper threshold TU = 1.3×∑i=n

i=1 MA(m, i)/n, (an instance load
is ‘high’ when it is 30 % more loaded than the average load) and lower threshold
TL = 0.7×∑i=n

i=1 MA(m, i)/n (an instance load is ‘low’ when it is 30 % less loaded
than the average load). According to these values, instances are categorized as:
(i) idle when MA(CPU, n) < 30%; (ii) low when 30% < MA(CPU, n) <
TL and MA(mem) < 85%; (iii) normal when TL < MA(CPU, n) < TU and
MA(mem) < 85%; (iv) high when MA(CPU, n) > TU or MA(mem) ≥ 85%.

Instances are then selected according to the load characterization. An idle
instance is selected for an incoming job if available; otherwise, a low load instance
is selected, or in the worst case, a normal one will be selected. Since the load
balancer is designed taking into account the metrics that are used for the auto-
scaling of the cloud infrastructure, Azure guarantees that there will be at least
one instance that is not in the ‘high’ load category.

5 Validation and Analysis

This section describes the validation and performance analysis of the system.

Cloud Computing for Fluorescence Correlation Spectroscopy Simulations 45

5.1 Load Balancing

The load balancing technique was evaluated by running 45 simulations arriv-
ing at different submission times over the Azure platform (m1.medium instances,
dual core virtual machines at 2.0 GHz, 3.75 GB RAM). We worked with a work-
load involving several simulation bursts, designed to overload the Job Creation
worker role. Using the available computing resources, the load balancing algo-
rithm performed well to handle the incoming workloads. Neither of the virtual
resources was significantly loaded. In fact, no machine was ever in the ‘high
load’ category, the memory utilization was far below the threshold, while the
CPU utilization was between 50% and 56% for all machines.

The total time demanded by the load balancer execution was between 572 and
998 ms, showing that no significant overhead is produced by the proposed load
balancer when taking into account the large execution times of the simulations.

Table 1. Reactions in the scenario for evaluating parameter sweep applications

Reaction Initial rate Final rate Step

A + B → A 1.1×10−6 1.2×10−6 0.1×10−6

B + B → A 0.3 0.4 0.1

A + A → B 0.06 0.08 0.01

5.2 Parameter Sweep Simulations

The parameter sweep algorithm was tested using a scenario considering three
reactions, according to the details presented in Table 1.

The analysis of the execution times for the parameter sweep simulations,
reported in Table 2, indicates that the number of possible configurations notably
impacts on the execution times, and that no significant differences are shown
regarding the number of reactions. In addition, the results also demonstrate
that there is a very low overhead for executing a large number of simulations.

Table 2. Execution times for the parameter sweep experiments (s)

reactions # combinations

4 9 90 200 10000

2 102 120 720 14400 49380

6 – 72 660 12000 62400

10 – – 660 1020 61200

20 – – – 1020 57000

46 L. Marroig et al.

5.3 Fault Tolerance Analysis

Four scenarios were tested to guarantee the proper handling of exceptions due
to failures in the application components.

Failure in Message Processing Role. We studied situations when unexpected
errors cause Message Processing to shut down, thus forcing the virtual machines
for both role instances to restart. This scenario is very unlikely due to the high
availability provided by the Azure SLA, but we checked that the system is able
to handle this kind of errors. When Message Processing is down and users submit
simulations to the web role, an error message appears while the virtual machine
are starting, because no agent is active to attend the requests. However, this
situation only holds for a few seconds; the system continues operating correctly
once the virtual machines for the Message Processing role are up. The whole
system recovers successfully and the impact for the user is very limited.

Failure in Job Creation Role. When an unexpected error affect the Job Creation
role, the fault tolerance capabilities of WCF guarantees that no messages from
Message Processing are lost. Tasks are then launched automatically after Job
Creation restarts and the user can access the results without any impact on
usability. Again, restarting the role only demands a few seconds.

A different situation happens when the Job Creation role dies when checking
and/or updating the status of a given task upon a user request. In that case, the
metadata is never updated after the Job Creation restarts, and the user cannot
check for the finalization of their job correctly. Thus, an upgraded mechanism
was implemented to deal with this issue: task finalization is not only checked
by the metadata, but also for the generation of output files for the MapReduce
processing. Using this improved implementation, the system provides a trans-
parent, fault tolerant operation regarding the Job Creation role failures.

Failure in MapReduce Task. For testing the tolerance to MapReduce failures, we
applied a fault injection strategy. We studied two cases: (i) temporary failures
in the map or reduce tasks, and (ii) failure in the execution due to bad data
(i.e., using reactions with some undefined parameter values). In the first case,
the inherent capabilities of the HDinsight service allow a correct operation by
re-executing the failed tasks. In the second case, the system correctly marked the
task as ‘failed’ after all attempts were performed, and the user cannot download
any MDL files, since no output was generated by the mappers.

5.4 Autoscaling

We also evaluated the auto-scale capabilities of the system deployed in the Azure
cloud. We initially launched Message Processing and Job Creation in A1 virtual
machines (one core, 2.1 GHz, 1.75 GB RAM), the smallest size recommended for
production workloads. Using this basic infrastructure, the roles have not enough
resources to deal with multiple users requests, and Azure launches new instances
for each role when reaching the default maximum CPU utilization.

Cloud Computing for Fluorescence Correlation Spectroscopy Simulations 47

When deploying the system on A3 virtual machines (four cores, 2.1 GHz,
7 GB RAM), the CPU utilization of the Message Processing and Job Creation
roles is below 25 % in idle state and around 50 % when processing users requests.
Thus, we decided to work using two instances for each role, on A3 virtual
machines. We modified the Azure auto-scale properties to assure that these two
instances are always running, to provide the required 99 % SLA to the system
users.

The correct auto-scale behavior of the system was checked by observing the
CPU use metric (via Diagnostics) and the Azure administration portal.

5.5 Experimental Evaluation of a Realistic Simulation

We used a test case involving one million MCell iterations (see details in Table 3)
to test the capabilities of the proposed system when executing large simulations.

Table 3. Input parameters for the realistic simulation

Parameter Value

ITERATIONS, TIME STEP 1 × 106, 1 × 10−5

COORDINATES [−1.5, −1.5, −1.5] – [1.5, 1.5, 1.5]

MOLECULES (diffusion constant) A (5.5 × 10−7), B (3 × 10−7)

REACTIONS No reactions

NAME LIST A B

A large volume of data (MCell output file: 10 GB) is generated using the
previous configuration. By executing this large test, we verified that the simple
approach that sends the output of the first mapper to the second one fails due to
memory size exception. Thus, we modified the system, implementing a correct
strategy to deal with large volumes of data: the output file is stored in a container
associated to the HDInsight cluster. This way, all tasks in a MapReduce job can
locally access to the file, reading from a buffer and copying the content to the
blob, avoiding using a large amount of memory, but a reference to the blob.

The average execution time (over five independent executions) for this large
simulation was 5 h and 25 min. There is an overhead due to the data reading, but
when using several resources the impact of this overhead is reduced. A parallel
analysis considering 10 realistic simulations in the cloud allows achieving almost
linear speedup when compared against a sequential execution.

These results confirm that the proposed implementation is a viable option for
execution, allowing the users to perform their simulations in the cloud and freeing
their local computing resources. The designed architecture and web portal are
useful tool for researchers, and the parallel capabilities of the cloud infrastructure
allows executing efficiently large simulations.

48 L. Marroig et al.

6 Conclusions

This article presents the design and implementation of a system for fluorescence
analysis simulations using distributed computing in a cloud infrastructure.

A highly scalable architecture is proposed for studying complex cellular bio-
logical processes, and a MapReduce algorithm for the execution of multiple simu-
lations is developed over a distributed Hadoop cluster using the Microsoft Azure
cloud platform. Specific algorithms, including a dynamic load balancer and an
application for parametric sweep experiments are also implemented.

Our preliminary experimental evaluation is focused on validating the pro-
posed architecture and the implementation decisions, and testing the capabilities
of both the platform and the proposed solution to deal with realistic scenarios
for fluorescence analysis simulations.

We obtained promising results, showing that it is possible to adapt scientific
systems, such as biological simulations, to a distributed cloud architecture by
applying a parallel computing approach using the MapReduce programming
model.

The main lines for future work are related to improve the experimental eval-
uation of the proposed system, especially when considering large simulations
and high user demands. In addition, we are working on extending the proposed
approach to other biological and scientific computing problems.

References

1. Angiolini, J., Plachta, N., Mocskos, E., Levi, V.: Exploring the dynamics of cell
processes through simulations of fluorescence microscopy experiments. Biophys. J.
108, 2613–2618 (2015)

2. Bartol, T., Land, B., Salpeter, E., Salpeter, M.: Monte carlo simulation of miniature
endplate current generation in the vertebrate neuromuscular junction. Biophys. J.
59(6), 1290–1307 (1991)

3. Buyya, R., Broberg, J., Goscinski, A.: Cloud Computing: Principles and Para-
digms. Wiley, New York (2011)

4. Da Silva, M., Nesmachnow, S., Geier, M., Mocskos, E., Angiolini, J., Levi, V.,
Cristobal, A.: Efficient fluorescence microscopy analysis over a volunteer grid/cloud
infrastructure. In: Hernández, G., Barrios Hernández, C.J., Dı́az, G., Garćıa
Garino, C., Nesmachnow, S., Pérez-Acle, T., Storti, M., Vázquez, M. (eds.) CARLA
2014. CCIS, vol. 485, pp. 113–127. Springer, Heidelberg (2014)

5. Elson, E.L.: Fluorescence correlation spectroscopy: past, present, future. Biophys.
J. 101(12), 2855–2870 (2011)

6. Garćıa, S., Iturriaga, S., Nesmachnow, S.: Scientific computing in the Latin
America-Europe GISELA grid infrastructure. In: Proceedings of the 4th High Per-
formance Computing Latin America Symposium, pp. 48–62 (2011)

7. Jakovits, P., Srirama, S.: Adapting scientific applications to cloud by using dis-
tributed computing frameworks. In: IEEE International Symposium on Cluster
Computing and the Grid, pp. 164–167 (2013)

8. Kerr, R., Bartol, T., Kaminsky, B., Dittrich, M., Chang, J., Baden, S., Sejnowski,
T., Stiles, J.: Fast Monte Carlo simulation methods for biological reaction-diffusion
systems in solution and on surfaces. SIAM J. Sci. Comput. 30(6), 3126–3149 (2008)

Cloud Computing for Fluorescence Correlation Spectroscopy Simulations 49

9. Li, H.: Introducing Windows Azure. Apress, Berkely (2009)
10. Richman, R., Zirnhelt, H., Fix, S.: Large-scale building simulation using cloud

computing for estimating lifecycle energy consumption. Can. J. Civ. Eng. 41, 252–
262 (2014)

11. Stiles, J.R., Bartol, T.M.: Monte Carlo methods for simulating realistic synaptic
microphysiology using MCell, Chap. 4, pp. 87–127. CRC Press (2001)

12. Stiles, J.R., Van Helden, D., Bartol, T.M., Salpeter, E.E., Salpeter, M.M.: Minia-
ture endplate current rise times less than 100 microseconds from improved dual
recordings can be modeled with passive acetylcholine diffusion from a synaptic
vesicle. Proc. Natl. Acad. Sci. USA 93(12), 5747–5752 (1996)

13. Velte, T., Velte, A., Elsenpeter, R.: Cloud Computing, A Practical Approach.
McGraw-Hill Education, New York (2009)

Porting a Numerical Atmospheric Model
to a Cloud Service

Emmanuell D. Carreño(B), Eduardo Roloff, and Philippe O.A. Navaux

Informatics Institute - Federal University of Rio Grande Do Sul,
Porto Alegre, Brazil

{edcarreno,eroloff,navaux}@inf.ufrgs.br

Abstract. Cloud Computing emerged as a viable environment to per-
form scientific computation. The charging model and the elastic capa-
bility to allocate machines as needed are attractive for applications that
execute traditionally in clusters or supercomputers. This paper presents
our experiences of porting and executing a weather prediction applica-
tion to the an IaaS cloud. We compared the execution of this application
in our local cluster against the execution in the IaaS provider. Our results
show that processing and networking in the cloud create a limiting fac-
tor compared to a physical cluster. Otherwise to store input and output
data in the cloud presents a potential option to share results and to
build a test-bed for a weather research platform on the cloud. Perfor-
mance results show that a cloud infrastructure can be used as a viable
alternative for HPC applications.

Keywords: Cloud computing · High-performance computing · Numer-
ical atmospheric model

1 Introduction

High performance computing requires a large number of processors intercon-
nected and large data storage. This large-scale scientific computing has been
performed per years in costly machines that are out of the possibilities of many
research groups. A more common computing infrastructure for HPC is the grid,
but this infrastructure is difficult to setup and maintain. Most of the time this
work is delegated to PhD students who want to concentrate on their own research
rather than setup and manage computing systems [1].

The cloud computing paradigm has provided an alternative to access large
infrastructures and resources. In the cloud, the possibility of paying only for
the amount of resources used brings convenience for academia. The pay-as-you-
go concept could be transformed into a viable option for an institution lacking
computing resources.

Request for funding of cloud storage resources may become increasingly com-
mon on grant proposals, rather than contributions to capital spending on hard-
ware [2]. But it is clear that one of the major concerns for the HPC commu-
nity is performance. Some HPC initiatives have started utilizing the cloud for
c© Springer International Publishing Switzerland 2015
C. Osthoff et al. (Eds.): CARLA 2015, CCIS 565, pp. 50–61, 2015.
DOI: 10.1007/978-3-319-26928-3 4

Porting a Numerical Atmospheric Model to a Cloud Service 51

their research, but performance concerns of HPC applications in the cloud are
immense [3].

Previous work in this area looks only at small HPC benchmarks, which are
simple to port or run in most cases. We look at a full and complex HPC applica-
tion, with difficult requirements as most of the software used in HPC has been
optimized to run on specific architectures and require a set of conditions to run
in a proper and efficient way. A current problem with those legacy applications
is the need to be ported to new infrastructures. The usage of virtualization may
solve some of the challenges. In one of our previous work [4], we studied that the
cost-efficiency of use cloud computing instead of a cluster is feasible and due to
these results we conducted this research.

The goal of this paper is to port a numerical weather prediction application
to an IaaS cloud provider and conduct a performance evaluation comparing it
to a cluster of physical machines. The main contributions of this paper are the
porting process of a legacy application to a cloud provider. Secondly, we created
a workflow explaining the steps to execute weather simulations in the cloud
provider.

2 Related Work

Langmead et al. [5] executed a DNA sequencing algorithm in Amazon EC2, their
work focused on executing a Hadoop application analyzing the costs and the
scalability of the application. They conclude that by taking advantage of cloud
computing services, it is possible to condense thousand of computing hours into
a few hours without owning a cluster.

The use of Amazon EC2 to run an atmosphere-ocean climate model were
explored by Evangelinos et al. [6]. In their experiments the performance in the
cloud was below the level of a supercomputer, but comparable to a low-cost
cluster system. As their major concern was related to latency and bandwidths,
they conclude that the usage of Myrinet or Infiniband for the interconnections
could help reduce this performance gap.

Johnston et al. [7] implemented a satellite propagation and collision system
in Microsoft Azure. They developed an architecture to provide burst capability
to their algorithm. The conclusion was that there is potential for cloud-based
architectures to deliver cost-effective solutions and confront large-scale problems
in science, engineering and business.

The usage of a BLAST algorithm was performed by Lu et al. [8]. They
conducted a case study of running data intensive research in the cloud. Their
conclusions are that the applications that are compute and data intensive can
be executed in the cloud. Additionally they explained that while performance is
often considered desirable, scalability and reliability are usually more important
for some types of scientific applications.

Simalago et al. [9] performed a study on using cloud to process large data
sets. Their experiments with Hadoop conclude that cloud environments could
provide some benefits like better resource utilization.

52 E.D. Carreño et al.

3 Brazilian Regional Atmospheric Modeling System
(BRAMS)

In this section, we present the characteristics of the numeric weather prediction
application. One of the most widely employed numerical models in the regional
weather centers in Brazil is BRAMS [10], a mesoscale model based on RAMS [11].
RAMS, developed by the Atmospheric Science Department at the Colorado State
University, is a multipurpose numerical prediction model designed to simulate
atmospheric conditions. In its turn, BRAMS differs from RAMS due to the
development of computational modules more suitable to tropical atmospheres.

The primary objective of BRAMS is to provide a single model to Brazil-
ian Regional Weather Centers. However, many regional centers in Brazil exe-
cute mesoscale forecasts in their geographical area. Figure 1 shows, as an output
example, results of BRAMS execution in the south region of Brazil, these results
are related to accumulated precipitation in this region.

Fig. 1. BRAMS execution results over the south region of Brazil.

On a daily basis, an operational climate forecast with 5 km of spatial res-
olution is regularly done by the CPTEC/INPE for the entire South American
territory using BRAMS in a supercomputer. Outcomes of this forecast are then
used as initial and boundary conditions to perform more detailed forecasts, for
different regions of Brazil.

4 Porting BRAMS to the Cloud

In this section, we describe the execution model of the application and the
requirements to perform its simulations. We also present the architecture devel-
oped to run in Azure and the challenges and solutions we provided based on our
findings.

Porting a Numerical Atmospheric Model to a Cloud Service 53

One of the objectives of the porting procedures was to automatize the process
to create in a reproducible way new cloud versions of BRAMS each time a new
version of the source code is released. With the previous requisite in mind, we
decided that the best way to achieve this was by performing the minimal amount
of modifications to the application. BRAMS is an application coded in Fortran
language composed of more than 350000 lines of code and more than 500 source
code files. BRAMS uses MPI for the communication between its processes.

4.1 Challenges and Solutions

The source codes provided for HPC applications often lack good documentation,
code comments and most of the time has been optimized for a very specific type
of machine or architecture. This code requires several modifications to run on
commodity machines. These characteristics create a situation in which porting
a complete application becomes a lengthy and not so trivial task. The purpose
of this work was to port the BRAMS application with minimal modifications
to a cloud infrastructure to allow future upgrades based on new versions of the
source code released by the CPTEC.

Another challenge to port this kind of application to the cloud is the access
to the filesystem compared to a grid environment. In a grid, it is common the
usage of a network storage device or a distributed file system. The storage model
of Microsoft Azure allows the storage of files in objects called blobs or in tables.
The usage of one of the previous models required an intrusive modification of
one optimized mechanism of BRAMS. We opted to use a distributed filesystem
to store the input data for the simulations and to store all the output files.

In a cloud environment, to reduce the usage cost is necessary to automate
most of the task related to the creation of an initial instance ready to begin
processing. Due to the way the cloud services are charged, the time and resources
spent configuring, compiling and getting the instance up to the point of being
saved as base for future instances has to be taken into account. This process must
be completely automated to allow a complete pay-as-you-go usage of BRAMS
in Azure.

4.2 System Architecture of BRAMS in the Cloud

Figure 2 depicts the architecture of the ported application. An user performs all
the required commands in an interactive way directly over a frontend instance.
This frontend VM instance manages the operations required to create the num-
ber of VM instances required, and that are available for the service. Each one
of those instances has a working copy of BRAMS with all the necessary config-
uration to respond to orders generated by the frontend and with access to the
distributed filesystem. The processing instances are created on-demand when a
new job is received, after finishing processing, they are deleted. Another app-
roach with the processing instances was to create the instances and leave them
stopped while there is nothing else to process, and starting again when a new
job arrives, basically an allocation-deallocation process.

54 E.D. Carreño et al.

VM

VM

VM

VM

FhGFS
Distributed
Filesystem
Storage

FRONT
END

VM

VM

VM

Processing
Instances

Microsoft Azure Infrastructure

VM

Fig. 2. Overview of BRAMS system architecture in Microsoft Azure.

Data Sources. The execution of BRAMS requires the download of input data
to create the initial conditions and satellite data pre-processed by the CPTEC
using their global and regional model. The download site is an FTP server with
input data of fires, chemistry, soil moisture, sea surface temperature and oth-
ers. The data is downloaded and processed in the first stage of the application
workflow.

This initial step must be taken into account before running any simulation. In
a cloud service, the cost of data transfer and data storage is billed in a different
way. Microsoft Azure does not charge for input transfer, but charges for the
storage. We decided to keep this input data to use it in future experiments
preventing unnecessary data transfer. The input data transfer is not charged
but requires an instance to perform this procedure in a scheduled way based on
the publication of new data. The service VM frontend was assigned to this task
because it is an instance running continuously. This instance will be managing
the complete workflow of the simulations.

This input data must be converted to the format used by BRAMS. The first
step in a simulation is to check that files needed have been downloaded and
converted. The frontend also performs the converting step after the download of
input data has finished.

Execution Model. In this subsection, the execution model of BRAMS in Azure
is described in a timeline fashion. Upon receiving an order to start a new execu-
tion of BRAMS, the frontend begins a series of steps as presented on Fig. 3. The
first step is to start the resource allocation of the BRAMS processing nodes. This
step performs a check on the distributed storage system and in parallel starts or
creates the computing intensive instances (based on the type of experiment).

Porting a Numerical Atmospheric Model to a Cloud Service 55

Run MAKESFC step

Run VFILE step

Run INITIAL step

Run postprocessing

Send email/notification
to user

Starting/creating
compute intensive VMs

Receive new processing task

Check if first node is
available for serial steps

(Barrier) Check that compute intensive VMs are
available to start parallel processing step

Stopping/deleting
compute intensive VMs

Waiting/starting new processing task

Start resource allocation
and checking availability
of communication with
distributed storage.

Fig. 3. BRAMS workflow in Microsoft Azure.

One BRAMS execution consists of three main steps to generate forecasts.
The first one is called MAKESFC. In this step the global data files of soil type,
sea surface temperature and topography are converted to files that cover only
the area that is going to be forecasted. This step is sequential, because of this
only one process performs this step in the workflow of the application; usually
the first compute instance. The second step, MAKEVFILE, generates files with
the initial and boundary conditions of each grid in the area to be analyzed for
the integration(forecasting) time. This step is also sequential.

At this point, the workflow stops to check if the creation of the compute
nodes has been successful and has ended. If the conditions allow it, the workflow
continues with the third step that is the actual simulation and forecast. This
step is called INITIAL, and it uses the number of processors available based on
the number of compute instances. This number of VMs is passed to the MPI
call that starts the BRAMS executable.

After the forecasting has finished, a post-processing step should be performed
on the output data to visualize the forecasts results. This step is also sequential
and is performed by the frontend. In parallel to this step, the frontend sends a
stop or delete command (depending on the experiment) to the compute nodes
to free resources and stop being billed for their usage.

56 E.D. Carreño et al.

At the end of the post-processing step, a user notification is sent to their
machine if it is still logged on and to an email provided at the beginning of the
simulation. Finally, the frontend checks that all the compute VMs are in the
expected stopped or delete state and waits for the next forecast execution.

5 Experimental Methodology and Environment

To compare the performance of BRAMS in a cloud environment, we executed a
series of experiments in a local cluster and compared it with the version running
on the Azure platform. The tests were performed scaling the number of nodes
available. The experiment consisted in perform the same simulation five times
using 8 more CPU cores at every iteration up to 64 CPU cores. With this test, we
intended to compare the performance of the Azure instances versus real hardware
in a local cluster. The test allowed to check the scalability of BRAMS in those
two environments and help to identify different issues.

HPC applications require low latency values, in the following experiment
we collected information on this topic using 8 compute nodes and getting their
latencies and the number of hops between them. The experiment consisted of two
scenarios with two types of network analysis. The first one created 8 BRAMS
instances and analyzed the hops between each node and from the frontend to the
8 instances, in this case, the frontend was a VM already instantiated. After the
check, the VMs were deleted and created again. The same process was repeated
five times for all the 8 VMs. In the second scenario, the VMs were not deleted
but stopped. The Azure VM managing mechanism could reallocate in different
physical machines the instances that are stopped when started again. We wanted
to analyze the latencies in those cases too.

In a final experiment, we analyzed the time spent in usual deployment opera-
tions of a cloud service, namely start, stop, delete and create instances. The time
spent in this operations affect the costs of running a cluster service on-demand
because the machines are deallocated at the end of each session. We notice
that those kind of operations in Azure blocked the subscription from performing
another task. It seems like those operations are performed in a serial fashion.
The time it takes to perform these operations affect the expected time of the
experiments. We wanted to know who much time was spent on each operation.

Table 1. Hardware details of the machine used for the performance experiments.

Local cluster Cloud

Machine type Rack Server Azure VM Instance Standard A4

Processor Intel Xeon E5310@1.60 GHZ Intel Xeon E5-2660@2.20 GHz

Memory 8 GB 14 GB

HDD 250 GB + 250 GB 29 GB + 281 GB

Distributed storage FhGFS FhGFS

Networking Gigabit Gigabit

Porting a Numerical Atmospheric Model to a Cloud Service 57

5.1 Machines

The environments and characteristics of each machine used in our experiments
on the cloud cluster and the local cluster are described in this section.

(1) Microsoft Azure IaaS cloud: Azure offers multiple options regarding IaaS.
To minimize communications overhead in the HPC application we use the larger
Linux instance sizes, available for our Azure subscription. We use the Extra-
large compute instance. This instance (A4)1 consists of 8 CPU cores running
at 2.20 GHz and with 14 GB of memory. The advertised bandwidth available in
the network interconnection for this instance size is 800 Mbps. The storage was
provided by 8 A3 instances each one with 1TB disk using the Fraunhofer Parallel
File System, FhGFS2.

(2) Real Machines: Each machine consists of two Intel Xeon E5310 Processors,
each one with four cores running at 1.60 GHz and 8 GB, Interconnected by a
Gigabit switch. The storage was provided by four computer nodes of the same
characteristics but not involved in processing. Each one those storage nodes with
500 GB using the Fraunhofer Parallel File System, FhGFS.

A summary of the hardware details of the machines used and characteristics
are depicted in Table 1.

6 Evaluation Results

This section presents the results of our experiments. First, we show the and
analyze the results of the performance experiments. The experiment consisted
of executing BRAMS to perform a forecast of 72 h using a grid resolution of
50 km covering a square perimeter of 6000 km. In the second part, we present
our findings regarding the network latencies. Finally we analyze the overhead
created by the cloud operations, creating instances, destroying them or starting
and stopping their execution.

6.1 Performance

Performance results of BRAMS execution are shown in Fig. 4. The experiment
started with one 8 CPU cores.Was progressively growing by adding in each step
a VM instance with 8 CPU cores in the case of Azure.Adding one more node
at each step in the local cluster, going up to 64 CPU cores. Figure 4 show the
average execution time of 5 runs of the INITIAL step in the forecast simulation
for each number of nodes and instances.

With 8 processes, it took 6828,54 s for the local cluster and 6553, 84 for the
Azure instance to finish the forecast, almost 300 s difference. In the first three
tests, the Local cluster took longer to finish the forecast. The Azure instances

1 http://msdn.microsoft.com/en-us/library/azure/dn197896.aspx.
2 http://fhgfs.com.

http://msdn.microsoft.com/en-us/library/azure/dn197896.aspx
http://fhgfs.com

58 E.D. Carreño et al.

8 16 24 32 40 48 56 64
0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

Processes

E
x
ec

u
ti

o
n

ti
m

e
[s

]

Local Cluster Azure

Fig. 4. Performance depicts execution time of a 72 h integration forecast running on the
local cluster and on the cloud instances, horizontal axis shows the number of processes.

finished first by a small margin in these three cases, 4 %, 2 %, and 1 % respec-
tively. The frequency difference between the machines is noticeable, being 37,
5 % higher in the advertised value for the A4 Azure instance, but this fact did
not reflect any advantage for the Azure instance.

In the following five tests, the Azure cluster was slower by 4 %, 8 %, 8 %, 11 %
and 11 %. A trend in performance loss.

It is important to remark that BRAMS is a CPU bound application with a
high amount of communication between processes. For this reason, we expected
to encounter a performance degradation due to virtualization. We found that,
in this case, the amount of degradation was higher than expected.

The variability of this experiments was small, around 2,92 s on average on
Azure, a 0,16 percent, and 1,43 s on the local cluster, 0,05 percent. These results
and their consistency shows that BRAMS behavior was consistent between
experiments and that is possible to scale up to a certain point using the Azure
infrastructure even with the penalty imposed by the virtualization overhead.

6.2 Network Latency

Regarding network latencies, we obtain an average of 70µs with a 24 % stan-
dard deviation. The results of this experiment are shown in Fig. 5. Reallocation
of nodes generated higher latencies than creating new instances. The latencies
between the nodes were in most cases lower than with the frontend. The number
of hops between nodes was consistent, four hops in 99 % of the cases.

Contrasting with the network latency obtained in Azure, the local cluster
had an average latency of 12µs. For HPC applications like BRAMS, the latency

Porting a Numerical Atmospheric Model to a Cloud Service 59

Reallocated
from frontend

Reallocated
between nodes

New from
frontend

New between
nodes

0
10
20
30
40
50
60
70
80
90

100

L
a
te

n
cy

[
µs

]

Fig. 5. Network Latency between the nodes and the frontend.

in Azure network impacts the scalability and performance. This latency creates
a major issue for the deployment of larger BRAMS simulations in Azure. The
latencies in this tightly coupled application limit the possibility of run bigger
experiments due to the losses in communications compared with the gains in
raw processing power.

6.3 Cloud Operations

The time spent in cloud managing operations is shown on Fig. 6. The time spent
in node creation is more than twice the time of the other three operations. This
behavior could be due to a situation generated by the command line tools of
Azure. In the command line is not possible to instantiate a virtual machine and
add it to a running service without assigning an ssh endpoint, even if the instance

Creating
Nodes

Deleting
Nodes

Starting
Deallocated

Nodes

Stopping
Deallocated

0

25

50

75

100

125

150

175

200

T
im

e
[s

]

Fig. 6. Time spent on the deployment operations in the cloud service

60 E.D. Carreño et al.

is not going to use it this endpoint. Regarding security concerns, we proceed to
delete the endpoint immediately. This operation halts the creation of new nodes
until it finishes.

We found a high variability in the time spent by these operations, up to 16 %
in the case of stopping nodes. The fact that the Azure subscription is locked
each time the services is performing an operation could prevent the deployment
of larger experiments that instantiate a larger amount of machines. The time
it would take to start an hypothetic large number of virtual machines versus
would be higher compared with executing with less virtual machines, is a possible
scenario caused by the described behavior.

7 Conclusions

In this paper we present our findings in running an HPC application in a cloud
computing infrastructure using IaaS. We compared the performance between
execution in a cluster with real machines versus a cluster in the cloud. Experi-
ments show that it is possible to run HPC applications in Azure reducing most of
the configuration work. The performance show that azure offers possibilities to
move applications from legacy code and that it is possible to replicate a cluster
while reducing the complexity to run HPC applications in Microsoft Azure.

The overhead created by latencies and the time spent in operations not
related to actual usage could impose an adoption barrier to further analyze
HPC applications in azure. This overhead creates a non processing state in which
the VMs already started are waiting to start processing but waiting noticeable
amounts of time before perform useful computation. In this waiting state all
the idle VMs generate costs that are expected to be reduce by the usage of
a cloud infrastructure. Variability between experiments was low in Azure, this
characteristic is important for HPC.

The performance gap in the two environments presented, based in the adver-
tised characteristics of the virtual instances should be perceivable. By perform-
ing an experiment comparing a 2006 CPU like the one inside the local machines
against a 2012 CPU in an Azure instance a remarkable performance gap was
expected. Obtaining similar performance between those CPUs shows clearly that
there is space to improve the processing performance of the cloud service pro-
vided by Microsoft. Even with some of the inconveniences found, cloud comput-
ing is a promising alternative getting better as time passes. As long as providers
upgrade their hardware driven by the competitive market and keep lowering the
prices of their services.

For the future, we intend to perform a full analysis of the cost of running a
simulation of BRAMS. We also will capture more metrics to cover all the aspects
of the execution and try to improve the performance of this HPC application in
a cloud environment.

Acknowledgments. The authors would like to thank the CPTEC by their help. This
research has been partially supported by the CNPq, CAPES, Microsoft and the HPC4E
project.

Porting a Numerical Atmospheric Model to a Cloud Service 61

References

1. Truong, H.L., Dustdar, S.: Cloud computing for small research groups in compu-
tational science and engineering: current status and outlook. Computing 91(1),
75–91 (2011)

2. Yang, X., Wallom, D., Waddington, S., Wang, J., Shaon, A., Matthews, B.,
Wilson, M., Guo, Y., Guo, L., Blower, J.D., Vasilakos, A.V., Liu, K.,
Kershaw, P.: Cloud computing in e-science: research challenges andopportunities.
J. Supercomput. 70(1), 408–464 (2014)

3. Benedict, S.: Performance issues and performance analysis tools for hpc cloud
applications: a survey. Computing 95(2), 89–108 (2013)

4. Roloff, E., Diener, M., Carissimi, A., Navaux, P.: High performance computing
in the cloud: deployment, performance and cost efficiency. In: IEEE 4th Inter-
national Conference on Cloud Computing Technology and Science (CloudCom),
pp. 371–378, December 2012

5. Langmead, B., Schatz, M., Lin, J., Pop, M., Salzberg, S.: Searching for SNPs with
cloud computing. Genome Biol. 10(11) (2009)

6. Evangelinos, C., Hill, C.N.: Cloud computing for parallel scientific HPC applica-
tions: feasibility of running coupled atmosphere-ocean climate models on Amazon’s
EC2. In: The 1st Workshop on Cloud Computing and its Applications (CCA)
(2008)

7. Johnston, S., Cox, S., Takeda, K.: Scientific computation and data management
using microsoft windows azure. In: Fiore, S., Aloisio, G. (eds.) Grid and Cloud
Database Management, pp. 169–192. Springer, Heidelberg (2011)

8. Lu, W., Jackson, J., Barga, R.: AzureBlast: a case study of developing science
applications on the cloud. In: Proceedings of the 19th ACM International Sym-
posium on High Performance Distributed Computing, HPDC 2010, pp. 413–420.
ACM, New York (2010)

9. Simalango, M., Oh, S.: Feasibility study and experience on using cloud infrastruc-
ture and platform for scientific computing. In: Furht, B., Escalante, A. (eds.) Hand-
book of Cloud Computing, pp. 535–551. Springer, New York (2010)

10. CPTEC-INPE: Brazilian Regional Atmospheric Modelling System (BRAMS).
http://www.cptec.inpe.br/brams. Accessed 10 August 2014

11. Pielke, R., Cotton, W., Walko, R., Tremback, C., Lyons, W., Grasso, L., Nicholls,
M., Moran, M., Wesley, D., Lee, T., Copeland, J.: A comprehensive meteorological
modeling system - RAMS. Meteorol. Atmos. Phys. 49(1–4), 69–91 (1992)

http://www.cptec.inpe.br/brams

Determining the Real Capacity
of a Desktop Cloud

Carlos E. Gómez1,2(&), César O. Díaz1, César A. Forero1,
Eduardo Rosales1, and Harold Castro1

1 Systems and Computing Engineering Department, School of Engineering,
Universidad de Los Andes, Bogotá, Colombia
{ce.gomez10,co.diaz,ca.forero10,

ee.rosales24,hcastro}@uniandes.edu.co
2 Universidad del Quindío, Armenia, Colombia

Abstract. Computer laboratories at Universities are underutilized most of the
time [1]. Having an averaged measure of its computing resources usage would
allow researchers to harvest the capacity available by deploying opportunistic
infrastructures, that is, infrastructures mostly supported by idle computing
resources which run in parallel to tasks performed by the resource owner
(end-user). In this paper we measure such usage in terms of CPU and RAM. The
metrics were obtained by using the SIGAR library on 70 desktops belonging to
two independent laboratories during the three busiest weeks in the semester. We
found that the averaged usage of CPU is less than 5 % while RAM is around
25 %. The results show that in terms of the amount of floating point operations
per second (FLOPS) there is a capacity of 24 GFLOPS that can be effectively
harvest by deploying opportunistic infrastructures to support e-Science without
affecting the performance perceived by end-users and avoiding underutilization
and the acquisition of new hardware.

1 Introduction

Computer laboratories at universities usually have a computing capacity superior than
the one demanded by end-users to perform their daily activities then leading to its
underutilization [1]. Such idle capacity in each desktop could be harvest by deploying
opportunistic infrastructures. Those are infrastructures mostly supported by idle com-
puting resources and are based on agents and/or virtual machines that run in parallel to
tasks performed by the end-user. In our university campus we use UnaCloud [2], a
desktop cloud able to opportunistically execute clusters of customized and isolated
virtual machines that harvest idle computing resources to support e-Science projects.
Off-the-shelf, distributed, non-dedicated, and heterogeneous computing resources
available on desktops from computer laboratories mostly support this execution. In
order to determine the real capacity available in such laboratories it is necessary to
measure its usage metrics.

A previous study performed in 2011 [3] had similar objectives. However, such
desktops have been fully replaced and, as expected, the new devices are equipped with
modern technologies. The new features introduced in such recent hardware has

© Springer International Publishing Switzerland 2015
C. Osthoff et al. (Eds.): CARLA 2015, CCIS 565, pp. 62–72, 2015.
DOI: 10.1007/978-3-319-26928-3_5

motivated some concerns, particularly, the ones present in fourth generation processors
because they have an impact on the CPU usage [4], along with RAM memory access.
New hardware includes processors, main boards, RAM memory, and network interface
cards, among others. However, the most of the applications that use UnaCloud are CPU –

and/or RAM– intensive and thus it is the sole scope of this research.
The data collected to conduct this research was gathered through and extension of

UnaCloud which main function was to periodically monitor usage variables on the
physical machines where it executes. However, this monitoring component can be also
executed independently in order to measure usage of any desktop or computer labora-
tory. For this purpose, the SIGAR (System Information Gatherer And Reporter) API [5],
a specialized software tool to build monitoring systems was used. We collected infor-
mation about the usage of two computer laboratories with 70 computers. Data collection
was performed during the three busiest weeks in the semester in order to have a rep-
resentative sample of its utilization by students. The results show that the average
utilization of each computer remains in values lower than 5 % in CPU and around 25 %
of their RAM when students are performing their daily activities. In the end, we
determined the amount of FLOPS could run each computer by LinpackJava [6].

As a result of this research, we can know the actual possibilities of using UnaCloud
without affecting the performance perceived by users and the amount of FLOPS as a
metric established that specifies the capacity of each computer laboratory to support the
implementation of some academic or research project based on desktop cloud.

The remainder of this paper is organized as follows. Section 2 presents a back-
ground about the main subject of the paper. Section 3 covers the related work. Sec-
tion 4 shows the methodology used to conduct this research. Experimental setup and
results are addressed in Sects. 5 and 6. The paper finalizes with conclusions future work
in Sect. 7. In the end, we determined the amount of FLOPS could run each computer by
LinpackJava [6].

2 Background

In this section, relevant concepts are introduced to contextualize this research work,
namely desktop grid/cloud, UnaCloud, performance, cloud monitoring, metrics, the
SIGAR API and the modern processors technologies.

2.1 Desktop Grid/Cloud

Desktop grids are a well-known strategy to provide large-scale computing infrastructures
by taking advantage of idle computing resources mainly available on desktops. There are
two recognized approaches to build desktop grids. First, the approach based on
stand-alone agents directly installed as applications on top of the operating system.
Second, the approach based on virtualization technologies. In the first approach, the
agents identify idle computing resources in order to harvest them by executing jobs.
BOINC [7], SETI@home [8], SZTAKI [9] and OurGrid [10], among others are exam-
ples of such agent-based desktop grids. In the second approach, through type II

Determining the Real Capacity of a Desktop Cloud 63

hypervisors it is used virtualization to deploy on-demand instances of virtual machines
on off-the-shelf desktops. That is, hypervisors are able to provide virtualization features
on the top of a host operating system. Some virtualization-based desktop grids are
LHC@Home [11], CernVM [12], GBAC [13], and UnaCloud [2]. However, UnaCloud
is conceptually a desktop cloud. That is, a Cloud Computing Infrastructure as a Service
(IaaS) implementation, which provides basic computing resources (processing, storage,
and networking) to run arbitrary software, including operating systems and applications.
Such implementation provides customized features that meet complex computing
requirements similarly to a Cloud IaaS supported by dedicated and robust infrastructures.
Nevertheless, UnaCloud is mostly supported by off-the-shelf, distributed, non-dedicated,
and heterogeneous computing resources (such as desktops) available in computer lab-
oratories that are part of different administrative domains in a University Campus.

2.2 UnaCloud

UnaCloud is an opportunistic model aimed to provide computing resources taking
advantage of idle computing resources available in a university campus [2]. UnaCloud is
formed by two components: the server and the agent. The server is a Web application,
which receives cloud-users requests. Consequently, the UnaCloud server provides
services such as virtual machine image management, provision, configuration, and the
deployment of virtual machine clusters, monitoring and general physical infrastructure
management according to cloud-users profiles. UnaCloud agent is a lightweight, highly
portable and easy to install program that is executed on each desktop to use idle com-
puting resources in a non-intrusive manner. The agent responsibilities include initiating,
restarting, cloning and stopping virtual machines.

2.3 Performance

The definition of performance depends on the metric used to measure it. For example,
response time (the time required to complete a task), and throughput (the number of
tasks finished per unit of time) are two common performance metrics [14].

On the other hand, it is called FLOPS (FLoating-point Operation per Second) a
sequence of mathematical operations that involves the use of floating point numbers
achieved by cores within processors in a second. A core can perform a certain number
of FLOPS per clock cycle, which is measured in hertz (Hz). A processor can do 4
FLOPS per Hz. Given that the internal clock speed of the cores and its amount are
features of the processor, it is possible to calculate a theoretical performance of a
processor [15]. For example, suppose that a 3.4-GHz processor has 8 cores. Then, it
can achieve 4 × 3.4 × 109 FLOPS equals to 13.6 GFLOPS per core. To exemplify the
computing power of a desktop grid, SETI@home published in [16], has an average
682.820 TeraFLOPS.

64 C.E. Gómez et al.

2.4 Cloud Monitoring

Cloud monitoring is an essential function of the cloud management system. Providers
need to keep everything related with IT infrastructure under control in order to make
decisions about the cloud services. This includes datacenter and performance man-
agement, troubleshooting, billing, and security, etc. [17]. According to [18], there are
two abstraction levels related with cloud monitoring: high-level and low-level.
High-level monitoring refers to the virtual platform status. Information about high-level
is gathered by the provider, consumer or external applications. This monitoring infor-
mation is more relevant for consumers than for providers. Low-level monitoring refers
to physical platform status, that is datacenter, hardware, operating system, network and
security information. Given that this information is about the provider facilities, it is not
disclosed to the general public. Cloud monitoring allows the cloud management
department to measure the infrastructure and applications behavior in terms of several
metrics, which depend of the abstraction level, and each provider. As a result, other
aspects can be managed, such as Service Level Agreements. On the other hand, cus-
tomers also need information about their applications.

2.5 Metrics

A metric is the fundamental concept in any monitoring system. In the cloud computing
context for example, a metric is specific information that the cloud manager requires to
collect in order to obtain statistics about the general or particular behavior of a cloud
service. Most metrics are measured in function of time and are collected at regular
intervals. The most common metrics are CPU usage, RAM usage, the information sent
and received and latency. CPU and RAM usage are used in this study and are defined
as follows.

CPU Used. It is the percentage of time spent processing the instructions needed to
complete a task. This metric is a very common method to evaluate the performance of a
physical machine [19]. 100 % – CPU Usage is the CPU Idle, in other words, the
percentage of time the processor is not used.

RAM Used. It is the percentage of RAM associated with a running process.

2.6 SIGAR API

There are several monitoring platforms and tools, commercial and open source [17].
Some examples of commercial platforms or tools are CloudWatch, AzureWatch,
CloudStatus, and NewRelic. Some examples of open source platforms are Nagios,
CloudHarmony, and SIGAR, the API used to support this study.

SIGAR (System Information Gatherer And Reporter) provides an interface for
gathering system information such asmemory (system-wide and per-process), file system
and network. It also provides an API to obtain a lot of metrics. It can be used in several
operating systems and several programming languages although it is implemented in C.
SIGAR is a free software project licensed under the Apache License, Version 2.0 [5].

Determining the Real Capacity of a Desktop Cloud 65

2.7 Modern Processor Technologies

Fourth generation processors technologies include Turbo Boost, Hyper-Threading, and
SpeedStep. Turbo Boost allows the processor to increase the base operating frequency
at runtime reaching higher performance dynamically based on parameters such as the
core temperature, the type of workload, and the number of active cores [20]. With
Hyper-Threading, processors can run more than one thread in parallel. As a result, it is
more efficient to run multithread applications by activating this feature [21]. The
SpeedStep technology enables the processor to reach greater performance metrics
increasing its clock speed. Thus, the average temperature and the average energy
consumption are reduced [22].

3 Related Work

Several studies have been conducted in order to analyze the availability of one or more
computers to determine whether it is possible to use their idle resources to execute a
desktop grid/cloud on them.

Kondo et al. [23] presented a paper about the usage of application-level traces of
four real desktop grids for simulation and modeling. Moreover, authors describe
statistics that reflect the heterogeneity and volatility of desktop grid resources. Finally,
they use a metric to quantify the utility of the desktop grid for task-parallel applications.

Mutka [24] in 1992, Yaik et al. [25] in 2006, and Shafazand et al. [26] and
Gan Chee [27] in 2014 predicted the opportunity to take advantage of idleness in
computational resources using different techniques. In [24], the paper highlights
workstation usage patterns in cluster management and analyzes them in order to
identify opportunities for exploiting idle capacity. The study is based on end-user
activity traces in a university environment with the aim of making good predictions in
order to schedule time-limited jobs. Meanwhile, the authors of [25] try to determine
opportunities to harness the idle resources of a computer using a suffix tree to find out
patterns in the CPU usage. On the other hand [26] proposes a recommendation model
used by the allocation scheduler to forecast the availability of a computer in a desktop
grid. Finally, in [27] authors devise a framework to predict which workstations can be
used as part of an ad hoc computer cluster and when this can be done. The authors say
that the success of an ad hoc computer cluster depends on the usage characteristics of
the computers because of the variable workstations turn-on duration.

Dominguez et al. in 2005 [1] quantified the usage of main resources (CPU, main
memory, disk space, and network bandwidth) on machines from classroom laboratories
runningWindows 2000. These authors measured several indicators about main resources
and usage habits, especially for interactive user sessions at the computer causing high
rates of idleness in computational resources. In the end, the results obtained suggest that
desktop grids can be executed on those infrastructures.

Oviedo in 2011 [2] presented a Master thesis about bioinformatics in which
UnaCloud is used as High Performance Computing infrastructure. In this work, the
author includes a first study to determine the average behavior of physical machines
when UnaCloud was executed and to identify the physical machine with the greatest

66 C.E. Gómez et al.

chance of being restarted. The study included a metric of free CPU percentage and the
unavailability times caused by restarting and shutting down the computers.

Regarding to the Oviedo’s work, we include RAM as an additional measure, and
we also applied the Linpack benchmark for getting the total capacity of the laboratories.
We also developed a monitoring system that not only helped us to obtain the infor-
mation that was used in this study, but also it can be used to monitor the execution of
UnaCloud permanently. Thus, we will obtain permanent statistics that can be used to
make decisions about UnaCloud use.

4 Methodology

The main goal of this research is to obtain updated and accurate information about the
regular activities of students in the computer laboratories where UnaCloud is executed.
This will allow us to determine metrics about the underutilized resources of computers
in terms of CPU and RAM. In particular, we are interested in determining not only the
idle computational power that can be harvested without disturbing the end-user of a
physical machine, but also the aggregate capacity, measured in FLOPS, of a campus
based on computer laboratories to support projects of the academic and scientific
community.

4.1 Monitoring Component Developed

To collect the data concerning the aforementioned variables, we implemented a
monitoring component that is part of the UnaCloud Agent. This component is running
constantly and is responsible for collecting data at a frequency that can be specified.
Although this module is part of UnaCloud, it can be run independently.

The monitoring component was developed using Java 7 and includes the services
provided by SIGAR API version 1.6.4 [5]. This component gains access to the main
operating system variables and stores them in a text file on each computer. The agent
periodically sends the records to a database. Given the volume of monitoring data that
is generated and the lack of relationship among them, a non-relational database was
selected.

The monitoring tool includes a mechanism for data recovery in case of failure,
which identifies whether a problem with sending the last data file has occurred. There is
also a strategy based on random times to avoid concurrent access by the agents to the
database, which might lead to bottlenecks.

This monitoring system can be managed from the UnaCloud management console.
This console enables or disables the monitoring for a particular machine or a complete
laboratory. In addition, it is possible to configure a report generator indicating which
machines or laboratories and the desired time range to be included in the report. The
system currently generates reports in comma separated values (CSV) format. Data is
then imported into Microsoft Excel for graphical statistics analysis.

Determining the Real Capacity of a Desktop Cloud 67

4.2 Hardware Testbed

The two monitored computer laboratories for this study (Waira 1 and Waira 2) are used
by the Systems and Computing Engineering Department at Universidad de Los Andes
to support courses of different subjects in undergraduate and postgraduate levels.
Besides, these computers are also used by students to develop their academic activities
when no classes are scheduled. The laboratories are configured with Windows 7
Enterprise 64-bits (Service Pack 1) as unique host operating system. Each laboratory
has 35 computers with Intel Core(TM) i7-4770 CPU @ 3.40 GHz x8 processor, 16 GB
of RAM, and 500 GB hard disk. A Gigabit Ethernet LAN interconnects all computers.

4.3 Data Gathered

Similar to what Domingues [1] presented, we obtained both static and dynamic infor-
mation. Static information includes processor specifications (name, type, and frequency),
RAM and hard disk size and operating system (name and version), among others.
Dynamic information is related with the computer usage during the day. We obtained
information on CPU and RAM usage.

4.4 Data Analysis

From the information gathered by the monitoring component developed, the daily
average CPU utilization and the average daily use of RAM were calculated. In addition,
we used LinpackJava [25], a well-known benchmark, to determine the amount of
FLOPS could run each computer. From this indicator, the total capacity of an entire
laboratory is estimated. Furthermore, the rates of utilization of CPU and RAM were
analyzed to identify changes in end-user behavior at different times of the day.

4.5 Limitations

One difficulty we experienced was the loss of monitoring information because carrying
out administrative tasks such as installing software or updating the operating system by
authorized personnel. Students can restart the computers as well causing the same
effect. Moreover, although sporadic, it may occur that an end-user leaves the session
open, meaning that the monitoring information indicates that the end-user is utilizing
the machine but with an occupancy level of minimum resources, which affect the
results.

5 Experimental Setup

Based on the study conducted in 2011 [3], it can be assumed that the computer
laboratories under study are underutilized most of the time. However, it is needed to
have updated and reliable metrics to determine the real capacity for the execution of the

68 C.E. Gómez et al.

current desktop cloud. To reach that, it is essential to identify the amount of
underutilized resources of computers in terms of CPU and RAM. Furthermore, it is
needed to determine the aggregate capacity in FLOPS. Therefore, we pose two sce-
narios, described in Fig. 1, for the collection of data from 7:00 am to 10:00 pm, time in
which the laboratories serve students.

Figure 1(A) represents the scenario #1. In this case, we took we took into account
70 computers in order to measure the average laboratory usage. This is the reference
point for calculating the total capacity of the laboratory measured in FLOPS. For
scenario #2, we only considered the computers where a student was seated in front of
them, as represents it the Fig. 1(B). This scenario allows us to determine what users
consume taking into account the two metrics analyzed in this study.

6 Experimental Results

Statistical charts show graphical results of an average day obtained from experiments
because the results are very similar. In the end, we present the capacity of each
laboratory measured in FLOPS. A point on a graph represents the average of all
measurements taken every minute from 7:00 am until 10:00 pm.

The figures presented in this section summarize the results for the aforementioned
tests scenarios. All figures use the CPU or RAM percentage in the Y-axis, and the time
(hours of the day) in the X-axis. Figure 2 shows the CPU consumption, while Fig. 3
shows RAM consumption on Waira Lab.

As shown in Fig. 2(A), most values in scenario 1 are less than 3 %. This indicates
that the lab has low CPU utilization level. Figure 2(B) shows the scenario #2 behavior
where the usage is not significant. In this scenario, gaps occurred when there is no user.
Gathered data indicate that the use of laboratories is not significant, leading to a great
opportunity for implementing a desktop cloud without disturbing the activities of
students.

Figure 3(A and B) has similar behavior in the four scenarios of our tests. Waira
Labs has RAM consumption between 19 % and 31 %, which corresponds to avail-
ability between 69 % and 81 %. These data indicate that the lab has a low level of use
in RAM.

Fig. 1. Test scenarios.

Determining the Real Capacity of a Desktop Cloud 69

On the other hand, after applying the LinpackJava benchmark [6]. We run the
benchmarking on 70 computers of Waira Labs. The result was 343,3 MFLOPS each
one. Therefore, the total capacity is the product of multiplying 343,3 MFLOPS by 70
resulting 24 GFLOPS. This is the aggregate capacity labs.

As expected, the total available capacity of the laboratory is a measure that changes
during the day. This measure is calculated based on the CPU usage of the Waira
laboratories. The results shown in Fig. 4 indicate that most of the values are between 23
and 24 GLOFPS.

A B

Fig. 3. Waira Lab RAM Consumption.

Fig. 4. Total capacity of Waira Lab.

A B

Fig. 2. Scenario #1. Waira Lab CPU Consumption.

70 C.E. Gómez et al.

7 Conclusion and Future Work

Although it is known that the computer laboratories at universities are underutilized
most of the time, we wanted to have a current measure of that utilization level.
UnaCloud, our desktop cloud was developed to take advantage of idle computing
power of these kinds of labs. However, the lack of an updated report on the amount of
the available resources in labs prevents to improve indicators of use of UnaCloud.
Therefore, we measured the CPU and RAM usage of the Systems and Computer
Engineering and Department at Universidad de Los Andes. The tests were performed
on 70 desktops belonging to two independent laboratories during the three busiest
weeks in the semester. Four scenarios were considered, and the results show that the
CPU usage is lower than 3 % most of the time. The RAM usage presented similar
results in all scenarios. The average RAM usage is between 19 and 31 %. UnaCloud
has exploited the idle capacity of computing resources. However, the results of the tests
indicate that there is still an important capacity to grow for the benefit of users
UnaCloud, without affecting the performance of the computers used by users to per-
form their routine activities at the university. On the other hand, the total capacity of the
Waira computer labs at our university is significant. Therefore, having a concrete
metric in FLOPS allows us to identify the dimensions of the research projects that we
can support taking into account our facilities. This situation encourages us to do new
tests in order to obtain more conclusive results.

New opportunities have for the future with this investigation. The monitoring
component developed can be improved; both in the amount of information obtained
from the machines, and automated reporting. It is also necessary to develop a system to
measure the impact that UnaCloud has on the user. This would find a way to better use
the idle resources in laboratories where UnaCloud running so that it does not interfere
with the activities of the students, the main users of the laboratories.

References

1. Domingues, P., Marques, P., Silva, L.: Resource usage of Windows computer laboratories.
In: International Conference Workshops on Parallel Processing, ICPP 2005 Workshops,
pp. 469–476 (2005)

2. Rosales, E., Castro, H., Villamizar, M.: UnaCloud: opportunistic cloud computing
infrastructure as a service. In: CLOUD COMPUTING 2011: the Second International
Conference on Cloud Computing, GRIDs, and Virtualization, Rome, Italy (2011)

3. Oviedo, A.: UnaCloud MSA: Plataforma basada en UnaCloud para la generación y análisis
de alineamientos múltiples de secuencias. Magister en Ingeneiría, Systems and Computing
Engineering, Universidad de Los Andes (2011)

4. Sotelo, G., Rosales, E., Castro, H.: Implications of CPU dynamic performance and
energy-efficient technologies on the intrusiveness generated by desktop grids based on
virtualization. In: Hernández, G., Barrios Hernández, C.J., Díaz, G., García Garino, C.,
Nesmachnow, S., Pérez-Acle, T., Storti, M., Vázquez, M. (eds.) CARLA 2014. CCIS, vol.
485, pp. 98–112. Springer, Heidelberg (2014)

Determining the Real Capacity of a Desktop Cloud 71

5. Morgan, R.: SIGAR -System Information Gatherer And Reporter (2010). https://support.
hyperic.com/display/SIGAR/Home

6. Jack, D., Reed, W., Paul, M.: Linpack Benchmark – Java Version (2015). http://www.netlib.
org/benchmark/linpackjava/

7. Anderson, D.P.: BOINC: a system for public-resource computing and storage. In: Fifth
IEEE/ACM International Workshop on Grid Computing, Proceedings, pp. 4–10 (2004)

8. U. o. California. SETI@home (2015). http://setiathome.ssl.berkeley.edu/
9. SZTAKI (2015). http://szdg.lpds.sztaki.hu/szdg/
10. OurGrid (2013). http://www.ourgrid.org/
11. LHC@home (2014). http://lhcathome.web.cern.ch
12. CernVM Project (2015). http://cernvm.cern.ch/
13. Marosi, A., Kovács, J., Kacsuk, P.: Towards a volunteer cloud system. Future Gener.

Comput. Syst. 29, 1442–1451 (2013)
14. Patterson, D.A., Hennessy, J.L.: Computer Organization and Design: The

Hardware/Software Interface, 5th edn. Morgan and Kaufmann, Burlington (2014)
15. Fernandez, M.: Nodes, Sockets, Cores and FLOPS, Oh, My. http://en.community.dell.com/

techcenter/high-performance-computing/w/wiki/2329
16. BOINC. Detailed stats SETI@Home (2015). http://boincstats.com/en/stats/0/project/detail
17. Aceto, G., Botta, A., de Donato, W., Pescapè, A.: Cloud monitoring: a survey. Comput.

Netw. 57, 2093–2115 (2013)
18. Aceto, G., Botta, A., de Donato, W., Pescape, A.: Cloud monitoring: definitions, issues and

future directions. In: 2012 IEEE 1st International Conference on Cloud Networking
(CLOUDNET), pp. 63–67 (2012)

19. Ahmadi, M.R., Maleki, D.: Performance evaluation of server virtualization in data center
applications. In: 2010 5th International Symposium on Telecommunications (IST), pp. 638–
644 (2010)

20. Intel Corporation: First the tick, now the tock: Next generation Intel microarchitecture
(Nehalem) (2009)

21. Intel Corporation: Intel Turbo Boost Technology in Intel Core Microarchitecture (Nehalem)
Based Processors

22. Intel Corporation: Enhanced Intel SpeedStep® Technology - How To Document, 10 April
2015

23. Kondo, D., Fedak, G., Cappello, F., Chien, A.A., Casanova, H.: Characterizing resource
availability in enterprise desktop grids. Future Gener. Comput. Syst. 23, 888–903 (2007)

24. Mutka, M.W.: An examination of strategies for estimating capacity to share among private
workstations. In: Presented at the Proceedings of the 1991 ACM SIGSMALL/PC
Symposium on Small Systems, Toronto, Ontario, Canada (1991)

25. Yaik, O.B., Chan Huah, Y., Haron, F.: CPU usage pattern discovery using suffix tree. In:
The 2nd International Conference on Distributed Frameworks for Multimedia Applications,
pp. 1–8 (2006)

26. Shafazand, M., Latip, R., Abdullah, A., Hussin, M.: A model for client recommendation to a
desktop grid server. In: Herawan, T., Deris, M.M., Abawajy, J. (eds.) Proceedings of the
First International Conference on Advanced Data and Information Engineering
(DaEng-2013), vol. 285, pp. 491–498. Springer, Singapore (2014)

27. Gan Chee, T., Ooi Boon, Y., Liew Soung, Y.: Workstations uptime analysis framework to
identify opportunity for forming ad-hoc computer clusters. In: 2014 International
Conference on Computer, Communications, and Control Technology (I4CT), pp. 234–
238 (2014)

72 C.E. Gómez et al.

https://support.hyperic.com/display/SIGAR/Home
https://support.hyperic.com/display/SIGAR/Home
http://www.netlib.org/benchmark/linpackjava/
http://www.netlib.org/benchmark/linpackjava/
http://setiathome.ssl.berkeley.edu/
http://szdg.lpds.sztaki.hu/szdg/
http://www.ourgrid.org/
http://lhcathome.web.cern.ch
http://cernvm.cern.ch/
http://en.community.dell.com/techcenter/high-performance-computing/w/wiki/2329
http://en.community.dell.com/techcenter/high-performance-computing/w/wiki/2329
http://boincstats.com/en/stats/0/project/detail

Improvements to Super-Peer Policy
Communication Mechanisms

Paula Verghelet1 and Esteban Mocskos1,2(B)

1 Laboratorio de Sistemas Complejos, Departamento de Computación,
Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires,

C1428EGA Buenos Aires, Argentina
{pverghelet,emocskos}@dc.uba.ar

2 Centro de Simulación Computacional p/Aplic.
Tecnológicas/CSC-CONICET, Godoy Cruz 2390,

C1425FQD Buenos Aires, Argentina

Abstract. The use of large distributed computing infrastructures has
become a fundamental component in most of scientific and technological
projects. Due to its highly distributed nature, one of the key topics to
be addressed in large distributed systems (like Grids and Federation of
Clouds) is the determination of the availability and state of resources.
Having up-to-date information about resources in the system is extremely
important as this is consumed by the scheduler for selecting the appro-
priate target in each job to be served.

The way in which this information is obtained and distributed is
what is known as Resource Information Distribution Policy. A central-
ized organization presents several drawbacks, for example, a single point
of failure. Notwithstanding, the static hierarchy has become the defacto
implementation of grid information systems.

There is a growing interest in the interaction with the Peer to Peer
(P2P) paradigm, pushing towards scalable solutions. Super Peer Policy
(SP) is a decentralized policy which presents a notable improvement in
terms of response time and expected number of results compared with
decentralization one. While Hierarchical policy is valuable for small and
medium-sized Grids, SP is more effective in very large systems and there-
fore is more scalable.

In this work, we analyze SP focusing on the communication between
super-peers. An improvement to the standard protocol is proposed which
leads to two new SP policies outperforming the standard implementa-
tion: N-SP and A2A-SP. These policies are analyzed in terms of obtained
performance in Exponential and Barabási network topologies, network
consumption and scalability.

1 Introduction

The use of large distributed computing infrastructures has become a fundamen-
tal component in most of scientific and technological projects. Just to show some
examples, we can mention climate simulation [28], analysis of data generated in
c© Springer International Publishing Switzerland 2015
C. Osthoff et al. (Eds.): CARLA 2015, CCIS 565, pp. 73–86, 2015.
DOI: 10.1007/978-3-319-26928-3 6

74 P. Verghelet and E. Mocskos

the experiments of Large Hadron Collider (LHC) [26] and some of the initia-
tives included in the work of Mattmann et al. [18], like NASA’s Planetary Data
System, NCI’s Early Detection Research Network (NCI-EDRN) and Orbiting
Carbon Observatory (OCO), or others Big Data analytics projects mentioned in
the work of Assunção et al. [2].

Due to its highly distributed nature, one of the key topics to be addressed
in large distributed systems (like Grids and Federation of Clouds) is the deter-
mination of the availability and state of resources [6,7,24]. Having up-to-date
information about resources in the system is extremely important as it is used by
the scheduler to select the appropriate target for each job to be served [11,20].

The way in which this information is obtained and distributed is what is
known as Resource Information Distribution Policy. In the Grid architecture
described by Foster et al. [9], the discovery mechanisms are included in the
Resource Layer. In the revision of this architecture by Mattmann et al. [18], the
information about the state of distributed resources is managed by the Collective
Subsystem.

The resources that have to be managed by this kind of systems can be char-
acterized in two main classes [23]:

(i) Static attributes: the type of attributes which show a very slow rate of
change. For example operating system, processor clock frequency, total stor-
age capacity or network bandwidth.

(ii) Dynamic attributes: in this class, we can find the attributes related with
the use of the system which change as the usage evolves, for example free
memory, processor usage, available storage or network usage.

Usually, scheduling a job in a large distributed system involves the coordination
of different type of resources and having up-to-date information to guide the
selection.

A centralized organization approach presents several drawbacks [23], for
example, a single point of failure. The static hierarchy has become the defacto
implementation of grid information systems [8]. However, in medium-to-large
scale environments, the dynamics of the resource information cannot be cap-
tured using a static hierarchy [18,27]. This approach has similar drawbacks to
the centralized one, such as the point of failure and poor scaling for large number
of users/providers [21,22]. Therefore, it results necessary to design new policies
for discovery and propagation of resource information.

There is a growing interest in the interaction with the Peer to Peer (P2P)
paradigm, pushing towards scalable solutions [16,27]. These initiatives are base
on two common facts: (i) very dynamic and heterogeneous environment and (ii)
creation of a virtual working environment by collecting the resources available
from a series of distributed, individual entities [22].

Another scenarios in which the resource information is central to an efficient
system performance are Volunteer and Mobile Cloud Computing. For example,
Ghafarian et al. [10] presents a protocol for resource discovery with QoS restric-
tions in P2P based volunteer computing systems. While Liu et al. [14] introduces
an energy-efficient method of adaptive resource discovery to solve the problem

Improvements to Super-Peer Policy Communication Mechanisms 75

of find how available resources in nearby devices are discovered, it transforms
between centralized and flooding modes to save energy.

Iamnitchi et al. [11,12] proposed a P2P approach for organizing the informa-
tion components in a flat dynamic P2P network. This decentralized approach
envisages that every administrative domain maintains its information services
and makes it available as part of the P2P network. Schedulers may initiate
look-up queries that are forwarded in the P2P network using flooding (a similar
approach to the unstructured P2P network Gnutella [25]).

The most common resource information distribution policies are:

– Random: Every node chooses randomly another node to query information
from. There is no structure at all. Usually this policy is used as baseline
behavior to be compare with.

– Hierarchical: In this kind of policy, a hierarchy is established beforehand
and the resource information is sent using this fixed structure. In this way,
the nodes at the top of the hierarchy exchange information with the ones
below them. This is the standard actually used by Grids.

– Super Peer: Some nodes are defined as super-peers working like servers for
a subset of nodes and as peers in the network of super-peers. In this way,
a two level structure is defined in which the normal nodes are only allowed
to communicate with a single super-peer and the cluster defined by it. Usu-
ally, Random policy is used as the communication policy between the super-
peers [11]. When a super-peer receives a query, it first checks the information
it has about the nodes that are directly connected to it, if the query can not
be solve using this information, the super-peer contacts the others to obtain
a response.

– Best-Neighbor: Some information about each answer is stored and the next
neighbor to query is selected using the quality of the previous answers. At the
beginning, the node has no information about its neighbors, thus it chooses
randomly. As information is collected, the probability of choosing a neighbor
randomly is inversely proportional to the amount of information stored.

Mastroianni et al. [17] evaluated the performance of these policies and ana-
lyzed the pros and cons of each solution. In theirs conclusions, the Super Peer Pol-
icy (SP) presents a notable improvement in terms of response time and expected
number of results, compared with decentralization one, while Hierarchical policy
is valuable for small and medium-sized systems, SP is more effective in very large
infrastructures therefore is more scalable.

Recently, Cesario et al. [5] studies the performance of a framework oriented
to execute applications for distributed data mining combining volunteer comput-
ing and P2P architecture. SP policy is used to discover the available resources
obtaining an important performance gain compared with standard policy.

In this work, we analyze SP focusing on the communication layer between
super-peers. An improvement to the standard communication methodology is
proposed which leads to a new SP outperforming the standard implementation.

76 P. Verghelet and E. Mocskos

2 Materials and Methods

To evaluate the different scenarios and policies, we used GridMatrix, an open
source tool focused on the analysis of discovery and monitoring information
policies, based on SimGrid2 [4].

In despite of the majority of the evaluated aspects of this kind of systems
strongly depend on time, it is usually discarded and, as a consequence, limits
the analysis of the dynamical nature of the systems. In Mocskos et al. [19] the
authors introduced a new set of metrics (Local Information Rate (LIR) and
Global Information Rate (GIR)) that incorporate the notion of time decay of
information in the evaluation of the system performance:

– LIR: captures the amount of information that a particular host has from all
the entire system in a single moment. For the host k, LIRk is:

LIRk =
∑N

h=1 f(ageh, expirationh) · resourceCounth
totalResourceCount

(1)

where N is number of hosts in the system, expirationh is the expiration time of
the resources of host h in host k, ageh is the time passed since the information
was obtained from that host, resourceCounth is the amount of resources in
host h and totalResourceCount is the total amount of resources in the whole
system.

– GIR: captures the amount of information that the whole grid knows of itself,
calculated as the mean value of every node’s LIR.

Two network topologies were analyzed: Exponential and Barabási. Both dis-
tribution models are used for connections, where the amount of connections of
each node follows an exponential distribution law and power law, commonly seen
in the Internet or collaborative networks [1,3].

To setup the scenario for SP policy, GridMatrix partitions the network using
metis [13]. In each partition, the super-peer is selected minimizing the total
distance to the rest of nodes in the partition.

The messages interchanged to inform the state and availability of resources
is shown in the Fig. 1. Two types of messages are used: push and poll. In the
stage A of the Fig. 1, the node starts having information about three resources.
When this node sends a push message to other node (stage B in the same figure),
all the information about the resources it knows is communicated to the other
node, including the resources belonging to other nodes in the system. All the
information has a time-to-live tag that is used to discard it when it gets old. The
other type of message is exemplified in stage C and D: a node contacts another
one to get information using a poll message. After receiving the request (stage
C), the node answers the query with a message containing all the information it
knows about resources in the system.

In the base implementation of SP, each peer node sends poll and push
messages to a single super-peer. This information is then distributed among the
rest of super-peers in the system selecting one each time randomly.

Improvements to Super-Peer Policy Communication Mechanisms 77

Fig. 1. Messages used to send and receive resource information: push (publication of
available resources) and poll (request of information). A: the host has information
about three available resources. B: the node publishes the information about these
resources sending a push to other node. C: the node request information about resources
and sends a poll to other node using this message to communicate its own resources.
D: the node answers sending the requested information.

As was mentioned before, the Hierarchical policy usually shows the best
results [15,19]. For this reason is used as comparison for the new developed
policies in this work.

3 Results

As was previously mentioned, SP generates a two layer hierarchy, the lower layers
contains all the nodes which can only communicate with their corresponding
super-peer. While in the top layer, we can find all the super-peer which can
communicate with the nodes in their assigned partition and with the rest of
super-peers.

The standard methodology to communicate among super-peers is using Ran-
dom Policy. Every period of time (this is one of the configuration parameters of
the policy) a poll message is sent to a randomly selected super-peer.

Figure 2 presents the behavior of Random Policy variations in exponential
topology using 240s as information expiration time. N-Random Policy is similar
to standard Random Policy but N messages are sent each time. For example,
N-Random N2 sends two messages every time, but to maintain constant the
total amount of control messages in the system, the period is also duplicated.
Figure 2(a) shows the impact of variation of the time between messages (Refresh
time) for N-Random Policy (with N = 1, 2, 4, 6, 8) on a 100-node system. As is
expected, more messages improves the mean GIR, but it is worth noting that
N-Random Policies respond different. In despite of the variation that can be seen
in the obtained results, sending more messages could improve the performance
of the system.

On the other hand, Fig. 2(b) presents the behavior of N-Random Policy with
N = 8 compared with standard Random Policy (N = 1) and SP using 5 %

78 P. Verghelet and E. Mocskos

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

G
IR

 (
av

er
ag

e)

poll refresh time (s)

NRandom N1
NRandom N2
NRandom N4
NRandom N6
NRandom N8

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 200 400 600 800 1000

G
IR

 (
av

er
ag

e)

Nodes

Random
NRandom N8

5%SP

(a) 100 nodes (b) 8-Random

Fig. 2. Variations of Random Policy in exponential topology. In N-Random Policy
more messages are sent each time, but the period is scaled to maintain constant the
total amount of interchanged messages at same expiration time. (a) presents mean GIR
for N = 1, 2, 4, 6, 8 changing the refresh time between polls. In (b) the behavior of
N-Random Policy (with N = 8) is compared against standard Random and Super-Peer
using 5 % of super-peers as the size of the system is increased with fixed refresh time.

of super-peers. As expected, SP shows a better mean GIR and slower decrease
in the performance as the size of the system increases. The standard Random
Policy behaves as expected showing a strong fall in performance with the system
size. The N-Random Policy (N = 8) or simply N8 shows a better performance
in terms of mean GIR, but can not overpass SP.

The observed behavior of N-Random Policy leads to its use as intercommu-
nication protocol between super-peers. The objective for the rest of this work
is improving the performance of SP without sacrificing its lack of structure and
maintaining its distributed nature by using N-Random Policy.

3.1 N-SP: N-Random Super Peer

N-SP Policy is obtained replacing Random Policy by N-Random as the communi-
cation protocol between super-peers. Figure 3 shows the mean GIR for a 200-nodes
system with exponential topology and 240 s information expiration time. Three N-
SP variations are analyzed with N = 1, 4, 6 and different amount of super-peers
(i.e. network partitions) 2 %, 5 % and 10 %. In this figure, Hierarchical Policy is
included as a reference as this policy usually obtains the best results.

In all the observed cases, standard SP is outperformed by N4-SP and N6-SP.
In Fig. 3(a), 2 %SP (standard Super-Peer Policy), N4-SP and N6-SP show almost
constant mean GIR as the refresh time of the messages is increased. In Fig. 3(b)
and (c), the increment in the refresh time produces a decrease in the mean GIR
for all the policies but the impact on standard SP is notoriously stronger than N4-
SP and N6-SP. In the three scenarios, N4-SP and N6-SP reach the performance
obtained by Hierarchical Policy for refresh times lower than 140 s. In the Fig. 3(c),

Improvements to Super-Peer Policy Communication Mechanisms 79

 0

 0.2

 0.4

 0.6

 0.8

 1

 80 100 120 140 160 180 200 220

G
IR

 (
av

er
ag

e)

SP’s poll refresh time (s)

Hierarchical
2%SP

N4
N6

 0

 0.2

 0.4

 0.6

 0.8

 1

 80 100 120 140 160 180 200 220

G
IR

 (
av

er
ag

e)

SP’s poll refresh time (s)

Hierarchical
5%SP

N4
N6

 0

 0.2

 0.4

 0.6

 0.8

 1

 80 100 120 140 160 180 200 220

G
IR

 (
av

er
ag

e)

SP’s poll refresh time (s)

Hierarchical
10%SP

N4
N6

(a) 2%SP (b) 5%SP

(c) 10%SP

Fig. 3. Super-Peer Policy using N-Random Policy with N = 1, 4, 6 for communications
between super-peers. Mean GIR obtained while modifying the refresh time in a system
with 200 nodes with Exponential topology and different amount of super-peers: (a)
2%SP, (b) 5 %SP and (c) 10 %SP. Hierarchical Policy is included as a reference.

the system is further partitioned, which means more super-peers. In this case, N6-
SP still outperforms N4-SP policy for all the considered refresh times.

To evaluate the behavior of the new policies in terms of bandwidth consump-
tion, the amount of sent messages is analyzed for each one in different scenarios.
Figure 4 shows the control messages sent in a fixed period of time (14 h) for
two systems of 200 and 500 nodes. These two systems are configured using 5 %
(Fig. 4(a) and (c)), and 10 % (Fig. 4(b) and (d)) of super-peers relative to the
total present nodes. This figure is obtained using 60 s as the refresh time between
peers and in each level of the hierarchy for Hierarchical Policy. The refresh time
between super-peers is varied from 100 to 200 s.

As is expected, the total amount of messages increase with the system size
for all the studied policies. The variation of the refresh time between super-peers
produces almost no change in the case of 200 nodes. When the system size is
increased to 500 nodes, N6-SP starts to show strong bandwidth consumption,
but N4-SP presents only a slightly increase compared to Hierarchical Policy.

80 P. Verghelet and E. Mocskos

 300000

 350000

 400000

 450000

 500000

 550000

 600000

 650000

 700000

100 120 140 160 180 200

se
nt

 m
es

sa
ge

s

SP’s poll refresh time (s)

Hierarchical
N1−5%5P
N4−5%5P
N6−5%5P

 1.1e+06

 1.15e+06

 1.2e+06

 1.25e+06

 1.3e+06

 1.35e+06

 1.4e+06

 1.45e+06

 1.5e+06

100 120 140 160 180 200

se
nt

 m
es

sa
ge

s

SP’s poll refresh time (s)

Hierarchical
N1−5%5P
N4−5%5P
N6−5%5P

 300000

 350000

 400000

 450000

 500000

 550000

 600000

 650000

 700000

100 120 140 160 180 200

se
nt

 m
es

sa
ge

s

SP’s poll refresh time (s)

Hierarchical
N1−10%5P
N4−10%5P
N6−10%5P

 1.1e+06

 1.15e+06

 1.2e+06

 1.25e+06

 1.3e+06

 1.35e+06

 1.4e+06

 1.45e+06

 1.5e+06

100 120 140 160 180 200

se
nt

 m
es

sa
ge

s

SP’s poll refresh time (s)

Hierarchical
N1−10%5P
N4−10%5P
N6−10%5P

(a) N-5%SP (200 nodes) (b)N-5%SP(500nodes)

(c) N-10%SP (200 nodes)
(d) N-10%SP (500 nodes)

Fig. 4. Control messages sent during 14 h using Hierarchical, N1-SP, N4-SP and N6-SP
policies. In (a) and (b) 5%SP is used, while in (c) and (d) 10 %SP. Two system sizes
are considered: 200 nodes in (a) and (c), and 500 nodes in (b) and (d).

To select a variation to be used as the new communication mechanism
between super-peers, both aspects should be considered. On one side, the perfor-
mance obtained as is shown in Fig. 3, which shows N6-SP as the best selection.
On the other side, the network usage turns to be the price to be paid to obtain
a better performance, as is shown in Fig. 4. In this case, N6-SP seems to be too
greedy in this aspect.

From this analysis, N4-SP raises as an interesting trade-off between the use of
network bandwidth and the performance obtained while maintaining an unstruc-
tured and highly distributed policy.

3.2 A2A-SP: All-to-All Super Peer

As was shown in the previous section, increasing the amount of messages sent
between super-peers improves the performance of the system. A2A-SP (all-to-
all Super Peer) is the modification of the communication mechanism between
super-peers in the extreme case in which every super-peer sends messages to the
rest of super-peers each time. As the amount of super-peers is small compared
with the total amount of nodes (2 %, 5 % or 10 % usually), this increment in the

Improvements to Super-Peer Policy Communication Mechanisms 81

amount of control messages could prove to greatly improve the performance of
the system. This topic will be covered in this section.

Figure 5 shows some promising results. In this figure, A2A-SP is compared
with standard SP and Hierarchical policies in Exponential and Barabási network
topologies. The difference in performance between A2A-SP and SP can be easily
noted in all the cases, but is notorious in the case of 500 nodes. Moreover,
an increment in the amount of super-peers does not produce a decrement in the
performance of A2A-SP, while standard SP presents a strong decrement. In most
of the cases, A2A-SP behaves similar to Hierarchical Policy in terms of mean
GIR in both network topologies.

 0

 0.2

 0.4

 0.6

 0.8

 1

 80 100 120 140 160 180 200 220

G
IR

 (
av

er
ag

e)

SP’s poll refresh time (s)

Hierarchical
N1−2%SP
N1−5%SP

N1−10%SP

A2A−2%SP
A2A−5%SP

A2A−10%SP

 0

 0.2

 0.4

 0.6

 0.8

 1

 80 100 120 140 160 180 200 220

G
IR

 (
av

er
ag

e)

SP’s poll refresh time (s)

Hierarchical
N1−2%SP
N1−5%5P

N1−10%5P

A2A−2%SP
A2A−5%SP

A2A−10%SP

 0

 0.2

 0.4

 0.6

 0.8

 1

 80 100 120 140 160 180 200 220

G
IR

 (
av

er
ag

e)

SP’s poll refresh time (s)

Hierarchical
N1−2%SP
N1−5%5P

N1−10%5P

A2A−2%SP
A2A−5%SP

A2A−10%SP

 0

 0.2

 0.4

 0.6

 0.8

 1

 80 100 120 140 160 180 200 220

G
IR

 (
av

er
ag

e)

SP’s poll refresh time (s)

Hierarchical
N1−2%SP
N1−5%5P

N1−10%5P

A2A−2%SP
A2A−5%SP

A2A−10%SP

(a) 200 nodes - Exponential (b) 500 nodes - Exponential

(c) 200 nodes - Barabási (d) 500 nodes - Barabási

Fig. 5. Impact of variation of the refresh time in standard SP (N1-SP), Hierarchical
and A2A-SP policies. Two system sizes and two network topologies are considered. The
variations of A2A-SP and standard SP correspond to different amount of partitions of
the system (i.e. amount of super-peers). In all the cases, A2A-SP shows better perfor-
mance than standard SP. In larger systems, the difference between the two policies is
even greater.

Figure 6 introduces the study of total amount of messages sent in the analyzed
policies during a fixed amount of time (14 h). In the case of 200 nodes using 5 %
of super-peers shown in Fig. 6(a), the amount of sent messages for A2A-SP is

82 P. Verghelet and E. Mocskos

 300000

 400000

 500000

 600000

 700000

 800000

 900000

100 120 140 160 180 200

se
nt

 m
es

sa
ge

s

SP’s poll refresh time (s)

Hierarchical
N1−5%5P
N4−5%5P
N6−5%5P

A2A−5%5P

 300000

 400000

 500000

 600000

 700000

 800000

 900000

100 120 140 160 180 200

se
nt

 m
es

sa
ge

s

SP’s poll refresh time (s)

Hierarchical
N1−10%5P
N4−10%5P
N6−10%5P

A2A−10%5P

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

100 120 140 160 180 200

se
nt

 m
es

sa
ge

s

SP’s poll refresh time (s)

Hierarchical
N1−10%5P
N4−10%5P
N6−10%5P

A2A−10%5P

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

100 120 140 160 180 200

se
nt

 m
es

sa
ge

s

SP’s poll refresh time (s)

Hierarchical
N1−5%5P
N4−5%5P
N6−5%5P

A2A−5%5P

(a) A2A-5%SP (200 nodes) (b) A2A-5%SP (500 nodes)

(c) A2A-10%SP (200 nodes) (d) A2A-10%SP (500 nodes)

Fig. 6. Control messages sent during 14 h using Hierarchical, N1-SP, N4-SP, N6-SP
and A2A-SP. In (a) and (b) 5%SP is used, while in (c) and (d) 10%SP. Two system
sizes are considered: 200 nodes in (a) and (c), and 500 nodes in (b) and (d).

similar to other policies. The sent messages slightly increases for a larger system
as can be seen in Fig. 6(b).

This situation is exacerbated when the system is further partitioned.
Figure 6(c) and (d) show the amount of interchanged messages when 10 % of total
nodes are super-peers (i.e. the systems is partitioned in 10 % of total nodes). In
these cases, A2A-SP policy greatly exceeds the amount of messages used com-
pared with Hierarchical and standard SP policies.

These results support that using A2A-SP policy in medium sized systems
could lead to better behavior in terms of obtained GIR, maintaining the use of
network in reasonable limits (i.e. comparable to Hierarchical policy). Increasing
the amount of partitions in the systems produces a strong increment in the
amount of messages, which could be a disadvantage of this policy in those cases.

Figure 7 presents scalability behavior for presented policies. In Fig. 7(a), N-
SP is compared with standard SP and Hierarchical policy. While the system size
is increased, standard SP shows a strong decay in terms of mean GIR. For the
cases larger than 300 nodes, this policy turns to be almost useless. As expected,
Hierarchical policy shows almost no decay in performance in the analyzed range
of sizes. N-SP presents a performance which shows a slow fall with the size, but

Improvements to Super-Peer Policy Communication Mechanisms 83

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

G
IR

 (
av

er
ag

e)

Nodes

Hierarchical
N1−5%SP (120)

N1−10%SP (120)
N4−5%SP (120)

N4−10%SP (120)
N6−5%SP (120)

N6−10%SP (120)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

G
IR

 (
av

er
ag

e)

Nodes

Hierarchical
N1−5%SP (120)

N1−10%SP (120)

A2A−5%SP (120)
A2A−10%SP (120)

(a) N-SP (b) A2A-SP

Fig. 7. Scalability analysis for the presented policies. Mean GIR is shown while increas-
ing the amount of nodes in the system using fixed refresh time (120 s). Hierarchical pol-
icy is included as a reference. In Fig. (a), N-SP is compared with standard SP, while
in Fig. (b) this policy is compared A2A-SP. Even though, A2A-SP presents a greater
network consumption, its performance overlaps with Hierarchical. However, N4-SP and
N6-SP show better performance than standard SP and rise as a trade-off in control
messages interchanged and obtained performance.

overpass standard SP in all analyzed cases. N6-SP produces better results than
N4-SP, none of them reaches Hierarchical policy.

Figure 7(b) shows the mean GIR for A2A-SP, standard SP and Hierarchi-
cal policies. As A2A-SP performance remains constant with the system size,
it shows an excellent scalability. Even though, A2A-SP has a greater network
consumption, its performance almost overlaps with Hierarchical policy.

4 Conclusions

The use of large distributed computing infrastructures has become a fundamental
component in most of scientific and technological projects. Due to its highly dis-
tributed nature, one of the key topics to be addressed in large distributed systems
is the determination of the availability and state of resources. Having up-to-date
information of the resources in the system is extremely important to be used by
the scheduler to select the appropriate target for each computational job.

There is a growing interest in the interaction with the P2P paradigm, pushing
towards scalable solutions, as they share: (i) very dynamic and heterogeneous
environment and (ii) creation of a virtual working environment by collecting the
resources available from a series of distributed, individual entities.

Super Peer policy presents a notable improvement in terms of response time
and expected number of results, compared with decentralization one. While Hier-
archical policy is valuable for small and medium-sized systems, SP is more effec-
tive in very large infrastructures therefore is more scalable.

84 P. Verghelet and E. Mocskos

For Random policy, sending more messages each time could improve the
performance of the system. Two new policies are presented changing the com-
munication methodology between super-peers: N-SP and A2A-SP. In the first
variation, a message to a randomly selected subset of the other super-peers is
sent, while in A2A-SP, all the super-peers are contacted each time.

Both policies show an improvement in terms of obtained mean GIR, A2A-SP
proves to get better results. Nevertheless, the network consumption of this policy
could render it too expensive if the system has a high number of partitions (i.e.
amount of super-peers).

As can be expected, A2A-SP presents an scalability similar to Hierarchical
policy, but N-SP shows better performance than standard SP with a lower net-
work consumption leading to a trade off between performance and used network
resources.

Acknowledgments. E.M. is researcher of the CONICET. This work was partially
supported by grants from Universidad de Buenos Aires (UBACyT 20020130200096BA)
and CONICET (PIP 11220110100379).

References

1. Albert, R., Jeong, H., Barabási, A.L.: Internet: diameter of the world-wide web.
Nature 401, 130–131 (1999). http://adsabs.harvard.edu/abs/1999Natur.401.130A

2. Assunção, M.D., Calheiros, R.N., Bianchi, S., Netto, M.A., Buyya, R.: Big
data computing and clouds: trends and future directions. J. Parallel Dis-
trib. Comput. 79, 3–15 (2014). http://www.sciencedirect.com/science/article/pii/
S0743731514001452, Special issue on Scalable Systems for Big Data Management
and Analytics

3. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science
286(5439), 509–512 (1999)

4. Casanova, H., Legrand, A., Quinson, M.: SimGrid: a generic framework for large-
scale distributed experiments. In: 10th IEEE International Conference on Com-
puter Modeling and Simulation, pp. 126–131. IEEE Computer Society, Los Alami-
tos, March 2008

5. Cesario, E., Mastroianni, C., Talia, D.: Distributed volunteer computing for solving
ensemble learning problems. Future Gener. Comput. Syst. (2015, in press). http://
www.sciencedirect.com/science/article/pii/S0167739X15002332

6. Ergu, D., Kou, G., Peng, Y., Shi, Y., Shi, Y.: The analytic hierarchy process: task
scheduling and resource allocation in cloud computing environment. J. Supercom-
put. 64(3), 835–848 (2013)

7. Foster, I., Zhao, Y., Raicu, I., Lu, S.: Cloud computing and grid computing 360-
degree compared. In: 2008 Grid Computing Environments Workshop, GCE 2008,
pp. 1–10, November 2008

8. Foster, I., Kesselman, C.: The Grid 2: Blueprint for a New Computing Infrastruc-
ture. The Morgan Kaufmann Series in Computer Architecture and Design. Morgan
Kaufmann Publishers Inc., San Francisco (2003)

9. Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the grid: enabling scalable
virtual organizations. Int. J. High Perform. Comput. Appl. 15(3), 200–222 (2001).
http://portal.acm.org/citation.cfm?id=1080667

http://adsabs.harvard.edu/abs/1999Natur.401.130A
http://www.sciencedirect.com/science/article/pii/S0743731514001452
http://www.sciencedirect.com/science/article/pii/S0743731514001452
http://www.sciencedirect.com/science/article/pii/S0167739X15002332
http://www.sciencedirect.com/science/article/pii/S0167739X15002332
http://portal.acm.org/citation.cfm?id=1080667

Improvements to Super-Peer Policy Communication Mechanisms 85

10. Ghafarian, T., Deldari, H., Javadi, B., Yaghmaee, M.H., Buyya, R.: Cycloid-
grid: a proximity-aware P2P-based resource discovery architecture in volunteer
computing systems. J. Future Gener. Comput. Syst. 29(6), 1583–1595 (2013).
http://www.sciencedirect.com/science/article/pii/S0167739X12001665, Including
Special sections: High Performance Computing in the Cloud & Resource Discovery
Mechanisms for P2P Systems

11. Iamnitchi, A., Foster, I., Nurmi, D.: A peer-to-peer approach to resource discovery
in grid environments. In: Proceedings of the 11th IEEE International Symposium
on High Performance Distributed Computing HPDC-11 (HPDC 2002), p. 419.
IEEE, Edinbourgh, July 2002

12. Iamnitchi, A., Foster, I.: A peer-to-peer approach to resource location in Grid
environments. In: Grid Resource Management: State of the Art and Future Trends,
pp. 413–429. Kluwer Academic Publishers, Norwell (2004)

13. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1998)

14. Liu, W., Nishio, T., Shinkuma, R., Takahashi, T.: Adaptive resource discovery
in mobile cloud computing. Comput. Commun. 50, 119–129 (2014). http://www.
sciencedirect.com/science/article/pii/S0140366414000590, Green Networking

15. Márquez, D.G., Mocskos, E.E., Slezak, D.F., Turjanski, P.G.: Simulation of
resource monitoring and discovery in grids. In: Proceedings of HPC 2010 High-
Performance Computing Symposium, pp. 3258–3270 (2010). http://www.39jaiio.
org.ar/node/121

16. Mastroianni, C., Talia, D., Verta, O.: A super-peer model for resource discovery
services in large-scale Grids. Future Gener. Comput. Syst. 21(8), 1235–1248 (2005).
http://www.sciencedirect.com/science/article/pii/S0167739X05000701

17. Mastroianni, C., Talia, D., Verta, O.: Designing an information system for Grids:
comparing hierarchical, decentralized P2P and super-peer models. Parallel Com-
put. 34(10), 593–611 (2008)

18. Mattmann, C., Garcia, J., Krka, I., Popescu, D., Medvidovic, N.: Revisiting the
anatomy and physiology of the grid. J. Grid Comput. 13(1), 19–34 (2015)

19. Mocskos, E.E., Yabo, P., Turjanski, P.G., Fernandez Slezak, D.: Grid matrix: a grid
simulation tool to focus on the propagation of resource and monitoring information.
Simul-T Soc. Mod. Sim. 88(10), 1233–1246 (2012)

20. Pipan, G.: Use of the TRIPOD overlay network for resource discovery. Future
Gener. Comput. Syst. 26(8), 1257–1270 (2010). http://www.sciencedirect.com/
science/article/pii/S0167739X1000018X

21. Plale, B., Jacobs, C., Jensen, S., Liu, Y., Moad, C., Parab, R., Vaidya, P.: Under-
standing Grid resource information management through a synthetic database
benchmark/workload. In: CCGRID 2004: Proceedings of the 2004 IEEE Interna-
tional Symposium on Cluster Computing and the Grid, pp. 277–284. IEEE Com-
puter Society, Washington, April 2004

22. Puppin, D., Moncelli, S., Baraglia, R., Tonellotto, N., Silvestri, F.: A grid informa-
tion service based on peer-to-peer. In: Cunha, J.C., Medeiros, P.D. (eds.) Euro-Par
2005. LNCS, vol. 3648, pp. 454–464. Springer, Heidelberg (2005)

23. Ranjan, R., Harwood, A., Buyya, R.: Peer-to-peer-based resource discovery in
global grids: a tutorial. IEEE Commun. Surv. Tut. 10(2), 6–33 (2008)

24. Ranjan, R., Zhao, L.: Peer-to-peer service provisioning in cloud computing envi-
ronments. J Supercomput. 65(1), 154–184 (2013)

25. Ripeanu, M.: Peer-to-peer architecture case study: Gnutella network. In: 2001 Pro-
ceedings of the First International Conference on Peer-to-Peer Computing, pp.
99–100, August 2001

http://www.sciencedirect.com/science/article/pii/S0167739X12001665
http://www.sciencedirect.com/science/article/pii/S0140366414000590
http://www.sciencedirect.com/science/article/pii/S0140366414000590
http://www.39jaiio.org.ar/node/121
http://www.39jaiio.org.ar/node/121
http://www.sciencedirect.com/science/article/pii/S0167739X05000701
http://www.sciencedirect.com/science/article/pii/S0167739X1000018X
http://www.sciencedirect.com/science/article/pii/S0167739X1000018X

86 P. Verghelet and E. Mocskos

26. Shiers, J.: The worldwide LHC computing grid (worldwide LCG). Comput. Phys.
Commun. 177(1–2), 219–223 (2007)

27. Trunfio, P., Talia, D., Papadakis, C., Fragopoulou, P., Mordacchini, M., Pennanen,
M., Popov, K., Vlassov, V., Haridi, S.: Peer-to-Peer resource discovery in Grids:
models and systems. Future Gener. Comput. Syst. 23(7), 864–878 (2007)

28. Williams, D.N., Drach, R., Ananthakrishnan, R., Foster, I., Fraser, D.,
Siebenlist, F., Bernholdt, D., Chen, M., Schwidder, J., Bharathi, S., et al.: The
earth system grid: enabling access to multimodel climate simulation data. Bull.
Am. Meteorol. Soc. 90(2), 195–205 (2009)

GPU and MIC Computing: Methods,
Libraries and Applications

Asynchronous in Situ Processing with Gromacs:
Taking Advantage of GPUs

Monica L. Hernandez1,2(B), Matthieu Dreher2,3,
Carlos J. Barrios1, and Bruno Raffin2

1 Universidad Industrial de Santander, Bucaramanga, Colombia
monica.hernandez2@correo.uis.edu.co

2 INRIA, University Grenoble Alpes, Montbonnot-Saint-Martin, France
3 Argonne National Laboratory, Lemont, USA

Abstract. Numerical simulations using supercomputers are producing
an ever growing amount of data. Efficient production and analysis of
these data are the key to future discoveries. The in situ paradigm is
emerging as a promising solution to avoid the I/O bottleneck encountered
in the file system for both the simulation and the analytics by treating
the data as soon as they are produced in memory. Various strategies and
implementations have been proposed in the last years to support in situ
treatments with a low impact on the simulation performance. Yet, little
efforts have been made when it comes to perform in situ analytics with
hybrid simulations supporting accelerators like GPUs. In this article,
we propose a study of the in situ strategies with Gromacs, a molecular
dynamic simulation code supporting multi-GPUs, as our application tar-
get. We specifically focus on the computational resources usage of the
machine by the simulation and the in situ analytics. We finally extend
the usual in situ placement strategies to the case of in situ analytics run-
ning on a GPU and study their impact on both Gromacs performance
and the resource usage of the machine. We show in particular that run-
ning in situ analytics on the GPU can be a more efficient solution than
on the CPU especially when the CPU is the bottleneck of the simulation.

Keywords: In situ analysis · FlowVR · Graphics Processing Units ·
Gromacs

1 Introduction

Large scale simulations are an important tool for scientists in various domains
such as biology, fluid dynamic, material science or astrophysics. Yet, it is becom-
ing more and more challenging to analyze the ever growing amount of data pro-
duced by these simulations. In 2010 already, a turbulence simulation (GTC [13])
was producing 260 GB of data every 2 min using only 16384 cores [33]. More
recently, in biology, the complete atomistic model of the HIV capsid has been
determined [32]. Several simulations, each producing about 50 TB of data for a
total of 1 PB, were required to build this model.
c© Springer International Publishing Switzerland 2015
C. Osthoff et al. (Eds.): CARLA 2015, CCIS 565, pp. 89–106, 2015.
DOI: 10.1007/978-3-319-26928-3 7

90 M.L. Hernandez et al.

In the Exascale era, it is estimated that less than 1 % of the data produced
by simulation will be saved because of bandwidth constraints [19]. Writing raw
data to disks will no longer be viable because of the resulting loss of information.

The in situ paradigm is emerging as one promising solution to this problem.The
principle is to process data as close as possible to their source while data still reside
in memory [31]. Both the simulation and analytics benefit from this approach since
they do not have to write/read to/from the file system. Although this approach
was initially designed for I/O, numerous applications are possible: live visualiza-
tion, statistics generation, feature tracking, simulation monitoring, etc. However,
setting up such analysis can be challenging. As both simulation and analysis run
concurrently, contention for the computational and network resources can lead to
significant degradations of the simulation performance. Several strategies and sys-
tems have been proposed to mitigate this penalty in the last few years.

Another benefit from in situ processing is to improve the global resource
usage of the machine. Usually, simulation codes cannot fully use and scale with
all the computational resources available on large parallel machines [35]. For
instance, running the GTS code on 512 cores using only 3 out of 4 cores per
socket reduces the simulation performances by only 2.7% compare to using all
the available cores [36]. For these cases, it can be more efficient to use the fourth
core to run in situ analytics to accelerate the analysis phase and therefore shorten
the time to discovery.

Efficiently using hybrid computational resources such as CPUs and acceler-
ators is even more challenging for simulation codes. In the last years, various
leadership parallel machines such as Tianhe-2 or BlueWaters have integrated
accelerators (GPUs, Xeon PHI). The future 150+ petaflop machine Summit at
Oak Ridge National Laboratory will also integrate GPUs in its architecture.
These accelerators offer a high Flops/Watt ratio that is required to reach Exas-
cale. Several codes such as NAMD [20] or Gromacs [11] have been adapted to
benefit from these accelerators and lead to significant speedups.Yet, in most
cases, not all the computations are performed on the accelerator. Consequently,
there are some periods during the simulation execution where the accelerator is
idle leading to underused resources.

Significant efforts have been made by the community to propose in situ sys-
tems with a low impact on the simulation performance. Yet, most of them focused
on simulations and analytics running only on CPUs [5,7,29,35]. In this article,
we study current in situ strategies applied to hybrid simulations. Gromacs, a well
established molecular dynamics simulation package supporting multi-GPUs, is
our application target. We first study the usage of the computational resources
by Gromacs native during classical runs. Then we study the resource usage when
in situ analytics are running on the CPU using asynchronous time-partitioning
and helper core strategies. We rely on FlowVR [3,7], a middleware for asynchro-
nous in situ/in transit applications, to implement these strategies. Finally, we
adapt these two strategies for in situ analytics running on GPUs and analyze
the resource usage. We show in particular that running in situ analytics on the

Asynchronous in Situ Processing with Gromacs: Taking Advantage of GPUs 91

GPU can be a more efficient solution than on the CPU especially when the CPU
is the bottleneck of the simulation.

The rest of the article is organized as follow: we first discuss the related work
(Sect. 2); then, we present Gromacs and the framework used to perform our
experiments (Sect. 3). We present our experimental results (Sect. 4) and summa-
rize our findings (Sect. 5).

2 Related Work

In this section, we first present the systems and strategies to perform in situ
treatments. Then we present some use cases of treatments with GPUs in the
context of in situ or off-line processing.

2.1 In Situ Systems

One key design decision for in situ systems is the placement of analytics
processing.

The most direct approach is to host the simulation and the analytics on the
same computational resources. This strategy, called time-partitioning, is usually
the easiest to implement. It can also enable the simulation and the analytics to
share data structures leading to a reduced memory footprint. Ma et al. [31]
integrated a volume rendering engine directly into the code of a turbulence
simulation. About 10% of the total execution time is spent in the rendering
step. Common visualization tools like Visit [30] or Paraview [9] have lightweight
libraries to instrument the simulation. Their main purpose is to convert the
simulation data format to the VTK format before executing an analysis pipeline.
Tu et al. [28] propose a fully integrated solution with an earthquake simulation
and the Hercules framework to perform in situ visualization. The only output is
a set of JPEG images. For these systems, the time spent running the analytics is
directly added to the simulation time. This approach can be very costly in both
time and memory. A study has been proposed with Catalyst [18] on industrial
simulations. With commonly used analysis scenarios, they observed up to 30 %
of increased execution time and up to 300 % increased memory consumption
because of data conversion requirements. Goldrush [35] tackles the problem of
the global execution time by making the treatments asynchronous. To limit
the impact of the asynchronous treatments on the simulation run time, the
treatments are scheduled when the simulation is not using all the available cores
(outside of an OpenMP section).The goal is to improve the global resource usage
of the machine by scheduling the analysis when the resources are underused.

Otherworks propose dedicated resources to perform in situ analytics. This app-
roach, called space-partitioning, allows asynchronous in situ analytics execution,
avoids some contention on the computational resource but requires at least one
data copy. Some systems, like Damaris [5], use dedicated cores (called helper cores)

92 M.L. Hernandez et al.

on each simulation node to execute asynchronously the in situ analytics. Data are
copied from the simulation into a shared-memory space. Analytics can then read
and process data from this space asynchronously. Applications such as I/O or
scientific visualization with Visit [6] are then possible. The helper core strategy
has also been used by Functional Partitioning [16] and GePSeA [22] mainly to
focus on I/O operations.

Other systems propose to use a separate set of nodes (called staging nodes)
to execute analytics (called in transit analytics). PreData [33] is built within
the ADIOS framework [17] and allows to execute lightweight in situ operations
before moving the data to staging nodes. Data are then processed in transit
using a Map/Reduce like model. DataTap is used to schedule the data transfer
when the simulation is in a computation phase and is not using the network
card extensively. HDF5/DMS [23] uses the HDF5 interface to capture the data
and store them in a distributed shared memory space. Other applications can
then read the data with the read HDF5 API usually on a different set of nodes.
DataSpaces [4] implements a distributed publish/subscribe system. The simula-
tion pushes data in a indexed distributed space and other treatments retrieve
the necessary data.

More recently, hybrid systems combining both in situ (synchronous or not)
and in transit treatments have emerged. Fheng et al. [34] highlight the necessity
of placement flexibility of analytics and propose an analytical model to evalu-
ate the cost of the placement strategies. Glean [29] allows synchronous in situ
treatments and asynchronous in transit treatments. FlexIO [36] is built on top of
ADIOS and allows asynchronous in situ treatments on dedicated cores and asyn-
chronous in transit treatments.The system monitors the performance of the sim-
ulation and can migrate the analytics at runtime or slow them down if they are
impacting too much the simulation performance. FlowVR [3,7] allows describing
a data-flow between components (simulation, analysis modules). Treatments are
performed asynchronously from the simulation. The user can specify the loca-
tion of the treatments: on a set of helper cores, staging nodes, or on the same
resources as the simulation.

Our work in this paper follows the work done on helper core approaches
and asynchronous time-partitioning approaches. We extend these works to the
domain of multi-GPU simulations and in situ analytics using GPUs. To imple-
ment our approach, we rely on the FlowVR middleware to host and coordinate
the in situ analytics execution.

2.2 Treatments with GPU

An implementation of in situ systems using GPUs is the work presented by R.
Hagan et al. [10] who propose a load balancing method for in situ visualization
in a multiGPU system. This method is based on an asynchronous space sharing
strategy where N/2 GPUs are used as dedicated GPUs for visualization, N being
the number of GPUs in the system. The other N/2 GPUs perform the N-body

Asynchronous in Situ Processing with Gromacs: Taking Advantage of GPUs 93

simulation and transfer the data processed to RAM. Once in the memory, the
data are transferred to the dedicated GPU to perform rendering task through a
ray tracing visualization algorithm. Each GPU is managed with separate buffers
on the CPU side in order to write/read the data to/from memory asynchronously.

Performing off-line processing on GPUs is a growing field of interest. VMD
[12] is a widely used tool for visualization and analysis of biological systems
such as proteins and nucleic acids. Over the last years, many visualizations and
analytics have been adapted to support GPUs using CUDA. The Quicksurf algo-
rithm [14], for instance, has been proposed to visualize molecular surfaces of large
ensembles of atoms. It has been recently used to visualize the full model of the
HIV capsid on BlueWaters [27]. Other analysis such as radial distribution func-
tions [15], fitting [26] and many others [24] are accelerated with GPUs. Although
VMD does not have a full support for in situ analysis, some interactive applica-
tions combining simulation and live visualization are possible such as Interactive
Molecular Dynamic simulations [25].

3 Framework Description

3.1 Gromacs

We describe here the features of Gromacs that are needed to understand its
behavior and performance. The reader can refer to [11,21] for complementary
details.

Gromacs is a commonly used parallel molecular dynamics simulation package.
It is able to scale to several millions of atoms on several thousands of cores
by using MPI, OpenMP, and CUDA. The internal organization of Gromacs is
a master/slave approach. The master process is responsible for maintaining a
global state when necessary and performing the I/O operations.

Atoms are distributed in a irregular grid where each cell of the grid is man-
aged by one MPI process. We call home atoms of an MPI process the atoms
belonging to its cell. The cell sizes of the grid are adjusted at runtime by a
dynamic load-balancing system. The main computation part is that of the forces:
bonded interactions between atoms sharing a link and non-bonded interactions
for the distant atoms. Non-bonded interactions are the most computationally
expensive operations because they require N-to-N communications. Performance
timings are monitored during this phase to load-balance the simulation.

Since version 4.6, Gromacs supports GPUs with CUDA, where no bond inter-
actions are transferred to the GPUs while the bonded-interactions are executed in
parallel on the CPU. Gromacs also supports multi-GPUs: each GPU is assigned
to an MPI process; OpenMP is used to fill the rest of the cores when more cores
than GPUs are available on a node. Since the bonded and non-bonded compu-
tations are performed concurrently, a balance must be found between CPU and
GPU computations. The dynamic load-balancing system monitors the difference

94 M.L. Hernandez et al.

of computation time between the CPU and the GPU and adjusts the grid dimen-
sions accordingly.

3.2 FlowVR

FlowVR [7] is our middleware to create asynchronous in situ applications. It
allows describing an application as a graph, where nodes are data operations and
edges are communication channels. A node is called a module and is equipped
with input and output ports. A module runs an infinite loop. At each iteration,
a module can receive data, process them, and send computed data to the rest of
the application. The loop is implemented with three main functions: wait, get,
and put. Wait blocks the module until there is at least one message in all input
ports. Get returns the oldest message from an input port’s queue. Put sends a
message to an output port. Both Get and Put functions are nonblocking.

A module has no knowledge of the data source and destination. The data
channels are described in a Python script that declares the global application
and creates the links between the modules. Each module is assigned to a host
and possibly to a set of cores on the host. A daemon is hosted on each node in the
application. It hosts a shared memory segment in which the modules are reading
and writing their data. If two modules are on the same host, the daemon does
a simple exchange of pointers in the shared memory space. Otherwise, the local
daemon sends the message to the daemon hosting the remote module, which will
write the data in its shared memory space and pass the pointer to its module.

FlowVR does not impose any restrictions on the resources used by a module.
Any module is free to use OpenMP or GPUs to accelerate its treatment. However,
FlowVR does not provide any protections in case several modules are using
intensively the same resources.

For more details, the reader can refer to [7].

3.3 Gromacs-FlowVR Interaction

We have instrumented the simulation code Gromacs with a similar method than
our previous works [7,8]. For each MPI process, we declare one module with one
output port to extract the atom positions. This approach allows us to preserve
the same level of parallelism of the data, which can be used later by in situ
analytics.

We modified the main loop of Gromacs to periodically extract the atom posi-
tions. Every x iterations, with x a user-defined parameter, each module performs
a FlowVR wait(), copies the positions of the home atoms inside a FlowVR mes-
sage, and puts the message. The atom positions are then sent to the rest of
the application, if the output ports of the modules are connected to other mod-
ules such as in situ analytics. Otherwise, the data are erased because they are
not used anymore by any module. Note that because the Gromacs modules do
not have any input ports, the wait() will return immediately and not block

Asynchronous in Situ Processing with Gromacs: Taking Advantage of GPUs 95

the simulation. In order to minimize any noise in the simulation performance,
we have also disabled the native writing system of Gromacs.

3.4 Benchmark Framework Description

We implemented a framework to perform in situ analytics based on two dif-
ferent placement strategies: helper core and overlapping. For all strategies, the
simulation and the in situ analytics have the possibility to use GPUs.

The helper core strategy reserves one core per node to perform in situ ana-
lytics (see Fig. 1(a)). Data are gathered on each node asynchronously and sent
to one or several in situ tasks hosted on the helper core. We assigned one GPU
per simulation process and one GPU for the analytics.

The overlapping strategy runs on the same resources as the simulation (see
Fig. 1(b)). In our case, we instantiated as many in situ tasks as there are MPI
processes per node. Therefore, each MPI process of the simulation sends the
data to the in situ task located on the same core as the MPI process. Note that
the in situ tasks are running asynchronously with the simulation. Each GPU is
shared between one simulation process and one in situ task. At runtime, both
simulation and analytics kernels run concurrently on each GPU.

(a) (b)

Fig. 1. (a) Helper core strategy. A dedicated core is allocated for in situ analytics. Data
are gathered by the node and sent asynchronously to the in situ tasks (b) overlapping
strategy. One in situ task is instantiated for each MPI process of the simulation.

The in situ analytics are triggered each time the simulation outputs data.
The different analytics used are described in the next section. In these two par-
ticular setups, the communication channels are simple FIFO channels between
the simulation and analytics modules. Overflows can occur if the analytics do
not follow the pace of the simulation. For this framework, this is an acceptable
situation since the data produced are relatively small and just a few output
steps are performed. For real application scenarios, special components can be

96 M.L. Hernandez et al.

added to sample the output data from the simulation. It is also possible to block
the simulation at the next output step if the previous output step has not been
analyzed yet.

3.5 Benchmarks

We designed this framework to evaluate the impact of in situ CPU/GPU tasks
on Gromacs performance and the resource usage of the machine. We adopted
the same approach as in [35]. We implemented several micro benchmarks, each
designed to stress specific parts of a multi-GPU parallel machine. Each of these
benchmarks is available for overlapping and helper core strategies.

PI (CPU). The PI benchmark, used by Zheng et al. in [35], stresses the floating
point units of the processors. When PI is triggered, x iterations, with x an user-
defined parameter, are performed to estimate the value of π. For both strategies,
overlapping and helper core, we execute the same total number of PI iterations.
With the helper core strategy, only one in situ process computes all the iterations
(x). In the case of the overlapping strategy, N in situ processes are used. The x
iterations are then distributed evenly among all the in situ tasks (x/N).

This benchmark perturbs the CPU while both the CPU and GPU are inten-
sively used by the simulation. The simulation load-balances both the CPU and
GPU computations. Therefore, perturbing the CPU should impact both the
CPU and GPU computations from the simulation.

Bandwidth (GPU). The bandwidth Nvidia CUDA kernel stresses the commu-
nications between the CPU and the GPU by sending and receiving data packages
several times. The message sizes s are user-defined. For the helper core strategy,
one GPU receives messages of size s. In the case of the overlapping strategy,
each of the N GPUs receives messages of size s/N .

Data exchanges are frequently performed between the CPU and the GPU
during the simulation. Perturbing the GPU data transmission can delay the
GPU computations of the simulation waiting for their data transfers.

Matrix Multiplication (GPU). The multMatrix Nvidia CUDA kernel is a
compute-intensive kernel multiplying 2 matrices several times. The sizes of the
two matrices are 640 × 320 and 320 × 320, respectively. The number of multipli-
cations y performed during one iteration of the benchmark is user defined. With
the helper core strategy, one in situ process does all the matrix multiplications
(y). In the case of the overlapping strategy, N in situ processes performed y/N .

This benchmark occupies the processing units of the GPU. The kernels of
the simulation will have less multiprocessors available to be scheduled leading
to delays of the simulation computations.

Asynchronous in Situ Processing with Gromacs: Taking Advantage of GPUs 97

The impact of the benchmarks on the simulation performance depends not
only on the benchmark but also on the balance of GPU/CPU computations
adopted by the simulation. If the CPU is the limiting factor of the simulation,
the GPU benchmark should be less damaging and vice versa if the GPU is the
limiting factor.

4 Experiments

4.1 Experimental Context

We ran our experiments on the cluster GUANE-1 (GpUs Advanced eNviromEnt)
at Universidad Industrial de Santander. Each node is a 8-core Intel R© Xeon R©

CPU E5640 @ 2.67 GHz (two sockets with 4 cores each one) with hyper-threading
activated (16 logical cores), 103 GB of RAM and 8 Nvidia Tesla M2050 GPUs
(448 cores each). Interprocess communication is done through a 1 GB Ethernet
network. For all experiments, Gromacs runs a Martini simulation (simulation of
atom aggregates) with a patch of 54000 lipids representing about 2.1 million par-
ticles in coarse grain [1]. Gromacs is very sensitive to the quality of the network
due to its high frequency [2]. Therefore, we preferred to avoid intranode com-
munications and used only one node for our experiments. For all experiments,
the native writing method of Gromacs is disabled.

We measured both the simulation performance and the GPU utilization for
each experiment. The performance metric is iterations per second (higher is bet-
ter). Each simulation lasted at least 1000 iteration steps to avoid performance
jittering due to the dynamic load-balancing at the initialization phase. The GPU
utilization is measured with the tool nvidia-smi1 from Nvidia. The GPU utiliza-
tion indicates the percent of time over the past second during which one or more
kernel were executed on each GPU. We took the highest GPU utilization that
we found from every experiment (five measures with nvidia-smi per experiment).

4.2 Gromacs Native

We first benchmarked Gromacs stand alone (no code modification) to determine
which configuration (number of threads, MPI processes, GPUs) provides the
best performance on our node.

Figure 2 presents the results for Gromacs running on the CPU only and in
hybrid mode using GPUs. As a reminder we use 1 GPU for each MPI process.
For both cases, we used 2 OpenMP threads per MPI process with the 2 threads
mapped to the same physical core (hyperthreading). The hybrid version outper-
forms the CPU version in all cases by a factor from 3.2 for 8 MPI processes to
4.38 for 2 MPI processes.

1 https://developer.nvidia.com/nvidia-system-management-interface.

https://developer.nvidia.com/nvidia-system-management-interface

98 M.L. Hernandez et al.

Fig. 2. Native Gromacs performance and GPU utilization when increasing the number
of MPI process

During the simulation, CPU and GPU computations are performed concur-
rently. The computations are balanced at runtime by Gromacs. According to
Gromacs internal logs, for each hybrid configuration, the CPU is not waiting for
the GPU. This can indicate that the GPU is idle while the CPU completes its
computation.

The GPU utilization of Fig. 2 indicates the maximum percentage of time
where at least one CUDA kernel is active. In the best case, for 2 MPI processes,
the GPU is used at most only 38 % of the time. Moreover, when the simulation
kernels are running, the GPU occupancy is only of 60 %2.

Although Gromacs greatly benefits from using multiple GPUs, these
resources are underused by the simulation. These results indicate that, in the
case of Gromacs, the CPU is the limiting factor in the computation.

4.3 Gromacs Instrumented with FlowVR

We measured the performances of both the native Gromacs and our FlowVR-
instrumented version. For each MPI process, we allocate 2 OpenMP threads and
1 GPU as previously. For the FlowVR-instrumented version, we extracted the
data every 100 simulation iterations.

At most, our instrumentation cost increases the simulation time by 0.5 % in
the case of 2 MPI processes. The impact on the GPU utilization is also negligible.
These results demonstrate that our instrumentation method does not impact the
simulation behavior. This cost is significantly lower than our previous report [7].
This is explained by a much lower output frequency. Previously, we extracted
data every 10 ms. For this study, we only extract the data every 6 seconds. As
the instrumentation blocks the simulation for about 0.2 ms at each output step
(Wait() and copy of the atom positions), the cost of instrumentation is negligible
2 Measured with nvprof.

Asynchronous in Situ Processing with Gromacs: Taking Advantage of GPUs 99

Fig. 3. Helper core (HC) and overlapping (Ov) strategies when increasing the number
of PI iterations performed per Gromacs iteration.

4.4 Gromacs with CPU Analytics

We measured the performances of Gromacs while running asynchronous in situ
analytics on the CPU. We used the PI benchmark described in Sect. 3.5 in both
helper core and overlapping strategies. Gromacs outputs data every 100 simula-
tion iterations. For each Gromacs output, we triggered y iterations of PI in total.
Figure 3 shows the simulation performance and GPU utilization for both strate-
gies while varying y.

The overlapping strategy gives the best performance as long as the extra
computations are not intense. For less than 108 PI iterations, the simulation is
slowed by less than 4 % while the GPU utilization stays at the same level as
Gromacs native. However, for a larger number of PI iterations, the simulation
performance is dropping as y is increasing. For 109 iterations, the performance
degradation is higher than 30 % while the GPU utilization drops by 3 %. For 1010

iterations, the degradation of both simulation performance and GPU utilization
is even higher.

The helper core strategy displays a more stable behavior. The initial cost
with a low number of PI iterations is higher than the overlapping strategy.
This is expected since one core and one GPU are removed from the simulation
resources. However, as the in situ tasks are not hosted on the same resources as
the simulation, the increasing computational charge is not affecting the simula-
tion performance. Figure 3 shows that between 108 and 109 iteration, the helper
core strategy becomes more efficient than the overlapping strategy.

The GPU utilization is reduced by the in situ analytics although the PI
benchmark does not use the GPU. For the helper Core strategy, 1 GPU is not
being used during all the simulation whereas for overlapping, the GPU utilization
is lower than 36 % for all the tests. Gromacs balances its computations between

100 M.L. Hernandez et al.

Fig. 4. Helper core (HC) and overlapping (Ov) strategies when increasing the number
y of matrix multiplications perform per Gromacs Iteration. The GPU utilization for
helper core strategy is split in two curves. GPU Utilization Max Sim indicates the
maximum utilization of the 7 GPUs used by the simulation. GPU Utilization Max Ana
is the GPU utilization for the GPU used by the in situ multMatrix.

the CPU and GPU. However, previous results (Sect. 4.2) showed that the CPU
is the bottleneck of the simulation. As the PI benchmark stresses the CPU,
Gromacs requires more time to launch the GPU kernels, leading to more idle
time on the GPU with the overlapping strategy.

In summary, traditional in situ analytics running on the CPU fail to improve
the global resource usage of Gromacs in hybrid mode. With the helper core
strategy, one GPU is not used. With the overlapping strategy, the bottleneck of
the simulation is more stressed by the analytics leading to more idle time on the
GPUs. Others strategies are necessary to improve the global usage of resource.

4.5 Gromacs with GPU Analytics

Rather than stressing the CPU, which is already the bottleneck of our simulation,
we propose to perform in situ analytics on the GPU. We first used the multMatrix
benchmark described in Sect. 3.5. As previously, Gromacs outputs data every 100
iterations. For each Gromacs output, y matrix multiplications are performed
in total.

Figure 4 shows the simulation performance and GPU utilization for both
strategies. As for the CPU benchmark, the overlapping strategy is more efficient
for light computations. For less than y = 3120 matrix multiplications per Gro-
macs output, the simulation frequency is reduced by less than 12 %, while the
GPU utilization stays at the same level as Gromacs native. However, for larger
numbers of multiplications, the performance drops up to 20 %, but the GPU
utilization is increasing up to 99 %.

Asynchronous in Situ Processing with Gromacs: Taking Advantage of GPUs 101

The helper core strategy (referred as HC), displays stable behavior like the
CPU benchmark. The initial cost with a low number of matrix multiplications
is higher than the overlapping strategy. Because the in situ tasks are not hosted
on the same resources as the simulation, however the increasing computational
charge is not affecting the simulation performance further. Figure 4 shows that
between 6,240 and 12,480 matrix multiplications, the helper GPU strategy keeps
a fixed cost and outperforms the overlapping strategy. This strategy also allows
the GPU utilization to increase up to 99 %.

We observe the following general trends. First, overlapping and helper core
have similar behavior with CPU and GPU in situ analytics. The overlapping
cost increases with a growing number of in situ computations. The helper core
strategy has a higher initial cost for a small number of multiplications but does
not further impact the simulation performance for higher computational cost.
Secondly, performing in situ analytics on the GPU improves the GPU utiliza-
tion. Because the simulation does not fully use the GPUs, other kernels can be
launched with a limited impact on the simulation performance.

The multMatrix benchmark performs computations but does not transfer
data between the CPU and GPU. Only the computational units are stressed.
However, when performing data intensive analytics, data transfers must also be
considered.

On our nodes, the 8 GPUs are connected to 3 PCI express ports. They
share the same bus to transfer data from/to the GPU. We used the Bandwidth
benchmark described in Sect. 3.5 to evaluate the impact of intensive in situ data
analytics on the simulation performance. As previously, Gromacs outputs data
every 100 iterations. For each Gromacs output, five rounds of data transfers are
performed each with a given message size.

Figure 5 shows the simulation performance for both strategies. For this bench-
mark, we do not indicate the GPU utilization since the benchmark does not use
the GPU. The overlapping strategy’s impact on the simulation performance is

Fig. 5. Helper core and overlapping strategies when increasing the size of the message
transferred.

102 M.L. Hernandez et al.

less noticeable when the size of the message transferred is smaller than 32 MB.
However, for a bigger message size, the performance drops up to 85 % for mes-
sage sizes of 1GB. The helper core strategy preserves a good isolation between
the simulation and the in situ analytics and keeps a fixed cost. Two factors can
explain this result. First, our GPUs are connected in a 3-3-2 pattern on the PCI
express buses. We placed the dedicated GPU on the third bus which only hosts
2 GPUs. Therefore, the in situ analytics only disturb one GPU of the simulation
on the bus which is the less stressed. Secondly, molecular dynamics codes are
not data-intensive codes. The full molecular model represents only a few MB of
data to transfer to/from the GPU. This leaves room on the buses to transfer
data for other tasks.

4.6 Discussion

With these experiments, we have shown that we can apply the same placement
strategies for GPU in situ analytics as for CPU strategies and observe similar
behaviors. Moreover, in the case of Gromacs, using the GPUs for in situ analytics
improves the GPU utilization while keeping a cost similar to the CPU strategies.
This is possible for two reasons. First, the bottleneck of Gromacs is the CPU
in our setup. This leaves more room on the GPU than on the CPU. Second,
Gromacs is not a data-intensive application which makes it less sensitive to
other data transfer.

Our goal in this article is to show that, in the case of hybrid simulations,
there is also a need for placement flexibility to compute in situ analytics. For
a pure CPU simulation, the placement strategy generally depends on the cost
of the computation and the nature of the analytics. However, for a hybrid sim-
ulation, the balance of CPU/GPU computation is another parameter to take
into account. Depending of whether the CPU or the GPU is the simulation
bottleneck, in situ analytics should be performed on the less loaded resource if
possible.

The simulation setup presented here leaves the GPUs idle a significant
amount of time. This allows us to schedule heavy computational in situ tasks
on the GPUs with the Overlapping strategy for a limited cost. However, other
types of simulation might use the GPUs more intensively. For such scenarios, it
is likely that for the same computational in situ tasks, the helper core strategy
becomes more efficient. We expect that, as the utilization of the GPUs by the
simulation increases, the computational charge manageable at a reasonable cost
by the Overlapping strategy would decrease in favor of the Helper core strategy.

5 Conclusion

We presented a study of the impact of in situ analytics in the case of the Gromacs
simulation running with GPUs. We first showed that Gromacs is not natively

Asynchronous in Situ Processing with Gromacs: Taking Advantage of GPUs 103

able to fully use the available GPUs leading to underused resources. Then we
showed that common in situ placement strategies such as using a dedicated core
or asynchronous time-partitioning can amplify this phenomenon in the case of
Gromacs. As an alternative approach, we used the GPUs to process analytics and
applied the same placement strategies as for the CPU in situ analytics. CPU and
GPU in situ analytics impact the simulation performance in a similar way with
the same placement strategy. However, GPU analytics improve the global GPU
utilization. We showed that, when considering hybrid simulation using GPUs,
the balance between CPU and GPU computation should be taken into account
when selecting a placement strategy for in situ analytics.

Our future work will focus on building real-case applications combining an
hybrid simulation with hybrid in situ analytics. Tools such as VMD are avail-
able to perform analytics on the GPU. We will also extend this study to the
case of In-Transit analytics. Some supercomputers such as BlueWaters have
hybrid architectures combining CPU nodes and GPU nodes that can bring new
trade-offs in the analytics placement. We will also study the recent feature in
GPUs with compute capability 4.0 to launch CUDA kernels with a priority level.
This feature can bring new opportunities especially for Overlapping strategies
to perform in situ analytics at a lower priority than the simulation.

Acknowledgments. Experiments presented in this paper were carried out using the
GridUIS-2 experimental testbed, being developed under the Universidad Industrial de
Santander (SC3UIS) High Performance and Scientific Computing Centre, development
action with support from UIS Vicerrectoria de Investigacin y Extension (VIE-UIS) and
several UIS research groups as well as other funding bodies (http://www.sc3.uis.edu.co).

References

1. http://philipwfowler.wordpress.com/2013/10/23/gromacs-4-6-scaling-of-a-very-
large-coarse-grained-system/

2. http://www.hpcadvisorycouncil.com/pdf/GROMACS Analysis AMD.pdf
3. Allard, J., Gouranton, V., Lecointre, L., Limet, S., Melin, E., Raffin, B., Robert, S.:

FlowVR: a middleware for large scale virtual reality applications. In: Proceedings
of Euro-Par 2004, Pisa, Italia (August 2004)

4. Docan, C., Parashar, M., Klasky, S.: DataSpaces: an interaction and coordination
framework for coupled simulation workflows. Cluster Comput. 15, 163–181 (2012)

5. Dorier, M., Antoniu, G., Cappello, F., Snir, M., Orf, L.: Damaris: how to efficiently
leverage multicore parallelism to achieve scalable, Jitter-Free I/O. In: CLUSTER -
IEEE International Conference on Cluster Computing. IEEE, September 2012

6. Dorier, M., Sisneros, Roberto, R., Peterka, T., Antoniu, G., Semeraro, Dave,
B.: Damaris/Viz: a nonintrusive, adaptable and user-friendly in situ visualization
framework. In: LDAV - IEEE Symposium on Large-Scale Data Analysis and Visu-
alization, Atlanta, United States, October 2013

7. Dreher, M., Raffin, B.: A flexible framework for asynchronous in situ and in transit
analytics for scientific simulations. In: 2014 14th IEEE/ACM International Sym-
posium on Cluster, Cloud and Grid Computing (CCGrid), May 2014

http://www.sc3.uis.edu.co
http://philipwfowler.wordpress.com/2013/10/23/gromacs-4-6-scaling-of-a-very-large-coarse-grained-system/
http://philipwfowler.wordpress.com/2013/10/23/gromacs-4-6-scaling-of-a-very-large-coarse-grained-system/
http://www.hpcadvisorycouncil.com/pdf/GROMACS_Analysis_AMD.pdf

104 M.L. Hernandez et al.

8. Dreher, M., Piuzzi, M., Ahmed, T., Matthieu, C., Baaden, M., Férey, N., Limet,
S., Raffin, B., Robert, S.: Interactive molecular dynamics: scaling up to large sys-
tems. In: International Conference on Computational Science, ICCS 2013. Elsevier,
Barcelone, Spain, June 2013

9. Fabian, N., Moreland, K., Thompson, D., Bauer, A., Marion, P., Geveci, B.,
Rasquin, M., Jansen, K.: The paraview coprocessing library: a scalable, general
purpose in situ visualization library. In: 2011 IEEE Symposium on Large Data
Analysis and Visualization (LDAV), October 2011

10. Hagan, R., Cao, Y.: Multi-GPU load balancing for in-situ visualization. In: The
2011 International Conference on Parallel and Distributed Processing Techniques
and Applications (2011)

11. Hess, B., Kutzner, C., van der Spoel, D., Lindahl, E.: GROMACS 4: algorithms for
highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory
Comput. 4, 435–447 (2008)

12. Humphrey, W., Dalke, A., Schulten, K.: VMD - visual molecular dynamics. J. Mol.
Graph. 14, 33–38 (1996)

13. Klasky, S., Ethier, S., Lin, Z., Martins, K., Mccune, D., Samtaney, R.: Grid-based
parallel data streaming implemented for the Gyrokinetic Toroidal code. In: Super-
computing Conference (SC 2003). IEEE Computer Society (2003)

14. Krone, M., Stone, J.E., Ertl, T., Schulten, K.: Fast visualization of Gaussian density
surfaces for molecular dynamics and particle system trajectories. In: EuroVis 2012
Short Papers, vol. 1 (2012)

15. Levine, B.G., Stone, J.E., Kohlmeyer, A.: Fast analysis of molecular dynamics
trajectories with graphics processing units Radial distribution function histogram-
ming. J. Comput. Phys. 230(9), 3556–3569 (2011)

16. Li, M., Vazhkudai, S.S., Butt, A.R., Meng, F., Ma, X., Kim, Y., Engelmann, C.,
Shipman, G.: Functional partitioning to optimize end-to-end performance on many-
core architectures. In: Proceedings of the 2010 ACM/IEEE International Confer-
ence for High Performance Computing, Networking, Storage and Analysis, SC 2010.
IEEE Computer Society, Washington (2010)

17. Lofstead, J.F., Klasky, S., Schwan, K., Podhorszki, N., Jin, C.: Flexible IO and
integration for scientific codes through the adaptable IO system (ADIOS). In:
6th International Workshop on Challenges of Large Applications in Distributed
Environments (2008)

18. Lorendeau, B., Fournier, Y., Ribes, A.: In-situ visualization in fluid mechanics using
catalyst: a case study for code saturne. In: 2013 IEEE Symposium on Large-Scale
Data Analysis and Visualization (LDAV), October 2013

19. Moreland, K.: Oh, $#! Exascale! the effect of emerging architectures on scientific
discovery. In: High Performance Computing, Networking, Storage and Analysis
(SCC), 2012 SC Companion, November 2012

20. Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E.,
Chipot, C., Skeel, R.D., Kal, L., Schulten, K.: Scalable molecular dynamics with
NAMD. J. Comput. Chem. 26(16), 1781–1802 (2005)

21. Pronk, S., Pall, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., Shirts,
M.R., Smith, J.C., Kasson, P.M., van der Spoel, D., Hess, B., Lindahl, E.:
Gromacs 4.5: a high-throughput and highly parallel open source molecular
simulation toolkit. Bioinformatics (2013)

Asynchronous in Situ Processing with Gromacs: Taking Advantage of GPUs 105

22. Singh, A., Balaji, P., Feng, W.c.: GePSeA: a general-purpose software acceleration
framework for lightweight task offloading. In: Proceedings of the 2009 International
Conference on Parallel Processing, ICPP 2009. IEEE Computer Society, Washing-
ton (2009)

23. Soumagne, J., Biddiscombe, J.: Computational steering and parallel online moni-
toring using RMA through the HDF5 DSM virtual file driver. In: Proceedings of
the International Conference on Computational Science, ICCS 2011, Singapore,
vol. 4, June 2011

24. Stone, J.E., Hardy, D.J., Ufimtsev, I.S., Schulten, K.: GPU-accelerated molecular
modeling coming of age. J. Mol. Graph. Model. 29(2), 116–125 (2010)

25. Stone, J.E., Kohlmeyer, A., Vandivort, K.L., Schulten, K.: Immersive molecular
visualization and interactive modeling with commodity hardware. In: Bebis, G.,
et al. (eds.) ISVC 2010, Part II. LNCS, vol. 6454, pp. 382–393. Springer, Heidelberg
(2010)

26. Stone, J.E., McGreevy, R., Isralewitz, B., Schulten, K.: GPU accelerated analysis
and visualization of large structures solved by molecular dynamics flexible fitting.
Faraday discussions 169 (2014)

27. Stone, J.E., Vandivort, K.L., Schulten, K.: GPU-accelerated molecular visualiza-
tion on petascale supercomputing platforms. In: Proceedings of the 8th Inter-
national Workshop on Ultrascale Visualization, UltraVis 2013. ACM, New York
(2013)

28. Tu, T., Yu, H., Ramirez-Guzman, L., Bielak, J., Ghattas, O., Ma, K.L., O’Hallaron,
D.: From mesh generation to scientific visualization: an end-to-end approach to
parallel supercomputing. In: SC 2006 Conference, Proceedings of the ACM/IEEE,
November 2006

29. Vishwanath, V., Hereld, M., Papka, M.: Toward simulation-time data analysis and
I/O acceleration on leadership-class systems. In: 2011 IEEE Symposium on Large
Data Analysis and Visualization (LDAV), October 2011

30. Whitlock, B., Favre, J.M., Meredith, J.S.: Parallel in situ coupling of simulation
with a fully featured visualization system. In: Proceedings of the 11th Eurographics
Conference on Parallel Graphics and Visualization, EGPGV 2011. Eurographics
Association (2011)

31. Yu, H., Wang, C., Grout, R., Chen, J., Ma, K.L.: In situ visualization for large-scale
combustion simulations. IEEE Comput. Graph. Appl. 3, 45–57 (2010)

32. Zhao, G., Perilla, J.R., Yufenyuy, E.L., Meng, X., Chen, B., Ning, J., Ahn, J.,
Gronenborn, A.M., Schulten, K., Aiken, C.: Mature HIV-1 capsid structure by
cryo-electron microscopy and all-atom molecular dynamics. Nature 497, 643–646
(2013)

33. Zheng, F., Abbasi, H., Docan, C., Lofstead, J., Liu, Q., Klasky, S., Parashar, M.,
Podhorszki, N., Schwan, K., Wolf, M.: PreDatA - preparatory data analytics on
peta-scale machines. In: 2010 IEEE International Symposium on Parallel Distrib-
uted Processing (IPDPS) (2010)

34. Zheng, F., Abbasi, H., Cao, J., Dayal, J., Schwan, K., Wolf, M., Klasky, S.,
Podhorszki, N.: In-situ I/O processing: a case for location flexibility. In: Proceed-
ings of the Sixth Workshop on Parallel Data Storage, PDSW 2011, ACM, New
York (2011)

106 M.L. Hernandez et al.

35. Zheng, F., Yu, H., Hantas, C., Wolf, M., Eisenhauer, G., Schwan, K., Abbasi,
H., Klasky, S.: Goldrush: resource efficient in situ scientific data analytics using
fine-grained interference aware execution. In: Proceedings of the International Con-
ference on High Performance Computing, Networking, Storage and Analysis, SC
2013. ACM (2013)

36. Zheng, F., Zou, H., Eisenhauer, G., Schwan, K., Wolf, M., Dayal, J., Nguyen, T.A.,
Cao, J., Abbasi, H., Klasky, S., Podhorszki, N., Yu, H.: FlexIO: I/O middleware for
location-flexible scientific data analytics. In: Proceedings of the 2013 IEEE 27th
International Symposium on Parallel and Distributed Processing, IPDPS 2013.
IEEE Computer Society (2013)

Solving Linear Systems on the Intel Xeon-Phi
Accelerator via the Gauss-Huard Algorithm

Ernesto Dufrechou1(B), Pablo Ezzatti1, Enrique S. Quintana-Ort́ı2,
and Alfredo Remón3

1 Instituto de Computación, Universidad de la República,
11300 Montevideo, Uruguay

{edufrechou,pezzatti}@fing.edu.uy
2 Departamento de Ingenieŕıa y Ciencia de la Computación,

Universidad Jaime I, 12701 Castellón, Spain
quintana@icc.uji.es

3 Max Planck Institute for Dynamics of Complex Technical Systems,
30106 Magdeburg, Germany
remon@mpi-magdeburg.mpg.de

Abstract. The solution of linear systems is a key operation in many
scientific and engineering applications. Traditional solvers are based on
the LU factorization of the coefficient matrix, and optimized implemen-
tations of this method are available in well-known dense linear algebra
libraries for most hardware architectures. The Gauss-Huard algorithm
(GHA) is a reliable and alternative method that presents a computa-
tional effort close to that of the LU-based approach. In this work we
present several implementations of GHA on the Intel Xeon Phi coproces-
sor. The experimental results show that our solvers based in GHA rep-
resent a competitive alternative to LU-based solvers, being an appeal-
ing method for the solution of small to medium linear systems, with
remarkable reductions in the time-to-solution for systems of dimension
n ≤ 4, 000.

Keywords: Dense linear systems · LU factorization · Gauss-Huard
algorithm ·Multi-core processors ·Xeon Phi processor ·High performance

1 Introduction

Many scientific and engineering applications require, as a key computational
problem, the solution of a linear system of the form Ax = b, where A ∈ R

n×n

is the coefficient matrix, b ∈ R
n is the vector containing the independent terms,

and vector x ∈ R
n stands for the sought-after solution [2]. When A is dense and

large, the most popular approach to tackle this problem commences by decom-
posing this matrix into two triangular factors via the LU factorization (Gaussian
elimination) [5]: A = LU , where L,U ∈ R

n×n are respectively unit lower tri-
angular and upper triangular. For numerical stability, partial row pivoting is

c© Springer International Publishing Switzerland 2015
C. Osthoff et al. (Eds.): CARLA 2015, CCIS 565, pp. 107–117, 2015.
DOI: 10.1007/978-3-319-26928-3 8

108 E. Dufrechou et al.

in practice introduced during the initial factorization stage [5]. This is followed
next by two triangular system solvers, involving the triangular factors L and U .

The Gauss-Jordan elimination (GJE), enhanced with partial row pivoting,
is a numerically reliable alternative to Gaussian elimination for the solution of
linear systems. However, this approach features a considerably higher compu-
tational cost, around n3 floating-point arithmetic operations (flops) compared
with the 2n3/3 flops of an LU-based solver. In 1979, P. Huard introduced a
variant of GJE, hereafter referred to as the Gauss-Huard algorithm (GHA) [9],
that solved this drawback, exhibiting a computational cost analogous to that of
the LU-based method. Furthermore, GHA can be easily combined with partial
column pivoting to yield a numerical stability that is comparable with that of
the LU-based method with partial row pivoting [1].

Intel’s “Knights Corner” Xeon Phi co-processor, built with 22 nm technology,
has rapidly gained relevance among the high performance computing commu-
nity. This many-core accelerator is present in five out of the 50 fastest super-
computers in the last Top500 list (dated July 2015) [10], including the system
ranked in the top position, Tianhe-2, which offers 33.86 PFLOPS (quadrillions
of flops per second) in the LINPACK benchmark. In addition to remarkable
performance, Intel’s current many-core coprocessor offers a wide range of well-
known parallel programming interfaces as well as appealing energy efficiency (in
terms of throughput-per-Watt), being a crucial component in several of the most
energy-efficient supercomputers in the last Green500 list [6]. The future of this
production line seems reinforced by the fact that Intel views the next generation
of the Xeon Phi architecture, in 14 nm and codenamed as “Knights Landing”, as
a full server, enterprise-class, performant, reliable processor, which is far beyond
the role of a simple co-processor.

A number of recent research efforts have demonstrated the benefits of lever-
aging the Intel Xeon Phi to accelerate the execution of complex dense linear
algebra operations [3,4]. In this paper we further investigate the efficiency of
the Intel Xeon Phi, presenting several implementations of the GHA with column
pivoting to solve dense linear systems on this platform. Through careful opti-
mization of our codes, the resulting GHA-based solver clearly outperforms the
routine in Intel MKL library for the solution of dense linear systems of dimension
n ≤ 5, 000.

The rest of the paper is structured as follows. In Sect. 2, we briefly review the
LU-based and GHA approaches to solve linear systems. In Sect. 3, we present
and evaluate several new solvers based on GHA for the Xeon Phi processor.
Finally, we offer a few conclusions and discuss future work in Sect. 4.

2 Solution of Linear Systems

In this section we revisit the traditional LU-based approach and the GHA alter-
native for the solution of dense linear systems. Both methods proceed “in-place”,
overwriting the coefficient matrix with intermediate results and vector b with the
solution x, and feature a similar cost in terms of flops and memory requirements.

Solving Linear Systems on the Intel Xeon-Phi Accelerator 109

2.1 The LU Factorization

This method commences by computing the LU factorization of matrix A. To
ensure numerical stability, row pivoting is added during this decomposition [5] so
that, in practice, the factorization adopts the form PA = LU , where P ∈ R

n×n

is a permutation matrix (implicitly stored as a vector), and the triangular factors
L,U ∈ R

n×n (unit lower triangular and upper triangular, respectively) overwrite
the corresponding parts of A. Note that the diagonal of L consists of ones only
and, therefore, it is unnecessary to store its entries explicitly. The original system
is then equivalent to LUx = (Pb) = b̂, and x can be obtained by solving the lower
triangular linear system Ly = b̂, for y ∈ R

n, followed by the upper triangular
system Ux = y.

The LU-based solver presents three properties that may negatively impact its
performance. Concretely, the method is divided into three consecutive stages (LU
factorization, lower triangular solve and upper triangular solve) which implicitly
define two synchronization points. Furthermore, it requires the solution of two
triangular linear systems, an operation that presents a rich collection of data
dependencies and exhibits more reduced concurrency than other Level-3 BLAS
kernels. Finally, a number of small triangular linear systems also appear during
the factorization stage.

2.2 The Gauss-Huard Algorithm

The method underlying GHA is algorithmically captured in Fig. 1 using the
FLAME notation [7]. In this algorithm, column pivoting simply requires that,
right before the diagonalization of

[
α̂11, âT

12

]
, (1) this vector is searched for its

maximum entry in magnitude (excluding its last element, which contains an
entry from b); and (2) the column of Â corresponding to this entry is swapped
with the column of Â containing the diagonal entry α̂11.

A blocked variant of GHA was introduced for distributed-memory (message-
passing) systems in [8], but the authors did not perform any experimental evalu-
ation of the implementation. They stated that its performance could be expected
to be close to that of an LU-based solver, and also proposed a variant that merges
the block-column elimination of one iteration with the block-row elimination of
the following iteration into a single matrix multiplication.

The blocked version of GHA is given in Fig. 2. Given a user-defined algorith-
mic block size b, the algorithm processes b columns of the matrix per iteration
of the loop body. The pivoting only requires the integration of an unblocked
algorithm that includes this technique during the block diagonalization, and the
application of the permutations resulting from this stage to the matrix columns
before the subsequent block-column elimination.

110 E. Dufrechou et al.

Fig. 1. Basic (unblocked) Gauss-Huard algorithm for the solution of Ax = b. On entry,
Â = [A, b]. Upon completion, due to pivoting, the last column of Â is overwritten with
a permutation of the solution, P (p)x. In the notation, m(·) stands for the number of
rows of its input. Furthermore, PivIndex(

[
α̂11, âT

12

]
) returns the index of the entry of

largest magnitude in its input (excluding the last element, which corresponds to an
entry of b); and P (π1) denotes the corresponding permutation.

3 Efficient Implementation of GHA on the Intel Xeon
Phi Co-processor

3.1 Experimental Setup

All the implementations and experiments in this section employ ieee double-
precision arithmetic and were performed on a board equipped with an Intel Xeon
Phi 7120 co-processor (61 cores and 16 GBytes of GDDR5 DRAM) attached to a
server through a PCI-e Gen3 slot. The tests were ran in Intel’s native execution
mode and, therefore, the specifications of the server are irrelevant. The codes
were compiled using the Intel icc v.15.0.1 compiler with the -O3 optimization
flag. All the variants were linked with the Intel MKL v.11.2.1 library.

We tested the execution using 15, 30 and 60 of physical cores, with 1, 2 and
4 threads per core. We also experimented with three policies to map threads to
cores: compact, scatter and balanced. In addition, we tested two values for the

Solving Linear Systems on the Intel Xeon-Phi Accelerator 111

Fig. 2. Blocked Gauss-Huard algorithm for the solution of Ax = b. On entry, Â =
[A, b]. Upon completion, due to pivoting, the last column of Â is overwritten with a
permutation of the solution, P (p)x.

algorithmic block size, b = 32 and 64. we only report the results corresponding
to the combination of number of cores/threads, mapping policy (affinity) and
algorithmic block size which offered the highest performance.

3.2 Baseline Implementation

As a starting point, we implemented the blocked GaussHuard blk algorithm
on the Intel Xeon Phi with the support from the native implementation of
BLAS for this architecture in Intel MKL. In particular, the block-column and
row eliminations can be performed via calls to kernel dgemm for the matrix
multiplication. The block diagonalization requires to implement the unblocked
GaussHuard unb algorithm, but most operations in this stage can also be
cast in terms of the computational kernels in Intel MKL. In particular, kernels
dgemv, dscal and dger provide the functionality necessary for the row elim-
ination, diagonalization and the column elimination, respectively. Additionally,
the pivoting strategy can be performed via kernels idamax (to find the pivot)
and dswap (to perform the column interchanges).

112 E. Dufrechou et al.

In this initial implementation, hereafter referred to as GaussHuard, a signifi-
cant fraction of the flops are performed inside the highly parallel kernel dgemm.
In consequence, we can expect reasonable performance from this approach, with
the exact level depending on the efficiency of the underlying implementation of
dgemm, among other factors.

Table 1. Execution times (in seconds) for the GaussHuard variant.

n Block-row elim. Block diag. Block-column elim. Others Total

1,000 16 598 7 12 633

2,000 61 2,488 23 36 2,608

3,000 180 6,150 82 70 6,482

4,000 332 14,650 162 134 15,278

5,000 466 23,822 196 247 24,731

The results in Table 1 show that most of the computational time of this
first variant is spent in the block diagonalization. Surprisingly, although a major
part of the flops occur in the block-row and block-column elimination, both
operations only represent about 3 % of the total computational time. In contrast,
the block diagonalization takes about 95 % of the runtime, which is clearly much
higher than its theoretical cost. A detailed study of this operation shows that the
diagonalization–application of pivoting (performed via kernels dscal, idamax
and dswap) and the column elimination (via kernel dger) consume about 30 %
and 60 % of the time, respectively. Regarding the optimal setting, when n ≤
4, 000 the best results are obtained with 30 cores, 2 threads per core (for a total
of 60 threads), the compact affinity and b = 32. When n = 5, 000, the best option
is to employ the 60 cores, 2 threads/core, compact affinity and b = 32.

3.3 Improving via Matrix Transposition, GaussHuard T

The experimentation with the GaussHuard implementation in the previous sub-
section exposes the urge to improve the block diagonalization, in particular, the
operations comprised by the application of the pivoting strategy and column
elimination. Although that implementation of the GaussHuard unb algorithm
relies on highly-tuned computational kernels from the Intel MKL library, a major
source of overhead arises because of the row-wise accesses to matrix A whose
entries, following the BLAS convention, are stored in column-major order. For
example, with column pivoting, the idamax kernel looks for the pivot within a
row of the matrix, and the elements of this search space are separated in memory
at least by n entries. This results in slow memory accesses in kernels that are,
by definition, memory-bounded.

To tackle this drawback, we propose to apply the GHA to matrix ÂT . The
new variant, named GaussHuard T, requires to transpose matrix Â, to then apply

Solving Linear Systems on the Intel Xeon-Phi Accelerator 113

GHA on this transposed matrix. Thus, in the GaussHuard T implementation, the
updates in GaussHuard unb algorithm are replaced by:

[
α̂11

â21

]

:=
[

α̂11

â21

]

−
[

âT
10

Â20

]

· â01,

[
α̂11

â21

]

:=
[

α̂11

â21

]

/ α̂11, and

Â20 := Â20 − â21 · âT
10

Analogous changes are applied to the GaussHuard blk algorithm, and in
consequence, from the point of view of storage, GaussHuard T integrates row
pivoting instead of column pivoting.

Table 2. Execution times (in seconds) for the GaussHuard T variant.

n Block-row elim. Block diag. Block-column elim. Others Total

1,000 45 131 30 12 218

2,000 200 428 91 35 754

3,000 556 841 225 68 1,690

4,000 1,125 1,522 284 151 3,082

5,000 1,936 2,420 426 266 5,048

Table 2 reports higher performance for this second variant, with a reduction
of execution time by a factor of up to 5× with respect to the first one. The com-
putational results exhibit that, while the block diagonalization is clearly accel-
erated, the performance of the rest of the operations is degraded. The reason
is that the computational kernels embedded in the block diagonalization bene-
fit from the new memory access pattern, but unfortunately this type of access
harms the performance of kernel dgemm. In any case, with the new variant
GaussHuard T, the block diagonalization requires about 50 % of the execution
time, which is still more than expected. A detailed evaluation of the block diago-
nalization shows that the time dedicated to diagonalization and pivoting is now
about 5 % of the total time, which is satisfactory; but the column elimination
represents 30 % of time, which is too much. In summary, the performance of
GaussHuard T is limited by the low arithmetic throughput attained by dger
during the column elimination, and additionally suffers from the performance
degradation of the block-row and column elimination stages.

The best setup for this variant utilizes 30 cores, 60 threads (i.e., 2 per core),
the compact affinity, and b = 32 when n ≤ 3, 000. When n ≥ 4, 000, on the other
hand, the best results are obtained with 120 threads.

3.4 Using OpenMP, GaussHuard O

In this new variant we again aim to accelerate the block diagonalization. For this
purpose, we discard the matrix transposition and replace the invocations to the

114 E. Dufrechou et al.

BLAS kernels which attain low performance (specifically idamax, dscal, and
dger) by ad-hoc implementations that parallelize the corresponding operation
via OpenMP directives.

Table 3. Execution times (in seconds) for the GaussHuard O variant.

n Block-row elim. Block diag. Block-column elim. Others Total

1,000 11 177 11 8 207

2,000 60 409 29 27 525

3,000 173 672 69 55 969

4,000 327 999 139 109 1,574

5,000 639 1,383 259 166 2,447

Table 3 shows the results obtained with the new GaussHuard O solver. This
variant outperforms the previous ones delivering important time reductions.
The block diagonalization is drastically accelerated. Concretely, GaussHuard O
reports accelerating factors of up to 10× and 2× with respect to GaussHuard
and GaussHuard T, respectively. Unfortunately, a detailed evaluation shows that,
despite of the effort, the block diagonalization still consumes half of the global
time. In particular, the diagonalization and the pivoting-related operations take
about 40 % of the execution time.

Fig. 3. Performance of GaussHuard O with different configurations of the Xeon Phi.

The best results for this third variant are obtained with the compact affinity
and b = 32. Figure 3 summarizes the performance of this variant for several
configurations of the Xeon Phi processor, specifically, using different number of
cores and different number of threads per core. The best performance is reported
with 30 cores and 2 threads per core.

Solving Linear Systems on the Intel Xeon-Phi Accelerator 115

Table 4. Execution time (in milliseconds) of the GHA implementations and the Intel
MKL solver on the Intel Xeon Phi.

n GaussHuard GaussHuard T GaussHuard O MKL

1,000 633 218 207 1,194

2,000 2,608 754 525 1,478

3,000 6,482 1,690 969 1,661

4,000 15,278 3,082 1,574 2,181

5,000 23,822 5,048 2,447 2,451

3.5 Global Evaluation

To conclude the experimental analysis, we compare the three GHA-based solvers
against the routine in Intel MKL library for the solution of linear systems: dgesv.
Table 4 reports the execution times obtained by the four solvers and Fig. 4 shows
the corresponding accelerating factors (speed-ups) of the GHA-based solvers over
the MKL counterpart. For this experiment, we executed dgesv with the same
Xeon Phi configurations listed in the experimental setup. Namely, different num-
ber of cores and threads, and the three affinity policies, but we only report the
results for the best option. The experiment reveals that the GHA variants out-
perform the LU-based solver in dgesv for small matrices. This can be explained
because dgesv is a three-step method (factorization followed by two triangular
solvers), and it thus integrates three synchronization points. Additionally, the
triangular solves present two drawbacks: they work with a triangular matrix
which hampers load balance and, furthermore, they correspond to memory-
bound BLAS-2 operation. On the other hand, the performance of the GHA
variants is constrained by that of the block-diagonalization operation when the
problem dimension increases. Nevertheless, GaussHuard O still outperforms the
solver in MKL when the matrix dimension n ≤ 4, 000 and offers similar results
when n = 5, 000. For larger values, dgesv is the best option as the impact of the
triangular solves in the global computational time becomes smaller as n grows,
and in such scenario, the performance of the procedure then boils down to that
of the factorization step.

Figure 5 shows the performance provided by the four solvers in terms of
GFLOPS (billions of flops per second). We note that the performance of all
solvers is far from the peak performance of the Intel Xeon Phi. However, this was
expected as we target problems of small-to-moderate dimension. In most cases,
the best performance is obtained using only half of the computational units and
only 25% of the supported threads in the platform. The performance attained
by the GaussHuard variant is nearly the same for all the matrix sizes. This is
because it is limited by the performance of the memory-bounded operations and,
consequently, this variant presents a BLAS1-like behavior. The GaussHuard T
and GaussHuard O versions partly solve this problem, especially GaussHuard O.
Finally, the Intel MKL implementation exhibits a BLAS3-like behavior and
therefore, it is the most efficient variant for the solution of medium-to-large
linear systems.

116 E. Dufrechou et al.

1,000 2,000 3,000 4,000 5,000
0

1

2

3

4

5

6

Matrix dimension

A
cc

el
er

at
io

n
fa

ct
or

GaussHuard

GaussHuard_T

GaussHuard_O

MKL

Fig. 4. Acceleration factors of the GHA implementations with respect to Intel MKL
solver on the Intel Xeon Phi.

1,000 2,000 3,000 4,000 5,000
0

5

10

15

20

25

30

35

System dimension

G
F

LO
P

S

MKL

GaussHuard_O

GaussHuard_T

GaussHuard

Fig. 5. Performance of the GHA implementations and the Intel MKL solver on the
Intel Xeon Phi.

4 Concluding Remarks and Future Work

The Gauss-Huard algorithm (GHA), enhanced with partial column pivoting, is a
reliable method to solve linear systems that presents arithmetic cost and numer-
ical stability close to those of the LU-based method with partial row pivoting.
In this work, we have introduced several implementations of GHA tailored for
the Intel Xeon Phi co-processor. The experimental evaluation demonstrates that
this method can offer competitive performance and, for small and moderate-size
problems, even be faster than the optimized solver based on the LU factorization
in Intel MKL.

As part of future work, we intend to further optimize the implementation
using a more sophisticated double-blocking approach as well as incorporate fur-
ther improvements to optimize the BLAS-1 and BLAS-2 operations that are
necessary for pivoting. Moreover, we will extend our evaluation to assess the

Solving Linear Systems on the Intel Xeon-Phi Accelerator 117

impact of the different Xeon Phi settings (number of cores, number of threads
and affinity) in energy consumption.

Acknowledgments. The researcher from the Universidad Jaime I was supported
by the CICYT projects TIN2011-23283 and TIN2014-53495-R of the Ministerio de
Economı́a y Competitividad and FEDER. Ernesto Dufrechou, Pablo Ezzatti and Alfredo
Remón were supported by the EHFARS project funded by the German Ministry of
Education and Research BMBF.

References

1. Dekker, T.J., Hoffmann, W., Potma, K.: Stability of the Gauss-Huard algorithm
with partial pivoting. Computing 58, 225–244 (1997)

2. Demmel, J.W.: Applied Numerical Linear Algebra. Society for Industrial and
Applied Mathematics, Philadelphia (1997)

3. Dolz, M.F., Igual, F.D., Ludwig, T., Piñuel, L., Quintana-Ort́ı, E.S.: Balancing
task- and data-parallelism to improve performance and energy consumption of
matrix computations on the Intel Xeon Phi. Comput. Electr. Eng. (2015, to appear)

4. Dongarra, J., Gates, M., Haidar, A., Jia, Y., Kabir, K., Luszczek, P., Tomov, S.:
HPC programming on Intel many-integrated-core hardware with MAGMA port to
Xeon Phi. Sci. Program. 2015, 1–11 (2015). (ID 502593)

5. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. The Johns Hopkins
University Press, Baltimore (1996)

6. GREEN500.org. http://www.green500.org/. Accessed July 2015
7. Gunnels, J.A., Gustavson, F.G., Henry, G.M., van de Geijn, R.A.: FLAME: formal

linear algebra methods environment. ACM Trans. Math. Softw. 27(4), 422–455
(2001)

8. Hoffmann, W., Potma, K., Pronk, G.: Solving dense linear systems by Gauss-
Huard’s method on a distributed memory system. Future Gener. Comput. Syst.
10(2–3), 321–325 (1994)

9. Huard, P.: La méthode simplex sans inverse explicite. EDB Bull. Dir. Études Rech.
Sér. C Math. Inform. 2, 79–98 (1979)

10. TOP500.org. http://www.top500.org/. Accessed July 2015

http://www.green500.org/
http://www.top500.org/

On a Dynamic Scheduling Approach to Execute
OpenCL Jobs on APUs

Tiago Marques do Nascimento, Rodrigo Weber dos Santos,
and Marcelo Lobosco(B)

FISIOCOMP, Laboratory of Computational Physiology and High-Performance
Computing, DCC, ICE, UFJF, Campus Universitário,

Juiz de Fora, MG 36036-900, Brazil
tiago.nascimento@uab.ufjf.br, {rodrigo.weber,marcelo.lobosco}@ufjf.edu.br

http://www.fisiocomp.ufjf.br

Abstract. This work presents a dynamic scheduling approach used to
load balance the computation between CPU and GPU of an Accelerated
Processing Unit (APU). The results have shown that the dynamic load
balancing strategy was successful in reducing the computation time of an
Human Immune System (HIS) simulator that was used as benchmark.
The dynamic scheduling approach accelerate the HIS code up to 7 times
when compared to the parallel version that executes using only the CPU
cores, up to 32 % when compared to the parallel version that uses only
the GPU cores, and up to 9 % when compared to our previous static
scheduling approach.

Keywords: Load balancing · OpenCL · APUs

1 Introduction

An Accelerated Processing Unit (APU) [2] is a processor that embeds a CPU
(central processing unit) and a GPU (graphics processing unit) on a unique
silicon chip. From an architectural perspective, CPUs and GPUs were built
based on completely different philosophies [6]. The general-purpose CPU has
been designed to run many distinct types of applications and is composed by
multiple cores that can be used to process multiple tasks simultaneously or
even process multiple data in parallel. Superscalar pipelines, large multi-level
caches, branch prediction, and out-of-order execution were the main design tech-
niques responsible for improving the performance of CPUs. The cost of such
improvements is the complexity of the processor control path as well as the die
area required to implement them, which in turn reduces the number of cores
that can be packed in a single chip. GPUs were initially built specifically for
rendering and other graphics applications. They are composed by hundreds or
even thousands of small and simple processing elements. The massive process-
ing capability of GPUs draw the attention of programmers that started to use
GPUs also to execute general purpose computing, which gave rise to the GPGPU
c© Springer International Publishing Switzerland 2015
C. Osthoff et al. (Eds.): CARLA 2015, CCIS 565, pp. 118–128, 2015.
DOI: 10.1007/978-3-319-26928-3 9

On a Dynamic Scheduling Approach to Execute OpenCL Jobs on APUs 119

(General-Purpose computation on GPUs) field [12]. In particular, applications
with a large degree of data parallelism can benefit from executing in such
platform.

Although a large number of computing devices are available for use on the
APU, since it integrates CPUs and GPUs, it can be hard to use all of then
simultaneously to execute a single task in parallel due to their heterogeneous
nature. In fact, heterogeneous computing on CPUs and GPUs using architectures
like CUDA [8] and OpenCL [15] has fixed the roles for each device: GPUs have
been used to handle data parallel work while CPUs handle all the rest. The
CPU does not block after starting a computation on the GPU, so it could also
handle part of the data parallel work submitted to the GPU, however it is not
common to observe this alternative, specially if data dependency exists in the
code executed on GPUs and CPUs. The use of this fixed role model under utilizes
the system, since CPUs are idle while GPUs are computing.

In a previous work [16], OpenCL has been used to implement the parallel
version of a mathematical model [18] that describes part of the Human Immune
System (HIS). The code executed simultaneously on all CPU and GPU cores
available for use in an APU: 4 CPUs cores and 384 GPUs cores. In order to deal
with the heterogeneity of the APU architecture, a load balancing strategy was
proposed. It was reported that the use of all devices available accelerate the code
up to 6 times when compared to the parallel version that executes using only
the four CPU cores and about 28% when compared to the parallel version that
uses only the 384 GPU cores. Also, the load balancing strategy proposed was
able to accelerate the code about 3.7 times when compared to the unbalanced
version of the code that uses all CPU and CPU cores available.

This work further extends the previous load balancing strategy used. In the
previous version [16] load balancing was achieved as follows. For the first one
percent of the time steps, both GPU and CPU received a given amount of data
and the time required to compute them, including the time spent in communi-
cation, was recorded. Based on their execution time, the values used for data
partition were computed. These values were then used for the remaining time
steps. In this work we adopted a dynamic approach that allows data partition
to change during execution. The new approach improves performance up to 9%,
when compared to the previous static partition approach.

The remaining of this work is organized as follows. Section 2 presents the
related work. Section 3 presents OpenCL in short. Section 4 presents the imple-
mentation details of the new approach and Sect. 5 presents the results obtained
using the HIS simulator as a benchmark. Finally, the last Section presents the
conclusions and plans for future works.

2 Related Work

Harmony [3] is a runtime supported programming and execution model that uses
a data dependency graph to schedule and run independent kernels in parallel
heterogeneous architectures. This approach is distinct from ours because we

120 T.M. do Nascimento et al.

focus on data parallelism, while Harmony focus on task parallelism. Merge [11]
is a library system that deals with map-reduce applications on heterogeneous
system. Qilin [13] is an API that automatically partitions threads to one CPU
and one GPU. SKMD [9] is a framework that transparently distributes the work
of a single parallel kernel across CPUs and GPUs. SOCL [7] is an OpenCL
implementation that allows users to dynamically dispatch kernels over devices.
StarPu [1] is a task programming library for hybrid architectures that provides
support for heterogeneous scheduling, but unfortunately it does not support
APUs. Our approach is distinct because we are not proposing a new library,
API, framework or OpenCL implementation, nor we limit the number of CPUs
or GPUs that can be used as Qilin does. Since the proposed dynamic scheduling
approach is implemented in the application code, we do not have to pay the
overheads imposed by the frameworks, runtime systems or APIs.

3 OpenCL

OpenCL (Open Computing Language) [15] is a standard framework created
by the industry (Khronos Group) in order to help the development of parallel
applications that execute in heterogeneous systems, composed by a combination
of CPUs, GPUs, and other processors/accelerators. The first release of OpenCL
was in December of 2008, and its last release is OpenCL 2.0.

OpenCL devices such as CPUs, GPUs, and so on, execute the program
instructions, called kernels. An OpenCL device is composed by compute units,
which can further be divided into processing elements(PEs). The computation is
carried on by these PEs. The following steps generalize the actions an application
must follow in order to execute on an heterogeneous platform [15]:

1. Find all components that composes an heterogeneous platform;
2. Probe the characteristics of each component of the platform;
3. Create a context, that is, an environment where kernels will be executed;
4. Create the kernels that will execute on such contexts and devices;
5. Create and configure the command-queues, memory and parameters;
6. Invoke the kernels;
7. Collect the results.

An OpenCL platform includes a host, which is responsible for interacting
with the user program. The interaction between the host and the devices is
done using a command-queue. Commands are sent to the command-queue and
wait there until they are executed on a device. There are three types of com-
mands that can be issued: kernel execution, memory and synchronization com-
mands. The commands within a single queue can execute in the same order
they appear in the command-queue (in-order execution), or out-of-order. The
programmer can enforce an order constrain using explicit synchronization mech-
anisms. Command-queues, specially those that implements the out-of-order exe-
cution, can be used to implement an automatic load balancing scheme based on
the master-worker parallel pattern [14,15]. However, the master-worker parallel

On a Dynamic Scheduling Approach to Execute OpenCL Jobs on APUs 121

pattern is particularly suited for problems based on task parallelism [14]. In a
previous work [16] we proposed a distinct solution based on an in-order execution
for problems based on data parallelism and in this work we further improved the
proposed solution.

4 Dynamic Scheduling

One key aspect of the parallel implementation on heterogeneous devices is data
partition between devices. Since the number of GPU cores is much larger than
the number of CPU cores, as well as GPU cores were tailored to execute programs
that follows the SIMD model, load balancing must be used to ensure that no
device is idle while other are overload. Data is split into two parts, one of which
will be computed by the CPU, while the other one will be computed by the GPU,
both using the same kernel code. The amount of data that will be assigned to
the CPU and GPU depends on their relative computing capabilities.

Dynamic load balancing is achieved as follows. For each one percent of
the time steps, both GPU and CPU receive a given amount of data and the
time required to compute them, including the time spent in communication, is
recorded. For the first time step, the initial amount of data that the GPU and
the CPU will receive can be configured by the user; for the remaining time steps
the division computed in the previous time step is used. Based on their execution
time, the value of data division that will be used in the next time step, or even
in the remaining computation steps, is computed using the Eq. 1:

PG =
Tc

(Tg + Tc)
(1)

where Tc is given by:

Tc = TCPU × PCPU (2)

and Tg is given by:

Tg = TGPU × PGPU (3)

PG is the percentage of data that the GPU will receive to compute the next
one percent of the time steps, so 1 − PG is the percentage that the CPU will
receive. TCPU and TGPU are respectively the time CPU and GPU spent to
compute their data for the previous one percent of the time steps and PCPU and
PGPU are respectively the percentage of data that CPU and GPU received to
compute in the previous time step.

This process is repeated for each one percent of the time steps or until PG

does not change its value by more than a given threshold. In this work this value
is equal to 1%.

In our previous approach [16], only the first one percent of the time steps were
used to find the values for data partition. For this reason, we will refer to it as
static approach. At first, it is expected that the static approach should perform
better on regular computations, while dynamic approach should perform better
on irregular ones.

122 T.M. do Nascimento et al.

5 Numerical Results

5.1 Benchmark

To evaluate the performance of the dynamic scheduling approach, a simulator
of the Human Immune System was used [17,18]. A set of eight Partial Dif-
ferential Equations (PDEs) are used to describe this model, and simulate the
temporal and spatial behavior of lipopolysaccharide (LPS), that represents an
antigen in our model, as well as some cells and molecules involved in the innate
immune response, such as neutrophils, macrophages, pro- and anti-inflammatory
cytokines, and protein granules. The diffusion of some cells and molecules are
described by the mathematical model, as well as the process of chemotaxis.
Chemotaxis is the movement of immune cells in response to chemical stimuli by
pro-inflammatory cytokine. Neutrophils and macrophages move towards the gra-
dient of pro-inflammatory cytokine concentration. A detailed discussion about
the model can be found in [17,18].

The numerical method used in the computational implementation of the
mathematical model was the Finite Difference Method [10], a method commonly
used in the numeric discretization of PDEs. The computation of the convective
term (the chemotaxis term) is a complex part in the resolution of the PDEs. The
development of numerical methods to approximate convective terms (in most
cases non linear) have been subject of intense researches [5]. Our implementation
is based on the finite difference method for the spatial discretization and the
explicit Euler method for the time evolution. First-Order Upwind scheme [4] is
used in the discretization of the chemotaxis term. Therefore, the precision of
our numerical implementation is first-order in time (explicit Euler) and first-
order in space (upwind scheme). The upwind scheme discretizes the hyperbolic
PDEs through the use of differences with bias in the direction given by the
signal of the characteristics’ speeds. The upwind scheme uses an adaptive or
solution-sensitive stencil to numerically simulate more precisely the direction
of information propagation. More details about the numerical implementation,
specially how the Laplace operator, that simulates the diffusion phenomenon, is
implemented in 3D, can be found in one of our previous work [18]. This previous
work used C and CUDA in the implementation, while this work uses C and
OpenCL.

The numerical methods used in this work are regular but requires that, at
each time step, processes that execute on CPU have access to the points com-
puted by the GPU on the previous time step, and vice-versa. These points are
called border points. The exchange of border points between CPU and GPU
requires the introduction of synchronization operations and the explicit copy
of data. Synchronization is done using OpenCL clFinish function. This function
blocks execution until all previously queued OpenCL commands have completed.
Both data copy and synchronization operations are expensive and deteriorate
performance and should be avoided.

On a Dynamic Scheduling Approach to Execute OpenCL Jobs on APUs 123

5.2 Computational Platform

Computational experiments were performed on an A10-5800K Radeon APU.
A10-5800K is composed by one CPU and one GPU. The CPU has four 3.8 GHz
cores, with 16 KB of L1 data cache per core, and 2 × 2 MB of L2 cache, so two
cores share a single L2 cache. The GPU has 384 cores running at 800 MHz. The
system has 16 GB of main memory, 2 GB of which are assigned to the exclusive
use of the GPU. Unfortunately this APU model does not allow true memory shar-
ing between CPU and GPU, in the sense that memory operations such as loads
and stores cannot be used to establish direct communication between processes
running on the CPU and GPU. Instead, explicit memory copy operations imple-
mented in OpenCL API must be used to exchange data between processes on
CPU and GPU. The machine runs Linux 3.11.0-15. OpenCL version 1.2 AMD
and gcc version 4.6.3 were used to compile the codes.

5.3 Results

In order to evaluate the performance of the HIS application on the APU, four
mesh sizes were used: 50 × 50 × 50, 100 × 100 × 100, 150 × 150 × 150 and
200 × 200 × 200. The memory required to execute the simulations using these
mesh sizes range from about 7.7 MB to 488.3 MB, which is much lower than the
total amount of memory available in the GPU.

The values used for initial conditions and to set all parameters used in the
simulations are the same used in our previous work [16].

Five parallel versions of the code were developed: the first one uses only the
CPU cores (CPU), the second version uses only the GPU (GPU), the third ver-
sion uses both CPU and GPU, but it does not use any load balancing scheme
(CPU+GPU), the fourth version uses the static scheme to balance the load
between CPU and GPU cores (CPU+GPU+LBS) [16] while the last one uses
the dynamic scheme proposed in this work (CPU+GPU+LBD). Border trans-
fers occur only in the CPU+GPU, CPU+GPU+LBS and CPU+GPU+LBD ver-
sions. Since the execution time of each time step of the simulation is extremely
regular, for all parallel versions we used 10, 000 simulation time steps to measure
their execution time. The original simulator demands more than 1, 000, 000 of
time steps. For the CPU+GPU+LBS and CPU+GPU+LBD, the initial values
used for PCPU and PGPU were 30% and 70%, respectively. This value changes
along the execution of the code according to the load-balancing scheme used.
In the CPU+GPU version, data is divided equally between CPU and GPU. All
values obtained were compared against the results of the sequential version of
the code, and all of them were correct.

Table 1 presents the execution time and the gains compared with the parallel
version executed in the CPU. All versions were executed at least 5 times, and
the standard deviations were all below 1.8%.

At first, we would expect that the versions that use more computational
resources (CPU+GPU, CPU+GPU+LBS and CPU+GPU+LBD) would achieve
a better performance. In fact, as can be observed in Table 1, for all mesh size, the

124 T.M. do Nascimento et al.

Table 1. Experimental results for the parallel version of the code. Table presents,
respectively, execution time(s) and the gains relative to the parallel CPU version of
the code.

Version 50 × 50 × 50 100 × 100 × 100 150 × 150 × 150 200 × 200 × 200

CPU 324/- 2, 542/- 6, 516/- 13, 320/-

GPU 59/5.5 422/6.0 1, 380/4.7 3, 576/3.7

CPU+GPU 79/4.1 841/3.0 3, 809/1.7 9, 211/1.4

CPU+GPU+LBS 49/6.6 369/6.9 1, 222/5.3 2, 930/4.5

CPU+GPU+LBD 46/7.1 356/7.1 1, 121/5.8 2, 715/4.9

best results were obtained by the CPU+GPU+LBD version of the code: 7.1, 7.1,
5.8 and 4.9 times faster than the parallel version of the code that executes on
the CPU. As one can observe, the speedup decreases as the mesh size increases.
The same can be observed in the versions of the code that executes only on the
GPU and in the CPU+GPU+LBS version. These results indicate that the GPU
already reached its saturation point. Recall that this GPU has only 384 cores
available for use.

Compared to the version that uses only the GPU, CPU+GPU+LBD improved
the performance by a factor from 19% to 32%. This result would not be possible
without the use of the load balancing strategy proposed in this work, since the
version that does not use load balancing performs worse than the GPU version
of the code.

Finally, the dynamic approach outperforms the static one by a factor from
3.8% to 9%. The result is good, and better than we expected to achieve because:
(a) the computation is the same in every iteration and (b) the dynamic approach
imposes an overhead at each 1% of the time step till the amount of data that
will be assigned to the CPU and GPU do not change more than a threshold
from the previous step. For this benchmark, we observed that this occurs near
8% of the total time steps, and we were expecting that using 1% of the time
steps, as the static approach does, should be enough to capture the best load to
be assigned to each device.

In order to investigate why the static approach performed worst, we executed
the OpenCL profile tool to collect extra information about the execution. Table 2
presents the figures obtained.

As one could expect from the results presented in Table 1, the dynamic app-
roach improved the balance between CPU and GPU: CPU was idle waiting for
the GPU finish its computation only 4.7% of the time, against 7.8% in the sta-
tic approach. It must be stressed that to achieve an idle time equal to 0% is
quite difficult because the amount of data that will be assigned to CPUs and
GPUs consider the number of planes in X × Y × Z, not the total number of
elements to be computed. Since a plane is composed by thousands of elements,
a unique plane can be responsible for the imbalance between CPUs and GPUs.
So to achieve a value closer to 0% the granularity used in data division should

On a Dynamic Scheduling Approach to Execute OpenCL Jobs on APUs 125

Table 2. Profile data collected for the execution of the HIS simulator using a mesh
size equal to 50×50×50. Total memory time is the sum of read and write times. Times
in ms.

Profile data CPU+GPU+LBS CPU+GPU+LBD

CPU/GPU rate (%) 92.2 95.3

Total read time 777 672

Amount of data read 20.7 MB 23.1 MB

Total write time 244 302

Amount of data written 28.4 MB 38 MB

Total memory time 1, 021 975

clBuildProgram 549 553

L1 Data cache misses 4.1 % 3.4 %

L1 Instruction cache misses 5.4 % 6 %

L2 cache misses 3.7 % 3.9 %

be the individual elements to be computed, not the planes. However problems to
aggregate communication on the GPU could occur due to memory misalignment.
This point should be better investigate in future, since memory misalignment
would occur only for part of the threads computing data in the plane shared by
CPUs and GPUs.

Neither memory access times nor cache misses does help to explain why the
dynamic load balancing approach performed better since the values are closer
to the ones obtained by the static strategy. In fact the total amount of data
transfers in the dynamic approach is higher, as could be expected, but it does not
translates in higher total memory time. It should also be noted that the OpenCL
function clBuildProgram is responsible by about 1% of the total execution
time. About 98% of the time is spent executing the kernel. The invocation of
the OpenCL function clBuildProgram causes the program object to be built
for the list of devices that is called with, and is equivalent to invoking a compiler
in a programming language [15].

Another possible cause to the worst performance of the static load balancing
approach is the precision of the time function used to measure the time spent
to execute 1% of the iterations. For 10, 000 time steps, 1% of the time steps is
equal to 100. Each time step demands about 4.2− 4.6 ms, so small variations on
the execution of the 100 time steps could lead to a non optimum data division
between devices. Although the dynamic approach uses the same percentage value
for the time steps to decide which amount of data will be computed by the CPUs
and GPUs, it can change this value through the computation to improve the
performance. A final test was performed in order to investigate this hypothesis.
It consists of the following steps. First, we investigate if the dynamic approach
finds a static data division and, if so, how many steps were necessary to find it. As
stated above, after 8% of the time steps the value found for data division remains

126 T.M. do Nascimento et al.

the same. In the second step we use a value above the one found in the previous
step, for example, 10%, in the static approach. More specifically, for the first ten
percent of the time steps, both GPU and CPU receive a given amount of data
and the time required to compute them is recorded. Based on their execution
time, the optimal values of data division that will be used in the remaining 90%
of the computation steps is computed. Using 10% of the iterations to define
the data division reduces the total computation time from 49 s to 47 s, a value
closer to that obtained by the dynamic approach, 46 s. The division found was
69.8% of the planes to be computed by the GPUs and 30.2% by the CPUs. As a
reference, when using 1% of the time steps to find the division, the values found
where 77% to the GPU and the remaining to the CPU. The dynamic approach
found 68.2% to the GPU. The 1 s of difference between the static and dynamic
versions can also be explained for the cost to compute the first 10% of the time
steps. While the static approach uses a non-optimal initial value to compute
them, the dynamic approach uses this initial value only for the first 1% of the
time steps, and then uses improved divisions for each one of the remaining time
steps.

6 Conclusion and Future Works

In order to deal with the heterogeneity of the APU architecture, this work pro-
posed and implemented a dynamic load balancing strategy. A parallel imple-
mentation of a mathematical model that describes part of the Human Immune
System (HIS) was used to evaluate the proposed load balancing strategy.

The results have shown that the dynamic load balancing strategy was suc-
cessful in reducing the computation time of the HIS simulations in all mesh sizes
used: 50 × 50 × 50, 100 × 100 × 100, 150 × 150 × 150 and 200 × 200 × 200. The
CPU+GPU+LBD version accelerate the code up to 7 times when compared to
the parallel version that executes using only the CPU cores and up to 32% when
compared to the parallel version that uses only the GPU cores. Also, the load
balancing strategy implemented was able to accelerate the code up to 9% when
compared to the version of the code that uses a static approach.

As future works, we plan to evaluate the proposed load balancing strategy
using other benchmarks as well as in other architectures. In special, we plan
to evaluate our strategy in two machines/scenarios. The first one is a machine
that allows the use of shared memory to communicate processes that execute
in CPU and GPU, which could eliminate the border transfer overhead, improv-
ing performance even more. In addition, we plan to evaluate our strategy in a
machine with additional dedicated GPU devices. Although the machine used in
the experiments has an additional dedicated GPU (Radeon 7700 series), it could
not be used in the experiments because the APU’s FM2 motherboard architec-
ture does not allow the simultaneous use of the integrated GPU presented in
the APU with the dedicated GPU, a feature only available, for example, in the
FM2+ motherboard model.

Finally, we plan to investigate the use of individual elements, instead of
planes, in data division and the use of a variable percentage to define the number

On a Dynamic Scheduling Approach to Execute OpenCL Jobs on APUs 127

of steps to be used to compute the data division. The idea is to increase the
number of time steps automatically if the computing time for those time steps
is lower than a given threshold.

Acknowledgments. The authors would like to thank UFJF and the Brazilian agen-
cies CAPES, CNPq, FAPEMIG, and FINEP.

References

1. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.A.: Starpu: a unified platform
for task scheduling on heterogeneous multicore architectures. Concurr. Comput.
Pract. Exper. 23(2), 187–198 (2011). http://dx.doi.org/10.1002/cpe.1631

2. Branover, A., Foley, D., Steinman, M.: Amd fusion apu: Llano. IEEE Micro 32(2),
28–37 (2012)

3. Diamos, G.F., Yalamanchili, S.: Harmony: an execution model and runtime for
heterogeneous many core systems. In: Proceedings of the 17th International Sym-
posium on High Performance Distributed Computing, HPDC 2008, pp. 197–200.
ACM, New York (2008). http://doi.acm.org/10.1145/1383422.1383447

4. Hafez, M.M., Chattot, J.J.: Innovative Methods for Numerical Solution of Partial
Differential Equations. World Scientific Publishing Company, New Jersey (2002)

5. Harten, A.: High resolution schemes for hyperbolic conservation laws. J. Comput.
Phys. 135, 260–278 (1997)

6. Hennessy, J.L., Patterson, D.A.: Computer Architecture: A Quantitative App-
roach, 5th edn. Morgan Kaufmann Publishers Inc., San Francisco (2011)

7. Henry, S., Denis, A., Barthou, D., Counilh, M.-C., Namyst, R.: Toward OpenCL
automatic multi-device support. In: Silva, F., Dutra, I., Santos Costa, V. (eds.)
Euro-Par 2014. LNCS, vol. 8632, pp. 776–787. Springer, Heidelberg (2014)

8. Kirk, D.B., Hwu, W.M.W.: Programming Massively Parallel Processors: A Hands-
on Approach, 2nd edn. Morgan Kaufmann Publishers Inc., San Francisco (2013)

9. Lee, J., Samadi, M., Park, Y., Mahlke, S.: Transparent CPU-GPU collaboration for
data-parallel kernels on heterogeneous systems. In: Proceedings of the 22nd Inter-
national Conference on Parallel Architectures and Compilation Techniques, PACT
2013, pp. 245–256. IEEE Press, Piscataway (2013). http://dl.acm.org/citation.
cfm?id=2523721.2523756

10. LeVeque, R.: Finite Difference Methods for Ordinary and Partial Differential Equa-
tions: Steady-State and Time-Dependent Problems (Classics in Applied Mathemat-
ics Classics in Applied Mathemat). Society for Industrial and Applied Mathemat-
ics, Philadelphia (2007)

11. Linderman, M.D., Collins, J.D., Wang, H., Meng, T.H.: Merge: a programming
model for heterogeneous multi-core systems. In: Proceedings of the 13th Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS XIII, pp. 287–296. ACM, New York (2008). http://
doi.acm.org/10.1145/1346281.1346318

12. Luebke, D., Harris, M., Govindaraju, N., Lefohn, A., Houston, M., Owens, J., Segal,
M., Papakipos, M., Buck, I.: Gpgpu: general-purpose computation on graphics
hardware. In: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing,
SC 2006. ACM, New York (2006). http://doi.acm.org/10.1145/1188455.1188672

http://dx.doi.org/10.1002/cpe.1631
http://doi.acm.org/10.1145/1383422.1383447
http://dl.acm.org/citation.cfm?id=2523721.2523756
http://dl.acm.org/citation.cfm?id=2523721.2523756
http://doi.acm.org/10.1145/1346281.1346318
http://doi.acm.org/10.1145/1346281.1346318
http://doi.acm.org/10.1145/1188455.1188672

128 T.M. do Nascimento et al.

13. Luk, C.K., Hong, S., Kim, H.: Qilin: exploiting parallelism on heterogeneous multi-
processors with adaptive mapping. In: Proceedings of the 42nd Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO 42, pp. 45–55. ACM, New
York (2009). http://doi.acm.org/10.1145/1669112.1669121

14. Mattson, T., Sanders, B., Massingill, B.: Patterns for Parallel Programming, 1st
edn. Addison-Wesley Professional, Boston (2004)

15. Munshi, A., Gaster, B., Mattson, T.G., Fung, J., Ginsburg, D.: OpenCL Program-
ming Guide, 1st edn. Addison-Wesley Professional, Boston (2011)

16. do Nascimento, T.M., de Oliveira, J.M., Xavier, M.P., Pigozzo, A.B., dos Santos,
R.W., Lobosco, M.: On the use of multiple heterogeneous devices to speedup the
execution of a computational model of the human immune system. Appl. Math.
Comput. 267, 304–313 (2015)

17. Pigozzo, A.B., Macedo, G.C., Santos, R.W., Lobosco, M.: On the computational
modeling of the innate immune system. BMC Bioinform. 14(suppl. 6), S7 (2013)

18. Rocha, P.A.F., Xavier, M.P., Pigozzo, A.B., de M. Quintela, B., Macedo, G.C.,
dos Santos, R.W., Lobosco, M.: A three-dimensional computational model of the
innate immune system. In: Murgante, B., Gervasi, O., Misra, S., Nedjah, N., Rocha,
A.M.A.C., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2012, Part I. LNCS, vol. 7333,
pp. 691–706. Springer, Heidelberg (2012)

http://doi.acm.org/10.1145/1669112.1669121

Scientific Computing Applications

Fine-Tuning Xeon Architecture Vectorization
and Parallelization of a Numerical Method

for Convection-Diffusion Equations

Frederico Lúıs Cabral1(B), Carla Osthoff1,
Diego Brandão2, and Mauricio Kischinhevsky3

1 Laboratório Nacional de Computação Cient́ıfica, Petropólis, RJ, Brazil
fcabral@lncc.br

2 CEFET-RJ, São Gonçalo, RJ, Brazil
diegonb.uff@gmail.com

3 Universidade Federal Fluminense, Niterói, RJ, Brazil
kisch@ic.uff.br

Abstract. This work describes the optimization process to improve the
performance from a convection-diffusion equation from the HOPMOC
method, on the Xeon architecture through the help Intel (r) tools, Vtune
Amplifier, Compiler Reports and Intel Advisor. HOPMOC is a finite
diffrence method to solve parabolic equations with convective dominance
on a cluster with multiple multicore nodes. The method is based both
on the modified method of characteristics and the Hopscotch method,
it is implemented through an explicit-implicit operator splitting tech-
nique. This work studies the vectorization and parallelization version
from HOPMOC under a Xeon processor architecture, and shows per-
formance improvements up to 2 times per core, due to optimization via
vectorization techniques and a gain up to 30 times on a 54 core environ-
ment, due to parallel strategies, compared to the sequential code.

Keywords: Parallel computing · HOPMOC method · Convection-
diffusion equation · Intel XEON Processor · Vectorization · VTune
Amplifier

1 Introduction

The need for fast solution of large scientific and industrial problems has long
motivated the quest for improvements both in software as well as in hardware,
since the inception of computing tools. In this context, vectorization, paralleliza-
tion of tasks have been important strategies for the improvement of hardware
efficiency during the last decades. Operator splitting techniques for the numeri-
cal solution of partial differential equations are also an attempt towards the same
goal, on the software side. Effective and efficient architecture-driven techniques
are sought for the efficient computation of accurate approximate solutions of
systems of partial differential equations which describe a wide variety of phe-
nomena.
c© Springer International Publishing Switzerland 2015
C. Osthoff et al. (Eds.): CARLA 2015, CCIS 565, pp. 131–144, 2015.
DOI: 10.1007/978-3-319-26928-3 10

132 F.L. Cabral et al.

HOPMOC method was proposed as a method to solve parabolic problems
with convective dominance in parallel machines [1]. This algorithm addresses the
issue of parallelization from the beginning, by devising a spatial decoupling that
allows the minimization of message-passing. It is direct in the sense that the cost
per time step is known a priori, and uses a strategy based on tracking along the
characteristics during the time-stepping. Operator splitting techniques, as the
HOPMOC method, have been studied for the last decades, always as a means
of reducing computational costs for multidimensional time dependent partial
differential equations [2–4].

A sequential version of the HOPMOC method was employed to solve a con-
vection diffusion equation in [9]. Furthermore, the necessary conditions to guar-
antee the HOPMOC stability are presented in [10]. A first MPI version of this
method was implemented in [11], but it did not use a multicore cluster. HOP-
MOC has been studied on distributed memory machines under MPI, on multi-
core clusters under hybrid MPI/OpenMP and clusters with GPUs under Hybrid
programming models [17].

The drive for vectorization in CPU chips started with the development of
Intel MMX architectures. The MMX chip contained registers capable of par-
allel integer computations across eight (8) elements using a Single Instruction
Multiple Data streams (SIMD) parallelization paradigm. The development of
the MMX core was driven by the need to support graphics and other media
acceleration, which is well suited for application to parallel computing using
SIMD style approaches. While such integer operations were deemed sufficient
at the time, the need for increased precision in these vector computations drove
AMD to develop 3DNOW, after which Intel developed SSE the Streaming SIMD
Extensions, both of which were capable of vectorized parallel computing across
four floating point registers. For many years, researchers and computer scientists
employed SSE to increase the performance of their codes through the paralleliza-
tion of loops within their codes with the subsequent versions of SSE, each of
which had increased usability and function support.

In 2008, Intel began the development of the next generation of in-core SIMD
acceleration, naming their creation the Advanced Vector eXtensions (AVX). The
concept was to double the size of registers available for vector computing, essen-
tially increase the support for parallel computation from four (4) to eight (8)
floating point variables. The first version of AVX was supported by the recently
released Sandy Bridge (Intel) and Bulldozer (AMD) CPU cores, both released
in 2011. In theory, this greatly increases the capacity for modern single CPU
cores to perform limited parallel computation more or less strictly under the
SIMD parallelization paradigm [1]. This development, together with the fact
that many modern CPU chips contain multiple cores on each die, mean that a
hybrid system of parallelization is required to take advantage of the computa-
tional power provided by modern cores. Intel AVX2 was released in 2013 with the
fourth generation Intel Core processor family and further extends the breadth
of vector processing capability across floating-point and integer data domains.
This results in higher performance and more efficient data management across

Fine-Tuning Xeon Architecture Vectorization and Parallelization 133

a wide range of applications like image and audio/video processing, scientific
simulations, financial analytics and 3D modeling and analysis.

This paper describes the optimization process to improve the performance
from a convection-diffusion equation from the HOPMOC method, on the Xeon
architecture through the help of Vtune Amplifier, Compiler Reports and Intel
Advisor for multithreading. It studies the vectorization and parallelization ver-
sion from HOPMOC under a Xeon processor architecture, and shows perfor-
mance improvements up to 2 times per core, compared to the sequential code.
Also, parallelism brings an extra gain of performance by taking advantaged of
multicore and manycore architectures.

The paper is organized as follows. Section 2 discusses the HOPMOC Method
and its convergence features. Section 3 describes the parallel platform used in
this study and shows a quick a description of our problem. Section 4 discusses
optimization techniques such as vectorization and parallelization for the HOP-
MOC method, using hints given by VTune analysis. Section 5 presents some
conclusions and indicates some new venues.

2 HOPMOC Method

Consider the one dimensional convection-diffusion equation in the form

ut + vux = duxx, (1)

with adequate initial and boundary conditions, where v is the constant and
positive velocity, d is the constant and positive diffusivity, 0 ≤ x ≤ 1 and 0 ≤
t ≤ T . Consider a conventional finite difference discretization for this problem,
where Δt = tn+2 − tn, δt = Δt

2 = tn+1 − tn, un+1
i = u(xn+1

i) and this is the
variable value in the previous time semi-step in the foot of the characteristic
line originated at xn+2

i and Δx = xi+1 − xi = 1
κ+1 , where κ is even. The same

characteristic line permits obtaining u
n
i in the previous semi-step.

Since un+2
i , where n is even, a numerical approximation for u in (xi, tn+2),

and using a difference operator L, Lh un
i = d

un
i−1−2un

i +un
i+1

Δx2 , both consecutive
semi-steps of the HOPMOC method can be written as:

un+1
i = u

n
i + δt

[
θn

i Lhu
n
i + θn+1

i Lhun+1
i

]
,

un+2
i = un+1

i + δt
[
θn

i Lhun+1
i + θn+1

i Lhun+2
i

]
,

for θn
i =

{
1, if n + i is even,
0, if n + i is odd, (2)

and the value u
n
i is obtained by an interpolation. The values xn+1

i and x
n+1
i are

obtained by xn+1
i = xi − v δt and x

n
i = xi − 2v δt.

The convergence analysis of the HOPMOC method was presented in [10].
That paper presents the consistency and stability of the method for a convection-
diffusion equation. Thus, Lax’ theorem guarantees that if the initial value prob-
lem is well-posed, then consistency and stability conditions imply the conver-
gence of the numerical method [12]. In [10] it is shown that the HOPMOC

134 F.L. Cabral et al.

Fig. 1. HopMoc method.

method is unconditionally stable for the convection-diffusion Eq. (1). According
to Kischinhevsky [9], this result can be extended to higher dimensions. Figure 1
illustrates the HOPMOC method for one dimensional problem.

For the two dimensional case, two successive steps of group HOPMOC
method with four points can be described by Eq. 3.

un+1
i,j = u

n
i,j + δt

[
θn

i,jLhu
n
i,j + θn+1

i,j Lhun+1
i,j

]
,

un+2
i,j = un+1

i,j + δt
[
θn

i,jLhun+1
i,j + θn+1

i,j Lhun+2
i,j

]
,

for θn
i,j =

{
1, if [i + 1] /2 + [j + 1] /2 + n is even,
0, if [i + 1] /2 + [j + 1] /2 + n is odd (3)

Since HOPMOC does not solve any linear system, its parallelization is easily
employed because it permits division of the unknowns into two disjoint subsets.
Another advantage of HOPMOC is that its computational cost is O(N) per
time step.

2.1 1-D HOPMOC Algorithm

The following code is the 1-D HOPMOC algorithm:

whi le (time <= fina lTime){
tempo = (double) (k∗deltaT) / 2 . 0 ;

f o r (i = 1 ; i <= N−2 ; i++) {
x1 = (double) i ∗deltaX ;

xo = (double) x1 − deltaX ;

xTi l = (double) x1 − velX∗deltaX ;

Fine-Tuning Xeon Architecture Vectorization and Parallelization 135

U new [i] = ((x1 − xTi l)∗ U old [i −1] +

(xTi l − xo)∗ U old [i]) / (deltaX) ;

}
f o r (i = head+1 ; i <= N−2 ; i+=2) {

U old [i] = a l f a ∗(U new [i −1] + U new [i +1]) +

(1 − 2∗ a l f a)∗U new [i] ;

}
head = (head+1)

f o r (i = head+1; i <= N−2 ; i+=2) {
U old [i] = (U new [i] + a l f a ∗U old [i −1] + a l f a ∗U old [i +1])

/(1+2∗ a l f a) ;

}
}

The main loop runs time simulation until it reaches the final time, since its a
transient problem. Each time step evaluates the characteristics method and then
computes de explicit and implicit operators, alternating which one from the N
stencil points are obteined explicitly and implicitly with the variable head that
indicates the first point to be evaluated.

We observe that the “while” loop contains 3 independent “for” loops that
can be executed in parallel threads on the processor cores. We also observe
that the independent loops contains independent floating point vectors that can
be executed under simd parallelization paradigm on the processor core units.
Therefore, this code can be parallelized and vectorized. Vectorization will permit
to exploit full capabilities of one processing unit, while parallelization brings
benefits for multithread environments.

3 Computing Environment

All tests shown herein were executed in an 2 sockets Intel Xeon Processor E5-
2697 v3 (14 cores, 35 M Cache, 2.60 GHz), with 28 cores and hyperthreading (56
threads), with 96 GB DDR4 RAM. The processor supports Intel AVX2 and the
new extension vector processing capability across floating-point and integer data
domains. The code was compiled with Intel C++ 15.0.2 version.

The number os points in the stencil for these tests was set to 100000, pro-
ducing Δx = 10−5. Other parameters for convection-diffusion equation were:
Δt = 10−5, γ = 10−5, Final Time = 0.1 and Vx = 5.10−5.

4 Optimization

Fist we executed the code with the Vtune Amplifier from Intel in order to analyse
the algorithm performance bottlenecks on the processors.

The VTune Intel summary analysis results shows that there is a high back-
end bound due to memory, in L1 cache level, and core bounds. Figure 2 shows
VTune graphics source code and the lines where these bounds occurs. The CPI
Rate indicates the latency affecting execution. A high value for CPI indicates
that the instruction is taking longer (more clock cycles) than it should to retire
from the port. We also observe that the CPI Rate is even higher in line 95,

136 F.L. Cabral et al.

Fig. 2. Unoptimized code analysis - Retire Stalls

probably caused by branch mispredict in line 92, once x1 variable is needed
to compute. In order to decrease division instruction overhead and data type
converting overhead, two changes were applied: (1) Instead of divide part of
the calculus by deltaX, we multiply by its inverse (1.0/deltaX) which allows
the processor to distribute this calculation among more ports; (2) To avoid data
type converting in execution time, all integer values that takes part of U new and
U old arrays are changed to float, or double, values. The optimized algorithm is
presented in the next subsection.

4.1 1-D HOPMOC Algorithm Vectorization

This section describes the 1-D HOPMOC algorithm vectorization. In order to
facilitate vectorization of OpenMP codes, Intel extends the set of OpenMP direc-
tives by a new set of directives to handle vectorization. The loop header of the
associated “for loop” obey the same restrictions as for the existing workshar-
ing constructs. These restrictions enable the OpenMP compiler to determine
the iteration space of the loop upfront and distribute it accordingly to fit the
vectorization [16].

The following code is the 1-D HOPMOC algorithm vectorized code, based in
Intel OpenMP vectorization extension directives:
whi le (time <= fina lTime){

tempo = (double) (k∗deltaT) / 2 . 0 ;

#pragma vector a l i gned

#pragma loop count max=100000

#pragma simd vec to r l eng th (4) , p r i va t e (deltaX) , l i n e a r (i)

f o r (i = 1 ; i <= N−2 ; i++) {
x1 = (double) i ∗deltaX ;

xo = (double) x1 − deltaX ;

xTi l = (double) x1 − velX∗deltaX ;

U new [i] = ((x1 − xTi l)∗ U old [i −1] + (xTi l − xo)∗ U old [i])∗ (1 / deltaX) ;

}

Fine-Tuning Xeon Architecture Vectorization and Parallelization 137

#pragma vector a l i gned

#pragma loop count max=50000

#pragma simd vec to r l eng th (4) , p r i va t e (a l f a) , l i n e a r (i)

#pragma vector nontemporal (U old)

f o r (i = head+1 ; i <= N−2 ; i+=2) {
U old [i] = a l f a ∗(U new [i −1] + U new [i +1]) + (1 . 0 − 2 .0∗ a l f a)∗U new [i] ;

}

head = (head+1)%2;

#pragma loop count max=100000

#pragma simd vec to r l eng th (4) , p r i va t e (a l f a) , l i n e a r (i)

#pragma pre f e t ch ∗32:64

#pragma vector a l i gned

f o r (i = head+1; i <= N−2 ; i+=2) {
U old [i] = (U new [i] + a l f a ∗U old [i −1] + a l f a ∗U old [i +1]) ∗

1/(1.0+2.0∗ a l f a) ;

}
}

Notice that we have used the instruction “pragma vector aligned” on each one
of independent “for” loops. While auto-vectorization technology has significantly
improved over the years, it is still not possible to vectorize all loops. Although the
for construct can help compilers to know where to vectorize, this is not enough
because of constraints imposed by the OpenMP specification and because of
limitations of compiler technology. To overcome this limitation, Intel presented a
new OpenMP directive: the simd directive. This directive allows the programmer
to instruct the compiler which loops should be vectorized, and also give some
other information by means of the clauses to allow for better vectorization.
This directive can also be applied to function declarations so the compiler emits
vector-enabled versions of those function to use them from vectorized loops. Intel
evaluation with a set of benchmarks shows how the use of this directive can give
significant improvements over the auto-vectorizer of a production compiler.

The implementation of the simd directives for OpenMP is based on the
existing implementation of Intel Cilk Plus [16]. For each vectorized function
with a simd directive, the compiler applies multiversioning and emits several
variants of the function to support different vectorization schemes as well as
the original scalar code. Creating the scalar code is important not to break
(non-vectorized) code that imports symbols from other compilation units. A
name-mangling scheme uniquely identifies the created variants so that they can
safely be linked into the final executable. At the call site, the compiler searches
for the function definition and recreates the mangled name from the usage in
the vectorized code. Masking support for a vector function is implemented by
adding a hidden formal parameter that contains a boolean. An added if state-
ment only performs the computation of the function when the boolean is true.
During vectorization, this boolean is promoted to a vector of booleans to only
apply the function to those vector elements for which the mask bit is set to true.
When a linear clause is present, the compiler does not promote the parameter
to a vector, but instead keeps the scalar parameter. A linear clause directs the

138 F.L. Cabral et al.

compiler to use scalar loads/stores and to assume that data referenced by the
linear parameter is stored in memory with the stride specified at the clause (unit
stride by default). The compiler can automatically determine the correct value
for vector length in most cases. From the data type used in the computation and
the target machine instruction set, the compiler can deduce the vector length
(e.g., 2 for double-precision with SSE or 8 for single-precision with AVX). Speci-
fying a vectorlength that is a multiple of a vector length instructs the compiler to
use double-pumping or quad-pumping, that is, to fuse multiple physical registers
into a single virtual register.

To accomplished the results shown above, some additional issues had to be
considered: first, one can force vectorization with #pragma simd that instructs
the compiler to execute one instruction with multiple data simultaneously, inside
the vector unit; secondly, #pragma vector nontemporal is used to instruct the
compiler to use streaming store for U OLD array, since there are no data depen-
dencies; the last issue regards on data latency which can be minimized hinting
the compiler to generate data prefetch.

Finally, we notice that the execution time from the original code decreases
from 55,445 s to 29,642 s on the vectorized optimized.

Next section show how parallelism can make use of multithread environment,
reducing even more the total elapsed time.

4.2 Parallelization

For many years, OpenMP has been the model of choice for programming
on shared memory multiprocessors within the high-performance community.
Although OpenMP is promoted as being easy to use and allows incremental par-
allelization of codes, naive implementations frequently yield poor performance.
In practice, as with other models such as MPI, the same care and attention
should be exercised over algorithm and hardware details when programming
with OpenMP.

In OpenMP applications, programmers extract parallelism by using a series
of pragmas that annotate specific types of parallelism. The omp parallel pragma
annotates regions of code that are executed by all worker threads in parallel.

With each worker thread having a unique ID, the programmer can then
assign a unique subset of the problem to each worker thread. In addition to
parallel sections, many applications contain loops in which every iteration is
independent of every other. For this type of parallelism, commonly referred as
DOALL parallelism, OpenMP offers the pragma omp for easy annotation. Used
inside omp parallel code blocks, omp for allows participating worker threads
to divide available loop iterations using one of three different loop scheduling
policies: Static, Dynamic and Guided.

As with many other runtime libraries, programmers have little information
regarding the actual management cost of parallelism. There seems to be, how-
ever, the general idea that dynamic management of parallelism is more expensive
than static arrangements, and that coarse-grain parallelism is preferred over fine-
grain parallelism in order to hide runtime library overheads. The work from [3]

Fine-Tuning Xeon Architecture Vectorization and Parallelization 139

shows that for both static and dynamic schedules, the overall contribution of the
runtime library increases with increasing core counts. For static, barrier costs
from implicit synchronization at the end of parallel loops account for a significant
portion of the runtime execution. For dynamic, lock contention becomes a major
bottleneck with increasing core counts. Thus, as more worker threads attempt to
grab work, synchronization overheads become significant, eventually overshad-
owing any parallelism performance gains. Increasing synchronization overheads
decreases the performance potential of applications, even when the annotated
parallelism in the applications is able to scale well. At low core counts (2 to
8 cores), most of the overhead comes from the use of various library runtime
procedures. At higher core counts, synchronization overheads start becoming
significant. Excessive task creation can induce significant overhead if task gran-
ularity is not sufficiently big (approximately 100 K cycles), which is the task
granularity size of our performance evaluation tests.

4.3 Data Parallelization

This subsection describes the 1-D HOPMOC algorithm Data Parallelization. In
order to keep to load balanced we divided the data domain by the number of
threads and keep the number of threads equal to the number of cores of the
processors. This strategy allows the code to be executed in all available cores
in the processor, and to keep the data distributed evenly within the cores. The
following code is the 1-D HOPMOC algorithm Data Parallelization code:

whi le (time <= fina lTime){

#pragma loop count max=100000

#pragma simd vec to r l eng th (4) , p r i va t e (a l f a) , l i n e a r (i)

#pragma pr e f e t ch ∗32 :64
#pragma vec to r a l i gned

#pragma omp f o r p r i va t e (i)

f o r (i = head+1; i <= N−2 ; i+=2) {
U old [i] = (U new [i] + a l f a ∗U old [i −1] + a l f a ∗U old [i +1]) ∗

1/(1 .0+2.0∗ a l f a) ;

}
}

While the simd construct vectorizes sequential loops, the simd for construct
combines the semantics of the for and simd constructs in a single construct. It
vectorizes a loop and distributes it across the binding thread set.The combined
constructs go beyond mere syntactical sugar. The combined simd for slightly
changes the semantics of the optional chunk size of the scheduling clause. In
simd worksharing constructs, the chunk size refers to the chunk size after vec-
torization has been applied. That is, a loop chunk is created after the loop has
been distributed across the simd registers. In order to improve the load balancing
of the system, we have to evaluate the performance for the additional vector-
ization clauses: Data Sharing Clauses, Controlling the Vector Length, Induction
Variables and Data Alignment.

140 F.L. Cabral et al.

Data Sharing Clauses. All OpenMP data-sharing clauses are available to
control the visibility and sharing of variables for vectorized loops. The private
clause creates an uninitialized vector for the given variables. The firstprivate
clause promotes variables to private vectors that are initialized with values from
outside the loop. With lastprivate, a private vector is created and the variable’s
value in the last loop iteration is retained. The reduction clause creates a private
copy of the variable and horizontally aggregates partial values of a vector into a
global, scalar reduction result.

Controlling the Vector Length. The default vector length can be specified
through the vectorlength and vectorlengthfor clauses. If the compiler cannot
determine the correct vector length (e.g., due to loop-carried dependencies),
the programmer may use vectorlength to enable vectorization. The value for
vectorlength must be of an integral compile-time constant and depends on the
data type used for computation and the distance of the loop-carried dependency
(if any). It must also be a power of two (e.g., 2, 4, 8). For instance, a loop
working on double values would select 4 as the vector length when compiling
for a processor with support for Intel AVX. The vectorlengthfor clause helps
identify the correct vector length for a given data type. It accepts a data type of
the base language as its argument and automatically chooses the vector length
to fit the machine architecture.

Induction Variables. Induction variables are variables whose value linearly
depends on the loop counter of a loop. With the linear clause, a programmer
can specify a set of variables that shall be considered induction variables across
loop iterations. For each variable, the linear clause accepts the identifier and an
increment. The increment can either be a compile-time constant or a variable.
When the compiler vectorizes the loop, the compiler generates vectors that con-
tain the induction values for the current loop chunk and makes sure that the
vector is updated accordingly along the loop iteration space.

Data Alignment. Data alignment is important since most platforms can load
aligned data much faster than unaligned data. This especially applies to vectors.
Yet, compilers are in general not able to detect the alignment properties of data
across all modules of a program. Compilers, thus, have to react conservatively
and emit code that uses only unaligned loads and stores. Hence, the align clause
explicitly provide this knowledge to the compiler.

Forced Vectorization. The simd construct implies that the associated loop or
function is always vectorized by the OpenMP compiler. If the compiler cannot
vectorize the code for some reason (e.g., a too complex code pattern), it should
abort compilation and emit a diagnostic message to inform the programmer. This
can help programmers avoid an unexpected performance behavior and reduce
the (performance) debugging effort.

Fine-Tuning Xeon Architecture Vectorization and Parallelization 141

4.4 DATA Parallelization Performance Evaluation

This section presents the performance evaluation from domain decomposition
parallel approach.

In order to evaluate the parallel performance we are presenting three perfor-
mance evaluation indices for the parallel model: speedup, time saving ratio and
efficiency.

The speedup formula is as Sn = T/Tn. Where T is the serial computing time
and Tn is the computation time with n parallel threads.

The efficiency formula is En = Sn/n. Where n is the number of parallel
threads.

The time, speedup, and efficiency required for calculation are as shown in
Fig. 3.

Fig. 3. Speedup analysis

As shown in Fig. 3 (1) The computation time reduces as the number of
threads increases. For example, for the single thread with simd optimizations
the computation is 24,27 s, but required only 1,9 s with 56 threads. The paral-
lel model therefore plays an important role in accelerating the model operation
period. (2) The speedup factor increases with the number of threads. In Scheme
3, for example, speedup factors of 1.9, 3.8, 7.2, 11.2 and 12,7 were achieved
with 2, 4, 8, 16, and 32 threads, respectively, demonstrating great extendibility.
(3) The efficiency reduces as the number of threads increases. In Scheme 2, for
example, the efficiency drops from 98,57 % with two threads to just 39.9 % with
56 threads, which indicates that the overall model performance is deteriorating.

For a fixed number of threads, the computation time, speedup, and efficiency
increases with the number of grid cells.

As the 24,27 s became 1,9 s, the number of calculations increases, which led
to the increase in simulation time. The speedup and efficiency also improves as
the number of grid cells increases, although the increase is slow, demonstrating
that the parallel model performs better with an increased calculation load.

Figure 3 illustrates the speedup factor for different thread numbers. As shown
in the figure, the speedup increases as the number thread increases, but the
startup, assignment, switching, and revocation of threads consumes time. Thus,

142 F.L. Cabral et al.

with any increase in thread number, the system overheads increases, and the
computation time that can be saved reduces. This leads to an overall decline
in model performance, and thus the relative increase in the speedup factor is
reduced.

4.5 Work Parallelization

This section presents the performance evaluation from functional decomposition
parallel approach. We can exploit one more level of parallelism, the parallelism
of functions. Since the three main steps of HOPMOC Method are almost inde-
pendent, requiring only a synchronization mechanism amon them, these steps
can be parallelized too. In this sense, we can achieve two types of parallelism
in the same implementation: (1) data and (2) task parallelism. The idea behind
this strategy is to split spatial points of domain among a pool of threads and
which of these threads is broken into more three child threads that will compute
one of the HOPMOC steps.

The following code is the 1-D HOPMOC algorithm Task Parallelization code:

whi l e (time <= fina lTime){
tempo = (double) (k∗deltaT) / 2 . 0 ;
#pragma omp s e c t i o n s

{
#pragma omp s e c t i o n
{

#pragma omp f o r
f o r (i = 1 ; i <= N−2 ; i++) {

// Cha r a c t e r i s t i c s Method
}

}
#pragma omp s e c t i o n
{
#pragma omp f o r
f o r (i = head+1 ; i <= N−2 ; i+=2) {

// Exp l i c i t Operator
}

}
#pragma omp s e c t i o n
{

#pragma omp f o r
f o r (i = head+1; i <= N−2 ; i+=2) {

// Imp l i c i t Operator
}

}
}

It’s necessary to enable the nested parallelism mechanism with
omp set nested (1) in order to permit a thread to create other threads. In each

Fine-Tuning Xeon Architecture Vectorization and Parallelization 143

section we put a HOPMOC task and which one splits its own data into data
parallelism with #pragma omp for. A synchronization scheme avoids that task
2 operates over data not performed by task 1 and the same for task 3 over task2.

We evaluate the performance for number of threads equal to the number of
cores, i.e. 12 threads and we improved the speed-up up to 3 times faster than
the data parallelism approach and we intend to further investigate for a higher
number of threads.

5 Conclusion and Future Work

This paper describes the study of a vectorized and parallelized implementa-
tion of a Numerical Method for convection-diffusion equations to solve parabolic
equations with convective dominance on a Intel Xeon Haswell architecture.

Numerical results show the gain of performance up to 2 times per core
when compared to sequential version for solving a convective-diffusion equation
through a vectorized code implementation.

This work also presents a further performance improvement, up to 11 times
for 12 tasks, through the implementation of a data parallel code on the “vector-
ized code” and even better performance improvement, up to 3 times, through the
implementation of a task parallelization on the “data parallel vectorized code”.

We conclude that adding vectorizes and parallelizes data and task imple-
mentations can improve our numerical method code up 36 times on the Xeon
Haswell architecture

As a forthcoming work, we plan to extend our study for task and data
paralelization on both Xeon and Xeon Phi architecture.

These studies are first steps to implement HOPMOC numerical method on
cluster in order to scale the application in a heterogeneous environment.

It’s proposed that these features to be investigated combined to MPI, to
try a better performance increasing for HOPMOC. Additionally, a study on the
impact of the different domain partitions in the final distributed execution time
is to be performed. The new features available at MPI 3.0, such as multi thread
MPI processes should be considered. An important trend to be considered in
multicore/manycore programming is the merge of OpenMP and the vectorized
code. As present in [10] the phase of interpolation to calculate the value of foot of
characteristic introduces some error in the method. Total Variation Diminishing
(TVD) techniques are used to reduced the error of convective term interpolation
[13], we will investigate if TVD techniques applied to HOPMOC method can be
reduces the interpolation error.

Acknowledgments. This project was partially supported by cooperation agreement
between LNCC and Intel Corporation.

144 F.L. Cabral et al.

References

1. Kischinhevsky, M.: An Operator Splitting for Optimal Message-passing Computa-
tion of Parabolic Equation with Hyperbolic Dominance. SIAM Annual Meeting,
Missouri (1996)

2. Boonkkamp, J.H.M.T.J., Verwer, J.G.: On the odd-even hopscotch scheme for the
numerical integration of time-dependent partial differential equations. Appl. Num.
Math. 3(1), 183–193 (1987)

3. Hansen, J.P., Matthey, T., Sørevik, T.: A parallel split operator method for the
time dependent Schrödinger equation. In: Dongarra, J., Laforenza, D., Orlando, S.
(eds.) EuroPVM/MPI 2003. LNCS, vol. 2840, pp. 503–510. Springer, Heidelberg
(2003)

4. Yanenko, N.N.: The Method of Fractional Steps. Springer, New York (1970)
5. Li, D., Zhou, Z., Wang, Q.: A hybrid MPI/OpenMP based on DDM for large-scale

partial differential equations. In: IEEE 11th International Conference on Trust,
Security and Privacy in Computing and Communications, Liverpool, pp. 1839–
1843 (2012)

6. Jin, H., Jespersen, D., Mehrotra, P., Biswas, R., Huang, L., Chapman, B.: High
performance computing using MPI and OpenMP on multi-core parallel systems.
Parallel Comput. 37(9), 562–575 (2011)

7. Mininni, P.D., Rosenberg, D., Reddy, R., Poquet, A.: A hybrid MPI-OpenMP
scheme for scalable parallel pseudospectral computations for fluid turbulence. Par-
allel Comput. 37, 316–326 (2011)

8. Kirk, D.B., Hwu, W.W.: Programming Massively Parallel Processors: A Hands-on
Approach. Elsevier Inc., Philadelphia (2010)

9. Kischinhevsky, M.: A spatially decoupled alternating direction procedure for
convection-diffusion equations. In: Proceedings of the XXth CILAMCE-Iberian
Latin American Congress on Numerical Methods in Engineearing (1999)

10. Oliveira, S., Gonzaga, S.L., Kischinhevsky, M.: Convergence analysis of the HOP-
MOC method. Int. J. Comput. Math. 86, 1375–1393 (2009)

11. Cabral, F.L.: HOPMOC methods to solve convection-diffusion equations and
its parallel implementation (in Portuguese). Master thesis, Instituto de Com-
putação/Universidade Federal Fluminense, Brasil (2001)

12. Richtmyer, R.D., Morton, K.W.: Difference Methods for Initial-Value Problems
Interscience. Interscience, New York (1967)

13. Harten, A.: On a class of high resolution total-variation-stable finite-difference
schemes. SIAM J. Numer. Anal. 21, 1–23 (1984)

14. Rabeinsefner, R., Hager, G., Jost, G.: Hybrid MPI/OpenMP parallel program-
ming on clusters of molti-core SMP nodes. In: 2009 17th Euromicro International
Conference on Parallel, Distributed and Network-based Processing, pp. 427–436
(2009)

15. Cluster OpemMP for Intel Compilers. http://software.intel.com/en-us/articles/
cluster-openmp-for-intel-compilers

16. Klemm, M., Duran, A., Tian, X., Saito, H., Caballero, D., Martorell, X.: Extend-
ing OpenMP* with vector constructs for modern multicore SIMD architectures.
In: Chapman, B.M., Massaioli, F., Müller, M.S., Rorro, M. (eds.) IWOMP 2012.
LNCS, vol. 7312, pp. 59–72. Springer, Heidelberg (2012)

17. Cabral, F.L., Osthoff, C., Kischinhevsky, M., Brandão. D.: Hybrid MPI/OpenM-
P/OpenACC Implementations for the Solution of Convection-Diffusion Equations
with the HOPMOC Method. In: Proceedings of XXIV International Conference
on Computational Science and Its Applications (2014)

http://software.intel.com/en-us/articles/cluster-openmp-for-intel-compilers
http://software.intel.com/en-us/articles/cluster-openmp-for-intel-compilers

Parallel Performance Analysis of a Regional
Numerical Weather Prediction Model

in a Petascale Machine

Roberto Pinto Souto1(B), Pedro Leite da Silva Dias1, and Franck Vigilant2

1 National Laboratory for Scientific Computing (LNCC), 333 Avenida Getulio
Vargas, Petrópolis 25651-075, Brazil

{rpsouto,pldsdias}@lncc.br
http://www.lncc.br

2 Atos/Bull Center for Excellence in Parallel Programming (CEPP),
1 Rue de Provence, 38432 Échirolles, France

franck.vigilant@atos.net

http://www.bull.com

Abstract. This paper presents the parallel performance achieved by
a regional model of numerical weather prediction (NWP), running on
thousands of computing cores in a petascale supercomputing system. It
was obtained good scalability, running with up to 13440 cores, distrib-
uted in 670 nodes. These results enables this application to solve large
computational challenges, such as perform weather forecast at very high
spatial resolution.

Keywords: Parallel performance analysis · Numerical weather predic-
tion · Petascale supercomputing

1 Introduction

One of the scientific applications that require more processing power is the
numerical weather prediction (NWP). There is huge amount of data to be
processed in order to feed the equations that advance in time the status of
the atmosphere.

Several factors contribute to configure the high computational cost of an
NWP. For example, the larger the geographical domain and the number of days
of forecast, greater the amount of data to be processed.

Moreover, remaining unchanged the domain and the model integration time
(the number of days of forecast), can vary both the number of points in the dis-
cretized grid domain, as the number of the steps performed during integration.
The former defines the spatial resolution, and the last gives the temporal resolu-
tion, or the time-step of the forecast. The larger the resolution, more processing
will be performed for the same spatial domain.

The use of high performance computing resources becomes mandatory in this
type of application, especially the use of distributed memory machines. For high
c© Springer International Publishing Switzerland 2015
C. Osthoff et al. (Eds.): CARLA 2015, CCIS 565, pp. 145–150, 2015.
DOI: 10.1007/978-3-319-26928-3 11

146 R.P. Souto et al.

spatial resolution the larger number of grid points may lead to memory restric-
tions because the domain decomposition may, eventually reach the maximum
memory available for each processing node.

It is therefore important that the NWP has enough scalability to run on a
maximum number of processing nodes, to make feasible the weather forecast for
the defined spatial and temporal resolutions.

2 BRAMS Developments

The numerical model of prediction BRAMS (Brazilian developments on the
Regional Atmospheric Modeling System) [1,2] is a regional-scale model, devel-
oped at INPE/CPTEC (National Institute for Space Research/Center for
Weather Forecasts and Climate Studies), based on the model RAMS (Regional
Atmospheric Modeling System) [3,4]. In BRAMS were introduced several
changes in the source code of RAMS, which yielded a more realistic descrip-
tion of tropical processes including the precipitation, land/surface interaction
and the role of aerosols in the short wave radiation.

Another important feature introduced in BRAMS was the parallel implemen-
tation with MPI [5], which had not been done in RAMS. The parallel strategy
employed is the domain decomposition, where the atmosphere state advance-
ment of each domain partition is assigned to an MPI process different. This
parallel strategy follows the master-slave pattern, where the master node makes
the decomposition of the domain, and sends to the slave nodes the data necessary
to processing their respective partition.

This worked fine for order of tens of computational nodes, with spatial reso-
lution around 20 km in the domain of operational forecasting of INPE/CPTEC,
which covers the whole of Brazil, and almost all of South America, as shown by
the gray area in Fig. 1.

By adopting resolution of 10 km, running in the order of hundreds of process-
ing nodes, the memory used has exceeded the amount available in the master
node, occurring memory paging, resulting in a performance bottleneck due to
the master node.

One new implementation was then proposed [6,7], by eliminating the master
node. All nodes read the data and make its own domain decomposition. The code
in this version performs with good scalability with hundreds of nodes, under a
resolution of 10 km

To achieve the target to run the model with 5 km resolution in a feasible time,
it was necessary to make BRAMS perform on thousands of processing nodes.

But, in that resolution, the amount of memory per process reaches about
3.9 GB. Then, nodes with 32 GB of RAM, such as the machine of INPE/CPTEC,
could be executed with up to 8 MPI processes, limiting the scalability of the
application, since each node has 24 cores (2× AMD Opteron Magny-Cours/12-
core, 2.1 GHz).

This problem occurs because of memory reservation made for arrays in the
early of forecast, even if not fully utilized. The solution found was the use of

Parallel Performance Analysis 147

Fig. 1. Domain of operational weather forecast of INPE/CPTEC.

dynamic allocation of arrays, reducing the amount of memory per process to
about 1.18 GB [8]. Thus, it was possible to use all 24 cores of the nodes, without
exceeding the available RAM in each node.

3 Results

In order to perform the parallel performance analysis of BRAMS model, ver-
sion 5.0 was used, and the case study was the operational spatial domain of
INPE/CPTEC, described in Sect. 2.

The grid of the corresponding domain in BRAMS contains 1360 and 1480
points in the zonal and meridional directions, respectively. The same grid is
repeated in 45 vertical levels.

These values correspond respectively to parameters NNXP, NNYP and
NNZP shown in Table 1. The spatial resolution used was 5 km, in both directions,
horizontal and vertical (DELTAX = 5000 and DELTAY = 5000).

Table 1. BRAMS parameters

Parameter Value

NNXP 1360 points

NNYP 1480 points

NNZP 45 levels

DELTAX 5000 m

DELTAY 5000 m

TIMMAX 1 h

DTLONG 10 s

148 R.P. Souto et al.

The integration time, i.e., the prediction time was one hour (TIMMAX = 1).
The BRAMS was set to update the state the atmosphere every 10 s, and this is
the time-step value (DTLONG = 10). Therefore, for a 1-h weather forecast, or
3600 s, there are 360 time-steps, lasting 10 s each.

The parallel executions were made in the Tier-0 machine of the Brazilian
High Performance System, the SDumont cluster (an ATOS/BULL machine).
This machine is composed of 756 nodes, interconnected by FDR Infiniband in a
fat-tree topology, sharing a parallel file system of 1.7 Petabytes (Lustre). Each
node has 2 CPU Intel Xeon E5-2695v2 (12-core, 2.4 GHz) with 64 GB of RAM.
There are therefore a total of 18144 computational cores.

From the total of the 756 nodes of SDumont cluster, 198 nodes contains two
GPUs NVIDIA K40 (396 GPU boards), and other 54 nodes have 2 Intel Xeon
Phi (MIC 108 boards).

The overall potential processing (Rpeak) of the whole cluster, including every
installed parallel architectures, is about 1.1 Petaflop. In the ocasion of accep-
tance tests of the machine, done in ATOS/BULL factory, the High Performance
Linpack (HPL) [9] reaches nearly 0.8 Petaflop.

The compiler used was the Intel Fortran version 15.0.2, and the distribution
of MPI was bullx MPI, a Bull implementation based on OpenMPI.

BRAMS is executed in two phases. In the first one, input data of topography,
vegetation, soil moisture, besides the boundary condition, are interpolated to
the specified resolution in the grid. Moreover, in this phase is made the domain
decomposition, distributed among all cores.

In the second phase is where then performed the weather forecast, i.e., the sta-
tus of atmosphere is iteratively updated by the model in periodic intervals (time-
steps), until is reached the total integration time (1-h, 24-h, 48-h, and so on).

Parallel executions of BRAMS were made from 1024 cores (64 nodes) up to
13400 cores (670 nodes), for 1-h of integration time. Table 2 lists the runtime
obtained, as well as both the ideal and achieved speed-up, and also the reached
parallel efficiency.

It is observed that the scalability of BRAMS was quite satisfactory, since for
the maximum number of cores used, the parallel efficiency was 78 %. In the other
parallel executions, from 1024 up to 10320 cores, efficiency was higher than 90 %
or close to this value.

It is important to repair that, as longer is the weather forecast, is less signif-
icant the time of the first phase, regarding to total model time. For operational
purposes, the relevant runtime for performance evaluation is due to integration
of the model, since usually is done a 7-day (168-h) weather forecast.

Table 3 lists the runtime obtained, achieved speed-up and parallel efficiency,
considering the total runtime, not only the integration runtime for 168-h weather
forecast, by extrapolating 1-h of integration.

Asymptotically, the overall performance of the model tends to the parallel
performance of the integration phase.

Parallel Performance Analysis 149

Table 2. Parallel performance of BRAMS in SDumont for 1-h weather forecast: analy-
sis based only in integration runtime of the model

Nodes Cores per Total Total Init. Integ. Linear Obtained Efficiency

nodea cores time(s) time(s) time(s) speed-up speed-up

64 16 1024 977 298 679

128 16 2048 652 304 348 2.00 1.95 0.98

256 16 4096 510 330 180 4.00 3.77 0.94

512 16 8192 778 681 97 8.00 7.03 0.88

645 16 10320 665 588 77 10.08 8.83 0.88

670 20 13400 935 868 67 13.09 10.14 0.78
a Physical cores. Hyper-Threading not activated

Table 3. Parallel performance of BRAMS in SDumont for 7-day (168-h) weather
forecast, by extrapolating 1-h runtime: analysis based in total runtime of the model

Nodes Cores per Total Total Init. Integ. Linear Obtained Efficiency

node cores time(s) time(s) time(s) speed-up speed-up

64 16 1024 114452 298 114154

128 16 2048 58702 304 58398 2.00 1.95 0.97

256 16 4096 30590 330 30260 4.00 3.74 0.94

512 16 8192 16913 681 16232 8.00 6.77 0.85

645 16 10320 13519 588 12931 10.08 8.47 0.84

670 20 13400 12123 868 11254 13.09 9.44 0.72

This efficiency is greater than that obtained in the INPE/CPTEC machine,
where efficiency is 58 % for 9600 cores, compared execution time in 1200 cores [8].

The threshold used for that the development code goes into operation, is
20 min a day of integration (24-h weather forecast) [8]. However, by extrapolating
the runtime with 13400 cores, from 1-h to 24-h weather forecast, the estimated
runtime is 1608 s, or 26.8 min. As comparison, in the INPE/CPTEC machine,
using 9600 cores, the runtime was 1180 s, or 19.7 min, for 24-h integration.

4 Final Remarks

According to analysis of the results, it was observed that the BRAMS has very
good scalability in SDumont cluster, It is higher than that obtained in the oper-
ating cluster INPE/CPTEC. Further study is needed to explain the better scal-
ability.

The fact that the two clusters use different interconnecting networks, also
with different topologies, may indicate the possible causes. The SDumont cluster

150 R.P. Souto et al.

has Infiniband FDR interconnection network with fat-tree topology, while the
cluster INPE/CPTEC, a Cray XE6, has proprietary interconnection network
with toroidal topology.

This good scalability, enables the BRAMS as an application with great poten-
tial for use of SDumont cluster in order to solve large computational challenges.

During the first period of tests of the SDumont cluster, as soon as it installed
on LNCC campus, will be made new executions with BRAMS, adopting spatial
resolution higher than 5 km, reaching up to 1 km resolution.

Although the domain of the region to be used is smaller than the one used in
this paper, the problem of size in number of grid points increases significantly.
This will lead to a greater amount of memory required by MPI process.

It is expected that, either because of good relations of 2.7 GB per core, or
then due to the large number of available nodes, the SDumont cluster will be
able to handle weather forecasts with increasing spatial resolution.

Another research, is the use of accelerators, such as massively parallel archi-
tectures, such as GPU and MIC.

It is believed that the time-steps that run the physics of prediction have good
speed-up potential with the use of these architectures.

Acknowledgments. This project is supported by FINEP Brazilian funding agency
(process number 01.14.192.00). The authors would like also to thank to ATOS/BULL
for make available its computing resources in order to adapt BRAMS to run in SDumont
cluster.

References

1. INPE/CPTEC Brazilian developments on the regional atmospheric modelling sys-
tem (1999)

2. Freitas, S.R., Longo, K.M., Silva Dias, M.A.F., Chatfield, R., Silva Dias, P., Artaxo,
P., Andreae, M.O., Grell, G., Rodrigues, L.F., Fazenda, A., Panetta, J.: Atmos.
Chem. Phys. 9(8), 2843–2861 (2009)

3. Pielke, R., Cotton, W., Walko, R., Tremback, C., Lyons, W., Grasso, L., Nicholls,
M., Moran, M., Wesley, D., Lee, T., Copeland, J.: Meteorol. Atmos. Phys. 49(1–4),
69–91 (1992)

4. Cotton, W.R., Pielke Sr., R., Walko, R., Liston, G., Tremback, C., Jiang, H.,
McAnelly, R., Harrington, J., Nicholls, M., Carrio, G., et al.: Meteorol. Atmos.
Phys. 82(1-4), 5–29 (2003)

5. Gropp, W., Lusk, E., Doss, N., Skjellum, A.: Parallel Comput. 22(6), 789–828 (1996)
6. Fazenda, A.L., Panetta, J., Navaux, P., Rodrigues, L.F., Katsurayama, D.M., Motta,

L.F.: Anais do X Simpósio em Sistemas Computacionais (WSCAD-SCC), pp. 27–34
(2009)

7. Fazenda, A.L., Panetta, J., Katsurayama, D.M., Rodrigues, L.F., Motta, L.F.,
Navaux, P.O.: Int. J. High Perform. Syst. Architect. 3(2–3), 87–97 (2011)

8. Fazenda, A.L., Rodrigues, E.R., Tomita, S.S., Panetta, J., Mendes, C.L.: 2012 13th
Symposium on IEEE Computer Systems (WSCAD-SSC), pp. 126–132 (2012)

9. Petitet, A., Whaley, R.C., Dongarra, J., Cleary, A.: HPL - a portable implementation
of the High-Performance linpack benchmark for Distributed-Memory computers

Author Index

Barrios, Carlos J. 19, 89
Brandão, Diego 131

Cabral, Frederico Luís 131
Carreño, Emmanuell D. 50
Castro, Harold 62

da Silva Dias, Pedro Leite 145
de Oliveira, Daniel 3
Díaz, César O. 62
do Nascimento, Tiago Marques 118
dos Santos, Rodrigo Weber 118
Dreher, Matthieu 89
Dufrechou, Ernesto 107

Ezzatti, Pablo 107

Flórez, Edson 19
Forero, César A. 62

Gómez, Carlos E. 62

Hernandez, Monica L. 89

Kischinhevsky, Mauricio 131

Lobosco, Marcelo 118

Marroig, Lucía 34
Mocskos, Esteban 34, 73

Navaux, Philippe O.A. 50
Nesmachnow, Sergio 34

Osthoff, Carla 131

Paes, Aline 3
Pecero, Johnatan E. 19

Quintana-Ortí, Enrique S. 107

Raffin, Bruno 89
Remón, Alfredo 107
Riverón, Camila 34
Roloff, Eduardo 50
Rosales, Eduardo 62

Souto, Roberto Pinto 145

Verghelet, Paula 73
Vigilant, Franck 145

	Preface
	Organization
	Contents
	Grid and Cloud Computing
	Running Multi-relational Data Mining Processes in the Cloud: A Practical Approach for Social Networks
	Abstract
	1 Introduction
	2 Background Knowledge
	3 A Cloud-Based Approach for Running MRDM Analysis in Parallel
	4 Experimental Evaluation
	5 Conclusions
	Acknowledgments
	References

	Methods for Job Scheduling on Computational Grids: Review and Comparison
	Abstract
	1 Introduction
	2 Overview of Job Scheduling Problem in Grid Systems
	2.1 Scheduling Problem in Grid Systems
	2.2 ETC Computational Model
	2.3 Energy Model

	3 Heuristic and Metaheuristic Methods for Job Scheduling in Grids
	3.1 Heuristics of Job Scheduling
	3.2 Metaheuristics of Job Scheduling

	4 Comparison of Scheduling Algorithms
	4.1 Comparative Analysis
	4.2 Analysis of the Highlighted Algorithms

	5 Conclusions and Future Works
	Acknowledgments
	References

	Cloud Computing for Fluorescence Correlation Spectroscopy Simulations
	1 Introduction
	2 Biological Problem Description
	2.1 Fluorescence Correlation Spectroscopy
	2.2 Software Components
	2.3 Related Work

	3 System Architecture for the Cloud
	3.1 Architecture Design and Application Flow
	3.2 Storage
	3.3 Fault Tolerance

	4 Implementation Details
	4.1 Web Role
	4.2 Message Processing Worker Role
	4.3 Job Creation Worker Role
	4.4 HDInsight Cluster
	4.5 MapReduce
	4.6 Load Balancer

	5 Validation and Analysis
	5.1 Load Balancing
	5.2 Parameter Sweep Simulations
	5.3 Fault Tolerance Analysis
	5.4 Autoscaling
	5.5 Experimental Evaluation of a Realistic Simulation

	6 Conclusions
	References

	Porting a Numerical Atmospheric Model to a Cloud Service
	1 Introduction
	2 Related Work
	3 Brazilian Regional Atmospheric Modeling System (BRAMS)
	4 Porting BRAMS to the Cloud
	4.1 Challenges and Solutions
	4.2 System Architecture of BRAMS in the Cloud

	5 Experimental Methodology and Environment
	5.1 Machines

	6 Evaluation Results
	6.1 Performance
	6.2 Network Latency
	6.3 Cloud Operations

	7 Conclusions
	References

	Determining the Real Capacity of a Desktop Cloud
	Abstract
	1 Introduction
	2 Background
	2.1 Desktop Grid/Cloud
	2.2 UnaCloud
	2.3 Performance
	2.4 Cloud Monitoring
	2.5 Metrics
	2.6 SIGAR API
	2.7 Modern Processor Technologies

	3 Related Work
	4 Methodology
	4.1 Monitoring Component Developed
	4.2 Hardware Testbed
	4.3 Data Gathered
	4.4 Data Analysis
	4.5 Limitations

	5 Experimental Setup
	6 Experimental Results
	7 Conclusion and Future Work
	References

	Improvements to Super-Peer Policy Communication Mechanisms
	1 Introduction
	2 Materials and Methods
	3 Results
	3.1 N-SP: N-Random Super Peer
	3.2 A2A-SP: All-to-All Super Peer

	4 Conclusions
	References

	GPU and MIC Computing: Methods, Libraries and Applications
	Asynchronous in Situ Processing with Gromacs: Taking Advantage of GPUs
	1 Introduction
	2 Related Work
	2.1 In Situ Systems
	2.2 Treatments with GPU

	3 Framework Description
	3.1 Gromacs
	3.2 FlowVR
	3.3 Gromacs-FlowVR Interaction
	3.4 Benchmark Framework Description
	3.5 Benchmarks

	4 Experiments
	4.1 Experimental Context
	4.2 Gromacs Native
	4.3 Gromacs Instrumented with FlowVR
	4.4 Gromacs with CPU Analytics
	4.5 Gromacs with GPU Analytics
	4.6 Discussion

	5 Conclusion
	References

	Solving Linear Systems on the Intel Xeon-Phi Accelerator via the Gauss-Huard Algorithm
	1 Introduction
	2 Solution of Linear Systems
	2.1 The LU Factorization
	2.2 The Gauss-Huard Algorithm

	3 Efficient Implementation of GHA on the Intel Xeon Phi Co-processor
	3.1 Experimental Setup
	3.2 Baseline Implementation
	3.3 Improving via Matrix Transposition, GaussHuard_T
	3.4 Using OpenMP, GaussHuard_O
	3.5 Global Evaluation

	4 Concluding Remarks and Future Work
	References

	On a Dynamic Scheduling Approach to Execute OpenCL Jobs on APUs
	1 Introduction
	2 Related Work
	3 OpenCL
	4 Dynamic Scheduling
	5 Numerical Results
	5.1 Benchmark
	5.2 Computational Platform
	5.3 Results

	6 Conclusion and Future Works
	References

	Scientific Computing Applications
	Fine-Tuning Xeon Architecture Vectorization and Parallelization of a Numerical Method for Convection-Diffusion Equations
	1 Introduction
	2 HOPMOC Method
	2.1 1-D HOPMOC Algorithm

	3 Computing Environment
	4 Optimization
	4.1 1-D HOPMOC Algorithm Vectorization
	4.2 Parallelization
	4.3 Data Parallelization
	4.4 DATA Parallelization Performance Evaluation
	4.5 Work Parallelization

	5 Conclusion and Future Work
	References

	Parallel Performance Analysis of a Regional Numerical Weather Prediction Model in a Petascale Machine
	1 Introduction
	2 BRAMS Developments
	3 Results
	4 Final Remarks
	References

	Author Index

