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Abstract. Pattern formation is an important spatio-temporal emergent
behaviour in biology. Mathematical models of pattern formation in the
stochastic setting are extremely challenging to execute and analyse. Here
we propose a formal analysis of the emergent behaviour of stochastic
reaction diffusion systems in terms of Signal Spatio-Temporal Logic, a
recently proposed logic for reasoning on spatio-temporal systems. We
present a formal analysis of the spatio-temporal dynamics of the Bicoid
morphogen in Drosophila melanogaster, one of the most important pro-
teins in the formation of the horizontal segmentation in the development
of the fly embryo. We use a recently proposed framework for statistical
model checking of stochastic systems with uncertainty on parameters
to characterise the parametric dependence and robustness of the French
Flag pattern, highlighting non-trivial correlations between the parameter
values and the emergence of the patterning.

1 Introduction

One of the most fascinating questions in biology is how regular patterns can
emerge from biochemical processes acting at the cellular level, a process known
as morphogenesis in developmental biology. Some evident examples of these pat-
terns can be observed in the stripes of a zebra, the spots on a leopard, the filament
structure of the cyanobacteria Anabaena or the square pattern of the sulfur bac-
teria T. rosea. Mathematical and computational methods hold enormous promise
in the quest to unveil the underlying mechanisms of morphogenesis and repro-
ducing, using computer-based simulations, the patterns observed in nature. Alan
Turing, mostly known as the father of computer science, was also a pioneer in
developing a first mathematical model [28] that provides the chemical basis of
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morphogenesis. This model, also referred as the Turing’s reaction-diffusion sys-
tem, is able to reproduce the formation of some complex patterns in nature such
as the stripes seen in the animal skin.

Formal analysis of how patterns arise from mathematical models is however
challenging due to the high computational burden of spatio-temporal modelling,
as well as the intrinsic difficulty of defining spatio-temporal patterns in a suitable
language. Pattern recognition is generally considered as a branch of machine
learning [6], where patterns are classified according statistical descriptors (or
features) [21] or the structural relationship among them [25]. This approach,
despite its success and popularity, lacks of a rigourous foundation to specify
such patterns and to reason about them in a systematic way. On the other end,
formal methods provide logic-based languages [2,10,17,18] with a well-defined
syntax and semantics to specify in a precise and concise way emergent behaviours
and the necessary techniques to automatically detect them.

Related Work. In the last year, two novel spatio-temporal logics, SpaTeL [18]
and SSTL [10,24] have made their appearance almost at the same time in the
realm of formal methods to specify the emergence of spatio-temporal patterns.

The Spatial-Temporal Logic (SpaTeL) in [18] is the unification of Signal Tem-
poral Logic [23] (STL) and Tree-Spatial-Superposition-Logic (TSSL) introduced
in [2] to classify and detect spatial patterns. TSSL reasons over quad trees, spatial
data structures that are constructed by recursively partitioning the space into
uniform quadrants. TSSL is derived from Linear Spatial-Superposition-Logic
(LSSL) [17], where the notion of superposition provides a way to describe sta-
tistically the distribution of discrete states in a particular partition of the space
and the spatial operators correspond to zooming in and out of particular areas.
In [17] the authors show also that by nesting these operators they are able to
specify self-similar and fractal-like structures that generally characterize the pat-
terns emerging in nature. SpaTeL is equipped with a qualitative (yes/no answer)
and a quantitative semantics that provide a measure or robustness of how much
the property is satisfied or violated. In [18] this measure of robustness is used
as a fitness function to guide the parameter synthesis process for a deterministic
reaction diffusion system using particle swarm optimisation (PSO) algorithms.
However, the authors do not consider stochastic reaction-diffusion systems and
PSO techniques generally do not provide any guarantee for reaching the global
optimum. Hence, in this paper we will adopt a method with proved convergence
guarantees, introduced previously in [3,4] for the system design of stochastic
processes using the robustness of temporal properties.

The Signal Spatio-Temporal Logic (SSTL) [10,24] is the extension of STL [23]
with three spatial modalities, somewhere, everywhere and surround, which can be
nested arbitrarily with the original STL temporal operator. In [10,24], the authors
provide a qualitative and quantitative semantics of SSTL and efficient monitoring
algorithms for both semantics. A more detailed description of SSTL is provided in
Sect. 3. While in this paper we adopt SSTL to specify spatio-temporal patterns,
the overall method for robust parameter synthesis for stochastic reaction diffusion
systems presented here can be performed also using SpaTeL.
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Contribution. In this work, we combine formal methods with statistical
machine learning by presenting a novel analysis of a stochastic model of the
spatio-temporal behaviour of the Bicoid protein in the Drosophila’s Embryo.
The spatial gradient of this molecule has been shown to be at the basis of the
subdivision of the embryo along its main axis, as specific concentration thresh-
olds in its gradient are detected by cells and lead to the expression of distinct
set of target genes.

The main technical contribution of the paper is the combination of SSTL
within the statistical machine learning framework of [4,7–9], in order to efficiently
perform parameter space exploration and system design of spatio-temporal
properties.

From a system biology perspective, instead, we present a detailed spatio-
temporal analysis of the French Flag pattern on the gradient of the Bicoid pro-
tein. This analysis permits novel insights as to how the various model parameters
interact to give rise to the patterning behaviour.

Paper Structure. The rest of the paper is organised as follows. In Sect. 2 we
discuss the spatial pattern formation in the Drosophila embryos. In Sect. 3 we
first recall the syntax and semantics of SSTL and then use it to specify the French
Flag Property. The smoothed model checking and the parameter estimation is
presented in Sect. 4. In Sect. 5, we present the results and we conclude with final
remarks and directions for future work in Sect. 6.

2 Spatial Pattern Formation and the French Flag Model

In this section, we describe a model of segmentation in Drosophila melanogaster
and the spatio temporal pattern characterising it, known as the French Flag
model.

2.1 Pattern Formation and Reaction-Diffusion Systems

Patterning is a ubiquitous feature of biological organisms, and the presence of
regular geometric motifs on many organisms has long fascinated scientists. Pat-
tern formation is also the subject of one of the earliest, and most influential,
computational systems biology works, Alan Turing’s pioneering work on mor-
phogenesis [28]. Turing’s insight was that biological patterns can be viewed as
emergent behaviour (in modern terminology) arising from local interactions of
microscopic agents. More precisely, Turing considered spatially distributed sys-
tems whose local concentration vector u obeys a reaction-diffusion partial dif-
ferential equation (PDE)

∂u
∂t
=D∇2u + f(u). (2.1)

Equation (2.1) defines the time evolution of the local concentration u as the
sum of two terms: a dispersal or diffusion term D∇2u, which globally drives
the system towards a uniform equilibrium, and a reaction term f(u), which
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accounts for local interactions of the chemicals. Turing then proved that, under
certain conditions on the reaction/diffusion parameters, these two counteract-
ing processes could give rise to regular patterns of concentration, providing a
plausible mechanistic model of biological pattern formation.

Turing’s ideas have been empirically demonstrated in many areas of biochem-
istry (see [22] for a recent review), and are still influential in particular in the field
of developmental biology (see e.g. [16] for a recent paper building on these ideas).
The crucial idea in the application of reaction-diffusion systems to development
is that these mechanisms would underpin the local concentration patterns of
regulatory proteins, which would instruct different genetic programs to be exe-
cuted at different spatial locations. These special regulatory proteins are called
morphogens in developmental biology, as they are believed to be responsible for
the establishment of the shape of an organism in higher organisms. One of the
most widely studied models of morphogenesis is the establishment of spatial pat-
terning (stripes) along the body of the fruit fly Drosophila melanogaster. Several
morphogens are known in Drosophila; mostly, these are maternal proteins that
are produced in a localised area of the embryo (in correspondence to a maternal
deposit of messenger RNA), and then establish a concentration gradient during
development, effectively providing cells within an embryo with a spatial refer-
ence. An important morphogen is the protein Bicoid, which is the central object
of study in this paper and is described in detail in the next subsection.

Before closing this whirlwind review of developmental biology, it is worth
remarking on a fundamental shift of perspective that has happened since Tur-
ing’s pioneering work, the realisation of the importance of stochasticity in biol-
ogy. Numerous lines of evidence indicate that biology at the single cell level
is intrinsically stochastic. Stochasticity cannot be ignored when modelling early
embryogenesis, when only a handful of cells are present. Morphogenetic reaction-
diffusion models can therefore be modified to account for the intrinsic discrete-
ness of biology at the microscopic level. The natural analogue, systems of agents
moving in continuous space, is however prohibitively expensive computation-
ally; an approach that is more amenable to analysis is to discretise space into a
number of cells (voxels) which are assumed to be spatially homogenous, and to
replace spatial diffusion with transitions between different cells. Morphogenetic
systems, and in particular the Bicoid system, have already been analysed from
a simulation perspective in [31] and from a statistical perspective in [12]. In this
paper, we present a first analysis of this system from the point of view of (spa-
tio) temporal logic, to analyse directly the system’s behaviour at the level of the
emergent properties of the trajectories.

2.2 The Bicoid Gradient

The Bicoid (Bcd) molecule was the first protein to be identified among the
morphogens. In the Drosophila embryos, the Bcd protein is distributed along
the Anterior-Posterior axis (A-P axis). The Bcd mRNA is translated at the
anterior pole of the embryo, and the synthesised protein spreads through the
A-P axis by diffusion accompanied by decay.
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Fig. 1. A schematisation of the Drosophila embryo volume. The volume is divided in
101 cubic subvolumes, V0, ..., V100, with side l = 5μm.

We will describe the dynamics of the Bcd protein by a stochastic reaction-
diffusion system, as reported in [31]. Given a certain volume where the Bcd
protein is distributed, we can divide it into a series of subvolumes or voxels that
are small enough to be regarded as well mixed. Then, we can consider the decay
reaction as a transition that happens inside the subvolumes and the diffusion as
exchange of molecules between neighbouring voxels. In particular, we consider
101 homogeneous cubic subvolumes with side l = 5μm that comprise the entire
volume as in Fig. 1. The length of the side l and the number of subvolumes were
chosen in light of those of actual Drosophila embryos, which are 500μm long.
The first subvolume (j = 0), corresponds to the anterior pole of the embryo and
it is the only subvolume where the Bcd protein is synthesised.

We can describe the set R of reactions governing the stochastic dynamics of
Bcd as:

νp ∶ ∅ → B0 at rate J, (production)
νdegj

∶ Bj → ∅ at rate w, for j = 0, ...100, (degradation)

νdif+

j
∶ Bj → Bj+1 at rate

D

l2
, for j = 0, ...99, (diffusion to the right).

νdif−

j
∶ Bj → Bj−1 at rate

D

l2
, for j = 1, ...100, (diffusion to the left).

where Bj is a Bcd protein in the jth subvolume.
The state vector of the system is then xB = (xB0 , ..., xB100) where xBj

is the
number of Bcd molecules in the jth subvolume. From the set R we can derive
the infinitesimal generator matrix of the CTMC that formally represents the
dynamics of the system. The CTMC can then be simulated with a standard
algorithm, like SSA or tau-leaping.

Note that, from the set of reactions R, we can easily revert the discretisation
process and obtain a semantics in terms of Reaction-Diffusion Rate Equation
(RDRE). This is obtained by converting variables into concentrations, taking
the length of voxels to zero, and interpreting each rate as a flow, both in the
degradation and in the diffusion reactions. In this way, we can define the system
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∂u

∂t
=D

∂2u

∂y
−wu, (2.2)

where u(y, t) is the concentration of Bcd at time t in position y, measured in
μm, y ∈ [0,500], giving the boundary conditions ∂u

∂y
∣

y=0
= −

J
Δ

and ∂u
∂y
∣

y=500
= 0,

where Δ = l3.

2.3 Segmentation and the French Flag Model

The spatial distribution of the Bicoid protein has a crucial role in the formation of
the horizontal segmentation in the development of the Drosophila’s embryo. One
of the most important interpretations of this distribution is given by the French
Flag model [29], and more generally by the theory of gap genes [19,30]. The
body of the fruit fly Drosophila melanogaster, as in most arthropods, exhibits
a particular type of spatial patterning called segmentation, whereby the main
body is composed of several segments. Gap genes were discovered and named
following mutagenetic experiments, whereby biologists observed that deletion of
certain genes resulted in the omission of a segment in the fly’s body, as if the
mutant organism had a gap. This observation implies that gap genes must be
expressed in a precisely spatially co-ordinated manner, i.e., the biochemistry of
the fruit fly must possess a way of measuring distances.

The French Flag model is a simplified model of gap gene regulation in early
embryogenesis involving only four genes, the Bicoid morphogen protein and three
target genes. The underlying assumption is that the spatial distribution of Bicoid
protein, which as we have seen tends to decrease along the A-P axis (see Fig. 2),
provides the ruler with which the Drosophila embryo measures distances. Gap
genes are activated in a concentration dependent manner by Bicoid, so that a
set of genes are activated at the high concentrations near the anterior part of
the embryo (the blue in the French Flag), a different set of genes is activated
in the central part (the white) and a third set is activated a low concentrations
near the posterior end (red). This model has survived with some modifications
[20] until this day, its beauty providing a paradigm for pattern development
in many areas of biology. From our point of view, this model is particularly
interesting because it refocuses attention from local intensive quantities (local
concentrations) towards the importance of a global emergent property of the
system (the establishment of a gradient), which is ideally suited for reasoning
upon in terms of spatio-temporal logics. We will see in the next section this how
to describe the French Flag pattern using a spatio-temporal logic.

3 Formula Specification of Spatio-Temporal Behaviour

In this section, we describe Signal Spatio-Temporal Logic (SSTL) which will then
be used to specify the spatio-temporal behaviour of the French Flag pattern.
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3.1 Signal Spatio-Temporal Logic

The Signal Spatio-Temporal Logic (SSTL) [10,24] is a linear time logic suitable
to specify spatio-temporal behaviours of traces generated from simulations. It is
an extension of Signal Temporal Logic (STL) [23] with two spatial modalities.

The space is described as a weighted graph G = (L,E,w) where L is a set of
locations, E is a set of edges and w ∶ E → R≥0 is the function that returns the
cost/weight of each edge, typically encoding the distance between two nearby
locations.

The syntax of SSTL is given by

ϕ ∶= true ∣ μ ∣ ¬ϕ ∣ϕ1 ∧ϕ2 ∣ϕ1 UI ϕ2 ∣ 
[w1,w2] ϕ ∣ ϕ1 S[w1,w2]ϕ2,

where the STL operators are the atomic proposition μ, the standard boolean
connectives conjunction and negation and the bounded until operator UI , with
I a dense-real interval. The new spatial operators are the somewhere operator,


[w1,w2], and the bounded surround operator S

[w1,w2], where [w1,w2] is a closed
real interval with w1 < w2. The spatial somewhere operator 


[w1,w2]ϕ requires ϕ
to hold in a location reachable from the current one with a total cost greater than
or equal to w1 and less than or equal to w2. The surround formula ϕ1S[w1,w2]ϕ2,
instead, is true in a location � when � belongs to a subset of locations A, a
region, satisfying ϕ1, such that its external boundary B+(A) (i.e., all the nearest
neighbours of locations in A) contains only locations satisfying ϕ2. Furthermore,
locations in B+(A) must be reached from � by a shortest path of cost between w1

and w2, i.e. they have to be at distance between w1 and w2 from �. There are also
three derivable operators: the eventually operator FI ϕ ∶= true UI ϕ, the always
operator GI ϕ ∶= ¬FI ¬ϕ and the everywhere operator �

[w1,w2]ϕ ∶= ¬
[w1,w2] ¬ϕ
that requires ϕ to hold in all the locations reachable from the current one with
a total cost between w1 and w2.

SSTL is interpreted on spatio-temporal traces x ∶ T×L→ R
n, where T is the

time domain, usually a real interval [0, T ], with T > 0; we can write the trace
as x(t, �) = (x1(t, �),⋯, xn(t, �)), where each xi ∶ T×L→ R, for i = 1, ..., n, is the
projection on the ith coordinate/variable.

Similarly to STL, SSTL has two semantics, the classical boolean semantics
and a quantitative semantics.

The boolean semantics returns true or false depending on whether the trace
satisfies the SSTL property, i.e. (x, t, �) ⊧ ϕ is true if and only if the trace x(t, �)
satisfies ϕ. By convention, the whole trace satisfies a property in location � iff it
satisfies the property at time zero, i.e. (x, �) ⊧ ϕ⇔ (x,0, �) ⊧ ϕ.

The quantitative semantics, instead, returns a real value ρ(ϕ,x, t, �) that
quantifies the level of satisfaction of the formula by the trajectory x at time
t in location �. The absolute value ∣ρ(ϕ,x, t, �)∣ can be interpreted as measure
of the robustness of the satisfaction or dissatisfaction. Furthermore, the sign
of ρ(ϕ,x, t, �) is related to the truth of the formula: if ρ(ϕ,x, t, �) > 0, then
(x, t, �) ⊧ ϕ, and similarly if ρ(ϕ,x, t, �) < 0, then (x, t, �) /⊧ ϕ. The definition
of this quantitative measure ρ is based on [13,14], and it is a reformulation of
the robustness degree of [15]. In accordance with the boolean semantics, the
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quantitative value of the whole trace in location � is given by its value at time
zero, i.e. ρ(x, �) = ρ(x,0, �).

SSTL is equipped with efficient monitoring algorithms for both the boolean
and the quantitative semantics, whose description, together with a formalisation
of the semantics, can be found in [10,24].

3.2 The French Flag Property

To describe the French Flag pattern we have first to define the trajectories that
we want to characterise and its related graph.

Let consider a trace (a simulation) (xB(t))t∈[0,T ] = (xB0(t), ..., xB100

(t))t∈[0,T ] of the Bicoid model described in the previous section, where [0, T ] is
the time domain, with T > 0. We can transform the temporal trace in a spatio-
temporal trajectory defining xB ∶ L × [0, T ] → R s.t. xB(Vi, t) ∶= xBi

(t), where
L = {V0, ..., V100} is the set of locations. The graph G = (L,E,w) of the system is
a one-dimensional graph where each Vi is connected only to Vi−1 and Vi+1, with
w(Vi, Vi+1) = 1, i.e. all the edges have weight equal to 1. The weight between two
arbitrary locations is given by the weight of the shortest path connecting them.

We can now use the logic to specify the French Flag model. As we described
in Sect. 2, this pattern is used to represent the effect of a morphogen in the
expression of different genes, i.e. to represent the correlation between the con-
centration of the morphogen and the activation or repression of other genes.
In particular, the spatial distribution of the morphogen, at the steady state, is
divided in three regions: a blue, a white and a red region, as shown in Fig. 2
(left), that activate different target genes.

We can describe this behaviour with the property

ψflag ∶= ϕblue ∧ϕwhite ∧ϕred (3.3)

ϕblue ∶= �
[0,wblue]

(xB >Kblue − hbw)

ϕwhite ∶= �
[wblue,wwhite]

((xB <Kblue + hbw) ∧ (xB >Kwhite − hwr))

ϕred ∶= �
[wwhite,wmax

(xB <Kwhite + hwr)

(3.4)

The verification of the formula is done in the location V0. (x,V0) ⊧ ψflag

iff it satisfies each subformulae ϕblue, ϕwhite, ϕred; (x,V0) ⊧ ϕblue iff, in all the
locations Vi s.t. w(V0, Vi) ≤ wblue, the number of Bicoid molecules is higher than
Kblue − hbw, i.e. xB > Kblue − hbw. In a similar way we can describe ϕwhite and
ϕred. The meaning of the property is that the spatial distribution of the Bicoid
protein is divided in three regions, the blue, where the xB >Kblue−hbw, the white,
where Kblue + hbw > xB > Kwhite − hwr, and the red, where xB < Kwhite + hwr.
Note that hbw and hwr parameters have the role to relax the thresholds that
define different regions, to properly deal with noise in Bcd expression, we will
discuss this point more in detail in the Sect. 5.1.

At steady state, the concentration of the Bicoid protein is exponentially
distributed along the anterior-posterior (A-P) axis, with higher concentrations
towards the anterior. We can identify the insurgence time of this pattern, and
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if it remains stable, combining the spatial property with temporal operators as
follows:

ψstableflag ∶= F[Tflag,Tflag+δ](G[0,Tend]
ψflag) (3.5)

ψstableflag means that eventually, in a time between Tflag and Tflag + δ, the
property ψflag remains true for at least Tend time units.

4 Methodologies

The main objective of this work is to study the effects of the Bicoid parameters on
the satisfaction of the French Flag property. Exhaustive parameter exploration is
particularly expensive for the model in question, due to the high cost of stochastic
simulation. In this section, we briefly introduce the methodologies that we use
to perform parameter synthesis and model checking in presence of parametric
uncertainty.

4.1 Smoothed Model Checking

The Smoothed Model Checking algorithm [7] relies on the characterisation of the
satisfaction probability of a formula ϕ as a function of the parameters. Given
a CTMC Mθ, whose transition rates depend on a set of parameters θ, the
satisfaction function of ϕ is defined as follows:

f(θ) ≡ p(ϕ = true∣Mθ)

It has been proven in [7] that, if the transition rates of Mθ depends smoothly
on the parameters θ and polynomially on the state of the system, then the
satisfaction function of ϕ is a smooth function of the parameters.

The smoothed model checking approach leverages of the smoothness of the
satisfaction function and transfers information across nearby parameter values.
More specifically, we place a Gaussian Process (GP) prior over the space of pos-
sible functions, and we evaluate the satisfaction function for a set of parameter
values. We then calculate the GP posterior under the light of these observa-
tions, which constitutes analytical approximation to the satisfaction function.
This implies that we can estimate the satisfaction probability at any point in
the parameter space with no additional cost.

The premise is that fewer samples are required to achieve a given level of
accuracy. In the experiments of [7], it has been possible to accurately approxi-
mate the satisfaction function over a wide range of parameters using less than
10 % of the simulation runs required to obtain the same result with exhaustive
parameter exploration. This resulted in a decrease of the total analysis time
nearly by 90 %.
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4.2 Robust Parameter Synthesis

The problem of robust parameter synthesis constitutes of identifying the model
parameters that maximise the robustness of some desired property. According to
the quantitative semantics of SSTL, the robustness value ρ(ϕ,x, t, �) expresses
the level of satisfaction of ϕ by a trajectory x at time t in location �. Since
trajectories are random for a stochastic system, we designate the robustness of ϕ
for a CTMC as a random variable Rϕ. We are therefore interested in maximising
the expected quantitative score:

E[Rϕ] = ∫ ρ(ϕ,x, t, �)p(x)dx (4.6)

where p(x) is the probability density of trajectory x. For a specified time t and
location �, the expectation E[Rϕ] constitutes an objective function, for which
we can obtain noisy estimates by generating samples from the trajectory space
via stochastic simulation.

Since evaluating the expected robustness is computationally expensive, we
employ the Gaussian process optimisation algorithm described in [9]. In short,
the objective function is approximated by a Gaussian Process (GP). The algo-
rithm is initialised with a random grid of points, for each of which E[Rϕ] is
approximated via statistical means. Using these points as a training set, a GP
is used to make predictions regarding the E[Rϕ] value at different parts of the
search space, without exhaustive exploration of the parameter space. We cal-
culate the GP posterior for a set of test points; that involves calculating an
estimate of the expected robustness and its associated variance. The GP optimi-
sation algorithm dictates that the point that maximises the an upper quantile
of the GP posterior is added to the training set, after being evaluated for its
associated robustness via SMC. A high value for the upper quantile at any point
in the parameter space indicates the possibility of an undiscovered maximum
nearby. This feature allows us to direct the search towards areas of the para-
meter space that appear to be more promising. This process is repeated for a
number of iterations, and the training set is progressively updated with new
potential maxima. For a smooth objective function, the algorithm is proved to
converge to the global optimum in [27].

5 Results

In this section, we perform a series of experiments to explore the sensitivity and
robustness of the French Flag property w.r.t. changes in the rates of produc-
tion J and degradation w, and the diffusion rate parameter D. The size of the
cubic subvolumes is known, that is l = 5μm, as it is one of the main modelling
assumptions.

5.1 Experimental Data

Following [26,31], we chose as parameters of the ψstableflag property (3.5), speci-
fied in Sect. 3.2, Tflag = 3950, δ = 10, Tend = 1000, wblue = 35.5, wwhile = 67.5 and
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wmax = 101. The wblue and wwhile parameters mean that the blue area involves
the subvolumes between V0 and V35, the white area extends from volume V36 to
V67, and finally the red one from V68 to V100; the time is in terms of seconds.

In order to fix the thresholds parameters Kblue, Kwhite and hbw,hwr we use
the Bicoid fluorescence concentration at cycle 13 (where the gradient is consid-
ered to be in the steady state) downloaded from the FlyEx database [1]. The
choice of the data follows the analysis doing in [31]. To the best of our knowledge,
all the quantifications of the Bicoid protein in the Drosophila embryo refers to
the measurements of fluorescence concentrations, rather than direct observations
of the Bicoid molecular population. From [31], we define the fluorescence con-
centration I =m×xB , where m is a scaling factor that denotes the fluorescence-
to-molecule ratio. Our approach is to rescale the thresholds reported in terms of
fluorescence concentrations with the m factor.

The data has been given originally in the form of two-dimensional coordinates
paired, the A-P and D-V coordinate, from the central 10% strip. As in [31], we
choose the embryos where the variation inside each spatial subregions is low,
in particular in these embryos the inverse of the spatial exponential coefficient
varied by less that 1%. We have transformed the data so that we have a single
concentration value for each of the 101 discretised locations. Figure 2 depicts the
result. On the left-side figure, we see how the different locations lie within the
areas prescribed by the French Flag property. Although the shape of the data is
apparently negative exponential, there is a considerable amount of noise, which
has to be taken into consideration in terms of the French Flag property. We
therefore define the thresholds in the form regions, rather than strict values. On
the right-side of Fig. 2, we see a magnified version of the figure, where only the
white area is depicted. The majority of the concentrations recorded for volumes
from V36 to V67 are between 60 and 2. In the same way, we can empirically derive
zones of desired concentration levels for the blue and read areas. Therefore we
have Kblue = 45/m, hbw = 15/m, Kwhite = 6/m, and hwr = 4/m.
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Fig. 2. Left: Fluorescence concentrations of the Bicoid protein for 17 embryos during
the cycle 13. Right: The same concentrations in the area between locations 35 and 67,
which define the white area in the French flag property.
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5.2 Optimisation of Expected Robustness

We now explore how the model parameters (including the scaling factor m) can
be tuned to increase the robustness of the French Flag pattern.

We applying the GP optimisation algorithm discussed in Sect. 4.2, for a four-
dimensional space that involves the parameters: w ∈ [0.001,0.01], J ∈ [10,400],
D ∈ [1,40], and m ∈ [0.01,1]. The parameter ranges have been selected so that
the resulting space is a superset of the explored space in [31]. Regarding the
fluorescence-to-molecule ratio in particular, we note that the extremes considered
in [31] have been 0.07 and 0.7.

For each evaluation of the expected robustness, the system has been simu-
lated up to time t = 4000 s, which is when the steady-state is approached accord-
ing to [31]. The robustness expectation has been approximated statistically using
12 simulation runs for each parameter set. The algorithm has been initialised
by 80 evaluations of the objective function at random points; a number of 282
evaluations were performed at points selected by the optimisation process, until
convergence was detected. Convergence has been determined when no significant
improvement of the expected robustness has been observed for 200 iterations.
An improvement is considered significant, if it is more than 1 % increase over
the previously recorded maximum robustness.

In the end, a total of 362 function evaluations have been performed, which
is arguably a small number of samples to explore a four-dimensional space. The
execution times have been 85 min for the initial 80 evaluations, and 263 min for
the actual optimisation process. Stochastic simulations have been performed in
parallel using 12 threads. The experiments have been performed on an Intel®

Xeon® CPU E5-2680 v3 2.50 GHz. The majority of the computational effort
was spent in simulation, despite the fact that only 12 trajectories have been
generated for each parameter set considered. Therefore the idea of reducing the
number of samples by exploiting the smoothness of the objective function has
been a sensible practice.

The values returned by the optimisation process have been: w∗ = 0.0038,
J∗ = 390, D∗ = 32.5, and m∗ = 0.048. The robustness of the optimum returned
has been 2.99, implying that the property is robustly satisfied for the given
solution. In Fig. 3, we present a sample trajectory for the given parameter con-
figuration, and the average of 40 random trajectories, along with the associated
99.8 % confidence bounds. The sample trajectory is plotted against the exper-
imental data that were used to adjust the threshold parameters of the French
Flag property. We see that the optimised model has a behaviour very similar to
the one observed in real-world experiments. However, it appears that the sim-
ulation results are much less noisy, when compared to the actual observations.
This finding is in agreement with the result of [31], where it was argued that
the intrinsic noise as modelled by the stochastic dynamics of the master equa-
tion is not sufficient to explain the variability in the data, i.e. the noise in the
fluorescence measurement as a crucial role that has to be taken into account.
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Fig. 3. Left: Sample trajectory for the parameter configuration that maximises the
robustness of the French Flag property. Right: Average of 40 random trajectories; the
dotted lines indicate the 99.8 % confidence interval.

5.3 Parameter Exploration with Smoothed Model Checking

In this section, we perform a more thorough exploration of the parameter space.
Our objective is to discover dependencies among the parameters, considering
the satisfaction probability of the French Flag property. On that respect, the
fluorescence-to-molecule ratio m is not significant, as this will have an obvious
effect on the thresholds for the property. We fix the fluorescence-to-molecule ratio
m to 0.048, which is the optimal value reported by the optimisation algorithm
in the previous section. The rest of the model parameters, w ∈ [0.001,0.01],
J ∈ [10,400], and D ∈ [1,40], are explored via the smoothed model checking
approach.

During the initialisation step of the algorithm, we have performed 216 evalua-
tions of the satisfaction function of (3.3), for a regularly distributed set of values.
As in the previous section, the satisfaction probability is approximated by statis-
tical model checking using 12 simulation runs for each parameter configuration,
where the system is simulated up to time t = 4000 s.

The duration of this initial statistical model checking process has been nearly
170 min, on an Intel® Xeon® CPU E5-2680 v3 2.50 GHz, using 12 threads in
parallel. The hyperparameter optimisation that is required to tune the GP probit
regression model subsequently required only 20 s, which is a trivial price to pay
compared to the massive simulation cost. The final GP probit regression for a
grid of 4096 points required only 1.2 s. Most importantly, it is only this last cost
that we are required to pay to produce any further estimations of the satisfaction
function.

Figure 4 depicts the satisfaction function for the French Flag property for
parameters θ = {w,J,D}, as this has been approximated by smoothed model
checking. Each of the depicted subfigures shows the satisfaction probability as
function of the production rate J and the diffusion parameter D, for a differ-
ent value of the degradation rate w. Regarding the confidence of the estimated
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probabilities, we report that the 73.6 % of the values are associated with 95 %
confidence intervals of width less than 0.2.

As a general remark, it appears that the manifestation of the gradient pat-
tern, as this is captured by the French Flag property, is associated with a fine
balance among the model parameters. There is a small area in the parameter
space for which the property is satisfied with high probability. As we increase the
decay parameter w however, we observe two behaviour regarding this area: its
size is being increased, and its location is being shifted to the right. This implies
that w is positively correlated with the production rate J . In other words, a par-
ticular ratio between protein production and decay is required for the formation
of the particular pattern. At the same time, increasing the decay rate means
that the formula may be satisfied for a wider range of the diffusion parameter.

It also appears that there is a negative correlation between the production
rate J and the diffusion parameter D. This behaviour is present for the entire
range of w examined, but it tends to become more obvious as w is increased. It
is reasonable to conclude that a simultaneous increase of J and D would destroy
the exponential shape of the Bicoid distribution across space.
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Fig. 4. Emulated satisfaction probability of the French Flag property as function of
θ = {w,J,D}. Each subfigure has the w parameter fixed.

6 Conclusions

We present a framework for the formal analysis under parametric uncertainty
and the robust parameter synthesis of spatio-temporal properties emerging in
a stochastic reaction-diffusion system. These properties are specified using the
spatio-temporal logic SSTL. The framework combines statistical machine learn-
ing techniques based on Gaussian processes with the algorithm for monitoring
SSTL properties.

As a case study, we analyse the occurrence of the French Flag pattern in
the Bicoid gradient, during the development of Drosophila embryo. Analysing
how this property depends on the parameters of the model is challenging due
to the very high computational cost of simulating a spatio-temporal model, and
has only been possible by adopting recent efficient verification techniques that
employ machine learning methodologies [8]. Furthermore, the combination of
these new techniques with SSTL permits exploring behaviours that are extremely
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difficult to express (and monitor) with standard temporal logics, where each
individual location would need to be accounted.

The natural extension of this work is the analysis of more complicated models
and properties, for example adding to this model the proteins of the target
genes related with the spatial distribution of the Bicoid protein, enabling the
study of the spatial dependency between proteins. To be independent from the
spatial approximation, we plan also to consider different discretisation of the
Drosophila’s volume. Another future work could be the consideration of a model
rescale with a random factor that mimics the extrinsic noise due to the fluoresce
measurements. We plan also to extend our previous result in mining temporal
logic properties [5,11] for the spatio-temporal case. Finally, we are considering
an extension of the logic to continuous spaces and we would like to compare the
expressiveness of SSTL with SpaTeL.
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