
Solving General Auxin Transport Models
with a Numerical Continuation Toolbox

in Python: PyNCT

Delphine Draelants(B), Przemys�law K�losiewicz, Jan Broeckhove,
and Wim Vanroose

Department of Mathematics and Computer Science, Universiteit Antwerpen,
Middelheimlaan 1, 2020 Antwerpen, Belgium

{Delphine.Draelants,Przemyslaw.Klosiewicz,Jan.Broeckhove,
Wim.Vanroose}@uantwerpen.be

http://www.uantwerpen.be/applied-mathematics

Abstract. Many biological processes are described with coupled non-
linear systems of ordinary differential equations that contain a plethora
of parameters. The goal is to understand these systems and to predict the
effect of different influences. This asks for a dynamical systems approach
where numerical continuation methods and bifurcation analysis are used
to detect the solutions and their stability as a function of the parame-
ters. We developed PyNCT – Python Numerical Continuation Toolbox
– an open source Python package that implements numerical continua-
tion methods and can perform bifurcation analysis based on sparse linear
algebra. The software gives the user the choice of different solvers (direct
and iterative) and allows the use of preconditioners to reduce the number
of iterations and guarantee the convergence when working with complex
non-linear models.

In this paper we demonstrate the usefulness of the toolbox with a class
of models pertaining to auxin transport between cells in plant organs.We
show how easy it is to compute the steady state solutions for different
parameter values, to calculate how they depend on each other and to
map parts of the solution landscape.

An interactive model development and discovery cycle is key in
bio-systems research. It allows one to investigate and compare differ-
ent model parameter settings and even different models and gauge the
model’s usefulness. Our toolbox allows for such quick experimentation
and has a low entry barrier for non-technical users.

Although PyNCT was developed particularly for the study of trans-
port models in biology, its implementation is generic and extensible, and
can be used in many other dynamical system applications.

Keywords: Continuation methods · Bifurcation analysis · Transport
models · PyNCT

1 Introduction

In recent years, many molecular-genetic experiments have been performed to
increase our insights in how molecular processes in plants work. Due to the
c© Springer International Publishing Switzerland 2015
A. Abate and D. Šafránek (Eds.): HSB 2015, LNBI 9271, pp. 211–225, 2015.
DOI: 10.1007/978-3-319-26916-0 12

212 D. Draelants et al.

restricted set of experiments that can be performed today, the amount of avail-
able experimental data is still limited. For this reason researchers try to expand
their knowledge of biological processes by means of an interaction between exper-
imental research and mathematical modelling.

Formerly, biologists used the available data to mathematically describe the
biological processes (of plants). The incredible amount of uncertainties about
how these systems work gave birth to different hypotheses and, as a result,
different kinds of models with lots of parameters. These models were initially
solved with simple numerical methods for a limited set of parameters.

Today the biological models become very large and complex. Moreover biolo-
gists are interested in understanding the whole solution landscape instead of one
single particular solution. They want to understand the effect of different influ-
ences (parameters) and compare current models based on different hypotheses.
In order to solve, analyse and compare these models, state-of-the-art numerical
methods are necessary. Unfortunately, these methods, solvers and algorithms
are often not easily accessible outside of their application niche. This makes it
difficult for systems biologists to directly apply state-of-the-art numerical mathe-
matics to their specific problems. The end result is a growing demand for software
packages that combine biological models with numerical tools.

We developed a toolbox, PyNCT, that solves and analyses the non-linear cou-
pled systems of equations that appear in a wide range of models for the transport
of chemicals through networks of cells. PyNCT contains numerical continuation
methods and can perform bifurcation analysis in order to find parts of the solu-
tion landscape as a function of the different parameters. The toolbox is based on
sparse linear algebra which enables its users to solve very large systems. With
the resulting simulation tools biologists can now explore, analyse and compare
various models, test new hypotheses,without the need to understand the inner
details of mathematics behind the numerical methods. Although we developed
PyNCT specifically to study transport models, it works well for all dynamical
systems.

The paper is organized as follows. First, in Sect. 2 we give more information
about the application domain. We describe a tissue of cells mathematically, we
present a general class of transport models already implemented in PyNCT, and
we discuss the type of solutions biologists are interested in. We also discuss the
state-of-the-art tools that are currently available. Then, in Sect. 3 we present
the numerical algorithms in PyNCT in detail. Readers who are not interested
in the mathematical details can skip this section. A motivation for the choice
of Python and certain libraries as a basis for the implementation of the toolbox
can be found in Sect. 4. In Sect. 4.2 we explain how to apply the software for the
different types of models and in Sect. 5 we demonstrate it for a specific example,
the model of Smith et al. [18]. Finally in Sect. 6 we conclude and give an outlook.

2 The Application Domain

The PyNCT toolbox has been developed to investigate the response of stationary
solutions of (large) dynamical systems to changes of control parameters. It can

Numerical Continuation Toolbox: PyNCT 213

be used for any model consisting of a system of non-linear equations that are
smooth and continuously differentiable.

In this paper we show the usefulness of our toolbox, using the auxin trans-
port equations of a cell-based plant organ model as a demonstration vehicle. In
Sect. 2.1 we present the mathematical description of a plant tissue of irregular
cells. Based on this we describe a class of concentration-based auxin transport
equations and look at the typical solutions that are of interest. PyNCT is able
to generate solution branches automatically for any model that fits this frame-
work. In Sect. 5 we demonstrate how to do so for a specific auxin transport model
described by Smith et al. [18]. At the end of this section we discuss the current
state-of the-art tools for this and compare them with our tool.

2.1 Auxin Transport Models

Network of Cells. In biology, cell tissues are represented by a graph with
edges and vertices. The edges represent the cell walls of the plant organ and a
cell is then a face in this graph. As a consequence a cell is a vertex in the weak
dual graph G. See Fig. 1 for an example. This dual graph helps us to describe
the tissue mathematically:

– The set of vertices V represents all cells in the tissue and we identify them
with an index i ∈ {1,, n}.

– The set of edges E represents the connections between neighbouring cells. As
a consequence the neighbouring cells of a cell i can be identified as all cells
up to distance 1 from cell i. This subset of cells is denoted with Ni ⊂ V .

– Every edge represents the connection between two neighbouring cells and thus
we can uniquely associate the information about a cell wall with an edge. By
labelling each edge with relevant information about the cell wall (for example
the permeability of the cell wall), we get a weighted graph G.

– In every cell we can define various properties of the cell, such as the concentra-
tion of a specific hormone, protein,.... These are the variables of the models.
We denote m as the number of the state variables per cell.

With the help of this representation of a tissue we can now describe easily
how substances in cells are transported throughout the tissue with a system
of equations.

The System of Equations. The toolbox contains software to easily calculate
solutions for transport models that can be written as follows

ẏi = π(yi)− δ(yi) + D
∑

j∈Ni

(yj −yi) + T
∑

j∈Ni

(νji(y1, ...,yn) − νij(y1,,yn)) . (1)

The vector yi contains the m time-dependent state variables in cell i. For
instance, yi may contain the auxin concentration (m = 1) or both auxin and
PIN-FORMED1 concentrations (m = 2) in cell i. Further, the model consists of

214 D. Draelants et al.

Fig. 1. The large picture shows a typical tissue of cells. The zoomed-in portion details
the cell graph (full black) and its weak dual graph G of cellular connections (dashed
red) (Color figure online).

π, δ, the production and decay functions, respectively, D, a matrix with diffu-
sion coefficients, T a matrix with the active transport parameters and νij the
active transport functions. In our example, we assume active transport functions
that can be expressed as

(νij)l (y1, ...,yn) = ψl(yi,yj)
ϕl(yj)∑

k∈Ni
ϕl(yk)

, for l = 1, ...,m, (2)

where the functions ψl, ϕl depend on the model choices. Many concentration-
based auxin transport models can be written in this form. More information
about this class of models can be found in [7] and in Sect. 5 we demonstrate how
the toolbox works for a specific example.

The Numerical Solutions. The models described above possess an inherent
time-scale separation: the growth hormone dynamics involve short time scales
(of the order of seconds) [4], while changes in cellular shapes and proliferation
of new cells occur on much slower time scales (hours or days) [3]. In order to
determine the distribution of auxin in the plant, it is sufficient to concentrate on
the fast time scale of the hormone transport. Therefore we can assume a static
cell structure and study the plant tissue as a dynamical system where we are only
interested in the steady state solutions of the system and their dependence on the
model parameters. The PyNCT toolbox is designed with sufficient functionality
to calculate those steady state solutions immediately.

Numerical Continuation Toolbox: PyNCT 215

2.2 Current State-of-the-Art Tools

We can divide the current toolboxes that calculate these stationary solutions of
dynamical systems in function of model parameters in two groups: tools based
on dense linear algebra (limited to small tissues) and tools based on sparse linear
algebra routines, which scale to large tissues.

The first group is the largest and well known tools like AUTO [6] and MAT-
CONT [5] belong to this group. Also current new tools, especially developed
for system biologist to investigate and analyse their new biological systems like
Systems biology toolbox for Matlab [15] and Facile [17], heavily rely on dense
linear algebra routines since they are all based on AUTO. The disadvantage of
these tools is that the routines are not scalable to very large systems with many
cells. The number of equations is typically limited to about 500.

An example of the second group is LOCA [14]. LOCA is developed around
sparse linear algebra but it is designed for extremely large systems that need
to be run on HPC infrastructure. LOCA is not easy to use and requires expert
knowledge in C++ and HPC hardware.

Our toolbox is also designed to take advantage of sparse linear algebra but
avoids C++ or HPC knowledge. The solutions of the typical large biological cell-
based systems can be calculated very fast in contrast with existing system biology
tools. Another big advantage of PyNCT compared to LOCA is the usability of
the software. As explained in Sect. 4.2 in more detail, it is very easy to use the
tool for a large class of transport models and even for many other models, only
a routine with the equations must be provided.

3 Currently Available Functionalities

In this section we will explain briefly the main numerical algorithms implemented
in PyNCT. Section 3.1 explains the numerical continuation methods. We also
discuss the related functionalities available in PyNCT. Section 3.2 explains the
principles and applications of bifurcation analysis.

If the reader is not interested in the mathematics under the hood of this
toolbox and only wants to use it as a black box, he/she can skip Sect. 3.1 and
jump to Sects. 4.2 and 5 where we explain how to use the toolbox.

3.1 Numerical Continuation Methods

The idea of continuation methods is to find a curve of approximate solutions y
of a system of non-linear equations

F (y,λ) = 0, (3)

as a function of the parameter vector λ with

F : Rv+w → R
v : (y,λ) �→ F (y,λ) . (4)

216 D. Draelants et al.

Following the implicit function theorem we know that for a non-singular point(
y(0),λ(0)

)
that satisfies F

(
y(0),λ(0)

)
= 0, the solution set F (−1) (0) can be

locally parametrized about
(
y(0),λ(0)

)
with respect to a parameter of λ. This

means that the system of equations F (y,λ) = 0 defines an implicit curve
y (λ (s)) for any parametric curve λ (s) : R → R

w in R
w [1]. To construct such

a curve of subsequent solution points
(
y(i),λ(i)

)
=

(
y(i),λ(i) (s)

)
, continuation

methods use a starting point
(
y(0),λ(0)

)
, a solution of system (3), along with an

initial continuation direction [12]. This starting point is typically a known trivial
solution. An important family of continuation methods are predictor-corrector
schemes. The idea of these algorithms is to predict a new solution point first.
Then, in the corrector step, this predicted point is used as the initial guess for
an iterative method that will converge to the solution up to a given tolerance.
In our toolbox, the predictor step uses the secant method and a given step size
to predict a guess for the next solution point on the curve. The corrector step
improves the guess with Newton iterations.

Newton’sMethod. When applying the above continuation method, we improve
the guess

(
ỹ(i+1), λ̃(i+1)

)
, found in the predictor step with Newton iterations [10]

y(i+1) = ỹ(i+1) −
F

(
ỹ(i+1), λ̃(i+1)

)

F ′
(
ỹ(i+1), λ̃(i+1)

) , (5)

until a sufficiently accurate new solution point
(
y(i+1),λ(i+1)

)
of F is reached.

In every iteration step, the system

J (y,λ) x = −F (y,λ) (6)

is solved, with Jacobian matrix J (y,λ) defined by

J (y,λ)ij =
∂ (F)i
∂ (y)j

(y,λ) (7)

By default in PyNCT we can use a direct or an iterative solver for (6).

– Direct sparse linear solver: Thedirect linear solver fromSciPy (scipy. sparse.
linalg.spsolve) provides excellent performance for moderately sized systems.
At the time of this writing, the solver is a wrapper around either SuperLU or
UMFPack; both mature and widely used sparse direct solver libraries [8].

– Iterative solver: If the size of the system requires the use of an iterative solver,
PyNCT enables the use of Generalized Minimal RESidual (GMRES), a Krylov
based solver, implemented in SciPy. We chose this method because it is very
robust and applicable on all types of linear problems. This is necessary because
continuation methods calculate both the stable and unstable solutions. In
many cases the latter degrades or even destroys convergence of most iterative
solvers.

Numerical Continuation Toolbox: PyNCT 217

Although we only suggest these two linear solvers in PyNCT, SciPy provides
a typical array of iterative solvers based on Generalized Minimal RESidual
(GMRES), Conjugate Gradient (CG), and derived methods. All these meth-
ods can be used easily. More information about such Krylov subspace solvers
can be found in [9] and up-to-date information about the linear solvers available
in SciPy can be found in the SciPy documentation pages1.

Jacobian. A continuation method requires the Jacobian matrix J for the calcu-
lations of the Newton corrections. The Jacobian of cell-based biological systems
with local interactions is a very large sparse matrix. Therefore it is important
to exploit our knowledge about the structure of the Jacobian. By ordering the
variables in the right way it can be divided in different building blocks where
every block represents the derivative of an equation of the model to a variable
representing a substance in each cell. For instance, consider a system of m trans-
port equations for every cell, with n the number of cells and m the number of
unknowns (the different substances in a cell) as described in Eq. (1). The Jaco-
bian then consists of m2 blocks of size n×n if the vector of unknowns is grouped
per substance type. The example available in PyNCT uses this ordering, but it
is possible to order the variables in any way. All these blocks have a sparse
structure because in every equation the changes over time only depend on the
variables in the cell itself and the neighbours up to distance 2.

In the PyNCT toolbox it is possible to choose between using the exact Jaco-
bian or an approximation:

– The Jacobian is calculated exactly by determining the derivatives of the sys-
tem with the use of SymPy, a Python library for symbolic mathematics [19].

– The approximated Jacobian is calculated numerically by using finite differ-
ences. The jth column of the Jacobian matrix is found by a forward difference
scheme

J
(
y(i),λ(i)

)

j
=

F
(
y(i) + εej ,λ

(i)
) − F

(
y(i),λ(i)

)

ε
, (8)

where ej is the jth unit vector and
(
y(i),λ(i)

)
is the ith calculated solution

point on the branch as before.

We chose for forward finite differences because it is a very easy algorithm
and do not need many calculations per iteration. For instance the value of
F

(
y(i),λ(i)

)
is already calculated and saved. The default value for ε is ε =

10−10 but the user can customize it if desired.

Preconditioning. When using iterative methods to solve each Newton step,
we can use a preconditioner to reduce the number of iterations or to guarantee
convergence of the iterative method when working with complex systems [9].

1 http://docs.scipy.org/doc/scipy/reference/sparse.linalg.html.

http://docs.scipy.org/doc/scipy/reference/sparse.linalg.html

218 D. Draelants et al.

Instead of solving the original linear system J (y,λ) x = −F (y,λ) we solve the
preconditioned system

P−1J (y,λ) x = −P−1F (y,λ) , (9)

which is a better conditioned problem, leading to faster convergence of the
Jacobian solve. By choosing the right preconditioner, preconditioned itera-
tive solvers perform better then direct solvers. For problems where the diffu-
sion between the cells dominates traditional preconditioners that approximately
invert the Poisson equation such as incomplete factorizations or multigrid can be
effective. However, when the active transport dominates different preconditioners
need to be developed. This is still an open topic of research.

In PyNCT it is possible to use a preconditioner. Since a good preconditioner
asks specific knowledge about the model, we did not provide any general precon-
ditioners but it can be specified by the user. How this should be implemented is
explained in Sect. 4.2

3.2 Bifurcation Analysis

The study of the relation between the stability of a solution and the parameters of
the corresponding dynamical system is known as (local) bifurcation analysis [16].
Such an analysis identifies the stable and unstable solutions and the bifurcation
points that mark the transitions between them. This is biologically relevant
since it will allow us to predict the patterns that emerge in the time evolution
as the parameters of the model are changed. A bifurcation point is a solution(
y(i),λ(i)

)
of system (3) where the number of solutions changes when λ passes

λ(i). For a complete review of the different types of bifurcation points and their
properties we refer to [16]. The analysis usually leads to a bifurcation diagram
that highlights the connections between stable and unstable branches as the
parameters change. It is useful to track all these solution branches that emerge,
split or end in a bifurcation point which can be done with the help of numerical
continuation methods explained in Sect. 3.1.

Our toolbox contains methods to calculate the stability of a solution point
directly after each point or after calculating the whole solution branch. For the
transport models, we chose to calculate the stability of the solutions as part of
the post-processing since even without the stability information, the continuation
data can be very useful. A great advantage of this choice is that the continuation
data is much faster to compute because calculating the eigenvalues for every
solution point on a branch is very time-consuming.

To calculate the eigenvalues of the Jacobian, we use the ‘eig’ routine in
scipy.linalg based on dense linear algebra, although the Jacobian of transport
models is a sparse matrix (see Sect. 3.1). Typically in transport models, around a
bifurcation point, many eigenvalues cross the imaginary axis. As a consequence,
the sparse routines of scipy.sparse.linalg for calculating eigenvalues fail to

Numerical Continuation Toolbox: PyNCT 219

converge when searching for eigenvalues around zero. Although we are using
dense linear algebra, calculating the stability for moderate system sizes can be
performed in an acceptable time frame by parallelizing calculations with MPI
(using mpi4py2).

Note that if interested in sparse routines, SciPy provides a sparse routine
scipy.sparse.linalg.eigs that can be used easily in PyNCT.

After calculating the eigenvalues of the solution points, the bifurcation points
must be indicated manually. It is then possible to start the continuation again from
these bifurcation points in a new direction to find the branches that emerge. How-
ever, for now PyNCT does not contain methods for automatic branch switching.

4 Overview of Software Structure

4.1 Choice of Language and Libraries

Language. The PyNCT toolbox is implemented in Python. This choice is moti-
vated by a number of factors:

– Python is a flexible language and is well-suited for rapid development. Adapt-
ing model code is straightforward and does not require an edit-compile-link
cycle as does, for instance, C++.

– Python has a low entry barrier. It is easy to learn and to use and thus an
ideal language for less technical users.

– Python has a large standard library with good documentation and a huge
amount of contributed, community-maintained packages. PyNCT uses several
existing libraries that include for example numerical methods so we don’t
have to ‘reinvent the wheel’. More information about the packages included
in PyNCT can be found below.

– Python is an open source programming language and also our software is
freely available.

Numerical Libraries. The numerical part of our toolbox relies substantially
on NumPy [2] and SciPy [8]. The former provides a foundation of linear algebra
primitives in Python. The latter extends it by providing a huge variety of algo-
rithms, solvers and support methods for “all things scientific” in Python. Both
are high-quality, popular and well-documented open source libraries.

To enhance both speed and accuracy of the calculations we use symbolic
expressions for the specification of the equations in the biological model and
automatic differentiation to obtain the exact Jacobian expression. SymPy[19], a
Python library for symbolic mathematics, is an excellent tool for these purposes
in our case. The use of symbolic expressions, however, depends on the biological
model under investigation and is not universally feasible for all applications

2 https://pypi.python.org/pypi/mpi4py.

https://pypi.python.org/pypi/mpi4py

220 D. Draelants et al.

(Remark that as mentioned in Sect. 3.1 also the approximated Jacobian can be
used if the user can’t or don’t want to use SymPy).

Other Libraries. The infrastructure for loading and storing virtual tissue rep-
resentations and generating tissue geometries is provided by the Python Plant
Tissue Simulation toolbox PyPTS [11]; an open source library. PyPTS uses
a HDF5 based file format to store simulation results which makes pre/post-
processing, visualisation and exchanging results with other tools such as Virtu-
alLeaf [13] easy. It also provides an easy API for accessing and modifying tissue
entities and attributes.

4.2 The Executable

When using the toolbox for a specific model, the system of equations must be
specified.

For a specific class of transport models, the toolbox can be used by just
providing the equations and parameters in configuration files (see Sect. 5 for an
example).

For all other models a new class must be constructed. The class must contain
an initialize method and a method that applies your system of equations. Addi-
tionally we also need a configuration file similar to the ones constructed for the
transport models and explained in Sect. 5. It contains the parameter values of
the model and the specifications of the numerical methods. At last an executable
script, similar to the biology demo is necessary to start up the continuation. The
PyNCT package already includes a basic template for this class, the executable
and the configuration file which makes it very easy to start implementing your
own model.

To extend this basic template, you can define an extra method that constructs
the Jacobian in a given point. You can define an exact or an approximate Jaco-
bian that differs from the standard approximation method described in Sect. 3.1.
Then you can choose between the different Jacobian implementations to solve
the Newton iterations. It is also possible to specify a preconditioner in this class
to speed up the convergence to a solution point.

5 A Look at the Toolbox via an Example

In this section we show how easy it is to use the toolbox and find parts of the
solution space of the model of Smith et al. [18]. The model satisfies Eqs. (1) and
(2) and features 2 state variables per cell, namely the indole-3-acetic acid (IAA)
concentration, ai(t), and the PIN-FORMED1 (PIN1) amount, pi(t). The model
features IAA production, decay, active and passive transport terms, whereas for
PIN1 only production and decay are included. This results in the following set

Numerical Continuation Toolbox: PyNCT 221

of coupled non-linear ordinary differential equations (ODEs)

dai

dt
=

ρIAA

1 + κIAAai
− μIAAai +

D

Vi

∑

j∈Ni

lij
(
aj − ai

)

+
T

Vi

∑

j∈Ni

[

Pji(a,p)
a2
j

1 + κTa2
i

− Pij(a,p)
a2
i

1 + κTa2
j

]

,

(10)

dpi
dt

=
ρPIN0 + ρPINai

1 + κPINpi
− μPINpi, (11)

for i = 1, ..., n with n the number of cells. In this model D is a diffusion coefficient,
Vi is the cellular volume, lij = Sij/(Wi + Wj) is the ratio between the contact
area Sij of the adjacent cells i and j, and the sum of the corresponding cellular
wall thicknesses Wi and Wj . In addition, T is the active transport coefficient
and Pij is the number of PIN1 proteins on the cellular membrane of cell i facing
cell j,

Pij(a,p) = pi
lij exp (c1aj)∑

k∈Ni
lik exp (c1ak)

. (12)

More details on the model and the parameters can be found in [18].
The rest of the section is divided in three parts, the preparation, the actual

calculations and the post-processing. In these sections we explain step by step
how to find the steady state solutions starting from the above model.

5.1 Preparing for Continuation

Before we can calculate the solutions, we need to specify the model and choose
from several solution methods implemented in PyNCT. Therefore we fill in a
model file and a parameter file respectively.

The Model File. In the model file each part of the system (production, decay,
diffusion, ...) is listed. For example for the model of Smith et al. this file becomes

1 {
2 "decayPIN": "muPIN*p",
3 "productionPIN": "(rhoPIN0 + rhoPIN * a) / (1.0 + kPIN * p)",
4 "decayIAA": "muIAA*a",
5 "productionIAA": "rhoIAA / (1.0 + kIAA * a)",
6 "passive_transport": "D * wall_length * (a_j - a_i)",
7 "phi": "wall_length*exp(c1*a_j)",
8 "psi": "p*a_i **2/(1.0+ kT*a_j **2)"
9 }

The Parameter File. In the parameter file we specify all parameters that
are necessary to perform the continuation. This includes the model parame-
ters, information about the tissue, the solvers, the continuation and the saving
process.

222 D. Draelants et al.

In this example, we consider a tissue with 742 irregular prismic cells that
cover an almost-circular domain (geometry extracted from [13]) with free bound-
ary conditions [7]. We choose as continuation parameter the model parameter
T , and the trivial solution of this model in T = 0 as the starting point. We also
specify a directory and file name to save the continuation data. A part of the
parameter file reads

1 {
2 "input": "./ location/of/cells_742.h5",
3 "output": "./ location/of/continuation.h5",
4 "rhoIAA": 1.500,
5 "D": 1.000,
6
7 ...
8
9 "T": 0.0,

10 "startpoint": "value",
11 "startpoint_a": "(-1.0 + sqrt (1.0 + 4.0* kIAA*rhoIAA/muIAA))/(2.0* kIAA)",
12 "startpoint_p": "(-1.0 + sqrt (1.0 + 4.0* kPIN*(rhoPIN0 + rhoPIN*a) /muPIN

))/(2.0* kPIN)",
13
14 ...
15 }

More information and examples of both the model file and the parameter
file, can be found in the demos directory of the PyNCT toolbox.

5.2 Executing the Continuation

After specifying all parameters in the correct files, we can start the continuation
by calling the ‘doContinuation’ method.

from pynct . b i o l ogy import doContinuation
doContinuation . doContinuation (’ / l o c a t i o n / o f / parameterFi l e . j son ’ ,

’ / l o c a t i o n / o f /modelFi le . j son ’)

Every solution point is saved immediately after it is calculated in the specified
output file. This method has the advantage that we can already start with the
post processing before all points are calculated.

5.3 Post-processing

In the PyNCT biology demo, we already included two functionalities necessary
for post-processing the calculated data. We can determine the stability properties
of the solutions and we can visualize the solutions.

The Stability. The stability of the solutions on a continuation branch is deter-
mined with the function calculateEigenvaluesMpi in PyNCT.

from pynct . b i o l ogy import ca l cu la teE igenva luesMpi
ca l cu la teE igenva luesMpi . main ()

This function calculates the eigenvalues and saves them in a specified file.
More information can be found in Sect. 3.2.

Numerical Continuation Toolbox: PyNCT 223

Plotting Tools. In order to process and interpret the calculated data in plant
biology, it is very useful to visualize it. Although many tools already exist for
plotting data, we added a number of basic functions in the PyNCT demo specif-
ically aimed at visualizing continuation data from biological systems.

All plotting tools are implemented in the file ‘plottools.py’ which there-
fore needs to be imported. We can plot bifurcation diagrams with or without the
stability of the calculated solutions and all the solution patterns. The functions
work by just specifying the right data files. For example, the following code gives
an interactive plot with the bifurcation diagram and a corresponding solution
pattern.
from pynct . b i o l ogy import p l o t t o o l s
p l o t t o o l s . b i fD iag ramInte rac t i v e (’ / l o c a t i o n / o f / cont inuat i on . h5 ’)

We can change the highlighted solution point and thus the solution pattern
interactively. Figure 2 displays such a plot where also the stability propertiees
are shown.

Fig. 2. Bifurcation diagram and corresponding solution pattern for the Smith et al.
model for an almost-circular domain of 742 irregular cells (geometry taken from [13]).
Left: An example of a bifurcation diagram that depicts the 2-norm of auxin concentra-
tion versus the continuation parameter T . Stable solutions are drawn with a full line
and unstable solutions are dashed. Right: The solution pattern corresponding with the
red dot on the left figure (Color figure online).

The bifurcation diagram shows the norm over all cells of IAA versus the
continuation parameter T . As in the figure, we can highlight one solution point
on the continuation branch. The distribution of IAA in the tissue in this solution
point is then automatically displayed at the right in the figure. The darker the
cell is coloured, the higher the concentration of the unknown (IAA).

More information about the plotting tools and how to use them can be found
in the PyNCT biology demo.

224 D. Draelants et al.

6 Conclusion and Future Directions

We presented the Python Numerical Continuation Toolbox PyNCT, an open
source library. The toolbox contains different state-of-the-art numerical algo-
rithms for numerical continuation and is able to calculate the stability properties
of the solutions.

The methods can be applied on coupled non-linear (smooth and continu-
ously differentiable) equations and specifically on models describing the trans-
port throughout a network of cells. For general models the system must be
implemented in a new class but for a subset of concentration-based transport
models (those models that satisfy Eqs. (1) and (2)) only a specification of the
model parts in a configuration file is necessary. In the future we want to extend
the class of models that can be analysed automatically.

The numerical methods implemented in PyNCT are based on sparse linear
algebra since biological processes can be described often by just describing what
happens in the direct neighbourhood. Therefore solutions can be calculated effi-
ciently. Further there is no limitation on the number of unknowns or the size
and shape of the tissue. These are the main advantages and differences of our
toolbox in comparison with existing tools for system biologists.

PyNCT helps us to explore parts of the solution space. We can calculate
a branch of solutions and determine the stability of each solution. Based on
this information, we identify bifurcation points and calculate new branches that
emerge. However, in the future we will include a method that detects the bifur-
cation points and performs automatic branch-switching.

Finally our toolbox allows quick experimentation and has a low entry barrier
for less technical users. Biologists can now compare various transport models
and explore different hypotheses very easily.

Acknowledgements. DD acknowledges financial support from the Department of
Mathematics and Computer Science of the University of Antwerp. This work is part
of the Geconcerteerde Onderzoeksactie (G.O.A.) research grant “A System Biology
Approach of Leaf Morphogenesis” granted by the research council of the University of
Antwerp. We acknowledge Giovanni Samaey for sharing basic version of a continuation
code.

References

1. Allgower, E., Georg, K.: Numerical Path Following. Springer, Berlin (1994)
2. Ascher, D.: Numpy, Numerical Python (2001). http://www.numpy.org/. Accessed

June 2015
3. Beemster, G., Baskin, T.: Analysis of cell division and elongation underlying the

developmental acceleration of root growth in arabidopsis thaliana. Plant Physiol.
116, 515–526 (1998)

4. Brunoud, G., Wells, D., Oliva, M., Larrieu, A., Mirabet, V., Burrow, A., Beeckman,
T., Kepinski, S., Traas, J., Bennett, M., et al.: A novel sensor to map auxin response
and distribution at high spatio-temporal resolution. Nature 482, 103–106 (2012)

http://www.numpy.org/

Numerical Continuation Toolbox: PyNCT 225

5. Dhooge, A., Govaerts, W., Kuznetsov, Y.A.: Matcont: a matlab package for numer-
ical bifurcation analysis of odes. ACM Trans. Math. Softw. (TOMS) 29(2), 141–164
(2003)

6. Doedel, E.J.: Auto: A program for the automatic bifurcation analysis of
autonomous systems. Congr. Numer. 30, 265–284 (1981)

7. Draelants, D., Avitabile, D., Vanroose, W.: Localized auxin peaks in concentration-
based transport models of the shoot apical meristem. J. R. Soc. Interface 12(106)
(2015). http://rsif.royalsocietypublishing.org/content/12/106/20141407.full

8. Jones, E., Oliphant, T., Peterson, P., et al.: SciPy: open source scientific tools for
Python (2001). http://www.scipy.org/. Accessed June 2015

9. Kelley, C.T.: Iterative methods for linear and nonlinear equations. SIAM: Frontiers
in Applied Mathematics 16 (1995)

10. Kelley, C.T.: Solving Nonlinear Equations with Newton’s Method, vol. 1. Society
for Industrial and Applied Mathematics, Philadelphia (2003)

11. K�losiewicz, P.: Pypts, python plant tissue simulations (2015). https://pypi.python.
org/pypi/PyPTS/. Accessed June 2015

12. Krauskopf, B., Osinga, H., Galán-Vioque, J.: Numerical Continuation methods for
Dynamical Systems. Springer, Netherlands (2007)

13. Merks, R., Guravage, M., Inzé, D., Beemster, G.: Virtualleaf: an open-source frame-
work for cell-based modeling of plant tissue growth and development. Plant Physiol.
155(2), 656–666 (2011)

14. Salinger, A.G., Bou-Rabee, N.M., Pawlowski, R.P., Wilkes, E.D., Burroughs, E.A.,
Lehoucq, R.B., Romero, L.A.: Loca 1.0 library of continuation algorithms: the-
ory and implementation manual. Sandia National Laboratories, Albuquerque, NM,
Technical Report No. SAND2002-0396 (2002)

15. Schmidt, H., Jirstrand, M.: Systems biology toolbox for matlab: A computational
platform for reasearch in systems biology. Bioinformatics Advance Access (2005)

16. Seydel, R.: Practical Bifurcation and Stability Analysis: From Equilibrium to
Chaos, vol. 5. Springer, New York (1994)

17. Siso-Nadal, F., Ollivier, J.F., Swain, P.S.: Facile: a command-line network compiler
for systems biology. BMC Syst. Biol. 1(1), 36 (2007)

18. Smith, R., Guyomarc’h, S., Mandel, T., Reinhardt, D., Kuhlemeier, C.,
Prusinkiewicz, P.: A plausible model of phyllotaxis. PNAS 103(5), 1301–1306
(2006)

19. SymPy Development Team: SymPy: Python library for symbolic mathematics
(2014). http://www.sympy.org

http://rsif.royalsocietypublishing.org/content/12/106/20141407.full
http://www.scipy.org/
https://pypi.python.org/pypi/PyPTS/
https://pypi.python.org/pypi/PyPTS/
http://www.sympy.org

	Solving General Auxin Transport Models with a Numerical Continuation Toolbox in Python: PyNCT
	1 Introduction
	2 The Application Domain
	2.1 Auxin Transport Models
	2.2 Current State-of-the-Art Tools

	3 Currently Available Functionalities
	3.1 Numerical Continuation Methods
	3.2 Bifurcation Analysis

	4 Overview of Software Structure
	4.1 Choice of Language and Libraries
	4.2 The Executable

	5 A Look at the Toolbox via an Example
	5.1 Preparing for Continuation
	5.2 Executing the Continuation
	5.3 Post-processing

	6 Conclusion and Future Directions
	References

