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Preface

The 4th International Workshop on Hybrid Systems Biology (HSB 2015) was held
during September 4–5, 2015, at the Facultad de Matemáticas, Universidad Com-
plutense de Madrid.

HSB 2015 was co-located with the week-long Madrid Meet 2015, which also hosted
CONCUR 2015, QEST 2015, and FORMATS 2015, among other scientific events.
Previous editions of the HSB Workshops were held in Newcastle upon Tyne (UK, with
CONCUR 2012), Taormina (IT, within ECAL 2013), and Vienna (AT, within VSL
2014).

The scope of the HSB 2015 workshop has broadened since the earlier editions, and
now covers the general area of dynamical models in biology. HSB 2015 retained the
emphasis on hybrid approaches – by no means restricted to a narrow class of mathe-
matical models – and in particular stressed the importance of taking advantage of
techniques developed separately in different areas. Topics featured at the workshop
included models of metabolic, signaling, and genetic regulatory networks; models of
tissues; biological applications of quantitative and formal analysis techniques; para-
metric and non-parametric system identification techniques; efficient techniques for
combined and heterogeneous simulations of biological models; modeling languages for
biological systems; models coping with incomplete and uncertain biological informa-
tion; stochastic and hybrid models in biology; hierarchical approaches for multi-scale,
multi-domain analysis; abstraction, approximation, discretization, and model reduction
techniques; control architectures in biological systems; and modeling and synthesis for
synthetic biology.

HSB 2015 was a packed two-day event, featuring invited talks, single-track regular
podium sessions, and an interactive session with posters and software tool demos. We
hosted about 40 registered participants, plus two invited speakers, and a constant inflow
of attendees from other co-located events at Madrid Meet 2015. The 30-minute con-
tributed talks were of high quality and the participation lively, interactive, and
stimulating.

In all, 46 Program Committee (PC) members helped to provide at least four reviews
(with in some cases up to six) of the submitted contributions, out of which 13
high-quality articles were accepted to be presented during the single-track sessions, and
appear (possibly after further feedback from a shepherding process by the PC mem-
bers) as full papers in these proceedings. The articles were bundled in four thematic
sessions, which is reflected in the organization of these proceedings: statistical analysis;
analysis and verification of continuous and hybrid models; quantitative analysis of
biological models; and application of advanced models on case studies. In the after-
noon of the first day we also hosted a poster/demo session, with 11 presentations, of
which five with interactive tool demonstrations.

A highlight of HSB 2015 was the presence of two high-profile invited speakers,
whom we selected also in view of the breadth of the event: computer sciences and



control and dynamical systems; theoretical work and laboratory experiments. Luca
Cardelli, principal researcher at Microsoft Research Cambridge (UK) and Royal
Society research professor at the Department of Computer Science, University of
Oxford (UK), gave a seminar titled “Morphisms of Reaction Networks.” Mustafa
Khammash, professor of Control Theory and Systems Biology at the Department of
Biosystems Science and Engineering at ETH Zürich (CH), gave a talk titled “Cyber-
genetics: Synthetic Circuits and Systems for the Precise Control of Living Cells.”

Further details on HSB 2015 are featured on the website: http://hsb2015.fi.muni.cz
Finally, a few words of acknowledgment are due. Thanks to David de Frutos Escrig

and to Fernando Rosa Velardo (UCM, Spain) for the supportive and can-do attitude, as
well as the local seamless organization of the Madrid Meet 2015. Thanks to Springer
for hosting the HSB proceedings in its Lecture Notes in Bioinformatics, a sub-series of
Lecture Notes in Computer Science. Thanks to Luca Bortolussi and Ezio Bartocci from
the Steering Committee of HSB for support and encouragement, to all the PC members
and additional reviewers for their work in ensuring the quality of the contributions to
HSB 2015, and to all the participants for contributing to this memorable event.

September 2015 Alessandro Abate
David Šafránek
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Cybergenetics: Synthetic Circuits and Systems
for the Precise Control of Living Cells

Mustafa Khammash

Department of Biosystems Science and Engineering, ETH Zürich

In his 1948 book, Cybernetics, Norbert Wiener put forth a vision in which the study of
control and communication in the animal and the machine are unified. The field of
Cybernetics-translated from the Greek as “the art of steering” – was thus born. Pre-
dating the discovery of the structure of DNA and the ensuing molecular biology
revolution, cybernetic applications in the life sciences at the time were limited. More
than 65 years later, the convergence of powerful genetic manipulation techniques,
novel measurement technologies for measuring cellular constituents, and actuation
tools for affecting cellular events is enabling a new area of research in which control
theoretic ideas are used for regulating cellular processes at the gene level. To highlight
the genetic aspects of this research and in keeping with Wiener’s vision, we refer to this
area as Cybergenetics.

This presentation describes several cybergenetic applications in which the analysis,
design, and implementation of control systems in living cells is achieved. Using
computer control coupled with optogenetic and flow cytometry technologies, we show
that automated feedback loops can achieve precise and extremely robust control of
gene expression in living cells. We then demonstrate that biomolecular controllers can
be realized entirely inside living cells and then used to achieve autonomous regulation
of gene expression.

Finally, we present a new control theory for the integral control of gene expression
in a stochastic setting. We show that such stochastic integral control utilizes just a few
molecules to achieve robust steady-state tracking and perfect adaptation and, remark-
ably, that it leads to closed-loop systems that are more robust than their deterministic
counterparts.



Morphisms of Reaction Networks

Luca Cardelli1,2

1 Microsoft Research, Cambridge
2 Department of Computer Science, University of Oxford

The mechanisms underlying complex biological systems are routinely represented as
networks. Network kinetics is widely studied, and so is the connection between net-
work structure and behavior. But it is the relationships between network structures that
can reveal similarity of mechanism.

We define morphisms (mappings) between reaction networks that establish struc-
tural connections between them. Some morphisms imply kinetic similarity, and yet
their properties can be checked statically on the structure of the networks. In particular
we can determine statically that a complex network will emulate a simpler network: it
will reproduce its kinetics for all corresponding choices of reaction rates and initial
conditions. We use this property to relate the kinetics of many common biological
networks of different sizes, also relating them to a fundamental population algorithm.
Thus, structural similarity between reaction networks can be revealed by network
morphisms, elucidating mechanistic and functional aspects of complex networks in
terms of simpler networks.

In recent joint work, we established a correspondence between network emulation
and a notion of backward bisimulation for continuous systems. An emulation mor-
phism establishes a bisimulation relation over the union of two networks, and a
bisimulation relation over a network can be seen as an emulation morphism from the
full network to the reduced network of its equivalence classes. Along this correspon-
dence, we obtain minimization algorithms for chemical reaction networks, which are of
interest for model execution, and algorithms to discover morphisms between networks,
which are of interest for model understanding.

References

1. Cardelli, L.: Morphisms of reaction networks that couple structure to function. BMC Syst.
Biol. 8(1), 84 (2014)

2. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Forward and backward bisimu-
lations for chemical reaction networks. In: Aceto, L., de Frutos Escrig, D. (eds.) 26th Inter-
national Conference on Concurrency Theory (CONCUR 2015), volume 42 of Leibniz
International Proceedings in Informatics (LIPIcs), pp. 226–239, Dagstuhl, Germany (2015).
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik
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Reconstructing Statistics of Promoter
Switching from Reporter Protein

Population Snapshot Data

Eugenio Cinquemani(B)

INRIA Grenoble – Rhône-Alpes, 655 Avenue de L’Europe, Montbonnot,
38334 Saint-Ismier CEDEX, France
eugenio.cinquemani@inria.fr

Abstract. The use of fluorescent reporter proteins is an established
experimental approach for dynamic quantification of gene expression
over time. Yet, the observed fluorescence levels are only indirect mea-
surements of the relevant promoter activity. At the level of population
averages, reconstruction of mean activity profiles from mean fluorescence
profiles has been addressed with satisfactory results. At the single cell
level, however, promoter activity is generally different from cell to cell.
Making sense of this variability is at the core of single-cell modelling,
but complicates the reconstruction task. Here we discuss reconstruction
of promoter activity statistics from time-lapse population snapshots of
fluorescent reporter statistics, as obtained e.g. by flow-cytometric mea-
surements of a dynamical gene expression experiment. After discussing
the problem in the framework of stochastic modelling, we provide an
estimation method based on convex optimization. We then instantiate
it in the fundamental case of a single promoter switch, reflecting a typi-
cal random promoter activation or deactivation, and discuss estimation
results from in silico experiments.

Keywords: Identification · Gene regulatory networks · Doubly
stochastic process

1 Introduction

Gene expression dynamics and regulatory interactions have been the object of
intensive study in the last decades. Mathematical modelling of gene expression
dynamics profits from a variety of experimental monitoring techniques, allowing
one to quantify the activity of one or several genes of interest over time. Among
these, fluorescent or luminescent reporter protein techniques have proven to be
an extremely valuable approach [11]. The principle of these techniques is to place
the coding sequence of light-emitting reporter proteins under the control of the
promoter of the gene of interest, so that, when the gene is expressed, new reporter
molecules are synthesized and can be quantified via light detection techniques.

In a deterministic setting, reporter proteins have been used with success
for the inference of regulatory interactions in bacteria and simple eukariotes
c© Springer International Publishing Switzerland 2015
A. Abate and D. Šafránek (Eds.): HSB 2015, LNBI 9271, pp. 3–19, 2015.
DOI: 10.1007/978-3-319-26916-0 1



4 E. Cinquemani

(see [1,23,28] and references). However, fluorescence (or luminescence) levels
provide only an indirect quantification of promoter activity. In dynamical con-
ditions, it is being recognized that equating fluorescence levels with promoter
activity may lead to serious errors in the inference of regulatory interactions [28],
and efforts have been dedicated to the problem of reconstructing promoter activ-
ity from the observed population-average fluorescence levels (see e.g. [36]).

In a single cell framework, where stochastic fluctuations of gene expression
are of crucial importance [7,22,31], estimation of stochastic models of gene reg-
ulation is enabled by the most recent single-cell monitoring techniques, pro-
viding either time correlation [30,32,35] or population statistics [9,17,34] of
gene expression in single cells. However, the intrinsic complexity of the prob-
lem has so far limited results to the estimation of unknown model parame-
ters [9,14,29,34] or the selection of a best model among small pools of alternative
model structures [18].

Nonetheless, it is reasonable to expect that accounting for stochasticity is
not only necessary to make sense of single-cell data [12], but it may also provide
a boost for the inference of unknown regulatory interactions [4], as much as
random effects are known to help parameter estimation [17].

Toward this goal, similar to the deterministic setting, a key problem is the
reconstruction of the promoter activity statistics from population snaphot data,
i.e. statistics of reporter abundance in biological samples from the cell population
collected at different points in time. Different from the deterministic setup, where
linear ODEs trivially relate reporter mean profile with mean promoter activity,
recovery of promoter statistics turns out to be hardly solved by linear inversion
(i.e. deconvolution [36]) methods unless the laws governing promoter activity are
deterministic and known to a certain extent.

In a companion paper [3], we have considered a random telegraph model
[22,29] of reporter gene expression, whereby synthesis of new reporter molecules
is turned on and off in accordance with a switching process describing the pro-
moter state (active or inactive). Under the assumption of fixed switching rates,
we have addressed the identifiability of the model parameters, and started look-
ing at the reconstruction of promoter statistics via deconvolution methods.

Here, in the same modelling framework, we instead focus on the case where
the laws governing the switching of the promoter are completely unknown, which
is by definition the case in the context of interaction network inference, and
address the following problem.

Objective: Reconstruct promoter activity statistics from reporter protein pop-
ulation snapshot data, without assumptions on the laws governing promoter
switching.

Different from e.g. [6,13,20], where gene expression profiles of individual
cells are used to reconstruct single-cell promoter activities via nonparametric
noise approximations, the problem addressed here is therefore the estimation
of promoter activity statistics over a cell population from the distribution of
reporter abundance in different samples of the same population collected at
different times. This data is rather straightforward to produce, e.g., via flow
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cytometry experiments. Nonparametric modelling is used in our approach for
the unknown statistics of promoter activation and deactivation, whereas the
stochastic transcription and translation kinetics triggered by promoter activation
are modelled in detail.

Developed in the paper are methods to retrieve from experimental data the
necessary biological information to address the problem of stochastic network
inference. Because variability is fundamental in single-cell regulation, we are
especially interest in second-order moments of promoter activity. In particular,
time-correlation (autocovariance function) naturally embeds infomation on the
underlying process dynamics [15] and is therefore sought. Network inference itself
is instead not addressed here, and will be the object of later work (see [19] for a
recent work on the topic).

In the next section we present the modelling framework for random reporter
gene expression and population snapshot data. In Sect. 3 we present the inference
method proposed and simulation results showing its performance in a fundamen-
tal case study. Conclusions and perspectives of the work are drawn in Sect. 4.

Notation. For a generic matrix M , Mc denotes its cth column, Mr,c its element
of row r and column c, MT its transpose. For generic random variable X and
event A, E [X] denotes expectation of X and E [X|A] its conditional expectation
given A.

2 Modelling Reporter Expression Dynamics

Synthesis of reporter protein molecules, discussed in Sect. 2.1 below, can be
described by standard gene expression models in terms of transcription of mRNA
molecules and their subsequent translation into protein molecules. This is often
completed by a maturation step, that takes newly synthesized proteins into their
visible form. For the sake of this work, we will not distinguish between immature
and mature state. This constitutes no loss of generality for reporters taking a
fixed time to mature. Otherwise, generalization of our work is pretty straight-
forward. Mathematical modelling of the monitoring of reporter gene expression
is discussed in the subsequent Sect. 2.2. We consider population snapshot data,
e.g. reporter fluorescence measured at different times of a dynamical experi-
ment in different cell samples from a common population. This data can be
easily obtained e.g. via flow cytometry (as considered e.g. in [17,34]), though
our results are of wider applicability.

2.1 Stochastic Modelling of Gene Expression

Let M and P denote the (reporter) mRNA and protein species, respectively.
Gene expression is often described in terms of the reaction system

∅ km·f−−−→ M M
dm−−→ ∅ (1)

M
kp−→ M + P P

dp−→ ∅ (2)
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Here f is a deterministic, possibly continuous profile common to all cells of
a population (see e.g. [16,17,32,34]) that captures the overall activity of the
relevant promoter. For the specified profile f , at the single-cell level, stochastic
reaction kinetics are considered [22]. Let Xf (t) = [Xf

1 (t) Xf
2 (t)]T denote the

bivariate stochastic process describing the abundance (molecule count) of M
and P at time t in the generic cell. Writing the stochastic chemical kinetics in
terms of these variables leads to the so-called Chemical Master Equation [8,26].
Let μf (t) be the mean vector and Σf (t) the covariance matrix of Xf (t). For
later use, also define the matrix of uncentered second-order moments of Xf ,
M f = Σf + (μf ) · (μf )T . It can be shown (see e.g. [10]) that these moments
obey

μ̇f = SWμf + Sw0, (3)

Σ̇f = SWΣf + ΣfWT ST + Sdiag
(
Wμf + wf

0

)
ST , (4)

where

S =
[
1 −1 0 0
0 0 1 −1

]
, W =

⎡

⎢
⎢
⎣

0 0
dm 0
kp 0
0 dp

⎤

⎥
⎥
⎦ , wf

0 =

⎡

⎢
⎢
⎣

km · f
0
0
0

⎤

⎥
⎥
⎦

are, in the order, the stoichiometry matrix for reactions (1)–(2) and the coeffi-
cients of the corresponding reaction rates W · Xf + wf

0 . Letting

zf =
[
μf

1 μf
2 Σf

1,1 Σf
2,2 Σf

1,2

]T

, (5)

Equations (3)–(4) can also be written in the vector form

żf =

⎡

⎢
⎢
⎢
⎢
⎣

−dm 0 0 0 0
kp −dp 0 0 0
dm 0 −2 dm 0 0
kp dp 0 −2 dp 2 kp

0 0 kp 0 −dm − dp

⎤

⎥
⎥
⎥
⎥
⎦

· zf +

⎡

⎢
⎢
⎢
⎢
⎣

km

0
km

0
0

⎤

⎥
⎥
⎥
⎥
⎦

· f. (6)

(A reduction of this system to four equations is possible since one may show
that μf

1 (t) = Σf
1,1(t) at all t, see e.g. [21].) Thus, for a fixed promoter activation

profile f(·), gene expression reporter statistics are governed by a system of linear
differential equations, which is often used to describe statistics collected from
many cells of a same population [25,34].

However, in individual cells, promoter activity rather follows a random pat-
tern, switching between an “off” state, where mRNA synthesis is disabled, and
an “on” state, where mRNA synthesis is enabled. This is captured by the reac-
tion system

Poff
λ+−−→ Pon Pon

λ−−−→ Poff (7)

Pon
km−−→ Pon + M M

dm−−→ ∅ (8)

M
kp−→ M + P P

dp−→ ∅ (9)
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where Pon and Poff stand for active and inactive promoter species, respectively,
and the switching rates λ+ and λ− generally depend on promoter regulation.
For this system, denote with [X(t)T F (t)]T , where X(t)T = [X1(t) X2(t)], the
process where X1(t) and X2(t) are the count of mRNA and reporter protein
molecules at time t, in the order, and F (t) is the state of the promoter at the
same time (0 in presence of Poff, 1 in presence of Pon). For simple dynamical
models of F , e.g. for fixed switching rates λ+ and λ−, an augmented linear ODE
system can be obtained for the joint moments of [XT F ]T , which in principle
allows for the inference of the statistics of F via linear inversion methods [3].
Unfortunately, switching rates are typically unknown and may themselves vary
across cells and time due to stochastic promoter regulation mechanisms. In this
case, F is a so-called doubly stochastic process [5]. In order to comply with
the objective of Sect. 1, our first goal is to establish a relationship between the
statistics of F and X2 that is valid regardless of the switching laws of F . In
the sequel, we only require that the probability laws of F (in fact, the laws of
the joint process [X F ]T ) are the same in every cell, and denote with dPF the
corresponding probability measure.

We make one standing assumption as follows.

Assumption 1 (Granger Causality [15]). There is no feedback from X to F ,
i.e., at any time t, the future of F is conditionally independent on the past of X
given the past of F .

In practice, this means that species M and P do not influence the regulation of
the promoter. This is a legitimate assumption for most reporter systems, e.g. all
systems where reporter proteins and regulatory proteins are physically different
molecules, and may still be acceptable in many more cases, where the stochastic
effects of feedback are sufficiently mild. (In a relevant context, the notion of
causality is also considered in [2].)

Now consider the unconditional moments of process X, μ(t) = E [X(t)] and
M (t) = E [X(t)X(t)T ]. These may be written as μ(t) = E [E [X(t)|F ]] and
M (t) = E [E [X(t)X(t)T |F ]], where conditioning is intended to be on the whole
history of process F . In the light of Assumption 1 it holds that

μf (t) = E [X(t)|F = f ], (10)

M f (t) = E [X(t)X(t)T |F = f ], (11)

with μf (t) and M f (t) as above. Therefore,

μ(t) = E [μF (t)] =
∫

μf (t)dPF (f) (12)

and
M (t) = E [M F (t)] =

∫
M f (t)dPF (f). (13)

(Notice that an equality in the form (13) cannot be obtained for the vari-
ance matrix Σ(t) = M (t) − μ(t) · μ(t)T .) For the validity of these equations
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(notably (10) and (11)) absence of feedback is crucial. Otherwise, conditioning
on F would implicitly introduce new constraints on the stochastic dynamics of
X, i.e. the evolution of E [X(t)|F = f ] and E [X(t)X(t)T |F = f ] would not cor-
respond to the differential equation system (6) [15]. In sums, together with (6),
Equations (10)–(13) compute the ensemble population moments of the reporter
as a weighted average of different hybrid dynamics, each composed of a possible
switching promoter profile driving the linear differential evolution of the condi-
tional moments of X. These formulas provide the basis for the inference methods
developed in Sect. 3.

2.2 Population Snapshot Data

Given M measurement times T = {t1, . . . , tM}, we consider data Y =
{ỹ(t) : t ∈ T }, where ỹ(t) is a noisy measurement of

y(t) = E [h(X2(t))]. (14)

In agreement with the previous section, X2 also reflects stochastic fluctuations
of promoter activity across different cells. Function h represents any vector of
measurable functions of X2. In particular, we will focus from now on to

h(x) =
[

x
x2

]
(15)

i.e. y(t) is composed of the mean and statistical power (second-order uncentered
moment) of X2(t). In practice, noisy measurements of y(t) at all times T are
easily obtained e.g. by flow cytometry experiments, where, at every t ∈ T , a
sample of cells is taken from the observed population and fluorescence is auto-
matically quantified in every cell. For the typically large sample sizes of these
experiments (in the order of several thousands of cells), measurements can be
modelled as [24,34]

ỹ(t) = y(t) + e(t), (16)

where random error e(t) follows a bivariate zero-mean Gaussian distribution with
covariance matrix R(t) given by

R =
[

var(μ̃2) cov(μ̃2, M̃2,2)
cov(μ̃2, M̃2,2) var(M̃2,2)

]
=

1
N

[
m(2) − m(1)2 m(3) − m(1)m(2)

m(3) − m(1)m(2) m(4) − m(2)2

]

(all quantities evaluated at time t, omitted from notation for brevity). Here,
μ̃2 and M̃2,2 are the empirical estimators of mean and statistical power of X2

from a sample of size S (number of cells at time t), while for any p, m(p) =
E [Xp

2 ]. In practice, in order to fix R, it suffices to estimate the m(p) from the
data [34]. In the light of the fact that different cell samples are observed at
different times, we further assume that measurements ỹ(t) at different times are
mutually independent.
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3 Inference Methods and Results

In this section we outline a general approach to the reconstruction of promoter
activity statistics from population snapshot data, and develop from it a practi-
cal method that addresses some among the most interesting special cases at a
well affordable computational cost. For simplicity, we assume that the kinetic
parameters for the synthesis and degradation of M and P are known along with
the statistics of the latter at time zero, but relaxation of these assumptions is
possible [3,17]. Numerical demonstration of the method’s performance is given
further below.

3.1 Reconstruction of Promoter Switching Statistics

The objective is to reconstruct promoter statistics of the type E [g(F )] from
data Y , for some measurable vector function g. We consider the measurement
model (14)–(16), with output function as in (15) (reporter mean and statistical
power), and wish to reconstruct the first and second-order moments of F . We
address this problem in a more general fashion. Assume that the unknown dPF

belongs to some class of measures P. Ideally, one would like to reconstruct the
true dPF by seeking the element of P that best explains the data Y . Stated in
this form, the problem is formidable, but one can reformulate it in an approxi-
mate fashion according to the following rationale. Let F = {fi : i = 1, . . . , N},
be a family of N piecewise continuous functions fi : t �→ {0, 1}. For every i
let μfi and M fi be defined as in (10)–(11) with fi in place of f . Assume that,
for every element dPF ∈ P, we can uniquely choose weights pi ∈ [0, 1], with
i = 1, . . . , N and

∑
i pi = 1, so as to minimize, for a suitable norm || · ||,

ε =

∥
∥
∥
∥
∥

∫ [
μf (·) M f (·)] dPF (f) −

N∑

i=1

[
μfi(·) M fi(·)] pi

∥
∥
∥
∥
∥

(17)

and that ε is sufficiently small for all elements of P. We may then call F an
approximating family for P. For the sake of inference, we aim at reconstructing
the probability weights pi that best explain the data Y , i.e., in the light of (17),
an approximate estimate of the true laws dPF , from which estimates of first- and
second-order moments of F readily follow. For complex classes of measures P,
the choice of F and the solution of this problem remain a hard task. However,
interesting classes of problems where N can be kept within reasonable bounds
may be solved very effectively via a maximum likelihood approach.

Fix F , and denote p = [p1, . . . , pN ]T . Let ŷ(t|p) = [μ̂2(t|p)M̂2,2(t|p)]T be the
moments of X2(t) for a given p. In the light of the above approximation, these
can be written as

ŷ(t|p) =
N∑

i=1

pi

[
zfi

2 (t)
zfi

4 (t) +
(
zfi

2 (t)
)2

]

=
N∑

i=1

piy
fi(t), (18)

where zfi , defined as in (5) but with fi in place of f , is the solution of (6) under
f = fi. In particular, zfi

2 and zfi

4 are the predicted mean and variance of X2
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under fi, and the definition of the yfi follows. Under measurement model (16)
and assumptions thereof, the negative log-likelihood of p given the data Y is
thus (neglecting additive constants)

Q(p) =
1
2

∑

t∈T

(ỹ(t) − ŷ(t|p))T R(t)−1(ỹ(t) − ŷ(t|p)). (19)

Let R1/2 be a square symmetric factor of R, i.e. R1/2R1/2 = R. Defining the
matrix

M =

⎡

⎢
⎣

R−1/2(t1)
. . .

R−1/2(tM )

⎤

⎥
⎦ ·

⎡

⎢
⎣

yf1(t1) yf2(t1) · · · yfN (t1)
...

...
...

yf1(tM ) yf2(tM ) · · · yfN (tM )

⎤

⎥
⎦

and the measurement vector Y = [ỹ(t1)T R−1/2(t1) · · · ỹ(tM )T R−1/2(tM )]T , one
may rewrite (19) as

Q(p) = (Y − M · p)T · (Y − M · p),

where factor 1/2 has been neglected. Clearly Q(p) is a quadratic form in p. The
maximum likelihood estimation of p can then be obtained as solution of the
linearly constrained, quadratic optimization problem

Find p̂ such that Q(p̂) = min{Q(p) : p ≥ 0, 1̄T p = 1}. (20)

where 1̄ is the length-N vector [1 · · · 1]T , and inequality is intended componen-
twise. Estimates of E [g(F )] can then be constructed as

Ê [g(F )] =
N∑

i=1

p̂ig(fi). (21)

In practice, solutions of (20) do not guarantee the presumable regularity over
time of F , notably of

Ê [F (t)] =
N∑

i=1

p̂ifi(t). (22)

In the spirit of Tikhonov regularization [33], we then modify (20) by penaliz-
ing the norm of the second-order derivative of (a discrete-time version of) (22)
(because we consider piecewise constant fi, the continuous-time second-order
derivative does not exist). Given a uniform grid of time points τ0, . . . , τL−1

(not necessarily equal to the measurement times) and a generic function f ,
let ∇�f be second-order difference of the sequence f(τ0), . . . f(τL−1) at τ�, i.e.
∇�f = f(τ�−1) − 2f(τ�) + f(τ�+1), with � = 1, . . . , L − 2. Since

∇�

(
N∑

i=1

pifi

)

=
N∑

i=1

(∇�fi)pi = D
T
� · p,
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for a tunable parameter α ≥ 0, small norm of the second derivative of (22) is
attained by adding the cost term α · (D · p)T (D · p) to Q(p), where

D =

⎡

⎢
⎣

D
T
1
...

D
T
L−2

⎤

⎥
⎦ =

⎡

⎢
⎣

∇1f1 ∇1f2 · · · ∇1fN

...
...

...
∇L−2f1 ∇L−2f2 · · · ∇L−2fN

⎤

⎥
⎦ .

Thus, the regularized version of Problem (20) becomes

Find p̂α such that Q̄α(p̂α) = min{Q̄α(p) : p ≥ 0, 1̄T p = 1} (23)

where

Q̄α(p) = Q(p) + α · (D · p)T (D · p) = (ȲY − M̄Mα · p)T · (ȲY − M̄Mα · p)

and in turn

Ȳ =
[
Y

0̄

]
, M̄α =

[
M

αD

]

(0̄ denotes the zero matrix of appropriate dimension). For α = 0, formulation (20)
is recovered, whereas the larger the α, the more regular the solution. Prob-
lem (23) is convex (quadratic cost, linear constraints), and can be solved by
means of fast algorithms. In practice, matrix M follows from the integration
of (6) while D can be computed by standard matrix multiplications given the
values fi(τ�).

An obvious choice of F is to partition the time interval [t1, tM ] into K
uniform subintervals, and to define functions fi taking constant value 0 or 1
over each subinterval. Of course, the scalability of this approach is generally a
challenge, since the size N of the optimization problem rapidly increases with
the complexity (e.g. maximum number of switches) of the possible outcomes
of F . Still, in many cases of interest [12] and for a reasonable duration of the
experiment, it suffices to consider a small number of switches, which allows one
to approximate the laws of F with a relatively small N . In the next section, we
demonstrate the approach for the prototypical, yet fundamental case study of
promoter switch-on, where a single switch from state off to on occurs randomly
in different cells.

3.2 Numerical Simulations

We now apply the method of Sect. 3.1 for the reconstruction of the statistics of F
in the fundamental case study where the promoter becomes active in the course
of the experiment by switching once from off to on. This is obtained by fixing
λ− = 0, with F starting from the zero state. Simulations of stochastic reactions
are performed using StochKit [27]. Estimation algorithms are implemented
in Matlab R2014a (The MathWorks Inc., Natick, Massachusetts). On a lap-
top equipped with quadcore Intel CPU i7, 4 Gb RAM and Fedora 21 operating
system, for the case studies below, data simulation in StochKit takes within
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seconds while setting up and solving inference takes about half a minute in a
basic, non-optimized Matlab implementation.

We first consider the case of randomly regulated switching rate λ+, so as
to simulate stochastic regulation operated by unknown transcription factors.
Inspired by [12], we take realistic values km = 0.5, dm = 0.1, kp = 0.2, dp = 0.01
(time unit is minute), while λ+ = 0.05 · U . U is itself a stochastic process (not
affected by feedback) following the stochastic dynamics of the additional reaction
∅ → U with rate 0.05. At time zero, no molecules of any species are present.
We simulate S = 105 cells, i.e. generate independent random trajectories of
the system over the time span [0, 99], and at every time tk = k − 1, with k =
1, . . . ,M and M = 100, we randomly sample 104 cells from the pool of 105 cells,
thus getting statistics of X and F that are (roughly) independent across time.
Next, we define the approximating family F by functions each representing a
possible switch from 0 to 1 at a different multiple of T = 0.2 min. Formally, for
i = 0, . . . , 5 · (M − 1),

fi(t) =

{
0, t < i · T ;
1, t ≥ i · T.

(24)

(The analytical study of the approximation (17) obtained by (24) is deferred to
later work, but its viability will be apparent from our inference results.) The
regularization time grid is instead fixed to τ� = �, with � = 0, . . . , L − 1 and
L = 100. We then solve Problem (23) using Matlab function lsqlin with
regularization parameter (empirically tuned to) α = 104 (automatic tuning of
this parameter is left for future investigation).

Figure 1 shows the observed fluorescence (i.e. X2) mean and statistical power
profiles as computed empirically from the simulated cells, and the fit of these
quantities from the solution of Problem (23). Figure 2 shows the correspond-
ing estimates of the mean and standard deviation of F computed via (21). An
optimal fit to the data is apparent together with an accurate estimation of the
moments of F , compatibly with the resolution of F , with the exception of some
deviation in the estimation of the standard deviation in the long run, where the
true mean has almost reached 1 (its asymptotic value). This is likely explained by
the imposed regularity, which favors the fi with a constant tail and thus excludes
late switching, therefore implying zero estimated variance (and estimated mean
equal to 1) in that time period.

For comparison, fitting was repeated by changing the regularization parame-
ter to α = 0 (no regularity enforced). Results are also reported in Fig. 2 and
are self-explanatory. Interestingly, it can be noticed that the resolution of F is
largely underexploited in this case, i.e. probability mass is effectively distributed
only over a few switching times. Zero values of several probability coefficients are
naturally explained by the solution of the non-regularized optimization problem
lying at the boundaries of the constraint set, as a consequence of the approxi-
mations made and of measurement noise.

Coming back to the regularized solution, note that F is pointwise a Bernoulli
random variable. Therefore looking at the estimated standard deviation profile
does not add much relative to inspecting the estimated mean, since the former
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Fig. 1. Fit of measured mean and statistical power reporter profiles from the solution
of Problem (23) with regularization (α = 104), using M = 100 measurements collected
every minute. Black dots: Simulated data. Blue lines: Model fits (Colour figure online).

is basically determined by the latter. What is of real interest is the ability to
reconstruct the autocovariance function of F , since this embeds information
about the time dynamics of the generating laws of F , i.e. the basic first step
for the discovery of its regulatory laws (here simulated by means of regulator
U). Figure 3 illustrates the estimation of the autocovariance function of F at
different lags and times (F is a nonstationary process), as obtained from the
solution of (23) above again by means of (21). The accuracy of the estimate is
quite apparent.

One may argue that, due to the simplicity of the single-switch process F ,
estimation of the autocovariance function of F is quite trivial and uniquely deter-
mined from an estimate of the mean profile. While this statement is certainly
not true for multiple-switch processes, for the present case we investigated this
question leveraging on the fact that the mean of F can be reconstructed from
the sole mean of X2. We solved again Problem (23) in a modified form where the
measurements of the second-order moment of X2 are ignored, and then looked at
the corresponding estimate of the autocovariance function as obtained via (21).
Results are quantitatively compared with those previously obtained in Table 1.
It is apparent that a significant loss in the reconstruction accuracy of all statis-
tics of F is encountered, a sign of the additional information provided by the
second moment of X2 relative to its mean. Note that the different accuracy in
the estimation of the mean of F is explained by the fact that, contrary to the
intuition one would typically get from linear Gaussian processes, the mean of F
explicitly enters the equations for the variance of X2, and is hence reflected in
the measured statistical power of X2 in a nontrivial manner.
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Fig. 2. Estimation of mean and standard deviation profiles of promoter state process
F from the solution of Problem (23) with regularization (α = 104, upper plot) and
without regularization (α = 0, lower plot), using M = 100 measurements collected
every minute. Black lines: Statistics from the simulated cells. Blue lines: Estimates
(Colour figure online).

For further comparison, we also simulated the case of a nonregulated pro-
moter, where everything is identical to the previous case except that data are
simulated with λ+ fixed to 0.05 (so that F is a simple (reducible) Markov chain).
Quantitative results are again reported in Table 1, and reconfirm all the obser-
vations from the previous example.
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Fig. 3. Estimation of the autocovariance function of promoter state process F from the
solution of Problem (23) with regularization (α = 104), using M = 100 measurements
collected every minute. Blue surface: Statistics from the simulated cells. Red surface:
Estimate (Colour figure online).

Table 1. Mean squared error of the estimates of the mean, variance, and autoco-
variance function of the promoter state process F relative to the empirical statistics
from the simulated cells, from the solutions of Problem (23) with regularization (third
column), with regularization but using mean data only (fourth column), and without
regularization (fifth column), based on M = 100 measurements collected every minute.
Results are reported for a single-switch promoter with random switching rate (upper
block) and fixed rate (lower block). Mean and variance estimation errors are evaluted
at all measurement times, autocovariance estimation errors are evaluated at lags up to
25 min and times up to 74 min (with 1 min sampling; compare Fig. 3). For ease of
reading, all table entries have been multiplied by 104.

Switch rates Error on α = 104 α = 104 α = 0

Mean & Power Mean only Mean & Power

Random Mean 0.41 0.85 19.05

Variance 0.24 0.43 8.27

Autocovariance 0.076 0.21 10.92

Fixed Mean 0.92 1.57 10.74

Variance 0.31 0.55 3.55

Autocovariance 0.24 0.46 4.56

Finally, in order to evaluate the role of measurement sampling time, we
repeated the whole investigation above with tk = 5 · (k − 1) minutes, with
k = 1, . . . ,M , where now M = 20, i.e. with sparser measurements taken over
the same time span. Results are reported in Figs. 4 and 5 (random promoter
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Fig. 4. Estimation of mean and standard deviation profiles of promoter state process
F from the solution of Problem (23) with regularization (α = 104), using M = 20
measurements collected every 5 min. Black lines: Statistics from the simulated cells.
Blue lines: Estimates (Colour figure online).
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Fig. 5. Estimation of the autocovariance function of promoter state process F from the
solution of Problem (23) with regularization (α = 104), using M = 20 measurements
collected every 5 min. Blue surface: Statistics from the simulated cells. Red surface:
Estimate (Colour figure online).
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Table 2. Mean squared error of the estimates of the mean, variance, and autoco-
variance function of the promoter state process F relative to the empirical statistics
from the simulated cells, from the solutions of Problem (23) with regularization (third
column), with regularization but using mean data only (fourth column), and without
regularization (fifth column), based on M = 20 measurements collected every 5 min.
Results are reported for a single-switch promoter with random switching rate (upper
block) and fixed rate (lower block). Mean and variance estimation errors are evalu-
ated at all measurement times, autocovariance estimation errors are evaluated at lags
up to 25 min and times up to 70 min (with 5 min sampling; compare Fig. 5). For ease
of reading, all table entries have been multiplied by 104.

Switch rates Error on α = 104 α = 104 α = 0

Mean & Power Mean only Mean & Power

Random Mean 3.20 4.34 18.41

Variance 1.73 2.25 4.65

Autocovariance 1.25 1.73 6.38

Fixed Mean 7.52 10.68 29.93

Variance 4.75 6.55 12.16

Autocovariance 4.01 5.62 14.38

regulation, compare Figs. 2 and 3), and in Table 2 (to be compared with Table 1).
Relative to the previous results, a graceful degradation of estimation performance
is observed, whereas the same considerations about the use of variance data and
regularization apply.

4 Discussion and Perspectives

We have addressed the problem of reconstructing the promoter activation sta-
tistics from population snapshots of reporter fluorescence in single cells. Sim-
ilar to what has been proven necessary and hence addressed in a population
average context, our results enable one to recover the biological information of
actual interest in a stochastic single-cell context from indirect measurements.
The absence of assumptions on the promoter switch laws allows us to apply the
method to unknown systems for the subsequent study of the regulatory mecha-
nisms. We believe that approaches like ours open the way toward the exploitation
of noise for learning regulatory networks that cannot be resolved solely based
on average data, in a way much similar to what has been achieved in parameter
estimation. Of course, applicability (scalability) of the method depends on the
variety of switching profiles that a promoter is deemed capable of. In this regard,
we have shown successful application of our approach to a simple case study that
is however of fundamental importance, where we have proven the utility of using
fluorescence moments higher than the mean not only for estimating promoter
time-correlations, but also for estimating the mean activity profile. Other real-
istic and more general scenarios, such as a handful of on-off switches within
an experimental time period, are well within reach and shall be pursued along
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with automated data-driven tuning of the regularization parameter, analytical
study of approximations and statistical properties of the inference methods, and
application to real data.
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13. Komorowski, M., Finkenstädt, B., Harper, C., Rand, D.: Bayesian inference of
biochemical kinetic parameters using the linear noise approximation. BMC Bioinf.
10(1), 343 (2009)

14. Lillacci, G., Khammash, M.: The signal within the noise: efficient inference of
stochastic gene regulation models using fluorescence histograms and stochastic
simulations. Bioinformatics 29(18), 2311–2319 (2013)

15. Lindquist, A., Picci, G.: Linear Stochastic Systems - A Geometric Approach to
Modeling, Estimation and Identification. Springer, Heidelberg (2015)

16. Milias-Argeitis, A., Stewart-Ornstein, S.S.J., Zuleta, I., Pincus, D., El-Samad, H.,
Khammash, M., Lygeros, J.: In silico feedback for in vivo regulation of a gene
expression circuit. Nat. Biotechnol. 29, 1114–1116 (2011)

17. Munsky, B., Trinh, B., Khammash, M.: Listening to the noise: random fluctuations
reveal gene network parameters. Mol. Syst. Biol. 5, 318 (2009)



Reconstructing Statistics of Promoter Switching 19

18. Neuert, G., Munsky, B., Tan, R., Teytelman, L., Khammash, M., van Oudenaarden,
A.: Systematic identification of signal-activated stochastic gene regulation. Science
339(6119), 584–587 (2013)

19. Ocone, A., Haghverdi, L., Mueller, N.S., Theis, F.J.: Reconstructing gene regu-
latory dynamics from high-dimensional single-cell snapshot data. Bioinformatics
31(12), i89–i96 (2015)

20. Lafferty, J., Williams, C., Shawe-Taylor, J., Zemel, R., Culotta, A. (eds.) Advances
in Neural Information Processing Systems 23, pp. 1831–1839. Curran Associates,
Inc., (2010)

21. Parise, F., Ruess, J., Lygeros, J.: Grey-box techniques for the identification of a
controlled gene expression model. In: Proceedings of the ECC (2014)

22. Paulsson, J.: Models of stochastic gene expression. Phys. Life Rev. 2(2), 157–175
(2005)

23. Porreca, R., Cinquemani, E., Lygeros, J., Ferrari-Trecate, G.: Identification of
genetic network dynamics with unate structure. Bioinformatics 26(9), 1239–1245
(2010)

24. Ruess, J., Lygeros, J.: Moment-based methods for parameter inference and exper-
iment design for stochastic biochemical reaction networks. ACM Trans. Model.
Comput. Simul. 25(2), 8 (2015)

25. Ruess, J., Milias-Argeitis, A., Summers, S., Lygeros, J.: Moment estimation for
chemically reacting systems by extended Kalman filtering. J. Chem. Phys. 135(16),
165102 (2011)

26. Samad, H.E., Khammash, M., Petzold, L., Gillespie, D.: Stochastic modelling of
gene regulatory networks. Int. J. Robust Nonlin. Contr. 15, 691–711 (2005)

27. Sanft, K.R., Wu, S., Roh, M., Fu, J., Lim, R.K., Petzold, L.R.: Stochkit2: software
for discrete stochastic simulation of biochemical systems with events. Bioinformat-
ics 27(17), 2457–2458 (2011)

28. Stefan, D., Pinel, C., Pinhal, S., Cinquemani, E., Geiselmann, J., de Jong, H.:
Inference of quantitative models of bacterial promoters from time-series reporter
gene data. PLoS Comput. Biol. 11(1), e1004028 (2015)

29. Suter, D.M., Molina, N., Gatfield, D., Schneider, K., Schibler, U., Naef, F.: Mam-
malian genes are transcribed with widely different bursting kinetics. Science 332,
472–474 (2011)

30. Taniguchi, Y., Choi, P.J., Li, G.W., Chen, H., Babu, M., Hearn, J., Emili, A.,
Xie, X.S.: Quantifying E. coli proteome and transcriptome with single-molecule
sensitivity in single cells. Science 329, 533–538 (2010)

31. Thattai, M., van Oudenaarden, A.: Intrinsic noise in gene regulatory networks.
PNAS 98(15), 8614–8619 (2001)

32. Uhlendorf, J., Miermont, A., Delaveau, T., Charvin, G., Fages, F., Bottani, S.,
Batt, G., Hersen, P.: Long-term model predictive control of gene expression at the
population and single-cell levels. PNAS 109(35), 14271–14276 (2012)

33. Wahba, G.: Spline models for observational data. In: SIAM (1990)
34. Zechner, C., Ruess, J., Krenn, P., Pelet, S., Peter, M., Lygeros, J., Koeppl, H.:

Moment-based inference predicts bimodality in transient gene expression. PNAS
21(109), 8340–8345 (2012)

35. Zechner, C., Unger, M., Pelet, S., Peter, M., Koeppl, H.: Scalable inference of
heterogeneous reaction kinetics from pooled single-cell recordings. Nat. Methods
11, 197–202 (2014)

36. Zulkower, V., Page, M., Ropers, D., Geiselmann, J., de Jong, H.: Robust recon-
struction of gene expression profiles from reporter gene data using linear inversion.
Bioinformatics 31(12), i71–i79 (2015)



Comparative Statistical Analysis of Qualitative
Parametrization Sets

Adam Streck(B), Kirsten Thobe, and Heike Siebert

Freie Universität Berlin, Berlin, Germany
adam.streck@fu-berlin.de

Abstract. The problem of model parametrization is a core issue for all
varieties of mathematical modelling in biology. This problem becomes
more tractable when qualitative modelling is used, since the range of
parameter values is finite and consequently it is possible to enumerate
and evaluate all possible parametrizations of a model. If such an approach
is undertaken, one usually obtains a vast set of parametrizations that are
scored for various properties, e.g. fitness. The usual next step is to take
the best scoring parametrization. However, as noted in recent works [1,4],
there is knowledge to be gained from examining sets of parametrizations
based on their scoring. In this article we extend this line of thought
and introduce a comprehensive workflow for comparing such sets and
obtaining knowledge from the comparison.

Keywords: Qualitative modelling · Statistical inference · Big data ·
Parameter identification · Data mining

1 Introduction

One of the key tasks in the field of systems biology is reverse engineering of reg-
ulatory and signalling networks [6]. A researcher is usually presented with sets of
experimental data and observations and tries to design a model of the mechanics
of the system. As the model can be constructed using various modelling frame-
works, there is a zoo of methods for tasks like network inference, parameter
identification etc., each having its particular set of pros and cons. In our work
we are employing the so-called Thomas Networks [17] framework, whose main
purpose is to provide insights into qualitative, high-level behaviour. A particu-
lar feature of this framework is that the values governing the behaviour of the
model—its parameters—have a finite domain and thus it is possible to enumer-
ate and evaluate all the options. At this point, two additional problems arise.
Firstly, when evaluating a parametrization (a particular set of parameter values)
of the network, one is usually focusing again only on some abstract, qualitative
feature, e.g. whether the system is stable or not. While this is useful information,
its binary nature means that the set of all possible parametrizations is simply
split in two, one part having the feature, the other not. This poses a problem if
one is aiming to pick an optimal parametrization, as all the members in each of
c© Springer International Publishing Switzerland 2015
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the two sets are between themselves indistinguishable. Secondly, considering all
the options leads to a rapid combinatorial explosion and while quite huge sets
can still be easily manipulated and stored by the computer, it becomes swiftly
infeasible for the researcher to keep a mental insight into the structure of the
parametrization pool.

1. ENUMERATE 2. LABEL 3. SELECT 4. ANALYZE 5. COMPARE

Fig. 1. Our workflow starts with the enumeration (1) of all possible parametrizations
that fit the expectations of the modeller about the structure. Each of the parametriza-
tions is evaluated for certain properties (2) like dynamical behaviour, and the result of
the evaluation is stored with the parametrization as its label. After parametrizations
are labelled the user can select (3) a subset of these that seem of special interest. This
selection can then be analysed using various tools (4) and compared to other selections
(5). The selection or analysis can then be refined based on the newly gained knowledge.

Similarly to recent works of other authors in the field [1,4] we propose to
shift the focus from individual parametrizations to sets thereof. Following on our
previous work [5,16], we introduce a unified workflow for parameter identifica-
tion, illustrated in Fig. 1. This workflow combines formal and statistical methods
with the aim of maximizing the amount of qualitative knowledge obtained from
data. All the methods presented in the article have been implemented in the tool
TREMPPI, whose preliminary version is available at [13]. All of the methods are
illustrated on a toy running example and later the functionality of our workflow
is demonstrated on a case study of Hepatocyte Growth Factor (HGF) signalling,
based on data of [2].

2 Background

In this section we define the notions necessary for our workflow. Most of the
terms are illustrated in Fig. 2 on a toy example.

The topology of a biological system is encoded as a directed regulatory graph
(RG) G = (V, ρ,E) where V is a set of named components, ρ : V → N is the
maximum activity label s.t. each component can adapt an integer from [0, ρ(v)],
denoting its current activity level, and E ⊆ V ×N× V is a set of regulations s.t.
for each (u, t, v) ∈ E it holds that t ≤ ρ(u). For (u, t, v) ∈ E the value t denotes
a threshold i.e. the lowest activity level of u at which the regulation can affect
v. Additionally, we introduce a threshold function θ : V × V → 2N s.t. θ(u, v) =
{t | (u, t, v) ∈ E} and its extended version Θ s.t. Θ(u, v) = θ(u, v)∪{0, ρ(u)+1}
for any pair u, v ∈ V . Moreover, if (u, t, v) ∈ E then t−, t+ ∈ Θ(u, v) denote the
closest lower and higher element of t, i.e. have ↑Θ the ordinal successor function
in Θ, then ↑Θ (t−) = t and ↑Θ (t) = t+. A regulation becomes effective when the
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a) A B

(B, 2, B)
(A, 1, B)

(B, 1, A)

b)
v ∈ V ρ(v)

A 1

B 2

c)
u ∈ V v ∈ V Θ(u, v)

A B {0, 1, 2}
B A {0, 1, 2}
B B {0, 2, 3}

d)

(ωA, ωB) ∈ ΩA KA(ω)

({0, 1}, {0}) 1

({0, 1}, {1, 2}) 0

(ωA, ωB) ∈ ΩB KB(ω)

({0}, {0, 1}) 0

({0}, {2}) 0

({1}, {0, 1}) 2

({1}, {2}) 1

�→ e)

(0,0) (1,0)

(0,1) (1,1)

(0,2) (1,2)

f) MK = (M1 = {(1, 0)}, M2 = {(0, 2)})

Fig. 2. A simple Thomas Network. a) The regulatory graph, b) its components, and
c) regulators. d) One of the 324 possible parametrizations of the network. e) The
asynchronous dynamics encoded by the parametrization. f) An example property. Note
that the property is satisfied by K, i.e. ((1, 0), (1, 1), (1, 2), (0, 2)) |= MK .

activity of the respective regulator reaches the threshold value. Consequently,
the thresholds divide the range of activity levels of a component into so-called
activity intervals Iu

v = {[t, ↑Θ (t)) | t ∈ θ(u, v) ∪ {0}}. Note that if θ(u, v) =
∅ then Iu

v = [0, ρ(u) + 1). For each component we can then create a set of
configurations of components of the system, called regulatory contexts, where
the behaviour of a component v ∈ V can qualitatively differ from the other
contexts, denoted and defined Ωv =

∏
u∈V Iu

v . Note that ω ∈ Ωv is a vector of
length |V | and consequently we use the notation ωu for its u-th element. The
qualitative behaviour of a component is then fully described through a partial
parametrization Kv : Ωv → [0, ρ(v)], as explained in the following paragraph.
Note that for each v ∈ V the set Ωv is sufficient to obtain the set of regulators of
v. The parametrization K = (Kv)v∈V therefore fully suffices to derive both the
behaviour and the topology of a network. We will further use K as an identifier
of a single model and KG to denote the set of all possible parametrizations of a
regulatory graph G. If G can be arbitrary (but fixed) we use simply K.

The asynchronous behaviour of a parametrized regulatory graph G =
(V, ρ,E) is then captured in a so-called transition system (TS), which is a pair
(SK ,→K) where SK =

∏
v∈V ρ(v) is a set of states and →K⊆ SK × SK is a
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transition relation obtained from a parametrization K ∈ KG s.t. s →K s′ if and
only if one of the following two, mutually exclusive conditions holds:

∀v ∈ V : s′
v = sv ∧ Kv(s) = sv,

∃u ∈ V,∀v ∈ V \ {u} : s′
v = sv ∧ su = s′

u = Ku(s).

To examine a behaviour of a TS we use the model checking procedure, for
details please refer to [14]. This method allows to query whether the system
satisfies a certain formally described property. In case of our system we verify
whether a path of a certain kind exists in a TS, more specifically, whether a
path that matches a sequence of measurements exists. Formally a sequence of
measurements is described via a vector MK = (M1, . . . ,Mm) for some m ∈ N

where for any i ∈ [1,m] it holds that Mi ⊆ SK . Understandably, a state s ∈ SK

matches a measurement Mi iff also s ∈ Mi. Then a path w = (s1, . . . , sn) ∈
(→K)n−1 satisfies MK iff there is a vector I = (i1, . . . , im) of indices such that
for any k ∈ [1,m] it holds that sik

∈ Mk (measurements are matched) and
for each pair k, l ∈ [1,m] we have that if k < l then also ik < il (ordering
is preserved). The path w is then called the witness of satisfaction of MK by
(SK ,→K), written w |= MK .

3 Labels

Having a model, one is usually interested in what its properties are, e.g. which
of the regulations are effective, how it behaves dynamically etc. We call func-
tions that provide such information labels. We recall some previously introduced
labels [5,16] one can assign to a parametrization, now updated to fit the work-
flow, and some new ones. As the domain of a label usually depends on the
respective regulatory graph, we use the symbol l for a label in general, and lK

to denote that the label depends on the graph encoded by K and is evaluated
under K.

All the labels are illustrated in Fig. 3 on the toy example in Fig. 2.

3.1 Sign

This label is based on the usual interpretation of an effect of a regulation:

(u, t, v) ∈ E is activating ⇐⇒ ∃ω ∈ Ωv : Kv(ωu←[t,t+)) > Kv(ωu←[t−,t)),

(u, t, v) ∈ E is inhibiting ⇐⇒ ∃ω ∈ Ωv : Kv(ωu←[t,t+)) < Kv(ωu←[t−,t)),

where ωu←[t−,t) denotes that the regulatory interval ωu is substituted by [t−, t).
From this definition we derive the sign label SignK : EK → {0,+,−, 1} where:

SignK(e) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 iff e is not activating and not inhibiting,
+ iff e is activating and not inhibiting,
− iff e is not activating and inhibiting,
1 iff e is activating and inhibiting.
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a)

Structural Labels

SignK(A, 1, B) +

SignK(B, 1, A) -

SignK(B, 2, B) -

IndegreeK(A) 1

IndegreeK(B) 2

IndegreeK(SUM) 3

BiasK(A) 1

BiasK(B) 2

ImpactK(A, 1, B) 0.905

ImpactK(B, 1, A) −1

ImpactK(B, 2, B) −0.302

b)
Regulatory Functions

FK
A 1&B{0}

FK
B 1&A{1}&B{2}+2&A{1}&B{0,1}

c)
Property Labels

CostK(MK) 4

RobustnessK(MK) 0.25

Fig. 3. Illustrative labels for the toy example from Fig. 2. a) All the possible structural
labels. For clarity we use the symbol SUM to denote the sum of the indegree values.
b) The regulatory function labels corresponding to the given parametrization. c)
The dynamic labels for the measurement series MK from Fig. 2f.

Note that the 0 value means that the regulation has no effect on its target
and could be removed without affecting the dynamics, which is utilized in the
following label indegree. The value 1 describes the situation where a regulation
has ambiguous semantics, not meeting the so-called Snoussi condition [10], which
is usually contrary to the expectation of the modeller about the system.

3.2 Indegree

This self-explanatory label counts the number of effective incoming regulations.
Formally we denote IndegreeK : V K → N the number of non-zero incoming
regulations, defined as:

IndegreeK(v) = |{(u, t, v) ∈ E | u ∈ V, Sign(u, t, v) = 0}|.

Additionally, the function is extended to capture the sum of the indegree values
of all the components, such that IndegreeK(V ) =

∑
v∈V K IndegreeK(v). The

sum of indegree values is of a special interest, as quite often one is interested
in structures that are minimal w.r.t. number of regulations.

3.3 Cost

The cost [14] of a measurement series is equal to the number of states of its
shortest witness. The value is of interest under the assumption that a shorter
witness in general means a lower number of qualitative changes and in turn a
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slower energy consumption by the system. Even in the cases where the energy
assumption is not realistic (e.g. due to different time scales) the cost value
still reflects on how functionally complex the system is. Thus, one is usually
interested in minimizing it.

Denote MK the set of possible measurement series for S, then the label
has the form CostK : MK → N0 s.t. if there is no witness for MK then
CostK(MK) = 0, otherwise CostK(MK) = min{m | ∃w ∈ (→K)m−1 : w |=
MK}.

3.4 Robustness

The robustness [14] label RobustnessK : PK → [0, 1] is closely related to
the cost label. In general terms it denotes the probability that M such that
CostK(M) = m will be satisfied by a random walk of length m that starts from
M1. Formally:

RobustnessK(M) =
|{w ∈ (→K)m−1 | w1 ∈ M1, w |= M}|

|{w ∈ (→K)m−1 | w1 ∈ M1}| ,

where w1 denotes the first state on the path w. Understandably, if a measurement
is not satisfiable, then there are no witnesses and the dividend and therefore also
the robustness is equal to 0.

This particular notion of robustness reflects on the ability of the model to
keep the requested behaviour even though uncertainty is introduced to the model
through the modelling framework. The non-determinism of the simulation arises
in states where the qualitative behaviour in reality depends on quantitative
nuances indistinguishable by our abstraction. The higher the robustness of
the model w.r.t. a measurement series, the less sensitive the model is to these
quantitative nuances, respectively to perturbation in these.

3.5 Impact

The impact label represents the relation between a regulator and its target via
the function ImpactK : EK → [−1, 1]. We have introduced this value in [16]
and here we present a definition that uses regulatory contexts as its domain.
For a regulation (u, t, v) ∈ E we obtain the impact of u on v by computing the
correlation of the activity level of the regulator and the respective parameter
value. As we are interested only in parameters that are directly affected by
this regulation, we take a subset of regulatory contexts on the border of the
threshold value t. These we list as an arbitrarily ordered vector Ωt

v = (ω ∈ Ωv |
ωu ∈ {[t−, t), [t, t+)}). To indicate presence or absence of the said regulation, we
use the function Presu : Ωu → [0, ρ(u)] that projects the activity interval of u
on its lower boundary, i.e. if ωu = [t−, t) then Presu(ω) = t−. The impact of
(u, t, v) is then equal to the Pearson correlation coefficient between the image of
Ωt

v under Presu and Kv:

ImpactK(u, t, v) =
cov(Presu(ω)ω∈Ωt

v
,Kv(ω)ω∈Ωt

v
)

std(Presu(ω)ω∈Ωt
v
) · std(Kv(ω)ω∈Ωt

v
)
,
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where cov is the covariance and std is the standard deviation. This value is quite
helpful when one is searching for the key regulators of a certain component. The
further the value is from 0, the more prominent the regulation is.

3.6 Bias

By the term bias we here mean the general tendency of a parametrization to
push a component towards higher or lower activity levels. The bias label BiasK :
V → [0, 1] is obtained simply as BiasK(v) =

∑
ω∈Ωv

Kv(ω) · |Ωv|−1 ·ρ(v)−1. For
a Boolean component this coincides with the notion as defined by other authors,
e.g. [9].

As a component has in general more effect on the other components at higher
activity levels, the bias label allows to distinguish the components whose pres-
ence seems to be crucial for the activity of the network.

3.7 Regulatory Function

While not being a label per se we also assign a logical regulatory function,
providing a more human-readable description of a parametrization. In particular,
we describe each partial parametrization as a Post Algebra [7] expression in a
disjunctive normal form (DNF) of cardinality max{ρ(v) | v ∈ V K}.

A Post Algebra expression P in DNF of cardinality n is in our case described
using the grammar:

P → M|M | M
M → V&A | V
V → 0 | · · · | n

A → A&A | v{L}
L → LL | V

where v ∈ V, |,&, {, }, 0, . . . , n are terminals, and P, M, V, A, L are non-terminals.
The semantics are such that an atom, i.e. an expression of the form v{L}, evalu-
ates to n if the variable v is at a level listed in L and to 0 otherwise. The binary
operator & evaluates to the smaller of its operands and the binary operator |
evaluates to the bigger of its operands. E.g. consider the function in Fig. 3b and
an interpretation A = 1, B = 1. Then we can do the following valuation:

1&A{1}|2&B{0, 2} �→ 1&2|2&B{0, 2} �→ 1&2|2&0 �→ 1|2&0 �→ 1|0 �→ 1.

Note that in the Boolean case the operator & corresponds to the logical
conjunction, | to the disjunction, v{1} to the simple v, and v{0} to ¬v.

We obtain the regulatory function label by enumerating all the prime
implicants and joining them via a disjunction.
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4 Parametrization Sets Analysis and Comparison

While the individual parametrizations can be at least partially ordered by the
values of their labels, it is only seldom that a single parametrization would appear
as an optimal one. Moreover, even if one aims to find a parametrization that
scores the best in all the metrics, i.e. minimum cost, maximum robustness,
minimum Indegree etc., usually there are multiple parametrizations with the
best score or those that are pairwise incomparable. We therefore focus on so-
called selections, i.e. sets of parametrizations that fit certain criteria on the labels
and analyse the whole selection.

Fig. 4. Reports produced by TREMPPI for the graph in Fig. 2. For the interactive
version please see [12]. Left: Reports for KG. Right: Reports for KG,Ψ with Ψ ≡
Cost(p) = 4 ∧ Robustness(p) = 1 ∧ Sign(B, 2, B) = 0. Middle: A comparison left -
right. a) A qualitative report. The label FB is not fully listed. b) A quantitative
report. c) A regulation graph. d) A correlation graph.
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Have a parametrization space K and a sequence of predicates Φ = Φ1, . . . , Φn

where Φi : K → B for each i ∈ [1, n]. A selection by Φ we call the set of
parametrizations denoted KΦ s.t. for each K ∈ K we have that K ∈ KΦ if
and only if

∧n
i=1 Φi(K) holds true. As the selections may contain millions or

more parametrizations in size, approaches that allow to evaluate the whole
selection at once are necessary to gain understanding of the nature of the
selection. We present four different methods, each used to depict some of the
labels in a manner that generalizes the values of the labels from members of
the selection to the whole selection. A visual representation of such data is
then called a report. Additionally, each of the reports features an individual
method of comparison—having two different selections Kφ, KΨ we create a
third report which illustrates the difference between the two selections. This
we denote using the minus (−) symbol, illustrating the fact that it is a non-
commutative difference operation. All the reports are illustrated in Fig. 4 on
the example network from Fig. 2. Each report provides a comparison between
the set of all 324 parametrizations, i.e. a selection by Φ ≡ true and a selection
where the MK from Fig. 3 has minimal cost and maximal robustness and
where the self-regulation of the component B is not present, i.e. a selection by
Ψ ≡ (Cost(series) = 4 ∧ Robustenss(series) = 1 ∧ Sign(B, 2, B) = 0).

4.1 Explicit Qualitative Report

The first tool we employ is a qualitative summary, which describes an image
of a label in the selection, i.e. all the distinct label values that appear in the
selection and their frequency in percent. Have a label l : X → Y , where X,Y
are some sets and a selection KΦ. For example in the case l = SignK , we have
X = E and Y = {0,+,−, 1}. For each value x ∈ X we then set:

qual(KΦ, l, x) = (size(KΦ, l, x), elems(KΦ, l, x)),

size(KΦ, l, x) = |elems(KΦ, l, x)|,
elems(KΦ, l, x) = {(y, q) | q = |{K ∈ KΦ | lK(x) = y}| · 100 · |KΦ|−1}.

A comparison of two selections KΦ,KΨ , denoted qual(KΦ, l, x) − qual(KΨ , l, x),
is obtained by subtracting the two pairs, where elems(KΦ, l, x)−elems(KΨ , l, x)
is computed as:

{(y, qΦ − qΨ ) | (y, qΦ) ∈ elems(KΦ, l, x), (y, qΨ ) ∈ elems(KΨ , l, x)}.

Since the set of parametrizations is finite, all values have finite domain and are
thus suitable to this form of presentation. However, in the case of labels that
project to rational numbers, i.e. robustness, bias, and impact values, the size
of the image quite often threatens to be almost as big as the selection itself,
therefore we chose not to include them in the qualitative report.
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4.2 Explicit Quantitative Report

Similarly to the previous, we summarize the overall nature of quantitative labels,
i.e. those whose image is a subset of rational numbers, using the quadruple:

quan(KΦ, l, x) = (count(KΦ, l, x),min(KΦ, l, x),max(KΦ, l, x),mean(KΦ, l, x)),

count(KΦ, l, x) = |{K ∈ KΦ | lK(x) = 0}|,
min(KΦ, l, x) = min{lK(x) | K ∈ KΦ},

max(KΦ, l, x) = max{lK(x) | K ∈ KΦ},

mean(KΦ, l, x) =
∑

K∈KΦ

lK(x) · |KΦ|−1.

The difference between the quantitative reports of two selections KΦ, KΨ

is then set simply as the subtraction of the two quadruples.
Note that the count has a somewhat special meaning, as the 0 value is of

particular interest for some of the labels. In the case of cost for example, it
denotes that the respective measurement series is not satisfiable or for sign it
states that the edge is absent.

4.3 Inferred Regulation Graph

Based on impact and sign, we can summarize the average effect of regulations
of a sample. The impact can be easily extended from a parametrization to a
sample as ImpactK

Φ

(e) =
∑

K∈KΦ ImpactK(e) · |KΦ|−1 for each e ∈ E. For the
sign we take a supremum under the partial ordering 0 < − < 1, 0 < + < 1,
i.e. for any e ∈ E we set SignKΦ

(e) = sup{SignK(e) | K ∈ KΦ}. Lastly we
depict the frequency of a regulation, which states how often a regulation is
active at all, i.e. has a non-zero sign, formally FrequencyKΦ

(e) = |{K ∈ KΦ |
SignK(e) = 0}|.

Visually, the impact value is mapped to a color gradient of the regulation
edge with the color red representing the value −1, yellow representing 0, and
green representing 1. The frequency is mapped to the width of an edge. When
the frequency is equal to 0, the edge is then displayed as dotted. Lastly, the
sign is reflected in the shape of the head of the edge. The + sign is mapped to
a pointed arrow shape, the − to a rectangle shape (also known as blunt arrow),
the 1 to a combination of both and the 0 to a circle.

To create a comparison, the impact and frequency values are directly
subtracted. The sign can not be clearly interpreted in the comparison and for
simplicity it is kept from the minuend. Note that the subtraction means that
the result lies behind the original boundaries of a value. The color gradient
is therefore stretched to the range [−2, 2] and a negative frequency value is
depicted by a dashed edge.
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4.4 Correlation Graph

Similarly to the regulation graph we also create a correlation graph, based
on the bias label. The label extended similarly to the impact label, i.e.
BiasKΦ

(v) =
∑

K∈KΦ BiasK(v) · |KΦ|−1 for v ∈ V . Additionally, one is usually
interested in whether there is a relation between activities of multiple compo-
nents, e.g. if one component seems to be taking over if another is missing. This
is obtained as the correlation between the bias of individual components in a
sample, i.e.:

CorrelationKΦ

(v, u) =
cov(BiasK(v)K∈KΦ , BiasK(u)K∈KΦ)

std(BiasK(v)K∈KΦ) · std(BiasK(u)K∈KΦ)
.

The correlation value is mapped to a color gradient in the same manner as
the impact value in the regulations graph. The bias value is mapped to the
width of the border of the respective component in a manner similar to the edge
width in the case of the frequency value.

To create a comparison both values are simply subtracted.

5 Case Study

To provide a practical demonstration of our methodology, we have utilized the
data provided by D’Allesandro et al. in their study of hepatocyte growth factor
(HGF) signalling [2].

In the original article the authors constructed a core network, illustrated in
Fig. 5, with a set of regulations that are with high certainty present. Afterwards,
a qualitative method is used to find an optimal structure that combines the
core network with a subset of possible edges. To this end the authors obtained
a rich set of experimental data, which they later discretized to meet the needs
of their qualitative framework. The discretized data features measurements of
6 components in 6 different experimental set-ups. In each of the experiments
one or two of the components of the network are inhibited and later the HGF
stimuli is added. Additionally the authors provide a control measurement where
no inhibition is present.

In the study, the data are present as fold-change comparisons between some of
the experiments. For each component there are 9 time-points measured, however
in the discretized form these are divided at the time of 30 min into an early and
late response, as it is expected that around that time feedback effects start to play
a role in the behaviour of the system. As the fold-change scheme is not suitable for
encoding as a time-series, we reinterpreted the data into a measurement scheme,
where the fold change translates to a difference between two measurements. This
means that from two fold-changes we obtain three measurements. The particular
values for the measurements were determined in the following manner:

– In the experiment a Met inhibitor was used that blocks the receptor of
the pathway and thereby downregulates all signalling processes even under
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Fig. 5. The structure of the model that was identified as optimal in [2]. The regulations
denoted by a full line constitute the core network, whereas those that are dashed
are added from the pool of optional regulations. In the enumeration step we place
requirements on the edges corresponding to the sign label, in particular the full edges
with a pointed arrow are required to have the + sign, the dashed edges with a pointed
to have either + or 0, and the dashed edges with a blunt arrow to have either − or 0.

stimulation. The fold-change comparison to the control shows a significant
downregulation in all read-outs therefore we conclude that the control state
has active read-outs.

– For other set-ups, if there is a significant decrease [2] in the fold change, the
component is expected to be at the level 0 after the change.

– Likewise, if there is a significant increase, the component is expected to be at
the level 1.

– If there is no significant change, no requirement is placed on the value.
– We require the full monotonicity in the behaviour, i.e. if a value of a component

does not change between two timepoints, we require that it cannot change
in the simulation either. If the value differs between two measurements, we
require that there is exactly one change of that value. For details please refer
to [15].

Altogether we have obtained 5 properties, which are detailed in the supple-
ment [11]. Even though this interpretation of the data is quite strict, we obtained
that even the core network is capable of satisfying all the experiments for each of
the possible parametrizations. We have therefore focused instead on the struc-
ture identified as optimal by the authors to see whether addition of some of the
optional edges can disrupt the expected function of the network. This optimal
network is depicted in Fig. 5. This is a slightly simplified version of the original,
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which features two components for RSK in an activation cascade. We joined this
cascade into a single node, which is a preserving operation [8].

For the purposes of the analysis we have created three selections:

1. ALL is the set of all 223776 possible parametrizations.
2. V ALID is the set of 149184 parametrizations that satisfy all the measurement

series.
3. MINCOST is the set of 135072 parametrizations that have the minimal

cost for all the measurement series.

As can be immediately seen, there exist parametrizations over the optional edges
that render one or more of the measurement series not satisfiable.

Data of all the reports are in an interactive form available in the supple-
ment [11]. Here we provide some of the possible observations about the data.
Firstly we analyse the comparison V ALID−ALL. In the quantitative report
we see that KMEK(PDK1 = 0,Raf = 1) is for the V ALID set bound to the
value 1, meaning it is necessary that Raf1 alone can activate MEK. We also see
that three out of the five measurement series are satisfied by all parametrizations,
whereas the remaining two are satisfied exactly by those in the V ALID selection,
meaning that both place the same requirement on the behaviour of the network.
In the qualitative report we can see that the function MEK = Raf1&PDK1
is completely missing, in accordance with the quantitative observation, and the
functions MEK = Raf1 and MEK = Raf1|PDK1 are now present with the same
frequency, suggesting that the (PDK1, 1,MEK) regulation is superfluous and
should probably be removed. In the regulations graph we then see that both
the frequency and the impact of PDK1 on MEK decreases and lastly in the
correlations report we see an increase in the bias of MEK.

Secondly we analyse the comparison MINCOST −V ALID. From the quan-
titative report we see that there is a slight increase in bias of Raf1. In the
qualitative report we can see that 14 regulatory functions for Raf1 disappear
completely, however as there are still 134 remaining, this does not provide too
much information. A much cleaner picture can be gained from the regulations
graph where we can see a decrease in the impact and the frequency of ERK
on Raf1 in favour of both inhibition by Akt and activation by PAK.

6 Conclusion

We have presented numerous methods for analysis and evaluation of qualitative
parametrizations sets. The methods are gathered in two groups: labels, which
evaluate individual parametrizations, and reports, which subsequently evaluate
whole parametrizations sets. All of the methods are experimentally implemented
in the tool TREMPPI [13]. The performance of the methods and the implemen-
tation is sufficient for application to realistic problems, as illustrated on a case
study of HGF signalling.

While the method was mainly developed due to the specific nature of
the problem of parameter identification in Thomas Networks, we believe that
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the general approach should be also applicable to more complicated frame-
works. The approach should be readily convertible to frameworks which are, in
certain ways, only an extension of the Thomas method, e.g. piece-wise affine
models [3]. However even for frameworks with infinite parametrization pool,
the label-report-compare approach could work if combined with an appropriate
sampling method.

As the tools we were using for the purposes of this article are becoming more
mature, we would like to make them more available for public use. To this end
a public web-service version of TREMPPI is planned.
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Abstract. We develop a GPU based technique to analyze bio-pathway
models consisting of systems of ordinary differential equations (ODEs).
A key component in our technique is an online procedure for verifying
whether a numerically generated trajectory of a model satisfies a prop-
erty expressed in bounded linear temporal logic. Using this procedure,
we construct a statistical model checking algorithm which exploits the
massive parallelism offered by GPUs while respecting the severe con-
straints imposed by their memory hierarchy and the hardware execution
model. To demonstrate the computational power of our method, we use
it to solve the parameter estimation problem for bio-pathway models.
With three realistic benchmarks, we show that the proposed technique
is computationally efficient and scales well with the number of GPU units
deployed. Since both the verification framework and the computational
platform are generic, our scheme can be used to solve a variety of analysis
problems for models consisting of large systems of ODEs.

Keywords: Biopathway models · Ordinary differential equations ·
Graphics processing units · BLTL · Statistical model checking ·
Parameter estimation

1 Introduction

We advocate a generic platform-aware technique to study the dynamics of large
bio-pathways models. Specifically we focus on a well-established formalism, a
system of ordinary differential equations (ODEs), to model the dynamics of the
pathway models. For such systems we implement an analysis method on a multi-
core platform consisting of a pool of general-purpose graphical processing units
(GPGPUs or simply GPUs).

A system of ODEs together with a (initial) set of values for the initial con-
centrations and the rate constant values was formulated in [29] as a model of a
biochemical network that takes into account cell-cell variability in a population.
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These ODE systems will be high dimensional with no closed form solutions.
To get around this, a probabilistic approximation technique accompanied by a
statistical model checking procedure was developed by assuming a probability
distribution over the set of initial values. Since the present paper is essentially an
adaptation of this technique for an efficient GPU based implementation we shall
begin with a brief description of theoretical underpinnings of this technique.

Variations in the initial concentrations of species and kinetic rate constants
across a cell population are typical. To cater for these variations, we assume an
initial probability distribution over the range of initial values and rate constants.
We then suppose that the states of the system are observed at only the discrete
time points {0, 1, 2, . . .} (with the unit of time being chosen suitably). In fact,
we assume that the behavior of the system is of interest only up to a fixed
maximum time point tK . The constant K is chosen based on the application at
hand. For instance, in the parameter estimation problem the last time point for
which experimental data is available will be used to determine K. We choose
bounded linear time temporal logic (BLTL) to specify dynamical properties and
the BLTL specifications of interest are designed to respect this time bound.
The atomic propositions used in the specifications will assert that the current
value of a continuous variable lies in a given interval (with rational end points).
This will in effect discretize the value space of the variables as well. We then
impose the condition that the vector field associated with the ODE systems is
C1-continuous, which is a justifiable assumption in the context of biochemical
reaction networks. As a consequence, one can construct a σ-algebra over TRJK ,
the set of trajectories of length K, and define a probability measure over this
space.

Due to the deterministic dynamics, the probability measure over the space of
trajectories will correspond to the probability measure over the space of measur-
able subsets of the set of initial states induced by the prior distribution over the
set of initial values. More importantly, the set of initial states of the trajectories
that satisfy a BLTL formula will be measurable in this σ-algebra and hence can
be assigned a probability value. As a result, one has to merely sample the initial
states and the parameter values according to the given initial distribution to
carry out the sequential hypothesis testing procedure (or any statistical model
checking procedure based on BLTL specifications). As an aside, this idea breaks
down in the case of hybrid dynamics due to mode switchings and one needs to
develop new technical machinery to induce a probability measure over the space
of trajectories. A preliminary version of this extension is presented in a paper in
the present volume [12].

The theory sketched above is used in [29] to carry out parameter estimation
as follows. A conjunction of BLTL formulas describe the available experimental
time-course data as well as known qualitative properties. One then deploys the
statistical model checking procedure to evaluate the goodness of the current esti-
mates for unknown parameter values. With the help of an evolutionary search
strategy one then searches through the parameter space to obtain a good set of
parameter values. The estimated values are then validated using test data that
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was not made available to the estimation procedure. For high dimensional sys-
tems with many unknown parameters, one will have to call the SMC procedure
many times and for each such call one will have to generate sufficiently many
trajectories to ensure the termination of the SMC procedure. Consequently, the
computational cost induced by the repeated executions of the SMC procedure
can be quite high. This is the motivation for the GPU based implementation of
the above mentioned parameter estimation procedure developed in this paper.

Obviously, one can numerically generate trajectories in parallel on a GPU.
Thus it is tempting to take for granted an easy parallel implementation and
a corresponding increase in performance. This is, however, not the case. The
memory hierarchy of a GPU and its single-instruction multiple-thread (SIMT)
organization of its arithmetic units constitute severe constraints. A näıve imple-
mentation will often perform no better than (and in some cases worse than!) a
sequential implementation. GPUs are, however, an attractive candidate since they
are available off-the-shelf and can offer performance that is comparable to the
more-expensive and less-available multi-core platforms. Furthermore, it is possi-
ble to form large pools of GPUs in a scalable and cost effective way using cloud
services. Therefore, the effort required to overcome the architectural constraints
of GPUs may well be worth it and this is the hypothesis we pursue here.

In simplified terms, the iterative parameter estimation procedure consists of:

(i) Encode the experimental data and known qualitative trends as a BLTL
formula ϕ (as detailed in Sect. 3).

(ii) Fix the required confidence level and the false positives and negatives rates
w.r.t. which one wishes to verify ϕ.

(iii) Guess a current value for each unknown parameter.
(iv) Evaluate the goodness of these estimated parameters by repeatedly gener-

ating trajectories till the statistical test associated with the SMC procedure
terminates.

(v) If the outcome is yes then the current estimate is a good one. If not, guess
a new set of values using the evolutionary search strategy and iterate.

Thus it is step (iv) which is ripe for parallelization. However just generating
a numerical trajectory is not enough. One must evaluate if it satisfies ϕ which
is of course easy to do. However only a small amount of memory will be avail-
able in the vicinity of a GPU core. Hence the generated trajectories need to be
sent up through a number of levels in the memory hierarchy, each of which is
significantly slower than the previous one. This will all but eliminate the per-
formance gains obtained by generating the trajectories in parallel. Hence one
must verify whether a generated trajectory satisfies ϕ on the fly without having
to store the whole trajectory. Again this is not difficult to do though one must
minimize the amount of intermediate data (typically Boolean combinations of
the subformulas of ϕ that still need to be satisfied) to be kept track of. How-
ever the obvious online procedures will involve branching that is based on the
current requirements and this will clash with the hardware parallelism available
in GPUs. At the level of a single core, groups of parallel threads called warps
are scheduled to run the compiled code, which at each step, execute the same
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machine instruction in a lock-step fashion. This is the heart of GPU’s execution
model. If two threads in a warp take different branches, the warp will have to
be executed twice, once for each branch. This so called branch divergence causes
severe performance degradation [22]. To avoid this, we construct a deterministic
automaton-based online model checking technique. This is the main technical
construction in the paper. It turns out that it is better to store the automaton
(as a look-up table) in the intermediate storage shared by the cores and hence we
also implement a standard latency hiding technique to mitigate the data transfer
delays between this shared store and the global store (using which the rest of
the parameter estimation steps are carried out) during model checking.

We have evaluated the performance of our GPU based parameter estimation
procedure on a number of biopathway models drawn from the biomodels data
base. Specifically we have applied our method to the EGF-NGF pathway, the
segmentation clock pathway and the thrombin-dependent MLC-phosphorylation
pathway. Our results show that one can hope to achieve significant performance
gains especially by deploying a pool of GPUs. The present implementation can be
further optimized and a similar strategy can be followed to solve the sensitivity
analysis problem. As pointed out in the concluding section we also feel that other
analysis problems concerning bio-pathways can be tackled using the approach
developed in this paper.

1.1 Related Work

The problem of efficiently generating numerical trajectories on GPUs for large
systems of ODEs has been studied in literature [23,27,35]. In our implementa-
tion, we adopt Liu et al.’s approach that encompasses a heterogeneous group of
GPU threads where the memory-access threads and the trajectory computing
threads are separated into different warps to achieve latency hiding and hence
scalability.

Efficient methods for model checking probabilistic systems have been stud-
ied [7,8,21,31,33]. The statistical model checking (SMC) approach initiated by
Younes and Simmons [34] based on the sequential probability ratio test pro-
posed by Wald [32] has turned out to be a fruitful one and is adopted here. SMC
usually involves checking whether an individual trace satisfies a given temporal
specification. When the specification is a BLTL formula, this is known as BLTL
path checking. Kuhtz and Finkbeiner show that the path checking problem can
be parallelized by unrolling the BLTL formulas into Boolean circuits [18]. Barre
et al. adopt the MapReduce framework [10] to verify a single large trace using
distributed computing [3]. However, it is not clear how these methods can be
implemented on a GPU-based platform.

On the other hand, Barnat et al. take an automata-theoretic approach to
parallel model checking of a restricted class of multi-affine ODE systems [1,2].
The ODE model dynamics is first approximated as a rectangular abstraction
automaton and a given LTL property is translated into a Büchi automaton
that represents its negation. A parallel model checker then looks for an accept-
ing cycle in the product automaton by symbolically exploring the state space.
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But this approach tends to over-approximate the model dynamics. Oshima et al.
present a FPGA-based framework for the checking of BLTL specifications with
applications on partial differential equations [28]. Their method also involves a
Büchi automaton construction but requires a large set of trajectories to be stored
in the hardware before a property can be verified. In contrast our online method
is based on GPUs, which we believe are more accessible and scalable. Further
our focus is on ODE systems that arise in bio-pathway models.

In recent years, statistical model checking has become a building block to
solve complex problems. David et al. apply SMC using analysis of variance
(ANOVA) to find the optimal set of parameters of a network of stochastic hybrid
automata [9]. Jha et al. show how the parameter synthesis problem for stochastic
systems can be approached using statistical model checking [16]. In this paper,
we focus on efficient parallelization techniques for traditional analysis tasks based
on SMC, especially parameter estimation [5]. In particular, we realize the app-
roach proposed by Palaniappan et al. [29] on a GPU-based platform. The key
new ingredient is a novel deterministic online BLTL path checking procedure
that fits in with the requirements of the GPU platform.

The paper is organized as follows. First Sect. 2 introduces the ODE dynamics
and the syntax and semantics of BLTL. Section 3 formulates the online verifi-
cation problem, and describes our automata-theoretic solution to this problem.
In the subsequent Sect. 4, we develop the GPU based solution to the parameter
estimation problem with the online verification procedure serving as the kernel.
In the subsequent Sect. 5 we perform a number of performance case studies, and
in Sect. 6 we summarize and point to future research directions.

2 Background

2.1 ODEs and Trajectories

In the present setting, a biochemical network is modeled as a system of ODEs.
Assume that there are n molecular species {x1, x2, . . . , xn} involved in the net-
work. For each xi, an equation of the form dxi

dt = fi(x,Θi) describes the kinetics
of the reactions that produce and consume xi where x is the concentrations of
the molecular species taking part in the reactions. Θi consists of the rate con-
stants governing the reaction. Each xi is a real-valued function of time t ∈ R.
We assume in this section that all rate constants are known. In Sect. 4, it will
become clear how unknown rate constants are handled while solving the para-
meter estimation problem.

To capture the cell-to-cell variability regarding the initial states, we define
for each variable xi an interval [Linit

i , U init
i ] with Linit

i < U init
i . The actual

value of the initial concentration of xi is assumed to fall in this interval. We set
INIT =

∏
i[L

init
i , U init

i ]. In what follows, we let v to range over R
n.

We represent our system of ODEs in the vector form, dx
dt = F (x,Θ) with

Fi(x,Θ) := fi. In the setting of biochemical networks, the expressions in fi will
model kinetic laws such as mass-action and Michaelis-Menten’s [17]. Moreover,
the concentration levels of the various species will be bounded and the behavior
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of the system will be of interest only up to a finite time horizon. Hence we
assume in this paper that fi is Lipschitz-continuous for each i . As a result, for
each v ∈ INIT the system of ODEs will have a unique solution Xv(t) [15]. We
are also guaranteed that Xv(t) is a C0-function (i.e., continuous function) [15]
and hence measurable.

For convenience, we define the flow Φ : R+ × V → V for arbitrary ini-
tial vectors v as Xv(t). Intuitively, Φ(t,v) is the state reached under the ODE
dynamics if the system starts at v at time 0. We work with Φt : V → V where
Φt(v) = Φ(t,v) for every t and every v ∈ V. Again, Φt is guaranteed to be a
C0-function (in fact 1 − to − 1) and Φ−1

t will also be a C0-function.
In our applications, given the nature of the experimental data, the states of

the system will be observed only at discrete time points and only within a finite
time horizon. Hence by choosing a suitable unit of time we will assume that the
states of the systems are observed at the time points 0, 1, . . .. A trajectory is
a finite sequence τ = v0v1 . . .vk such that v0 ∈ INIT and Φ1(vj) = vj+1 for
0 ≤ j < k. We let TRJ denote the set of finite trajectories which model the
dynamics of the ODEs system.

2.2 Time-Bounded Linear Temporal Logic

In order to encode the dynamical properties of TRJ , we will use formulas in
bounded time linear temporal logic (BLTL). An atomic proposition is of the
form (xi ≥ v) or (xi ≤ v) with v ∈ R. The proposition (xi ≥ v) is interpreted as
“the current concentration level of xi is greater than or equal to v”. A finite set
of atomic propositions, AP , is assumed to be given for a bio-pathway model.

A BLTL formula is defined as follows. First, every atomic proposition, as
well as the Boolean constants true and false, is a BLTL formula. If ψ1 and ψ2

are BLTL formulas, ¬ψ and ψ1 ∨ ψ2 are BLTL formulas. Also, if ψ is a BLTL
formula, so is Xψ. Finally, if ψ1 and ψ2 are BLTL formulas, and t is a positive
integer then ψ1U

≤tψ2 is a BLTL formula. The derived propositional connectives
∧,⊃, etc. and the temporal operators G≤t and F≤t are defined in the usual way.

Let τ = v0v1 . . .vk be a trajectory and 0 ≤ j ≤ k. The semantic relation
τ, j |= ψ is defined as follows.

– τ, j |= (xi ≥ v) iff vj(i) ≥ v. The clause τ, j |= (xi ≤ v) is defined similarly.
– ¬ and ∨ are interpreted in the usual way.
– τ, j |= Xψ iff j < k and τ, j + 1 |= ψ.
– τ, j |= ψ1U

≤tψ2 iff there exists t′ such that t′ ≤ t and j + t′ ≤ k and τ, j + t′ |=
ψ2. Further, τ, j + t′′ |= ψ1 for every 0 ≤ t′′ < t′.

We say that τ is a model of ψ if τ, 0 |= ψ.
The rationale of choosing BLTL instead of a more sophisticated logic is two-

fold. First, relevant properties of bio-pathway models, especially in the context of
parameter estimation and sensitivity analysis are linear time properties defined
over a bounded time horizon. Second, BLTL has enough expressive power to
characterize properties relating to bio-pathway models while being a very simple
temporal logic to work with. Hence we choose BLTL over other commonly-used
formalisms, such as continuous stochastic logic and metric temporal logic.
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3 Online Model Checking Procedure

The problem of BLTL path checking involves determining whether a BLTL for-
mula is satisfied by a trajectory. According to the BLTL semantics, it is easy to
see that the truth value of a BLTL formula can be decided by trajectories with
finite length. Online BLTL path checking requires only the current valuation of
the atomic propositions as input. At each step, it evaluates the BLTL formula
under the current valuation and generates a new formula that represents the
“obligation” in the following step. The procedure terminates when the formula
under consideration becomes either true or false, indicating a satisfaction or
falsification of the original formula.

Such an algorithm can be easily implemented on CPUs. On the other hand,
to achieve a good performance on GPUs, one must address the problem of branch
divergence, which occurs when two GPU threads choose different code segments
under the evaluation of a condition as illustrated in the following example.

Example 1 (Branch Divergence). Consider BLTL formula φ = F≤8G≤5p, where
p is an atomic proposition. Expanding φ, we get φ =

(
p ∧ XG≤4p

)∨XF≤7G≤5p.
Notice that if the current valuation is σ1 = {p 	→ false}, φ is reduced to φ1 =
F≤7G≤5p; if it is σ2 = {p 	→ true}, φ is reduced to φ2 = G≤4p ∨ F≤7G≤5p.

Now we initiate two GPU threads to check whether φ is satisfied for two
different trajectories. Naively, we implement each thread as if σ1 then check φ1

else check φ2. Branch divergence happens when the two trajectories take different
valuations. Since GPU stream processors require that each GPU thread executes
identical instructions, the two threads will process both φ1 and φ2 and simply
discard the unrelated part, resulting in a 50 % loss of performance. 
�

3.1 Automaton-Based BLTL Path Checking

To better utilize the parallelism of GPUs, we introduce an automaton-based
BLTL path checking algorithm. Given a BLTL formula ψ, it is well-known that
there exists a positive integer K that depends only on ψ such that for any tra-
jectory τ whose length is greater than K, one needs to examine only a prefix of
length K to determine whether τ is a model of ψ [4]. The online procedure we
shall construct examines τ as it is being generated (through numerical simula-
tion) in a lock-step fashion. Instead of generating a trajectory of length K at
once, it incrementally simulates the ODE model and checks whether the current
trajectory satisfies the formula ψ.

It is convenient to focus on the sequence of truth values of the atomic propo-
sitions induced by a trajectory. Let us call such a sequence AP-sequence. Given
a trajectory τ = v0v1 . . .vk, its induced AP-sequence is denoted as τap, which
is the sequence P0P1 . . . Pk where for 0 ≤ i ≤ k:

(xj �� v) ∈ Pi iff vi(j) �� v , ��∈ {≤,≥} .
We now wish to construct a deterministic automaton for ψ that accepts

(rejects) an AP-sequence iff it is (not) a model of ψ.



44 R. Ramanathan et al.

As the first step, we replace the time constants mentioned in ψ by symbolic
variables and manipulate these variables separately. To this end, we define the
formula sym(ψ) inductively as follows.

– sym(ψ) = ψ if ψ is an atomic proposition;
– sym(¬ψ) = ¬sym(ψ) and sym(ψ1 ∨ ψ2) = sym(ψ1) ∨ sym(ψ2);
– sym(Xψ) = Xsym(ψ);
– sym(ψ1U

≤tψ2) = sym(ψ1)U≤xαsym(ψ2) where α = ψ1U
≤tψ2.

Thus the subscript assigned to the symbolic variable is the sub-formula in which
the time constant appears. Often for convenience we will index these variables by
integers rather than concrete formulas. Thus sym(F≤8p∨G≤3q) will be typically
represented as F≤x1p∨G≤x2q. We refer to sym(ψ) as a symbolic BLTL formula.

For a BLTL formula ψ, we now define the automaton Aψ = 〈Sψ, 2APψ ,→
, sin,F〉, where Sψ is the set of states, APψ is the set of atomic propositions
that appear in ψ, →⊆ Sψ × 2APψ × Sψ is the transition relation (to be defined
below) , sin ∈ Sψ is the initial state and F ⊆ Sψ are the final states.

Let φin = sym(ψ) and CL be the least set of formulas that contains the
sub-formulas of sym(ψ) and satisfies:

If ψ1U
≤xψ2 is in CL then Xψ1U

≤xψ2 is also in CL.
We let BC denote the Boolean combinations of formulas in CL. A state of

the automaton is a triple of the form (φ, Y, V ), where φ ∈ BC, Y is the set of
variables that appear in φ, and V is a valuation that assigns a positive integer
to every variable in Y . We define sin = (φin, Yin, Vin), where Yin is the set of the
symbolic variables that appear in φin, and Vin assigns to each variable in Yin

the corresponding value in ψ. More precisely, if xα is in Yin and α = ψ1U
≤tψ2

then Vin(xα) = t. F = {(true, ∅, ∅), (false, ∅, ∅)}.
Next we define the transition relation → of A. Let (φ, Y, V ) and (φ′, Y ′, V ′)

be states and P ⊆ APψ be a set of atomic propositions. Then (φ, Y, V ) P−→
(φ′, Y ′, V ′) is a transition iff the following conditions are satisfied.

– Suppose φ = p is an atomic proposition. If p ∈ P , then φ′ = true; otherwise,
φ′ = false. In either case Y ′ = V ′ = ∅.

– Suppose φ = ¬ϕ, and there exists a transition (ϕ, Y, V ) P−→ (ϕ′, Y ′′, V ′′). Then
φ′ = ¬ϕ′, Y ′ = Y ′′ and V ′ = V ′′.

– Suppose φ = φ1 ∨ φ2, and there exist transitions (φ1, Y1, V1)
P−→ (φ′

1, Y
′
1 , V ′

1)
and (φ2, Y2, V2)

P−→ (φ′
2, Y

′
2 , V ′

2). Then φ′ = φ′
1∨φ′

2, Y ′ = Y ′
1 ∪Y ′

2 , and V ′(xi) =
V ′

i (xi) for xi ∈ Xi, i ∈ {1, 2}.
– Suppose φ = Xϕ. Then φ′ = ϕ and Y ′ = Y and V ′ = V .
– Suppose φ = φ1U

≤xαφ2, and there exist transitions (φ1, Y1, V1)
P−→ (φ′

1, Y
′
1 , V ′

1)
and (φ2,X2, V2)

P−→ (φ′
2, Y

′
2 , V ′

2). Then φ′ = φ′
2 ∨ (φ′

1 ∧ Xϕ) where ϕ = φ2 if
V (xα) = 1. Furthermore Y ′ = Y ′

1 ∪ Y ′
2 and V ′ restricted to Y ′

1 is V ′
1 and

V ′ restricted to Y ′
2 is V ′

2 . If V (xα) > 1 then ϕ = φ1U
≤xαφ2. Furthermore

Y ′ = Y ′
1 ∪ Y ′

2 ∪ {xα} while V ′ restricted to Y ′
1 is V ′

1 and V ′ restricted to Y ′
2 is

V ′
2 . In addition V ′(xα) = V (xα) − 1.
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The set of states Sψ is given inductively:

sin ∈ Sψ. Suppose s ∈ Sψ and s
P−→ s′. Then s′ ∈ Sψ.

It is easy to show that this automaton has the required properties. Moreover
its number of states is bounded by 
 + Σx∈Xin

Vin(x) where 
 is the number of
appearances of the X operator in ψ.

s1 : F≤kG≤�0p

s2 : G≤�p ∨ F≤kG≤�0p

sin

false

true

p
k := k − 1
� := �0 − 1

¬p
k := k − 1

¬p
k := k − 1

p
k := k − 1 , � := � − 1

¬p
k := k − 1

p
k := k − 1
� := � − 1

k = k0 , � = �0

k < 0

� < 0

Fig. 1. Automaton for the BLTL formula F≤k0G≤�0p with k0 = 8 and �0 = 5.

Example 2. Consider the BLTL formula ψ = F≤k0G≤�0p, where k0 = 8 and

0 = 5 are constants. Figure 1 shows a fragment of the automaton Aψ. To avoid
clutter we have not explicitly shown the symbolic variables and their valuations.
The dashed arcs indicate that the input states will transit to the corresponding
final states given proper valuations of atomic propositions. 
�

4 Parameter Estimation

The values of many of the rate constants appearing in the ODEs and the initial
concentrations of the species will often be unknown. One will have to learn them
using limited experimental data. Solving this parameter estimation problem is
the crucial first step towards the analysis of ODEs based bio-pathway models.
Here we derive a parallel extension of the method developed by Palaniappan
et al [29]. This will lead to a GPU implementation of a solution to this crucial
problem.

For convenience, we shall assume–as done in the previous section–that all
the initial concentrations are known but that their nominal values can vary over
a cell population. The parameter estimation procedure searches through the
value space of the unknown parameters to determine the “best” combination
of values that can explain the given data and predict new behaviors [26]. The
key step in this procedure is to determine the fit-to-data of the current set of
parameter values. We use BLTL to encode both experimental time series data
and known qualitative trends concerning the dynamics of the pathway. We then
develop a parallel statistical model checking procedure (SMC) to determine the
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goodness of the given set of parameter values, while taking into account that
these values can fluctuate across the population of cells that the data is based
on. This procedure will numerically generate trajectories in parallel and use our
online model checking method to determine if the current trajectory satisfies the
given specification. Subsequently, we use a global optimization strategy known
as SRES [30] to choose a new set of candidate parameter values according to the
SMC based score assigned to the current set.

4.1 Statistical Model Checking

Consider an ODE-based model of a pathway and the associated notations devel-
oped in the previous section. In addition, let Θ = {θ1, θ2, . . . , θm} be the set of
all rate constants. To capture cell-to-cell variability we assume that the range of
values for each θj is [Lj , U j ] for 1 ≤ j ≤ m. We shall present the SMC procedure
while assuming that all the rate constants –as interval values– are known. They
are to be viewed as the current guess of the values of the unknown parameters.

An implicit assumption is that the value of a rate constant, when fixed ini-
tially, does not change during the time evolution of the dynamics, although
this value can be different for different cells. To verify whether the ODE sys-
tem satisfies a property Pr≥rψ, where ψ is a BLTL formula and r ∈ [0,1),
we use a statistical model checking procedure based on Younes and Simmons’
method [34]. Assume that we are given a distribution (usually uniform) over
INIT and Πj [Lj , U j ]. Then the notion Pr≥rψ standing for “the probability of a
trajectory chosen randomly according to the given distribution over INIT and
Πj [Lj , U j ] satisfying the formula ψ is ≥ r”- can be precisely defined [29].

Accordingly, we test the alternative pair of hypotheses : H0 : p ≥ r + δ
and H1 : p ≤ r − δ where p is the standard probability measure of the set of
trajectories that meet the specification ψ and δ is the user defined indifference
region. α and β signify the type-I error and type-II error bounds respectively.
We use Wald’s sequential probability ratio test (SPRT) [32] for the sequential
hypothesis test. In SPRT, random samples are drawn iteratively and we update
the SPRT ratio, qm at the end of each round as

qm =
[r − δ](

∑m
i=1 yi)[1 − [r − δ]](m−∑m

i=1 yi)

[r + δ](
∑m

i=1 yi)[1 − [r + δ]](m−∑m
i=1 yi)

.

The variables y1, y2 . . . signify a sequence of Bernoulli random variables which
correspond to the set of trajectories with an assigned value of 1 if a trajectory k
satisfies the property ψ or 0, if it does not satisfy. When sufficient samples are
drawn, the test terminates. Otherwise, the test proceeds to draw more samples
until the statistical guarantee defined by the error bounds and the indifference
region are met. We define our stopping criterion as follows: We accept the null
hypothesis H0 if qm ≥ Â and accept the alternate hypothesis H1 if qm ≤ B̂.
Otherwise, we update qm and sample a new random trajectory. For the thresh-
olds of the sequential hypothesis test, we set Â = 1−β

α and B̂ = β
1−α .
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4.2 The GPU Implementation

In this section, we first describe the design of our online method that overcomes
the stringent memory restrictions imposed by the GPU platform to evaluate
large number of trajectories as they are numerically generated. We then discuss
how the SMC procedure is implemented in our setting using latency hiding.

Our online approach uses the automaton constructed in Sect. 3, which elimi-
nates the need for handling different formulas explicitly. Recall that running an
automaton A is equivalent to evaluating the corresponding BLTL formula under
a series of valuations at different time points until a final state is reached. To
efficiently implement this on GPU, branch divergence should be avoided as much
as possible. Our solution is to index states, variables and the atomic propositions
as defined in Sect. 3, and encode the transitions and the operations on the valu-
ations into an array AT . This array represents transitions and operations on the
valuations, in which each row corresponds to an input state, and each column to
an atomic proposition. Each element of the array consists of an output state and
the operations on the valuations associated to the transition. Each GPU thread
has access to AT which is pre-computed and stored in the shared memory. A
step in the run of the automaton is performed by all threads of a warp executing
in lock-step updating the state and the variables according to AT . Note that
dummy self-loops for the terminal states are added so that once one of them
is reached, the automaton stays there forever. This avoids explicit checking for
termination, which induces branch divergence.

Example 3. For the fragment of the automaton Aψ defined in Fig. 1, the array

AT =

σ1 σ2⎡

⎢
⎢
⎢
⎣

⎤

⎥
⎥
⎥
⎦

sin s1, a01 s2, a02

s1 s1, a11 s2, a12

s2 s1, a21 s2, a22

� �, {} �, {}
⊥ ⊥, {} ⊥, {}

encodes the automaton, where σ1 = {p 	→ false} and σ2 = {p 	→ true}, and aij

updates the set of time variables for the jth transition out of the ith state.

Our code generation scheme for the multi-thread based numerical simulation
of an ODEs system is similar to the method developed by Hagiescu et al. [13].
During simulation, we generate a number of blocks of trajectories in parallel
where the blocks are distributed across a number of GPU cores. At each time
step, for each trajectory, we update the current state of the constructed deter-
ministic automaton. We also periodically check if all the trajectories in a given
block have hit a final state in the automaton. When this is the case we update
this state information for all the trajectories in the block to the global memory.

If threads from other warps are also scheduled for such long latency global
memory accesses, the memory access delay due to control flow divergence will
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impact performance. To get around this, we use a latency hiding technique where
by the global memory accesses are pre-fetched by threads in a separate warp at
the same time as when the other threads carry out the numerical integration.

At the global memory level we first pick the terminal state of a trajectory
belonging to a block uniformly at random and use it to update the current
SPRT score. When the SMC procedure reaches a decision we stop the concurrent
numerical integration.

4.3 Parameter Estimation

As the first step, we describe how experimental data can be encoded as BLTL
formulas. To do so we first mildly extend the syntax of BLTL with the formulas
of type ψ1U

tψ2 with the semantics: ψ1 will hold exactly up to t time units from
now at which point ψ2 will hold. The construction of the automaton presented
in Sect. 3 can be easily extended to handle this case. Assume, without loss of
generality, that O ⊆ {x1, x2, . . . , xk} is the set of variables for which experimental
data is available, and which has been allotted as training data to be used for
parameter estimation. Assume Ti = {τ i

1, τ
i
2, . . . , τ

i
Ti

} are the time points at which
the concentration level of xi has been measured and reported as [
i

t, u
i
t] for each

t ∈ Ti. The interval [
i
t, u

i
t] is chosen to reflect the noisiness, the limited precision

and the cell-population based nature of the experimental data. For each t ∈ Ti,
we define the formula ψt

i = F t(i, 
i
t, u

i
t). Then ψi

exp =
∧

t∈Ti
ψt

i . We then set
ψexp =

∧
i∈O ψi

exp. In case the species xi has been measured under multiple
experimental conditions, the encoding scheme is extended in the obvious way.

Often qualitative dynamic trends will be available for some of the molecular
species in the pathway. For instance, we may know that a species shows transient
activation, in which its level rises in the early time points, and later falls back to
initial levels. Similarly, a species may be known to show oscillatory behavior with
certain characteristics. Such information can be described as BLTL formulas that
we term to be trend formulas. We let ψqlty to be the conjunction of all the trend
formulas. We assume Θu = {θ1, θ2, . . . , θK} as the set of unknown parameters.
For convenience we will assume that the other parameter values are known and
that their nominal values do not fluctuate across the cell population. We will
also assume nominal values for the initial concentrations and the range of their
fluctuations of the form [Linit

i , U init
i ] for each variable xi. Again, for convenience,

we fix a constant δ′′ so that if the current estimate of the values of the unknown
parameters is w ∈ ∏

1≤j≤K [Lj , U j ] then this value will fluctuate in the range
[w(j) − δ′′,w(j) + δ′′]. Setting Lj

init,w = w(j) − δ′′ and U j
init,w = w(j) + δ′′ we

define INITw = (
∏

i[L
init
i , U init

i ])× (
∏

j [L
j
init,wU j

init,w]). The set of trajectories
TRJw is defined accordingly.

To estimate the quality of w, we run our parallel SMC procedure – using
INITw – to verify P≥r(ψexp ∧ ψqlty). Depending on the outcome of the test
for the various conjuncts in the specification, we assign a score to w using an
objective function detailed below. This evaluation is done at the global memory
level. We then iterate this scheme for various values of w generated using a
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suitable search strategy. For each such w we launch a fresh instance of the
parallel SMC procedure on the GPU network. Using a cloud service, one can
launch as many parallel sets of SMC procedures as there are GPU instances
available.

The objective function is formed as follows. Let J i
exp (= Ti) be the number

of conjuncts in ψi
exp, and Jqlty the number of conjuncts in ψqlty. Let J i,+

exp(w)
be the number of formulas of the form ψt

i (a conjunct in ψi
exp) such that the

statistical test for P≥r(ψt
i) accepts the null hypothesis (that is, P≥r(ψt

i) holds)
with the strength (α

J , β), where J =
∑

i∈O J i
exp + Jqlty. Similarly, let J+

qlty(w)
be the number of conjuncts in ψqlty of the form ψ�,qlty that pass the statistical
test P≥r(ψ�,qlty) with the strength (α

J , β). Then G(w) is computed via

G(w) = J+
qlty(w) +

∑

i∈O

J i,+
exp

J i
exp

. (1)

Thus the goodness of fit of w is measured by how well it agrees with the
qualitative properties as well as the number of experimental data points with
which there is acceptable agreement. To avoid over-training the model, we do
not insist that every qualitative property and every data point must fit well with
the dynamics predicted by w.

The search strategy over the parameter space will use G(w) as an objective
function. Global search methods including the Stochastic Ranking Evolutionary
Strategy (SRES) [30] are much better at avoiding local minima than local meth-
ods but are computationally more intensive. We use the SRES algorithm in our
work since it is known to perform well in the context of pathway models [26].
During the iterative optimization process, SRES maintains a population of para-
meter value vectors, and each search iteration is called a generation after which
selection is performed over the population. We note, however, that the choice of
search algorithm is orthogonal to our proposed method.

5 Experimental Evaluation

We applied our method1 to three ODE based pathway models taken from the
BioModels database [20]. We first verified properties of interest on each of the
three pathway models. Using our parallelized SMC framework, we then per-
formed parameter estimation on these models. The GPU implementation was
based on CUDA 5.0 runtime and tested on four NVidia Tesla K20 m GPUs with
4.8 GB global memory, clocked at 706 MHz each. We compared the performance
of our algorithm with that of a CPU based implementation on a PC with 3.4 Ghz
Intel Core i7 processor with 8 GB of memory. The model checker and the numer-
ical solver for the CPU implementation were written in C++. The CPU imple-
mentation uses the highly optimized stiff solvers in the CVODE package [14] for
integrating ODEs. On the GPU, we implemented the fourth order Runge-Kutta
1 Source code available at https://www.comp.nus.edu.sg/∼rpsysbio/smcgpu/.

https://www.comp.nus.edu.sg/~rpsysbio/smcgpu/
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method (used for the EGF-NGF and segmentation clock model) and the adap-
tive step-size Runge-Kutta-Fehlberg method [19] (used for the thrombin pathway
model). For the cloud implementation, we ported our single node implementa-
tion to 25 Amazon Web Service (AWS) cloud g2.8xlarge GPU nodes. Each
such node has two Intel Xeon E5-2670 CPUs of 8 cores each and four NVIDIA
GK104 GPUs with 60 GB host memory and 4 GB global memory on each GPU
device. The nodes are connected by AWS Enhanced Networking and communi-
cate using CUDA-aware OpenMPI. The NVIDIA GK104 GPUs have 1536 cores
clocked at 797 MHz each with 4 GB global memory and a memory bandwidth of
160 GB/s.

5.1 Case Studies: Property Verification

Thrombin Dependent MLC-Phosphorylation Pathway. Thrombin plays
an important role in the contraction of endothelial cells through multiple path-
ways leading to the phosphorylation of MLC [24]. The pathway model has 105
differential equations and 197 kinetic parameters. Simulation time was fixed at
1000 s divided into 20 equally spaced time points. We used the nominal model
(all rate parameter values known) to verify if it conformed to a property with a
high probability expressed in BLTL. It is known experimentally that the concen-
tration of MLC∗ (phosphorylated MLC) starts at a low level, and then reaches
a high steady state value. The corresponding formula is

P≥0.9(([MLC∗ ≤ 1]) ∧ F≤5(G≤20([MLC∗ ≥ 3]))).

Our SMC analysis concluded that the nominal model does not satisfy this prop-
erty, and we found that phosphorylated MLC shows a transient profile. This
discrepancy has been studied in [25], where it was attributed to missing compo-
nents in the proposed model.

Our online procedure for this case achieves significant speedup (4.6× in a
single GPU setting) compared to an offline GPU based model checker which
first generates trajectories in parallel, stores them in the global memory and
then carries out the model checking procedure on the CPU.

EGF-NGF Pathway. The EGF-NGF signaling pathway captures the differen-
tial response to two growth factors, EGF and NGF in the PC12 neuro-endocrine
cell line [6]. EGF induces cell proliferation while NGF promotes cell differentia-
tion. The difference in cell fate is attributed to the duration of Erk activation.
For studying this model, simulation time was set to 61 min divided into equally
spaced intervals of 1 min each. We checked whether starting from a low value,
the concentration of Erk∗ (active Erk) reaches a high value and then begins to
fall. This property can be formalized as

P≥0.9([0 ≤ Erk∗ ≤ 2.2 · 105] ∧ F≤10([4.8 · 105 ≤ Erk∗ ≤ 5.6 · 105])

∧ F≤20(G≤30([2.2 · 105 ≤ Erk∗ ≤ 4.8 · 105]))).

The property was confirmed to be true by our SMC method suggesting that Erk
shows sustained activation upon EGF stimulation.
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Segmentation Clock Pathway. The segmentation pattern of the spine in
developing embryos is controlled by oscillations in Notch, Wnt and FGF signaling
due to coupled feedback loops [11]. The ODE model representing this pathway
was simulated up to 200 min with observations assumed to be available every
5 min. We formulated the oscillations observed in the concentration profile of
Dusp6-mRNA as a BLTL property as follows

P≥0.9([Dusp6 mRNA ≤ 1] ∧ (F≤10([Dusp6 mRNA ≥ 5.5]∧
F≤10([Dusp6 mRNA ≤ 1] ∧ F≤10([Dusp6 mRNA ≥ 5.5]))))).

This property was verified to be true suggesting oscillations in Dusp6 mRNA
with a period of approximately 100 min.

5.2 Case Studies: Parameter Estimation

We next evaluated our method for estimating unknown model parameters based
on a combination of quantitative time series data and qualitative specifications
of dynamical trends. Using the nominal model we generated training data to be
used for parameter estimation and an independent set of test data not used for
fitting. To generate time series data points, we simulated random trajectories on
the GPU by sampling initial concentration from a ±5 % range around the nom-
inal values. We also encoded the dynamic trends of a few species as properties
in BLTL. Later, for each BLTL property, its respective symbolic automaton was
constructed. We allowed 0.5% parameter variability around the current estimate
of parameters in each iteration of the search procedure. Table 1 summarizes the
key features of the models including the number of variables (Nx), the number
of parameters (NΘ), the number of parameters assumed to be unknown (NΘu

),
the number of equally spaced time points (T) and for SRES, the total number
of individuals (λ) and the number of generations (G).

Table 1. Parameter estimation setup and model specifications

Bio-pathway model Nx NΘ NΘu T λ G

EGF-NGF 32 48 20 61 200 100

Segmentation clock 16 75 39 40 200 300

Thrombin 105 197 100 20 100 500

For the thrombin pathway all training data and test data were quantitative
time course data with one exception. Namely, for Thrombin R∗, a dynamical
trend formulated in BLTL was used as training data expressing that it reaches a
high level within 200 s and then falls to a low level (Fig. 2). We used only quan-
titative data for the EGF-NGF pathway and found a good fit to both training
and test data by the fitted model (Fig. 3). For the segmentation clock model only
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Fig. 2. Parameter estimation of the thrombin pathway, showing model fit to (a) train-
ing data and (b) test data.

Fig. 3. Parameter estimation of the EGF-NGF pathway, showing fit to (a) training
data and (b) test data.

Fig. 4. Parameter estimation of the segmentation clock pathway, showing fit to (a)
training data and (b) test data.

Axin2 mRNA was assumed to have quantitative time course data available, and
dynamical trends were given as training and test data for the remaining species.
For instance, the test data for Dusp6 protein expresses that at least two peaks
and troughs are reached within 200 min – this test property was satisfied by the
fitted model as seen in Fig. 4. In each case, the simulated dynamics of the fitted
model is plotted by sampling randomly from the initial conditions while using
the fitted parameter values.

5.3 Performance

We measured the runtime of the parameter estimation procedure with different
combinations of SPRT error bounds (α and β), indifference regions (δ), and
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threshold probability (r) used within the SMC procedure. We found that for
all three models, while GPU runtimes stayed roughly constant across all SPRT
parameter combinations, runtimes for the CPU based implementation increased
significantly for more stringent statistical tests (see Fig. 5). For instance with
the most stringent statistical test, the GPU implementation took just 42 min for
finding the best parameter set for the EGF-NGF model on a 4-GPU node, a
24.6× speed-up compared to the 17.2 h taken by the CPU implementation.

Fig. 5. Comparison of CPU and GPU runtimes on parameter estimation with different
combinations of SPRT parameters (error bounds α = β, indifference region δ and
probability threshold r). ∗Estimated values based on shorter runs.

Next, Table 2 shows the performance of our parameter estimation method on
a range of parallel architectures with the SPRT parameters set to α = β = δ =
0.01 and r = 0.9. In the 4-GPU server setup, for every generation in our single
node parallel implementation, we divided the total number of individuals across
4 GPUs equally. For the cloud based implementation, the set of individuals were
divided across 100 GPU instances in 25 machines with 4 GPUs per node.

Table 2. Performance of our scheme across different architectures (∗Estimated values
based on shorter runs.)

Model CPU [hr] 4-GPU node
[hr]

100-GPU cloud
[hr]

4-GPU node over
CPU

EGF-NGF 17.22 0.69 0.05 24.6×
Segmentation clock 47.5 4.01 0.45 11.9×
Thrombin 556.8∗ 111.1 5 5×∗

While the 4-GPU server implementation took 42 min to complete the EGF-
NGF parameter estimation task, the same took only 3 min on the 100-GPU
cloud. For the segmentation clock pathway, the 4-GPU implementation took
4 h, a speed-up of approximately 11.9× over the CPU implementation. Finally,
parameter estimation for the thrombin model would take an estimated 23.2 days
using a CPU based implementation. (Note that this estimate was obtained by
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running an initial number of generations in the parameter search, calculating
the average time taken for a generation, and then extrapolating the run time for
the maximal generation number.) The cloud based implementation on the other
hand is able to estimate the parameters in about 5 h.

Finally, Table 3 presents the scaled performance of our parameter estimation
method applied on the EGF-NGF and the segmentation clock pathway models on
the cloud. As might be expected our method achieves near perfect linear scaling
when all the individuals in each round of the SRES procedure are launched on
unique instances on the cloud.

Table 3. Strong scaling performance of the cloud based implementation

Bio-pathway model 40-GPUs Time[s] 80-GPUs over 100-GPUs over

40-GPUs 40-GPUs

EGF-NGF 445.28 1.62x 2.36x

Segmentation clock 3864.74 1.74x 2.35x

6 Conclusion

In this paper we proposed a technique for studying the dynamics of large models
of biological pathways that utilizes the power of commodity graphics processors.
In particular, starting with a model consisting of a system of ordinary differ-
ential equations, we developed a parallel, online procedure for checking if the
trajectories of this model satisfy a bounded linear temporal logic formula. Our
procedure works around various architectural constraints of the graphics proces-
sor execution model to achieve significant performance both on local systems
as well as in the cloud. We believe that this opens the door for studying large
pathway models in a scalable and cost-effective manner.

We used the parameter estimation problem to illustrate the applicability
of our method, which consists of a parallel SMC procedure whose core is a
deterministic online model checking procedure that determines if the trajectory
under construction satisfies a given BLTL formula. Many analysis questions can
be tackled by assuming a distribution over the set of initial concentrations and
parameter values, which will then induce a probability measure on the set of
trajectories satisfying a given BLTL formula. For instance, sensitivity analysis
of a model can be carried out in this fashion as shown in [29] and we are currently
constructing a GPU based implementation using the framework presented here.

When constructing dynamical models to explain experimental observations,
one often ends up with a population of models with different structures corre-
sponding to different hypotheses about the underlying system. With sufficient
GPU units available, one can evaluate the quality of a large number of these
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models in parallel using our method. One can also explore the parameter land-
scape to identify regions most likely to induce the desired pathway responses to
chosen stimuli. Our future work will involve exploring such issues in the context
of model comparison.
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parallel trace validation of LTL properties. In: Qadeer, S., Tasiran, S. (eds.) RV
2012. LNCS, vol. 7687, pp. 184–198. Springer, Heidelberg (2013)

4. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, p. 193. Springer,
Heidelberg (1999)

5. Bortolussi, L., Sanguinetti, G.: Learning and designing stochastic processes from
logical constraints. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.)
QEST 2013. LNCS, vol. 8054, pp. 89–105. Springer, Heidelberg (2013)

6. Brown, K.S., Hill, C.C., Calero, G.A., Myers, C.R., Lee, K.H., Sethna, J.P., Ceri-
one, R.A.: The statistical mechanics of complex signaling networks: nerve growth
factor signaling. Phys. Biol. 1(3), 184 (2004)

7. Bulychev, P., David, A., Larsen, K.G., Mikučionis, M., Poulsen, D.B., Legay, A.,
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Abstract. Analysis of equilibria, their stability and instability, is an
unavoidable ingredient of model analysis in systems biology. In partic-
ular, bifurcation analysis which focuses on behaviour of phase portraits
under variations of parameters is of great importance. We propose a
novel method for bifurcation analysis that employs coloured model check-
ing to analyse phase portraits bifurcation in rectangular abstractions of
piecewise-affine systems. The algorithm works on clusters of worksta-
tions and multi-core computers to allow scalability. We demonstrate the
method on a repressilator genetic regulatory network.

1 Introduction

Many dynamical systems appearing in computational systems biology fall into
the class of time-autonomous non-linear systems. Mathematical models focus
on specific parts of studied biological mechanisms. This can be thought of as
isolating a part from the whole system in a similar way as can be done in wet-lab
experimentation (e.g., isolation of photosystem protein complexes in [16]) and is
used as a methodology in synthetic biology (e.g., synthetic metabolic pathway
modules [12]). Many models are constructed at the level of positive/negative
feed-backs among system variables (e.g., enzyme kinetics or Hill kinetics).

A significant class of isolated non-linear systems displays kinetic functions
that combine kinetic laws where each depends on a single variable, e.g., kinetics of
first-order reactions, single-variable Hill functions, Michaelis-Menten kinetics in
signalling pathways or in sequences of metabolic reactions. This restriction limits
the complexity of the local behaviour in the systems phase space. Respective
dynamical systems can be very well approximated by means of piecewise-affine
systems.

Despite the limitations, piecewise-affine systems constitute a well-accepted
modelling formalism. They have been found to be a valuable tool for practical
analysis of complex genetic regulatory networks at the qualitative level [5,21]
which would be difficult to handle with complex nonlinear systems.

This work has been supported by the Czech Science Foundation grant No. GA15-
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The system dynamics is significantly affected by kinetic parameters. In order
to obtain a precise (quantitative) analysis of piecewise-affine systems, various
parameters, such as reaction rates or concentration values, need to be taken into
account. For a typical model, some of the parameter values can be determined
from the literature or experimental data, many parameters values are unknown.

In this paper we utilise the approach of abstracting the continuous phase
space of the piecewise-affine systems dynamics into a discrete finite set of rec-
tangles on which the system becomes locally linear. The rectangular abstraction
procedure has two steps: (i) non-linear kinetic functions are approximated by
piecewise linear functions resulting in a piecewise-affine system (the algorithm
has been introduced in [15]), (ii) a finite-state automaton is defined on rectangles
of the piecewise-affine system [9]. This approach enables qualitative analysis of
the respective class of biochemical dynamical systems by means of methods based
on model checking and allows to identify the system equilibria and approximate
the character of stability in near proximity of individual equilibria.

Key Contributions. We propose a parallel (distributed-memory) algorithm
for dynamic flow and stability analysis of continuous piecewise-affine mod-
els with respect to kinetic parameters. The main idea is to use special kind
of atomic propositions, called direction propositions, which define elementary
directions of flow in the discrete vectorfield of the rectangular abstraction and
build various flow patterns from these propositions, possibly using temporal
operators. Examples of such patterns might be sink, saddle, source, equilib-
rium, flow etc. Pattern formulas are analysed using parallel coloured parame-
ter synthesis technique which is built on model checking. The novelty of our
approach is thus in a high-performance automated method that analyses how
patterns change (appear, disappear, move, etc.) depending on kinetic parame-
ters. For piecewise-affine systems we can give guarantees on some of the com-
puted results. The method keeps the simplicity and practicality of the pure
qualitative analysis.

Related Work. The dynamical properties of the class of piecewise-affine sys-
tems have been the subject of active research for more than three decades
(e.g., [14,17,21], see [19] for a review). Some attention has been also paid to the
clarification of the correspondence between phase portraits in piecewise-affine
systems and in the corresponding discrete models [3,8,17,22]. The theoretical
background of our approach is based on [6,9] which we further generalise to
parameterised dynamical systems by adopting the parameter uncertainty model
for piecewise multi-affine systems [4]. Our setting differs from [4,15] in that we
strictly focus on a class of continuous piecewise-affine systems where the rec-
tangular abstraction takes the advantage of exact characterisation of systems
equilibria. Since the rectangularisation is done by means of closed sets [9], we
get an abstraction that completely covers the systems dynamics for a fixed para-
meterisation. However, in the similar way as in [4], parameter space is partitioned
by open sets to avoid equilibria to occur on threshold planes and to avoid tra-
jectories to slide over threshold planes. This assumption significantly simplifies
the theoretical framework and allows us to characterise stability by means of
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single-state phase portrait patterns. In contrast to this paper, the work [10] pro-
vides characterisation of stability by means of a qualitative abstraction for a
fixed symbolic parameterisation and in [23] the authors employ model checking
for discrete-time piecewise-affine systems for a fixed parameterisation.

2 Parameterised Rectangular Abstraction

We give the theoretical background that combines the closed set rectangular
abstraction for piecewise-affine systems summarised in [9] with the framework
of parameter uncertainty that has been defined in [4] for piecewise multi-affine
systems rectangularised on open sets. This combination is unique in the sense
it allows us to take the advantage of complete and sound characterisation of
equilibria by means of rectangularisation and brings the results of [9] to the
domain of piecewise-affine systems with parameter uncertainty.

Another extension is in the form of the rectangular transition system resulting
from the abstraction. In contrast with previous work, we encode the information
of flow direction into transitions.

We define a class of parameterised non-linear systems covering dynamical
systems with positive and negative regulations that do not multiply on any sys-
tems variable. The only allowed combination is summation. Such limitation still
covers many interesting models of genetic regulatory networks [1] or metabolic
and signalling pathways relevant in systems and synthetic biology [12]. Optimal
approximation of regulation functions by means of piecewise-affine functions
defined in [15] is employed.

Let P ⊂ R
m denote the parameter space of m uncertain parameters. For fixed

m1, ...,mn ∈ N0 such that
∑n

i=1 mi = m, a parameterisation p ∈ P is defined as
a tuple p = (p11, ..., p

m1
1 , p12, ..., p

m2
2 , .., .., p1n, ..., pmn

n ) where pj
i ∈ R

+. The meaning
of mi is the number of uncertain parameters in the ith systems dimension.

We consider as admissible a class of dynamical systems in the form ẋ =
f(x, p) where x = (x1, ..., xn) is a vector of system variables, n ∈ N the systems
dimension, and for every fixed p ∈ P, f(p) = (f1(p), ..., fn(p)) : Rn → R

n is a
vector of kinetic functions satisfying the following constraints:

1. Variables x1, ..., xn are linearly independent.
2. For every p ∈ P, f(p) is completely defined and continuous on an n-

dimensional rectangle D =
∏n

i=1[0,maxi] ⊂ R
n where maxi is the upper

bound assumed for xi, νD
df=

∏n
i=1{0,maxi} is the set of boundary vertices,

and Di denotes the domain of xi.
3. ∀p ∈ P,∀x ∈ νD,∀i ∈ {1, ..., n}.(xi = 0 ⇒ fi(x, p) > 0) ∧ (xi = maxi ⇒

fi(x, p) < 0).
4. For each i ∈ {1, ..., n}, p ∈ P, fi has the form

fi(x, p) =
∑

j∈I+

κj
i�

j
i (xlij

) −
∑

j∈I−
γj

i �j
i (xlij

)
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where I+ and I− are finite index sets such that I+ ∩ I− = ∅, 0 
= κj
i , γ

j
i ∈ R

+

are kinetic coefficients, and �j
i (xlij

) is an arbitrary monotonic and continuous
regulatory function defined for the variable xlij

where lij ∈ {1, ..., n} that is
total on Dlij

. Any kinetic coefficient κj
i (resp. γj

i ) can be uncertain provided
that there exists P ⊆ P and a unique k such that κj

i = pk
i (resp. γj

i = pk
i ) for

any p ∈ P.
5. We assume P such that every component pk

i of p ∈ P corresponds to some
unique uncertain kinetic coefficient appearing in ith kinetic function.

The set Ω = {Xi | i = 1, . . . ,m} is called rectangular partitioning of D
if (i) for all i = 1, . . . ,m: Xi is a closed full-dimensional rectangle in R

n,
(ii) ∪m

i=1Xi = D, and (iii) for all i, j = 1, . . . , m, i 
= j, the intersection Xi ∩ Xj

is either empty, or a common face of Xi and Xj . We use the notation νXi
to

denote the set of boundary vertices of Xi.
A mapping g : D → R

n is called piecewise-affine on Ω if (i) g is continuous
on D, and (ii) for all i = 1, . . . ,m there exist Ai ∈ R

n×n and ai ∈ R
n such that

for all x ∈ Xi: g(x) = Aix + ai, i.e., g |Xi
is an affine mapping.

For a given p ∈ P, a piecewise-affine system (on a rectangle D) is a tuple
Σ = (D, Ω, x0, t0, g) where Ω is a rectangular partitioning of D, x0 ∈ D is
the initial continuous state, t0 ∈ R

+
0 is the initial time, and g(p) : X → R

n

is a piecewise-affine function on Ω. A trajectory x : R
+
0 → D of system Σ is

a solution of the differential equation ẋ(t) = g(x(t), p) for the initial condition
x(t0) = x0.

For every parameterisation p ∈ P, an admissible (non-linear) dynamical
system of dimension n given by the equation ẋ = f(x, p), initial condition
x(t0) = x0, and bounded in the domain D, can be approximated by a piecewise-
affine system Σ = (D, Ω, x0, t0, g(p)) using the following procedure:

1. For each i ∈ {1, ..., n}, gi is constructed from fi by replacing every �j
i (xlij

)
with a piecewise-affine function Rj

i (xlij
) obtained in the algorithm [15] which

for a given number of requested affine segments approximates �j
i (xlij

) by an
optimal polygonal chain (to simplify the notation let λ := lij in the following
definition):

Rj
i (xλ)df=

wλ−1∑

k=1

r(xλ, μk
i , μk+1

i , �j
i (μ

k
i ), �j

i (μ
k+1
i ))

where
– wλ is number of thresholds defined on xλ including 0 and maxλ(wλ ≥

2), μ0
i = 0 and μk

i < μk+1
i for each k ∈ {0, ..., wλ − 2}, μwλ−1

i = maxλ,

– r(x, σ, σ′, y, y′) =

⎧
⎨

⎩

y + x−σ
σ′−σ · (y′ − y) if σ ≤ x ≤ σ′ ∧ �j

i (xλ) increasing,

y + x−σ
σ′−σ · (y − y′) if σ ≤ x ≤ σ′ ∧ �j

i (xλ) decreasing,

0 otherwise.
2. For each ι = (j1, ..., jn) ∈ ∏n

i=1{0, ..., wi − 2} we define a rectangle Xι =∏n
i=1[μ

ji

i , μji+1
i ]. Note that ∀1 ≤ i ≤ n. maxi = μwi−1

i .
3. Finally, the partitioning Ω is constructed: Ω = {Xι|ι ∈ ∏n

i=1{0, ..., wi − 2}}.
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Every pair Xι,Xι′ ∈ Ω such that ∃!j. ι′j = ιj + δ, δ ∈ {−1, 1} and ∀i, i 
=
j. ι′i = ιi satisfies ||ι − ι′|| = 1 where ||.|| denotes the Euclid norm. For such ι, ι′

we say that Xι′ is a neighbouring rectangle of Xι in direction δ · j and denote
ex (Xι, j, δ)

df=Xι ∩Xι′ the (n−1)-dimensional exiting face of Xι in direction δ ·j.
Note that ||ι − ι′|| ≤ 1 means that either Xι = Xι′ or Xι,Xι′ are neighbouring
rectangles. The notation exV(Xι, j, δ) then denotes the set of vertices of the
respective exiting face, exV(Xι, j, δ)

df=νXι
∩ νXι′ .

Note that in every rectangle Xι ∈ Ω the system is affine, i.e., it has the
form ẋ(t) = Ax(t) + a. According to [6, Theorem 3.1] it holds that there exists
a trajectory starting in Xι which never leaves Xι if and only if there exists an
equilibrium in Xι. Moreover, there exists [9, Theorem 9] an equilibrium in Xι if
and only if 0 ∈ hull({Aιx + aι | x ∈ νXι

}) where hull denotes convex hull.
The parameterised rectangular abstraction transition system for P and Σ,

written RATS(P, Σ), is a quadruple (P, S, T, I) where S = Ω is the set of
states, I ⊆ S the set of initial states, and TsubseteqS × {−n, ..., n} × 2P × S the
(parameterised) transition relation. The relation T contains only those tuples
〈Xι, i, P,Xι′〉, P ⊆ P, denoted as Xι

P→i Xι′ for which ||ι − ι′|| ≤ 1 and either of
the following conditions holds:

1. ||ι − ι′|| = 1, i = j · δ with 1 ≤ j ≤ n, δ ∈ {−1, 1} such that ι′j = ιj + δ and
there exists x ∈ exV(Xι, j, δ) satisfying ∀p ∈ P.fj(x, p) · δ > 0.

2. ||ι − ι′|| = 0, i = 0 ∧ ∀p ∈ P.0 ∈ hull{f(x, p) | x ∈ νXι
}.

d[A]
dt

= κa
2.56

2.56+A6 − γa[A]

d[B]
dt

= κb
A6

2.56+A6 − γb[B]

κa = 1, γa = 0.1
κb = 1.2, γb = 0.2

Fig. 1. Example of an admissible system (left). The vector field (middle) and the
corresponding RATS (right) were obtained under the given parameterisation.

We denote the rectangle associated with a state s ∈ S as X(s). An example
of a RATS is given in Fig. 1 for a 2-dimensional system.

Similarly to [4], we assume P includes almost all parameterisations excluding
singular cases for which some component pj

i leads to fi(μ, p) = 0 for some thresh-
old intersection point μ ∈ D. Additionally, we exclude all parameterisations that
would allow a trajectory to slide along a threshold plane.
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The parameter space P is finitely discretised by parameter partitioning P =
{Pi|i ∈ {1, ..., l}} such that for each Pi, RATS({p}, Σ) is the same for all p ∈ Pi.
Moreover, P is a rectangular partitioning if ∀1 ≤ i ≤ n.mi ≤ 1 (there is at most
a single uncertain kinetic coefficient per a kinetic function).

In [9] it is shown (global sufficiency) that for any p ∈ P and every continuous
trajectory x of Σ there is a path in RATS(Pi, Σ) that corresponds to x and
Pi ∈ P is a class of parameterisations such that p ∈ Pi. The converse (global
necessity) is not guaranteed. This conservatively affects reachability analysis.

For a given p ∈ P, the results referred above enable a complete identification
of fixed points (equilibria) by means of RATS. In particular, every state s ∈ S
for which there is a self-transition (see condition (2) in def. of T ) must contain an
equilibrium x̂ ∈ X such that f(x̂, p) = 0 where X ∈ Ω is the rectangle associated
with s. Note that by the restriction to almost all parameterisations stated above
x̂ must be situated in the interior of X. Moreover, linear independence of systems
variables implies there can be at most a single equilibrium per a rectangle. In
particular, we deal with systems with finitely many equilibrium points all of
which are correctly represented in the abstraction.

3 Phase Portraits Patterns

In this section we suppose a rectangular abstraction representing the finite dis-
crete (over)approximation of the continuous state space of the given dynamical
system. The trajectories in the rectangular abstraction thus (over)approximate
the flow in the original vectorfield. A representative set of trajectories in the
continuous system is called a phase portrait.

Phase portraits can have many shapes. Typical shapes that can appear in a
rectangle of a piecewise-affine system in plane are the following (see also Fig. 2):

– source: a point away from which all nearby trajectories flow;
– sink : a point into which all nearby trajectories flow;
– saddle: a point near which two trajectories flow in, two flow out and the rest

come close but then move away again;
– stable spiral : a point to which trajectories converge in a spiral;
– unstable spiral : a point near which trajectories diverge out in a spiral; and
– centre: infinite number of orbits.

The phase portraits in Fig. 2 also illustrate the notion of stability. A state
of a dynamical system is stable if the system returns to that state after a small
disturbance, or perturbation. Otherwise, it is unstable. In a phase portrait, a
state is stable if all nearby trajectories point towards it, and unstable otherwise.
In Fig. 2, the sink and limit cycle are stable, but the source and saddle (which
has both types of arrows) are unstable. All listed shapes characterise systems
stability (resp. instability) around an equilibrium.

If we limit ourselves to linear systems in the form ẋ(t) = Ax(t) + a (as
is the case of systems on individual rectangles), stability of an equilibrium is
characterised by means of eigenvalues of the systems matrix A [2]. Figure 2 shows
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Fig. 2. Phase portraits with respect to the trace and determinant of the two-
dimensional region linear system matrix.

the equilibria realised in plane for different values of the determinant and trace of
matrix A, i.e., det(A) = λ1 ·λ2 and tr(A) = λ1+λ2 where λ1, λ2 are the real parts
of eigenvalues. An equilibrium is considered to be a sink if it is asymptotically
stable in all directions and its eigenvalues are only real and negative. If the
equilibrium is unstable in all directions, it is a source. If the eigenvalues include
both positive and negative numbers, the equilibrium is of saddle type. Other
kinds of equilibria are possible in a phase space with dimension n ≥ 3, e.g., an
equilibrium state called a saddle-focus which is unstable according to Lyapunov.
They arise from a variety of combinations of systems flow around the equilibrium
in all dimensions.

If the topological structure of phase portraits changes with parameters, we
refer to this as a bifurcation. In this paper, we would like to analyse how phase por-
traits changes depend on parameters. To do this we formulate temporal queries
representing topological structure of phase portraits and compute parameters val-
ues that guarantee the queries are satisfied. In such a way we can analyse, how
parameter values influence the portraits topology in the phase space.

When projecting phase portraits into rectangular abstraction we get abstract
characterisation of portraits called portrait patterns. Some patterns can be
described as single-state patterns (Fig. 3) while other require several states to be
represented. Here we consider single-state patterns only. For such patterns we
can guarantee that the abstracted pattern represents the original phase portrait.
In the rectangular abstraction, single-state patterns are built from transitions
between neighbouring states that are axis parallel. For each state we thus can
have incoming and outgoing transitions facing a particular direction.

The individual patterns are defined by transitions (vectors) associated with a
state. To characterise patterns in the rectangular abstraction of an n-dimensional
model Σ we consider a set

DP =
{
θi

j | i ∈ {−n, . . . , n} \ {0}, j ∈ {in, out}} ∪ {θ 0}
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Fig. 3. Single-state portrait patterns. The question mark denotes either situation:
incoming only, outgoing only, both or none.

of direction propositions evaluated in states. The direction proposition θi
in holds

in a state s if there is a transition from an adjacent state in the direction i to s
(incoming edge) and θi

out holds in a state s if there is a transition to an adjacent
state in the direction i from s (outgoing edge). Directions i and −i are called
opposite directions. The zero direction θ 0 corresponds to a “cyclic transition”
from a state to itself, which can be traversed in “any” direction. Note that there
are 4n + 1 direction propositions for an n-dimensional model.

Using direction propositions we can define portrait patterns. Examples of
patterns are:

sink ≡ (θ−n
in ∧ . . . ∧ θn

in) ∧ (¬θ−n
out ∧ . . . ∧ ¬θn

out)

source ≡ (θ−n
out ∧ . . . ∧ θn

out) ∧ (¬θ−n
in ∧ . . . ∧ ¬θn

in)

stablei ≡ (θi
in ∧ ¬θi

out ∧ θ−i
in ∧ ¬θ−i

out) (for i : 1 ≤ |i| ≤ n)

unstablei ≡ (θi
out ∧ ¬θi

in ∧ θ−i
out ∧ ¬θ−i

in ) (for i : 1 ≤ |i| ≤ n)

outflow i ≡ (θ−n
in ∧ . . . ∧ θi−1

in ∧ θi+1
in ∧ . . . ∧ θn

in)∧
(¬θ−n

out ∧ . . . ∧ ¬θi−1
out ∧ ¬θi+1

out ∧ . . . ∧ ¬θn
out)∧

(θi
out ∧ ¬θi

in) for i : 1 ≤ |i| ≤ n

flow i ≡ (θi
out ∧ ¬θi

in ∧ θ−i
in ∧ ¬θ−i

out) (for i : 1 ≤ |i| ≤ n)

branchingi,j ≡ (θ−n
in ∧ . . . ∧ θi−1

in ∧ θi+1
in ∧ . . . ∧ θj−1

in ∧ θj+1
in ∧ . . . ∧ θn

in)∧
(¬θ−n

out ∧ . . . ∧ ¬θi−1
out ∧ ¬θi+1

out ∧ . . . ∧ ¬θj−1
out ∧ ¬θj+1

out ∧ . . . ∧ ¬θn
out)∧

(θi
out ∧ ¬θi

in ∧ θj
out ∧ ¬θj

in) (for i, j : 1 ≤ |i| ≤ |j| ≤ n)

2d − saddle ≡ θ1out ∧ θ2in ∧ θ−1
out ∧ θ−2

in (for n = 2)

equilibrium ≡ θ 0

Note that all the patterns can be rotated along a particular axis which gives addi-
tional examples. We can also consider “partial” patterns like a sink without any
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edges in some direction(s). Using partial patterns we can define other patterns,
e.g. branching ′

i,j ≡ flow i ∧ flow j .
As a part of our pattern analysis we would like to express global temporal

properties over portrait patterns. Typical property might be “reachability of a
branching point from which two sinks are eventually reachable”. To this end we
employ an extension of computation tree logic (CTL) by direction propositions.
We consider formulae of dCTL defined by the following abstract syntax:

ϕ:: = θ | Q | ¬ϕ | ϕ1 ∧ ϕ2 | AXϕ | EXϕ | A(ϕ1 Uϕ2) | E(ϕ1 Uϕ2)

where Q ranges over atomic propositions taken from a set AP and θ ranges over
direction propositions taken from the set DP. Let ϕ be a dCTL formula. We
denote by cl(ϕ) the set of all sub-formulae of ϕ and by tcl(ϕ) the set of all (tem-
poral) sub-formulae of ϕ of the form EXϕ, E(ϕ1 Uϕ2), AXϕ or A(ϕ1 Uϕ2).
We use the standard abbreviations like EFϕ which stands for E(trueUϕ) or
AGϕ which stands for ¬EF¬ϕ. Examples of dCTL formulae that speak about
patterns are:

– EFsink expresses reachability of a sink pattern,
– AG((E2F1 ≥ 4 ∧ E2F1 ≤ 7.5) ⇒ flow i) expresses that in a specified region

of concentration levels of a protein E2F1 the system moves in the direction i,
– AG(saddle ⇒ E(flowiUsink)) expresses that from a saddle there is reachable

a sink in the direction i.

Note that we have not added directions to temporal operators. It would be
meaningful to consider for example an EXδ operator for expressing the property
“exists next in direction δ”. Such an extension leads to a more richer framework
based on doubly labelled transition systems [11] that allow to combine informa-
tion on states and transitions. However, such multi-state patterns suffer from
the extent of over-approximation in rectangular abstraction and therefore we do
not consider them.

The dCTL semantics is defined on a special kind of Kripke structures, that
in addition to standard Kripke structures have directions associated with tran-
sitions. We will call them rectangular Kripke structures (RKS). A rectangular
Kripke structure of dimension n (over AP and DP) is a tuple K = (S, I,→, L),
where S is the finite set of states, I ⊆ S the set of initial states, L : S → 2AP

is a labelling of states by atomic propositions, →⊆ S × {−n, . . . , n} × S is a
total transition relation, an element (s, δ, s′) ∈→ is a transition facing direction
δ, also written as s →δ s′. Satisfaction of a dCTL formula ϕ in a state s, written
as s |= ϕ, is defined inductively in the same way as in CTL, for the new formulas
we define:

s |= θi
in iff ∃s′ ∈ S.s′ →i s

s |= θi
out iff ∃s′ ∈ S.s →i s′

s |= θ 0 iff s →0 s

To effectively compute the bifurcation analysis we suppose a finite set of
parameter values (parameterisations) obtained as the parameter partitioning P
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(see Sect. 2). We define parameterised rectangular Kripke structure KP of dimen-
sion n (PRKS) as a general structure that encapsulates the family of rectangu-
lar Kripke structures for all parameterisations. Formally, KP = (P, S, I,→, L),
where for each P ∈ P the tuple K(P ) = (S, I,

P→, L) is a rectangular Kripke
structure of dimension n.

It is evident that a parameterised rectangular abstraction RATS(P, Σ) =
(P, S, T, I) can be directly turned into a PRKS KP = (P, S, I,→, L) of the same
dimension with directions DP, labelled by AP , and the set of parameters P

finitely discretised by parameter partitioning P as described in Sect. 2.
It is important to note some implications that follow from the discretisa-

tion we use (defined in Sect. 2). For each parameterisation p ∈ P the rectangu-
lar Kripke structure over-approximates the original continuous piecewise-affine
system provided that every trajectory of the system has a corresponding run
(sequence of transitions) in the RKS, but not vice versa. This implies that
any phase portrait in piecewise-affine system thus has a corresponding portrait
pattern in RKS. The following characterisation can be inferred from selected
patterns:

1. s |= θ0 if and only if there exists an equilibrium in X(s) interior;
2. s |= sink implies there exists a stable equilibrium x̂ ∈ X(s) in the interior

of X(s) such that every continuous trajectory starting in any point of X(s)
does not leave X(s) and reaches x̂;

3. s |= source implies there exists an unstable equilibrium x̂ ∈ X(s) in the
interior of X(s) such that for each x0 ∈ X(s), x0 
= x̂ a continuous trajectory
starting at x0 leaves X(s) in finite time and no trajectory enters X(s) from
outside;

4. s |= outflow i for some i implies there is no equilibrium in X(s) and every
trajectory starting in X(s) leaves X(s) in finite time at the face ex(X(s), j, δ)
where i = j · δ, j ≥ 1 and δ = −1, if i < 0, or δ = 1, if i > 0;

5. s |= flow i for some i implies there is no equilibrium in X(s) and there exists
a trajectory that leaves X(s) in finite time at the face ex(X(s), j, δ) such that
i = j · δ, j ≥ 1 and δ = −1, if i < 0, or δ = 1, if i > 0, and a trajectory that
enters X(s) at ex(X(s), j,−δ), additionally, no trajectory leaves X(s) at the
face ex(X(s), j,−δ) and no trajectory enters X(s) at the face ex(X(s), j, δ).

The characterisation is inferred from the assumptions and facts discussed in
Sect. 2: (1) follows from the complete characterisation of a fixed point from con-
vex hull of vectors in rectangle vertices, (2, 3) besides the assumptions in Sect. 2
follow from linear systems stability analysis [2] and the fact that vectorfield in
X(s) is a linear combination of vectors in vertices (note that s |= sink ∨ source
implies s |= θ0), pattern (4) gives a necessary condition for a flow to exit in
finite time at the face en(X(s), j, δ) and again follows from the linear vector-
field in X(s) characterised by X(s) vertices (Sect. 2). Similarly, (5) provides
characterisation of flow in direction i (here we know nothing about other direc-
tions). Note that (5) also holds in a state where there is a trajectory entering at
ex(X(s), j,−δ) and leaving at ex(X(s), j, δ), but this cannot be guaranteed by
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the pattern due to the extent of over-approximation. We consider the characteri-
sation above just for the given selection of most significant patterns. In this paper
we focus on computational aspects of the pattern analysis. Full characterisation
of all patterns will be given in an extended version of the paper.

We say that a formula is universal (or in dACTL) if it only contains univer-
sal temporal operators and no negations. The rectangular abstraction provides
an over-approximation of the system dynamics and preserves thus the truth of
universal formulae. This guarantees that all parameterisations synthesised from
such formulae are correct representatives of the original ones. Bifurcations are
represented by universal formulae, any bifurcation identified in a PRKS has a
counter-part in the piecewise-affine system. We call a bifurcation point a parame-
ter P ∈ P such that in P the satisfaction of a given portrait pattern is changing.

Our goal is to analyse how phase portraits change depending on a change
in parameters. The problem is formally defined in the following way. Suppose
we are given a PRKS K and a dCTL formula ϕ. The goal is to compute the
function B : P → 2S such that B(P ) = {s | s |=K(P ) ϕ}. Since P is finite, the
function will be represented as a table serving as a source for additional tasks
like visualisation, identifying bifurcation points, etc.

4 Parallel Portrait Patterns Analysis

We suppose a parameterised n-dimensional piecewise-affine system with at most
one uncertain parameter per systems equation. Moreover, we assume a given
dCTL formula. The analysis algorithm is an adaptation of the parallel coloured
model-checking algorithm for parameter synthesis from CTL formulae [7].

The analysis is supposed to be performed on a cluster of workstations which
allows not only to speed-up the analysis, but also to accommodate larger models
using the cumulative memory of workstations. The distributed algorithm uses
one master node responsible for processing input and output of the analysis
and for initialisation of the distributed computing. The state space is distrib-
uted among N nodes using a partitioning function f : S → {1, . . . , N}. After
partitioning, each node owns only a part of the original state space.

In our approach to partitioning, we utilise the regular structure of the state
space for biochemical models [18]. We define the partition function f so that
the rectangular state space is divided into N almost equally sized rectangular
sub-spaces. The construction of the discrete state space as described in Sect. 2
ensures there are only transitions between the adjacent states with respect to
the hyper-rectangular structure. Therefore, our partitioning naturally provides
almost the minimal number of cross transitions, since the only cross transitions
are the ones occurring between the rectangular sub-spaces.

The portrait patterns analysis for a given dCTL formula ϕ works in three
phases. In the initial phase the given piecewise-affine system is transformed into
a RATS and the RATS into a PRKS. Each computational node performs this
operation only for states it owns. This can be distributed almost trivially since
computation of the transitions between adjacent states depends only on the
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information provided in the piecewise-affine model (each process has a full copy
of the piecewise-affine system). We also need to compute the labelling function
for all atomic propositions and evaluate all direction propositions present in the
formula. The labelling function does not depend on model parameters. However,
since the transition relation depends on parameter values, direction propositions
are also parameter-dependent. Therefore, in evaluating direction propositions we
have to consider all possible parametrisations (which can be done efficiently due
to the coloured approach). If required by the user, the analysis can also return
additional global information, e.g. about numbers of various patterns together
with their corresponding state “addresses”. This additional information can be
afterwards used in the second phase of the analysis. For example, if there is
more than one sink state in the state space for some parametrisation, the user
can rewrite the formula with atomic propositions which are true in different sinks
(using their different addresses). This way, the user can synthesise parameters
for this kind of multi-stability. Using command-line options we can instruct the
algorithm to compute such analysis automatically.

The second phase uses the parallel coloured model checking algorithm for
computing the function FK

ϕ : S → 2P such that FK
ϕ (s) = {P ∈ P | s |=K(P ) ϕ},

where s |=K(P ) ϕ denotes that ϕ is satisfied in the state s of K(P ). We only
provide the basic outline of the main algorithm (Algorithm 1), a full description
can be found in [7].

Once the system is partitioned, the Kripke structure on each network node,
called a fragment, can contain states that represent “border” states, which are
those states that in fact belong to some other network node. Whenever the
model checking algorithm reaches a border state it uses information provided by
other network nodes about the truth of formulas in that state – assumptions.
As the assumptions can change, a re-computation is necessary in general. More
precisely, we consider an assumption function A : P×S×cl(ϕ) → Bool. For each
parameter P , state s and formula ϕ, the function A returns true if we can assume
that s |=K(P ) ϕ. Symmetrically, if A returns false, we can assume that s 
|=K(P ) ϕ.
If we cannot assume anything (the information has not been computed yet), A
returns undefined value ⊥. If the assumption function is defined for all arguments
then FK

ϕ (s) = {P ∈ P | A(P, s, ϕ) = true}.
On each computation node we first initialise the assumption function with

A⊥, which is undefined for all inputs. Afterwards, we iterate over all sub-formulas
of ψ, starting from the smallest ones. For each formula we modify the assump-
tion function so that it correctly represents states and parameters where the
formula holds (based on previous assumptions). This is achieved using a func-
tion Cϕ

Ki
: ASϕ

Ki
→ ASϕ

Ki
(ASϕ

Ki
is the set of all possible assumption functions

over fragments Ki and sub-formulas of ϕ) which takes an initial assumption
function and returns, intuitively, the model checking results relative to the ini-
tial assumptions. The full formal definition of Cϕ

Ki
can be found in [7].

As the system is partitioned, neither of the computation nodes has all infor-
mation required to complete the whole computation. Therefore, each computa-
tion node first computes everything it can from available data and then sends
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Algorithm 1. Main Idea of the Distributed Algorithm
1: procedure Check-dCTL(ϕ, K = (P, S, I, →, L) )
2: Partition K = (P, S, I, →, L) into fragments K1, · · · , KN (initial phase)
3: for all Ki where i ∈ {1, · · · , N} do in parallel
4: A ← A⊥ � Initialise assumption function as undefined
5: for all i ≤ |ϕ| do
6: for all ψ in cl(ϕ) where |ψ| = i do
7: repeat
8: A ← Cϕ

Ki
(A) � Update A based on available information

9: exchange assumptions with other processes
10: until all processes reach fixpoint
11: end parallel
12: output FK

ϕ

relevant assumptions to other nodes that might need it. This is repeated until all
computation nodes reach fixpoint (no new information can be computed). Such
situation is detected using suitable distributed termination detection algorithm.

Finally, in the third phase, data from all workstations is collected, B(P ) =
{s ∈ S | P ∈ FK

ϕ (s)} is computed and eventually post-processed and presented
to the user.

5 Case Study

Applicability of our approach is demonstrated on a model of genetic repressilator
given in [13]. In particular, we deal with a scalable genetic regulatory network
with various genes repressing each other in a circle (Fig. 4 (left)). Let us denote
the individual models as Repi where i is the number of genes.

xn

x2x1

d[x1]
dt = k1

K5
1

K5
1+[x2]5

− φx1 [x1]

d[x2]
dt = k2

K5
2

K5
2+[xn]5

− φx2 [x2]

d[xn]
dt = kn

K5
n

K5
n+[x1]5

− φxn [xn]

ki = 1, Ki = 5 for all i ∈ {1, ..., n}
φxj

= 0.1 for all j ∈ {2, ..., n}; φx1 ∈ (0, 1) unknown

Fig. 4. Schematic model (left) and mathematical model (right) of n-dimensional repres-
silator (Repn).

According to [20], there is a bistability in Rep2 (general model is given in
Fig. 4 (right)). Our algorithm has been able to discover the bistability (two dis-
tinct sink nodes) guaranteed for φx1 ∈ (0.119, 0.120) ∪ (0.138, 1.0). Bifurcation
points are predicted at the borders of both parameter intervals as the bistability
appears/disappears there. Figure 6 visualises three vector fields for three differ-
ent parameter values of the parameter φx1 and the corresponding RATS that
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Table 1. The second column shows intervals of φx1 where just a single sink has been
discovered. The third column shows parameterisations where both sinks are guaranteed
to occur simultaneously.

Repi single stability bistability

i = 2 (0.119, 0.120)∪(0.138, 1.0) (0.022, 0.119)∪(0.120, 0.138)

i = 4
(0.119, 0.120)∪(0.128, 0.129)∪

(0.138, 1.0)

(0.022, 0.119)∪(0.120, 0.128)∪
(0.129, 0.138)

i = 6
(0.087, 0.088)∪(0.106, 0.107)∪

(0.123, 0.124)∪(0.140, 1.0)

(0.021, 0.087)∪(0.088, 0.106)∪
(0.107, 0.123)∪(0.124, 0.14)

i = 8 (0.101, 0.103)∪(0.131, 1.0) (0.015, 0.101)∪(0.103, 0.131)

Fig. 5. Visualisation of the results shown in Table 1.

reveal the pattern bifurcation. For models Repi where i ∈ {4, 6, 8}, multistable
behaviour has been also discovered (see Table 1 for summary of the results)
(Fig. 5).

In the model Rep3, we have discovered equilibrium points for specific intervals
of φx1 that have character of a 3d-sink (Table 2). All obtained results are in agree-
ment with the analysis provided in [20]. We have also considered and successfully
checked several temporal properties over patterns, like AG(source ⇒ AFsink),
that express some global characteristics of the vector field.

Additionally, we have evaluated the scalability of the algorithm. The results
confirmed the same level of scalability as reported in [7] for the main procedure
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Fig. 6. Vectorfield of Rep2 with two stable equilibria displayed in figures on the top
for φx1 = 0.085 (left), φx1 = 0.105 (middle), and φx1 = 0.125. The axis labelling is
x = x1, y = x2. The upper fixed point (x = 0.5, y = 10) is independent on φx1 .
The focused zone in each vectorfield plot is characterised by the corresponding RATS
below. The sink pattern is guaranteed in the emphasised state for φx1 ∈ (0.08, 0.089)
(left), φx1 ∈ (0.101, 0.109) (middle), φx1 ∈ (0.12, 0.128) (right).

Table 2. Sink nodes discovered in Rep3. Each row identifies a state satisfying the sink
pattern.

φx1 x1 x2 x3

(0.311, 0.326) [3.06723, 3.21128] [0.0, 0.936375] [8.92557, 9.2557]

(0.342, 0.361) [2.77311, 2.92317] [0.0, 0.936375] [9.2557, 9.61585]

(0.382, 0.407) [2.45498, 2.61705] [0.0, 0.936375] [9.61585, 10.018]

(0.407, 0.438) [2.28091, 2.45498] [0.0, 0.936375] [9.61585, 10.018]

(0.438, 0.477) [2.08884, 2.28091] [0.0, 0.936375] [9.61585, 10.018]

(0.479, 0.532) [1.87875, 2.08884] [0.0, 0.936375] [9.61585, 10.018]

(0.532, 0.612) [1.63265, 1.87875] [0.0, 0.936375] [9.61585, 10.018]

(0.613, 0.747) [1.33854, 1.63265] [0.0, 0.936375] [9.61585, 10.018]

(0.747, 1.000) [0.936375, 1.33854] [0.0, 0.936375] [9.61585, 10.018]

(second phase). All experiments have been conducted on a homogeneous cluster
with 12 nodes each equipped with 16 GB of RAM and a quad-core Intel Xeon
2 GHz processor.
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6 Conclusions

We have proposed a parallel algorithm that can assist the user in analysing
bifurcation of piecewise-affine systems. The framework uses a rich temporal logic
language extended by directions propositions and very effective model checking
technology for representing and analysing the vector field topology changes. Most
of our approach can be extended to more general (piecewise)-multiaffine systems
and we leave this for our future work.
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Abstract. In this work we propose an automatic way of generating and
verifying formal hybrid models of signaling and transcriptional events,
gathered in large-scale regulatory networks.This is done by integrating
temporal and stochastic aspects of the expression of some biological
components. The hybrid approach lies in the fact that measurements
take into account both times of lengthening phases and discrete switches
between them. The model proposed is based on a real case study of ker-
atinocytes differentiation, in which gene time-series data was generated
upon Calcium stimulation.

To achieve this we rely on the Process Hitting (PH) formalism that
was designed to consider large-scale system analysis. We first propose an
automatic way of detecting and translating biological motifs from the
Pathway Interaction Database to the PH formalism. Then, we propose a
way of estimating temporal and stochastic parameters from time-series
expression data of action on the PH. Simulations emphasize the interest
of synchronizing concurrent events.

Keywords: Time-series data · Large-scale network · Hybrid models ·
Compositional approach · Stochastic simulation

1 Introduction

Unraveling and describing the mechanisms involved in the regulation of a cell-
based biological system is a fundamental issue. These mechanisms can be mod-
eled as biological regulatory networks, whose analysis requires to preliminary
build a mathematical or computational model. By just considering qualitative
regulatory effects between components, biological regulatory networks depict
fairly well biological systems, and can be built upon public repositories such as
the Pathways Interaction Database [23] and hiPathDB [30] for human regulatory
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knowledge. In this work we built a hybrid model of signaling and transcriptional
events, gathered in large-scale regulatory networks, for which stochastic simula-
tion parameters were inferred from gene expression time-series data.

High-throughput experimental data has been used since more than one
decade ago to infer biological regulatory models. A variety of methods were
proposed to infer dynamic or static models of protein signaling or gene regu-
lations depending on the nature of the experimental data. We can cite meth-
ods that infer static gene regulatory models from steady-state gene expression
datasets of over-expression or knock-down perturbations using statistical mod-
els generating small-scale (ten species) models [8] or middle-scale (maximum
100 species) models [19]. Additionally, we can cite methods that recovered gene
regulatory dynamic models from time-series data using kinetic modeling [5,20]
generating small-scale models. Recently, static boolean models for middle and
large-scale (over 100 species) signaling protein networks have been derived from
a prior network and fitted to steady-state multiple perturbation phosphopro-
teomics data [10,16] using combinatorial optimization through logic and integer
linear programing to explore the vast search space of candidate boolean mod-
els. When using time-series multi-perturbation phosphoproteomics data, results
can be extended to reconstruct middle-scale dynamic signaling models via the
use of stochastic search approaches [14] that do not guarantee an exhaustive
exploration of the search space of candidate models. The approach presented
in this work confronts a prior signaling and gene regulatory large-scale net-
work, obtained from publicly curated databases, to time-series gene expression
data, by using discrete automaton models and stochastic simulations. Our built
model verifies the agreement of expression traces over time given a signed (acti-
vations/inhibitions), directed and cyclic prior graph.

The advantages and complementariness of our method with respect to the
afore cited approaches are that it allows us to define a logic that integrates
signaling and transcription events (imposing different regulatory rules on these
events), it also integrates multi-valued states of the system components, and
importantly it deals with the complexity of large-scale dynamic models.

Several conceptually different approaches are available for modeling Biologi-
cal Regulatory Network (BRN) dynamics. The most common approach is ordi-
nary differential equations (ODE) that describe deterministic (population aver-
age) behavior in a continuous manner. Even for simple models including a simple
interaction between two components, the analytical solution is impossible. Thus
we must refer to simulation as the only practical method. Furthermore, con-
tinuous models require quantitative knowledge in terms of kinetic coefficients,
which are unknown and very difficult to measure. Thereby, various abstrac-
tion approaches have been developed to make BRN models more convenient
for analysis. Synchronous Boolean model was first proposed by Kauffman [12]
and an alternative asynchronous model was proposed by Thomas [27]. Following
these two papers, many other models have been proposed [6,7,25,26] for mod-
eling dynamic of BRN. All of these models are purely qualitative and discrete,



Integrating Time-Series Data in Large-Scale Cell-Based Models 77

thus do not incorporate quantitative time or other quantities. As well, discrete
models have been extended to integrate quantitative aspects. Time aspect have
been introduced by [1,4,24,29]. It relies on timed automaton implementations.
These models, however, do not take into account the stochastic aspects of the
influences of a BRN.

In the context of modeling and analyzing stochastic and concurrent biolog-
ical systems various formalisms have been introduced such as Stochastic Petri
Nets which is suitable for the representation of parallel systems [17]. They have
been successfully applied in many areas; in particular, the specification of Petri
Nets allows an accurate modeling of a wide range of systems including biologi-
cal systems [11]. The major problem of Stochastic Petri Nets is that, generally,
they do not lead to compact models. In addition, they do not provide results
to deal with the state space explosion and are thus computationally expensive
when modeling large-scale biological networks. The Stochastic pi-calculus for-
malism was introduced by [21] and used in [15] for the modeling of biological
systems. Stochastic pi-calculus has a rich expressiveness and is well adapted
for the use of compositional approach. In this work we rely on this formalism
through the Process Hitting (PH) framework [18], since it is especially useful for
studying systems composed of biochemical interactions, and provides stochas-
tic simulation as well as efficient algorithms, based on the verification of state
reachability, to study dynamical properties of the system. The PH framework
uses qualitative and discrete information of the system without requiring enor-
mous parameter estimation tasks for its stochastic simulation. This framework
has been previously used to verify dynamical properties on biological systems
without integrating high-throughput experimental data.

In this work we provide a method to build a time-series data integrated PH
model and we evaluate the prediction power of this model concerning the simul-
taneously predicted traces of 12 mRNA expression components of the system
upon system stimulation. The main results of this work are: (1) automatic gen-
eration of PH models integrating gene transcription and signaling events, with
and without synchronization of concurrent events, from the Pathways Inter-
action Database, (2) parameter estimation from time-series data and parame-
ter integration in the PH model, and (3) comparison of the PH model pre-
dictions and experimental results. To illustrate our approach, we used a time-
series dataset of human keratinocytes cells, which shows the fluctuations of
mRNA expression across time upon Calcium stimulation. This dataset was built
to study keratinocytes differentiation, a time-dependent process in which the
sequence of activation of signaling proteins is not yet completely understood.
The method proposed in this paper remains general and can be applied to other
case-studies.

2 Data and Methods

The general workflow for integrating time-series data in a PH model is depicted
in Fig. 1, in the following sections we detail some of the workflow steps.
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Fig. 1. Integrating stochastic and temporal information in a large-scale discrete bio-
logical model. The parameters rate (r) and stochasticity absorption factor (sa) will be
presented later in Sect. 2.3.

2.1 Data

Interaction Graph

Definition 1 (Terminal Transient Interaction Graph (TTIG)). A TTIG
N is a couple (V,E), where:

– V = VT

⋃
VI is the finite set of nodes; with VT = {v1t, v2t, . . . , vn1t} the set

of terminal nodes; VI = {v1i, v2i, . . . , vn2i} the set of transient nodes.
– E = {e1, e2, . . . , em} is the set of edges. E ⊆ (VT ×VT )

⋃
(VT ×VI)

⋃
(VI ×VT )

In this definition terminal nodes can be either mRNA expression, proteins,
complexes, cellular states, biological processes or positive conditions. On the
other side, transient nodes can be either transcriptions or translocations or
modifications or compounds. Edges are of different types: activation (agent),
inhibition, output, input and protein-family-member.

Definition 2 (Multi-layer Receptor-Signaling-Transcription-Cell State
(RSTC)). A RSTC network is a TTIG where nodes are linked to a layer (Recep-
tor, Signaling, Transcription, Cell state) according to their position in the cell.
The position in the cell usually induces specific behavior that has to be modeled
differently.

The interactions of the biological system under study were represented in a
RSTC network, which stands for multi-layer Receptor-Signaling-Transcription-
Cell state network and that was generated from the Pathway Interaction Data-
base (PID). In order to build this network one needs to select a set of seed nodes
related to the biological process studied. For our case study, the seed nodes were:
(1) E-cadherin, which is a protein having Calcium binding domains and which
plays an important role in cell adhesion; (2) the 12 significantly differentially
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expressed genes across the 10 time-points; and (3) the cell states of keratinocytes-
differentiation and cell-cycle-arrest. The network was extracted automatically
from the whole content of the PID database by using a subgraph algorithm to
link the seed nodes [9]. In Fig. 2 we show the RSTC network obtained.

Definition 3 (Pattern). A pattern can be defined as an atomic set of biological
components and their interacting roles.

The first column of Table 1 shows some examples of patterns that can be
found in a RSTC Network.

Fig. 2. Interaction graph linking E-cadherin with 12 genes of the time-series dataset.
Blue nodes correspond to E-cadherin entities, red or green, to time-series genes, and
cyan nodes to cellular processes. The graph is composed of 293 nodes and 375 edges
(interactions). The set of nodes are composed of terminal nodes (proteins, complexes,
mRNA expression, cellular state, biological processes and positive conditions) and of
transient nodes (transcriptions, translocations, modifications and compounds). The set
of edges are composed of interactions of type activation, inhibition, output, input and
protein-family-member (Color figure online).

Time-Series Microarray Dataset. We use the time-series microarray data
from Calcium stimulated human keratinocyte cells measured at 10 time-points
(1h, 2h, 3h, 4h, 5h, 6h, 8h, 12h, 18h, 24h). The expression levels were measured in
log2; the expression of a gene at an specific time point is compared with respect
to a control condition (gene expression in a kerationocyte cell without Calcium
stimulation). We selected genes, which mRNA expression e was significantly
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(log2(e) ≥ 1) up-regulated or significantly (log2(e) ≤ −1.0) down-regulated in
at least one time point compared to control. From this procedure 200 mRNA
expression transcripts were selected. We included in our model a subset of 12
of the 200 selected (see Fig. 3) because these 12 genes had upstream regulatory
mechanisms when querying the PID database and therefore were connected in
the interaction graph to the E-cadherin node.

Fig. 3. Relative expression of selected mRNA upon Calcium stimulation. The X axis
represents time duration of the experiment measured in hours. The Y axis represents
the log2 expression level of genes with respect to control.

2.2 The Process Hitting Framework

In order to model the dynamics of the system, we use the Process Hitting
framework [18]. The Process Hitting (PH) gathers a finite number of concur-
rent processes grouped into a finite set of sorts. A sort stands for a component
of a biological system while a process, which belongs to a unique sort, stands
for one of its expression levels. At any time exactly one process of each sort is
present. A state of the PH corresponds to such a set of processes. We denote
here a process by ai where a is the sort and i is the process identifier within
the sort a. The concurrent interactions between processes are defined by a set of
actions. Actions describe the replacement of a process by another of the same
sort conditioned by the presence of at most one other process in the current
state. An action is denoted ai → bj � bk, which is read as “ai hits bj to make it
bounce to bk”, where ai, bj , bk are processes of sorts a and b, called respectively
hitter, target and bounce of the action.
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Definition 4 (Process Hitting). A Process Hitting is a triple (Σ,L,H),
where:

– Σ = {a, b, . . . } is the finite set of sorts;
– L =

∏
a∈Σ La is the set of states with La = {a0, . . . , ala} the finite set of

processes of sort a ∈ Σ and la a positive integer, with a �= b ⇒ La ∩ Lb = ∅;
– H = {ai → bj � bk ∈ La × Lb × Lb | (a, b) ∈ Σ2 ∧ bj �= bk ∧ a = b ⇒ ai = bj}

is the finite set of actions.

Given a state s ∈ L, the process of sort a ∈ Σ present in s is denoted by s[a].
An action h = ai → bj � bk ∈ H is playable in s ∈ L if and only if s[a] = ai and
s[b] = bj . In such a case, (s · h) stands for the state resulting from playing the
action h in s, with (s · h)[b] = bk and ∀c ∈ Σ, c �= b, (s · h)[c] = s[c]. In order to
model the fact that a molecule in the interaction graph is influenced by various
molecules, two types of modeling-scenarios can be proposed: cooperation and
synchronization.

Modeling Cooperation. The cooperation between processes to make another
process bounce can be expressed in PH by building a cooperative sort [18].
Figure 4 shows an example of a cooperative sort ab between sorts a and b, which
is composed of 4 processes (one for each sub-state of the presence of processes in
a and b). For the sake of clarity, processes of ab are indexed using the sub-state
they represent. Hence, ab01 represents the sub-state 〈a0, b1〉, and so on. Each
process of sort a and b hits ab, which makes it bounce to the process reflecting
the status of the sorts a and b (e.g., a1 → ab00 � ab10 and a1 → ab01 � ab11).
Then, to represent the cooperation between processes a1 and b1, the process ab11
hits c1 to make it bounce to c2 instead of independent hits from a1 and b1. The
same cooperative sort is used to make a0 and b0 cooperate to hit c1 and make
it bounce to c0. Cooperation sort allows to model the fact that two components
cooperate to hit another component.

Modeling Synchronization. The synchronization sort implements another
type of cooperation. If we refer to the example of Fig. 4 left, we can similarly
construct a synchronization sort ab between sorts a and b, defined with also 4
processes. Then, component c is activated (c1 bounces to c2 or c0 bounces to c1)
if either a or b are activated. Therefore, each one of these processes ab01, ab10,
ab11 can activate c. In order to inhibit c, both sorts, a and b, need to be in the
sub-state 0, i.e. ab00. Notice that this rule is a combination of OR logical gates for
activation and AND logical gates for inhibition. Imposing the synchronization
sort to model a target component regulated independently by multiple prede-
cessors avoids oscillations in the behavior of the target component over time.
These oscillations appear because each predecessor can independently activate
the target component when it is active, but when one predecessor is inhibited,
it inhibits the target component. This competition between the predecessors
generates oscillations on the target component.
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Example 1. Figure 4 represents a PH (Σ,L,H) with Σ = {a, b, c, ab}, and:

La = {a0, a1},

Lb = {b0, b1},

Lab = {ab00, ab01, ab10, ab11},

Lc = {c0, c1, c2}.

This example models a Biological Regulatory Network (BRN) where the com-
ponent c has three qualitative levels, components a and b are Boolean and ab is
a cooperative sort. In this BRN, ab inhibits c at level 2 through the cooperative
sort ab (e.g. ab00 → c2 � c1, ab00 → c1 � c0) while a and b activate c through the
cooperative sort ab (e.g. ab11 → c0 � c1 ab11 → c1 � c2). Indeed, the reachability
of c2 and c0 is conditioned by a cooperation of a and b as explained above.

a

b

c
+

+
a

0 1

b

0 1

c

0

1

2

ab

00 01 10 11

Fig. 4. (Left) biological pattern example. Nodes represent molecules (components) and
edges, interactions. In this pattern components a and b cooperate to activate c. (Right)
equivalent PH model with four sorts: three components (a, b and c) and a cooperative
sort (ab). Actions targeting processes of c are drawn as thick lines.

2.3 Model Construction (from RSTC to PH)

Modeling the RSTC Network as a PH Model. In order to model the
RSTC network as a PH model we select known biological regulatory patterns
(atomic set of biological components and their interacting roles), represented
as biochemical reactions in the RSTC network and we propose their PH repre-
sentation. Table 1 shows some examples of this transformation. The automatic
pattern selection and PH model generation algorithms use two procedures. The
first one takes the graph as parameter argument and automatically browses it
node by node and detects all the patterns in the graph. For each node (out-
put node of the pattern) we call a recursive procedure, that allows to detect
a minimal set of nodes (input node of the pattern) that has a direct influence
over that node. This set of nodes plus the output node and the way input and
output are linked form a pattern. The type of a pattern is determined by the
type of the output node, the type of regulations that come to that node and
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the type of input nodes of the pattern. Consequently, the algorithm of patterns
detection returns the pattern and its type to another procedure which translates
the pattern into the PH formalism. This transformation takes care of different
cases (cooperation, synchronization, simple activation, simple inhibition, etc.)
For example a molecule a cooperating with a molecule b to activate a molecule c
(Fig. 4, left), is a regulatory pattern because it is a protein-complex biochemical
reaction that appears at recurrent times. We model this pattern by four sorts
(Fig. 4, right) a, b, c and ab. Sorts a, b and c stand for components a, b and c.
The cooperative sort ab is introduced in order to characterize constraints on the
components a and b. In the RSTC network, we find 25 regulatory patterns. We
show some examples in Table 1.

Table 1. Examples of patterns

Biological Patterns PH Transformations Descriptions

a i b

Simple activation
a

0

1

b

0

1

This pattern model the
activation of the component b
by the component a.

a i b

Simple inhibition
a

0

1

b

0

1

This pattern model the
inhibition of the component b
by the component a

a

i

b

c

Activation or inhibition

a

0

1

b

0

1

c

0

1

This pattern model either the
activation of the component c
by the component a or the
inhibition of the component c
by the component b

Estimating the Parameters for the PH-simulation from Time-Series
Gene Expression Data. Since the simulation of the execution of the PH
actions is done stochastically, we need to relate each action with temporal and
stochastic parameters introduced into the PH framework to achieve dynamic
refinement [18]. To fire an action in the PH framework we need to provide two
parameters: (1) the rate r = t−1, where t is the mean time for firing an action,
and (2) the stochasticity absorption factor sa, which is introduced to control the
variance of firing time of an action.
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Fig. 5. Estimating temporal parameters from time series data: The mean firing time of
an action that makes a component (mRNA expression) change of sub-state is estimated
as ri = 1

ti−ti−1
. MaxLevel represents the maximum expression of a mRNA expression,

while MinLevel, its minimum expression. The thresholds th1 and th2 define the PH
discrete sub-states (e.g. 0,1,2) of a component according to its gene expression data.

For the model components which have a measurement in the time-series data
we estimate the r and sa parameters and they are introduced in the PH model.
The other components are assigned default parameters. In order to estimate ri

and sai for each action hi ∈ H, we need to know the different times ti when
the action could be fired as illustrated in Fig. 5. Each ti represents the time at
which we assume that a component moves from one process to another. There-
fore the action that leads this change must be played at the rate ri = 1

ti−ti−1
.

The integer sa represents the window of firing the action at rate r: the larger the
sa is, the smaller the variance around r is. Studies [2,3,22] have proposed more
elaborated methods for parameters estimation from gene expression data. These
methods are well adapted in the case of biochemical reactions where the concept
of threshold is implicit. In the proposed case we assume an explicit threshold.
Thus a basic estimation algorithm can be used for temporal and stochastic para-
meter estimation.

Discretization of Time-Series Data. Because the outputs of a PH simulation
are discrete traces of PH components, we discretized continuous experimental
data to facilitate the comparison with simulation outputs. When looking at the
time-series data (see Fig. 3) one can distinguish a high level of activity in early
hours [0h-5h] and a low level in late hours [5h-10h]. This trend was confirmed
by the SMA (Simple moving average) function of the R package TTR which
allows us to smooth time-series data. We used the SMA function with parameter
n = 2 and we observed that more than 50% of the time-series data presented
these two levels of activities. We implemented a discretization method to capture
these two activation times. For each time-series, we introduced two thresholds
th1 and th2 (see Fig. 5) were introduced: th1 = 1

3 (MaxLevel − MinLevel) and
th2 = 2

3 (MaxLevel − MinLevel). In this way, the expression level in the range
[0 − th1] is at level 0, the one in the range [th1 − th2] is at level 1, and the one
in the last range is at level 2.
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2.4 Simulation

We set the same initial conditions to PH components belonging to the same
network layer, chosen from the RSTC structure. These initial conditions are
detailed below and summarized in Fig. 6.

– Receptor Layer: E-cadherin. We choose the pulse signal for the input node
E-cadherin to be active for a duration of 5 time units in average. This choice
was made in orders to take into account the average time of the Calcium
stimuli effect.

– Signaling Layer: Signaling Proteins. The components in this layer are
activated and inhibited with the same rate and the same stochasticity absorp-
tion factor. The actions between a controller component A and a controlled
component B are constrained so that B is first activated by A and then inhib-
ited. That is, the time interval in which an inhibition action from A to B fires is
greater than the time interval in which an activation action from A to B fires.
Additionally, these two time intervals must not overlap. These constraints
can be seen as reachability constraints from the entry node (E-cadherin) to
the output nodes (mRNA expression). The values of these parameters are
selected by considering the delay of signal transduction from the entry node
to the output nodes.

– Transcription Layer: Transcription Factors. In this layer, the activa-
tion/inhibition over a transcription factor (TF) comes from signaling proteins;
however, for all TFs we introduced an auto-inhibition action that represents
their degradation over time.

– mRNA Expression. The mRNA expression are activated or inhibited
according to the estimated values from time-series data.

2.5 Automatic Analysis of Simulation Traces

Due to the stochastic and concurrent aspects of the system, each execution of the
model can generate a different dynamic trace. Therefore, to validate the proposed
model we analyzed the traces generated by each component for a set of simulations
of the model. The idea was to calculate the percentage of traces that reproduced
the expected dynamic of the system. To achieve this goal, we take each trace gen-
erated at each simulation for a given component and passed it to an automaton
(Ai) that recognize the experimental trace of that component. Thus we can count
the number of accepted traces (Traceaccp); the percentage of accepted traces is
Traceaccp

TraceN
if TraceN is the total number of simulations. Following this we intro-

duce the concept of tolerance in accepting traces. It means that an automaton
can accept a trace with a difference of one or more levels at each state. In our case
study we used a tolerance T1 that allows accepting a difference of one between the
simulated trace and the expected trace at each state.
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Fig. 6. RSTC network structure and initial conditions assigned to each node in the
layer

3 Results

3.1 Automatic Generation of PH Model from the PID Network

PH models are written using the PINT1 format. PINT implements stochas-
tic simulations and static analyses for computing dynamical properties on very
large-scale PH models. For the PINT code generation two procedures were used.
The first procedure detects motifs (controller and controlled components) in
graphs from the Pathway Interaction Database; the second, generates the PINT
code by choosing an adequate concurrency rule, based on synchronization sorts,
to represent the motif dynamic in PH. With this method it is possible to convert
the whole content of the PID database into a PH model, as well as individual pre-
selected pathways, as is the case for the system under study. It is implemented
in Java and available upon request.

3.2 Simulation of Calcium Stimulated Biological System

We simulated the model with and without the inclusion of the synchronization
sort. In the following, we present the results of the simulation.

1 http://process.hitting.free.fr.

http://process.hitting.free.fr
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Without the Introduction of the Synchronization Sort. One can notice
in Fig. 7 the occurrence of oscillations. Whereas it is not the expected behavior
from the biological system, it is coherent with the choice of the modeling and
the way the simulator works as explained in Sect. 2.2. In this simulation, coop-
eration sorts were used to model multiple controllers of a common controlled
(target) component. It is important to notice that the intensity of the oscilla-
tion is linked with the size of the concurrence, i.e. the number of controllers a
controlled component has. Despite the presence of the oscillations, the model
reproduces expected dynamical behaviors namely the dynamics of components,
the signal transduction and takes into account the stochastic and time aspect of
the model.

With the Introduction of the Synchronization Sort. In Fig. 8 we can
see that the introduction of the synchronization sort significantly reduces the
impact of concurrency. The result shows a clear elimination of the previously
observed oscillations (Fig. 7). Comparing the simulated results with the ones
observed experimentally, we found four different cases. We found 5 simulation
traces (IL8, uPAR, IL1 beta, ET1, A20) that matched the sequence of all the
component expression levels perfectly. In this case, delays exist among simu-
lation and experiment but these delays are not comparable since experimental
time-points are measured in hours and simulation-units for the simulated PH
model. We found 6 simulation traces (MKP1, MKP3, Hes5, SM22, TfR, DKK1)
that matched the sequence of experimental discrete expression levels missing
one expression-level. We found 1 components (TNF-alpha) in which at least 2
expression levels are missed.

Simulating Biological Processes. To validate our model, we studied the pre-
diction of non-observed components of such a system and we focused on biologi-
cal processes linked to Calcium stimulation, such as keratinocyte-differentiation,
cell-adhesion and cell-cycle arrest. Our results are shown in Fig. 9 and confirm
literature experimental evidences on these processes. In the case of keratinocyte-
differentiation, this was a functional behavior measured on the cultured cells
upon Calcium stimulation, so there was experimental evidences of this effect
before measuring the gene expression. In the case of cell-cycle arrest, the switch-
on of this component represents the fact that the E-cadherin stimulated model
predicts the stop of growth, as confirmed by literature in human and mouse ker-
atinocytes [13]. Finally, the cell-adhesion component is predicted to switch-on,
also in according to published evidence [28] in human and mouse keratinocytes.

3.3 Model Validation: Traces Analysis

To validate the results of the simulations, we automatically analyzed the traces
generated by a set of 100 simulations. Table 2 shows the results of the percentage
of acceptance for the traces of each of the 12 mRNA expressions. One can observe
that there are 4 components with a good acceptance rate (> 76%), which are:
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Fig. 7. Results of system simulations without introducing the synchronization sort
for 9 genes. The traces representing the discretized time-series data are shown as black
lines. The traces representing the simulated traces are shown as blue lines (Color figure
online).

A20, IL1 beta, IL8, uPar; 4 traces with a good acceptance rate (> 94%) when
considering 1 level of tolerance, which are: MKP1, MKP3, SM22, and TfR;
and finally 4 traces, for which the model failed to predict their expressions:
ET1, Hes5, DKK1, and TNFa. All in all, for this case study our model predicts
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Fig. 8. Results of simulations by introducing the synchronization sort. The gray traces
represent the experimental expected behaviors from the discretization of the time-series
data. The blue traces show the simulated behavior (Color figure online).

relatively well, 8 out of 12, the experimental traces. Errors on the prediction of
the missing 4 components may be because of missing regulatory interactions.
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Fig. 9. Results of the prediction of biological processes. The gray traces represent
the experimental and literature-based evidence. The blue traces show the simulated
behavior of E-cadherin and three biological processes (Color figure online).

Table 2. Percentage of acceptance traces. First column represents the Automaton
(Ai(w), where Ai is the Automaton and w is the word recognized by Ai) that is used
to check if a given trace is accepted for a component in the second column. One can
observe that many components can be recognized by the same Automaton. In the third
column we show the percentage of accepted traces; in the fourth column, the percentage
of acceptance with a tolerance of one level (T1).

Automate Components % of acceptance % of acceptance T1

A2(01210) A20 91 100

A2(01210) IL1 beta 81 100

A2(01210) IL8 93 100

A2(01210) TNF alpha 0 0

A3(01211) uPar 76 99

A3(01211) ET1 8 19

A4(0121210) DKK1 13 43

A5(0121211) Hes5 0 17

A5(0121211) MKP1 9 97

A6(0212) SM22 11 100

A7(02010) MKP3 11 98

A8(02121) Tfr 0 94
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4 Conclusion

This work describes the steps towards the integration of time-series data in large-
scale cell-based models. We proposed an automatic method to build a timed
and stochastic PH model from pathways of biochemical reactions present in the
Pathway Interaction Database (PID). As a case-study we built a model com-
bining signaling and transcription events relevant to keratinocyte differentiation
induced by Calcium, which linked E-cadherin nodes and 12 genes, which expres-
sion profiles was measured upon Calcium stimulation over time. The interaction
graph represented by the model had 293 nodes and 375 edges. We proposed a
method to discretize time-series gene expression data, so they can be integrated
to the PH simulations and logically explained by the PH stochastic analyses.
Additionally, we implemented a method to automatically estimate the temporal
and stochastic parameters for the PH simulation, so this estimation process will
not be biased by over fitting. Our results show that we can observe dynamic
effects on 11 out of 12 genes, for which 5 of them represent accurate predictions,
and 6 of them missed few dynamic levels. This error may be also a result from the
incompleteness of the regulatory information in PID. Moreover, when observing
the predicted behavior of biological processes linked to Calcium stimulation, our
predictions agreed with experimental and literature-based evidences. Overall,
with this work we show the feasibility of modeling and simulating large-scale
networks with very few parameter estimation and having good quality predic-
tions. As perspectives of this work we intend to study the effects of computing
automatically the concurrent rules on this system. Also, we intend to improve
the model prediction quality by empirically obtaining the dynamics of the system
components by performing large stochastic simulations, as well as by implement-
ing static analysis of quantitative properties by adding probabilistic features to
the PH static solver.

Acknowledgements. This work was supported by a PhD grant from the CNRS and
the French region Pays de la Loire and grants from the German Ministry for Research
and Education (BMBF) funding program MedSys (grant number FKZ0315401A) and
AGENET (FKZ0315898).

A Algorithm of Patterns Detection

Here are the algorithms that allow to detect and construct a process hitting
model from an RSTC network. These algorithms have a polynomial time running
that correspond to the running time of the procedure 2.

Proposition 1. Algorithm 2 has a time complexity of O(|V | log (h)). Where h
is the average height of the patterns in the RSTC network. In the worst case
h = logV (|V |).
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Algorithm 1. Algorithm for Pattern detection in an RSTC Network
in order to generate the equivalent model in the PH formalism
Require: Net {The RSTC network}
Ensure: generate the PH Model associated to Net
1: for all Node n in Net.getSetOfNodes() do
2: Pat = detectPattern (Net, n)
3: patternInPHModel (out, Pat)
4: end for

Algorithm 2. Algorithm for pattern detection, function detectPattern
(Net, n)
Require: Net, n {Net is the network and n is the current node}
Ensure: Build a set of nodes associated to node n that we call pattern.

1: switch (n)

2: case TerminalNode:

3: add node n to the pattern Pat

4: numberPredecessor= n.getNumberOfPredecessor()

5: switch (numberPredecessor)

6: case 1:

7: for all p in setOfPredecessor (n) do

8: switch (p)

9: case TerminalNode:

10: add node n to the pattern Pat

11: case TransientNode:

12: detectPattern (Net, p);

13: end switch

14: end for

15: Set the code of pattern Pat;

16: return Pat;

17: case 2:

18:
19: end switch

20: case TransientNode:

21: numberPredecessor= n.getNumberOfPredecessor()

22: switch (numberPredecessor)

23: case 1:

24: for all p in setOfPredecessor (n) do

25: switch (p)

26: case TerminalNode:

27: added node to the pattern Pat;

28: case TransientNode:

29: detectPattern (Net, p);

30: end switch

31: end for

32: Set the code of pattern Pat;

33: return Pat;

34: case 2:

35:
36: end switch

37: end switch
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Algorithm 3. Algorithm for writing a given pattern into a file, function
patternInPHModel (out, Pat)
Require: out, Pat {Pat is The pattern to be translated into the PH Model, out is the

output file}
Ensure: The correspondent PH Model of the given pattern Pat will write into the file

out
nocp = Pat.getNumberOfComponents() {Number of the components of the pattern
Pat}
tabPat = Pat.getTableOfPattern() {return the components of the pattern in tabPat}
switch (nocp)
case 2:

switch (code)
case A:

out.write (tabPat[1] 1 → tabPat[0] 0 1 ra saa); {Component tabPat[1] activates
component tabPat[0] with r = ra and sa = saa }

case I:
out.write (tabPat[1] 0 → tabPat[0] 1 0 ri sai); {Component tabPat[1] inhibits
component tabPat[0] with r = ri and sa = sai }
end switch

case 3:
switch (code)
case C:

out.write (coop ([tabPat[2];tabPat[1])] → tabPat[0] 0 1); {Cooperation between
tabPat[1] and tabPat[2] to activate tabPat[0]}

case S:
out.write (coop ([tabPat[2];tabPat[1])] → tabPat[0] 0 1); {Synchronization
between tabPat[1] and tabPat[2] to activate tabPat[0]}
default:

out.write ((*unknow pattern*));
end switch

end switch
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Abstract. Hybrid systems whose mode dynamics are governed by non-
linear ordinary differential equations (ODEs) are often a natural model
for biological processes. However such models are difficult to analyze.
To address this, we develop a probabilistic analysis method by approx-
imating the mode transitions as stochastic events. We assume that the
probability of making a mode transition is proportional to the measure
of the set of pairs of time points and value states at which the mode
transition is enabled. To ensure a sound mathematical basis, we impose
a natural continuity property on the non-linear ODEs. We also assume
that the states of the system are observed at discrete time points but
that the mode transitions may take place at any time between two suc-
cessive discrete time points. This leads to a discrete time Markov chain as
a probabilistic approximation of the hybrid system. We then show that
for BLTL (bounded linear time temporal logic) specifications the hybrid
system meets a specification iff its Markov chain approximation meets
the same specification with probability 1. Based on this, we formulate a
sequential hypothesis testing procedure for verifying–approximately–that
the Markov chain meets a BLTL specification with high probability. Our
case studies on cardiac cell dynamics and the circadian rhythm indicate
that our scheme can be applied in a number of realistic settings.

Keywords: Hybrid systems · Markov chains · Dynamical systems ·
Statistical model checking

1 Introduction

Hybrid systems are often used to model biological processes [6,10,11]. The analy-
sis of these models is difficult due to the high expressive power of the mixed
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dynamics [22]. Various lines of work have explored ways to mitigate this problem
with a common technique being to restrict the mode dynamics [2,3,14,18,20,23].
However, for many of the models arising in systems biology the mode dynam-
ics will be governed by a system of non-linear ordinary differential equations
(ODEs). To analyze such systems, we develop a scheme under which such sys-
tems can be approximated as a discrete time Markov chain.

A key difficulty in analyzing a hybrid system’s behavior is that the time
points and value states at which a trajectory meets a guard will depend on the
solutions to the ODE systems associated with the modes. For high-dimensional
systems these solutions will not be available in closed form. To get around this, we
approximate the mode transitions as stochastic events by fixing the probability
of a mode transition to be proportional to the measure of the set of value state
and time point pairs at which this transition is enabled. More sophisticated
hypotheses could be considered. For instance one could tie the mode transition
probability to how long the guard has been continuously enabled or how deeply
within a guard region the current state is. To bring out the main ideas we will
postpone exploring such approximations to our future work.

To secure a sound mathematical basis for our approximation, we further
assume: (i) The vector fields associated with the ODEs are Lipschitz continuous
functions. (ii) The states of the hybrid system are observable only at discrete time
points. (iii) The set of initial states and the guard sets are bounded open sets.
(iv) The hybrid dynamics is strictly non-Zeno in the sense that there is a uniform
upper bound on the number of transitions that can take place in a unit time
interval. For technical convenience we in fact assume that time discretization is
so chosen that at most one mode transition takes place between two successive
discrete time points.

Under these assumptions, we show that the dynamics of the hybrid system H
can be approximated as an infinite state Markov chain M . Given the application
domain we have in mind, namely, biological pathway dynamics, we focus on the
behavior of the hybrid system over a finite time horizon and BLTL (bounded lin-
ear time temporal logic) [15] to specify dynamic properties of interest. The max-
imum discrete time point we fix will be determined by the BLTL specification.
Our probabilistic approximation is such that the set of trajectories satisfying a
BLTL formula will correspond to a measurable set of paths of the Markov chain
and hence can be assigned a probability value. We then show that H meets the
specification ψ–i.e. every trajectory of H is a model of ψ–iff M meets the speci-
fication ψ with probability 1. This allows us to approximately verify interesting
properties of the hybrid system using its Markov chain approximation. However,
even a bounded portion of M can not be constructed effectively. This is because
the transition probabilities of the Markov chain will depend on the solutions to
the ODEs associated with the modes, which will not be available in a closed
form. In addition, the structure of M itself will be unknown since the states
of the chain will be those that can reached with non-zero probability from the
initial mode and we can not determine which transitions have non-zero prob-
abilities. To cope with this, we design a statistical model checking procedure
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to approximately verify that the chain (and hence the hybrid system) almost
certainly meets the specification. One just needs to ensure that the dynamics
of the Markov chain is being sampled according to underlying probabilities. We
achieve this by randomly generating trajectories of H through numerical simu-
lations in a way that corresponds to randomly sampling the paths of the Markov
chain according to its underlying structure and transition probabilities. We note
that a simple minded Monte Carlo simulations based strategy consisting of sam-
pling an initial state (according to the given initial distribution) followed by a
random generation of trajectory will flounder on the issue of how one “randomly”
picks a mode transition during the generation of a trajectory in the presence of
the non-linear dynamics captured by the ODEs systems. Our approximation
technique instead establishes a principled way of achieving this.

In establishing these results, we assume that the atomic propositions in the
specification are interpreted over the modes of the hybrid system. Consequently
one can specify patterns of mode visitations while quantitative properties can
be inferred only indirectly and in a limited fashion. Our results however can be
extended to handle quantitative atomic propositions (“the current concentration
of protein X is greater than 2 μM”). Due to space limitations, we present the
details of this extension in a technical report available online [4].

To demonstrate the applicability of our method, we first study the electrical
activity of cardiac cells represented by a hybrid model. By varying parameters we
analyze key dynamical properties on multiple cell types, in healthy and disease
conditions, and under different input stimuli. We also analyze a hybrid model
of the circadian rhythm, and find distinct roles of multiple feedback loops in
maintaining oscillatory properties of the dynamics.

1.1 Related Work

Mode transitions have been approximated as random events in the literature. In
[1] the dynamics of a hybrid system is approximated by substituting the guards
with probabilistic barrier functions. Our transition probabilities are constructed
using similar but simpler considerations. We have done so in order to be able to
carry out temporal logic based verification based on simulations. An alternative
approach to approximately verifying non-linear hybrid systems is one based on δ-
reals [19]. Here one verifies bounded reachability properties that are robust under
small perturbations of the numerical values mentioned in the specification. Since
the approximation involved is of a very different kind, it is difficult to compare
this line of work with ours. However, it may be fruitful to combine the two
approaches to verify a richer set of reachability properties.

The present work may be viewed as an extension of [31] where a single sys-
tem of ODEs is considered. This method however, breaks down in the multi-
mode hybrid setting and one needs to construct–as we do here–an entirely new
machinery. Finally, a wealth of literature is available on the analysis of stochastic
automata [5,8,13,25]. It will be interesting to explore if these methods can be
transported to our setting.
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2 Hybrid Automata

We fix n real-valued variables {xi}n
i=1 viewed as functions of time xi(t) with t ∈

R+, the set of non-negative reals. A valuation of {xi}n
i=1 is v ∈ R

n with v(i) ∈ R

representing the value of xi. The language of guards is given by: (i) a < xi and
xi < b are guards where a, b are rationals and i ∈ {1, 2, . . . , n}. (ii) If g and g′

are guards then so are g ∧ g′ and g ∨ g′.
G denotes the set of guards. We define v |= g (i.e. v satisfies the guard g)

via: v |= a < xi iff a < v(i) and similarly for xi < b. The clauses for conjunction
and disjunction are standard. We let ‖g‖= {v | v |= g}. We note that ‖g‖ is an
open subset of Rn for every guard g. We will abbreviate ‖g‖ as g.

Definition 1. A hybrid automaton is a tuple H=(Q, qin, {Fq(x)}q∈Q,G,→,
INIT), where

– Q is a finite set of modes and qin ∈ Q is the initial mode.
– For each q ∈ Q, dx/dt = Fq(x) is a system of ODEs, where x =

(x1, x2, . . . , xn) and Fq = (f1
q (x), f2

q (x), . . . , fn
q (x)). Further, f i

q is Lipschitz
continuous for each i.

– →⊆ (Q,G, Q) is the mode transition relation. If (q, g, q′) ∈→ we shall often
write it as q

g→ q′.
– INIT = (L1, U1) × (L2, U2) . . . × (Ln, Un) is the set of initial states where

Li < Ui and Li, Ui are rationals.

We have not associated invariant conditions with the modes or reset condi-
tions with the mode transitions. They can be introduced with some additional
work.

Fixing a suitable unit time interval Δ, we discretize the time domain as
t = 0,Δ, 2Δ, . . .. We assume the states of the system are observed only at these
discrete time points. Furthermore, we shall assume that only a bounded number
of mode changes can take place between successive discrete time points. Both
in engineered and biological processes this is a reasonable assumption. Given
this, we shall in fact assume that Δ is such that at most one mode change takes
place within a Δ time interval. We note that there can be multiple choices for
Δ that meet this requirement and in practice one must choose this parameter
carefully. (Our method can be extended to handle a bounded number of mode
transitions in a unit time interval but this will entail notational complications
that will obscure the main ideas.) In what follows, for technical convenience we
also assume the time scale has been normalized so that Δ = 1. As a result, the
discretized set of time points will be {0, 1, 2, . . .}.

2.1 Trajectories

We have assumed that for every mode q, the right hand side of the ODEs,
Fq(x), is Lipschitz continuous for each component. As a result, for each initial
value v ∈ R

n and in each mode q, the system of ODEs dx/dt = Fq(x) will have a
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unique solution Zq,v(t) [24]. We are also guaranteed that Zq,v(t) is Lipschitz and
hence measurable [24]. It will be convenient to work with two sets of functions
derived from solutions to the ODE systems.

The (unit interval) flow Φq : (0, 1) ×R
n → R

n is given by Φq(t,v) = Zq,v(t).
Φq will also be Lipschitz. Next we define the parametrized family of functions
Φq,t : Rn → R

n given by Φq,t(v) = Φq(t,v). Applying once again the fact that
the RHS of the ODEs are Lipschitz continuous functions, we can conclude that
these parametrized functions Φq,t (which will be 1 − 1) as well as their inverses
will be Lipschitz.

A (finite) trajectory is a sequence τ = (q0,v0) (q1,v1) . . . (qk,vk) such that
for 0 ≤ j < k the following conditions are satisfied: (i) For 0 ≤ j < k, qj

gj→ qj+1

for some guard gj . (ii) there exists t ∈ (0, 1) such that Φqj ,t(vj) ∈ g. Furthermore
vj+1 = Φqj+1,1−t(Φqj ,t(vj)).

We say that the trajectory τ as defined above starts from q0 and ends in qk.
Further, its initial value state is v0 and its final value state is vk. We let TRJ
denote the set of all finite trajectories that start from the initial mode qin with
an initial value state in INIT.

3 The Markov Chain Approximation

A (finite) path in H is a sequence ρ = q0q1 . . . qk such that for 0 ≤ j < k, there
exists a guard gj such that qj

gj→ qj+1. We say that this path starts from q0, ends
at qk and is of length k + 1. We let pathsH denote the set of all finite paths that
start from qin.

In what follows μ will denote the standard Lebesgue measure over finite
dimensional Euclidean spaces. We will construct MH = (Υ,⇒), the Markov chain
approximation of H inductively. Each state in Υ will be of the form (ρ,X,PX)
with ρ ∈ pathsH , X an open subset of Rn of non-zero, finite measure and PX a
probability distribution over SA(X), the Borel σ-algebra generated by X.

We start with (qin, INIT,PINIT) ∈ Υ . Clearly, INIT is an open set of non-
zero, finite measure since μ(INIT) =

∏
i(Ui − Li). For technical convenience we

shall assume PINIT to be the uniform probability distribution, but other prob-
ability distributions with respect to which the Lebesgue-measure is absolutely
continuous could also be chosen. Assume inductively that (ρ,X,PX) is in Υ with
X an open subset of Rn of non-zero, finite measure and PX a probability distri-
bution over SA(X). Suppose ρ ends in q and there are m outgoing transitions
q

g1→ q1, . . . , q
gm→ qm from q in H (Fig. 1 illustrates this inductive step).

Then for 1 ≤ j ≤ m we define the triples (ρqj ,Xj ,PXj
) as follows. In doing

so we will assume the required properties of the objects involved in this con-
struction. We will then establish these properties and thus the soundness of the
construction. For convenience, through the remaining parts of this section j will
range over {1, 2, . . . ,m}.

For each v ∈ X and each j we first define the set of time points Tj(v) ⊆ (0, 1)
via

Tj(v) = {t |Φq(t,v) ∈ gj}. (1)
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(qin, INIT,PINIT)

(ρ, X,PX)

(ρq1, X1,PX1) . . . (ρqj , Xj ,PXj
) . . . (ρqm, Xm,PXm

)

ρ

×

Fig. 1. The Markov chain construction. The edge from the state (ρ, X,PX) to the state
(ρqm, Xm,PXm) marked with a ‘×’ represents the case where Xm has measure 0, and
hence the probability of this transition is 0. Thus, (ρqm, Xm,PXm) will not be a state
of the Markov chain.

Thus Tj(v) is the set of time points in (0, 1) at which the guard gj is satisfied if
the system starts from v in mode q and evolves according to dynamics of mode
q up to time t. We next define Xj for each j as

Xj =
⋃

v∈X

{Φqj
(1 − t, Φq(t,v)) | t ∈ Tj(v)}. (2)

Thus Xj is the set of all value states obtained by starting from some v ∈ X at
time k, evolving up to k+t according to the dynamics q, making an instantaneous
mode switch to qj at this time point, and evolving up to time k + 1 according
to dynamics of mode qj .

To complete the definition of the triples (ρqj ,Xj ,PXj
), we first denote by

PTj(v) a probability distribution over Tj(v). We shall choose this distribution
to be uniform but it could be any other non-uniform probability distribution
with respect to which the Lebesgue-measure is absolutely continuous. We now
define the probability distributions PXj

over SA(Xj) as follows. Suppose Y is a
measurable subset of Xj . Then

PXj
(Y ) =

∫

v∈X

∫

t∈Tj(v)

1(Φqj
(1−t,Φq(t,v))∩Y )dPTj(v)dPX . (3)

As usual 1Z is the indicator function of the set Z while dPTj(v) indicates that
the inner integration over Tj(v) is w.r.t. the probability measure PTj(v) and dPX

indicates that the outer integration over X is w.r.t. the probability measure PX .
Thus PXj

(Y ) captures the probability that the value state Φqj
(1 − t, Φq(t,v))

lands in Y ⊆ Xj by taking the transition q
gj→ qj at some time point in Tj(v)

given that one started with some value state in X.
Next we define the triples ((ρ,X,PX), pj , (ρqj ,Xj ,PXj

)), where pj is given
by

pj =
∫

v∈X

μ(Tj(v))
∑m

�=1 μ(T�(v))
dPX . (4)

Thus pj captures the probability of taking the mode transition q
gj→ qj

when starting from the value states in X and mode q. For every j we add
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the state (ρqj ,Xj ,PXj
) to Υ and the triple ((ρ,X,PX), pj , (ρqj ,Xj ,PXj

)) to ⇒
iff μ(Xj) > 0.

Finally, (qin, INIT,PINIT) is the initial state of MH . We can summarize the
key properties of our construction as follows (while assuming the associated
terminology and notations).

Theorem 1. 1. Tj(v) is an open set of finite measure for each v ∈ X and each
j.

2. Xj is open and is of finite measure for each j.
3. If (ρqj ,Xj ,PXj

) ∈ Υ then μ(Xj) > 0.
4. PXj

is a probability distribution for each j.
5. MH = (Υ,⇒) is an infinite state Markov chain whose underlying graph is a

finitely branching tree.

Proof. To prove the first part, suppose t ∈ Tj(v). Then Φq(t,v) = v′ ∈ gj and
gj is open. Hence v′ will be contained in an open neighborhood U contained in
gj . Since Φq is Lipschitz we can pick U such that Y ′ = Φ−1

q (U) is an open set
containing (v, t) with Y ′ ⊆ (0, 1) × X. Thus every element of Tj(v) is contained
in an open neighborhood in (0, 1) and hence Tj(v) is open.

Using the definition of Xj , the fact that X and Tj(v) are open, and the
continuity of the inverses of the flow functions it is easy to observe that Xj is
open. To see that it is of finite measure, by the induction hypothesis, X is open
and μ(X) is finite. Hence ((0, 1) × X) is open as well and μ((0, 1) × X) is finite.
Since R

n+1 is second-countable [33], there exists a countable family of disjoint
open-intervals {Ii}i≥1 in R

n+1 such that ((0, 1) × X) =
⋃

i Ii. Clearly each Ii

has a finite measure. By the Lipschitz continuity of Φq we know that there exists
a constant c such that μ(Φq(Ii)) < c · μ(Ii) for all i. We thus have

μ(Φq((0, 1),X)) ≤
∑

i

μ(Φq(Ii))

< c
∑

i

μ(Ii) = cμ((0, 1) × X) < ∞. (5)

Therefore Φq((0, 1),X) has a finite measure. By a similar argument we can
show that Φqj

((0, 1), Φq((0, 1),X)) has a finite measure as well. Since Xj =⋃
t Φqj ,1−t(Φq,t(X) ∩ g) ⊆ Φqj

((0, 1), Φq((0, 1),X)), it must have a finite
measure.

The remaining parts of the theorem follow easily from the definitions and
basic measure theory.

4 Relating the Behaviors of H and MH

We shall use bounded linear-time temporal logic (BLTL) [15] to specify time
bounded properties and use it to relate the behaviors of H and MH . For conve-
nience we shall write M instead of MH from now on.
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We assume a finite set of atomic propositions AP and a valuation function
Kr : Q → 2AP . Formulas of BLTL are defined as: (i) Every atomic proposition
as well as the constants true, false are formulas. (ii) If ψ, ψ′ are formulas then
¬ψ and ψ ∨ ψ′ are formulas. (iii) If ψ, ψ′ are formulas and 
 is a positive integer
then ψU≤�ψ′ is a formula. The derived operators F≤� and G≤� are defined as
usual: F≤�ψ ≡ trueU≤�ψ and G≤�ψ ≡ ¬F≤�¬ψ.

We shall assume through the rest of the paper that the behavior of the
system is of interest only up to a maximum time point K > 0. This is guided
by the fact that given a BLTL formula ψ there is a constant Kψ that depends
only on ψ so that it is enough to evaluate an execution trace of length at most
Kψ to determine whether ψ is satisfied [7]. Hence we assume that a sufficiently
high K has been chosen to handle the specifications of interest. Having fixed K,
we denote by TRJK+1 the trajectories of length K + 1, and view this set as
representing the time bounded non-deterministic behavior of H of interest.

To develop the corresponding notion for M , we first define a finite path in
M to be a sequence η0η1 . . . ηk such that ηj ∈ Υ for 0 ≤ j ≤ k. Furthermore for
0 ≤ j < k there exists pj ∈ (0, 1] such that ηj

pj⇒ ηj+1. Such a path is said to
start from η0 and its length is k + 1. We define pathsM to be the set of finite
paths that start from the initial state of M while pathsK+1

M is the set of paths
in pathsM of length K + 1.

The Trajectory Semantics: Let τ = (q0,v0) (q1,v1) . . . (qk,vk) be a finite tra-
jectory, ψ a BLTL formula and 0 ≤ j ≤ K. Then τ, j |=H ψ is defined via:

– τ, j |=H A iff A ∈ Kr(qj), where A is an atomic proposition.
– ¬ and ∨ are interpreted in the usual way.
– τ, j |=H ψU≤�ψ′ iff there exists j′ such that j′ ≤ 
 and j + j′ ≤ k and

τ, (j + j′) |=H ψ′. Further, τ, (j + j′′) |=H ψ for every 0 ≤ j′′ < j′.

We now define modelsH(ψ) ⊆ TRJK+1 via: τ ∈ modelsH(ψ) iff τ, 0 |=H ψ.
We say that H meets the specification ψ, denoted H |= ψ, iff modelsH(ψ) =
TRJK+1.

The Markov chain semantics: Let π = η0η1 . . . ηk be a path in M with ηj =
(ρqj ,Xj ,PXj

) for 0 ≤ j ≤ k. Let ψ be a BLTL formula and 0 ≤ j ≤ k. Then
π, j |=M ψ is given by:

– π, j |=M A iff A ∈ Kr(qj), where A is an atomic proposition.
– The remaining clauses are defined just as in the case of |=H .

Now we define modelsM (ψ) ⊆ pathsK+1
M via: π ∈ modelsM (ψ) iff π, 0 |=M

ψ. We can now define the probability of satisfaction of a formula in M . Let
π = η0η1 . . . ηK be in pathsK+1

M . Then Pr(π) =
∏

0≤�<K p�, where η�
p�⇒ η�+1 for

0 ≤ 
 < K. This leads to

Pr(modelsM (ψ)) =
∑

π∈modelsM (ψ)

Pr(π).
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We write M |= ψ to denote Pr(modelsM (ψ)) = 1. For p ∈ [0, 1] we write as
usual Pr≥p(ψ) instead of Pr(modelsM (ψ)) ≥ p. We note that Pr(π) > 0 for
every π ∈ modelsM (ψ). Furthermore

∑
π∈modelsM (ψ) Pr(π) ≤ 1. Hence Pr≥1(ψ)

iff modelsM (ψ) = pathsK+1
M iff M |= ψ.

4.1 The Correspondence Result

We wish to show that H meets the specification ψ iff Pr≥1(ψ). To this end let
π = η0η1 . . . ηk be a path in M with ηj = (q0q1 . . . qj ,Xj ,PXj

) for 0 ≤ j ≤ k and
let τ = (q′

0,v0) (q′
1,v1) . . . (q′

k′ ,vk′) be a trajectory. Then we say that π and τ
are compatible iff k = k′ and qj = q′

j and vj ∈ Xj for 0 ≤ j ≤ k. The following
three observations based on this notion will easily lead to the main result.

Lemma 1. 1. Suppose the path π = η0η1 . . . ηk in M and the trajectory τ =
(q0, v0) (q1, v1) . . . (qk, vk) are compatible. Let 0 ≤ j ≤ k and ψ be a BLTL
formula. Then π, j |=M ψ iff τ, j |=H ψ.

2. Suppose π is a path in M. Then there exists a trajectory τ such that π and
τ are compatible. Furthermore if π ∈ pathsM then τ ∈ TRJ .

3. Suppose τ is a trajectory. Then there exists a path π in M such that τ and
π are compatible. Furthermore if τ ∈ TRJ then π ∈ pathsM .

Proof. The proof follows via a systematic application of the definitions. To prove
the first part we note that if A is an atomic proposition then π, j |=M A iff
A ∈ Kr(qj) iff τ, j |=H A. We next note that the suffix of length m of π will be
compatible with the suffix of length m of τ whenever π and τ are compatible.
The result now follows at once by structural induction on ψ.

To show the second part let π = η0η1 . . . ηk be a path in M with ηj =
(q0q1 . . . qj ,Xj ,PXj

) for 0 ≤ j ≤ k. Clearly Xj is non-empty for 0 ≤ j ≤ k
since ηj ∈ Υ implies μ(Xj) > 0. We proceed by induction on k. If k = 0
then we can pick v0 ∈ X0 and the trajectory (q0,v0) will be compatible with
τ . So assume k > 0. Then by the induction hypothesis there exists a trajectory
(q1,v1)(q2,v2) . . . (qk,vk) which is compatible with the path η1η2 . . . ηk. Let q0

g→
q1. Since v1 ∈ X1 there must exist v0 in X0 and t ∈ (0, 1) such that Φq0,t(v0) ∈ g
and v1 = Φq1,1−t(Φq0,t(v0)). Clearly v0v1 . . .vk is a trajectory that is compatible
with π. The fact that τ ∈ TRJ if π ∈ pathsM follows from the definition of
compatibility.

To prove the third part let τ = (q0,v0) (q1,v1) . . . (qk,vk) ∈ TRJ . Again
we proceed by induction on k. Suppose k = 0. Then (qin, INIT,PINIT) is in
pathsM which is compatible with τ . So suppose k > 0. Then by the induction
hypothesis there exits π′ = η0η1 . . . ηk−1 such that π′ is compatible with τ ′ =
(q0,v0)(q1,v1) . . . (qk−1,vk−1). Let qk−1

g→ qk. Since Xk−1 is open there exists
an open neighborhood Y ⊆ Xk−1 that contains vk−1. But then both Φ−1

qk−1
and

Φ−1
qk

are continuous. Thus Φqk−1,t(Y ) is open and Φqk−1,t(Y ) ∩ g should be open
and non-empty (since g is open and (qk,vk) is part of the trajectory). Hence
Y ′ =

⋃
t∈(0,1) Φqk,1−t(Φqk−1,t(Y ) ∩ g) is a non-empty open set with a positive

measure. This means there will be a state of the form ηk = (ρk,Xk,PXk
) in Υ
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with Y ′ ⊆ Xk and ηk−1
p⇒ ηk for some p ∈ (0, 1]. Clearly π = π′ηk ∈ pathsM

and is compatible with τ . Again the fact that π ∈ pathsM if τ ∈ TRJ follows
from the definition of compatibility.

Theorem 2. H |= ψ iff M |= ψ.

Proof. Suppose H does not meet the specification ψ. Then there exists τ ∈
TRJK+1 such that τ, 0 �|=H ψ. By the third part of Lemma 1 there exists π ∈
pathsK+1

M which is compatible with τ . By the first part of Lemma 1 we then have
π /∈ modelsM (ψ) which leads to Pr<1(ψ).

Next suppose that Pr<1(ψ). Then there exists π ∈ pathsK+1 such that
π, 0 �|=M ψ. By the second part of Lemma 1 there exists τ ∈ TRJK+1 which is
compatible with π. By the first part of Lemma 1 this implies τ, 0 �|=H ψ and this
in turn implies that H does not meet the specification ψ.

4.2 Quantitative Atomic Propositions

The above results can be extended to handle atomic propositions of the form
〈xi < c〉 and 〈xi > c〉 where c is a rational constant. We partition R

n into
hypercubes according to the constants appearing in the given set of quantitative
atomic propositions in APqt. We then blow up the state space of the Markov
chain to record which hypercube the current values of the variables fall in. We
restrict our attention to robust trajectories and show that every robust trajectory
of H meets a BLTL specification iff its Markov chain approximation meets the
same specification with probability 1. Informally a robust trajectory is one which
has an open neighborhood of trajectories under a natural topology over the space
of K + 1-length trajectories. Under an associated measure the set of non-robust
trajectories will have measure 0. The details can be found in [4].

5 The SMC Procedure

To verify whether H meets the specification ψ, we solve the equivalent problem
whether Pr≥1(ψ) on M . However, as discussed in Sect. 1, M cannot be con-
structed explicitly since both its structure and transition probabilities, defined
in terms of the solutions to the ODEs, will not be available. Therefore we shall
use randomly generated trajectories to sample the paths of M and formulate a
sequential hypothesis test to decide with bounded error rate whether Pr≥1(ψ)
holds. Algorithm 1 describes our trajectory sampling procedure.

Clearly Algorithm 1 generates a trajectory in TRJK+1. We now relate these
trajectories to paths in M .

The initial value v0 is sampled uniformly on INIT, and we start in mode
qin, consistent with the initial state (qin,INIT,PINIT) of M . Inductively, suppose
η = (ρ,X,PX) is a state of M with ρ ending in q. Suppose η

pj⇒ ηj is a transition
in M such that ηj = (ρqj ,Xj ,PXj

).
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Algorithm 1. Trajectory simulation
Input: Hybrid automaton H = (Q, qin, {Fq(x)}q∈Q, G, →, INIT), maximum time step K.
Output: Trajectory τ
1: Sample v0 from INIT uniformly, set q0 := qin and τ := (q0,v0).
2: for k := 1 . . . K do
3: Generate time points T := {t1, . . . , tJ} uniformly in (0, 1).

4: Simulate vj := Φqk−1 (tj ,vk−1), for j ∈ {1, . . . , J}
5: Let T̂j := {t ∈ T : vj ∈ gj} be the time points where gj is enabled.

6: Pick g� randomly according to probabilities {pj := |T̂j |/∑m
i=1 |T̂i|}.

7: Pick t� uniformly at random from T̂�.
8: Simulate v′ := Φq′ (1 − t�,v�), where q′ is the target of g�.

9: Set qk := q′, vk := v′, and extend τ := (q0,v0) . . . (qk,vk).
10: end for
11: return τ

Proposition 1. Suppose, we obtain a sample v ∼ PX . The probability of choos-
ing guard gj whose target mode is qj in Algorithm 1 tends to pj as J → ∞.

Proof. According to Algorithm 1, the probability of picking guard gj for a tra-
jectory starting at v ∈ X is defined as |T̂j |/

∑m
i=1 |T̂i|, which, by the law of large

numbers tends to

pj(v) :=
μ(Tj(v))

∑m
i=1 μ(Ti(v))

(6)

as J tends to ∞.
Now if v is randomly sampled according to PX , then the probability of

picking guard j can be expressed as the expected value of pj(v) under v ∼ PX

as

Ev∼PX
[pj(v)] =

∫

v∈X

pj(v)dPX =
∫

v∈X

μ(Tj(v))
∑m

i=1 μ(Ti(v))
dPX , (7)

which by (4) is equal to pj , the corresponding transition probability in the
Markov chain.

Similarly, picking the transition time t from T̂j will approximate sampling
t ∼ PTj(v), for sufficiently high J . Next, assume that we have picked q

gj→ qj

as the transition to take. We sample t ∼ PTj(v), and obtain v′ by numerical
simulation via:

v′ = Φqj
(1 − t, Φq(t,v)). (8)

Proposition 2. v′ is distributed according to PXj
.

Proof. Clearly it suffices to show that for a measurable subset Y ⊆ Xj , Pr(v′ ∈
Y ) = PXj

(Y ). We start with

Pr(v′ ∈ Y | v) =
∫

t∈Tj(v)

1(Φqj
(1−t,Φq(t,v))∩Y )dPTj(v).

Integrating now over all possible choices of v with respect to PX we have

Pr(v′ ∈ Y ) =
∫

v∈X

Pr(v′ ∈ Y | v)dPX .

From (3) it follows that Pr(v′ ∈ Y ) = PXj
(Y ) with v ∼ PX and t ∼ PTj(v).
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Consequently, the trajectory being generated will now be in mode qj with
v′ ∈ Xj and v′ distributed according to PXj

, compatible with the state ηj =
(ρqj ,Xj ,PXj

) of M . Inductively it is hence guaranteed that each subsequent
iteration of Algorithm 1 will produce values compatible with a path of M .

Whether the generated trajectory of length K + 1 (and hence the corre-
sponding path of M) is a model of ψ can be determined using a standard BLTL
model checker [15]. In fact this can be done on the fly which will often avoid
generating the whole trajectory. Based on this, we can test whether Pr≥1(ψ)
on M by testing the following alternative pair of hypotheses: H0 : Pr≥1(ψ) and
H1 : Pr<1−δ(ψ), where 0 < δ < 1 is a parameter chosen by the user marking the
interval [1−δ, 1) as an indifference region in which accepting either hypothesis is
fine. In our setting, whenever we encounter a sample (i.e. a randomly generated
trajectory) that does not satisfy ψ, we can reject H0 and accept H1. Thus we
only have to deal with false positives (when H0 is accepted while H1 happens
to be true).

This leads to Algorithm 2 that repeatedly generates a random trajectory
(using Algorithm 1), and decides after a finite number of tries between H0 and
H1. For doing so we also fix a user-defined false positive rate α.

Algorithm 2. Sequential hypothesis test
Input: Markov chain M , BLTL property ψ, indifference parameter δ, false positive bound α.
Output: H0 or H1.
1: Set N := 
log α/ log(1 − δ)�
2: for i := 1 . . . N do
3: Generate a random trajectory τ using Algorithm 1
4: if τ, 0, |=Hψ then Continue
5: else return H1
6: end for
7: return H0

The accuracy of Algorithm 2 is captured by the next result.

Theorem 3. The probability of choosing H1 when H0 is true (false negative) is
0. Further, suppose N ≥ log α/ log(1 − δ). Then the probability of choosing H0

when H1 is true (false positive) is no more than α.

Proof. As observed earlier the first part is obvious. To prove the second part,
if H1 is true, then we know that Pr<1−δ(ψ). The probability of N sampled
trajectories all satisfying ψ (and thus returning H0, a false positive) is at most
(1 − δ)N . Therefore we have α ≤ (1 − δ)N , leading to N ≥ log α/ log(1 − δ).

Hence we use N := �log α/ log(1 − δ)� to set the sample size. For example
for δ = 0.01 and α = 0.01 we get N = 459 while for δ = 0.001 and α = 0.01 we
get N = 4603.

6 Case Studies

We first evaluated our method on a model of the electrical dynamics of the
cardiac cell [12]. We also applied our method on a model of circadian rhythm
network [28]. The Δ time step parameter for the cardiac cell model and the
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circadian rhythm model were both set to 0.1. The parameters used for the sta-
tistical model checking were δ = 0.01 and α = 0.01. We have implemented our
method using MATLAB. The source code is available at http://github.com/
bgyori/hybrid. The experiments were carried out on a PC with a 3.4 GHz Intel
Core i7 processor with 8 GB RAM. Simulating one trajectory took, on average,
5.2 s for the circadian clock model and 18.3 s for the cardiac cell model. We
note that when checking quantitative properties, the trajectories that hit cor-
ner points such as u = 1.4 will be non-robust and hence can be ignored. Our
implementation exploits the parallelization enabled by statistical model check-
ing, hence multiple trajectories can be simulated simultaneously. A summary of
the results for the verification of all properties for both models along with the
number of samples taken to complete the verification is given in Table 3 of the
Appendix.

In our experiments, we used J = 10 as the number of intermediate time
steps for choosing mode transitions. We investigated whether this choice is suf-
ficient for accurate simulation. We simulated 1000 independent realizations of
the cardiac cell system with J = 10 and J = 100, and compared the distribu-
tions of the modes that the system is in at a series of discrete time points. The
Kolmogorov-Smirnov statistical test did not reject the hypothesis that the two
distributions are the same (at confidence level 95%). This indicates that using
J = 10 is adequate.

6.1 Cardiac Cell Model

Heart rhythm depends on the organized opening and closing of gates–called ion
channels–on the cell membrane, which govern the electrical activity of cardiac
cells. Disordered electric wave propagation in heart muscle can cause cardiac
abnormalities such as tachycardia and fibrillation. The dynamics of the electri-
cal activity of a single human ventricular cell has been modeled as a hybrid
automaton [12,21] shown in Fig. 2. The model contains 4 state variables and
26 parameters. Ventricular cells consist of three subtypes, namely epicardial,
endocardial, and midmyocardial cells, which possess different dynamical char-
acteristics. The cell-type-specific parameters of the model are summarized in
Table 1.

An action potential (AP) is a change in the cell’s transmembrane potential
u, as a response to an external stimulus (current) ε. The flow of total currents
is controlled by a fast channel gate v and two slow gates w and s.

In mode q0, the “Resting mode”, the cell is waiting for stimulation. We
assume an external stimulus ε equal to 1 mV lasting for 1 millisecond. The
stimulation causes u to increase which may trigger a mode transition to mode
q1. In mode q1, gate v starts closing and the decay rate of u changes. The system
will jump to mode q2 if u > θw. In mode q2, gate w is also closing. When u > θv,
mode q3 can be reached, which means a successful “AP initiation”. In mode q3,
u reaches its peak due to the fast opening of a sodium channel. The cardiac
muscle then contracts and u starts decreasing.

http://github.com/bgyori/hybrid
http://github.com/bgyori/hybrid
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Fig. 2. The hybrid automaton model for the cardiac cell system [21].

Table 1. Parameter values of the cardiac model for epicardial (EPI), endocardial
(ENDO), and midmyocardial (MID) cells under healthy condition.

Parameter EPI ENDO MID Parameter EPI ENDO MID

θo 0.006 0.006 0.006 τ−
v1 60 75 80

θw 0.13 0.13 0.13 τ−
v2 1150 10 1.4506

θv 0.3 0.3 0.3 τ−
w1 60 6 70

u−
w 0.03 0.016 0.016 τ−

w2 15 140 8

uso 0.65 0.65 0.6 τo1 400 470 410

us 0.9087 0.9087 0.9087 τo2 6 6 7

uu 1.55 1.56 1.61 τso1 30.0181 40 91

w∗
∞ 0.94 0.78 0.5 τso2 0.9957 1.2 0.8

k−
w 65 200 200 τs1 2.7342 2.7342 2.7342

kso 2.0458 2 2.1 τs2 16 2 4

ks 2.994 2.994 2.994 τfi 0.11 0.1 0.078

τ+
v 1.4506 1.4506 1.4506 τsi 1.8875 2.9013 3.3849

τ+
w 200 280 280 τw∞ 0.07 0.0273 0.01

Property C1. It is known that the cardiac cell can lose its excitability, which
will lead to disorders such as ventricular tachycardia and fibrillation. We formu-
lated the property for responding to stimulus by leaving the resting mode:

F≤500(¬[Resting mode]).

The property was verified to be true for all three cell types under the healthy con-
dition. However, under a disease condition (for example τo1 = 0.004 or τo2 = 0.1
[27]) the property was verified to be false no matter what stimulation value of ε
was used. Consequently, a region of such unexcitable cells blocks the impulse con-
duction and can lead to cardiac disorders such as fibrillation. This is consistent
with experimental results reported in [34].

Property C2. After successfully generating an AP (that is, reaching the “AP
mode”, q3), the cardiac cell should return to a low transmembrane potential and
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wait in “Resting mode” for the next stimulation. The corresponding formula is

F≤500([AP mode]) ∧ F≤500(G≤100([Resting mode])).

The above query was verified to be true for all three cell types under the healthy
condition and transient stimulation. However, if we change the stimulation pro-
file from transient to sustained, i.e. assuming ε lasts for 500 milliseconds, the
property was verified to be false–the cell doesn’t return to and settle at a low
transmembrane potential resting state. In ventricular tissue the stimulus ε can
be delivered from neighboring cells [12]. Thus, our results suggest that the tran-
sient activation of a single cardiac cell depends on the stimulation profile of its
neighboring cells.

Property C3. It has been reported that epicardial, endocardial, and midmy-
ocardial cells have different AP morphologies [16,29]. In particular, a crucial
“spike-and-dome” (i.e. a sharp peak followed by a blunt peak) AP morphology
can only be observed in epicardial cells but not endocardial and midmyocardial
cells (Fig. 3).
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Fig. 3. The AP morphologies of epicardial [29], endocardial [29] and midmyocardial
[16] cells.

We formulated the property for a spike-and-dome AP morphology as a quan-
titative property,

F≤500(G≤1([1.4 ≤ u]) ∧ F≤500([0.8 ≤ u] ∧ [u ≤ 1.1] ∧ F≤500(G≤50([1.1 ≤ u])))).

The property was verified to be true for epicardial cells and false for endocardial
and midmyocardial cells under the healthy condition and transient stimulation.
Among 26 model parameters, 20 of them have different values over different cell
types. We then perturbed each epicardial parameter and checked if the above
property still holds. Our results show that τs2 is key to the AP morphology (i.e.
the spike-and-dome AP morphology disappears when τs2 = 2), which highlights
the importance of s gate to epicardial cells. This is consistent with [27] in that
the model proposed in [17] (which does not include s gate) is unable to capture
the dynamics of epicardial cells.
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6.2 Circadian Rhythm Model

Mammalian cells follow a circadian rhythm with a 24 h period, which is generated
and governed by a highly coupled transcription-translation network. The model
diagram and the corresponding hybrid system dynamics proposed in [28,30] is
described below.

The equations governing the dynamics of the circadian clock model are given
in Fig. 4. The equations contain rate constants which are denoted k1 to k28 and
are set according to [30]. The combination of “mode indicator” binary variables
θCB to θRE , θPC1, θPC2 and θPC3 define the mode of the dynamics, and each
mode is defined by a unique value combination of the mode indicators. These
value combinations are listed in Table 2. The guards associated with a source
and target mode are constructed as follows. Each mode indicator corresponds
to a guard component which is a threshold on a state variable. For instance,
θRE has the corresponding guard component [REV-ERB]< 1.1. The guard to a
target mode is enabled if all the mode indicators that are on in the mode are
enabled according to their respective guard components. Finally, a transition
between a source and a target mode only exists if there is only one difference
in the combination of mode indicators. For instance, there is a transition from
mode 1 to mode 2 but not from mode 1 to mode 9. The dynamics of the Clock
mRNA is governed externally.

PER-CRY 
PER Per mRNA 

CRY Cry mRNA 

REV-ERB Rev-Erb mRNA 

CLOCK Clock mRNA 

BMAL Bmal mRNA 
CLOCK-BMAL 

Core NF 

Complement NF 
0 200 400 600 800

0.5

1

1.5

Time (min)

Clock mRNA signal

d/dt[Per] = −k1 · [Per] + k13 · θP C2 · θCB + k14
d/dt[PER] = −k2 · [PER] + k15 · [Per] − k16 · [PER] · [CRY]

d/dt[Cry] = −k3 · [Cry] + k17 · θP C2 · θCB + k18
d/dt[CRY] = −k4 · [CRY] + k19 · [Cry] − k16 · [PER] · [CRY]

d/dt[PER-CRY] = −k5 · [PER-CRY] + k16 · [PER] · [CRY]

d/dt[Rev-Erb] = −k6 · [Rev-Erb] + k20 · θP C1 · θCB + k21
d/dt[REV-ERB] = −k7 · [REV-ERB] + k22 · [Rev-Erb]

d/dt[CLOCK] = −k9 · [CLOCK] + k24 · [Clock] − k25 · [CLOCK] · [BMAL]

d/dt[Bmal] = −k10 · [Bmal] + k26 · θP C3 · θRE + k27
d/dt[BMAL] = −k11 · [BMAL] + k28 · [Bmal] − k25 · [CLOCK] · [BMAL]

d/dt[CLOCK-BMAL] = −k12 · [CLOCK-BMAL] + k25 · [CLOCK] · [BMAL]

Fig. 4. The model diagram, the Clock mRNA signal and the equations governing the
circadian clock model.

The system comprises 16 modes, each of which contains 12 state variables
and 29 parameters. Each mode corresponds to a particular combination of ON
or OFF transcriptional states of genes Per, Cry, Rev-Erb, Clock, and Bmal. The
switches between modes are guarded by the threshold levels of protein complexes
PER-CRY, CLOCK-BMAL and REV-REB. The mRNA levels of Per and Cry
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Table 2. The 5 mode indicator variables and their associated guard components (top).
The 16 modes of the circadian clock model with the corresponding combination of
binary mode indicator variables (bottom).

Mode indicator Guard component
θRE [REV-ERB]< 1.1
θCB [CLOCK-BMAL]> 1.0
θP C1 [PER-CRY]< 1.4
θP C2 1.4 <[PER-CRY]< 1.5
θP C3 2.2 <[PER-CRY]

Mode 1 2 3 4
(θP C1, θP C2, θP C3, θRE, θCB) (1,1,0,1,0) (1,1,0,1,1) (1,1,0,0,0) (1,1,0,0,1)

Mode 5 6 7 8
(θP C1, θP C2, θP C3, θRE, θCB) (0,1,0,1,0) (0,1,0,1,1) (0,1,0,0,0) (0,1,0,0,1)

Mode 9 10 11 12
(θP C1, θP C2, θP C3, θRE, θCB) (0,0,0,1,0) (0,0,0,1,1) (0,0,0,0,0) (0,0,0,0,1)

Mode 13 14 15 16
(θP C1, θP C2, θP C3, θRE, θCB) (0,0,1,1,0) (0,0,1,1,1) (0,0,1,0,0) (0,0,1,0,1)

are known to be oscillating due to the negative feedback loops in the network.
Specifically, there are two major negative feedback (NF) loops: (i) the core NF
formed by PER-CRY, CLOCK-BMAL, PER, and CRY and (ii) a complement
NF formed by REV-ERB, BMAL, and CLOCK-BMAL. The time constants
appearing in the properties are in minute units.

Property R1. Similar to Per and Cry, the expression level of Bmal gene is also
oscillating [32]. We formulated this property as

F≤500([1.5 ≤ Bmal] ∧ F≤500([Bmal ≤ 0.8] ∧ F≤500([1.5 ≤
Bmal] ∧ F≤500([Bmal ≤ 0.8] ∧ F≤500([1.5 ≤ Bmal])))))

The property was verified to be true under the wild type condition. It was verified
to be false under Cry mutant condition but true in the Rev-Erb mutant con-
dition, which is consistent with the experimental data in [26,32]. This suggests
that the oscillatory behavior of Bmal mRNA is induced by the core negative
feedback mediated by PER-CRY, instead of the complement negative feedback
mediated by REV-ERB.

Property R2. It has been observed that the peaks of Bmal mRNA are always
located between two successive Per or Cry mRNA peaks [26]. The corresponding
formula is

F≤500([Bmal ≤ 0.8] ∧ [2.0 ≤ Per ] ∧ [2.0 ≤ Cry ] ∧ F≤500([1.5 ≤ Bmal] ∧ [Per ≤
0.8] ∧ [Cry ≤ 0.8] ∧ F≤500([Bmal ≤ 0.8] ∧ [2.0 ≤ Per ] ∧ [2.0 ≤

Cry ] ∧ F≤500([1.5 ≤ Bmal] ∧ [Per ≤ 0.8] ∧ [Cry ≤ 0.8]))))

The above query was verified to be true under wild type condition. If we remove
the dependence between Bmal transcription and PER-CRY concentration, the
property R2 was verified to be false, while the property R1 was verified to
true (i.e. oscillating). Thus, our results suggest that the complement negative
feedback mediated by REV-ERB is responsible for maintaining the oscillatory
behavior of Bmal mRNA level while PER-CRY plays a role in delaying the Bmal
expression responses.
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Table 3 is a summary of the performance of the SMC procedure for the hybrid
systems for the two case studies presented above.

Table 3. Results summary of SMC for hybrid systems

Property Condition Decision # samples

C1 Epicardial, Healthy True 459

C1 Endocardial, Healthy True 459

C1 Midmyocardial, Healthy True 459

C1 Epicardial, Diseased False 1

C1 Endocardial, Diseased False 1

C1 Midmyocardial, Diseased False 1

C2 Epicardial, Transient True 459

C2 Endocardial, Transient True 459

C2 Midmyocardial, Transient True 459

C2 Epicardial, Sustained False 1

C2 Endocardial, Sustained False 1

C2 Midmyocardial, Sustained False 1

C3 Epicardial, τs2 = 16 True 459

C3 Epicardial, τs2 = 2 False 1

C3 Endocardial False 1

C3 Midmyocardial False 1

R1 Wild type True 459

R1 Cry mutant False 1

R1 Rev-Erb mutant True 459

R2 Wild type True 459

R2 Without PER-CRY dependence False 1

R1 Without PER-CRY dependence True 459

7 Conclusion

We have presented an approximate probabilistic verification method for ana-
lyzing the dynamics of a hybrid system H in terms of a Markov chain M . For
bounded time properties, we have shown a strong correspondence between the
behaviors of H and M . We have also extended this result to handle quanti-
tative atomic propositions and shown a similar correspondence result for the
sub-dynamics consisting of robust trajectories. Thus the intractable verification
problem for H can be solved approximately using its Markov chain approxi-
mation. Accordingly, we have devised a statistical model checking procedure to
verify that M almost certainly meets a BLTL specification and then applied this
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procedure to two examples to demonstrate the applicability of our approxima-
tion scheme. A hardware accelerated parallel implementation of the trajectory
sampling procedure will considerably improve the performance and scalability
of our method. Overall, we view our results as providing a mathematical basis
for verifying if a hybrid system models satisfies a BLTL property with high
probability.

As an extension, one could consider more sophisticated stochastic assump-
tions regarding the time points and value states at which the mode transitions
take place. These assumptions will however have to be justified and motivated
by the modeling problem at hand, especially in systems biology applications. Yet
another valuable extension will be to study a network of hybrid systems. This
will enable us to model the cross talk, feed-forward and feed-back loops involving
multiple signaling pathways. A further discretization of the continuous compo-
nent of the hybrid system could also be coupled with the proposed approach to
reduce the complexity and increase the robustness of biological models [9].
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Abstract. We consider the problem of automatically finding safe and
robust values of timing parameters of cardiac pacemaker models so that
a quantitative objective, such as the pacemaker energy consumption or
its cardiac output (a heamodynamic indicator of the human heart), is
optimised in a finite path. The models are given as parametric networks
of timed I/O automata with data, which extend timed I/O automata
with priorities, real variables and real-valued functions, and specifications
as Counting Metric Temporal Logic (CMTL) formulas. We formulate
the parameter synthesis as a bilevel optimisation problem, where the
quantitative objective (the outer problem) is optimised in the solution
space obtained from optimising an inner problem that yields the maximal
robustness for any parameter of the model. We develop an SMT-based
method for solving the inner problem through a discrete encoding, and
combine it with evolutionary algorithms and simulations to solve the
outer optimisation task. We apply our approach to the composition of
a (non-linear) multi-component heart model with the parametric dual
chamber pacemaker model in order to find the values of multiple timing
parameters of the pacemaker for different heart diseases.

1 Introduction

Motivation. The growing demand for wearable health monitoring devices, from
fitness apps running on smart watches to implantable devices such as cardiac
pacemakers and glucose monitoring, calls for design methodologies that can
ensure their safety, effectiveness and energy efficiency. Model-based verifica-
tion [9,21,32] has proved useful in establishing key correctness properties of
cardiac pacemakers [19], but the approach has limitations, in that it is not clear
how to redesign the model if it fails to satisfy a given property. Instead, the
parameter synthesis problem aims to automatically find optimal values of para-
meters to guarantee that a given property is satisfied. Similarly to verification,
this problem has prohibitive complexity and may suffer from undecidability,
typically tackled through discretisation of the parameter space.
c© Springer International Publishing Switzerland 2015
A. Abate and D. Šafránek (Eds.): HSB 2015, LNBI 9271, pp. 119–140, 2015.
DOI: 10.1007/978-3-319-26916-0 7
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In [15], we presented a parameter synthesis method for timed I/O automata
(TIOA) that optimises the choice of timing delays for a given objective func-
tion to guarantee that a property, expressed in Counting MTL, a generalisa-
tion of Metric Temporal Logic, is satisfied. The method is based on exploring
finite discrete paths and the corresponding timing constraints. We have applied
the techniques to cardiac pacemakers, deriving robust values for safety and
energy efficiency, but could only guarantee partial coverage via sampling, as
fully exhaustive exploration was not practical.

Contribution. In this paper, we tackle, for the first time, the problem of ensuring
effectiveness for pacemakers defined in terms of cardiac output (a heamodynamic
indicator of the human heart), as well as safety. To this end, we extend the mod-
els and logic of [15] with real-valued data variables, and provide a novel method
for synthesising timing delays that are simultaneously safe and robust, whilst
guaranteeing that a given quantitative objective is optimised. This is formulated
as a bi-level optimisation problem, which we solve through a combination of
symbolic, SMT-based, analysis of finite paths based on discrete encoding (for
the inner problem), with evolutionary computation techniques (for the outer
problem). We consider a novel multi-component heart model given as a network
of TIOA with data [5] and extend it in order to compute the cardiac output.
We apply the developed techniques to the synthesis of multiple pacemaker para-
meters for different heart conditions, in order to optimise, at the outer level,
either energy consumption or cardiac output, on top of the solution space that
yields a safe heart rhythm (formulated as a CMTL property) with maximum
robustness.

Related Work. The undecidability of the parametric reachability problem is
proved in [16]. The majority of work for timed systems concerns synthesis from
logic formulas, e.g. [8], with the exception of [1,2] who consider a reference
valuation. In [7,23], the authors show PSPACE-completeness of the emptiness
problem and TCTL, respectively. Robustness under a given timed perturbation
is considered in [38] and parameter synthesis for reachability for probabilistic
timed automata in [22]. SMT-based verification of timed and hybrid systems has
received a lot of attention recently, see e.g. [10]. In [26], the authors present an
SMT-based timed system extension to the IC3 algorithm. [25] and [27] respec-
tively develop real-time bounded model checking (BMC) approaches for LTL
and CTL. [20] presents an SMT technique to generate inductive invariants for
hybrid systems. Sturm et al. [37] applies real quantifier elimination tools to
synthesise continuous and switched dynamical systems. The dReal solver [18]
uses a relaxed notion of satisfiability in order to provide decision procedures for
non-linear hybrid systems.

In this paper, we extend the model and logic of [15], and replace the path
exploration with a fully symbolic BMC-based algorithm. We adopt the pace-
maker model from [21] but consider a different heart model [5], which we enhance
with the blood pressure component.
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2 Background

2.1 Timed I/O Automata with Priorities and Data

We extend the timed I/O automata model with priorities of [15] with data
variables. Let X be a set of non-negative real-valued variables, called clocks. Let
D be a set of real-valued variables, called data. A variable valuation is a function
η = η|X ∪ η|D where η|X : X → R≥0 and η|D : D → R. We denote the set of
variables with V = X ∪D. Let Γ be a set of real-valued parameters. A parameter
valuation is a function γ : Γ → R mapping each parameter p to a value in its
domain dom(p) ⊆ R.

Let Y be a set and V(Y) denote the set of all valuations over Y. We consider
guard constraints of the form

∧
i vi ��i fi, where vi ∈ X is a clock, ��i ∈ {<,�, >

,�} and fi : V(D) × V(Γ ) → R is a real-valued function over data variable and
parameter valuations. A variable valuation η and a parameter valuation γ satisfy
the above constraint iff

∧
i η(vi) ��i fi(η|D, γ) holds. We denote with B(V ) the set

of guard constraints over V . The reset of a set of variables V ′ ⊆ V is an arbitrary
function r : V ′ × V(V ) × V(Γ ) → R. Given valuations η and γ, η is updated by
reset r to the valuation η[r] = {v �→ r(v, η, γ) | v ∈ V ′} ∪ {v �→ η(v) | v �∈ V ′}
that applies the reset r to the variables in V ′ and leaves unchanged the others.
We denote with R the set of reset functions. The valuation η after time δ ∈ R≥0

has elapsed is denoted with η+δ and is such that η+δ(v) = η(v) + δ if v ∈ X
and η+δ(v) = η(v) otherwise. This implies that all clocks proceed at the same
speed and data variables are not affected by the passage of time.

Definition 1 (Deterministic Timed I/O Automaton with Priority and
Data). A deterministic timed I/O automaton (TIOA) with priority and data
A = (X , Γ,D, Q, q0, Σin, Σout,→) consists of:

– A finite set of clocks X , data variables D and parameters Γ .
– A finite set of locations Q, with the initial location q0 ∈ Q.
– A finite set of input actions Σin and a finite set of output actions Σout.
– A finite set of edges →⊆ Q × (Σin ∪ Σout) × N × B(V ) × R × Q. Each edge

e = (q, a, pr, g, r, q′) is described by a source location q, an action a, a priority
pr, a guard g, a reset r and a target q′.

We require that priorities define a total ordering of the edges out of any location,
and that output actions have higher priority than input actions. The TIOAs as
defined above are able to synchronise on matching input and output actions,
thus forming networks of communicating automata. We say that an output edge
is enabled when the associated guard holds. On the other hand, an input edge
is enabled when both its guard holds and it can synchronise with a matching
output action fired by another component of the network. A component of a
network of TIOAs is enabled if, from its current location, there is at least one
outgoing edge enabled. Also, we assume that output edges are urgent, meaning
that they are taken as soon as they become enabled. As shown in [15], priority
and urgency imply that the TIOA is deterministic.
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Definition 2 (Network of TIOAs). A network of TIOAs with m components
is a tuple N = ({A1, . . . ,Am},X , Γ,D, Σin, Σout) of TIOAs, where

– for j = 1, . . . ,m, Aj = (X , Γ,D, Qj , qj
0, Σin, Σout,→j) is a TIOA,

– X , Γ,D, Σin, Σout are the common sets of clocks, parameters, data variables,
input and output actions, respectively,

We define the set of network modes by Q = Q1 × · · · × Qm, with initial mode
q0 = (q10 , . . . , q

m
0 ) and the initial variable valuation η0. A state of the network is

a pair (q, η) where q ∈ Q and η ∈ V(V ).

A parametric network of TIOAs is a network where the parameter valuation is
unknown, and is denoted by N (·). N (γ) denotes the network obtained by instan-
tiating valuation γ. We describe the formal semantics of a network of TIOAs in
terms of timed paths. In the following, we use the predicate enabled(N , j, q, η, γ)
(see [30] for its formal encoding) to indicate whether the j-th component of net-
work N is enabled from the network mode q under variable valuation η and
parameter valuation γ.

Definition 3 (Path of a TIOA Network). Let N be a network of TIOAs

and n ∈ N
+. Let ρ = (q0, η0)

t0−→ (q1, η1)
t1−→ · · · tn−2−−−→ (qn−1, ηn−1) be a timed

sequence of length n where, for i = 1, . . . , n − 1, ti−1 ≥ 0, qi ∈ Q and ηi is a
variable valuation. Then, ρ is the timed path of network N if for any position
i = 0, . . . , n − 2:

(I) there exists at least one component enabled: ∃j. enabled(N , j, qj
i , ηi + ti, γ);

let Ei,ti
be the set of such components;

(II) each component j ∈ Ei,ti
fires the edge ej

i = (qj
i , a

j
i , prj

i , g
j
i , r

j
i , q

j
i+1) ∈→j

that is enabled and with maximum priority among the enabled edges;
(III) the variable valuation is updated according to the elapsed time and the

resets of enabled components1: ηi+1 := ηi + ti[
⋃

j∈Ei,ti
rj
i ]; and

(IV) ti is the least time for which there are enabled components ∀t′ < ti.
Ei,t′ =Ø:

For k,m ∈ N, ρ[k] = (qk, ηk) is the k-th state of the path, ρ[k,m] is the subpath
of length m − k + 1 starting at position k, ρ〈k〉 = tk is the k-th delay and
ρ〈k,m〉 =

∑m
k′=k tk′ is the total time spent in the subpath ρ[k,m]. For t ∈ R�0,

we denote with ρ@t the smallest index o such that
o∑

k=0

ρ〈k〉 > t. If no such index

exists, then ρ@t = n−1. When the network is parametric, i.e. of the form N (·),
the corresponding parametric path is denoted with ρ(·).
In the following, we denote with Π the set of finite timed paths. Given t ∈ R

≥0,
we also define the path up to time t as the path ρ with length |ρ| = ρ@t, that is,
such that: (a) ρ〈0, |ρ| − 1〉 ≤ t; and (b) let ρ′ be the 1-step extension of ρ, then
ρ′〈0, |ρ′| − 1〉 > t. We say that a parametric path ρ(·) is up to time t if, for each
γ ∈ V(Γ ), ρ(γ) is up to t.
1 In order to have consistent resets, we assume that different components cannot

update the same variable with different values during the same transition.
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Example 1. Consider the TIOAs A1 and A2 in Fig. 1. The automata A1 and
A2 form a network. They communicate with each other by means of actions
{VP,AP,AS} ∈ Σin ∪ Σout. We distinguish input (marked with ?) and output
actions (marked with !). For instance, when automaton A2 takes a transition
and outputs the action VP!, the automaton A1 synchronises by taking the cor-
responding transition with the input action VP?. We use Roman numbers to
denote priorities, with the lowest number denoting the highest priority. The net-
work N has three clocks t, x and y, and two variables α, and β. The initial mode
of the network is (q, z) and the initial values for the α and β variables are zero.
Each edge of the automaton is labelled with an action, a guard over the set of
clocks and a reset over the set of clocks and variables. For instance, one of the
edges from q′ to q′ is labelled with the guard t ≥ T − β, action AP and clock
reset t := 0. The network N has also three parameters T , P and J .

There are two ways to take an edge. First, when an input action is enabled.
Second, when the clock satisfies a given guard. For example, automaton A2 has
two transitions labelled with the conditions x ≥ P − α and y ≥ J . As soon as
the clock y satisfies the guard y ≥ J , the automaton takes the corresponding
transition and outputs the action VP!, resetting to zero the value of the clock y
and assigning the value of five to the variable β. When multiple transitions are
enabled in a location, then the one with the highest priority will be taken. Con-
sider the finite path below, where transitions are labelled with enabled output
actions:

((q, z), (α = 0, β = 0, t = 0, x = 0, y = 0))
↓ J,VP

((q′, z), (α = 0, β = 5, t = 0, x = J, y = 0))
↓ T−5,AP

((q′, z), (α = 0, β = 5, t = 0, x = J+T−5, y = T−5))
↓ P−J−T+5,AS

((q, z), (α = 10, β = 5, t = P−J−T+5, x = 0, y = P−J)).

(a) A1 (b) A2 (c) A2 with additional
variables

Fig. 1. Example network N with two components, A1 and A2.
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Each element of the tuple represents the state of the network and the values
of the variables. The network starts in the initial state (q, z) with the values of
the variables (α = 0, β = 0, t = 0, x = 0, y = 0). In the automaton A2, after J
time units have passed, the guard y ≥ J becomes true and the corresponding
transition is triggered at this point, outputting the action VP and resetting
the clock t to 0 and the variable β to 5. The automaton A1 then synchronises
with A2 via the matching input, VP, which moves the automaton to q′. Then
A1 takes transition labelled with T − β and A2 does no transition. Then the
automaton takes the transitions labelled with P − α outputting the action AS
and the state of the network becomes (q, z). Note that, in order to take the
transition labelled with action VP in N , the parameters P and J have to satisfy
the urgency constraint P − α < J . Similar relations can be derived for the
remaining transitions of the path.

2.2 Counting MTL

We work with the Counting Metric Temporal Logic (CMTL), which is an exten-
sion of MTL with the counting operator (#) [15,34], now interpreted over TIOAs
with data.

Let E(V ) be the set of constraints
∧

i ci ��i gi over variables in V = X ∪ D,
where ci ∈ R, ��i ∈ {<,≤,=,≥, >} and gi : V(V ) → R is a real-valued function
over V . To this end, we replace CMTL atomic propositions by predicates from
E(V ). For instance, given two variables x, y ∈ V , a constraint from E(V ) is
x = 1 ∧ y ≥ 10. The syntax of CMTL is defined by

ϕ ::= e |
∑

j∈J

cj#
uj

�j
ej �� b | ϕ ∧ ϕ | ¬ϕ | ϕ U [�,u]ϕ,

where J is a finite set of indices, �� ∈ {>,�, <,�}, b ∈ Z, cj ∈ Z, � ∈ R�0,
�j ∈ R�0, u ∈ R�0 ∪ {∞}, uj ∈ R�0 ∪ {∞} are time points such that � � u
and �j � uj , and e, ej ∈ E(V ) for all j ∈ J . The counting term #uj

�j
ej counts

how many times, in the interval of time [�j , uj ], ej holds true. Such terms can be
combined to form a so-called basic counting formula

∑
j∈J cj#

uj

�j
ej �� b, i.e. a

linear constraint (with integer coefficients) over counting terms. The semantics
of CMTL is defined over timed paths as follows.

Definition 4. Let ρ = (q0, η0)
t0−→ (q1, η1)

t1−→ · · · tn−1−−−→ (qn, ηn) be the finite
timed path of the network N (γ) of TIOAs with parameter valuation γ and i ∈ N

be an index. We say that N satisfies ϕ at i, denoted (ρ, i) |=N ϕ, iff

(ρ, i) |=N e iff ηi |= e

(ρ, i) |=N ∑

j∈J

cj#
uj

�j
ej �� b iff

⎛

⎝
∑

j∈J

cj

ρ[i,|ρ|]@uj−1∑

k=ρ[i,|ρ|]@�j

1 (ηk |= ej)

⎞

⎠ �� b

(ρ, i) |=N ϕ1 ∧ ϕ2 iff (ρ, i) |=N ϕ1 ∧ (ρ, i) |=N ϕ2
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(ρ, i) |=N ¬ϕ1 iff (ρ, i) �|=N ϕ1

(ρ, i) |=N ϕ1 U [�,u]ϕ2 iff ∃i′. i � i′ s.t.
i′

∑

k=i

ρ〈k〉 ∈ [�, u] ∧ (ρ, i′) |=N ϕ2 ∧

∀i′′. i � i′′ < i′ ∧ (ρ, i′′) |=N ϕ1,

where ϕ1, ϕ2 are CMTL formulas, i′, i′′ ∈ N, e ∈ E(V ), �j ∈ R�0 and 1 (ηk |= ej)
is the characteristic function that returns 1 if ηk |= ej and 0 otherwise.

We define ♦[�,u]ϕ := true U [�,u]ϕ and �[�,u]ϕ := ¬♦[�,u]¬ϕ. Details on the
decidability and complexity of the logic can be found in [33,34].

Example 2. Let A2 from Fig. 1(c) be the modified version of the TIOAs A2 from
Fig. 1, where we add a new variable act. The variable act identifies the presence
of the action VP or AS through expression act = 1 or act = 0, respectively. We
also modify automaton A1 by adding the update act := 2 to the edge labelled
with the action AP!. We set the initial valuation to act := −1. We consider
the following CMTL formula which states that, starting from any time in the
interval [0, 100], the number of performed VP actions in the interval of time [0, 7]
has to be no lower than 1 and at most 4:

�[0,100]
(
#7

0(act = 1) ≥ 1 ∧ #7
0(act = 1) ≤ 4

)
(1)

3 Robust Optimal Synthesis Problem

We introduce a parameter synthesis problem for networks of TIOAs that asks for
the parameter valuation that, first, maximises parameter robustness and, second,
minimises some cost function, e.g. energy consumption. This problem is moti-
vated by the fact that, in the design of medical devices, safety is of paramount
importance and it is desirable to maintain patient’s physiological properties in a
robust way w.r.t. perturbations of parameter values. We express such properties
in CMTL, which we use to formulate the requirement of a safe heart rhythm
(see Sect. 4). We also assume a cost function f : Π → R that maps timed paths
to reals.

Thus, we aim at finding a valuation γ with maximum robustness radius, i.e.
a quantity ε ∈ R

+ such that a CMTL formula φ is guaranteed to hold for any
perturbation of γ bounded by ε. Then, we synthesise parameters that yield the
minimum cost on top of the solution space with maximum ε. This problem can
be effectively formulated as a bi-level optimisation problem (see e.g. [12]), where
robustness maximisation and cost optimisation represent the so-called inner and
outer problems, respectively.

Let ε ∈ R
+ and γ ∈ V(Γ ). The ε-bounded perturbations of γ are denoted by

the set Bε(γ) = {γ′ | ∀p ∈ Γ. |γ′(p) − γ(p)| ≤ ε}. Given property φ and path
ρ(·) of network N (·), we say that a parameter valuation γ is ε-robust w.r.t. φ if
it holds that ∀γ′ ∈ Bε(γ). ρ(γ′) |=N (γ′) φ. Note that, for arbitrary ε, there can
exist perturbed valuations outside the domain of parameters, i.e. Bε(γ) �⊆ V(Γ ).
In the following, we only admit the case when Bε(γ) ⊆ V(Γ ).
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Problem 1 (Robust Optimal Synthesis). Let N (·) be a parametric network of
TIOAs, t ∈ R

≥0, k ∈ N
+, φ be a CMTL property and f be a cost function.

Let ρ(·) be the parametric path of N (·) of length k and ρ′(·) be the parametric
path up to time t. The robust optimal synthesis problem is finding a parameter
valuation γ that solves the following bi-level optimisation problem:

min
γo∈V (Γ )

f(ρ′(γo)) subject to γo ∈ arg max
γi∈V (Γ )

∈

subject to B∈(γi) ⊆ V (Γ ) and ∀γ′ ∈ B∈(γi). ρ(γ′)�N(γ′)φ.

Note that in the above problem the path lengths for the inner and outer problem
are arbitrary and in general not interrelated. In practice, as explained in Sect. 5.3,
f is evaluated through simulation and thus we can support longer lengths for ρ′.

Running Example. We formulate an instance of Problem1 by taking the CMTL
property in Example 2 and the modified network defined therein. In the inner
problem, we take the parametric path ρ of length k = 15. In the outer problem,
we consider the path ρ′ up to time t = 100 and aim to minimise the number of
AS actions performed along ρ′, leading to the objective f(ρ′) = #100

0 (act = 0).

4 Heart and Pacemaker Models

In this section we describe the heart and the pacemaker models, and provide
the properties and functions for the synthesis problem. The pacemaker has the
role of maintaining the synchronisation between the atrium and the ventricle. In
particular, we consider a basic DDD pacemaker specification [36], that is, pacing
and sensing both the atrium and the ventricle, and provide a TIOA network
adapted from [21].

The heart model is used to reproduce the propagation of the cardiac action
potential, and is a TIOA translation of the model by Lian et al. [31] (see [5] for
details). In [5], the authors provide a probabilistic model where parameters are
drawn from probability distributions derived from patients data. Here, parame-
ters are set to a given fixed value, thus resulting in a fully deterministic model.
The composed heart-pacemaker model consists of 11 TIOA components, with
11 clock variables, 7 data variables and 18 action labels.

Heart Model. The high-level structure of the model is depicted in Fig. 2(a). It
comprises five main conduction nodes and two main conduction paths: from the
atrium to the ventricle (antegrade conduction) or vice-versa (retrograde). The
Atrium component is responsible for modelling the sinoatrial (SA) node, i.e.
the natural pacemaker of the heart. This has a predefined firing rate, given by
parameter SA d. It can also produce ectopic beats with rate SA ectopD. In Fig. 3
we depict the sub-network that models the atrium. In Fig. 3(a), we illustrate
the automata for the SA node and the ectopic beat generator, respectively.
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Fig. 2. Heart and pacemaker models.

Fig. 3. The Atrium component.

When their clocks (x and y) satisfy the corresponding guards, the output action
Abeat is produced, which indicates the generation of an atrial impulse. a dV is a
variable storing the action potential in the atrium, which might vary depending
on whether the beat is regular or ectopic. The TIOA in Fig. 3(b) models the
current state of the atrium. In the Refractory mode the atrium component starts
a timer, modelled by clock z. After the atrial refractory period has elapsed
(z ≥ Atr refrD), the atrium changes its mode to Excitable. In this mode, it can
receive three types of actions: an SA node signal, Abeat; a pacing signal from
the pacemaker, AP; or a retrograde signal from the ventricle, AtrRetroReached.
Finally, the atrium generates the output action Aget to notify the pacemaker of
the atrial impulse, and returns to the Refractory mode. The aPeriod variable is
used to store the duration of the last atrial cycle.

The Ventricle component is similar to the Atrium component, i.e., it has
an intrinsic beat generator and an ectopic beat generator. In addition, it has
a variable vPeriod to store the ventricular period. The RA conductor and RV
conductor are used to model the propagation delay of the action potential from
the atrium to the ventricle and back (antegrade or retrograde conduction).

The AV node component is responsible for delaying the entrance of the action
potential from the atrium into the ventricle. The AV conduction delay (AVD)
is given by an exponential function AVD := AVDmin + α exp(−Trec

τc
), where Trec

is the AV recovery time, AVDmin is the shortest AVD when Trec → ∞, α is the
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longest extension of AVD when Trec = 0 and τc is the conduction time constant.
More details of the AV node constants and parameters are provided in [5]. We
remark that some guards of the heart model components contain non-linear
functions.

Pacemaker Model. We briefly describe the components of the basic DDD pace-
maker model shown in Fig. 2(b) (see [9] for details): AVI maintains the synchro-
nisation between the atrium and the ventricle, LRI sets a lower bound for the
heart rate, URI sets an upper bound for the heart rate, PVARP detects intrinsic
atrial events, and VRP detects intrinsic ventricle events. The pacemaker com-
municates with the heart model by means of four actions: AP (atrial pace), VP
(ventricle pace), Aget (atrial sense) and Vget (ventricle sense). Every component
has associated a timing parameter, which we discuss in Sect. 6. By changing
these parameters one can control, for instance, the pacing rate in the atrium or
ventricle, or the signal propagation delay from the atrium to the ventricle.

Cardiac Output. Cardiac output (CO, cm3·s−1) is an important heamodynamic
indicator that describes the volume of blood pumped by a ventricle over time
and is used in clinical practice to monitor patients with heart conditions.

PS

PD

TDTS

T

SV
TS

Aortic
flow
Blood
pressure

Fig. 4. Blood pressure (black) com-
puted considering a square wave aortic
flow (red) (Colour figure online).

We compute CO following the modi-
fied Windkessel method in [17] for mod-
elling the cardiovascular system, where
the aortic flow is modelled as a square
wave, which is more realistic than the
standard Windkessel model (see e.g. [3])
where it is approximated as a series of
impulses.

The ventricular period alternates in
two parts: the systole (TS) and the dias-
tole (TD). During systole the ventricles
first contract and reach a maximum pres-
sure giving rise to a heart beat. Then, they
drive the blood flow to the pulmonary and
aortic valves. During diastole, ventricular
pressure drops to its minimum and blood
starts flowing from the atria to the ventricles until it is ejected in the next sys-
tole. Therefore, each wave in the the aortic flow signal has amplitude SV

TS
and

period TS (see Fig. 4), where SV (cm3) is the stroke volume, i.e. the difference
between the volume at diastole and that at systole.

Following [17], the maximum arterial pressure at systole PS (mmHg) is com-
puted as PS = PD ·exp

(−TS

R·C
)
+R· SVTS

(
1 − exp

(−TS

R·C
))

, where R (mmHg·s·cm−3)
and C (cm3·mmHg−1) are the aortic resistance and compliance parameters,
respectively. The first term of the equation describes the decay of the diastolic
pressure at the previous cycle with rate 1

R·C during TS , while the second term
accounts for the pressure given by the aortic flow. The equation for the minimum
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pressure at diastole, PD (mmHg), is PD = PS · exp
(−TD

R·C
)
, which describes the

decay of the pressure at systole during TD. Finally, CO = C · (PS − PD) /T
depends on the difference between PS and PD over the heart period T = TS + TD.

At each ventricular event (actions Vget or VP), we compute the CO of the
previous cycle, assuming TS = 0.25 · T and TD = 0.75 · T , where T is the
time elapsed from the previous ventricular event. We consider the parameters
of a healthy patient, namely, C = 1.3, R = 0.9 and SV = 90 [24]. The initial
diastolic pressure is set to 80.

Properties. We consider two variants of the robust optimal synthesis problems
(Problem 1) where, in the outer problem, we minimise the energy consumption of
the pacemaker or optimise the cardiac output, respectively. In the first variant,
we take a simplified model assuming that only atrial and ventricular pacing con-
tribute to energy consumption, with weights 2 and 3 respectively. Thus, the cost
function is given by f(ρ′) = 2 ·#60000

0 (act = AP )+3 ·#60000
0 (act = V P ), where

act is a variable storing the last performed action, and AP, V P ∈ R identify an
AP or a VP action, respectively. By abuse of notation, the operator # denotes
a function of ρ′, i.e., it counts how often an expression from E(V ) holds true in
the path ρ′. In the second variant, we seek to find parameters that make the
computed cardiac output as close as possible to a given reference value CO (set
to 80 cm3·s−1). Let V beat(ρ′) be the set of states along path ρ′ where a ventricu-
lar beat happens. Then, f(ρ′) =

(∑
(q,η)∈V beat(ρ′) |η(CO) − CO|

)
/ (|V beat(ρ′)|)

is the cost function, i.e. the mean difference between the valuations of CO in
V beat(ρ′) and the reference CO.

For both variants, in the inner problem we find parameters that guaran-
tee a safe heart rhythm with maximum robustness. We express this require-
ment by imposing that the ventricular period (the time distance between
two consecutive ventricular beats) is always within the interval [500, 1000]
ms, i.e. between 60 and 120 BPM. The corresponding CMTL property is
φ = �[0,T ] (vPeriod ∈ [500, 1000]), where the time bound T = ρ〈0, |ρ| − 1〉 is
chosen to cover the whole length of path ρ.

5 Parameter Synthesis Algorithms

We now present methods to solve the bi-level optimisation problem introduced in
Sect. 3. For space reasons, we restrict ourselves to safety properties, i.e. formulas
of the form �[�,u]φ, where φ is a CMTL formula without temporal operators. In
[30], we also provide algorithms for the reachability fragment. First, we describe
the algorithm for the inner problem, namely maximising the robustness radius
w.r.t. a given safety property. Second, we devise a method for optimising the
outer objective by exploiting the solution of the inner problem. Both methods are
based on encoding the TIOA model and the synthesis problem as a Satisfiability
Modulo Theories (SMT) problem, which we describe below and, in more detail,
in [30]. In our implementation, we use the Z3 theorem prover [13].
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5.1 SMT Encoding

We now introduce the notion of TIOAs extended with non-deterministic vari-
ables, which are necessary to provide a sound encoding of the problem. Intu-
itively, such variables can be updated in a non-deterministic way to a number
of possible values.

Let V̄ be the set of non-deterministic variables; let v̄ ∈ V̄ and η and γ
be valuations of variables and parameters, respectively. Then, the reset r of v̄
induces a set of admissible values r(v̄, η, γ) and a set of admissible updated
valuations η[r] = {η′ | η′(v̄) ∈ r(v̄, η, γ) and η′(v′) = η(v′) for v′ �= v̄}. This
implies that a network N of thus extended TIOAs can have multiple admissible
paths. We denote with Π(N ) the set of such paths. Clearly, fixing a valuation for
the non-deterministic variables at each state of the path induces a deterministic
path according to Definition 3. We provide a discrete encoding of the problem
in the theory of bit-vectors (SMT UF BV). Clocks, parameters and variables
are expressed as bit-vectors and therefore have finite domains. Non-deterministic
variables are used to provide an interval-based abstraction for non-integer values
and non-linear functions as follows. Consider a generic update y := f(x) with
f : D → R, where y ∈ V and D is the discrete and finite domain of f . For each
x ∈ D, we pre-compute the discrete bounds of f on x, [f(x)⊥, f(x)�] as

f(x)⊥ ≤
⌊

min
x′∈[x,x+1)

f(x′)
⌋

and f(x)� ≥
⌈

max
x′∈[x,x+1)

f(x′)
⌉

Then, we encode the update y := f(x) as y′ ∈ [f(x)⊥, f(x)�] using a non-
deterministic variable y′ ∈ V̄ . In this way, we provide a conservative over-
approximation of the original system, since the above interval-based abstraction
induces additional behaviours but preserves the original ones. As discussed later,
this potentially leads to spurious counter-examples, i.e. valuations that violate
the given property in the abstracted system but not in the original one. In this
work, we did not implement a refinement step for excluding spurious counter-
examples [11], but we experimentally evaluated their number (see Sect. 6). In
general, the quality of the abstraction is affected by the dynamics of the func-
tions involved, e.g. the presence of large variations in small intervals.

Through this discrete SMT encoding, the verification problem for TIOAs
with data and CMTL formulas is NExpTime [28].

5.2 The Inner Problem

The main algorithm for solving the inner problem is given in Algorithm1, which
extends the SMT-based method for bounded model checking (BMC) [4] in order
to synthesise the space of parameters that yields maximum robustness. Given
a safety property ϕ, the algorithm returns the maximum robustness radius ε,
a parameter valuation γ̄ that is ε-robust w.r.t. ϕ, and an under-approximation
Unsafe of the true unsafe parameter valuations. We encode an SMT problem
where the Unsafe region is built by searching for counter-examples (CEs) to
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safety, which amounts to finding valuations s.t. ¬ϕ holds at some point in the
path, up to a fixed length n. Enumerating all possible counter-examples up to
n, especially when n is large, is clearly infeasible. Here, we implement several
solutions to overcome this problem.

First, we exploit incremental solving, so that CEs are computed step-wise, for
increasing path lengths, exploiting the fact that SMT solvers can use the clauses
learned in the previous steps to improve the solution time of the current step.
Second, we include an algorithm for counter-example generalization (procedure
GeneralizeCE, Algorithm 2), that, given a CE, attempts to derive an unsafe region
that contains the CE. Third, we restrict the search space for counter-examples
to the extent necessary to prove the actual maximum robustness radius ε, thus
avoiding the computation of irrelevant CEs.

Counter-Example Generation. In Algorithm 1, we first initialize ε, Unsafe and γ̄
(lines 2–4). The Init predicate (line 5) is used to constrain the initial automata
locations and variable valuation. Command Assert adds in the SMT solver a for-
mula that must hold true. At a generic step k of the path, we first assert the safety
property up to the current total time ρ〈0, k〉 if this is lower than the time bound
u (line 7). In this case, the assertion is named with a literal pk, meaning that
the satisfaction value of �[�,min(u,ρ〈0,k〉)]φ is the same as pk. During the counter-
example generation cycle (lines 8–17), MaxRadius procedure is called to update
the maximum ε and ε-robust valuation γ̄ according to the current Unsafe region.
This information is used to temporarily restrict the search space for CEs to the
region Bε(γ̄) (line 11). Solve ¬pk checks if the negated safety is satisfied under the
current assertions. If so, the solver returns a model, in our case a counter-example
γCE , which we generalize to γ′

CE by calling GeneralizeCE. γ′
CE is then excluded

from the search space (line 15) and added to Unsafe (line 16). The Pop command
removes from the solver all the constraints asserted after the last Push (in this
case, only Bε(γ̄)). If instead no CEs can be found in Bε(γ̄), we can conclude that,
up to step k, ε is the actual max radius and γ̄ is ε-robust. Thus, we can exit the CE
generation loop, assert the transition constraints (line 21) and increase the step
to k + 1. When ε < 1, the algorithm terminates since it implies that no robust
parameters exist (lines 18–19). In the algorithm, T indicates the transition pred-
icate between states of the path, i.e. T (s, s′) = ∃t. s

t−→ s′. We remark that, by
bounding and discretising the parameter space, we can ensure that the cycle at
lines 8–17 always terminates. Note that the bound n on the path length is given
in input to the algorithm. Other stopping criteria could be considered based on,
for instance, the size of Unsafe or the worst-case time bound.

Spurious Counter-Examples. Due to the abstraction induced by the non-
deterministic variables, a CE γCE can be spurious, i.e. it does not violate the
property in the original system. Let η = η̄1, . . . , η̄k be a sequence of valua-
tions over V̄ , γ ∈ V(Γ ), and ρ(γ,η) be the path of N (γ) where the non-
deterministic variables at i-th state are set to η̄i. Let η∗ be the sequence of
valuations describing the evolution of the original system. For a safety prop-
erty ϕ, any CE γCE generated by Algorithm 1 is such that ∃η. ρ(γCE ,η) ∈



132 M. Kwiatkowska et al.

Π(N (γCE)) ∧ ρ(γCE ,η) �|=N (γCE) ϕ, i.e. γCE violates ϕ for some valuations η
of V̄ . The first term of the conjunction expresses that η is admissible, that is,
ρ(γCE ,η) is a path of N (γCE). Then, γCE is spurious if ρ(γCE ,η∗) |=N (γCE) ϕ.

Counter-Example Generalisation. The GeneralizeCE procedure is executed on top
of the solver used in Algorithm 1 and exploits the ability of SMT solvers to gen-
erate unsatisfiable cores, i.e., when a formula is unsatisfiable under the current
assertions, produce a subset of its clauses whose conjunction is still unsatisfiable.
Given a CE γCE , the idea is to derive a larger unsafe region γ′

CE that contains
γCE . This is achieved by asserting the safety property (line 3) and the valuation
γCE (line 4). In particular, we associate each assertion p = γCE(p) for p ∈ Γ
(used to assert γCE) with a literal gp. If formula

∧
p∈Γ gp (line 5) is unsatisfiable,

the solver returns an unsat core, i.e. a set UnsatCore ⊆ {gp | p ∈ Γ}. If UnsatCore
is a strict subset of the gp literals, we say that the generalization is successful since
we obtain a larger region: γ′

CE = {γ | γ(p) = γCE(p) if gp ∈ UnsatCore}. Other-
wise, γ′

CE = γCE . As an example, let γCE = (p1 = 3 ∧ p2 = 5), and let gp1 and
gp2 be the corresponding literals. If UnsatCore = {gp2}, then the generalization
γ′

CE = (p2 = 5) strictly contains γCE . Importantly,
∧

p∈Γ gp being unsatisfiable
means that γCE violates safety for any valuation of the non-deterministic variables
and, therefore, it is a CE also for the original system, i.e., it holds that

∀η. ρ(γCE ,η) ∈ Π(N (γCE)) =⇒ ρ(γCE ,η) �|=N (γCE) ϕ. (2)

This applies also to its generalization γ′
CE . In the implementation, we use a

more advanced algorithm that can rule out even larger unsafe regions, which is
reported in [30].

Maximum Robustness Radius. Procedure MaxRadius (Algorithm 3) takes the cur-
rent Unsafe region and the previous maximum radius ε, and returns the updated
maximum ε together with an ε-robust valuation γ̄, such that Bε(γ̄) ∧ Unsafe is
unsatisfiable. To this aim, we just need to find a valuation γ̄ such that

Bε(γ̄) ⊆ V(Γ ) ∧ ∀γ′ ∈ Bε(γ̄).¬(γ′ ∧ Unsafe). (3)

Procedure FindRobustParam (not shown) performs this check and returns such γ̄
if any exists. In this case, we increment ε and repeat the procedure as long as an
ε-robust valuation is found. Otherwise, we decrement it and repeat the procedure
until Eq. 3 is met. In our implementation, ε is discretized too. We remark that
this procedure uses a separate SMT solver (SMT QBVF) so it can be efficiently
parallelized. Since we consider parameters with bounded domains, Bε(γ̄) ⊆ V(Γ )
in Eq. 3 implies that ε is bounded too, and thus, that the algorithm terminates.

Spurious Robust Valuations. Since we do not exhaustively search for CEs, Unsafe
is an under-approximation of the true unsafe set. For the same reason, there could
be2 spurious ε-robust valuations γ s.t. they meet Eq. 3, but CEs exist in Bε(γ).
This happens when Algorithm 1 terminates without inspecting region Bε(γ). The
2 Not to be confused with the spurious counter-examples discussed before.
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following proposition characterises when a valuation is in the solution space of
the inner problem.

Proposition 1 (Inner Problem Solution). Let γ ∈ V(Γ ), Unsafe and ε be as
returned by Algorithm1. Then, γ is a solution of the inner problem in Problem1
iff it holds that:

(i) γ is ε-robust w.r.t. Unsafe, i.e. it satisfies Eq. 3; and
(ii) no counter-examples can be found in Bε(γ).

Note that (ii) can be decided with one iteration of the CE generation loop in
Algorithm 1 within region Bε(γ). Nevertheless, the algorithm guarantees that
the returned ε is the maximum robust radius and that γ̄ is a solution of the
inner problem. Indeed, γ̄ is computed by Algorithm 3 and therefore meets Eq. 3.
Further, no CEs exist in Bε(γ̄) (γ̄ is not spurious), otherwise the incremental
synthesis algorithm could not exit the loop at lines 8–17 and would proceed by
updating ε and γ̄.

Algorithm 1. Incremental Synthesis
Require: Parametric network N (·), CMTL

property �[�,u]φ, path length n ∈ N
+

Ensure: Maximum robust radius ε, ε-robust
valuation γ̄ and Unsafe region

1: function IncrementalSynth(N (·), φ, n)
2: ε := 1
3: Unsafe := ⊥
4: γ̄ := ⊥
5: Assert Init(ρ[0])
6: for k = 0, . . . , n − 1 do
7: Assert pk : �[�,min(u,ρ〈0,k〉)]φ
8: repeat � CE generation cycle
9: (ε, γ̄) := MaxRadius(Unsafe, ε)
10: Push
11: Assert Bε(γ̄)
12: (SAT, γCE) := Solve ¬pk
13: Pop
14: γ′

CE := GeneralizeCE(γCE)
15: Assert ¬γ′

CE
16: Unsafe := Unsafe ∨ γ′

CE
17: until SAT
18: if ε < 1 then
19: return (0, ⊥, �)
20: if k < n − 1 then
21: Assert T (ρ[k], ρ[k + 1])
22: return (ε, γ̄,Unsafe)

Algorithm 2. CE generalization
Require: Counter-example γCE
Ensure: Generalization γ′

CE s.t. γCE =⇒
γ′

CE
1: function GeneralizeCE(γCE)
2: Push
3: Assert pk
4: for all p ∈ Γ do Assert gp : p =

γCE(p)
5: (SAT, γ) := Solve

∧
p∈Γ gp

6: if SAT then γ′
CE := γCE

7: else γ′
CE :=

∧
p.gp∈UnsatCore p =

γCE(p)
8: Pop
9: return γ′

CE

Algorithm 3. Computation of max-
imum robust radius
Require: Unsafe region, starting radius ε
Ensure: Maximum robust radius ε and valuation

γ̄ that is ε-robust

1: function MaxRadius(Unsafe, ε)

2: γ̄ := FindRobustParam(Unsafe, ε, ⊥)

3: if γ̄ = ⊥ then inc := −1

4: else inc := 1
5: repeat

6: ε := ε + inc

7: γ̄ := FindRobustParam(Unsafe, ε)

8: until (inc < 0 ⇐⇒ γ̄ = ⊥) ∧ ε > 0

9: if inc > 0 then ε := ε − inc

10: return (ε, γ̄)

The incremental synthesis algorithm for reachability formulas (explained in
[30]) follows the same structure as Algorithm 1 and proceeds by finding CEs to
reachability, i.e. valuations such that the property never holds.

Running Example. To simplify the presentation, we fix T = 10 and consider
only parameters J ∈ [1, 41] and P ∈ [11, 51]. Figure 5 shows the incremental
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synthesis algorithm run on our example. The counter-example J = 33 and P =
49 indicated in plot (b) clearly violates the property (Eq. 1), since it gives the
following path:

((q, z), (α = 0, β = 0, t = 0,x = 0, y = 0, act = −1))
33−→

((q′, z), (α = 0, β = 5, t = 0, x = 33, y = 0, act = 1)) . . .

where, starting from position 0, no VP action is fired in the time interval [0, 7].
At the final step, we obtain ε = 2 and γ̄ = {J �→ 4, P �→ 32}. Such parameters
lead to the following path which can be shown to meet our CMTL property:

((q, z), (0, 0, 0, 0, 0, −1))
4−→ ((q′, z), (0, 5, 0, 4, 0, 1))

4−→ ((q′, z), (0, 5, 0, 8, 0, 1))
4−→

((q′, z), (0, 5, 0, 12, 0, 1))
4−→ ((q′, z), (0, 5, 0, 16, 0, 1))

4−→ ((q′, z), (0, 5, 0, 20, 0, 1))
4−→

((q′, z), (0, 5, 0, 24, 0, 1))
4−→ ((q′, z), (0, 5, 0, 28, 0, 1))

4−→ ((q′, z), (0, 5, 0, 32, 0, 1))
0−→

((q, z), (10, 5, 0, 0, 0, 0))
4−→ ((q′, z), (10, 5, 0, 4, 0, 1))

4−→ ((q′, z), (10, 5, 0, 8, 0, 1))
4−→

((q′, z), (10, 5, 0, 12, 0, 1))
4−→ ((q′, z), (10, 5, 0, 16, 0, 1))

4−→ ((q′, z), (10, 5, 0, 20, 0, 1))

In the above, variable names are omitted and their ordering is as in the previ-
ous path. The validity of Eq. 1 can be shown for every valuation in Bε(γ̄) in a
similar way.

5.3 The Outer Problem

We present two methods for solving the outer problem. The former is based
on the enumeration of ε-robust valuations, thus providing an exact solution to
the outer problem, but is infeasible with high-dimensional parameter spaces.
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Fig. 5. Counter-examples generation cycle for the running example. Plot (a) shows
the Unsafe region (red points) during step k = 1. Procedure MaxRadius computes the
maximum ε (here, 8) and the ε-robust valuation γ̄ (J = 25, P = 43, blue dot in plot
b). The search for further CEs is restricted to Bε(γ̄) (grey-bordered). Then, a CE γCE

is found (J = 33, P = 49, red cross). The GeneralizeCE procedure manages to find the
larger unsafe region γ′

CE = J ≥ 33 ∧ P ≥ 49 (light red). Plot (c) shows the results at
the final step (k = 15) with ε = 2 and γ̄ = {J �→ 4, P �→ 32} (Colour figure online).
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Note that enumeration is possible because we discretise the parameter space.
The latter method provides an approximate solution by exploiting evolution-
ary strategies (ES). In both methods, the outer objective is evaluated through
simulation. Importantly, simulation can cover path lengths that are prohibitive
for BMC, which allows us to consider objective functions over large time
bounds.

Exact Solution. The method consists of the following three steps:

1. Enumerate all valuations that meet Eq. 3. Let Γ ′ be the set of such valuations.
2. Simulate all γ ∈ Γ ′ and compute the outer objective f(γ).
3. Following the ordering by the cost function f(γ), return the first valuation

that meets condition (ii) of Proposition 1.

Optimisation with Evolutionary Strategies. ES are a class of stochastic optimi-
sation methods which mimic the principles of Darwinian evolution in order to
optimise a given objective. They work on a set of candidate solutions, the pop-
ulation, which at each iteration of the algorithm (generation) is subjected to
various natural operators, until a pre-defined termination criterion is satisfied
(e.g. max number of generations).

We implement a non-isotropic self-adaptive (μ/ρ + λ)-ES, i.e. μ parents are
used to generate λ offspring candidates through a ρ-parents recombination, and
only the μ best solutions of the combined parents together with the offspring set
are used in the next generation. In particular, we consider a 2-parents dominant
recombination, which randomly takes two candidates from the parents set and
generates a child by a parameter-wise random selection of the two parents’ valu-
ations. Since we deal with discrete parameters, we use the mutation operator in
[35], which extends the principle of maximum entropy used in real ES problems
to the integer case. We also include a self-adaptation mechanism [6] that changes
the parameters of the mutation operator at each iteration.

In order to determine the best valuations at each generation, we define an
order � that takes into account the outer objective and, following the feasible-
over-infeasible principle [14], penalizes valuations outside the solution space of
the inner problem. Let γi and γj be two valuations, f(γi) and f(γj) be their
objective function values. Then, γi � γj if either:

1. γi meets condition (i) of Proposition 1, and γj does not; or
2. γi meets (i) and (ii), and γj meets only (i); or
3. both γi and γj meet (i) and (ii), and f(γi) ≤ f(γj).

We say that a solution is feasible for the outer problem if it solves the inner
problem as per Proposition 1. Note that, if the population at a generic iteration
i, Pi, contains feasible solutions, then, for any j > i, Pj will contain feasible
solutions too. Indeed, by the order defined, if Pi has at least one feasible point,
then the best solution in Pi is also feasible. Since, for any k, the best solutions
of Pk are kept in Pk+1, we conclude that, for j > i, Pj will contain feasible
solutions too. For the full ES algorithm, see [30].
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Running Example. We obtain the exact solution J = 4, P = 48, which gives
an outer objective of 2 (the number of AS actions fired within time 100). Due
to the size of the problem, this required enumerating and simulating only 133
valuations at step 1 of the exact method. For the same reason, the ES algorithm
is also able to achieve the optimal solution, being in this case J = 4, P = 45.
In particular, this was obtained at the first iteration of the algorithm, run with
λ = 100, μ = 50 and ρ = 2.

6 Results

We apply our method to synthesise pacemaker parameters that ensure a safe
heart rhythm and optimise either energy consumption or cardiac output (see
Sect. 4 for the formulation of the problem and properties). In [30], we provide a
more detailed experimental evaluation of our methods, with different numbers of
parameters and path lengths. Here we consider two parameters that are critical
for the correct functioning of the pacemaker device. The first parameter, TLRI,
regulates the frequency of atrial impulses: TLRI − TAVI is the amount of time
that the pacemaker waits before delivering an atrial pace when no atrial or ven-
tricular events are detected, where TAVI is the pacemaker atrioventricular delay
(default value: 150 ms). The second parameter, TURI, sets an upper bound
on the heart rate. In particular, it is the amount of time that the pacemaker
waits before pacing the ventricle, after an atrial stimulus has occurred and TAVI
elapsed. We set the domain of both parameters to [10, 2000] ms, and add con-
straints to exclude from the search pacemaker parameters that are not physiolog-
ically meaningful: we require TLRI ≥ TURI, TLRI > TAVI and TURI ≥ TAVI.
Note that the approach can be applied also to other pacemaker parameters:
TAVI, TVRP (ventricular refractory period), TPVARP (post-ventricular atrial
refractory period) and TPVABP (post-ventricular atrial blanking period).

Figure 6 summarizes the synthesis results obtained with the following heart
conditions: bradycardia, i.e. slow heart rate, reproduced through an increased SA
node firing rate (SA d = 1500 ms, i.e. 40 BPM), and the AV conduction defect
obtained by increasing the AV delay (AVDmin = 150 ms, default: 50 ms). In the
experiments we consider a path length of 20 for solving the inner problem and
solve the outer problem with both exact and ES methods.

The two experiments return similar robustness radii: ε = 240 for bradycardia
and ε = 250 for AV defect. In the bradycardia case, we obtain TLRI = 770 ms,
i.e. a pacing rate in the atrium of 77.92 BPM, for all objectives and solution
methods for the outer problem. In the AV defect case, the synthesis experiments
yield a similar TLRI value (750 ms, i.e. 80 BPM) and optimal cardiac output.
However, the energy consumption of the pacemaker is much higher since, with
this heart condition, impulses from the atrium are not correctly propagated,
and thus a higher number of paces is required in the ventricle. We remark that,
with our method, we are able to find the parameters that guarantee a safe heart
rhythm despite large perturbations. For instance, the exact solution γo to the
AV defect and energy experiment is TLRI = 750 ms and TURI = 480 ms, which
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(a) Bradycardia. Inner problem solu-
tion time: 7354 s, ε = 250 ms.
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(b) AV defect. Inner problem solution
time: 6601 s, ε = 240 ms.

Outer objective: Energy Cardiac Output
Condition: Bradycardia AV defect
Method:

Best:
Cost:

Runtime:

Bradycardia AV defect
Exact ES Exact ES
770,300 770,640 750,480 750,320
158 158 400 400
2369 1101 913 1268

Exact ES Exact ES
770,320 770,320 750,630 750,350
9.14 9.14 9.37 9.37
1547 118 848 111

Fig. 6. Unsafe regions (red areas and dots) returned by Algorithm 1 in the two experi-
ments. Grey areas indicate pacemaker parameters that are not physiologically relevant
and thus are excluded from the search space. The table shows the results of the outer
optimisation for the energy and cardiac output objectives (see Sect. 4), comparing the
exact and the ES-based methods. The best solutions are in the format TLRI, TURI.
Runtimes are in seconds. ES parameters are λ = 100, μ = 50, ρ = 2 and 50 generations
(Color figure online).

implies that safety holds for all the parameters in Bε(γo), i.e., with ε = 250,
for all TLRI ∈ [500, 1000] ms and TURI ∈ [230, 730] ms. For all our results, we
observe that the nominal parameter values (TLRI = 1000 ms and TURI = 500
ms [36]) are included in Bε(γo), meaning that the default pacemaker settings are
safe but have a smaller tolerance.
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Fig. 7. Full Unsafe region for
bradycardia (see Fig. 6(a)).

Notably, the evolutionary approach is able to
yield the same optimal objective value as the exact
method. This is due to the fact that, with two
parameters, the solution space of the inner prob-
lem (which corresponds to the domain of the outer
problem) is quite small. Indeed, we obtain only
107 ε-robust valuations for bradycardia, and 52
for the AV defect. With the ES algorithm, we
also achieve better performance in most cases,
and the runtime improvement becomes even more
marked with higher-dimensional parameter spaces,
as reported in [30]. The only exception is the run-
time obtained for the energy objective in the AV
defect experiment, where the exact method performs slightly better than ES,
which is explained by the small number of feasible points in the outer problem.
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In Fig. 7, we illustrate the full synthesis region for the bradycardia exper-
iment, obtained without restricting the search space for CEs (lines 9–13 of
Algorithm 1). By comparing with the region in Fig. 6(a), we observe that the
algorithm explores considerably fewer CEs, thus improving the runtime. We also
report that the abstraction of real-valued and non-linear variables is adequate,
in the sense that only a few CEs are potentially spurious, i.e. such that Eq. 2
does not hold. These constitute only 0.31% of the parameter space and are given
by the set

{γ ∈ V(Γ ) | (γ(TLRI) = 510 ∧ γ(TURI) ∈ [150, 510])
∨ (γ(TLRI) = 1020 ∧ γ(TURI) ∈ [150, 1010])}

With our approach, we can also synthesise parameters that are safe for a range
of possible heart conditions, thus taking into account uncertainty in the heart
dynamics [30].

7 Conclusion and Future Work

We have studied the problem of robust optimal parameter synthesis for net-
works of TIOAs with priorities and data and proposed a solution based on SMT
solving and evolutionary strategies. We have applied the method to synthesise
pacemaker parameters that are both safe and robust, while optimising energy
consumption or cardiac output. As the main property specification language,
we have considered the safety and reachability fragments of CMTL, which are
sufficient to express relevant properties for cardiac pacemakers.

As future work we plan to apply the approach to additional safety properties,
validate synthesis results with cardiologists and include advanced pacemaker
features like rate-modulation [29], hysteresis and a battery model for optimising
the expected lifetime of the device.
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PoC VERIPACE.
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Abstract. We consider the problem of understanding how DNA methy-
lation fidelity, i.e. the preservation of methylated sites in the genome,
varies across the genome and across different cell types. Our approach
uses a stochastic model of DNA methylation across generations and
trains it using data obtained through next generation sequencing. By
training the model locally, i.e. learning its parameters based on observa-
tions in a specific genomic region, we can compare how DNA methylation
fidelity varies genome-wide. In the paper, we focus on the computational
challenges to scale parameter estimation to the whole-genome level, and
present two methods to achieve this goal, one based on moment-based
approximation and one based on simulation. We extensively tested our
methods on synthetic data and on a first batch of experimental data.
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1 Introduction

Epigenetic marks such as DNA methylation provide a mechanism by which cells
can control gene activity in a manner that is heritable between cell genera-
tions and adaptive to external stimuli [3]. Biochemically, DNA methylation is
a covalent modification of the DNA. In vertebrates, DNA methylation occurs
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almost exclusively in the context of a cytosine (C) followed by a guanine (G).
These so-called CpG sites are palindromic and can carry one DNA methylation
group on each strand. As the result, a single CpG site can be symmetrically
unmethylated, asymmetrically methylated on either the forward or the reverse
strand of the DNA (hemimethylated), or symmetrically methylated on both
strands. In most cases, DNA methylation is symmetrical, which provides redun-
dant information on both strands. When cells divide and the DNA is copied in
a semi-conservative manner (i.e., each daughter cell receives one strand of the
double-stranded DNA molecule), the DNA methylation on the newly synthesized
strand can be reconstructed from the DNA methylation on the conserved DNA
strand. The process of copying DNA methylation patterns is called maintenance
methylation.

Compared to the very high efficiency with which the DNA sequence is copied
and maintained during cell division (typically with error rates in the order of
10−8), the fidelity of DNA methylation maintenance is much lower. Based on
single-locus studies, error rates have been estimated to be in the order of 10−2

to 10−3. To maintain high DNA methylation levels in specific regions of the
genome despite the relatively low fidelity of maintenance DNA methylation, cells
utilize a second mechanism called de novo methylation to methylate previously
unmethylated cytosines independent of the DNA methylation status of the sec-
ond cytosine within a CpG site. The rates of de novo methylation during normal
cell growth are relatively low, but they appear to be sufficient to compensate
for the gradual loss of DNA methylation that would normally result from the
limited fidelity of DNA methylation maintenance.

Comprehensive genome-wide assessments of the fidelity of DNA methylation
and of the de novo DNA methylation rate and their comparison between different
cell types have been lacking, and prior work has focused on small parts of the
genome. With genome-wide methods for DNA methylation mapping and analysis
[4,5], even in single cells [7], it is now possible to collect comprehensive datasets
to estimate these important biological parameters in a genome-wide manner
and to systematically search for differences between cell types. In this study, we
address the computational challenges of inferring these parameters in a manner
that is sufficiently high-throughput and scalable to support the genome-wide
analysis of large numbers of samples.

The assumed experimental design is as follows: A single cell is isolated and
left to grow exponentially over n generations, typically n = 20. The resulting cell
population (approximately 220 ≈ 1 million cells) is subjected to genome-scale
bisulfite sequencing, the reads are aligned to the reference genome, and for each
CpG site the number of methylated and unmethylated reads are counted for a
subsample of the population (typically 10 to 100 measurements per CpG, with
several million assayed CpGs). In these experiments, we are interested in the
dynamic nature of the methylation process, in particular how it is propagated
through the n cell generations. In order to understand this behaviour, we need a
mathematical model of the methylation fidelity and of the de novo methylation
rate, which must be trained using the experimental data available. In build-
ing the model, our main goal was to predict its parameters from data, which
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are directly connected to de novo methylation and fidelity probabilities. The
model we construct is based on those proposed in [2,12], and it is a discrete-time
Markov chain describing how the methylation progresses through generations at
the population level (i.e. counting how many cells have a specific CpG site are
unmethylated, hemi-methylated, or fully methylated).

The main challenge with this model is computational, as we need to perform
the parameter estimation task genome-wide, for each CpG site and each biologi-
cal sample. The model cannot be solved analytically, and it is too large for being
solved with standard numerical techniques. Hence, we engineered two different
strategies for computing the likelihoods required to train the model parameters,
one based on an analytical approximation, and the other based on simulation.
In this paper, we present and compare the two approaches, both theoretically
and experimentally.

To validate the accuracy of the presented methods we simulated test data
using our model, and we estimated the parameters for these test data sets. Fur-
thermore, we used our the methods to estimate the parameters in real, experi-
mentally derived, data sets.

The paper is organised as follows: in Sect. 2, we discuss the mathematical
model, and in Sect. 3 we present the parameter estimation techniques. Prelim-
inary results are shown and explained in detail in Sect. 4, and conclusions are
drawn in Sect. 5.

2 Stochastic Model of DNA Methylation

We propose a stochastic model for the dynamics of DNA methylation of a cell
population over a certain number of cell divisions. This model is an extension
of previous models that have described the average state of a single CpG site
within a certain cell population [2,12].

Single Cell Model. To describe the DNA methylation dynamics of a single
CpG site, we consider three possible site states: unmethylated on both DNA-
strands (unmethylated, U ), methylated on both strands (fully methylated, F ) or
methylated on one out of the two strands (hemimethylated, H ). This naturally
leads to a (discrete-time) Markov model description where one time step corre-
sponds to one cell cycle or the time between two cell divisions (in cultured cells,
this time is often on the order of 24 h). Over the course of one cell cycle, the
DNA methylation state of the CpG site changes in three phases. In phase one,
the two strands of DNA are separated such that each daughter cell receives one
strand, and a complementary stand is synthesised. This complementary strand
is always unmethylated, such that this step dilutes the DNA methylation lev-
els compared to the parent cell. Thus, the transitions for this phase are from
U to U and from F to H with probability one, respectively, as well as from
H to H or to U with probability 0.5, respectively (Fig. 1, left). In the second
phase, which occurs during and after the synthesis of the new strand, a spe-
cial class of enzymes, called DNA methyltransferases (DNMTs), try to maintain
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the pattern of the mother strand by methylating hemimethylated CpG sites.
Maintenance methylation is a stochastic process [2], such that the state of a site
changes from H to F with probability fm and from U to U with probability
fu. Successful maintenance typically occurs with a relatively high probability.
However, in both cases maintenance might fail with probability 1 − fm (tran-
sition from H to H) and with probability 1 − fu (transition from U to H). The
third phase, which lasts from the end of a cell division to the beginning of the
next, allows for de novo methylation, where methyl groups are transferred by
DNMTs to sites that are in state U or H. Here, the assumption is that de novo
methylation occurs at a given site and strand independently of the DNA methy-
lation state of the CpG on the other strand [2]. Thus, with probability μ the
state changes either from H to F or from U to H (Fig. 1, left). Note that we
neglect the extremely rare transition from U to F through de novo methylation,
in order to keep the model simple. Simulations of the model show no significant
differences if the transition from U to F due to de novo methylation is added
(results not shown).

fu
1 − fu

fm
1 − fm

1 − µ µ µ1 − µ

•
•

•

Fig. 1. The three phases of the single cell model (left) with cell-division (dark grey, the
division of single cells into two new cells is represented by two arrows.), maintenance
methylation (grey), and de novo methylation (light grey) as well as the population
model (right) over 20 generations

Population Model. In the proposed population model we consider a fixed
CpG site in a single allele, thus modelling independently CpG sites in different
alleles, and start initially with a single cell. Then, after the next time step we
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consider all daughter cells (two at time t = 1, four at time t = 2, etc.). Thus,
the resulting process is a branching process and after 20 generations we have to
consider 220 ≈ 106 cells. In order to describe the state of the CpG site in the
cell population at time t, we compute the probabilities that, when a site in the
parent cell is in state X, the two states of the daughter cells are Y and Z, where
X,Y,Z ∈ {U,H,F}, according to the following matrix M

M =

⎛
⎜⎜⎝

UU UH UF HH HF FF

U t2UU 2 · tUU tUH 2 · tUU tUF t2UH 2 · tUHtUF t2UF

H 0 tUU tHH tUU tHF tUHtHH tUF tHH + tUHtHF tUF tHF

F 0 0 0 t2HH 2 · tHHtHF t2HF

⎞
⎟⎟⎠,

with (tUU , tUH , tUF , tHH , tHF ) = (fu · (1 − μ), (1 − fu)(1 − μ) + fuμ, (1 − fu)μ,
(1− fm)(1−μ), fm +(1− fm)μ). Note that the entries for column UH considers
the two symmetric cases that either the site in one daughter cell is in state U
and the other one in state H or vice versa. The same holds for the columns
UF and HF. The entries of M are computed by considering the corresponding
paths in the diagram in Fig. 1, left. Consider for example the entry MH,HF =
tUF tHH + tUHtHF . During cell division a site in state H is divided into a site
in state U and a site in state H (upper grey block in Fig. 1, left). Next we have
to consider the paths from the nodes in the second line to those in the last line,
i.e. from U to F (tUF = (1 − fu) · μ) and from H to H (tHH = (1 − fm)(1 − μ)).
Analogously, we consider the paths from U to H and from H to F which yields
the second term tUHtHF .

In Fig. 1, right, we illustrate a trace of the population model over time.
Assuming the state of the CpG site is H in the initial cell, then the two daughter
cells of the next generation could be in state U and F, while in the following
generation we could have states U,U,H and F, etc. After n = 20 generations, in
the final population there are 220 cells, in each of them, the state of the tracked
CpG site will be in one of the three states. Note that we apply matrix M to
all cells of the current generation to determine the possible daughter cells. In
addition, we assume that DNA methylation in a cell and on a given allele occurs
independently of other cells and alleles.

The model we are considering belongs to the well-known family of multi-type
Galton-Watson branching process [8], giving us the possibility of exploiting the
vast theory developed for them.

Our wet-lab data contain only information about how many methylated (m =
m(n)) and unmethylated (u = u(n)) single strand sites are present in a subset
of the final population (after 20 generations). However, this means that for the
unknown full state we have the relationships

m(n) = YH(n) + 2 · YF (n) (1)
u(n) = YH(n) + 2 · YU (n) (2)

if YU (n), YH(n), and YF (n) are the numbers of unmethylated, hemimethylated,
and fully methylated CpG sites in the final population. As n = 20 will be fixed,
we will often omit this index it in the following.
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3 Parameter Estimation

Since our ultimate goal is to do whole-genome studies and apply our model to
different cell types, we are interested in parameter estimation procedures that
are computationally efficient. Our model is parametric in Θ = (fm, fu, μ) as well
as in the state of the initial cell. In order to estimate these parameters we use a
maximum likelihood approach and compute the likelihood of observing m and
u (single strand observations). Computing this exactly is computationally very
expensive due to the large size of the state space and the stiffness of the model
(fm and fu being close to one). In the following we present two methods to
approximate the maximum likelihood and estimate such parameters. The first
one is based on stochastic simulations of the model and a statistical estimation
of the likelihood of the observed data. The other approach uses a moment-based
numerical method to approximate the likelihood.

Description of data. The wet-lab DNA methylation data comprise lists of
integer pairs λ = (ue,me). Each pair describes the DNA methylation measure-
ments for a given CpG site e, where one of the strands was observed ue times
unmethylated and me times methylated (the experimental setup does not allow
to distinguish between upper and lower strand). Since it is known that certain
groups of CpG sites behave similarly we will also use our model to describe the
average behaviour of a CpG site within such a group and collect all observation
pairs for these sites in a set Λ. If we only consider a single CpG site e, then
Λ = {(ue,me)}.

Likelihood for single data pairs. Consider a possible state of the model
Y = Y (n) = (YU (n), YH(n), YF (n)) after n = 20 generations, whose entries
sum up to YU + YH + YF = 220. From this vector it is possible to compute the
numbers m and u of methylated and unmethylated strands (see Eqs. 1 and 2).
In the following, we use mX and uX to denote the number of methylated and
unmethylated strands conditional on the site of the initial cell being in state
X ∈ {U,H,F} and we define the two relative frequencies puX = uX

uX+mX
and

pmX = mX

uX+mX
= 1 − puX .

We now want to compute the likelihood that a certain data pair λ = (ue,me)
is observed given the parameter set Θ. We assume that the measured cells are
randomly chosen and therefore we can reduce the computation of the emission
probabilities to the urn problem (drawing with replacement). Hence, the emission
probability for observation λ, if the final state is y = (yU , yH , yF ), is given by

PX,Θ(λ | y) =
(

me + ue

me

)
(puX)ue · (pmX)me . (3)

Thus, the likelihood of the observation λ, conditional on a given initial state
X ∈ {U,H,F} and the parameters Θ, is

P (λ | X,Θ) =
∑

y

P (Y (n) = y) · PX,Θ(λ | y) = EY [P (λ | X,Y )]. (4)
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The exact computation of the expectation EY [P (λ | X,Y )] requires the knowl-
edge of the probability of each possible final stage y , which is computationally
expensive. Therefore, we approximate such an expectation in two possible ways,
either statistically relying on simulations of the model, or by stochastic approx-
imation.

Simulation-based approach. An estimator for the likelihood EY [P (λ |
X,Y )] can be obtained by taking the sample mean of the emission probabil-
ities of all trajectories.1 We compute the sample mean that approximates the
likelihood by generating 10000 trajectories using the method explained below.
Note that during the optimisation process, we vary this number for performance
reasons.

To generate a trajectory of the process, we use a standard simulation algo-
rithm for discrete time Markov chains. The simulation is initialized by computing
the matrix M (see Sect. 2) as well as setting the initial state Y (0), i.e. the state
of one site of the single initial cell of the zeroth generation. Then in each step we
determine the state of the site of the next generation according to the distribu-
tions in M . Instead of repeatedly generating the two daughter cells for all parent
cells, we draw samples from a multinomial distribution according to the number
of sites in state X ∈ {U,M,F} and the probabilities in the corresponding line
of matrix M . For instance, if the state of the initial site is H (see Fig. 1, right)
we set the initial counting vector Y (0) = (YU (0), YH(0), YF (0)) = (0, 1, 0). In
the next step a new counting vector, say Y (1) = (1, 0, 1) as in Fig. 1, right, is
determined according to the multinomial distribution as described above. We
iterate this process until we reach generation n = 20, thus obtaining a sample of
the final state Y (n).

Moment-based approach. An alternative to simulation is to try to approxi-
mate the likelihood EY [P (λ | X,Y )] by resorting to ideas of stochastic approx-
imation. Our approach is conceptually simple: first, we compute the first two
moments of the distribution of Y = Y (n), conditional on the initial site state
being X ∈ {U,H,F}, namely its mean eX = E [Y (n)], and the covariance
matrix CX = (Cij), Cij = Cov [Yi(n), Yj(n)], i, j ∈ {U,H,F}. Then, we assume
Y takes continuous values rather than integer ones, and invoke the maximum
entropy principle [1] to approximate it by a 2-dimensional normal distribution
with mean eX and covariance matrix CX (we can get rid of one dimension
exploiting the fact that the population at generation n equals 2n). By letting
feX ,CX be the corresponding normal density, we then have

P (λ | X, Θ) ≈
∫

u,h

(
me + ue

me

)(
yU + 0.5yH

220

)ue
(

1 − yU − 0.5yH

220

)me

feX ,CX (y) dy .

1 Note that the emission probabilities are dependent on the relative frequencies puX

and pmX , which are random variables as they depend on the random quantities uX

and mX .
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This integral is then numerically approximated by using the two-dimensional
Simpson’s rule [6].

In order to compute mean and covariance of Y (n) = (YU (n), YH(n), YF (n)),
n = 0 . . . 20, we exploit the fact that Y is a multi-type Galton-Watson branching
process [8]. Following [11], we define the expectation matrix M with elements

Mij = E [Yj(1)|Y (0) = bi], (5)

where i, j ∈ {U,H,F} and bU = (1, 0, 0), bH = (0, 1, 0), bF = (0, 0, 1). We also
define the covariance matrices Vk, k ∈ {U,H,F} such that

V k
ij = Cov [Vi(1), Vj(1)|Y (0) = bk]. (6)

Then, the following recurrence holds [11]:

[e(n + 1) C(n + 1)] = [e(n) C(n)]

⎡

⎢
⎢
⎣

VU

M VH

VF

0 M × M

⎤

⎥
⎥
⎦ = [e(n) C(n)]T,

where M × M is the Kronecker product, C(n) = (CUU (n), CUH(n), CUF (n),
CHU (n), CHH(n), CHF (n), CFU (n), CFH(n), CFF (n)) and Vi = (V i

UU , V i
UH ,

V i
UF , V i

HU , V i
HH , V i

HF , V i
FU , V i

FH , V i
FF ). For each initial state k ∈ {U,H,F} we

also compute

[ek Ck] = [bk 0]T20.

Estimating the initial state. The previously discussed approach allows us
to compute the likelihood for a single pair λ conditional on the initial state
X ∈ {U,H,F}. In order to estimate such an initial configuration, we consider the
estimated likelihoods P (λ | X,Θ) in a Bayesian context. We start by assuming
a prior distribution P (X | Θ) over the initial states, and then compute the
posterior distribution P (X | λ,Θ) according to Bayes theorem as

P (X | λ,Θ) =
P (λ | X,Θ) · P (X | Θ)

∑
X∈{U,H,F} P (λ | X,Θ) · P (X | Θ)

.

In order to fix the prior, we need to take into account that it is unlikely that
the original cell has a hemimethylated site (which is very uncommon for living
cells), so the prior should give it a small probability for X = H. Our solution
is to consider as prior probability the state of the model after one generation,
starting from the distribution (U H F ) = (0.5 0 0.5). For instance, we have
P (H | Θ) = tUH(tUU +tUH +tUF )+tHH(tHH +tHF ) (see also Sect. 2). Then, we
can compute the model likelihood, for a given λ, independent of initial conditions,
as P (λ | Θ) =

∑
X∈{U,H,F} P (λ | X,Θ) · P (X | Θ).

Likelihood optimisation. The model likelihood for all data pairs Λ = {λ1, λ2,
. . .} is finally obtained by taking the product of the likelihood of all individual
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pairs. By taking the logarithm, the model log-likelihood then is

log(P (Λ | Θ)) =
∑

λ∈Λ

log(P (λ | Θ)).

To estimate the parameters we used a simple maximum likelihood approach.
We computed the likelihoods − log(P (Λ | Θ)) for varying Θ and converged to a
minimum using simple optimisation procedures. In the final version, we use the
Nelder-Mead procedure which is a derivative-free optimisation that performed
best in our tests [10].

4 Results

In order to validate the proposed estimation algorithms, we ran detailed tests
with simulated data (Sect. 4.1). We also present preliminary results of the whole
genome analysis based on real experimental data (Sect. 4.2).

4.1 Results for Simulated Data

Generation of Synthetic Data. In order to simulate realistic experimental
data with our model, we need two additional parameters governing the behav-
iour of the experiment: coverage, which is the average number of measurements
per CpG site, and length, which is the number of CpG sites in the simulated
dataset Λsim. Given such information, synthetic experimental data is generated
according to Algorithm 1. In order to vary the coverage and keep the variance of
the coverage as realistic as possible, we determine for a fixed coverage the num-
ber of measurements per CpG site in such a way that it resembles this number
in the truly measured data.2

1: prepare a list Lreal of numbers of measurements per site as follows: choose
randomly a sequence of measurement numbers from the real data with length
entries and compute the average Creal over all entries of this list

2: set Λsim = ∅
3: for i := 1 to length do
4: draw probabilistically the initial state X (as described in Sect. 3)
5: run 20 generations from X
6: compute p(methylated) = (#methylated sites)/(#sites)
7: get Creal as the ith entry of Lreal

8: compute C = Round((Creal · (coverage − 0.5))/(Creal) + 0.5)
9: draw a random number m from a binomial with p = p(methylated) and C

10: add λ = (m, C − m) to Λsim

11: end for
Algorithm 1: Generation of synthetic data.

2 We avoid the number of measurements C to be set to zero by subtracting 0.5 from
the reduced coverage and add 0.5 to the quantity to round (Algorithm 1, line 8).
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Scanning the Parameter Space of Simulated Data Sets. We first examine
the likelihood landscape by deep sampling of the parameter space, fixing the
coverage to 5 and the length to 1000, as these values are typical for some of
the real data sets considered in the following section. We use the moment-based
method described in Sect. 3 to approximate the likelihood.

We consider synthetic data obtained from the model with the arbitrarily
chosen values of Θsim = (fu, fm, μ) from table of Fig. 3. For each parameter set
we generated a data set using Algorithm 1. To get an impression of the likelihood
landscapes, we computed the likelihood for a fine grid of the parameter space
Θ with the proposed approximative approach for parameter sets 1–3. In Fig. 2
we show the results. For better visualisation purposes, we report 2-dimensional
plots. We represent for each pair of parameters the negative log-likelihood as a
grey value and restrict to the maximum log-likelihood for each pair of parameters
in the plot.
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Fig. 2. Likelihood landscape for low coverage data. Parameter set 1 (left), 2 (middle),
and 3 (right) from table of Fig. 3.

In all three cases the estimation resulted in a very flat likelihood landscape
since a low coverage of 5 was used. For high coverage synthetic data (as we
have it in the real data) the estimation was much more accurate (see below). In
particular the sum α := μ + (1 − fm) + (1 − fu), which reflects the probability
of copy mistakes in the methylation pattern, is very close to the true value.
Nevertheless, in the low coverage case for parameter set 1 we find high likelihood
values if the sum μ + (1 − fu) < 0.031, in rough agreement with the value of the
parameter set that was used to simulate the data. Also there is a tendency for
fm to be at a value > 0.97. In all three of the upper plots it can be seen that
there is a dependency between fu and μ. Increasing fu seems to have the same
effect on the likelihood as decreasing μ, which makes sense because in both cases
the U state is copied more often and it is less often the case that the daughter
cell has state H.
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The parameters of the second and third set resulted in observations that are
similar to real data as maintenance typically occurs with high probability. In the
case of parameter set 3 the likelihood increases significantly when crossing the
line μ = fu − 0.97 and becomes maximal at fu = 1 and μ = 0.001, while fm is
estimated to be smaller than 0.999.
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Approximation Θsim fu fm μ α

1 0.999 0.97 0.03 0.061
2 0.999 0.999 0.03 0.032
3 0.999 0.999 0.001 0.003
4 0.97 0.999 0.03 0.061
5 0.97 0.999 0.001 0.032
6 0.999 0.97 0.001 0.032

Fig. 3. Comparison of the performances of the simulation and the approximation app-
roach (left). The parameter sets of the simulated data (right). Note that we also list
α := μ + (1 − fm) + (1 − fu) in this table, which is used as an indicator number later.

Comparison of Simulation and Approximation Approaches. Next we
compare the two approaches for approximating the likelihood, namely the
simulation-based and the moment-based methods explained in Sect. 3 . We used
the same three parameter sets 1–3 from the previous section (see table of Fig. 3)
but instead of optimising the third parameter we fix fu = 0.999 and plot the
computed likelihood depending on μ and fm. The results are shown in Fig. 4. It
can be seen that the likelihoods obtained by the moment-based method (lower
plots) are much smoother, being free from the random effects of the simulation
approach (upper plots). Nevertheless, the results of both methods are very sim-
ilar and the maximum likelihood points in the parameter spaces are very close.
For example for parameter set 1, 87% of the log-likelihoods differ by not more
than 10% from each other. Furthermore, for the plots in the middle of Fig. 4,
both methods find as optimal fm the true value of 0.999, while μ is optimal
at 0.023 for the moment-based approach and 0.026 for the simulation approach
(true value is 0.03). Note that the optimal parameters that are recovered with the
different methods differ more for the plots in Fig. 4, left and less for the plots in
Fig. 4, right, due to the different kinds of likelihood landscapes. For performance
reasons, we restrict ourselves to the simulative approach for the remainder of the
paper. In fact, as soon as there are more than approximatively 80 different data
pairs λ in one data set, the numerical method becomes slower than the simu-
lation. For 80 different data pairs both methods need approximately 30 s, while
for a data set with 200 different data pairs, the simulation needs 40 s and the
numerical method needs 100 s. (see Fig. 3 for a complete comparison). For huge
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Fig. 4. Comparison between numerical (lower row of plots) and simulative (upper row
of plots) approximation of the likelihood: Parameter set 1 (left), 2 (middle), and 3
(right) from table of Fig. 3.

data sets, which are common in real experimental data, the simulation would
clearly outperform the numerical approach.

Parameter Estimation for Simulated Data. To explore the quality of our
estimation procedure, data for all parameter sets Θsim listed in table of Fig. 3
with different coverages and lengths were generated. Then, we estimated ten
times such parameters with the simulation approach (see Sect. 3). Since we have
seen that the model cannot distinguish well between parameter sets with similar
μ+(1−fu), we concentrate in the following on the sum α = μ+(1−fm)+(1−fu),
which reflects the probability of copy mistakes in the methylation pattern. If α
is zero, then each site in state U or F will be in state U or F in all daughter cells
again. The higher α becomes, the more errors happen during one generation.
The results for the (average of the ten) differences Δα between the estimatedα
and the true α with which the simulated data was generated is plotted as a
function of the chosen lengths and coverages in Fig. 5.

It can be seen that the coverage of a certain data set plays a crucial role
when estimating the parameters of the proposed model. For coverages between
16 and 64, a constant value for Δα is reached, which becomes greater again for
coverages greater than 100. In contrast, raising the length of a data set is not
leading to less accurate parameter estimations. From length 500 on the distances
are converging. Since parameter estimation on real data is typically done for large
genome regions with many CpG sites and each site produces one data pair of
methylation data, it is very common to have a data set of at least 500 entries.

The estimated α when only a single observation λ is given, is obviously
rather inaccurate. In Fig. 5 we see that the estimation based on ten observations
gives much better results. Since we only have one observation for each CpG site
in the data of the real system and since CpG sites that belong to the same
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region typically show similar DNA methylation dynamics, we estimate in the
next section the parameters of the average behaviour of a group of several CpG
sites whose observations are collected by the set Λ.

4.2 Parameter Estimation for Real Data

The main motivation behind our work is the availability of huge datasets of
DNA methylation data that we will use to investigate methylation fidelities, i.e.
learn the parameters μ, fm, and fu. In the following, we use two data sets with
human blood samples and solid tumour samples. We ran the simulation-based
parameter estimation procedure for both cell types and examined the differences
between the estimated fidelities in blood and in tumour cells. In order to esti-
mate parameters for sets Λ of observations of CpG sites in close proximity, we
grouped CpG sites in consecutive ranges of 5000 base pairs into genomic regions
and used our model to describe the average behaviour of a site in each region. For
the analysis, first a region was identified, the methylation data of this region were
extracted from the data of the blood and tumour samples, and if there was infor-
mation about at least 100 different CpG sites, the parameters were estimated
for the extracted data. Figure 6 shows estimated parameters of different regions
of chromosome 7. Both plots look broadly similar, but there is a certain number
of regions where fm is reduced in tumour samples. In these regions μ tends to
be increased (the points are brighter). To visually investigate this observation,
Fig. 7 shows for each region fx(cancer) as a function of fx(blood), with x = m,u.
While fu is distributed more or less equally over the whole pictured region, fm

is more clustered and in average reduced in cancer-cells. The corresponding plot
for μ looks similar to the plot of fu and is not reported. To validate this visual
impression, we tested the null hypothesis H0,1 : fm(blood) ≤ fm(cancer) with a
Mann-Whitney test. The resulting p-value was p < 2−32, so we can safely reject
this hypothesis. Although the plots for fu and μ look very similar according to
the Mann-Whitney test, we also have to reject H0,2 : fu(blood) ≥ fu(cancer)
and H0,3 : μ(blood) ≤ μ(cancer). Hence, the Mann-Whitney statistically hints
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Fig. 5. Distances between estimated α and true α for a fixed length of 1000 (left).
Distances for all six parameter sets for a fixed coverage of 6(right).
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at the fact that blood and tumour samples behave differently in terms of DNA
methylation fidelity, which is relevant for cancer biology, although the test fails
to suggest a clear criterion which can be used as an indicator for detecting
abnormal cells. Visual inspection of Fig. 7 points to fm as a potential candidate.
This issue will be further investigated when running the analysis on additional
data sets.

5 Conclusions

In this paper we introduce a model of DNA methylation fidelity taking into
account the behaviour of individual cells over generations, which can be trained
by experimental data obtained from next generation sequencing technology. We
carefully crafted efficient parameter estimation techniques to scale the analysis
to the whole-genome level. Currently, parameter estimation for a single group of
sites takes less than one min on a single core. Given that one chromosome con-
tains approximately 109 CpG sites, with the grouping of CpG sites considered,
we will need approximately 14 days for the complete analysis on a single core
machine. However, as this code is fully and straightforwardly parallelizable, the
whole-genome analysis is feasible on a high-performance cluster.
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In this paper we also present preliminary tests on simulated data and on
a real whole-genome dataset, trying to detect differences in methylation fideli-
ties between human blood and tumour samples. Preliminary statistical analysis
of data appears to support that there is indeed a systematic difference in the
DNA methylation dynamics of the two samples. Deeper investigations are cur-
rently carried out on the whole-genome scale to better understand the statistical
nature and biological significance of these differences. We will also investigate if
and how differences in methylation fidelity reflect on differences in the shape of
methylation profiles, comparing with state-of-the-art statistical tests [9].
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Abstract. Pattern formation is an important spatio-temporal emergent
behaviour in biology. Mathematical models of pattern formation in the
stochastic setting are extremely challenging to execute and analyse. Here
we propose a formal analysis of the emergent behaviour of stochastic
reaction diffusion systems in terms of Signal Spatio-Temporal Logic, a
recently proposed logic for reasoning on spatio-temporal systems. We
present a formal analysis of the spatio-temporal dynamics of the Bicoid
morphogen in Drosophila melanogaster, one of the most important pro-
teins in the formation of the horizontal segmentation in the development
of the fly embryo. We use a recently proposed framework for statistical
model checking of stochastic systems with uncertainty on parameters
to characterise the parametric dependence and robustness of the French
Flag pattern, highlighting non-trivial correlations between the parameter
values and the emergence of the patterning.

1 Introduction

One of the most fascinating questions in biology is how regular patterns can
emerge from biochemical processes acting at the cellular level, a process known
as morphogenesis in developmental biology. Some evident examples of these pat-
terns can be observed in the stripes of a zebra, the spots on a leopard, the filament
structure of the cyanobacteria Anabaena or the square pattern of the sulfur bac-
teria T. rosea. Mathematical and computational methods hold enormous promise
in the quest to unveil the underlying mechanisms of morphogenesis and repro-
ducing, using computer-based simulations, the patterns observed in nature. Alan
Turing, mostly known as the father of computer science, was also a pioneer in
developing a first mathematical model [28] that provides the chemical basis of
c© Springer International Publishing Switzerland 2015
A. Abate and D. Šafránek (Eds.): HSB 2015, LNBI 9271, pp. 156–172, 2015.
DOI: 10.1007/978-3-319-26916-0 9



Studying Emergent Behaviours in Morphogenesis 157

morphogenesis. This model, also referred as the Turing’s reaction-diffusion sys-
tem, is able to reproduce the formation of some complex patterns in nature such
as the stripes seen in the animal skin.

Formal analysis of how patterns arise from mathematical models is however
challenging due to the high computational burden of spatio-temporal modelling,
as well as the intrinsic difficulty of defining spatio-temporal patterns in a suitable
language. Pattern recognition is generally considered as a branch of machine
learning [6], where patterns are classified according statistical descriptors (or
features) [21] or the structural relationship among them [25]. This approach,
despite its success and popularity, lacks of a rigourous foundation to specify
such patterns and to reason about them in a systematic way. On the other end,
formal methods provide logic-based languages [2,10,17,18] with a well-defined
syntax and semantics to specify in a precise and concise way emergent behaviours
and the necessary techniques to automatically detect them.

Related Work. In the last year, two novel spatio-temporal logics, SpaTeL [18]
and SSTL [10,24] have made their appearance almost at the same time in the
realm of formal methods to specify the emergence of spatio-temporal patterns.

The Spatial-Temporal Logic (SpaTeL) in [18] is the unification of Signal Tem-
poral Logic [23] (STL) and Tree-Spatial-Superposition-Logic (TSSL) introduced
in [2] to classify and detect spatial patterns. TSSL reasons over quad trees, spatial
data structures that are constructed by recursively partitioning the space into
uniform quadrants. TSSL is derived from Linear Spatial-Superposition-Logic
(LSSL) [17], where the notion of superposition provides a way to describe sta-
tistically the distribution of discrete states in a particular partition of the space
and the spatial operators correspond to zooming in and out of particular areas.
In [17] the authors show also that by nesting these operators they are able to
specify self-similar and fractal-like structures that generally characterize the pat-
terns emerging in nature. SpaTeL is equipped with a qualitative (yes/no answer)
and a quantitative semantics that provide a measure or robustness of how much
the property is satisfied or violated. In [18] this measure of robustness is used
as a fitness function to guide the parameter synthesis process for a deterministic
reaction diffusion system using particle swarm optimisation (PSO) algorithms.
However, the authors do not consider stochastic reaction-diffusion systems and
PSO techniques generally do not provide any guarantee for reaching the global
optimum. Hence, in this paper we will adopt a method with proved convergence
guarantees, introduced previously in [3,4] for the system design of stochastic
processes using the robustness of temporal properties.

The Signal Spatio-Temporal Logic (SSTL) [10,24] is the extension of STL [23]
with three spatial modalities, somewhere, everywhere and surround, which can be
nested arbitrarily with the original STL temporal operator. In [10,24], the authors
provide a qualitative and quantitative semantics of SSTL and efficient monitoring
algorithms for both semantics. A more detailed description of SSTL is provided in
Sect. 3. While in this paper we adopt SSTL to specify spatio-temporal patterns,
the overall method for robust parameter synthesis for stochastic reaction diffusion
systems presented here can be performed also using SpaTeL.
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Contribution. In this work, we combine formal methods with statistical
machine learning by presenting a novel analysis of a stochastic model of the
spatio-temporal behaviour of the Bicoid protein in the Drosophila’s Embryo.
The spatial gradient of this molecule has been shown to be at the basis of the
subdivision of the embryo along its main axis, as specific concentration thresh-
olds in its gradient are detected by cells and lead to the expression of distinct
set of target genes.

The main technical contribution of the paper is the combination of SSTL
within the statistical machine learning framework of [4,7–9], in order to efficiently
perform parameter space exploration and system design of spatio-temporal
properties.

From a system biology perspective, instead, we present a detailed spatio-
temporal analysis of the French Flag pattern on the gradient of the Bicoid pro-
tein. This analysis permits novel insights as to how the various model parameters
interact to give rise to the patterning behaviour.

Paper Structure. The rest of the paper is organised as follows. In Sect. 2 we
discuss the spatial pattern formation in the Drosophila embryos. In Sect. 3 we
first recall the syntax and semantics of SSTL and then use it to specify the French
Flag Property. The smoothed model checking and the parameter estimation is
presented in Sect. 4. In Sect. 5, we present the results and we conclude with final
remarks and directions for future work in Sect. 6.

2 Spatial Pattern Formation and the French Flag Model

In this section, we describe a model of segmentation in Drosophila melanogaster
and the spatio temporal pattern characterising it, known as the French Flag
model.

2.1 Pattern Formation and Reaction-Diffusion Systems

Patterning is a ubiquitous feature of biological organisms, and the presence of
regular geometric motifs on many organisms has long fascinated scientists. Pat-
tern formation is also the subject of one of the earliest, and most influential,
computational systems biology works, Alan Turing’s pioneering work on mor-
phogenesis [28]. Turing’s insight was that biological patterns can be viewed as
emergent behaviour (in modern terminology) arising from local interactions of
microscopic agents. More precisely, Turing considered spatially distributed sys-
tems whose local concentration vector u obeys a reaction-diffusion partial dif-
ferential equation (PDE)

∂u
∂t
=D∇2u + f(u). (2.1)

Equation (2.1) defines the time evolution of the local concentration u as the
sum of two terms: a dispersal or diffusion term D∇2u, which globally drives
the system towards a uniform equilibrium, and a reaction term f(u), which
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accounts for local interactions of the chemicals. Turing then proved that, under
certain conditions on the reaction/diffusion parameters, these two counteract-
ing processes could give rise to regular patterns of concentration, providing a
plausible mechanistic model of biological pattern formation.

Turing’s ideas have been empirically demonstrated in many areas of biochem-
istry (see [22] for a recent review), and are still influential in particular in the field
of developmental biology (see e.g. [16] for a recent paper building on these ideas).
The crucial idea in the application of reaction-diffusion systems to development
is that these mechanisms would underpin the local concentration patterns of
regulatory proteins, which would instruct different genetic programs to be exe-
cuted at different spatial locations. These special regulatory proteins are called
morphogens in developmental biology, as they are believed to be responsible for
the establishment of the shape of an organism in higher organisms. One of the
most widely studied models of morphogenesis is the establishment of spatial pat-
terning (stripes) along the body of the fruit fly Drosophila melanogaster. Several
morphogens are known in Drosophila; mostly, these are maternal proteins that
are produced in a localised area of the embryo (in correspondence to a maternal
deposit of messenger RNA), and then establish a concentration gradient during
development, effectively providing cells within an embryo with a spatial refer-
ence. An important morphogen is the protein Bicoid, which is the central object
of study in this paper and is described in detail in the next subsection.

Before closing this whirlwind review of developmental biology, it is worth
remarking on a fundamental shift of perspective that has happened since Tur-
ing’s pioneering work, the realisation of the importance of stochasticity in biol-
ogy. Numerous lines of evidence indicate that biology at the single cell level
is intrinsically stochastic. Stochasticity cannot be ignored when modelling early
embryogenesis, when only a handful of cells are present. Morphogenetic reaction-
diffusion models can therefore be modified to account for the intrinsic discrete-
ness of biology at the microscopic level. The natural analogue, systems of agents
moving in continuous space, is however prohibitively expensive computation-
ally; an approach that is more amenable to analysis is to discretise space into a
number of cells (voxels) which are assumed to be spatially homogenous, and to
replace spatial diffusion with transitions between different cells. Morphogenetic
systems, and in particular the Bicoid system, have already been analysed from
a simulation perspective in [31] and from a statistical perspective in [12]. In this
paper, we present a first analysis of this system from the point of view of (spa-
tio) temporal logic, to analyse directly the system’s behaviour at the level of the
emergent properties of the trajectories.

2.2 The Bicoid Gradient

The Bicoid (Bcd) molecule was the first protein to be identified among the
morphogens. In the Drosophila embryos, the Bcd protein is distributed along
the Anterior-Posterior axis (A-P axis). The Bcd mRNA is translated at the
anterior pole of the embryo, and the synthesised protein spreads through the
A-P axis by diffusion accompanied by decay.
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Fig. 1. A schematisation of the Drosophila embryo volume. The volume is divided in
101 cubic subvolumes, V0, ..., V100, with side l = 5μm.

We will describe the dynamics of the Bcd protein by a stochastic reaction-
diffusion system, as reported in [31]. Given a certain volume where the Bcd
protein is distributed, we can divide it into a series of subvolumes or voxels that
are small enough to be regarded as well mixed. Then, we can consider the decay
reaction as a transition that happens inside the subvolumes and the diffusion as
exchange of molecules between neighbouring voxels. In particular, we consider
101 homogeneous cubic subvolumes with side l = 5μm that comprise the entire
volume as in Fig. 1. The length of the side l and the number of subvolumes were
chosen in light of those of actual Drosophila embryos, which are 500μm long.
The first subvolume (j = 0), corresponds to the anterior pole of the embryo and
it is the only subvolume where the Bcd protein is synthesised.

We can describe the set R of reactions governing the stochastic dynamics of
Bcd as:

νp ∶ ∅ → B0 at rate J, (production)
νdegj

∶ Bj → ∅ at rate w, for j = 0, ...100, (degradation)

νdif+

j
∶ Bj → Bj+1 at rate

D

l2
, for j = 0, ...99, (diffusion to the right).

νdif−

j
∶ Bj → Bj−1 at rate

D

l2
, for j = 1, ...100, (diffusion to the left).

where Bj is a Bcd protein in the jth subvolume.
The state vector of the system is then xB = (xB0 , ..., xB100) where xBj

is the
number of Bcd molecules in the jth subvolume. From the set R we can derive
the infinitesimal generator matrix of the CTMC that formally represents the
dynamics of the system. The CTMC can then be simulated with a standard
algorithm, like SSA or tau-leaping.

Note that, from the set of reactions R, we can easily revert the discretisation
process and obtain a semantics in terms of Reaction-Diffusion Rate Equation
(RDRE). This is obtained by converting variables into concentrations, taking
the length of voxels to zero, and interpreting each rate as a flow, both in the
degradation and in the diffusion reactions. In this way, we can define the system
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∂u

∂t
=D

∂2u

∂y
−wu, (2.2)

where u(y, t) is the concentration of Bcd at time t in position y, measured in
μm, y ∈ [0,500], giving the boundary conditions ∂u

∂y
∣

y=0
= −

J
Δ

and ∂u
∂y
∣

y=500
= 0,

where Δ = l3.

2.3 Segmentation and the French Flag Model

The spatial distribution of the Bicoid protein has a crucial role in the formation of
the horizontal segmentation in the development of the Drosophila’s embryo. One
of the most important interpretations of this distribution is given by the French
Flag model [29], and more generally by the theory of gap genes [19,30]. The
body of the fruit fly Drosophila melanogaster, as in most arthropods, exhibits
a particular type of spatial patterning called segmentation, whereby the main
body is composed of several segments. Gap genes were discovered and named
following mutagenetic experiments, whereby biologists observed that deletion of
certain genes resulted in the omission of a segment in the fly’s body, as if the
mutant organism had a gap. This observation implies that gap genes must be
expressed in a precisely spatially co-ordinated manner, i.e., the biochemistry of
the fruit fly must possess a way of measuring distances.

The French Flag model is a simplified model of gap gene regulation in early
embryogenesis involving only four genes, the Bicoid morphogen protein and three
target genes. The underlying assumption is that the spatial distribution of Bicoid
protein, which as we have seen tends to decrease along the A-P axis (see Fig. 2),
provides the ruler with which the Drosophila embryo measures distances. Gap
genes are activated in a concentration dependent manner by Bicoid, so that a
set of genes are activated at the high concentrations near the anterior part of
the embryo (the blue in the French Flag), a different set of genes is activated
in the central part (the white) and a third set is activated a low concentrations
near the posterior end (red). This model has survived with some modifications
[20] until this day, its beauty providing a paradigm for pattern development
in many areas of biology. From our point of view, this model is particularly
interesting because it refocuses attention from local intensive quantities (local
concentrations) towards the importance of a global emergent property of the
system (the establishment of a gradient), which is ideally suited for reasoning
upon in terms of spatio-temporal logics. We will see in the next section this how
to describe the French Flag pattern using a spatio-temporal logic.

3 Formula Specification of Spatio-Temporal Behaviour

In this section, we describe Signal Spatio-Temporal Logic (SSTL) which will then
be used to specify the spatio-temporal behaviour of the French Flag pattern.
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3.1 Signal Spatio-Temporal Logic

The Signal Spatio-Temporal Logic (SSTL) [10,24] is a linear time logic suitable
to specify spatio-temporal behaviours of traces generated from simulations. It is
an extension of Signal Temporal Logic (STL) [23] with two spatial modalities.

The space is described as a weighted graph G = (L,E,w) where L is a set of
locations, E is a set of edges and w ∶ E → R≥0 is the function that returns the
cost/weight of each edge, typically encoding the distance between two nearby
locations.

The syntax of SSTL is given by

ϕ ∶= true ∣ μ ∣ ¬ϕ ∣ϕ1 ∧ϕ2 ∣ϕ1 UI ϕ2 ∣ 
[w1,w2] ϕ ∣ ϕ1 S[w1,w2]ϕ2,

where the STL operators are the atomic proposition μ, the standard boolean
connectives conjunction and negation and the bounded until operator UI , with
I a dense-real interval. The new spatial operators are the somewhere operator,


[w1,w2], and the bounded surround operator S

[w1,w2], where [w1,w2] is a closed
real interval with w1 < w2. The spatial somewhere operator 


[w1,w2]ϕ requires ϕ
to hold in a location reachable from the current one with a total cost greater than
or equal to w1 and less than or equal to w2. The surround formula ϕ1S[w1,w2]ϕ2,
instead, is true in a location � when � belongs to a subset of locations A, a
region, satisfying ϕ1, such that its external boundary B+(A) (i.e., all the nearest
neighbours of locations in A) contains only locations satisfying ϕ2. Furthermore,
locations in B+(A) must be reached from � by a shortest path of cost between w1

and w2, i.e. they have to be at distance between w1 and w2 from �. There are also
three derivable operators: the eventually operator FI ϕ ∶= true UI ϕ, the always
operator GI ϕ ∶= ¬FI ¬ϕ and the everywhere operator �

[w1,w2]ϕ ∶= ¬
[w1,w2] ¬ϕ
that requires ϕ to hold in all the locations reachable from the current one with
a total cost between w1 and w2.

SSTL is interpreted on spatio-temporal traces x ∶ T×L→ R
n, where T is the

time domain, usually a real interval [0, T ], with T > 0; we can write the trace
as x(t, �) = (x1(t, �),⋯, xn(t, �)), where each xi ∶ T×L→ R, for i = 1, ..., n, is the
projection on the ith coordinate/variable.

Similarly to STL, SSTL has two semantics, the classical boolean semantics
and a quantitative semantics.

The boolean semantics returns true or false depending on whether the trace
satisfies the SSTL property, i.e. (x, t, �) ⊧ ϕ is true if and only if the trace x(t, �)
satisfies ϕ. By convention, the whole trace satisfies a property in location � iff it
satisfies the property at time zero, i.e. (x, �) ⊧ ϕ⇔ (x,0, �) ⊧ ϕ.

The quantitative semantics, instead, returns a real value ρ(ϕ,x, t, �) that
quantifies the level of satisfaction of the formula by the trajectory x at time
t in location �. The absolute value ∣ρ(ϕ,x, t, �)∣ can be interpreted as measure
of the robustness of the satisfaction or dissatisfaction. Furthermore, the sign
of ρ(ϕ,x, t, �) is related to the truth of the formula: if ρ(ϕ,x, t, �) > 0, then
(x, t, �) ⊧ ϕ, and similarly if ρ(ϕ,x, t, �) < 0, then (x, t, �) /⊧ ϕ. The definition
of this quantitative measure ρ is based on [13,14], and it is a reformulation of
the robustness degree of [15]. In accordance with the boolean semantics, the
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quantitative value of the whole trace in location � is given by its value at time
zero, i.e. ρ(x, �) = ρ(x,0, �).

SSTL is equipped with efficient monitoring algorithms for both the boolean
and the quantitative semantics, whose description, together with a formalisation
of the semantics, can be found in [10,24].

3.2 The French Flag Property

To describe the French Flag pattern we have first to define the trajectories that
we want to characterise and its related graph.

Let consider a trace (a simulation) (xB(t))t∈[0,T ] = (xB0(t), ..., xB100

(t))t∈[0,T ] of the Bicoid model described in the previous section, where [0, T ] is
the time domain, with T > 0. We can transform the temporal trace in a spatio-
temporal trajectory defining xB ∶ L × [0, T ] → R s.t. xB(Vi, t) ∶= xBi

(t), where
L = {V0, ..., V100} is the set of locations. The graph G = (L,E,w) of the system is
a one-dimensional graph where each Vi is connected only to Vi−1 and Vi+1, with
w(Vi, Vi+1) = 1, i.e. all the edges have weight equal to 1. The weight between two
arbitrary locations is given by the weight of the shortest path connecting them.

We can now use the logic to specify the French Flag model. As we described
in Sect. 2, this pattern is used to represent the effect of a morphogen in the
expression of different genes, i.e. to represent the correlation between the con-
centration of the morphogen and the activation or repression of other genes.
In particular, the spatial distribution of the morphogen, at the steady state, is
divided in three regions: a blue, a white and a red region, as shown in Fig. 2
(left), that activate different target genes.

We can describe this behaviour with the property

ψflag ∶= ϕblue ∧ϕwhite ∧ϕred (3.3)

ϕblue ∶= �
[0,wblue]

(xB >Kblue − hbw)

ϕwhite ∶= �
[wblue,wwhite]

((xB <Kblue + hbw) ∧ (xB >Kwhite − hwr))

ϕred ∶= �
[wwhite,wmax

(xB <Kwhite + hwr)

(3.4)

The verification of the formula is done in the location V0. (x,V0) ⊧ ψflag

iff it satisfies each subformulae ϕblue, ϕwhite, ϕred; (x,V0) ⊧ ϕblue iff, in all the
locations Vi s.t. w(V0, Vi) ≤ wblue, the number of Bicoid molecules is higher than
Kblue − hbw, i.e. xB > Kblue − hbw. In a similar way we can describe ϕwhite and
ϕred. The meaning of the property is that the spatial distribution of the Bicoid
protein is divided in three regions, the blue, where the xB >Kblue−hbw, the white,
where Kblue + hbw > xB > Kwhite − hwr, and the red, where xB < Kwhite + hwr.
Note that hbw and hwr parameters have the role to relax the thresholds that
define different regions, to properly deal with noise in Bcd expression, we will
discuss this point more in detail in the Sect. 5.1.

At steady state, the concentration of the Bicoid protein is exponentially
distributed along the anterior-posterior (A-P) axis, with higher concentrations
towards the anterior. We can identify the insurgence time of this pattern, and
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if it remains stable, combining the spatial property with temporal operators as
follows:

ψstableflag ∶= F[Tflag,Tflag+δ](G[0,Tend]
ψflag) (3.5)

ψstableflag means that eventually, in a time between Tflag and Tflag + δ, the
property ψflag remains true for at least Tend time units.

4 Methodologies

The main objective of this work is to study the effects of the Bicoid parameters on
the satisfaction of the French Flag property. Exhaustive parameter exploration is
particularly expensive for the model in question, due to the high cost of stochastic
simulation. In this section, we briefly introduce the methodologies that we use
to perform parameter synthesis and model checking in presence of parametric
uncertainty.

4.1 Smoothed Model Checking

The Smoothed Model Checking algorithm [7] relies on the characterisation of the
satisfaction probability of a formula ϕ as a function of the parameters. Given
a CTMC Mθ, whose transition rates depend on a set of parameters θ, the
satisfaction function of ϕ is defined as follows:

f(θ) ≡ p(ϕ = true∣Mθ)

It has been proven in [7] that, if the transition rates of Mθ depends smoothly
on the parameters θ and polynomially on the state of the system, then the
satisfaction function of ϕ is a smooth function of the parameters.

The smoothed model checking approach leverages of the smoothness of the
satisfaction function and transfers information across nearby parameter values.
More specifically, we place a Gaussian Process (GP) prior over the space of pos-
sible functions, and we evaluate the satisfaction function for a set of parameter
values. We then calculate the GP posterior under the light of these observa-
tions, which constitutes analytical approximation to the satisfaction function.
This implies that we can estimate the satisfaction probability at any point in
the parameter space with no additional cost.

The premise is that fewer samples are required to achieve a given level of
accuracy. In the experiments of [7], it has been possible to accurately approxi-
mate the satisfaction function over a wide range of parameters using less than
10 % of the simulation runs required to obtain the same result with exhaustive
parameter exploration. This resulted in a decrease of the total analysis time
nearly by 90 %.
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4.2 Robust Parameter Synthesis

The problem of robust parameter synthesis constitutes of identifying the model
parameters that maximise the robustness of some desired property. According to
the quantitative semantics of SSTL, the robustness value ρ(ϕ,x, t, �) expresses
the level of satisfaction of ϕ by a trajectory x at time t in location �. Since
trajectories are random for a stochastic system, we designate the robustness of ϕ
for a CTMC as a random variable Rϕ. We are therefore interested in maximising
the expected quantitative score:

E[Rϕ] = ∫ ρ(ϕ,x, t, �)p(x)dx (4.6)

where p(x) is the probability density of trajectory x. For a specified time t and
location �, the expectation E[Rϕ] constitutes an objective function, for which
we can obtain noisy estimates by generating samples from the trajectory space
via stochastic simulation.

Since evaluating the expected robustness is computationally expensive, we
employ the Gaussian process optimisation algorithm described in [9]. In short,
the objective function is approximated by a Gaussian Process (GP). The algo-
rithm is initialised with a random grid of points, for each of which E[Rϕ] is
approximated via statistical means. Using these points as a training set, a GP
is used to make predictions regarding the E[Rϕ] value at different parts of the
search space, without exhaustive exploration of the parameter space. We cal-
culate the GP posterior for a set of test points; that involves calculating an
estimate of the expected robustness and its associated variance. The GP optimi-
sation algorithm dictates that the point that maximises the an upper quantile
of the GP posterior is added to the training set, after being evaluated for its
associated robustness via SMC. A high value for the upper quantile at any point
in the parameter space indicates the possibility of an undiscovered maximum
nearby. This feature allows us to direct the search towards areas of the para-
meter space that appear to be more promising. This process is repeated for a
number of iterations, and the training set is progressively updated with new
potential maxima. For a smooth objective function, the algorithm is proved to
converge to the global optimum in [27].

5 Results

In this section, we perform a series of experiments to explore the sensitivity and
robustness of the French Flag property w.r.t. changes in the rates of produc-
tion J and degradation w, and the diffusion rate parameter D. The size of the
cubic subvolumes is known, that is l = 5μm, as it is one of the main modelling
assumptions.

5.1 Experimental Data

Following [26,31], we chose as parameters of the ψstableflag property (3.5), speci-
fied in Sect. 3.2, Tflag = 3950, δ = 10, Tend = 1000, wblue = 35.5, wwhile = 67.5 and
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wmax = 101. The wblue and wwhile parameters mean that the blue area involves
the subvolumes between V0 and V35, the white area extends from volume V36 to
V67, and finally the red one from V68 to V100; the time is in terms of seconds.

In order to fix the thresholds parameters Kblue, Kwhite and hbw,hwr we use
the Bicoid fluorescence concentration at cycle 13 (where the gradient is consid-
ered to be in the steady state) downloaded from the FlyEx database [1]. The
choice of the data follows the analysis doing in [31]. To the best of our knowledge,
all the quantifications of the Bicoid protein in the Drosophila embryo refers to
the measurements of fluorescence concentrations, rather than direct observations
of the Bicoid molecular population. From [31], we define the fluorescence con-
centration I =m×xB , where m is a scaling factor that denotes the fluorescence-
to-molecule ratio. Our approach is to rescale the thresholds reported in terms of
fluorescence concentrations with the m factor.

The data has been given originally in the form of two-dimensional coordinates
paired, the A-P and D-V coordinate, from the central 10% strip. As in [31], we
choose the embryos where the variation inside each spatial subregions is low,
in particular in these embryos the inverse of the spatial exponential coefficient
varied by less that 1%. We have transformed the data so that we have a single
concentration value for each of the 101 discretised locations. Figure 2 depicts the
result. On the left-side figure, we see how the different locations lie within the
areas prescribed by the French Flag property. Although the shape of the data is
apparently negative exponential, there is a considerable amount of noise, which
has to be taken into consideration in terms of the French Flag property. We
therefore define the thresholds in the form regions, rather than strict values. On
the right-side of Fig. 2, we see a magnified version of the figure, where only the
white area is depicted. The majority of the concentrations recorded for volumes
from V36 to V67 are between 60 and 2. In the same way, we can empirically derive
zones of desired concentration levels for the blue and read areas. Therefore we
have Kblue = 45/m, hbw = 15/m, Kwhite = 6/m, and hwr = 4/m.
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Fig. 2. Left: Fluorescence concentrations of the Bicoid protein for 17 embryos during
the cycle 13. Right: The same concentrations in the area between locations 35 and 67,
which define the white area in the French flag property.
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5.2 Optimisation of Expected Robustness

We now explore how the model parameters (including the scaling factor m) can
be tuned to increase the robustness of the French Flag pattern.

We applying the GP optimisation algorithm discussed in Sect. 4.2, for a four-
dimensional space that involves the parameters: w ∈ [0.001,0.01], J ∈ [10,400],
D ∈ [1,40], and m ∈ [0.01,1]. The parameter ranges have been selected so that
the resulting space is a superset of the explored space in [31]. Regarding the
fluorescence-to-molecule ratio in particular, we note that the extremes considered
in [31] have been 0.07 and 0.7.

For each evaluation of the expected robustness, the system has been simu-
lated up to time t = 4000 s, which is when the steady-state is approached accord-
ing to [31]. The robustness expectation has been approximated statistically using
12 simulation runs for each parameter set. The algorithm has been initialised
by 80 evaluations of the objective function at random points; a number of 282
evaluations were performed at points selected by the optimisation process, until
convergence was detected. Convergence has been determined when no significant
improvement of the expected robustness has been observed for 200 iterations.
An improvement is considered significant, if it is more than 1 % increase over
the previously recorded maximum robustness.

In the end, a total of 362 function evaluations have been performed, which
is arguably a small number of samples to explore a four-dimensional space. The
execution times have been 85 min for the initial 80 evaluations, and 263 min for
the actual optimisation process. Stochastic simulations have been performed in
parallel using 12 threads. The experiments have been performed on an Intel®

Xeon® CPU E5-2680 v3 2.50 GHz. The majority of the computational effort
was spent in simulation, despite the fact that only 12 trajectories have been
generated for each parameter set considered. Therefore the idea of reducing the
number of samples by exploiting the smoothness of the objective function has
been a sensible practice.

The values returned by the optimisation process have been: w∗ = 0.0038,
J∗ = 390, D∗ = 32.5, and m∗ = 0.048. The robustness of the optimum returned
has been 2.99, implying that the property is robustly satisfied for the given
solution. In Fig. 3, we present a sample trajectory for the given parameter con-
figuration, and the average of 40 random trajectories, along with the associated
99.8 % confidence bounds. The sample trajectory is plotted against the exper-
imental data that were used to adjust the threshold parameters of the French
Flag property. We see that the optimised model has a behaviour very similar to
the one observed in real-world experiments. However, it appears that the sim-
ulation results are much less noisy, when compared to the actual observations.
This finding is in agreement with the result of [31], where it was argued that
the intrinsic noise as modelled by the stochastic dynamics of the master equa-
tion is not sufficient to explain the variability in the data, i.e. the noise in the
fluorescence measurement as a crucial role that has to be taken into account.
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Fig. 3. Left: Sample trajectory for the parameter configuration that maximises the
robustness of the French Flag property. Right: Average of 40 random trajectories; the
dotted lines indicate the 99.8 % confidence interval.

5.3 Parameter Exploration with Smoothed Model Checking

In this section, we perform a more thorough exploration of the parameter space.
Our objective is to discover dependencies among the parameters, considering
the satisfaction probability of the French Flag property. On that respect, the
fluorescence-to-molecule ratio m is not significant, as this will have an obvious
effect on the thresholds for the property. We fix the fluorescence-to-molecule ratio
m to 0.048, which is the optimal value reported by the optimisation algorithm
in the previous section. The rest of the model parameters, w ∈ [0.001,0.01],
J ∈ [10,400], and D ∈ [1,40], are explored via the smoothed model checking
approach.

During the initialisation step of the algorithm, we have performed 216 evalua-
tions of the satisfaction function of (3.3), for a regularly distributed set of values.
As in the previous section, the satisfaction probability is approximated by statis-
tical model checking using 12 simulation runs for each parameter configuration,
where the system is simulated up to time t = 4000 s.

The duration of this initial statistical model checking process has been nearly
170 min, on an Intel® Xeon® CPU E5-2680 v3 2.50 GHz, using 12 threads in
parallel. The hyperparameter optimisation that is required to tune the GP probit
regression model subsequently required only 20 s, which is a trivial price to pay
compared to the massive simulation cost. The final GP probit regression for a
grid of 4096 points required only 1.2 s. Most importantly, it is only this last cost
that we are required to pay to produce any further estimations of the satisfaction
function.

Figure 4 depicts the satisfaction function for the French Flag property for
parameters θ = {w,J,D}, as this has been approximated by smoothed model
checking. Each of the depicted subfigures shows the satisfaction probability as
function of the production rate J and the diffusion parameter D, for a differ-
ent value of the degradation rate w. Regarding the confidence of the estimated
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probabilities, we report that the 73.6 % of the values are associated with 95 %
confidence intervals of width less than 0.2.

As a general remark, it appears that the manifestation of the gradient pat-
tern, as this is captured by the French Flag property, is associated with a fine
balance among the model parameters. There is a small area in the parameter
space for which the property is satisfied with high probability. As we increase the
decay parameter w however, we observe two behaviour regarding this area: its
size is being increased, and its location is being shifted to the right. This implies
that w is positively correlated with the production rate J . In other words, a par-
ticular ratio between protein production and decay is required for the formation
of the particular pattern. At the same time, increasing the decay rate means
that the formula may be satisfied for a wider range of the diffusion parameter.

It also appears that there is a negative correlation between the production
rate J and the diffusion parameter D. This behaviour is present for the entire
range of w examined, but it tends to become more obvious as w is increased. It
is reasonable to conclude that a simultaneous increase of J and D would destroy
the exponential shape of the Bicoid distribution across space.
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Fig. 4. Emulated satisfaction probability of the French Flag property as function of
θ = {w,J,D}. Each subfigure has the w parameter fixed.

6 Conclusions

We present a framework for the formal analysis under parametric uncertainty
and the robust parameter synthesis of spatio-temporal properties emerging in
a stochastic reaction-diffusion system. These properties are specified using the
spatio-temporal logic SSTL. The framework combines statistical machine learn-
ing techniques based on Gaussian processes with the algorithm for monitoring
SSTL properties.

As a case study, we analyse the occurrence of the French Flag pattern in
the Bicoid gradient, during the development of Drosophila embryo. Analysing
how this property depends on the parameters of the model is challenging due
to the very high computational cost of simulating a spatio-temporal model, and
has only been possible by adopting recent efficient verification techniques that
employ machine learning methodologies [8]. Furthermore, the combination of
these new techniques with SSTL permits exploring behaviours that are extremely
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difficult to express (and monitor) with standard temporal logics, where each
individual location would need to be accounted.

The natural extension of this work is the analysis of more complicated models
and properties, for example adding to this model the proteins of the target
genes related with the spatial distribution of the Bicoid protein, enabling the
study of the spatial dependency between proteins. To be independent from the
spatial approximation, we plan also to consider different discretisation of the
Drosophila’s volume. Another future work could be the consideration of a model
rescale with a random factor that mimics the extrinsic noise due to the fluoresce
measurements. We plan also to extend our previous result in mining temporal
logic properties [5,11] for the spatio-temporal case. Finally, we are considering
an extension of the logic to continuous spaces and we would like to compare the
expressiveness of SSTL with SpaTeL.

Acknowledgements. L.B. acknowledges partial support from the EU-FET project
QUANTICOL (nr. 600708) and by FRA-UniTS. G.S. and D.M. acknowledge the sup-
port from the ERC under grant MLCS306999. E.B. acknowledges the partial support
of the Austrian National Research Network S 11405-N23 (RiSE/SHiNE) of the Aus-
trian Science Fund (FWF), the ICT COST Action IC1402 Runtime Verification beyond
Monitoring (ARVI) and the IKT der Zukunft of Austrian FFG project HARMONIA
(nr. 845631).

References

1. Flyex database. http://urchin.spbcas.ru/flyex/
2. Aydin Gol, E., Bartocci, E., Belta, E.: A formal methods approach to pattern

synthesis in reaction diffusion systems. In: Proceedings of CDC 2014: the 53rd
IEEE Conference on Decision and Control, pp. 108–113. IEEE (2014)

3. Bartocci, E., Bortolussi, L., Nenzi, L., Sanguinetti, G.: On the robustness of tem-
poral properties for stochastic models. In: Proceedings of HSB 2013: The Second
International Workshop on Hybrid Systems and Biology, pp. 3–19 (2013)

4. Bartocci, E., Bortolussi, L., Nenzi, L., Sanguinetti, G.: System design of stochastic
models using robustness of temporal properties. Theor. Comput. Sci. 587, 3–25
(2015)

5. Bartocci, E., Bortolussi, L., Sanguinetti, G.: Data-driven statistical learning of
temporal logic properties. In: Legay, A., Bozga, M. (eds.) FORMATS 2014. LNCS,
vol. 8711, pp. 23–37. Springer, Heidelberg (2014)

6. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Heidelberg
(2006)

7. Bortolussi, L., Milios, D., Sanguinetti, G.: Smoothed model checking for uncertain
continuous time Markov chains. CoRR ArXiv 1402.1450 (2014)

8. Bortolussi, L., Milios, D., Sanguinetti, G.: U-Check: model checking and parameter
synthesis under uncertainty. In: Campos, J., Haverkort, B.R. (eds.) QEST 2015.
LNCS, vol. 9259, pp. 89–104. Springer, Heidelberg (2015)

9. Bortolussi, L., Sanguinetti, G.: Learning and designing stochastic processes from
logical constraints. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.)
QEST 2013. LNCS, vol. 8054, pp. 89–105. Springer, Heidelberg (2013)

http://urchin.spbcas.ru/flyex/


Studying Emergent Behaviours in Morphogenesis 171

10. Bortolussi, L., Nenzi, L.: Specifying and monitoring properties of stochastic spatio-
temporal systems in signal temporal logic. In: Proceedings of VALUETOOLS 2014:
The 8th International Conference on Performance Evaluation Methodologies and
Tools, pp. 66–73. ICST (2014)

11. Bufo, S., Bartocci, E., Sanguinetti, G., Borelli, M., Lucangelo, U., Bortolussi, L.:
Temporal logic based monitoring of assisted ventilation in intensive care patients.
In: Margaria, T., Steffen, B. (eds.) ISoLA 2014, Part II. LNCS, vol. 8803, pp.
391–403. Springer, Heidelberg (2014)

12. Dewar, M.A., Kadirkamanathan, V., Opper, M., Sanguinetti, G.: Parameter esti-
mation and inference for stochastic reaction-diffusion systems: application to mor-
phogenesis in D. melanogaster. BMC Syst. Biol. 4, 21 (2010)
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Abstract. When designing genetic circuits, the typical primitives used
in major existing modelling formalisms are gene interaction graphs,
where edges between genes denote either an activation or inhibition
relation. However, when designing experiments, it is important to be
precise about the low-level mechanistic details as to how each such rela-
tion is implemented. The rule-based modelling language Kappa allows
to unambiguously specify mechanistic details such as DNA binding sites,
dimerisation of transcription factors, or co-operative interactions. Such a
detailed description comes with complexity and computationally costly
executions. We propose a general method for automatically transforming
a rule-based program, by eliminating intermediate species and adjusting
the rate constants accordingly. To the best of our knowledge, we show
the first automated reduction of rule-based models based on equilibrium
approximations.

Our algorithm is an adaptation of an existing algorithm, which
was designed for reducing reaction-based programs; our version of the
algorithm scans the rule-based Kappa model in search for those inter-
action patterns known to be amenable to equilibrium approximations
(e.g. Michaelis-Menten scheme). Additional checks are then performed
in order to verify if the reduction is meaningful in the context of the
full model. The reduced model is efficiently obtained by static inspection
over the rule-set. The tool is tested on a detailed rule-based model of a λ-
phage switch, which lists 92 rules and 13 agents. The reduced model has
11 rules and 5 agents, and provides a dramatic reduction in simulation
time of several orders of magnitude.

1 Introduction

One of the main goals of synthetic biology is to design and control genetic cir-
cuits in an analogous way to how electronic circuits are manipulated in human
made computer systems. The field has demonstrated success in engineering sim-
ple genetic circuits that are encoded in DNA and perform their function in the
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cellular environment [1,2]. However, there remains a need for rigorous quanti-
tative characterisation of such small circuits and their mutual compatibility [3].
The important ingredient towards such characterisation is having an appropriate
language for capturing model requirements, for prototyping the circuits, and for
predicting their quantitative behaviour before committing to the time-intensive
experimental implementation.

Quantitative modelling of biomolecular systems is particularly challenging,
because one deals with stochastic, highly dimensional, non-linear dynamical
systems. For these reasons, modellers often immediately apply ad-hoc simpli-
fications which neglect the mechanistic details, but allow to predict (simulate)
the system’s behaviour as a function of time. For example, the fact that pro-
tein A activates protein P is often modelled immediately in terms of a reaction
A → A + P with the Hill kinetic coefficient (e.g. k[A]n

1+k[A]n ), while the mechanism
in fact includes the formation of a macromolecular complex and its binding to
a molecular target. While such models are easier to execute, the simplification
makes models hard to edit or refine. For example - a new experimental insight
about an interaction mechanism cannot be easily integrated properly into the
model, since several mechanistic steps are merged into a single kinetic rate.
Moreover, an abstract model does not provide precise enough design guide for
circuit synthesis, and sometimes, only the more detailed models explain certain
behaviours (e.g., in [4], it is shown that only when incorporating the mRNA, the
model explains certain experimentally observed facts).

Rule-based languages, such as Kappa [5] or BioNetGen [6], are designed
to naturally capture the protein-centric and concurrent nature of biochemical
signalling: the internal protein structure is maintained in form of a site-graph,
and interactions can take place upon testing only patterns, local contexts of
molecular species. A site-graph is a graph where each node contains different
types of sites, and edges can emerge from these sites. Nodes typically encode
proteins and their sites are the protein binding-domains or modifiable residues;
the edges indicate bonds between proteins. Then, every species is a connected
site-graph, and a reaction mixture is a multi-set of connected site-graphs. The
executions of rule-based models are traces of a continuous-time Markov chain
(CTMC), defined according to the principles of chemical kinetics. In general,
rule-based models are advantageous to the classical reaction models (Petri nets)
for two major reasons. First, the explicit graphical representation of molecular
complexes makes models easy to read, write, edit or compose (by simply merging
two collections of rules). For example, the reaction of dimerization between two
λ CI molecules is classically written 2CI → CI2, where the convention is that
CI represents a free monomer, and CI2 represents a free dimer. On the other
hand, the same reaction written in Kappa amounts to:

‘CI2:’ CI (ci,or) , CI (ci,or) ↔ CI (ci!1,or) , CI (ci!1,or) @k2+, k2−,

where the binding sites ci and or are binding sites of the protein CI, and
CI (ci!1,or) denotes that the identifier of the rule-based bond accounting for the
physical interaction between the two CI monomers, is 1. Secondly, a rule set can
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aT x aT
k1

x

k2
Op Op

aT x k3 aT x POp Op +

T(a),Op(x) ↔ T(a!1), Op(x!1)

T(a!1),Op(x!1) ↔ T(a!1), Op(x!1), P()

Fig. 1. An example of a rule-based model. The transcription factor T binds to the
operator’s site x via site a and, when bound, it initiates the production of protein P .

be executed, or subjected to formal static analysis: for example, it provides effi-
cient simulations [7,8], automated answers about the reachability of a particular
molecular complex [9], or about causal relations between rule executions [10].

The downside of incorporating too many mechanistic details in the model,
is that they lead to computationally costly execution. For this reason, we define
and implement an efficient method for automatically detecting and applying
equilibrium approximations. As a result, one obtains a smaller model, where
some species are eliminated, and the kinetic rates are appropriately adjusted. In
this way, the experimentalist can choose to obtain the predictions more efficiently
but less accurately, however without losing track of the underlying low-level
mechanisms.

In related works [11,12], the authors propose an algorithm for reducing a
reaction-based model, by searching for interaction schemes amenable to equi-
librium approximations. In this paper, we adapt this algorithm to rule-based
models.

Implementation and Testing. The tool is implemented in OCaml, and it is
tested on a detailed rule-based model of a λ-phage switch [13,14]. Simulations
were carried out on the complete chemical reaction genetic circuit model which
contains 92 rules, 13 agents and 61 species. The model is reduced to only 11
rules and 5 agents.

Related Work. The principle of obtaining conclusions about system’s dynamics
by analysing their model description, originates from, and is exhaustively studied
in the field of formal program verification and model checking [15,16], while it
is recently gaining recognition in the context of programs used for modeling
biochemical networks. An example is the related work of detecting fragments
for reducing the deterministic or stochastic rule-based models [17–19], detecting
the information flow for ODE models of biochemical signaling [20,21], or the
reaction network theory [22].

2 Stochastic Chemical Reaction Networks

For a well-mixed reaction system with molecular species S = {S1, . . . , Sn}, the
state of a system can be represented as a multi set of those species, denoted
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by x = (x1, ..., xn) ∈ N
n. The dynamics of such a system is determined by a

set of reactions R = {r1, . . . , rr}. Each reaction is a triple rj ≡ (aj ,νj , cj) ∈
N

n × N
n × R≥0, written down in the following form:

a1jS1, . . . , anjSn
kj→ a′

1jS1, . . . , a
′
njSn,

such that a′
ij = aij + νij .

The vectors aj and a′
j are often called respectively the consumption and pro-

duction vectors due to reaction rj , and kj is the kinetic rate of reaction
rj . If the reaction rj occurs, after being in state x, the next state will be
x′ = x + νj . This will be possible only if xi ≥ aji for all i = 1, . . . , n.
Under certain physical assumptions [23], the species multiplicities follow a
continuous-time Markov chain (CTMC) {X(t)}, defined over the state space
S = {x | x is reachable from x0 in R}. Hence, the probability of moving to the
state x + νj from x after time Δ is

P(X(t + Δ) = x + νk | X(t) = x) = λj(x)Δ + o(Δ),

with λj the propensity of jth reaction, assumed to follow the principle of mass-
action: λj(x) = kj

∏n
i=1

(
xi

aij

)
. The binomial coefficient

(
xi

aij

)
reflects the proba-

bility of choosing aij molecules of species Si out of xi available ones.
In the continuous, deterministic model of a chemical reaction network, the

state z(t) = (z1, . . . , zn)(t) ∈ R
n is represented by listing the concentrations of

each species. The dynamics is given by a set of differential equations in form

d
dt

zi = νij

r∑

j=1

cj

n∏

i=1

zi(t)aij , (1)

where cj is a deterministic rate constant, computed from the stochastic one and
the volume N from cj = kjN

|aj |−1 (|x| denotes the 1-norm of the vector x).
The deterministic model is a limit of the stochastic model when all species in a
reaction network are highly abundant [24].

2.1 Deterministic Limit

Denote by Rj(t) the number of times that the j-th reaction had happened until
the time t. Then, the state of the stochastic model at time t is

X(t) = X(0) +
r∑

j=1

Rj(t)νj . (2)

The value of Rj(t) is a random variable, that can be described by a non-
homogenous Poisson process, with parameter

∫ t

0
λj(X(s))ds, that is, Rj(t) =

ξj(
∫ t

0
λj(X(s))ds). Then, the evolution of the state X(t) is given by the expression

X(t) = X(0) +
r∑

j=1

ξj

(∫ t

0

λj(X(s))ds

)
νj . (3)
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By scaling the species multiplicities with the volume: Zi(t) = Xi(t)/N ,
adjusting the propensities accordingly, in the limit of infinite volume N → ∞,
the scaled process Z(t) follows an ordinary differential equation (1) [24].

It is worth mentioning here that the above scaling from stochastic to the
deterministic model is a special case of a more general framework presented in
[25], referred to as the multiscale stochastic reaction networks. Intuitively, the
deterministic model is a special case where all species are scaled to concentra-
tions and reaction rates are scaled always in the same way, depending on their
arity. The reductions shown in this paper can be seen as a variant of multiscale
framework, where some species are scaled to concentrations and others are kept
in copy numbers, and where reaction rates have varying scales as well.

3 Rule-Based Models

We introduce the rule-based modeling language Kappa, which is used to specify
chemical reaction networks, by explicitly describing chemical species in form of
site-graphs. A simple example of a Kappa model is presented in Fig. 1.

For the stochastic semantics of Kappa, that is a continuous-time Markov
chain (CTMC) assigned to a rule-based model, we refer to [19] or [26]. Intu-
itively, any rule-based system can be expanded to an equivalent reaction system
(with potentially infinitely many species and reactions). The stochastic seman-
tics of a Kappa system is then the CTMC {X(t)} assigned to that equivalent
reaction system. Even though the semantics of a Kappa system is defined as the
semantics of the equivalent reaction system, in practice, using Kappa models
can be advantageous for several reasons - they are easy to read, write, edit or
compose, they can compactly represent potentially infinite set of reactions or
species, and, perhaps most importantly, they can be symbolically executed.

We present Kappa in a process-like notation. We start with an operational
semantics.

Given a set X, ℘(X) denotes the power set of X (i.e. the set of all subsets
of X). We assume a finite set of agent names A, representing different kinds of
proteins; a finite set of sites S, corresponding to protein domains; a finite set
of internal states I, and Σι, Σβ two signature maps from A to ℘(S), listing the
domains of a protein which can bear respectively an internal state and a binding
state. We denote by Σ the signature map that associates to each agent name
A ∈ A the combined interface Σι(A) ∪ Σβ(A).

Definition 1 (Kappa agent). A Kappa agent A(σ) is defined by its type A ∈ A
and its interface σ. In A(σ), the interface σ is a sequence of sites s in Σ(A), with
internal states (as subscript) and binding states (as superscript). The internal
state of the site s may be written as sε, which means that either it does not have
internal states (when s ∈ Σ(A) \ Σι(A)), or it is not specified. A site that bears
an internal state m ∈ I is written sm (in such a case s ∈ Σι(A)). The binding
state of a site s can be specified as sε, if it is free, otherwise it is bound (which
is possible only when s ∈ Σβ(A)). There are several levels of information about
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the binding partner: we use a binding label i ∈ N when we know the binding
partner, or a wildcard bond − when we only know that the site is bound. The
detailed description of the syntax of a Kappa agent is given by the following
grammar:

a ::= N(σ) (agent)
N ::= A ∈ A (agent name)
σ ::= ε | s,σ (interface)
s ::= nλ

ι (site)
n ::= x ∈ S (site name)
ι ::= ε | m ∈ I (internal state)
λ ::= ε | − | i ∈ N (binding state)

We generally omit the symbol ε.

Definition 2 (Kappa expression). Kappa expression E is a set of agents A(σ)
and fictitious agents ∅. Thus the syntax of a Kappa expression is defined as
follows:

E ::= ε | a , E | ∅ , E.

The structural equivalence ≡, defined as the smallest binary equivalence rela-
tion between expressions that satisfies the rules given as follows

E , A(σ,s,s′,σ′) , E′ ≡ E , A(σ,s′,s,σ′) , E′

E , a , a′ , E′ ≡ E , a′ , a , E′

E ≡ E , ∅
i, j ∈ N and i does not occur in E

E[i/j] ≡ E
i ∈ N and i occurs only once in E

E[ε/i] ≡ E

stipulates that neither the order of sites in interfaces nor the order of agents in
expressions matters, that a fictitious agent might as well not be there, that bind-
ing labels can be injectively renamed and that dangling bonds can be removed.

Definition 3 (Kappa pattern, mixture and species). A Kappa pattern is a Kappa
expression which satisfies the following five conditions: (i) no site name occurs
more than once in a given interface; (ii) each site name s in the interface of the
agent A occurs in Σ(A); (iii) each site s which occurs in the interface of the
agent A with a non empty internal state occurs in Σι(A); (iv) each site s which
occurs in the interface of the agent A with a non empty binding state occurs in
Σλ(A); and (v) each binding label i ∈ N occurs exactly twice if it does at all
— there are no dangling bonds. A mixture is a pattern that is fully specified,
i.e. each agent A documents its full interface Σ(A), a site can only be free or
tagged with a binding label i ∈ N, a site in Σι(A) bears an internal state in I,
and no fictitious agent occurs. A species is a connected mixture, i.e. for each two
agents A0 and A there is a finite sequence of agents A1, . . . , Ak s.t. there is a
bond between a site of Ak and of A and for i = 0, 1, . . . , k − 1, there is a site of
agent Ai and a site of agent Ai+1.
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Definition 4 (species occurring in a pattern). Given Kappa patterns Es and
Ep, if Es defines a Kappa species, and Es is a substring of Ep, we say that a
species Es occurs in a pattern Ep.

Definition 5 (Kappa rule). A Kappa rule r is defined by two Kappa patterns
E� and Er, and a rate k ∈ R≥0, and is written: r = E� → Er@k.

A rule r is well-defined, if the expression Er is obtained from E� by finite
application of the following operations: (i) creation (some fictitious agents ∅ are
replaced with some fully defined agents of the form A(σ), moreover σ documents
all the sites occurring in Σ(A) and all site in Σι(A) bears an internal state
in I), (ii) unbinding (some occurrences of the wild card and binding labels are
removed), (iii) deletion (some agents with only free sites are replaced with fic-
titious agent ∅), (iv) modification (some non-empty internal states are replaced
with some non-empty internal states), (v) binding (some free sites are bound
pair-wise by using binding labels in N).

In this work, we assume that a rule-based model is such that all left-hand-
side and right-hand-side represent mixtures, that is, each rule is equivalent to
one reaction. The extension to the case where this assumption does not hold is
subject to future work. Hence, in our static inspection of rules, we test species
(fully defined connected mixtures). To this end, we adopt the terminology of
reactant, modifier and product from [12].

Definition 6 (reactant, modifier, product). Given a rule (El, Er), a Kappa
species s is called

– a reactant, if it occurs in pattern El and does not occur in pattern Er,
– a modifier, if the number of occurrences in pattern El equals the number of

occurrences in pattern Er,
– a product, if it does not occur in pattern El, and it occurs in pattern Er.

Definition 7 (Kappa system). A Kappa system R(x0,O, {r1, . . . , rn}) is given
by an initial mixture x0, a set of Kappa patterns O called observables, and a
finite set of rules {r1, . . . , rn}.

4 Model Approximation

In this section, we provide some mathematical background for the approximation
algorithms1. The reductions are based on three reduction schemes: enzymatic
catalysis reduction, generalized enzymatic catalysis reduction and fast dimeriza-
tion reduction.

Enzymatic Reduction. Assume the elementary enzymatic transformation
from a substrate S to a product P , through the intermediate complex E : S:

1 for explicit algorithms, please consult the Appendix of the online paper version [27].
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E + S
k1−⇀↽−
k2

E : S
k3→ E + P, (4)

which our algorithm will convert to the well-known Michaelis-Menten form

S

k3ET K

1+KxS→ P, (5)

where ET = xE(t) + xE:S(t) denotes the total concentration of the enzyme, and
K = k1

k2+k3
.

The above approximation is generally considered to be sufficiently good under
different assumptions, such as, for example, that the rate of dissociation of the
complex to the substrate is much faster than its dissociation to the product (i.e.
k2 
 k3), also known as the equilibrium approximation. Even if the equilib-
rium condition is not satisfied, it can be compensated in a situation where the
total number of substrates significantly outnumbers the enzyme concentration -
xS(0) + K 
 ET , known as the quasi-steady-state assumption.

Whenever one of the above assumptions holds, the quantity of the inter-
mediate complex can be assumed to be rapidly reaching equilibrium, that is,
d
dtxE:S(t) = 0. Then, it is straightforward to derive the rate of direct conversion
from substrate to product:

d
dt

xP =
k3ET K

1 + KxS
xS ,

which exactly corresponds to the equation for the rule (5).
In our reduction algorithm, we will apply the reduction whenever the pattern

(4) is detected and the additional requirements with respect to the context of
other rules are met.

The informal terminology of being ‘significantly faster’, motivated the rig-
orous study of the limitations of the approximations based on separating time
scales. While the enzymatic (Michaelis-Menten) approximation has been first
introduced and subsequently studied in the context of deterministic models (e.g.
[28], Chap. 6), it was more recently that the time-scale separation was investi-
gated in the stochastic context [29–34]. Notably, the following result from [35] (also
shown as a special case of the multi scale stochastic analysis from [25]), shows that,
under an appropriate scaling of species’ abundance and reaction rates, the original
model and the approximate model converge to the same process.

Theorem 1 (Darden [35], Kang [25]). Consider the reaction network (4)
(equivalently the rule-based system depicted in Fig. 2), and denote by XS(t),
XE(t), XE:S(t) and XP (t) the copy numbers of the respective species due to
the random-time change model (2). Assume that N = O(XS) and denote by
ET = XE:S(t) + XE(t) and VE(t) =

∫ t

0
N−1XE(s)ds. Assume that k1 → γ1,
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a) b)

c)

Fig. 2. Example shown in Fig. 1. The mean protein expression for one hundred sampled
traces, before and after the enzymatic catalysis reduction. (a) Parameters k1 = 0.2156,
k2 = 1, k3 = 0.014 and there are initially 50 transcription factors. Themean and standard
deviation (not shown) are computed for each time point, for the original (full line) and
reducedmodel (dotted line). (b)Parametersk2,k3, and the initial number of transcription
factors T are scaled up by factor N = 10. Same notation as for (a) (c) The Bhattacharyya
distance between the distributions of the protein level with a model before and after the
reduction. Red plot refers to the parameter values shown in (a), and the green plot to the
scaled parameter values shown in (b) (Color figure online).

k2/N → γ2, k3/N → γ3, N → ∞, and XS(0)
N → xS(0). Then (XS(t)

N , VE(t))
converges to (xS(t), vE(t)) and

d
dt

vE(s) =
ET

1 + K̂xE(s)
and

d
dt

xS = −ET γ3K̂xS(t)
1 + K̂xS(t)

,

where K̂ = γ1
γ2+γ3

.

The assumptions listed in the theorem capture the that: (i) XS and XP are
scaled to concentrations, while XE and XE:S remain in copy numbers; (ii) the
stochastic reaction rate k1 is an order of magnitude smaller than the rates k2 and
k3 (as a consequence of being related to the bimolecular, and not unimolecular
reaction).

Example 1. To illustrate the meaning of the Theorem 1, we apply our reduction
method on a small example shown in Fig. 1. We plot the mean and we compute
the standard deviation of the protein level for the original and for the reduced
model. Then, we scale up the parameters k2 and k3, as well as the initial con-
centration of transcription factor T , in order to mimic the effect of choosing a
larger N in Theorem 1. The deviation between the curves is decreased, as can be
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seen in Fig. 2. In order to obtain the error of using the reduced system instead
of the original one, we compute the Bhattacharyya distance for each time point,
for the actual parameter set and for the scaled parameter set. As expected, the
distance is overall smaller in the scaled system. Especially in the scaled system
(green line), we can observe that initially, the distance is larger, and then it
decreases with time. This is because the original system takes time to reach the
equilibrium state which is, in the reduced system, assumed immediately.

A complete proof is provided in [25]. We here outline the general idea.
Let N > 0 be a natural number, and let ZS(t) = XS(t)/N , ZE(t) = XE(t),
ZS:E(t) = XS:E(t), ZP (t) = XP (t)/N . Writing out the scaled random time-
change model for the substrate gives:

ZS(t) = ZS(0) − N−1ξ1(N
∫ t

0

γ1ZS(s)ZE(s)ds)

+ N−1ξ2(N
∫ t

0

γ2ZS:E(s)ds),

and writing out the scaled random time-change model for the complex gives:

ZE:S(t) = ZE:S(0) + ξ1(N
∫ t

0

γ1ZS(s)ZE(s)ds)

− ξ2(N
∫ t

0

γ2ZS:E(s)ds)

− ξ3(N
∫ t

0

γ3ZS:E(s)ds).

After dividing the latter with N , and applying the law of large numbers,
we obtain the balance equations analogous to assuming that the complex is
at equilibrium. This equation implies the expression for d

dtvE(s). The equation
for d

dtxS follows from the model of ZS(t): we first use the conservation law
ZS:E(s) = N−1ET − ZE(t) and then substitute the obtained value of d

dtvE(s).
In order to confirm that the reduction is appropriate, our goal is now to show

that the scaled versions of the original model (4) and the reduced model (5) are
equivalent in the limit when N → ∞. Let ZP (t) := N−1XP (t) be the scaled ran-
dom time change for the product in the original model, and ẐP (t) := N−1X̂P (t)
in the reduced model. Notice that, from the balance equations, d

dtxP = − d
dtxS .

According to the reduced system (5), the random time change for the product
is given by

ẐP (t) = ẐP (0) + N−1ξ(
∫ t

0

k3ET K

1 + KNẐS(s)
NẐS(s)ds)

= ẐP (0) + N−1ξ(
∫ t

0

N
γ3ET K̂

1 + K̂ẐS(s)
ẐS(s)ds).

Passing to the limit, we obtain the desired relation d
dt ẑP (t) = d

dtzP (t).
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The above Theorem does not provide the means of computing the approxi-
mation error, or an algorithm which suggests which difference in time-scales is
good enough for an approximation to perform well. Rather, this result shows
that the enzymatic approximation is justified in the limit when the assump-
tions about the reaction rates and species’ abundance are met. In other words,
when N → ∞, the scaled versions of the original and reduced models – e.g.
ZP (t) = N−1XP (t) and ẐP = N−1X̂P – both converge to at the same, well-
behaved process. This provides confidence that the actual process X̂P is a good
approximation of the process XP .

Generalised Enzymatic Reduction. The enzymatic approximation can be
generalized to a situation where many sets of substrates compete for binding
to the same enzyme. Consider a sub-network of n reactions where the i-th such
reaction reads:

E + Si,1 + . . . + Si,mi

ki−⇀↽−
k−
i

E : Si,1 : . . . : Si,mi

k̂i→ E + Pi.

The resulting approximation is

Si,1 + . . . + Si,mi

k̂iET K1xSi
Z→ Pi,

where xSi
=

∏
j∈{1,...,mi} xSi,j

, Z = 1 +
∑

j∈{1,...,n} xSj
and ET = xE(t) +

∑n
i=1 xE:Si,1:...:Si,mi

(t). The latter expression follows from d
dtxE:Si,1:...:Si,mi

(t) = 0
for all i = 0, . . . , n.

Fast Dimerization Reduction. Consider now the dimerisation reaction
M + M

k−⇀↽−
k−

M2. Assuming that both rates k and k− are fast comparing to

other reactions involving M or M2, it is common to assume that the reaction is
equilibrated, that is, kxM (t)2 − k−xM2(t) = 0, where xM (t) and xM2(t) denote
the copy number at time t, of monomers and dimers respectively. Such assump-
tion allows us to eliminate the dimerization reactions, and only the total amount
of molecules M needs to be tracked in the system. The respective monomer and
dimer concentrations can be expressed as fractions of the total concentration:

xM (t) =
1

4K

(√
8KMT (t) + 1 − 1

)
, and

xM2(t) =
MT (t)

2
− 1

2
xM (t),

where K = k
k− and MT (t) = xM (t) + 2xM2(t).

5 Reduction Algorithm

We now present the reduction algorithm, which is equivalent to that shown in
[11,12], except for the adaptations which come as the data structure used to
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represent species in rule-based models are site-graphs, different to vectors of
species’ multiplicities used in reaction-based models. Also, unlike in the original
algorithm, there is no need to check the form of the reaction rate function, as in
Kappa rule-based models one implicitly assumes chemical kinetics to follow the
mass-action rule.

5.1 Top-Level Algorithm

Our reduction of a Kappa system R = (x0,O, {r1, . . . , rn}) is performed by
static analysis over R, in search for one of the interaction patterns which are
consequences of the theory shown in Sect. 4: (i) the modifier elimination, applied
first, in order to reduce complexity without losing accuracy, followed by (ii) the
competitive enzymatic, (iii) operator site and (iv) fast dimerization reductions,
and ending with the (v) similar reaction composition to combine the structurally
similar reactions that are often generated after the operator abstraction of the
model. The abstraction methods are applied until they generate no more changes
in the model, as presented in the top-level algorithm shown in Algorithm1.

Input : A Kappa system R = (x0, O, {r1, . . . , rn}) over a set of species S and
observables O.

Output: A Kappa model R′ over a set of species S′ and observables O.
1 repeat
2 M ′ ←− M
3 M ←− Modifier elimination(M)
4 M ←− Competitive enzymatic reduction(M)
5 M ←− Operator-site reduction(M)
6 M ←− Fast dimerization reduction(M)
7 M ←− Similar reaction composition(M)

8 until M ′ = M ;
Algorithm 1. Top-level approximation algorithm.

5.2 Similar Reaction Composition and Modifier Elimination

In similar reaction composition, reactions that have the same reactants, modifiers
and products are combined into a single reaction, by summing their rate laws.

The modifier elimination abstraction can be applied when a species only
appears as a modifier throughout a model; such a species will never change
its copy number throughout the dynamics, and therefore, its quantity will be
constant. In this case, the species can be eliminated from the reactions and each
rate law will be multiplied by the initial copy number of this species.

Notice that this reductions are exact, that is, applying them does not change
the semantics of the rule-based system.
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5.3 Fast dimerization reduction

The algorithm searches for dimerisation rules. Suppose that a pair of reversible
reactions M + M ↔ M2 is detected. Before proceeding to the reduction, we
check whether a dimer is produced elsewhere, or if the monomer is a modifier
elsewhere. These checks are necessary because they prevent from deviating from
the assumed equilibrium. Finally, if all checks passed, the dimerization reaction
can be eliminated. A new species MT is introduced, and, wherever the monomer
M or dimer M2 were involved, they are replaced by the species MT , and the
rate is adapted accordingly, by the expressions shown in Sect. 4.

5.4 Generalised Enzymatic Reduction

The algorithm searches for the scheme described in Sect. 4, by searching for can-
didate enzymes. Each pattern is tested as to whether it is catalyzing some enzy-
matic reduction. If a pattern s indeed is an enzyme (operator) in an enzymatic
reaction scheme, a set of all patterns c which compete to bind to s is formed, as
well as the set of their complexes sc. Then, before proceeding with the reduc-
tion, additional tests must be performed: (i) pattern s must be a species, and
it is not an observable, (ii) s must be small in copy number, that is, its initial
copy number is smaller than a threshold, (iii) s can neither be produced, nor
degraded, (iv) complex sc is not an observable and is never appearing in another
rule of R and has initially zero abundance.

These tests are equivalent to those shown in [11,12]. Then, the patterns s
and sc can be eliminated from the rule-set and the reaction rates are adjusted
according to the description in Sect. 4.

Often times, enzymatic catalysis reduction is appropriate to eliminate the
binding of the transcription factor to the operator site. In this context, the
operator site takes the role of the enzyme, and transcription factor(s) the role
of the substrate. Whenever a candidate enzyme is detected, and the other algo-
rithm checks pass, the rates are appropriately scaled. The competitive enzymatic
reduction is suitable in a situation when more transcription factors compete for
binding the enzyme, each in a different reaction. In other words, the algorithm
finds k rules where k different substrates compete for the same enzyme.

Example 2. We illustrate the competitive enzymatic transformation on a small
subnetwork of the λ-phage model, which will be introduced in Sect. 6. The four
rules presented below model the binding of the agent RNAP to the operator site of
the agent PRE and subsequent production of protein CI. Agent PRE binds either
only RNAP (at rate k1+ and k1−), or simultaneously with CII (at rate k2+ and
k2−). The protein can be produced whenever PRE and PRE are bound, but the
rates will be different depending on whether only RNAP is bound to the operator
(rate kb), or, in addition, CII is bound to the operator (rate ka):
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PRE (cii,rnap) , RNAP (p1,p2)
↔ PRE (cii,rnap!1) , RNAP (p1!1,p2) @k1+, k1−

PRE (cii,rnap) , CII (pre) , RNAP (p1,p2)
↔ PRE (cii!1,rnap!2) , CII (pre!1) , RNAP (p1!2,p2) @ka+, ka−

PRE (cii,rnap!1) , RNAP (p1!1,p2)
→ PRE (cii,rnap!1) , RNAP (p1!1,p2) , 10CI (ci,or)@kb

PRE (cii!1,rnap!2) , CII (pre!1) , RNAP (p1!2,p2)
→ PRE (cii!1,rnap!2) , CII (pre!1) , RNAP (p1!2,p2) , 10CI (ci,or) @ka

After the competitive enzymatic reduction, the operator PRE is eliminated
from each of the two competing enzymatic catalysis patterns. Finally, the pro-
duction of CI is modelled only as a function of RNAP and CII, and the rate is
appropriately modified:

RNAP (p1,p2) , CII (pre)
→ RNAP (p1,p2) , CII (pre) , 10CI (pr,ci) @ knew.

6 λ-phage Decision Circuit

The phage λ is a virus that infects E.coli cells, and replicates using one of the
two strategies: lysis or lysogeny. In the lysis strategy, phage λ uses the machinery
of the E.coli cell to replicate itself and then lyses the cell wall, killing the cell
and allowing the newly formed viruses to escape and infect other cells, while in
the lysogeny scenario, it inserts its DNA into the host cell’s DNA and replicates
through normal cell division, remaining in a latent state in the host cell (it can
always revert to the lysis strategy). The decision between lysis and lysogeny is
known to be influenced by environmental parameters, as well as the multiplicity
of infection and variations in the average phage input [36]. The key element
controlling the decision process is the OR operator (shown in Fig. 3), which is
composed of three operator sites (OR1, OR2, OR3) to which transcription factors
can bind, in order to activate or repress the two promoters (PRM and PR)
overlapping the operator sites. When RNAP (RNA polymerase, an enzyme that
produces primary transcript RNA) binds to PRM , it initiates transcription to
the left, to produce mRNA transcripts from the cI gene; RNAP bound to the
PR promoter, on the other hand, initiates transcription to the right, producing
transcripts from the cro gene. The two promoters form a genetic switch, since
transcripts can typically only be produced in one direction at a time.

The cI gene codes for the CI protein, also known as the λ repressor : in its
dimer form (two CI monomers react to form a dimer, CI2), it is attracted to the
OR operator sites in the phage’s DNA, repressing the PR promoter from which
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Fig. 3. CI monomers are produced from the cI gene; two monomers can form a dimer,
that can bind to one of the OR operator sites (the Figure is taken from [11]).

Cro production is initiated and further activating CI production. Similarly, the
cro gene codes for the Cro protein, which also dimerizes in order to bind to OR

operator sites and prevent production from PRM , or even its own production.
While CI2 and Cro2 can bind to any of the three operator sites at any time,

they have a different affinity to each site. The CI2 has its strongest affinity to
the OR1 operator site, next to the OR2 site, and finally to the OR3 site (in other
words, CI2 first turns off PR, then activates PRM , and finally, represses its own
production), while Cro2 has the reverse affinity (it first turns off CI production,
then turns off its own production).

The feedback through the binding of the products as transcription factors
coupled with the affinities described makes the OR operator behave as a genetic
bistable switch. In one state, Cro is produced locking out production of CI.
In this state, the cell follows the lysis pathway since genes downstream of Cro
produce the proteins necessary to construct new viruses and lyse the cell. In the
other state, CI is produced locking out production of Cro. In this state, the cell
follows the lysogeny pathway since proteins necessary to produce new viruses
are not produced. Instead, proteins to insert the DNA of the phage into the host
cell are produced.

What’s more, in the lysogeny state, the cell develops an immunity to further
infection: the cro genes found on the DNA inserted by further infections of the
virus are also shut off by CI2 molecules that are produced by the first virus to
commit to lysogeny. Once a cell commits to lysogeny, it becomes very stable and
does not easily change over to the lysis pathway. An induction event is necessary
to cause the transition from lysogeny to lysis. For example, lysogens (i.e., cells
with phage DNA integrated within their own DNA) that are exposed to UV
light end up following the lysis pathway.

7 Results and Discussion

We applied our reduction algorithm to a Kappa model of the phage λ decision
circuit that we built using the reaction-based model presented in [11,12]. Simu-
lations were carried out on the complete chemical reaction genetic circuit model
which contains 92 species, 13 rules and 61 species (the contact map is shown in
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Fig. 4. The contact map of the full λ-phage model. The model consists of 92 species,
13 rules and 61 species. The reduced model has 11 rules and 5 proteins.

Fig. 4). After applying the reduction, the Kappa model is reduced to 11 rules
and 5 proteins.

In Fig. 5(left), we plot the mean for the CI copy number obtained from 100
runs of the original and of the reduced model, and the graphs show agreement.

In Fig. 5(right), we compared the probability of lysogeny before and after the
reduction of the model (lysogeny profile is detected if there are 328 molecules
of CI before there are 133 molecules of Cro). The graphs show overall agree-
ment in predicting the lysogeny profile. More precisely, for two and less MOI’s
(multiplicities of infection), the probability of lysogeny is almost negligible; For
three MOIs, both graphs show that lysogeny and lysis are equally probable (the
reduced model reports slightly larger probability), and for five or more MOI’s,
both graphs show that lysogeny is highly probable. While one simulation of

Fig. 5. (left) Average trace of 100 simulations of the original model (solid) and the
reduced model (thin) after the reduction, for initially 10 λ phage cells (multiplicities of
infection – MOI’s). The simulation time for one simulation trace of the original model
is ≈ 40 minutes of CPU time, and of the reduced model is 5 seconds of CPU time. The
initial number of proteins CI, Cro, CII and CIII and N is set to 100. (right) Comparison
of the probability of lysogeny before and after the reduction of the model (lysogeny
profile is detected if there are 328 molecules of CI before there are 133 molecules of
Cro). The profile was obtained by running 1000 simulations of the model for one cell
cycle (2100 time units), for MOIs ranging from 1 to 10.



Efficient Reduction of Kappa Models by Static Inspection of the Rule-Set 189

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0  500  1000  1500  2000

Simulation events (phage model)

Biological time

Total events
Dimerization events

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 0  500  1000  1500  2000

Simulation events (EGFR signaling)

Biological time

Total events
EGFR dimerization events

Fig. 6. (a) The ratio of dimerisation events vs. total events in lambda phage model.
The number of dimerisation events takes roughly half of the total events over the whole
cell cycle. (b) The ratio of dimerisation events vs. total events in EGFR/insulin model.
The number of dimerisation events takes only a small fraction of the total events over
the whole cell cycle.

the original model takes about 40 mins, one simulation of the abstracted model
takes about 5 seconds. Once again, the results are similar, with a significant
improvement in simulation speed.

The tool is available for download [37].

8 Conclusion and Future Work

The presented method can be seen as the first step towards a systematic time-
scale separation of stochastic rule-based models. We plan to extend this work in
several directions. First, we plan to develop the theory for formally comparing
the original and reduced model, and subsequently to develop efficient algorithms
for assessing the error between the systems; our major interest is in bounding
the approximation error without executing the original system. To this end, the
error can be measured with respect to a given observable, or, more generally, with
respect to a given qualitative property specified in, for example, linear temporal
logic (LTL). Second, we plan to investigate how the algorithm can exploit the
specificities of rule-based models and potentially result in more efficient pattern
recognition. Finally, we plan to test the applicability of the reduction algorithm
on other case studies.

In particular, we plan to extend the set of approximation patterns so to obtain
good reductions for complex models of signaling pathways. More precisely, while
our tool is applicable to any rule-based model, the chosen set of approximation
patterns are tailored for GRNs and may not provide significant reductions when
applied to the signaling pathways. To illustrate this, we applied the reduction to
the EGF/insuling crosstalk model, and we observe that the number of dimerisa-
tion events does not take the significant portion of all events (see Fig. 6), at least
not as radically as it was the case with the λ-phage example. To this end, we
plan to include more patterns for reducing signaling pathways, by, for example,
approximating multiple phosphorylation events.
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Abstract. We present what we believe to be the first formal verification
of a biologically realistic (nonlinear ODE) model of a neural circuit in a
multicellular organism: Tap Withdrawal (TW) in C. Elegans, the com-
mon roundworm. TW is a reflexive behavior exhibited by C. Elegans in
response to vibrating the surface on which it is moving; the neural circuit
underlying this response is the subject of this investigation. Specially, we
perform reach-tube-based reachability analysis on the TW circuit model
of Wicks et al. (1996) to estimate key model parameters. Underlying our
approach is the use of Fan and Mitra’s recently developed technique for
automatically computing local discrepancy (convergence and divergence
rates) of general nonlinear systems.

The results we obtain are a significant extension of those of Wicks
et al. (1996), who equip their model with fixed parameter values that
reproduce the predominant TW response they observed experimentally
in a population of 590 worms. In contrast, our techniques allow us to
much more fully explore the model’s parameter space, identifying in the
process the parameter ranges responsible for the predominant behavior
as well as the non-dominant ones. The verification framework we devel-
oped to conduct this analysis is model-agnostic, and can thus be re-used
on other complex nonlinear systems.

1 Introduction

Although neurology and brain modeling/simulation is a popular field of biologi-
cal study, formal verification has yet to take root. There has been cursory study
into neurological model checking (see Sect. 2), but not with the nonlinear ODE
models used by biologists. The application of verification technology to hard-
ware circuits has played a key role in the Electronic Design Automation (EDA)
industry; perhaps it will play a similar role with neural circuits.

For our initial neurological study, we have selected the round worm,
Caenorhabditis Elegans, due to the simplicity of its nervous system (302 neurons,
∼5,000 synapses) and the breadth of research on the animal. The complete con-
nectome of the worm is documented, and there have been a number of interesting
experiments on its response to stimuli.
c© Springer International Publishing Switzerland 2015
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For model-checking purposes, we were particularly interested in the tap with-
drawal (TW) neural circuit. The TW circuit governs the reactionary motion of
the animal when the petri dish in which it swims is perturbed. (A related circuit,
touch sensitivity, controls the reaction of the worm when a stimulus is applied to
a single point on the body.) Studies of the TW circuit have traditionally involved
using lasers to ablate the different neurons in the circuit of multiple animals and
measuring the results when stimuli are applied.

A model of the TW circuit was presented by Wicks, Roehrig, and Rankin
in [16]. Their model is in the form of a system of nonlinear ODEs with an
indication of polarity (inhibitory or excitatory) of each neuron in the TW circuit.
Additionally, Wicks and Rankin had a previous paper in which they measure the
three possible reactions of the animals to TW with various neurons ablated [15];
see also Fig. 3. The three behaviors—acceleration, reversal of movement, and
no response—are logged with the percentage of the experimental population to
display that behavior.

The [16] model has a number of circuit parameters, such as gap-junction
conductance, capacitance, and leakage current, that crucially affect the behavior
of the organism. A single value for each parameter is given in [16]. With this
single set of parameter values, the model produces predominant behavior in most
ablation groups with a few exceptions.

While the experimental work in [15,16] and the model presented in [16] were
by no means insubstantial, the exploration of the model is vastly incomplete. The
fixed parameter values fit through experimentation cause the model to replicate
the predominant behavior seen in said experiments, but little can be said about
the model beyond that. The ranges that can produce the predominant behavior,
as well as the two other behaviors, are completely missing. This is not to fault
the authors of [16], however, as the technology needed to uncover these ranges
simply did not exist at the time.

The missing technology was the ability to automatically generate local dis-
crepancy functions [2], and has only recently been developed [5]. With this tech-
nique, we can theoretically compute reach tubes used in verification. In reality,
this is not a simple plug-and-play situation. To make use of [5], we needed to
create the verification framework in Fig. 1. Through careful model engineering
Fig. 1 (1–3) and verification engineering Fig. 1 (4–6) we were able to explore
and verify the full parameter ranges in the Wicks et al. model to produce all
three behaviors in the TW circuit. Such an understanding of the model is criti-
cal to morphospace exploration [14] of the animal. A detailed description of our
framework and its application to the [16] model Fig. 1(b) is given in Sect. 4.

This verification framework has the additional benefit of being model agnos-
tic. It can be reused to verify other complex nonlinear ODE models.

The rest of the paper develops as follows. Section 2 reviews related work.
Section 3 provides requisite background material on the TW neural circuit,
its reactionary behavior, and the ODE model of [16]. Section 4 describes our
reach-tube reachability analysis and associated property checking. Section 5
presents our extensive collection of model-checking/parameter-estimation
results. Section 6 offers our concluding remarks and directions for future work.
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Fig. 1. Verification framework of nonlinear ODE model based on automatic computa-
tion of discrepancy function. (a) The general framework, (b) Application to [16] model.

2 Related Work

Iyengar et al. [10] present a Pathway Logic (PL) model of neural circuits in the
marine mollusk Aplysia. Specifically, the circuits they focus on are those involved
in neural plasticity and memory formation. PL systems do not use differential
equations, favoring qualitative symbolic models. They do not argue that they
can replace traditional ODE systems, but rather that their qualitative insights
can support the quantitative analysis of such systems. Neurons are expressed in
terms of rewrite rules and data types. Their simulations, unlike our reachability
analysis, do not provide exhaustive exploration of the state space. Additionally,
PL models are abstractions usually made in collaboration between computer
scientists and biologists. Our work meets the biologists on their own terms,
using the pre-existing ODE systems developed from physiological experiments.

Tiwari and Talcott [13] build a discrete symbolic model of the neural cir-
cuit Central Pattern Generator (CPG) in Aplysia. The CPG governs rhythmic
foregut motion as the mollusk feeds. Working from a physiological (non-linear
ODE) model, they abstract to a discrete system and use the Symbolic Analy-
sis Laboratory (SAL) model checker to verify various properties of this system.
They cite the complexity of the original model and the difficulty of parameter
estimation as motivation for their abstraction. Neuronal inputs can be positive,
negative, or zero and outputs are boolean: a pulse is generated or not. Our app-
roach uses the original biological model of the TW circuit of C. Elegans [16],
and through reachability analysis, we obtain the parameter ranges of interest.
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We have extensive experience with model checking and reachability analysis
in the cardiac domain, e.g. [6,8,9,12]. In fact, much of our previous work has
focused on the cardiac myocyte, a computationally similar cell to the neuron.
This is not surprising as both belong to the class of excitable cells. The similarities
are so numerous that we have used a variation of the Hodgkin-Huxley model of
the squid giant axon [7] to model ion channel flow in cardiac tissue.

3 Background

In C. Elegans, there are three classes of neurons: sensory, inter, and motor. For
the TW circuit, the sensory neurons are PLM, PVD, ALM, and AVM, and the
inter-neurons are AVD, DVA, PVC, AVA, and AVB. The model we are using
abstracts away the motor neurons as simply forward and reverse movement.

Neurons are connected in two ways: electrically via bi-directional gap junc-
tions, and chemically via uni-directional chemical synapses. Each connection has
varying degrees of throughput, and each neuron can be excitatory or inhibitory,
governing the polarity of transmitted signals. These polarities were experimen-
tally determined in [16], and used to produce the circuit shown in Fig. 2.

Fig. 2. Tap Withdrawal Circuit of C. Elegans. Rectangle: Sensory Neurons; Circle:
Inter-neurons; Dashed Undirected Edge: Gap Junction; Solid Directed Edge: Chemical
Synapse; Edge Label: Number of Connections; Dark Gray: Excitatory Neuron; Light
Gray: Inhibitory Neuron; White: Unknown Polarity. FWD: Forward Motor system;
REV: Reverse Motor System.

The TW circuit produces three distinct locomotive behaviors: acceleration,
reversal of movement, and a lack of response. In [15], Wicks et al. performed
a series of laser ablation experiments in which they knocked out a neuron in a
group of animals (worms), subjected them to a tapped surface, and recorded the
magnitude and direction of the resulting behavior. Figure 3 shows the response
types for each of their experiments.
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The dynamics of a neuron’s membrane potential, V, is determined by the
sum of all input currents, written as:

CV̇ =
1
R

(V leak − V ) +
∑

Igap +
∑

Isyn + Istim

where C is the membrane capacitance, R is the membrane resistance, V leak is
the leakage potential, Igap and Isyn are gap-junction and the chemical synapse
currents, respectively, and Istim is the applied external stimulus current. The
summations are over all neurons with which this neuron has a (gap-junction or
synaptic) connection.

Fig. 3. Effect of ablation on Tap Withdrawal reflex (experimental results). The length
of the bars indicate the fraction of the population demonstrating the particular behav-
ior [15].

The current flow between neuron i and j via a gap-junction is given by:

Igap
ij = ngap

ij ggap
m (Vj − Vi)

where the constant ggap
m is the maximum conductance of the gap junction, and

ngap
ij is the number of gap-junction connections between neurons i and j. The

conductance ggap
m is one of the key circuit parameters of this model that dra-

matically affects the behavior of the animal.
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The synaptic current flowing from pre-synaptic neuron j to post-synaptic
neuron i is described as follows:

Isyn
ij = nsyn

ij gsyn
ij (t)(Ej − Vi)

where gsyn
ij (t) is the time-varying synaptic conductance of neuron i, nsyn

ij is the
number of synaptic connections from neuron j to neuron i, and Ej is the reversal
potential of neuron j for the synaptic conductance.

The chemical synapse is characterized by a synaptic sign, or polarity, spec-
ifying if said synapse is excitatory or inhibitory. The value of Ej is assumed
to be constant for the same synaptic sign; its value is higher if the synapse is
excitatory rather than inhibitory.

Synaptic conductance is dependent only upon the membrane potential of
presynaptic neuron Vj , given by:

gsyn
ij (t) = gsyn

∞ (Vj)

where gsyn
∞ is the steady-state post-synaptic conductance in response to a pre-

synaptic membrane potential.
The steady-state post-synaptic membrane conductance is modeled as:

gsyn
∞ (Vj) =

gsyn
m

1 + exp (k
Vj−V eq

j

VRange
)

where gsyn
m is the maximum post-synaptic membrane conductance for the

synapse, V eq
j is the pre-synaptic equilibrium potential, and VRange is the pre-

synaptic voltage range over which the synapse is activated. k is an experimentally
derived constant, valued at −4.3944.

Combining all of the above pieces, the mathematical model of the TW circuit
is a system of nonlinear ODEs, with each state variable defined as the membrane
potential of a neuron in the circuit. Consider a circuit with N neurons. The
dynamics of the ith neuron of the circuit is given by:

CiV̇i =
Vli − Vi

Ri
+

N∑

j=1

Igap
ij +

N∑

j=1

Isyn
ij + Istim

i (1)

Igap
ij = ngap

ij ggap
m (Vj − Vi) (2)

Isyn
ij = nsyn

ij gsyn
ij (Ej − Vi) (3)

gsyn
ij =

gsyn
m

1 + exp (k
Vj−V eq

j

VRange
)
. (4)

The equilibrium potentials (V eq) of the neurons are computed by setting the
left-hand side of Eq. (1) to zero. This leads to a system of linear equations, that
can be solved as follows:

V eq = A−1b (5)
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where matrix A is given by:

Aij =

{
−Rin

gap
ij ggap

m if i �= j

1 + Ri

∑N
j=1 ngap

ij ggap
ij gsyn

m /2 if i = j

and vector b is written as:

bi = Vli + Rmi

N∑

j=1

Ejn
syn
ij gsyn

m /2.

The potential of the motor neurons AVB and AVA determine the observable
behavior of the animal. If the integral of the difference between VAVA - VAVB is
large, the animal will reverse movement. By extension, if the difference is a large
negative value, the animal will accelerate, and if the difference is close to zero
there will be no response. The equation that converts the membrane potential
of AVB and AVA to a behavioral property, (e.g. reversal), is given by:

Propensity to Reverse ∝
∫

(VAVA − VAVB )dt (6)

where the integration is computed from the beginning of tap stimulation until
either the simulation ends or the integrand changes sign. To allow initial tran-
sients after the tap, the test for a change of integrand sign occurs only after a
grace period of 100 ms.

For the purpose of reachability analysis (Sect. 4), we normalize the system of
equations with respect to the capacitance. This correlates to step (1) in Fig. 1.
Combining Eqs. (1) and (4) and taking Cmi

to the right-hand side, we have:

V̇i =
Vli

− Vi

RiCi

+
ggap
m

Ci

N∑

j=1

n
gap
ij (Vj − Vi) +

gsyn
m

Ci

N∑

j=1

nsyn
ij (Ej − Vi)

1 + exp (k
Vj−V

EQ
j

VRange
)

+
1

Ci

I
stim
i

Now letting gleak
i = 1

RiCi
, ggap

i = ggap
m

Cmi
, gsyn

i = gsyn
m

Cmi
and Iext

i = 1
Cmi

the
system dynamics can be written as:

V̇i = g
leak
i (Vli

− Vi) + g
gap
i

N∑

j=1

n
gap
ij (Vj − Vi) + g

syn
i

N∑

j=1

nsyn
ij (Ej − Vi)

1 + exp (k
Vj−V

eq
j

VRange
)

+ I
ext
i (7)

This is the 9 dimensional ODE model of the TW circuit. The key circuit para-
meters are the gap conductances, ggap

i , and we aim to characterize the ranges of
these conductances that produce acceleration, reversal, and no response.

4 Reachability Analysis of Nonlinear TW Circuit

Reachability analysis for verifying properties for general nonlinear dynamical
systems is a well-known hard problem. The verification framework introduced
in Fig. 1 combines model and verification engineering to perform reachability
analysis on the Wicks et al. [16] model, discovering crucial parameter ranges to
produce all three behaviors of the TW circuit. Our framework can be applied to
any nonlinear ODE model.
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4.1 Background on Reachability Using Discrepancy

Consider an n-dimensional autonomous dynamical system:

ẋ = f(x), (8)

where f : Rn → R
n is a Lipschitz continuous function. A solution or a trajectory

of the system is a function ξ : Rn × R≥0 → R
n such that for any initial point

x0 ∈ R
n and at any time t > 0, ξ(x0, t) satisfies the differential Eq. (8). A

state x in R
n is reachable from the initial set Θ ⊆ R

nwithin a time interval
[t1, t2] if there exists an initial state x0 ∈ Θ and a time t ∈ [t1, t2] such that
x = ξ(x0, t). The set of all reachable states in the interval [t1, t2] is denoted
by Reach(Θ, [t1, t2]). If t1 = 0, we write Reach(t2) when set Θ is clear from
the context. If we can compute or approximate the reach set of such a model,
then we can check for invariant or temporal properties of the model. Specifically,
C. Elegans TW properties such as accelerated forward movement or reversal of
movement fall into these categories. Our core reachability algorithm [2,3,8] uses
a simulation engine that gives sampled numerical simulations of (8).

Definition 1. A (x0, τ, ε, T )-simulation of (8) is a sequence of time-stamped
sets (R0, t0), (R1, t1) . . . , (Rn, tn) satisfying:

1. Each Ri is a compact set in R
n with dia(Ri) ≤ ε.

2. The last time tn = T and for each i, 0 < ti − ti−1 ≤ τ , where the parameter
τ is called the sampling period.

3. For each ti, the trajectory from x0 at ti is in Ri, i.e., ξ(x0, ti) ∈ Ri, and for
any t ∈ [ti−1, ti], the solution ξ(x0, t) ∈ hull(Ri−1, Ri).

The algorithm for reachability analysis uses a key property of the model called
a discrepancy function.

Definition 2. A uniformly continuous function β : Rn ×R
n ×R≥0 → R≥0 is a

discrepancy function of (8) if

1. for any pair of states x, x′ ∈ R
n, and any time t > 0,

‖ξ(x, t) − ξ(x′, t)‖ ≤ β(x, x′, t), and (9)

2. for any t, as x → x′, β(., ., t) → 0.

If a function β meets the two conditions for any pair of states x, x′ in a compact
set K then it is called a K-local discrepancy function. Uniform continuity means
that ∀ε > 0,∀x, x′ ∈ K,∃δ such that for any time t, ‖x−x′‖ < δ ⇒ β(x, x′, t) < ε.
The verification results in [2–4,8] required the user to provide the discrepancy
function β as an additional input for the model. A Lipschitz constant of the
dynamic function f gives an exponentially growing β, contraction metrics [11]
can give tighter bounds for incrementally stable models, and sensitivity analysis
gives tight bounds for linear systems [1], but none of these give an algorithm for
computing β for general nonlinear models. Therefore, finding the discrepancy
can be a barrier in the verification of large models like the TW circuit.
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Here, we use Fan and Mitra’s recently developed approach that automat-
ically computes local discrepancy along individual trajectories [5]. Using the
simulations and discrepancy, the reachability algorithm for checking properties
proceeds as follows: Let the U be the set of states that violate the invariant in
question. First, a δ-cover C of the initial set Θ is computed; that is, the union
of all the δ-balls around the points in C contain Θ. This δ is chosen to be large
enough so that the cardinality of C is small. Then the algorithm iteratively and
selectively refines C and computes more and more precise over-approximations
of Reach(Θ, T ) as a union ∪x0∈CReach(Bδ(x0), T ). Here, Reach(Bδ(x0), T ) is
computed by first generating a (x0, τ, ε, T )-simulation and then bloating it by
a factor that maximizes β(x, x′, t) over x, x′ ∈ Bδ(s0) and t ∈ [ti−1, ti]. If
Reach(Bδ(x0), T ) is disjoint from U or is (partly) contained in U, then the algo-
rithm decides that Bδ(x0) satisfies and violates U, respectively. Otherwise, a
finer cover of Bδ(x0) is added to C and the iterative selective refinement contin-
ues. We refer to this in this paper as δ-refinement. In [2], it is shown that this
algorithm is sound and relatively complete for proving bounded time invariants.

4.2 Applying Local Discrepancy to TW Circuit

Fan and Mitra’s algorithm (see details in [5]) for automatically computing local
discrepancy relies on the Lipschitz constant and the Jacobian of the dynamic
function, along with simulations. The Lipschitz constant is used to construct
a coarse, one-step over-approximation S of the reach set of the system along
a simulation. Then the algorithm computes an upper bound on the maximum
eigenvalue of the symmetric part of the Jacobian over S, using a theorem from
matrix perturbation theory. This gives a piecewise exponential β, but the expo-
nents are tight as they are obtained from the maximum eigenvalue of the linear
approximation of the system in S. This means that for models with convergent
trajectories, the exponent of β over S will be negative, and the Reach(T ) approx-
imation will quickly become very accurate. In the rest of this section, we describe
key steps involved in making this approach work with the TW circuit.

The model of the TW circuit from Sect. 3 can be written as V̇ = f(V ),
where V ∈ R

9 has components Vi giving the membrane potential of neuron i.
The Jacobian of the system is the matrix of partial derivatives with the ijth

term given by:

∂fi

∂Vj

= −g
leak
i − g

gap
i

N∑

j=1,j �=i

n
gap
ij − g

syn
i

N∑

j=1,j �=i

nsyn
ij

1 + exp(k
Vj−V

eq
j

VRange
)

= g
gap
i n

gap
ij − g

syn
i n

syn
ij

k
VRange

exp(k
Vj−V

eq
j

VRange
)(Ej − Vi)

(1 + exp(k
Vj−V

eq
j

VRange
))2

(10)

For parameter-range estimation of the TW circuit, each parameter p of inter-
est is added as a new variable with constant dynamics (ṗ = 0). Computing the
reach-set from initial values of p is then used to verify or falsify invariant prop-
erties for a continuous range of parameter values, and therefore a whole family
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Fig. 4. Model Checking Reversal Property of Control Group, with δ = 5×10−5, varying
ggap
AVM .
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Fig. 5. Model Checking Reversal Property of Control Group by refining δ.

of models, instead of analyzing just a single member of that family. Here the
parameters of interest are the quantities pleak

i = 1/gleak
i , pgap

i = 10/ggap
i , psyn

i =
1/gsyn

i .
Consider, for example, 1/gleak

i as a parameter:

˙[
V

1/gleak
i

]

=

[
f(V )
0

]

.

In this case the Jacobian matrices for the system with parameters will be singular
because of the all-zero rows that come from the parameter dynamics. The zero
eigenvalues of these singular matrices are taken into account automatically by
the algorithm for computing local discrepancy. In this paper we focus on pgap

i ,
leaving the others for future work.
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4.3 Checking Properties

Once the reach sets are computed, checking the acceleration, reversal, and no-
response properties are conceptually straightforward. For instance, Eq. (6) gives
a method to check reversal movement. Instead of computing the integral of
(VAVA − VAVB ), we use the following sufficient condition to check it:

φrev : ∀ t ∈ Tint ,∀ x ∈ Reach(Θ, [t, t]), VAVA(x) > VAVB (x).

Here, Tint is a specific time interval after the stimulation time, Θ is the initial set
with parameter ranges, and recall that Reach(Θ, [t, t]) is the set of states reached
at time t from Θ. We implement this check by scanning the entire reach-tube
and checking that its projection on VAVB (x) is above that of VAVA(x) over all
intervals. If this check succeeds (as in Fig. 4(a)), we conclude that the range
of parameter values produce the reversal movement. If the check fails, then the
reversal movement is not provably satisfied (Fig. 5(a)) and in that case we δ-refine
the initial partition (Fig. 5(b)). In some cases, such as Fig. 4(b), δ-refinement can
not prove the property satisfied or unsatisfied. This often occurs when two tubes
intersect within the interval of interest. In this case, the property is considered
to be unknown.

Figure 6 helps paint a picture of how the δ-refinement process works with
two parameters. We consider 4 refinement steps: δ = 7×10−5, δ = 6×10−5,
δ = 5.5×10−5, and δ = 5×10−5. For δ = 7×10−5, the property of interest is
unknown at all points. With δ = 6×10−5 the property is considered unknown for
all red areas in the figure, including red and blue areas. Blue areas show where
δ = 5.5×10−5 are satisfied, and in the blue and yellow area both δ = 6×10−5

and δ = 5.5×10−5 have a satisfied property. The property is satisfied for the
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Fig. 6. Example of 2-D Parameter Refinement. Red Regions are Unknown for both
δ = 6×10−5 and δ = 5.5×10−5, Red/Blue Regions are Unknown for δ = 6×10−5,
but Satisfied for δ = 5.5×10−5, and Yellow/Blue Regions are Satisfied for both (Color
figure online).
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entire range of the graph when δ = 5×10−5. Thus, the refinement process stops
at δ = 5×10−5, and the entire range of the parameter space is characterized.

5 Experimental Results

In this section, we apply our verification framework to the [16] model to estimate
parameter ranges that produce three different behaviors (reversal, acceleration,
no response) in the control and four ablation groups. We vary the gap-junction
conductance of the sensory neurons (ggap

i , i ∈ {AV M,ALM,PLM}) and keep
all other parameters constant, as per [16]. Additionally, in the case of the no
response behavior, we must lower the gap-junction conductance of the other
neurons by a factor of 103.

In Sect. 4, we explain that we use pgap
i as our parameter in the state vector

instead of ggap
i , where pgap

i = 10/ggap
i . The parameter space we explore can be

considered a bounding box, where each pgap
i ranges over [0.01, 1]. As exploring

the entire parameter space is computationally intensive, we intelligently select a
subspace to cover that lets us estimate contiguous ranges of parameters for each
behavior. In Table 1, we present these ranges in terms of ggap

i .
In the following subsections, we will present our results for parameter range

estimation for all three behaviors of the control and ablation groups. This process
requires three experiments per group.

5.1 1-D Parameter Space

Here we vary pgap
AV M in all groups, except the AVM,ALM- group. By varying

this parameter, we are able to produce reversal behavior in all four groups. We
are also able to produce acceleration in all groups but PLM-. The PLM neuron
drives acceleration in the TW circuit [15]. Hence, its absence in the PLM- group
prevents acceleration from being produced, justifying the result.

For the AVM,ALM- group, we vary pgap
PLM and produce acceleration and no

response behaviors. As both AVM and ALM, responsible for reversal of move-
ment, are ablated, reversal cannot be produced by this group.

5.2 2-D Parameter Space

In this set of experiments, we vary two parameters simultaneously. First we vary
pgap

AV M and pgap
ALM for the control and PLM- groups. In both cases we produce

reversal behavior. For the same reasons given in the previous subsection, we are
unable to produce acceleration in the PLM- group and no response behavior in
both these groups.

Next, we vary pgap
AV M and pgap

PLM for the ALM- and ALM,DVA- groups. We
are able to produce both all three behaviors in both groups.

5.3 3-D Parameter Space

Since the ablation groups we have used in this paper all feature at least one of
the primary sensory neurons (ALM, AVM, and PLM ) ablated, we can only show
the 3-D case for the original animal.



Model Checking Tap Withdrawal in C. Elegans 207

Table 1. Parameter ranges for all experiments, including δ and runtime information.
REV=Reversal, ACC=Acceleration, NR=No Response.

Group Name Property Parameters Ranges δ Runtime (sec)

Control REV ggapAV M [46.2, 1000] 1×10−6 6324.4

REV ggapAV M , ggapALM [952.38, 1000]2 2×10−5 776.5

REV ggapAV M , ggapALM , ggapALM [990.01, 1000]3 2×10−5 314.23

ACC ggapAV M [15.87, 10] 1×10−5 1110.01

ACC ggapAV M , ggapALM [15.86, 15.87]2 2×10−5 1619.8

ACC ggapAV M , ggapALM , ggapALM [15.85, 15.87]3 2×10−5 320.12

NR ggapAV M - - -

NR ggapAV M , ggapALM - - -

NR ggapAV M , ggapALM , ggapALM [10.005, 10]3 5×10−5 124.23

PLM- REV ggapAV M [467.3, 1000] 1×10−5 718.08

REV ggapAV M , ggapALM [952.38, 1000]2 2×10−5 775.12

ACC ggapAV M - - -

ACC ggapAV M , ggapALM - - -

NR ggapAV M - - -

NR ggapAV M , ggapALM [15.84, 15.87]2 5×10−5 124.23

ALM- REV ggapAV M [467.3, 1000] 1×10−5 718.08

REV ggapAV M , ggapPLM [952.38, 1000]2 2×10−5 785.01

ACC ggapAV M [15.38, 15.87] 2e − 5 660.87

ACC ggapAV M , ggapPLM [14.91, 14.93]2 2×10−5 782.3

NR ggapAV M - - -

NR ggapAV M , ggapPLM [10, 10.05]2 5×10−5 125.01

ALM,DVA- REV ggapAV M [250, 500] 1×10−5 1085.74

REV ggapAV M , ggapPLM [487.80, 500]2 2×10−5 779.75

ACC ggapAV M [13.88, 14.28] 1×10−5 1084.23

ACC ggapAV M , ggapPLM [15.84, 15.87]2 2×10−5 782.3

NR ggapAV M - - -

NR ggapAV M , ggapPLM [15.86, 15.87]2 2×10−5 779.01

ALM,AVM- REV ggapPLM - - -

ACC ggapPLM [33.33, 1000] 5×10−5 3619.19

NR ggapPLM , ggapALM [10, 13.33] 5×10−5 3118.45

For the 3-D case, in addition to pgap
AVM and pgap

ALM , we have the pgap
PLM con-

ductance. Finally, we get a non-zero value for no response in the control, but
Table 1 shows that this value is an order of magnitude smaller than acceleration
and several orders smaller than reversal.

5.4 Runtime and Memory Complexity Analysis

The time and memory needed for the procedure depends upon the value of δ
used and the size of the parameter space. Assume Ld to be the interval length in
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Fig. 7. Experiment on runtime analysis.

the dth dimension. The total number of δ-balls required to cover the parameter
space completely is:

TN = ΠD
d=1Nd

where D is the number of parameters added to the state vector and Nd = 2Ld/δ.
If Ld is the same in all dimensions, TN = ND

d . We can analyze both runtime and
memory complexity based on TN . If we consider the time and memory required
for verifying each δ-ball to be O(1), then the time and memory complexity will
both be O(TN ) = O(ND

d ). Note that the complexity also depends on the value
of the δ-refinement loop counter. Since we can safely assume that the loop will
iterate only a constant number of times, this is not an issue.

Figure 7 illustrates how runtime relates to TN in one (a) and multiple (b)
dimensions. The graph from (a) is the same as the 1D line in (b), but for a larger
range of TN . This increased range more clearly illustrates the linear relationship
of runtime to TN when D = 1. Part (b) shows the rates for D = 1, D = 2 and
D = 3 over a much smaller range of TN but helps to demonstrate the effect
of dimensionality on time complexity. Since runtime grows at a trinomial rate
when d = 3, we use the largest δ values (smallest TN ) that correctly cover the
parameter space. This is what makes the δ-refinement process imperative; it
allows us to correctly verify a property while avoiding runtime blow-up.

6 Conclusions

In this paper, we performed reachability analysis with discrepancy to automat-
ically determine parameter ranges for three fundamental reactions by C. Ele-
gans to tap-withdrawal stimulation: reversal of movement, acceleration, and no
response. We followed the lead of the in vivo experimental results of [15] to
obtain parameter-estimation results for gap-junction conductances for a number
of neural-ablation groups. The ranges we present are a significant expansion of
the results in [16], where all of the parameters are constant and only the predom-
inant behavior is produced. To the best of our knowledge, these results represent
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the first formal verification of a biologically realistic (nonlinear ODE) model of
a neural circuit in a multicellular organism.

The verification framework we develop is model-agnostic, and allows the tech-
niques of [5] to be applied to general nonlinear ODE models. This is only possible
through the careful model and verification engineering developed in this paper.

As alluded in Sect. 5, our results cannot necessarily cover the entire para-
meter space due to the TN required, but still enough to verify the properties
in question. A potential solution to the incomplete coverage is parallelizing our
approach. Luckily, calculating reach-tubes is a data-parallel computation and
considered “trivially parallel” for the GPGPU (General-Purpose computing on
a Graphics Processing Unit) architecture. This should allow us to run verifica-
tion experiments in a fraction of the current required time, giving us a potential
expansion of coverage.
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Abstract. Many biological processes are described with coupled non-
linear systems of ordinary differential equations that contain a plethora
of parameters. The goal is to understand these systems and to predict the
effect of different influences. This asks for a dynamical systems approach
where numerical continuation methods and bifurcation analysis are used
to detect the solutions and their stability as a function of the parame-
ters. We developed PyNCT – Python Numerical Continuation Toolbox
– an open source Python package that implements numerical continua-
tion methods and can perform bifurcation analysis based on sparse linear
algebra. The software gives the user the choice of different solvers (direct
and iterative) and allows the use of preconditioners to reduce the number
of iterations and guarantee the convergence when working with complex
non-linear models.

In this paper we demonstrate the usefulness of the toolbox with a class
of models pertaining to auxin transport between cells in plant organs.We
show how easy it is to compute the steady state solutions for different
parameter values, to calculate how they depend on each other and to
map parts of the solution landscape.

An interactive model development and discovery cycle is key in
bio-systems research. It allows one to investigate and compare differ-
ent model parameter settings and even different models and gauge the
model’s usefulness. Our toolbox allows for such quick experimentation
and has a low entry barrier for non-technical users.

Although PyNCT was developed particularly for the study of trans-
port models in biology, its implementation is generic and extensible, and
can be used in many other dynamical system applications.

Keywords: Continuation methods · Bifurcation analysis · Transport
models · PyNCT

1 Introduction

In recent years, many molecular-genetic experiments have been performed to
increase our insights in how molecular processes in plants work. Due to the
c© Springer International Publishing Switzerland 2015
A. Abate and D. Šafránek (Eds.): HSB 2015, LNBI 9271, pp. 211–225, 2015.
DOI: 10.1007/978-3-319-26916-0 12
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restricted set of experiments that can be performed today, the amount of avail-
able experimental data is still limited. For this reason researchers try to expand
their knowledge of biological processes by means of an interaction between exper-
imental research and mathematical modelling.

Formerly, biologists used the available data to mathematically describe the
biological processes (of plants). The incredible amount of uncertainties about
how these systems work gave birth to different hypotheses and, as a result,
different kinds of models with lots of parameters. These models were initially
solved with simple numerical methods for a limited set of parameters.

Today the biological models become very large and complex. Moreover biolo-
gists are interested in understanding the whole solution landscape instead of one
single particular solution. They want to understand the effect of different influ-
ences (parameters) and compare current models based on different hypotheses.
In order to solve, analyse and compare these models, state-of-the-art numerical
methods are necessary. Unfortunately, these methods, solvers and algorithms
are often not easily accessible outside of their application niche. This makes it
difficult for systems biologists to directly apply state-of-the-art numerical mathe-
matics to their specific problems. The end result is a growing demand for software
packages that combine biological models with numerical tools.

We developed a toolbox, PyNCT, that solves and analyses the non-linear cou-
pled systems of equations that appear in a wide range of models for the transport
of chemicals through networks of cells. PyNCT contains numerical continuation
methods and can perform bifurcation analysis in order to find parts of the solu-
tion landscape as a function of the different parameters. The toolbox is based on
sparse linear algebra which enables its users to solve very large systems. With
the resulting simulation tools biologists can now explore, analyse and compare
various models, test new hypotheses, ....without the need to understand the inner
details of mathematics behind the numerical methods. Although we developed
PyNCT specifically to study transport models, it works well for all dynamical
systems.

The paper is organized as follows. First, in Sect. 2 we give more information
about the application domain. We describe a tissue of cells mathematically, we
present a general class of transport models already implemented in PyNCT, and
we discuss the type of solutions biologists are interested in. We also discuss the
state-of-the-art tools that are currently available. Then, in Sect. 3 we present
the numerical algorithms in PyNCT in detail. Readers who are not interested
in the mathematical details can skip this section. A motivation for the choice
of Python and certain libraries as a basis for the implementation of the toolbox
can be found in Sect. 4. In Sect. 4.2 we explain how to apply the software for the
different types of models and in Sect. 5 we demonstrate it for a specific example,
the model of Smith et al. [18]. Finally in Sect. 6 we conclude and give an outlook.

2 The Application Domain

The PyNCT toolbox has been developed to investigate the response of stationary
solutions of (large) dynamical systems to changes of control parameters. It can



Numerical Continuation Toolbox: PyNCT 213

be used for any model consisting of a system of non-linear equations that are
smooth and continuously differentiable.

In this paper we show the usefulness of our toolbox, using the auxin trans-
port equations of a cell-based plant organ model as a demonstration vehicle. In
Sect. 2.1 we present the mathematical description of a plant tissue of irregular
cells. Based on this we describe a class of concentration-based auxin transport
equations and look at the typical solutions that are of interest. PyNCT is able
to generate solution branches automatically for any model that fits this frame-
work. In Sect. 5 we demonstrate how to do so for a specific auxin transport model
described by Smith et al. [18]. At the end of this section we discuss the current
state-of the-art tools for this and compare them with our tool.

2.1 Auxin Transport Models

Network of Cells. In biology, cell tissues are represented by a graph with
edges and vertices. The edges represent the cell walls of the plant organ and a
cell is then a face in this graph. As a consequence a cell is a vertex in the weak
dual graph G. See Fig. 1 for an example. This dual graph helps us to describe
the tissue mathematically:

– The set of vertices V represents all cells in the tissue and we identify them
with an index i ∈ {1, ...., n}.

– The set of edges E represents the connections between neighbouring cells. As
a consequence the neighbouring cells of a cell i can be identified as all cells
up to distance 1 from cell i. This subset of cells is denoted with Ni ⊂ V .

– Every edge represents the connection between two neighbouring cells and thus
we can uniquely associate the information about a cell wall with an edge. By
labelling each edge with relevant information about the cell wall (for example
the permeability of the cell wall), we get a weighted graph G.

– In every cell we can define various properties of the cell, such as the concentra-
tion of a specific hormone, protein,.... These are the variables of the models.
We denote m as the number of the state variables per cell.

With the help of this representation of a tissue we can now describe easily
how substances in cells are transported throughout the tissue with a system
of equations.

The System of Equations. The toolbox contains software to easily calculate
solutions for transport models that can be written as follows

ẏi = π(yi)− δ(yi) + D
∑
j∈Ni

(yj −yi) + T
∑
j∈Ni

(νji(y1, ...,yn) − νij(y1, ....,yn)) . (1)

The vector yi contains the m time-dependent state variables in cell i. For
instance, yi may contain the auxin concentration (m = 1) or both auxin and
PIN-FORMED1 concentrations (m = 2) in cell i. Further, the model consists of
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Fig. 1. The large picture shows a typical tissue of cells. The zoomed-in portion details
the cell graph (full black) and its weak dual graph G of cellular connections (dashed
red) (Color figure online).

π, δ, the production and decay functions, respectively, D, a matrix with diffu-
sion coefficients, T a matrix with the active transport parameters and νij the
active transport functions. In our example, we assume active transport functions
that can be expressed as

(νij)l (y1, ...,yn) = ψl(yi,yj)
ϕl(yj)∑

k∈Ni
ϕl(yk)

, for l = 1, ...,m, (2)

where the functions ψl, ϕl depend on the model choices. Many concentration-
based auxin transport models can be written in this form. More information
about this class of models can be found in [7] and in Sect. 5 we demonstrate how
the toolbox works for a specific example.

The Numerical Solutions. The models described above possess an inherent
time-scale separation: the growth hormone dynamics involve short time scales
(of the order of seconds) [4], while changes in cellular shapes and proliferation
of new cells occur on much slower time scales (hours or days) [3]. In order to
determine the distribution of auxin in the plant, it is sufficient to concentrate on
the fast time scale of the hormone transport. Therefore we can assume a static
cell structure and study the plant tissue as a dynamical system where we are only
interested in the steady state solutions of the system and their dependence on the
model parameters. The PyNCT toolbox is designed with sufficient functionality
to calculate those steady state solutions immediately.
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2.2 Current State-of-the-Art Tools

We can divide the current toolboxes that calculate these stationary solutions of
dynamical systems in function of model parameters in two groups: tools based
on dense linear algebra (limited to small tissues) and tools based on sparse linear
algebra routines, which scale to large tissues.

The first group is the largest and well known tools like AUTO [6] and MAT-
CONT [5] belong to this group. Also current new tools, especially developed
for system biologist to investigate and analyse their new biological systems like
Systems biology toolbox for Matlab [15] and Facile [17], heavily rely on dense
linear algebra routines since they are all based on AUTO. The disadvantage of
these tools is that the routines are not scalable to very large systems with many
cells. The number of equations is typically limited to about 500.

An example of the second group is LOCA [14]. LOCA is developed around
sparse linear algebra but it is designed for extremely large systems that need
to be run on HPC infrastructure. LOCA is not easy to use and requires expert
knowledge in C++ and HPC hardware.

Our toolbox is also designed to take advantage of sparse linear algebra but
avoids C++ or HPC knowledge. The solutions of the typical large biological cell-
based systems can be calculated very fast in contrast with existing system biology
tools. Another big advantage of PyNCT compared to LOCA is the usability of
the software. As explained in Sect. 4.2 in more detail, it is very easy to use the
tool for a large class of transport models and even for many other models, only
a routine with the equations must be provided.

3 Currently Available Functionalities

In this section we will explain briefly the main numerical algorithms implemented
in PyNCT. Section 3.1 explains the numerical continuation methods. We also
discuss the related functionalities available in PyNCT. Section 3.2 explains the
principles and applications of bifurcation analysis.

If the reader is not interested in the mathematics under the hood of this
toolbox and only wants to use it as a black box, he/she can skip Sect. 3.1 and
jump to Sects. 4.2 and 5 where we explain how to use the toolbox.

3.1 Numerical Continuation Methods

The idea of continuation methods is to find a curve of approximate solutions y
of a system of non-linear equations

F (y,λ) = 0, (3)

as a function of the parameter vector λ with

F : Rv+w → R
v : (y,λ) �→ F (y,λ) . (4)
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Following the implicit function theorem we know that for a non-singular point(
y(0),λ(0)

)
that satisfies F

(
y(0),λ(0)

)
= 0, the solution set F (−1) (0) can be

locally parametrized about
(
y(0),λ(0)

)
with respect to a parameter of λ. This

means that the system of equations F (y,λ) = 0 defines an implicit curve
y (λ (s)) for any parametric curve λ (s) : R → R

w in R
w [1]. To construct such

a curve of subsequent solution points
(
y(i),λ(i)

)
=

(
y(i),λ(i) (s)

)
, continuation

methods use a starting point
(
y(0),λ(0)

)
, a solution of system (3), along with an

initial continuation direction [12]. This starting point is typically a known trivial
solution. An important family of continuation methods are predictor-corrector
schemes. The idea of these algorithms is to predict a new solution point first.
Then, in the corrector step, this predicted point is used as the initial guess for
an iterative method that will converge to the solution up to a given tolerance.
In our toolbox, the predictor step uses the secant method and a given step size
to predict a guess for the next solution point on the curve. The corrector step
improves the guess with Newton iterations.

Newton’sMethod. When applying the above continuation method, we improve
the guess

(
ỹ(i+1), λ̃(i+1)

)
, found in the predictor step with Newton iterations [10]

y(i+1) = ỹ(i+1) −
F

(
ỹ(i+1), λ̃(i+1)

)

F ′
(
ỹ(i+1), λ̃(i+1)

) , (5)

until a sufficiently accurate new solution point
(
y(i+1),λ(i+1)

)
of F is reached.

In every iteration step, the system

J (y,λ) x = −F (y,λ) (6)

is solved, with Jacobian matrix J (y,λ) defined by

J (y,λ)ij =
∂ (F )i
∂ (y)j

(y,λ) (7)

By default in PyNCT we can use a direct or an iterative solver for (6).

– Direct sparse linear solver: Thedirect linear solver fromSciPy (scipy. sparse.
linalg.spsolve) provides excellent performance for moderately sized systems.
At the time of this writing, the solver is a wrapper around either SuperLU or
UMFPack; both mature and widely used sparse direct solver libraries [8].

– Iterative solver: If the size of the system requires the use of an iterative solver,
PyNCT enables the use of Generalized Minimal RESidual (GMRES), a Krylov
based solver, implemented in SciPy. We chose this method because it is very
robust and applicable on all types of linear problems. This is necessary because
continuation methods calculate both the stable and unstable solutions. In
many cases the latter degrades or even destroys convergence of most iterative
solvers.
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Although we only suggest these two linear solvers in PyNCT, SciPy provides
a typical array of iterative solvers based on Generalized Minimal RESidual
(GMRES), Conjugate Gradient (CG), and derived methods. All these meth-
ods can be used easily. More information about such Krylov subspace solvers
can be found in [9] and up-to-date information about the linear solvers available
in SciPy can be found in the SciPy documentation pages1.

Jacobian. A continuation method requires the Jacobian matrix J for the calcu-
lations of the Newton corrections. The Jacobian of cell-based biological systems
with local interactions is a very large sparse matrix. Therefore it is important
to exploit our knowledge about the structure of the Jacobian. By ordering the
variables in the right way it can be divided in different building blocks where
every block represents the derivative of an equation of the model to a variable
representing a substance in each cell. For instance, consider a system of m trans-
port equations for every cell, with n the number of cells and m the number of
unknowns (the different substances in a cell) as described in Eq. (1). The Jaco-
bian then consists of m2 blocks of size n×n if the vector of unknowns is grouped
per substance type. The example available in PyNCT uses this ordering, but it
is possible to order the variables in any way. All these blocks have a sparse
structure because in every equation the changes over time only depend on the
variables in the cell itself and the neighbours up to distance 2.

In the PyNCT toolbox it is possible to choose between using the exact Jaco-
bian or an approximation:

– The Jacobian is calculated exactly by determining the derivatives of the sys-
tem with the use of SymPy, a Python library for symbolic mathematics [19].

– The approximated Jacobian is calculated numerically by using finite differ-
ences. The jth column of the Jacobian matrix is found by a forward difference
scheme

J
(
y(i),λ(i)

)

j
=

F
(
y(i) + εej ,λ

(i)
) − F

(
y(i),λ(i)

)

ε
, (8)

where ej is the jth unit vector and
(
y(i),λ(i)

)
is the ith calculated solution

point on the branch as before.

We chose for forward finite differences because it is a very easy algorithm
and do not need many calculations per iteration. For instance the value of
F

(
y(i),λ(i)

)
is already calculated and saved. The default value for ε is ε =

10−10 but the user can customize it if desired.

Preconditioning. When using iterative methods to solve each Newton step,
we can use a preconditioner to reduce the number of iterations or to guarantee
convergence of the iterative method when working with complex systems [9].

1 http://docs.scipy.org/doc/scipy/reference/sparse.linalg.html.

http://docs.scipy.org/doc/scipy/reference/sparse.linalg.html
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Instead of solving the original linear system J (y,λ) x = −F (y,λ) we solve the
preconditioned system

P−1J (y,λ) x = −P−1F (y,λ) , (9)

which is a better conditioned problem, leading to faster convergence of the
Jacobian solve. By choosing the right preconditioner, preconditioned itera-
tive solvers perform better then direct solvers. For problems where the diffu-
sion between the cells dominates traditional preconditioners that approximately
invert the Poisson equation such as incomplete factorizations or multigrid can be
effective. However, when the active transport dominates different preconditioners
need to be developed. This is still an open topic of research.

In PyNCT it is possible to use a preconditioner. Since a good preconditioner
asks specific knowledge about the model, we did not provide any general precon-
ditioners but it can be specified by the user. How this should be implemented is
explained in Sect. 4.2

3.2 Bifurcation Analysis

The study of the relation between the stability of a solution and the parameters of
the corresponding dynamical system is known as (local) bifurcation analysis [16].
Such an analysis identifies the stable and unstable solutions and the bifurcation
points that mark the transitions between them. This is biologically relevant
since it will allow us to predict the patterns that emerge in the time evolution
as the parameters of the model are changed. A bifurcation point is a solution(
y(i),λ(i)

)
of system (3) where the number of solutions changes when λ passes

λ(i). For a complete review of the different types of bifurcation points and their
properties we refer to [16]. The analysis usually leads to a bifurcation diagram
that highlights the connections between stable and unstable branches as the
parameters change. It is useful to track all these solution branches that emerge,
split or end in a bifurcation point which can be done with the help of numerical
continuation methods explained in Sect. 3.1.

Our toolbox contains methods to calculate the stability of a solution point
directly after each point or after calculating the whole solution branch. For the
transport models, we chose to calculate the stability of the solutions as part of
the post-processing since even without the stability information, the continuation
data can be very useful. A great advantage of this choice is that the continuation
data is much faster to compute because calculating the eigenvalues for every
solution point on a branch is very time-consuming.

To calculate the eigenvalues of the Jacobian, we use the ‘eig’ routine in
scipy.linalg based on dense linear algebra, although the Jacobian of transport
models is a sparse matrix (see Sect. 3.1). Typically in transport models, around a
bifurcation point, many eigenvalues cross the imaginary axis. As a consequence,
the sparse routines of scipy.sparse.linalg for calculating eigenvalues fail to
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converge when searching for eigenvalues around zero. Although we are using
dense linear algebra, calculating the stability for moderate system sizes can be
performed in an acceptable time frame by parallelizing calculations with MPI
(using mpi4py2).

Note that if interested in sparse routines, SciPy provides a sparse routine
scipy.sparse.linalg.eigs that can be used easily in PyNCT.

After calculating the eigenvalues of the solution points, the bifurcation points
must be indicated manually. It is then possible to start the continuation again from
these bifurcation points in a new direction to find the branches that emerge. How-
ever, for now PyNCT does not contain methods for automatic branch switching.

4 Overview of Software Structure

4.1 Choice of Language and Libraries

Language. The PyNCT toolbox is implemented in Python. This choice is moti-
vated by a number of factors:

– Python is a flexible language and is well-suited for rapid development. Adapt-
ing model code is straightforward and does not require an edit-compile-link
cycle as does, for instance, C++.

– Python has a low entry barrier. It is easy to learn and to use and thus an
ideal language for less technical users.

– Python has a large standard library with good documentation and a huge
amount of contributed, community-maintained packages. PyNCT uses several
existing libraries that include for example numerical methods so we don’t
have to ‘reinvent the wheel’. More information about the packages included
in PyNCT can be found below.

– Python is an open source programming language and also our software is
freely available.

Numerical Libraries. The numerical part of our toolbox relies substantially
on NumPy [2] and SciPy [8]. The former provides a foundation of linear algebra
primitives in Python. The latter extends it by providing a huge variety of algo-
rithms, solvers and support methods for “all things scientific” in Python. Both
are high-quality, popular and well-documented open source libraries.

To enhance both speed and accuracy of the calculations we use symbolic
expressions for the specification of the equations in the biological model and
automatic differentiation to obtain the exact Jacobian expression. SymPy[19], a
Python library for symbolic mathematics, is an excellent tool for these purposes
in our case. The use of symbolic expressions, however, depends on the biological
model under investigation and is not universally feasible for all applications

2 https://pypi.python.org/pypi/mpi4py.

https://pypi.python.org/pypi/mpi4py
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(Remark that as mentioned in Sect. 3.1 also the approximated Jacobian can be
used if the user can’t or don’t want to use SymPy).

Other Libraries. The infrastructure for loading and storing virtual tissue rep-
resentations and generating tissue geometries is provided by the Python Plant
Tissue Simulation toolbox PyPTS [11]; an open source library. PyPTS uses
a HDF5 based file format to store simulation results which makes pre/post-
processing, visualisation and exchanging results with other tools such as Virtu-
alLeaf [13] easy. It also provides an easy API for accessing and modifying tissue
entities and attributes.

4.2 The Executable

When using the toolbox for a specific model, the system of equations must be
specified.

For a specific class of transport models, the toolbox can be used by just
providing the equations and parameters in configuration files (see Sect. 5 for an
example).

For all other models a new class must be constructed. The class must contain
an initialize method and a method that applies your system of equations. Addi-
tionally we also need a configuration file similar to the ones constructed for the
transport models and explained in Sect. 5. It contains the parameter values of
the model and the specifications of the numerical methods. At last an executable
script, similar to the biology demo is necessary to start up the continuation. The
PyNCT package already includes a basic template for this class, the executable
and the configuration file which makes it very easy to start implementing your
own model.

To extend this basic template, you can define an extra method that constructs
the Jacobian in a given point. You can define an exact or an approximate Jaco-
bian that differs from the standard approximation method described in Sect. 3.1.
Then you can choose between the different Jacobian implementations to solve
the Newton iterations. It is also possible to specify a preconditioner in this class
to speed up the convergence to a solution point.

5 A Look at the Toolbox via an Example

In this section we show how easy it is to use the toolbox and find parts of the
solution space of the model of Smith et al. [18]. The model satisfies Eqs. (1) and
(2) and features 2 state variables per cell, namely the indole-3-acetic acid (IAA)
concentration, ai(t), and the PIN-FORMED1 (PIN1) amount, pi(t). The model
features IAA production, decay, active and passive transport terms, whereas for
PIN1 only production and decay are included. This results in the following set
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of coupled non-linear ordinary differential equations (ODEs)

dai

dt
=

ρIAA

1 + κIAAai
− μIAAai +

D

Vi

∑

j∈Ni

lij
(
aj − ai

)

+
T

Vi

∑

j∈Ni

[

Pji(a,p)
a2
j

1 + κTa2
i

− Pij(a,p)
a2
i

1 + κTa2
j

]

,

(10)

dpi
dt

=
ρPIN0 + ρPINai

1 + κPINpi
− μPINpi, (11)

for i = 1, ..., n with n the number of cells. In this model D is a diffusion coefficient,
Vi is the cellular volume, lij = Sij/(Wi + Wj) is the ratio between the contact
area Sij of the adjacent cells i and j, and the sum of the corresponding cellular
wall thicknesses Wi and Wj . In addition, T is the active transport coefficient
and Pij is the number of PIN1 proteins on the cellular membrane of cell i facing
cell j,

Pij(a,p) = pi
lij exp (c1aj)∑

k∈Ni
lik exp (c1ak)

. (12)

More details on the model and the parameters can be found in [18].
The rest of the section is divided in three parts, the preparation, the actual

calculations and the post-processing. In these sections we explain step by step
how to find the steady state solutions starting from the above model.

5.1 Preparing for Continuation

Before we can calculate the solutions, we need to specify the model and choose
from several solution methods implemented in PyNCT. Therefore we fill in a
model file and a parameter file respectively.

The Model File. In the model file each part of the system (production, decay,
diffusion, ...) is listed. For example for the model of Smith et al. this file becomes

1 {
2 "decayPIN": "muPIN*p",
3 "productionPIN": "( rhoPIN0 + rhoPIN * a) / (1.0 + kPIN * p)",
4 "decayIAA": "muIAA*a",
5 "productionIAA": "rhoIAA / (1.0 + kIAA * a)",
6 "passive_transport": "D * wall_length * (a_j - a_i)",
7 "phi": "wall_length*exp(c1*a_j)",
8 "psi": "p*a_i **2/(1.0+ kT*a_j **2)"
9 }

The Parameter File. In the parameter file we specify all parameters that
are necessary to perform the continuation. This includes the model parame-
ters, information about the tissue, the solvers, the continuation and the saving
process.
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In this example, we consider a tissue with 742 irregular prismic cells that
cover an almost-circular domain (geometry extracted from [13]) with free bound-
ary conditions [7]. We choose as continuation parameter the model parameter
T , and the trivial solution of this model in T = 0 as the starting point. We also
specify a directory and file name to save the continuation data. A part of the
parameter file reads

1 {
2 "input": "./ location/of/cells_742.h5",
3 "output": "./ location/of/continuation.h5",
4 "rhoIAA": 1.500,
5 "D": 1.000,
6
7 ...
8
9 "T": 0.0,

10 "startpoint": "value",
11 "startpoint_a": "( -1.0 + sqrt (1.0 + 4.0* kIAA*rhoIAA/muIAA))/(2.0* kIAA)",
12 "startpoint_p": "( -1.0 + sqrt (1.0 + 4.0* kPIN*( rhoPIN0 + rhoPIN*a) /muPIN

))/(2.0* kPIN)",
13
14 ...
15 }

More information and examples of both the model file and the parameter
file, can be found in the demos directory of the PyNCT toolbox.

5.2 Executing the Continuation

After specifying all parameters in the correct files, we can start the continuation
by calling the ‘doContinuation’ method.

from pynct . b i o l ogy import doContinuation
doContinuation . doContinuation ( ’ / l o c a t i o n / o f / parameterFi l e . j son ’ ,

’ / l o c a t i o n / o f /modelFi le . j son ’ )

Every solution point is saved immediately after it is calculated in the specified
output file. This method has the advantage that we can already start with the
post processing before all points are calculated.

5.3 Post-processing

In the PyNCT biology demo, we already included two functionalities necessary
for post-processing the calculated data. We can determine the stability properties
of the solutions and we can visualize the solutions.

The Stability. The stability of the solutions on a continuation branch is deter-
mined with the function calculateEigenvaluesMpi in PyNCT.

from pynct . b i o l ogy import ca l cu la teE igenva luesMpi
ca l cu la teE igenva luesMpi . main ( )

This function calculates the eigenvalues and saves them in a specified file.
More information can be found in Sect. 3.2.
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Plotting Tools. In order to process and interpret the calculated data in plant
biology, it is very useful to visualize it. Although many tools already exist for
plotting data, we added a number of basic functions in the PyNCT demo specif-
ically aimed at visualizing continuation data from biological systems.

All plotting tools are implemented in the file ‘plottools.py’ which there-
fore needs to be imported. We can plot bifurcation diagrams with or without the
stability of the calculated solutions and all the solution patterns. The functions
work by just specifying the right data files. For example, the following code gives
an interactive plot with the bifurcation diagram and a corresponding solution
pattern.
from pynct . b i o l ogy import p l o t t o o l s
p l o t t o o l s . b i fD iag ramInte rac t i v e ( ’ / l o c a t i o n / o f / cont inuat i on . h5 ’ )

We can change the highlighted solution point and thus the solution pattern
interactively. Figure 2 displays such a plot where also the stability propertiees
are shown.

Fig. 2. Bifurcation diagram and corresponding solution pattern for the Smith et al.
model for an almost-circular domain of 742 irregular cells (geometry taken from [13]).
Left: An example of a bifurcation diagram that depicts the 2-norm of auxin concentra-
tion versus the continuation parameter T . Stable solutions are drawn with a full line
and unstable solutions are dashed. Right: The solution pattern corresponding with the
red dot on the left figure (Color figure online).

The bifurcation diagram shows the norm over all cells of IAA versus the
continuation parameter T . As in the figure, we can highlight one solution point
on the continuation branch. The distribution of IAA in the tissue in this solution
point is then automatically displayed at the right in the figure. The darker the
cell is coloured, the higher the concentration of the unknown (IAA).

More information about the plotting tools and how to use them can be found
in the PyNCT biology demo.
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6 Conclusion and Future Directions

We presented the Python Numerical Continuation Toolbox PyNCT, an open
source library. The toolbox contains different state-of-the-art numerical algo-
rithms for numerical continuation and is able to calculate the stability properties
of the solutions.

The methods can be applied on coupled non-linear (smooth and continu-
ously differentiable) equations and specifically on models describing the trans-
port throughout a network of cells. For general models the system must be
implemented in a new class but for a subset of concentration-based transport
models (those models that satisfy Eqs. (1) and (2)) only a specification of the
model parts in a configuration file is necessary. In the future we want to extend
the class of models that can be analysed automatically.

The numerical methods implemented in PyNCT are based on sparse linear
algebra since biological processes can be described often by just describing what
happens in the direct neighbourhood. Therefore solutions can be calculated effi-
ciently. Further there is no limitation on the number of unknowns or the size
and shape of the tissue. These are the main advantages and differences of our
toolbox in comparison with existing tools for system biologists.

PyNCT helps us to explore parts of the solution space. We can calculate
a branch of solutions and determine the stability of each solution. Based on
this information, we identify bifurcation points and calculate new branches that
emerge. However, in the future we will include a method that detects the bifur-
cation points and performs automatic branch-switching.

Finally our toolbox allows quick experimentation and has a low entry barrier
for less technical users. Biologists can now compare various transport models
and explore different hypotheses very easily.
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Abstract. Systems biology attempts to understand biological systems
by their structure, dynamics, and control methods. Hepatocyte growth
factor (HGF) and interleukin 6 (IL6) are two proteins involved in cellu-
lar signaling that bind specific cell surface receptors (HGFR and IL6R,
respectively) in order to induce cellular proliferation in different cell types
or cell contexts. In both cases, the signaling is initiated by binding the
ligand (HGF or IL6) to the membrane-bound receptors (HGFR or IL6R)
so as to trigger two cellular signaling paths that have several common
elements. In this paper we discuss the processes by which an initial cell
leads to cellular proliferation and/or survival signaling by using one of
these two ligand/receptor systems analyzed by “rewriting logic” method-
ology. Rewriting logic procedures are suitable computational tools that
handle these dynamic systems, and they can be applied to the study of
specific biological pathways behavior. Pathway Logic (PL) constitutes a
rewriting logic formalism that provides a knowledge base and develop-
ment environment to carry out model checking, searches, and executions
of signaling systems. Moreover, Pathway Logic Assistant (PLA) is a tool
that helps us visualize, analyze and understand graphically cellular ele-
ments and their relations. We compare the models of HGF/HGFR and
IL6/IL6R signaling pathways in order to investigate the relation between
these processes and the way in which they induce cellular proliferation. In
conclusion, our results illustrate the use of a logical system that explores
complex and dynamic cellular signaling processes.
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1 Modeling Signaling Pathways

The growth of genomic sequence information combined with technological
advances in the analysis of global gene expression has revolutionized research in
biology and biomedicine [13,39]. Investigation of mammalian signaling processes,
the molecular pathways by which cells detect, convert, and internally transmit
information from their environment to intracellular targets such as the genome,
would greatly benefit from the availability of predictive models [9,17,26].

Various models for the computational analysis of cellular signaling networks
have been proposed to simulate responses to specific stimuli [3,40]. The use
of differential equations to represent changes in the concentrations from the
input to the output is an adequate approach when for a given pathway or sub-
pathway there is a large amount of quantitative information and a small number
of reactions to be modeled [20,33]. However, in many cases complex cell signaling
pathways have to be treated with other more qualitative modeling approaches,
like logic modeling.

Symbolic models are based on formalisms that provide a language to rep-
resent the states of a system; mechanisms to model their changes (such as
reactions); and tools for analysis based on computational or logical inference.
A variety of formalisms have been used to develop symbolic models of biological
systems, including Petri nets [16,19]; ambient/membrane calculi [29]; statecharts
[10]; live sequence charts [30]; and rule-based systems [11,18].

Pathway Logic is a symbolic systems biology approach to modeling biological
processes based on rewriting logic. It provides many benefits, including the abil-
ity to build and analyze models with multiple levels of detail, represent general
rules, define new kinds of data and properties, and execute queries using logical
inference. It allows us to develop abstract qualitative models (even quantitative
and probabilistic models [1]) of metabolic and signaling processes that can be
used as the basis for analysis by powerful tools, such as those developed in the
formal methods community, to study a wide range of questions. For example, in
[31] the use of Pathway Logic is described to model and analyze the dynamics
in a well-known signaling transduction pathway, epidermal growth factor (EGF)
pathway.

Rule-based modeling allows us to intuitively specify biological interactions
while abstracting from the underlying combinatorial complexity. Other rule-
based modeling formalisms similar to Pathway Logic are Kappa [8] and BioNet-
Gen [4]. Kappa is a powerful tool in modeling biochemical systems, supporting
efficient simulation and static analysis techniques.

The differences between Kappa and the BioNetGen Language are small both
in syntax and in implementation. Such languages represent biological entities as
agents. Agents are named sets of sites that can be used to hold state or bind and
interact with other agents. Interactions are represented by rules in the form of
precondition and effect, governed by an associated rate constant that determines
how frequently the interaction occurs. The combination of different rule sets
generates overall systems, thus allowing modular development of subsystems.
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Fig. 1. Signaling of hepatocyte growth factor (HGF) inside the cell (cf. Biocarta path-
way collections, http://www.biocarta.com)

In this way, rule-based approaches lighten the combinatorial explosion that
results from molecular entities existing under multiple conditions.

Analogously to Pathway Logic, one benefit of Kappa is that Kappa tools
use formal methods, such as causal summaries and reachability analysis, to aid
information discovery in and debugging of large models. These techniques include
the visual representations and the Kappa BioBrick Framework for modeling
BioBrick parts.

Our approach focuses on the analysis and modeling of the biological processes
by which an initial cellular system can lead to the activation of proliferation
and/or survival signaling by using two ligand/receptor pathways.

The cells receive external signals by certain biomolecules (ligands) that are
able to interact with certain receptors on the cellular surface producing some
effects inside the cell. We select two ligand/receptor pathways that can trigger
intra-cellular proliferation and survival signals through different molecular steps
(i.e. through different reactions inside the cell). The ligand/receptor systems are
HGF/HGFR (Fig. 1) and IL6/IL6R (Fig. 2). HGF is the protein known as hepa-
tocyte growth factor and IL6 is interleukin 6. Each one of these ligand/receptor
systems includes a pathway with multiple elements and reactions that are known
and that have been modeled using Maude language by Pathway Logic.

In this paper, Sect. 2 contains a short introduction to rewriting logic and
Maude. Section 3 gives an overview to Pathway Logic and Pathway Logic Assis-
tant. In the following Sects. 4 and 5, we show the implementation of various
rules and logical inferences in the signaling pathways. Conclusions are presented
in Sect. 6.

http://www.biocarta.com
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Fig. 2. Signaling pathway of interleukin 6 (IL6) inside the cell (cf. Biocarta pathway
collections)

2 Rewriting Logic and Maude

Rewriting logic was first proposed by Meseguer in 1990 as a unifying framework
for concurrency [21,22]. A large number of researchers have contributed to the
development of several aspects of the logic and its applications in different areas
of computer science [12,23].

The naturalness of rewriting logic for modeling and experimenting with math-
ematical and biological problems has been illustrated in a number of works
[1,2,7]. Rewriting logic is a logic of concurrent change that can naturally deal
with states and with highly nondeterministic concurrent computations. The basic
idea is that we can model a cell as a concurrent system whose concurrent transi-
tions are precisely its biochemical reactions. In this way we can develop symbolic
models of biological systems which can be analyzed like any other rewrite theory.

A rewrite theory consists of a signature, which is taken to be an equational
theory, and a set of labeled rewrite rules. The signature of a rewrite theory
describes a particular structure for the states of a system so that its states can
be distributed according to the laws of such a structure. The rewrite rules in
the theory describe those elementary local transitions which are possible in the
distributed state by concurrent local transformations.

Maude [7] is a high performance language and system supporting both equa-
tional and rewriting logic computation. Maude programs achieve a good agree-
ment between mathematical and operational semantics. There are three different
uses of Maude modules: (1) as programs that solve some applications; (2) as
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formal executable specifications that provide a rigorous mathematical model of
an algorithm, a system, a language, or a formalism; and (3) as models that can
be formally analyzed and verified with respect to different properties expressing
various formal requirements.

The Maude system, its documentation, and related papers are available on
the Maude web page at http://maude.csl.sri.com.

3 Pathway Logic and Pathway Logic Assistant

“Pathway Logic” (PL) [27,36,38] is an approach to the modeling and analysis of
molecular and cellular processes based on rewriting logic. Pathway Logic models
of biological processes are developed using Maude language. A Pathway Logic
knowledge base includes data types representing cellular components such as pro-
teins, small molecules, or complexes; compartments/locations; post-translational
modifications and other dynamic events occurring in cellular reactions.

Rewrite rules describe the behavior of proteins and other components
depending on modification states and biological contexts. Each rule represents
a step in a biological process such as metabolic reactions or intra/inter cellu-
lar signaling reactions. A collection of such facts forms a formal knowledge base.
A model is then a specification of an initial state (cell components and locations)
interpreted in the context of a knowledge base. Such models are executable and
can be understood as specifying possible ways in which a system can evolve. Log-
ical inference and analysis techniques are used for simulation of possible ways
in which a system could evolve, for the assemblage of pathways as answers to
queries, and for the reasoning of the dynamic assembly of complexes, cascad-
ing transmission of signals, feedback-loops, cross talk between subsystems, and
larger pathways. Logical and computational reflection can be used to transform
and further analyze models.

Given an executable model such as the one described above, there are many
kinds of computations that can be carried out, including: static analysis, forward
simulation, forward search, backward search, explicit state model checking, and
meta analysis.

Pathway Logic models are structured in four layers: sorts and operations,
components, rules, and queries. The sorts and operations layer declares the main
sorts and subsort relations, the logical analogue to ontology. The sorts of entities
include Chemical, Protein, Complex, and Location (cellular compartments),
and Cell. These are all subsorts of the Soup sort that represents unordered mul-
tisets of entities. The sort Modification is used to represent post-translational
protein modifications (e.g., activation, binding, phosphorylating). Modifications
are applied using the operator [ - ]. For example, the term [Rac1 - GDP]
indicates that Ras-related C3 botulinum toxin substrate 1 (Rac1) is binding to
guanosine diphosphate (GDP).

The queries layer specifies initial states or dishes to be studied and properties
of interest. Initial states are in silico Petri dishes containing a cell and ligands
of interest. An initial state is represented by a term of the form PD(Soup),

http://maude.csl.sri.com
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Fig. 3. A general view of a signaling pathway using Pathway Logic Assistant.

where Soup represents a soup of cell components and locations, ligands and other
molecular components in the cell surroundings. Each location is represented
by a term of the form {locName | components} where locName identifies the
location (for example, CLm for cell membrane, CLc for cell cytoplasm, CLo for
the outside of the cell membrane, CLi for the inside of the cell membrane, NUc
for the nucleus, XOut for the outside of the cell, the medium or supernatant)
while components stands for the mixture of proteins and other compounds in
that location.

The components layer specifies particular entities (proteins, chemicals) and
introduces additional sorts for grouping proteins in families. The rules layer con-
tains rewrite rules specifying individual steps of a process. These rules correspond
to reactions in traditional metabolic and interaction databases.

The Pathway Logic Assistant (PLA) [37] provides an interactive visual repre-
sentation of Pathway Logic models and facilitates the following tasks: it displays
the network of signaling reactions for a given dish; it formulates and submits
queries to find and compare pathways; it visualizes gene expression data in the
context of a network; or it computes and displays the downstream subnet of one
or more proteins. Given an initial dish, the PLA selects the relevant rules from
the rule set and represents the resulting reaction network as a Petri net. This
provides a natural graphical representation that is similar to the hand drawn
pictures used by biologists, as well as very efficient algorithms for answering
queries.

Figure 3 shows a general view of Pathway Logic Assistant, which is a Java
software that implements the Pathway Logic vision. It shows the Petri net
representation of interleukin 6 signaling pathway using PLA. Rectangles are
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transitions and ovals are occurrences in which the initial occurrences are darker.
The reactants of a rule are the occurrences connected to the rule by arrows from
the occurrence to the rule. The products of a rule are the occurrences connected
to the rule by arrows from the rule to the occurrence. Dashed arrows indicate
an occurrence that is both input and output.

Currently there are several implementations of Pathway Logic models. Some
of these models are: STM7 (a model of cellular response to external stimuli),
Protease (a network model of gram+ bacterial proteases), Mycolate (a model of
the Mycobacterial Mycolic Acid Biosynthesis Pathway), GlycoSTM (a model of
glycosylation extending the KEGG pathways).

The Pathway Logic and PLA system, its documentation, a collection of exam-
ples, and related papers are available on http://pl.csl.sri.com. Models of cellular
response to many different stimuli, including a much more complete model of
HGF and IL6 signaling can also be found on our website.

4 Case Study: Modeling of HGF and IL6 Signaling
Pathways (Dishes and Rewrite Rules)

In this section we define some rules of the Pathway Logic knowledge base. We will
focus on the Pathway Logic models of response to HGF and IL6 stimulation. Hepa-
tocyte growth factor (HGF) and interleukin 6 (IL6) signaling are important pro-
teins involved in cellular signaling: HGF is a multifunctional growth factor which
can induce cell dissociation, migration, protection from apoptosis, proliferation
and differentiation; IL6 is a pleiotropic cytokine produced by various types of cells
that can provoke a broad range of cellular and physiological responses, including
the immune response, inflammation, hematopoiesis, cell growth, gene activation,
proliferation and survival. In both cases, their signaling pathways include common
reactions and circuits and, in fact, both can induce cellular proliferation activating
proteins ERK and STAT inside the cells (see Figs. 1 and 2).

In our case study, a dish (called IL6Dish) with several locations is defined: the
membrane (location tag CLm) contains IL6R; the inside of the membrane (location
tag CLi) contains Rac1 binding to GDP; the cytoplasm (location tag CLc) contains
Akt1, Erks, Gab1, Gab2, Hck, Jak1, Jak2, Mkk4, Pkcd, Shp2, Stat1, Stat3, Tyk2,
Vav1, Vav2, and Vav3; and the nucleus (location tag NUc) contains A2m-gene,
Foxo1, Irf1-gene, Lmo4, RankL-gene, and Socs3-gene. Moreover, there are
other two locations: the outside (location tag XOut) contains the interleukin 6
(IL6) and the GP130C location contains the glycoprotein 130 (Gp130):

eq IL6Dish = PD( {XOut | IL6 } {GP130C | Gp130 }

{CLm | IL6R } {CLi | [Rac1 - GDP] }

{CLc | Akt1 Erks Gab1 Gab2 Hck Jak1 Jak2 Mkk4 Pkcd Shp2

Stat1 Stat3 Tyk2 Vav1 Vav2 Vav3 }

{NUc | A2m -gene Foxo1 Irf1 -gene Lmo4 RankL -gene Socs3 -

gene }) .

http://pl.csl.sri.com
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In the same way, we define the HgfDish dish:

eq HgfDish = PD( {XOut | Hgf} {HgfRC | HgfR}

{CLm | empty}

{CLi | [Cdc42 - GDP] [Hras - GDP] [Mras - GDP] [Rac1 -

GDP] [Rala - GDP] [Rap1a - GDP] Src }

{CLc | Akt1 Bad Cbl Crk CrkL Ctnnb1 Eif4ebp1 Erks Fak1

Fak2 Gab1 Gab2 Grb2 [Gsk3s - act] Jnks Lkb1 Pak1

Pi3k Plcg1 Pxn P38s Raf1 Rps6 Rsk1 Smad2 Smad3

Stat3 S6k1}

{NUc | Creb1 Elk1 Ets1 Fos -gene Foxo1 IL6 -gene Mmp1 -

gene Mmp9 -gene Myc -gene Pai1 -gene} ) .

Note that in the two biological dishes we have defined the following common
elements: Foxo1 in the nucleus and Akt1, Erks, and Stat3 in the cytoplasm.

Rewrite Rule 1334. One rule, as an example, that it is defined inside the
HGF signaling pathway is rule 1334, directly sourced from MedLine database
article “Induction of epithelial tubules by growth factor HGF depends on the
STAT pathway” with ID 9440692 [5]. Boccaccio et al. determine that HGF stim-
ulates recruitment of STAT3 to the receptor, tyrosine phosphorylation, nuclear
translocation and binding to the specific promoter element SIE. Electroporation
of a tyrosine-phosphorylated peptide, which interferes with both the association
of STAT to the receptor and STAT dimerization, inhibits tubule formation in
vitro without affecting either HGF-induced scattering or growth.

Our rule 1334 establishes: When HGF (Hgf) binds to its receptor HGFR
(HgfR), the Tyrosine (Y) kinase cytoplasmic domain of HGFR ([HgfR -

Yphos]) phosphorylates STAT3 on tyrosine 705 ([Stat3 - phos(Y 705)]) in
the presence of protein STAT3 (Stat3) in the cytoplasm (CLc). In Maude syntax,
this signaling process is described by the following rewrite rule:

rl [1334. Stat3.irt.Hgf]:

{HgfRC | hgfrc ([HgfR - Yphos] : Hgf) }

{CLc | clc Stat3 }

=>

{HgfRC | hgfrc ([HgfR - Yphos] : Hgf) }

{CLc | clc [Stat3 - phos(Y 705)] } .

Figure 4 shows this rule using PLA. Rectangles represent reaction rules. The label
in a rectangle is its abbreviated identifier in the knowledge base. Solid arrows
from an occurrence oval to a rule indicate that the occurrence is a reactant
(rule input). Solid arrows from a rule to an occurrence oval indicate that the
occurrence is a product (rule output). Dashed arrows from an occurrence oval to
a rule indicate that the occurrence is a modifier/enzyme/control. It is necessary
for the reaction to take place but is not changed by the reaction.
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Fig. 4. Rule [1334.Stat3.irt.Hgf] using Pathway Logic Assistant.

Rewrite Rule 1282. According to [6] and [14], the rule 1282 describes that
hepatocyte growth factor/scatter factor (HGF/SF) induces mitogenesis and cell
dissociation upon binding to the protein-tyrosine kinase receptor encoded by
the MET proto-oncogene (p190MET). The rule 1282 establishes: When Hgf is
outside the cell, in the presence of HgfR, then this receptor is phosphorylated
and bound to Hgf. In Maude syntax, this signaling process is described by the
following rewrite rule (Fig. 5):

rl [1282. HgfR.irt.Hgf]:

{XOut | xout Hgf }

{HgfRC | hgfrc HgfR }

=>

{XOut | xout }

{HgfRC | hgfrc ([HgfR - Yphos] : Hgf) } .

Fig. 5. Rule [1282.HgfR.irt.Hgf] using Pathway Logic Assistant.

Rewrite Rule 1237. Now we consider the binding of IL6 to the IL6R. Accord-
ing to [25] (“Protein kinase C delta associates with the interleukin-6 receptor
subunit glycoprotein (gp) 130 via Stat3 and enhances Stat3-gp130 interaction”),
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the rule 1237 establishes the recruitment to Gp130 complex: When IL6 binds
to IL6R, and this receptor is also bound to GP130, in the presence of STAT3 in
the cytoplasm (Clc), this protein (STAT3) is phosphorylated by the cytoplasmic
domain of GP130 (GP130C). In Maude syntax, this signaling process is described
by the following rewrite rule (Fig. 6):

rl [1237. Stat3.to.Gp130C.irt.IL6]:

{GP130C | gp130c (IL6 : IL6R : Gp130) }

{CLc | clc Stat3 }

=>

{GP130C | gp130c (IL6 : IL6R : Gp130) [Stat3 - Yphos] }

{CLc | clc } .

The interleukin (IL)-6-type cytokines play major roles in a variety of biological
processes by signaling by means of a common receptor subunit—glycoprotein
(gp) 130 [24].

Fig. 6. Rule [1237.Stat3.to.Gp130C.irt.IL6] using Pathway Logic Assistant.

Rewrite Rule 1221. Interleukin 6 mediates pleiotropic functions in various
types of cells through its specific receptor (IL6R). According to [15,35], the rule
1221 describes that an 80 kd single polypeptide chain (IL6R) is involved in IL6
binding and that IL6 triggers the association of this receptor with a non-ligand-
binding membrane glycoprotein, gp130. The rule 1221 establishes: When IL6 is
outside the cell and the receptor IL6R is inside the cytoplasm, in the presence
of GP130, the association of this receptor with a non-ligand-binding membrane
glycoprotein occurs. In Maude syntax, this signaling process is described by the
following rewrite rule (Fig. 7):
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rl [1221. IL6R.irt.IL6]:

{XOut | xout IL6 }

{GP130C | gp130c Gp130 }

{CLm | clm IL6R }

=>

{XOut | xout }

{GP130C | gp130c (IL6 : IL6R : Gp130) }

{CLm | clm } .

Fig. 7. Rule [1221.IL6R.irt.IL6] using Pathway Logic Assistant.

Rewrite Rule 1227. Interleukin-6 is a known growth and survival factor
in multiple myeloma via activation of extracellular signal-regulated kinase and
phosphatidylinositol 3-kinase signaling cascade. Interleukin-6 induces their tyro-
sine phosphorylation and association with downstream signaling molecules [28].
The rule 1227 establishes: When IL6 binds to IL6R, and this receptor is also
bound to GP130, in the presence of Hck in the cytoplasm (Clc), the protein Hck

is activated ([Hck - act]). In Maude syntax, this signaling process is described
by the following rewrite rule (Fig. 8):

rl [1227. Hck.irt.IL6]:

{GP130C | gp130c (IL6 : IL6R : Gp130) }

{CLc | clc Hck }

=>

{GP130C | gp130c (IL6 : IL6R : Gp130) }

{CLc | clc [Hck - act] } .

Rewrite Rule 1224. According to [15,28,32], the rule 1224 describes phospho-
rylation on Tyrosine in the JAK/STAT signal transduction pathway in response
to interleukin-6. The rule 1224 establishes: When IL6 binds to IL6R, and this
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Fig. 8. Rule [1227.Hck.irt.IL6] using Pathway Logic Assistant.

receptor is also bound to GP130, in the presence of active HCK ([Hkc-act]) in
the cytoplasm (Clc), the protein ERK is phosphorylated in TEY domain ([Erks
-erksmods phos(TEY)]). In Maude syntax, this signaling process is described
by the following rewrite rule (Fig. 9):

rl [1224. Erks.irt.IL6]:

{GP130C | gp130c (IL6 : IL6R : Gp130) }

{CLc | clc [Hck - act] [Erks - erksmods] }

=>

{GP130C | gp130c (IL6 : IL6R : Gp130) }

{CLc | clc [Hck - act] [Erks - erksmods phos(TEY)] } .

Fig. 9. Rule [1224.Erks.irt.IL6] using Pathway Logic Assistant.

5 Case Study: Understanding Dynamics on HGF and IL6
Signaling Pathways (Logical Inferences)

Our analysis begins with initial dish states IL6Dish and HgfDish defined in
Sect. 3. Suppose we want to find out if there is a pathway leading to activation
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of Akt1 and Erks. In this case one can use the search command with a suit-
able search pattern and parameters ([1]: the first solution; =>+: at least one
step):

Maude > search [1] IL6Dish =>+

PD(soup:Soup {CLc | th:Things [Akt1 - act] [erks:ErkS -

mod:ModSet act ]}) .

The solution to this query given by Maude shows the matching in the search
pattern PD(soup:Soup {CLc | th:Things [Akt1 - act] [erks:ErkS - mod:
ModSet act]}):

Solution 1 (state 800)

states: 801 rewrites: 1832 in 465ms cpu (939ms real)

soup:Soup --> {GP130C | Gp130 : IL6 : IL6R}

{XOut | empty} {CLm | empty}

{CLi | [Rac1 - GDP]}

{NUc | A2m -gene Irf1 -gene RankL -gene Socs3 -gene Foxo1

Lmo4}

th:Things --> Gab1 Gab2 Jak1 Jak2 Mkk4 Pkcd Shp2 Stat1

Stat3 Tyk2 Vav1 Vav2 Vav3 [Hck - act]

erks:ErkS --> Erks

mod:ModSet --> phos(TEY)

We observe that the variable on the fly mod:ModSet matches with phos(TEY)
in this solution. We also find [Rac1 - GDP] inside of the cell membrane. Then
we can ask Maude for the rule labels which have been applied to reach the final
state according to the solution:

Maude > show path labels 800 .

1221. IL6R.irt.IL6 1223. Akt1.irt.IL6 1227. Hck.irt.IL6

1224. Erks.irt.IL6 415c.Erks.act

Maude allows us to find all possible solutions and, in the case that the
final state is not reachable from our initial dish, it indicates that there is no
solution.

Now the matching for a new solution in our search is shown. In this solution,
we also find [Rac1 - GDP] inside of the cell membrane and the protein ERK is
also phosphorylated in TEY domain.
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Maude > cont 1 .

Solution 2 (state 1435)

states: 1436 rewrites: 1892 in 73ms cpu (74ms real)

soup:Soup -->

{CLm | empty}

{CLi | [Rac1 - GDP]}

{XOut | empty}

{NUc | A2m -gene Foxo1 Irf1 -gene Lmo4 RankL -gene Socs3 -

gene}

{GP130C | Jak1 Gp130 : IL6 : IL6R}

th:Things --> Gab1 Gab2 Jak2 Mkk4 Pkcd Shp2 Stat1 Stat3

Tyk2 Vav1 Vav2 Vav3 [Hck - act]

erks:ErkS --> Erks

mod:ModSet --> phos(TEY)

Then we can ask Maude for the rule labels which have been applied to reach the
final state according to the solution:

Maude > show path labels 1435 .

1229c.Jak1.Gp130.complex 1221. IL6R.irt.IL6

1223. Akt1.irt.IL6 1227. Hck.irt.IL6 1224. Erks.irt.IL6

415c.Erks.act

Afterwards we consider the dish HgfDish and in order to find out the same
search with IL6Dish:

Maude > search [1] HgfDish =>+

PD(soup:Soup {CLc | th:Things [Akt1 - act] [erks:ErkS -

mod:ModSet act ]}) .

The solution to this query given by Maude shows the matching in the same
search pattern with IL6:

Solution 1 (state 1469)

states: 1470 rewrites: 2618 in 508ms cpu (972ms real)

soup:Soup --> {HgfRC | Hgf : [HgfR - Yphos ]}

{XOut | empty} {CLm | empty}

{CLi | Src [Cdc42 - GDP] [Hras - GDP] [Mras - GDP] [

Rac1 - GDP] [Rala - GDP] [Rap1a - GDP]}

{NUc | Fos -gene IL6 -gene Mmp1 -gene Mmp9 -gene Myc -gene

Pai1 -gene Creb1 Elk1 Ets1 Foxo1}

th:Things --> Bad Cbl Crk CrkL Ctnnb1 Eif4ebp1 Fak1 Fak2

Gab1 Gab2 Grb2 Jnks Lkb1 P38s Pak1 Pi3k Plcg1 Raf1

Rps6 Rsk1 S6k1 Smad2 Smad3 Stat3 [Gsk3s - act] [Pxn -

Yphos]

erks:ErkS --> Erks

mod:ModSet --> phos(TEY)



240 G. Santos-Garćıa et al.

We observe that the variable on the fly mod:ModSet matches with phos(TEY) in
this solution. Moreover we find [Cdc42 - GDP], [Hras - GDP], [Mras - GDP],
[Rac1 - GDP], [Rala - GDP], and [Rap1a - GDP] inside of the cell membrane.
We also find, among other compounds, Fos-gene and IL6-gene in the nucleus.
Hence we can ask Maude for the rule labels which have been applied to reach
the final state according to the solution:

Maude > show path labels 1469 .

1282. HgfR.irt.Hgf 1283. Akt1.irt.Hgf

1292. Pxn.Yphos.irt.Hgf 1285. Erks.irt.Hgf

Now the matching for a new second solution in our search is shown. In this
solution, we find: (1) Cdc42, Hras, Mras, Rac1, Rala, Rap1a are binding to guano-
sine diphosphate (GDP) inside of the cell membrane, as in the previous solution;
(2) the glycogen synthase kinase-3 Gsk3s is activated in the cytoplasm; (3) Bad
and Pxn are phosphorylated; and (4) the protein ERK is also phosphorylated in
TEY domain.

Maude > cont 1 .

Solution 2 (state 10258)

states: 10259 rewrites: 26157 in 413ms cpu (414ms real)

soup:Soup -->

{CLm | empty}

{CLi | Src [Cdc42 - GDP] [Hras - GDP] [Mras - GDP] [

Rac1 - GDP] [Rala - GDP] [Rap1a - GDP]}

{XOut | empty}

{NUc | Fos -gene IL6 -gene Mmp1 -gene Mmp9 -gene Myc -gene

Pai1 -gene Creb1 Elk1 Ets1 Foxo1}

{HgfRC | Hgf : [HgfR - Yphos ]}

th:Things --> Cbl Crk CrkL Ctnnb1 Eif4ebp1 Fak1 Fak2 Gab1

Gab2 Grb2 Jnks Lkb1 P38s Pak1 Pi3k Plcg1 Raf1 Rps6

Rsk1

S6k1 Smad2 Smad3 Stat3 [Bad - phos(S 75) phos(S 99)]

[Gsk3s - act] [Pxn - Yphos]

erks:ErkS --> Erks

mod:ModSet --> phos(TEY)

Then we can ask Maude for the rule labels which have been applied to reach the
final state according to the solution:

Maude > show path labels 10258 .

1282. HgfR.irt.Hgf 1283. Akt1.irt.Hgf 1305. Bad.irt.Hgf

1292. Pxn.Yphos.irt.Hgf 1285. Erks.irt.Hgf

In the same way that a search analysis was carried out with model checking,
these queries could also be done using FindPath in Pathway Logic Assistant.
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Fig. 10. A graphical comparison of the searches (activation of Akt1 and Erks from
IL6Dish and HgfDish dishes) using FindPath tool in Pathway Logic Assistant.

Because a network may contains more than one route to get to the goal (activa-
tion of Akt1 and Erks), you will find one path (usually the shortest) by clicking
on the FindPath button in the toolbar.

The advantage of PLA is that the resulting pathway can be shown as a nice
graph. If a pathway exists its graph will be created and displayed. The set of
initial occurrences of the pathway graph is the intersection of the occurrences
of the pathway graph with the initial occurrences of the parent graph. The goal
set of the pathway graph is the goal set of the query (Fig. 10). In this graph, IL6
rules and occurrences have a purple/darker color, and HGF ones have a blue-
green/lighter color. The common part is peach colored. Dashed arrows from an
occurrence oval to a rule indicate that the occurrence remains unchanged for the
reaction.

The results provided by the two “searches” upon IL6Dish and HgfDish (i.e.
upon IL6 and HGF signaling pathways) show a clear similarity that indicates the
activation of the ERK proteins (phosphorylated in T and in Y) and therefore a
common signal of activation of “proliferation” (as it is indicated in the theoret-
ical and schematic map of pathways presented in Fig. 11). This activation goes
through different ways for the case of IL6 versus HGF, since the resulting states
end up with different th:Things and with different transcription activators in
nucleus NUc.
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Fig. 11. Non-canonical G-protein-coupled-receptor signaling (cf. [34]).

6 Conclusions

Rewriting logic procedures are powerful symbolic methods that can be applied
in order to understand the dynamics of complex biological systems. It provides
many benefits, including the ability to build and analyze models with multi-
ple levels of detail; to represent general rules; to define new kinds of data and
properties; and to execute queries using logical inference.

In this work we show the application of a rewriting logic procedure based
in Maude logic language to the dynamic modeling of biological signaling path-
ways. We are interested in formalizing models that molecular biologists can use
to think about signaling pathways and their behavior, allowing them to compu-
tationally formulate questions about their outcomes and dynamics. In this way,
as a case study, we compare the models of HGF/HGFR and IL6/IL6R signal-
ing pathways investigating the relation and crosslinks between these processes
and the way in which both can induce cellular “proliferation” and cellular “sur-
vival”. In conclusion, our results provide a logical system that explores complex
and dynamic cellular signaling processes.

Figure 11 shows a theoretical scheme taken from a cell biology review which
presents the main molecular elements (i.e. proteins) involved in the transmission
of signals from the cell membrane receptors (GPCR type) to the nucleus in order
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to trigger some specific biological processes: adhesion, proliferation, apoptosis,
survival, etc. The figure is a schematic cartoon integrating several pathways to
provide a general view of the main ways and interactions that occur in the cell
to activate such specific processes. As it can be seen, this figure reflects well our
results in the analyses of the logic and dynamics of HGF/HGFR and IL6/IL6R
pathways, because our finding reveals the activation of ERK and AKT.

In this article, in order to model signal transduction processes, we also
describe the use of Pathway Logic (PL) as a rewriting logic tool that is built using
Maude, as well as the use of Pathway Logic Assistant (PLA) software to browse
and analyze the logic models of many pathways already built. The models are
derived from many experimental data and knowledge from the literature. Using
these tools we achieve a very interesting comparison of two signaling pathways
(HGF/HGFR and IL6/IL6R) finding their common gates and the key molecular
elements that allow them to produce “proliferation” and “survival”, despite the
fact that most of the molecular elements and the ways of these two signaling
processes are different.
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