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Abstract We describe a functional renormalization group-based method to search
for ‘C-like’ functions with properties similar to that in 2D conformal field theory.
It exploits the mode counting properties of the effective average action and is
particularly suited for theories including quantized gravity. The viability of the
approach is demonstrated explicitly in a truncation of 4 dimensional Quantum
Einstein Gravity, i.e. asymptotically safe metric gravity.
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1 Introduction

A particularly intriguing result in 2-dimensional conformal field theory is Zamolod-
chikov’s c-theorem [1]. It states that every 2D Euclidean quantum field theory with
reflection positivity, rotational invariance, and a conserved energy momentum tensor
possesses a function C of its coupling constants, which is non-increasing along the
renormalization group trajectories and is stationary at fixed points where it equals
the central charge of the corresponding conformal field theory. After the advent of
this theorem many authors tried to find a generalization that would be valid also
in dimensions greater than two [2–9]. This includes, for instance, suggestions by
Cardy [2] to integrate the trace anomaly of the energy-momentum tensor hT��i
over a 4-sphere of unit radius, C / R

S4 d4x
p

g hT�
� i, the work of Osborn [3],

and ideas based on the similarity of C to the thermodynamical free energy [4],
leading to a conjectural ‘F-theorem’ which states that, under certain conditions,
the finite part of the free energy of 3-dimensional field theories on S3 decreases
along renormalization group (RG) trajectories and is stationary at criticality [5].
Cappelli, Friedan and Latorre [6] proposed to define a C-function on the basis of
the spectral representation of the 2-point function of the energy-momentum tensor.
While these investigations led to many important insights into the expected structure
of the hypothetical higher-dimensional C-function, the search was successful only
recently [10, 11] with the proof of the ‘a-theorem’ [2, 9]. According to the a-
theorem, the coefficient of the Euler form term in the induced gravity action of a
4D theory in a curved, but classical, background spacetime is non-increasing along
RG-trajectories. Clearly theorems of this type are extremely valuable as they provide
non-perturbative information about quantum field theories or statistical systems in
the strong coupling domain and constrain the structure of possible RG flows.

In this article we are going to describe a functional RG-based search strategy by
means of which ‘C-like’ functions can possibly be identified under rather general
conditions, in particular in cases where the known c- and the a-theorems do not
apply. Our main motivation is in fact theories which include quantized gravity, in
particular those based upon the Asymptotic Safety construction [12–19].

According to this strategy, the first step consists in trying to generalize the
‘counting property’ of Zamolodchikov’s C-function for a generic field theory in
any number of dimensions: the sought-after function should roughly be equal to
(or at least in a known way be related to) the number of degrees of freedom that are
integrated out along the RG trajectory when the scale is lowered from the ultraviolet
(UV) towards the infrared (IR). Technically, we shall do this by introducing a higher-
derivative mode-suppression factor in the underlying functional integral which acts
as an IR cutoff. We can then take advantage of the well established framework of
the effective average action (EAA) to control the scale dependence [20], and to give
a well defined meaning to the notion of a ‘number of modes’.

In a generic theory comprising a set of dynamical fields, ˆ, and associated
background fields, N̂ , the EAA is a ‘running’ functional �kŒˆ; N̂ � similar to the
standard effective action, but with a built-in IR cutoff at a variable mass scale
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k. Its k-dependence is governed by an exact functional RG equation (FRGE). In
this article we shall argue that there exists a natural and ‘essentially universal’
map from k-dependent functionals �k to functions Ck that are monotone along the
flow and stationary at fixed points. Here the term ‘universal’ is to indicate that we
would require only a few general properties to be satisfied, comparable to reflection
positivity, rotational invariance, etc. in the case of Zamolodchikov’s theorem. The
reason why we believe that there should exist such a map is that the respective
monotonicity properties of �k and the C-function in 2D have essentially the same
simple origin. They both ‘count’ in a certain way the degrees of freedom (more
precisely: fluctuation modes) that are already integrated out at a given RG scale
intermediate between the UV and the IR.

After a brief review of the necessary EAA apparatus, we shall present a promis-
ing candidate for a quantity with properties close to a C-function. It is obtained by
evaluating �kŒˆ; N̂ � at a particularly chosen pair of k-dependent arguments .ˆ; N̂ /,
namely ˆ D N̂ � N̂ sc

k where N̂ sc
k is a self-consistent background field. By definition,

N̂ � N̂ sc
k is self-consistent (‘sc’) if the equation of motion for the dynamical field

ˆ derived from �k admits the solution ˆ D N̂ . With other words, if the system is
put in a background which is self-consistent, the fluctuations of the dynamical field,
' � ˆ� N̂ , have zero expectation value and, in this sense, do not modify this special
background. As we shall see, in theories without fermions, Ck � �kŒ N̂ sc

k ; N̂ sc
k �

has indeed a number of attractive properties making it almost a C-function. It is
stationary at fixed points and it is monotonically decreasing along the flow, at least
when split-symmetry is broken only sufficiently weakly.

The latter restriction is crucial and requires an explanation. In quantum gravity,
Background Independence is a central requirement [21] which, in the EAA frame-
work, is met by employing the background field technique. At the intermediate
steps of the quantization one introduces a background spacetime, equipped with a
non-degenerate background metric in particular, but makes sure that no observable
prediction depends on it. This can be done by means of the Ward identities
pertaining to the split-symmetry [22–24] which governs the interrelation between
' and N̂ . This symmetry, if intact, ensures that the physical contents of a theory is
independent of the chosen background structures. Usually, at the ‘off-shell’ level of
�k, in particular when k > 0, the symmetry is broken by the gauge fixing and cutoff
terms in the bare action. Insisting on unbroken split-symmetry in the physical sector
restricts the admissible RG trajectories which the EAA may follow [25, 26]; only
those which restore perfect split-symmetry at their end point (k D 0) are acceptable.
The ‘sufficiently weak split-symmetry breaking’ mentioned above is a related, but
not exactly the same requirement, namely that the amount of symmetry breaking,
on all scales k � 0, does not exceed a certain bound (given by Eq. (36) below).

Specifically we shall apply these ideas within the Asymptotic Safety approach
to quantum gravity in the following [12–19]. The goal of the Asymptotic Safety
program is to precisely define, and then to actually compute functional integrals
over ‘all metrics’ such as

R
D Og e�SŒOg�� �. The idea is to proceed indirectly and re-

construct the integral from a solution of the FRGE for the EAA. Contrary to the
functional integral, the FRGE is free from any UV singularities. The nontrivial issue
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then consists in finding an RG trajectory consisting of regular action functionals
f�kŒ � �g that is complete, i.e. has well defined limits k ! 0 and k ! 1, respectively.
Asymptotic Safety is a property that ensures the existence of the UV limit, k ! 1.
Its prerequisite is a fixed point of the RG flow, ��. Let us assume there exists such
a fixed point, and let SUV denote its UV critical manifold, that is the set of all
actions which are pulled into �� under the inverse flow (i.e. when going from the
IR to the UV). Then, for the k ! 1 limit to exist it is sufficient (and probably also
necessary) to select any of the trajectories inside SUV; we can then be sure that it
has a singularity free UV behavior since it will always run into the fixed point at
large scales and is easy to control then.

The only free choice in this entire construction concerns the theory space, T ,
i.e. the space of functionals on which the FRGE operates; in particular the fields
the functionals depend on, and their symmetries must be specified. Given T , the
form of the FRGE and so ultimately also its fixed point properties are determined.
As �k!1 is closely related to the bare action S, we are actually computing S
from the fixed point condition, rather than putting it in ‘by hand’. Knowing ��
and the RG flow in its vicinity, and selecting an UV regularization scheme for the
functional integral, one can in principle compute how the bare parameters on which
this integral depends must be tuned in order to obtain a well defined limit when its
UV regulator is removed, or the ‘continuum limit’ is taken [27]. For further details
on Asymptotic Safety and the status of the program we refer to the reviews [17–19].

The rest of this article is organized as follows. In Sect. 2 we explain how the EAA
can be used in order to ‘count’ field modes, and we identify a natural candidate
for a ‘C-function like’ quantity that exists in any number of dimensions. In Sect. 3
we apply these ideas to asymptotically safe metric gravity, or ‘Quantum Einstein
Gravity’ (QEG), and Sect. 4 contains the conclusions.

Our presentation follows Ref. [28] to which the reader is referred for additional
details.

2 From the EAA to the C-Function

We consider a general quantum field theory on a d dimensional Euclidean space-
time, either rigid or fluctuating, that is governed by a functional integral Z DR
D Ô e�SŒ Ô ; N̂ �. The bare action S depends on a set of commuting and anticommuting

dynamical fields, Ô , and on a corresponding set of background fields, N̂ . In a
Yang-Mills theory, Ô would contain both the gauge field and the Faddeev-Popov
ghosts, and S includes gauge fixing and ghost terms. Furthermore, the corresponding
background fields are part of N̂ . As a rule, the fluctuation field O' � Ô � N̂ is always
required to gauge-transform homogeneously, i.e. like a matter field. Henceforth we
regard O' rather than Ô as the true dynamical variable and interpret Z as an integral
over the fluctuation variables: Z D R

D O' exp
��SŒ O'I N̂ �

�
.
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The set of background fields, N̂ , always contains a classical spacetime metric
Ng�� . In typical particle physics applications on a rigid spacetime one is not
interested in how Z depends on this background metric and usually sets Ng�� D ı��

throughout. Here in quantum gravity, where Background Independence is an issue,
one needs to know Z � ZŒNg��� for any background. In fact, employing the
background field technique to implement Background Independence one represents
the dynamical metric as Og�� D Ng�� C Oh�� and requires invariance under split-

symmetry transformations
�
ı Ng�� D �"��; ı Oh�� D "��

�
at the level of observable

quantities [25]. Assuming in the sequel that spacetime is dynamical, Og�� and Oh��

are special components of Ô and O', respectively.
Picking a basis in field space, f'!g, we expand O'.x/ D P

! a! '!.x/, whereP
! stands for a summation and/or integration over all labels carried by the

basis elements. Then
R
D O' is interpreted as the integration over all possible

values that can be assumed by the expansion coefficients a � fa!g. Thus, Z DQ
!

R 1
�1 da! exp

��SŒaI N̂ �
�
.

Let us assume that the '!’s are eigenfunctions of a certain differential operator,
L, which may depend on the background fields N̂ , and which has properties similar
to the negative Laplace-Beltrami operator, � ND2. We suppose that L is built from
covariant derivatives involving Ng�� and the background Yang-Mills fields, if any, so
that it is covariant under spacetime diffeomorphism and gauge-transformations. We
assume an eigenvalue equation L'! D �2

!'! with positive spectral values �2
! >

0. The precise choice of L is arbitrary to a large extent. The only property of L
we need is that it should associate small (large) distances on the rigid spacetime
equipped with the metric Ng�� to large (small) values of �2

! . A first (but for us not
the essential) consequence is that we can now easily install a UV cutoff by restricting
the ill-defined infinite product

Q
! to only those !’s which satisfy �! < �max. This

implements a UV cutoff at the mass scale �max.
More importantly for our purposes, we also introduce a smooth IR cutoff at a

variable scale k � �max into the integral, replacing it with

Zk D
Y

!

0 Z 1

�1
da! e�SŒaI N̂ �e��Sk (1)

where the prime indicates the presence of the UV cutoff, and

�Sk � 1

2

X

!

Rk.�
2
!/ a2

! (2)

implements the IR cutoff. The extra piece in the bare action, �Sk, is designed in such
a way that those '!-modes which have eigenvalues �2

! � k2 get suppressed by a
small factor e��Sk � 1 in Eq. (1), while e��Sk D 1 for the others. The function Rk

is essentially arbitrary, except for its interpolating behavior between Rk.�
2
!/ � k2

if �! � k and Rk.�
2
!/ D 0 if �! 	 k.
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The operator L defines the precise notion of ‘coarse graining’ field configu-
rations. We regard the '!’s with �! > k as the ‘short wavelength’ modes, to
be integrated out first, and those with small eigenvalues �! < k as the ‘long
wavelength’ ones whose impact on the fluctuation’s dynamics is not yet taken into
account. This amounts to a diffeomorphism and gauge covariant generalization of
the standard Wilsonian renormalization group, based on standard Fourier analysis
on Rd, to situations with arbitrary background fields N̂ D .Ng��; NA�; � � � /.

While helpful for the interpretation, it is often unnecessary to perform the
expansion of O'.x/ in terms of the L-eigenfunctions explicitly. Rather, one thinks
of (1) as a ‘basis independent’ functional integral

Zk D
Z

D0 O' e�SŒ O'I N̂ �e��SkŒ O'I N̂ � (3)

for which the eigen-basis of L plays no special role, while the operator L as such
does so, of course. In particular the cutoff action �Sk is now rewritten with �2

!

replaced by L in the argument of Rk:

�SkŒ O'I N̂ � D 1

2

Z
ddx

pNg O'.x/ Rk.L/ O'.x/ (4)

Note that at least when k > 0 the modified partition function Zk depends on the
respective choices for L and N̂ separately.

The family of k-dependent partition functions Zk enjoys a simple property which
is strikingly reminiscent of the C-theorem in 2 dimensions. Let us assume for
simplicity that all component fields constituting O' are commuting, and that N̂
has been chosen k-independent. Then (3) is a (regularized, and convergent for
appropriate S) purely bosonic integral with a positive integrand which, thanks to
the suppression factor e��Sk , decreases with increasing k. Therefore, Zk and the
‘entropy’ ln Zk, are monotonically decreasing functions of the scale:

@k ln Zk < 0 (5)

The interpretation of (5) is clear: Proceeding from the UV to the IR by lowering the
infrared cutoff scale, an increasing number of field modes get un-suppressed, thus
contribute to the functional integral, and as a consequence the value of the partition
function increases. Thus, in a sense, ln Zk ‘counts’ the number of field modes that
have been integrated out already. Before we can make this intuitive argument more
precise we must introduce a number of technical tools at this point.

Running actions Introducing a source term for the fluctuation fields turns the
partition functions ZkŒJI N̂ � � eWk ŒJI N̂ � into a generating functional:

eWk ŒJI N̂ � D
Z
D0 O' exp

�

�SŒ O'I N̂ � � �SkŒ O'I N̂ �C
Z

ddx
pNg J.x/ O'.x/

�

(6)
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Hence the N̂ - and k-dependent expectation value h O'i � ' reads

'.x/ � h O'.x/i D 1
pNg.x/

ıWkŒJI N̂ �

ıJ.x/
(7)

If we can solve this relation for J as a functional of N̂ , the definition of the Effective
Average Action (EAA), essentially the Legendre transform of Wk, may be written
as

�kŒ'I N̂ � D
Z

ddx
pNg '.x/J.x/ � WkŒJI N̂ � � �SkŒ'I N̂ � (8)

with the solution to (7) inserted, J � JkŒ'I N̂ �. In the general case, �k is the
Legendre-Fenchel transform of Wk, with �Sk subtracted.

The EAA gives rise to a source-field relationship which includes an explicit
cutoff term linear in the fluctuation field:

1pNg
ı�kŒ'I N̂ �

ı'.x/
C RkŒ N̂ �'.x/ D J.x/ (9)

Here and in the following we write Rk � Rk.L/, and the notation RkŒ N̂ �

is used occasionally to emphasize that the cutoff operator may depend on the
background fields. The solution to (9), and more generally all fluctuation corre-
lators h O'.x1/ � � � O'.xn/i obtained by multiple differentiation of �k, are functionally
dependent on the background, e.g. '.x/ � 'kŒJI N̂ �.x/. For the expectation value of
the full, i.e. un-decomposed field Ô D N̂ C O' we employ the notation ˆ D N̂ C '

with ˆ � h Ô i and ' � h O'i. Using the complete field ˆ instead of ' as the second
independent variable, accompanying N̂ , entails the ‘bi-field’ variant of the EAA,

�kŒˆ; N̂ � � �kŒ'I N̂ �
ˇ
ˇ
'Dˆ� N̂ (10)

which, in particular, is always ‘bi-metric’: �kŒg��; � � � ; Ng��; � � � �.
Organizing the terms contributing to �kŒ'I N̂ � according to their level, i.e. their

degree of homogeneity in the '’s, we assume that the EAA admits a level expansion
of the form �kŒ'I N̂ � D P1

pD0
L�p

k Œ'I N̂ � where L�p
k Œc 'I N̂ � D cp L�p

k Œ'I N̂ � for any
c > 0.

Self-consistent backgrounds We are interested in how the dynamics of the
fluctuations O' depends on the environment they are placed in, the background
metric Ng�� , for instance, and the other classical fields collected in N̂ . It would be
instructive to know if there exist special backgrounds in which the fluctuations are
particularly ‘tame’ such that, for vanishing external source, they consists in at most
small oscillations about a stable equilibrium, with a vanishing mean: ' � h O'i D 0.
Such distinguished backgrounds N̂ � N̂ sc are referred to as self-consistent (sc)
since, if we prepare the system in one of those, the expectation value of the field
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h Ô i D ˆ D N̂ does not get changed by violent O'-excitations that, generically, can
shift the point of equilibrium. From Eq. (9) we obtain the following condition N̂ sc

must satisfy (since J D 0 here by definition):

ı

ı'.x/
�kŒ'I N̂ �

ˇ
ˇ
'D0; N̂ D N̂ sc

k
D 0 (11)

This is the tadpole equation from which we can compute the self-consistent
background configurations, if any. In general N̂ sc � N̂ sc

k will have an explicit
dependence on k. A technically convenient feature of (11) is that it no longer
contains the somewhat disturbing Rk'-term that was present in the general field
Eq. (9). Self-consistent backgrounds are equivalently characterized by Eq. (7),

ı

ıJ.x/
WkŒJI N̂ �

ˇ
ˇ
JD0; N̂ D N̂ sc

k
D 0 (12)

which again expresses the vanishing of the fluctuation’s one-point function. Note
that provided the level expansion exists we may replace (11) with

ı

ı'.x/
L�1

k Œ'I N̂ �
ˇ
ˇ
'D0; N̂ D N̂ sc

k
D 0 (13)

which involves only the level-(1) functional L�1
k . Later on in the applications this

trivial observation has the important consequence that self-consistent background
field configurations N̂ sc

k .x/ can contain only running coupling constants of level
p D 1, that is, the couplings parameterizing the functional L�1

k which is linear in '.
In our later discussions the value of the EAA at ' D 0 will be of special interest.

While it is still a rather complicated functional for a generic background where
�kŒ0I N̂ � D �WkŒJkŒ0I N̂ �I N̂ �, the source which is necessary to achieve ' D 0 for
self-consistent backgrounds is precisely J D 0, implying

�kŒ0I N̂ sc
k � � L�0

k Œ0I N̂ sc
k � D �WkŒ0I N̂ sc

k � (14)

Here we also indicated that in a level expansion only the p D 0 term of �k survives
putting ' D 0. Note that �kŒ0I N̂ sc

k � can contain only couplings of the levels p D 0

and p D 1, respectively, the former entering via L�0
k , the latter via N̂ sc

k .

FIDE, FRGE, and WISS The EAA satisfies a number of important exact func-
tional equations which include a functional integro-differential equation (FIDE), the
functional RG equation (FRGE), the Ward identity for the Split-Symmetry (WISS),
and the BRS-Ward identity.

In full generality, the FIDE reads

e��k Œ'I N̂ � D
Z

D0 O' exp

�

�SŒ O'I N̂ � � �SkŒ O'I N̂ � C
Z

ddx O'.x/
ı�k

ı'.x/
Œ'I N̂ �

�
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The last term on its RHS, the one linear in O', vanishes if the background is self-
consistent and, in addition, ' D 0 is inserted:

exp
���kŒ0I N̂ sc

k �
� D

Z
D0 O' exp

��SŒ O'I N̂ sc
k � � �SkŒ O'I N̂ sc

k �
�

(15)

We shall come back to this important identity soon.
Another exact relation satisfied by the EAA is the FRGE,

k@k�kŒ'I N̂ � D 1

2
STr

��
�

.2/
k Œ'I N̂ � C RkŒ N̂ �

��1

k@kRkŒ N̂ �

	

(16)

comprising the Hessian matrix of the fluctuation derivatives �
.2/
k � ı2�k=ı'2. The

supertrace ‘STr’ in (16) provides the additional minus sign which is necessary for
the '-components with odd Grassmann parity, Faddeev-Popov ghosts and fermions.

The action �kŒˆ; N̂ � satisfies the following exact functional equation which
governs the ‘extra’ background dependence which it has over and above the one
which combines with the fluctuations to form the full field ˆ � N̂ C ':

ı

ı N̂ .x/
�kŒˆ; N̂ � D 1

2
STr

��
�

.2/
k Œˆ; N̂ � C RkŒ N̂ �

��1 ı

ı N̂ .x/
S.2/

tot Œˆ; N̂ �

	

(17)

Here S.2/
tot is the Hessian of Stot D S C �Sk with respect to ˆ, where S includes

gauge fixing and ghost terms. Equation (17) is the Ward identity induced by the
split-symmetry transformations ı' D ", ı N̂ D �", hence the abbreviation ‘WISS’.
First obtained in [22] for Yang-Mills theory, extensive use has been made of (17) in
quantum gravity [23] as a tool to assess the degree of split-symmetry breaking and
the reliability of certain truncations [24].

Pointwise monotonicity From the definition of the EAA by a Legendre transform
it follows that, for all N̂ , the sum �k C �Sk is a convex functional of ', and that
�

.2/
k CRk is a strictly positive definite operator which can be inverted at all scales k 2

.0; 1/. Now let us suppose that the theory under consideration contains Grassmann-
even fields only. Then the supertrace in (16) amounts to the ordinary, and convergent
trace of a positive operator so that the FRGE implies

k@k�kŒ'I N̂ � � 0 at all fixed '; N̂ : (18)

Thus, at least in this class of distinguished theories the EAA, evaluated at any fixed
pair of arguments ' and N̂ , is a monotonically increasing function of k. With other
words, lowering k from the UV towards the IR the value of �kŒ'I N̂ � decreases
monotonically. We refer to this property as pointwise monotonicity in order to
emphasize that it applies at all points of field space, .'; N̂ /, separately.

In presence of fields with odd Grassmann parity, fermions and Faddeev-Popov
ghosts, the RHS of the FRGE is no longer obviously non-negative. However, if the
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only Grassmann-odd fields are ghosts the pointwise monotonicity (18) can still be
made a general property of the EAA, the reason being as follows. At least when
one implements the gauge fixing condition strictly, it cuts-out a certain subspace of
the space of fields Ô to be integrated over, namely the gauge orbit space. Hereby the
integral over the ghosts represents the measure on this subspace, the Faddeev-Popov
determinant. The subspace and its geometrical structures are invariant under the RG
flow, however. Hence the EAA pertaining to the manifestly Grassmann-even integral
over the subspace is of the kind considered above, and the argument implying (18)
should therefore be valid again. For a more detailed form of this argument we must
refer to [28]. From now on we shall make the explicit assumption, however, that the
sets ˆ and N̂ do not contain fermions.

Monotonicity vs. stationarity The EAA evaluated at fixed arguments shares the
monotonicity property with a C-function. However, �kŒ'I N̂ � is not stationary at
fixed points. In order to see why, and how to improve the situation, some care is
needed concerning the interplay of dimensionful and dimensionless variables, to
which we turn next.

(A) Let us assume that the space constituted by the functionals of ' and N̂ admits
a basis fI˛g so that we can expand the EAA as

�kŒ'I N̂ � D
X

˛

Nu˛.k/ I˛Œ'I N̂ � (19)

with dimensionful running coupling constants Nu � .Nu˛/. They obey a FRGE in
component form, k@k Nu˛.k/ D Nb˛.Nu.k/I k/, whereby the functions Nb˛ are defined
by the expansion TrŒ� � � � D P

˛
Nb˛.Nu.k/I k/ I˛Œ'I N̂ �.

(B) Denoting the canonical mass dimension1 of the running couplings by ŒNu˛� �
d˛, their dimensionless counterparts are defined by u˛ � k�d˛ Nu˛ . In terms of
the dimensionless couplings the expansion of �k reads

�kŒ'I N̂ � D
X

˛

u˛.k/kd˛ I˛Œ'I N̂ � (20)

Now observe that since �k is dimensionless the basis elements have dimensions

I˛Œ'I N̂ �

� D �d˛. Purely by dimensional analysis, this implies that2

I˛ŒcŒ'�'I cŒ N̂ � N̂ � D c�d˛ I˛Œ'I N̂ � for any constant c > 0. (21)

1Our conventions are as follows. We use dimensionless coordinates, Œx�� D 0. Then Œds2� D �2

implies that all components of the various metrics have ŒOg��� D ŒNg��� D Œg�� � D �2, and likewise
for the fluctuations: ŒOh�� � D Œh�� � D �2.
2We use the notation cŒ'�' � fcŒ'i �'ig for the set in which each field is rescaled according to its
individual canonical dimension.
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This relation expresses the fact that the nontrivial dimension of I˛ is entirely
due to that of its field arguments; there are simply no other dimensionful
quantities available after the k-dependence has been separated off. Using (21)
for c D k�1 yields the dimensionless monomials

kd˛ I˛Œ'I N̂ � D I˛Œk�Œ'�'I k�Œ N̂ � N̂ � � I˛Œ Q'I QN̂ � (22)

Here we introduced the sets of dimensionless fields,

Q'.x/ � k�Œ'�'.x/; QN̂ .x/ � k�Œ N̂ � N̂ .x/ (23)

which include, for instance, the dimensionless metric and its fluctuations:

Qh��.x/ � k2h��.x/; QNg��.x/ � k2 Ng��.x/ (24)

Exploiting (22) in (20) we obtain the following representation of the EAA
which is entirely in terms of dimensionless quantities3 now:

�kŒ'I N̂ � D
X

˛

u˛.k/ I˛Œ Q'I QN̂ � � AkŒ Q'I QN̂ � (25)

Alternatively, one might wish to make its k-dependence explicit, writing,

�kŒ'I N̂ � D
X

˛

u˛.k/ I˛Œk�Œ'�'I k�Œ N̂ � N̂ � (26)

In the second equality of (25) we introduced the new functional Ak which,
by definition, is numerically equal to �k, but its natural arguments are the

dimensionless fields Q' and QN̂ . Hence the k-derivative of AkŒ Q'; QN̂ � is to be

performed at fixed . Q'; QN̂ /, while the analogous derivative of �kŒ'I N̂ � refers
to fixed dimensionful arguments:

k@kAkŒ Q'I QN̂ � D
X

˛

k@ku˛.k/ I˛Œ Q'I QN̂ � (27a)

k@k�kŒ'I N̂ � D
X

˛

˚
k@ku˛.k/ C d˛u˛.k/

�
kd˛ I˛Œ'I N̂ � (27b)

(C) The dimensionless couplings u � .u˛/ can serve as local coordinates on theory
space,T . By definition, the ‘points’ of T are functionals A depending on

dimensionless arguments:AŒ Q'I QN̂ � D P
˛ u˛ I˛Œ Q'I QN̂ �. Geometrically speaking,

3Here one should also switch from k to the manifestly dimensionless ‘RG time’ t � ln.k/ C const,
but we shall not indicate this notationally.
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RG trajectories are curves k 7! Ak D P
˛ u˛.k/ I˛ 2 T that are everywhere

tangent to

k@kAk D
X

˛

ˇ˛.u.k// I˛ (28)

The functions ˇ˛ , components of a vector field ˇ on T , are obtained by
translating k@k Nu˛.k/ D Nb˛.Nu.k/I k/ into the dimensionless language. This leads
to the autonomous system of differential equations

k@ku˛.k/ � ˇ˛.u.k// D �d˛u˛.k/ C b˛.u.k// (29)

Here b˛, contrary to its dimensionful precursor Nb˛, has no explicit k-depen-
dence, thus defining an RG-time independent vector field, the ‘RG flow’
.T ;ˇ/.

If the flow has a fixed point at some u�, i.e. ˇ˛.u�/ D 0, the ‘velocity’
of any trajectory passing this point vanishes there, k@ku˛ D 0. Hence by (28)
the action Ak becomes stationary there, that is, its scale derivative vanishes
pointwise,

k@kAkŒ Q'I QN̂ � D 0 for all fixed Q'; QN̂ : (30)

So the entire functional Ak approaches a limit, A� D P
˛ u�̨ I˛ . The standard

EAA instead keeps running even in the fixed point regime:

�kŒ'I N̂ � D
X

˛

u�̨ kd˛ I˛Œ'I N̂ � when u˛.k/ D u�̨ : (31)

(D) This brings us back to the ‘defect’ of �k we wanted to repair: While �kŒ'I N̂ �

was explicitly seen to decrease monotonically along RG trajectories, it does
not come to a halt at fixed points in general. The redefined functional Ak,
instead, approaches a finite limit A� at fixed points, but is it monotone along
trajectories?

Unfortunately this is not the case, and the culprit is quite obvious, namely
the d˛u˛-terms present in the scale derivative of �k, but absent for Ak. The
positivity of the RHS of Eq. (27b) does not imply the positivity of the RHS

of Eq. (27a), and there is no obvious structural reason for k@kAkŒ Q'I QN̂ � � 0

at fixed Q', QN̂ . The best we can get is the following lower bound for the scale

derivative: k@kAkŒ Q'I QN̂ � � � P
˛ d˛u˛.k/ I˛Œ Q'I QN̂ �.

The proposal The complementary virtues of Ak and �k with respect to monotonic-
ity along trajectories and stationarity at critical points suggest the following strategy
for finding a C-type function with better properties: Rather than considering the
functionals pointwise, i.e. with fixed configurations of either the dimensionless or
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dimensionful fields inserted, one should evaluate them at explicitly scale dependent

arguments: Ck
‹D �kŒ'kI N̂ k� � AkŒ Q'kI QN̂ k�. The hope is that 'k � kŒ'� Q'k, and

N̂ k � kŒ N̂ � QN̂ k can be given a k-dependence which is intermediate between the two

extreme cases .'; N̂ / D const and . Q'; QN̂ / D const, respectively, so as to preserve as
much as possible of the monotonicity properties of �k, while renderingCk stationary
at fixed points of the RG flow.

The most promising candidate which we could find so far is

Ck D �kŒ0I N̂ sc
k � D AkŒ0I QN̂ sc

k � (32)

Here the fluctuation argument is set to zero, 'k � 0, and for the background
we choose a self-consistent one, N̂ sc

k , a solution to the tadpole equation (11), or
equivalently its dimensionless variant

ı

ı Q'.x/
AkŒ Q'I QN̂ �

ˇ
ˇ

Q'D0; QN̂ D QN̂ sc
k

D 0 (33)

The function k 7! Ck defined by Eq. (32) has a number of interesting properties
to which we turn next.

(i) Stationarity at critical points. When the RG trajectory approaches a fixed

point, AkŒ Q'I QN̂ � approaches A�Œ Q'I QN̂ � pointwise. Furthermore, the tadpole

equation (33) becomes .ıA�=ı Q'/Œ0I QN̂ �� D 0. It is k-independent, and so is

its solution, QN̂ �. Thus Ck approaches a well defined, finite constant:

Ck
FP�! C� D A�Œ0I QN̂ �� (34)

Of course we can write this number also as C� D �kŒ0I kŒ N̂ � QN̂ �� wherein the
explicit and the implicit scale dependence of the EAA cancel exactly when a
fixed point is approached.

(ii) Stationarity at classicality. In a classical regime (‘CR’), by definition, Nb˛ !
0, so that the dimensionful couplings stop running: Nu˛.k/ ! NuCR

˛ D const.
Thus, by (19), �k approaches �CR D P

˛ NuCR
˛ I˛ pointwise. Hence the dimen-

sionful version of the tadpole equation, (11), becomes k-independent, and the
same is true for its solution, N̂ sc

CR. So, when the RG trajectory approaches a
classical regime, Ck asymptotes a constant:

Ck
CR�! CCR D �CRŒ0I N̂ sc

CR� (35)

Alternatively we can write CCR D AkŒ0I k�Œ N̂ � N̂ sc
CR� where it is now the explicit

and implicit k-dependence of Ak which cancel mutually.
We observe that there is a certain analogy between ‘criticality’ and ‘classi-

cality’, in the sense that dimensionful and dimensionless couplings exchange
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their roles. The difference is that the former situation is related to special points
of theory space, while the latter concerns extended regions in T . In those
regions, Ak keeps moving as AkŒ � � D P

˛ NuCR
˛ k�d˛ I˛Œ � �. Nevertheless it is

natural, and of particular interest in quantum gravity, to apply a (putative) C-
function not only to crossover trajectories in the usual sense which connect
two fixed points, but also to generalized crossover transitions where one of the
fixed points is replaced by a classical regime.

(iii) Monotonicity at exact split-symmetry. If split-symmetry is exact in the sense
that �kŒ'I N̂ � depends on the single independent field variable N̂ C ' � ˆ

only, and the theory is one of those for which pointwise monotonicity (18)
holds true, then k 7! Ck is a monotonically increasing function of k. In fact,
differentiating (32) and using the chain rule yields

@kCk D .@k�k/ Œ0I N̂ sc
k � C

Z
ddx

�
@k N̂ sc

k .x/
�

�
ı�k

ı N̂ .x/
� ı�k

ı'.x/

�ˇ
ˇ
ˇ
ˇ
'D0; N̂ D N̂ sc

k

(36)

In the first term on the RHS of (36) the derivative @k hits only the explicit
k-dependence of the EAA. By Eq. (18) we know that this contribution is non-
negative. The last term, the ı=ı'-derivative, is actually zero by the tadpole
equation (11). Including it here it becomes manifest that the integral term
in (36) vanishes when �k depends on ' and N̂ only via the combination ' C N̂ .
Thus we have shown that

@kCk � 0 at exact split-symmetry (37)

This is already close to what one should prove in order to establish Ck as a
‘C-function’. In particular in theories that require no breaking of split-symmetry
the integral term in (36) is identically zero and we know that @kCk � 0 holds true.

Whether or not @kCk is really non-negative for all k depends on the size of
the split-symmetry breaking the EAA suffers from. To prove monotonicity of Ck

one would have to show on a case-by-case basis that the second term on the
RHS of (36) never can override the first one, known to be non-negative, so as to
render their sum negative. In the next section we shall perform this analysis in a
truncation of Quantum Einstein Gravity, but by working directly with the definition
Ck D �kŒ0I N̂ sc

k � instead of Eq. (36).

Relating Ck to a spectral density Under special conditions, the EAA can be shown
to literally ‘count’ field modes. For a sharp cutoff, and if L � �

.2/
k Œ0I N̂ sc

k � is such
that it can be used as the cutoff operator, a formal calculation based upon the exact
FRGE yields for the scale derivative of our candidate C-function:

d

dk2
Ck D Tr

h
ı

�
k2 � �

.2/
k Œ0I N̂ sc

k �
�i

� 0 (38)
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This is exactly the spectral density of the Hessian operator, for the sc-background
and vanishing fluctuations, a manifestly non-decreasing function of k. If the k-
dependence of �

.2/
k is negligible relative to k2, Eq. (38) is easily integrated:

Ck D Tr
h
‚

�
k2 � �

.2/
k Œ0I N̂ sc

k �
�i

C const (39)

Thus, at least under the special conditions described and when the spectrum is
discrete, Ck indeed counts field modes in the literal sense of the word.

Regardless of the present approximation we define in general

Nk1;k2 � Ck2 � Ck1 (40)

Then, in the cases when the above assumptions apply and (39) is valid, Nk1;k2 has a
simple interpretation: it equals the number of eigenvalues between k2

1 and k2
2 > k2

1

of the Hessian operator �
.2/
k Œ0I N̂ sc

k �. When the assumptions leading to (39) are not
satisfied, the interpretation of Nk1;k2 , and Ck in the first place, is less intuitive, but
these quantities are well defined nevertheless.

3 Asymptotically Safe Quantum Gravity

Next, we test the above Ck-candidate and apply it to Quantum Einstein Gravity, a
theory which is asymptotically safe most probably, that is, all physically relevant RG
trajectories start out in the UV, for k ‘D’ 1, at a point infinitesimally close to a non-
Gaussian fixed point of the flow generated by the FRGE (16). When k is lowered, the
trajectories run towards the IR, always staying within the fixed point’s UV critical
manifold, and ultimately approach the (dimensionless) ordinary effective action.

Dealing with pure metric gravity here we identify ˆ � .g��; � � � /, N̂ �
.Ng��; � � � /, and ' � .h��; � � � / as the dynamical, background, and fluctuation fields,
respectively, where the dots stand for the entries due to the Faddeev-Popov ghosts.
To make the analysis technically feasible we are going to truncate the corresponding
theory space. Following Ref. [28] we focus here on the so-called bi-metric Einstein-
Hilbert truncation. The corresponding ansatz for the EAA has the structure �k D
�

grav
k Œg; Ng� C � � � where the dots represent gauge fixing and ghost terms which are

taken to be k-independent and of classical form. The diffeomorphically invariant
part of the action, �

grav
k , comprises two separate Einstein-Hilbert terms built from

the dynamical metric, g�� , and its background analog, Ng�� , respectively:

�
grav
k Œg; Ng� D � 1

16�GDyn
k

Z
ddx

p
g

�
R.g/ � 2ƒ

Dyn
k

�

� 1

16�GB
k

Z
ddx

pNg �
R.Ng/ � 2ƒB

k

�
(41)
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The four couplings
�

GDyn
k ; ƒ

Dyn
k ; GB

k ; ƒB
k

�
represent k-dependent generalizations

of the classical Newton and cosmological constant in the dynamical (‘Dyn’) and the
background (‘B’) sector, respectively. In the simpler ‘single-metric’ variant of the
Einstein-Hilbert truncation [13] the difference between g�� and Ng�� is not resolved,
and only one Einstein-Hilbert term is retained in �

grav
k . (Only in the gauge fixing

term the two metrics appear independently.)
Expanding Eq. (41) in powers of the fluctuation field h�� D g�� � Ng�� yields the

level-expansion of the EAA:

�
grav
k ŒhI Ng� D � 1

16�G.0/
k

Z
ddx

pNg
�

R.Ng/ � 2ƒ
.0/
k

�

� 1

16�G.1/
k

Z
ddx

pNg
h

� NG�� � ƒ
.1/
k Ng��

i
h�� C O.h2/ (42)

In the level-description, the background and dynamical couplings appear in certain
combinations in front of invariants that have a definite level, i.e. order in h�� . The

two sets of coupling constants are related by 1=G.0/
k D 1=GB

k C 1=GDyn
k at level

zero, and G.p/
k D GDyn

k at all higher levels p � 1, and similarly for the ƒ’s. Thus,
by hypothesis, all couplings of level p � 1 are assumed equal in this truncation. In
either parametrization the truncated theory space is 4-dimensional.

The beta-functions describing the flow of the dimensionless couplings gI
k �

kd�2GI
k and 	I

k � k�2ƒI
k for I 2 fB; Dyn; .0/; .1/g were derived and analyzed in

[13, 25, 29]. They were shown to give rise to both a trivial and a non-Gaussian fixed
point (NGFP). A 2-dimensional projection of the RG flow onto the gDyn-	Dyn-plane
is shown in Fig. 1. It is strikingly similar to the well known phase portrait of the
corresponding single-metric truncation [16]. In this projection we can identify the
same familiar classes of trajectories, namely those of type Ia, IIa, or IIIa, depending
on whether the cosmological constant approaches �1, 0, or C1 in the IR. The
type IIIa trajectories display a generalized crossover transition which connects a
fixed point in the UV to a classical regime in the IR. The latter is located on the
trajectory’s lower, almost horizontal branch where g; 	 � 1 [30].

Gravitational instantons For the bi-metric Einstein-Hilbert truncation, the tadpole
equation boils down to

R��.Ngsc
k / D 2

d � 2
ƒ

.1/
k Ngsc

k �� (43)

so that the self-consistent backgrounds are Einstein spaces, M, with cosmological
constant ƒ

.1/
k . Furthermore, for Ck to be finite, the manifold M must have a finite

volume. Trying to find backgrounds that exist for all scales the simplest situation
arises when all metrics Ngsc

k , k 2 Œ0; 1/ can be put on the same smooth manifold
M, leading in particular to the same spacetime topology at all scales, thus avoiding
the delicate issue of a topological change. This situation is realized, for example, if



Is There a C-Function in 4D Quantum Einstein Gravity? 35
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Fig. 1 Phase portrait on the gDyn-	Dyn plane as obtained by projecting the 4-dimensional bi-
metric flow. This projection is qualitatively identical with the corresponding single-metric RG
flow, displaying in particular the projection of a 4-dimensional non-Gaussian fixed point (NGFP)

the level-(1) cosmological constant is positive on all scales, as it is indeed the case
along the type (IIIa) trajectories: ƒ

.1/
k > 0, k 2 Œ0; 1/.

In the following we focus on this case, and we also specialize for d D 4. The
requirement of a finite volume is then met by a well studied class of Einstein spaces
which exist for an arbitrary positive value of the cosmological constant, namely
certain 4-dimensional gravitational instantons, such as Euclidean de Sitter space,
S4, the Page metric, the product space S2 
 S2, or the Fubini-Study metric on the
projective space P2.C/ [31]. If Vg�� is one of these instanton metrics for some

reference value of the cosmological constant, Vƒ, simple scaling arguments imply

that Ng sc
k �� D

� Vƒ=ƒ
.1/
k

�
Vg�� is a solution to the tadpole equation at any scale k.

Inserting it into the truncation ansatz for �k we find that the function k 7! Ck has
the general structure

Ck D C.g.0/
k ; 	

.0/
k ; 	

.1/
k / D Y.g.0/

k ; 	
.0/
k ; 	

.1/
k /V.M; Vg/ (44)

Herein Y. � / � C. � /=V is given by the following function over theory space:

Y.g.0/; 	.0/; 	.1// D �2	.1/ � 	.0/

g.0/ .	.1//2
.d D 4/ (45)

Note that C depends on both the RG trajectory and on the specific solution to the
running self-consistency condition that has been picked, along this very trajectory.
In Eq. (44) those two dependencies factorize: the former enters via Y, the latter via
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the dimensionless constant V.M; Vg/ � 1
8�

Vƒ2Vol.M; Vg/. It characterizes the type

of the gravitational instanton and can be shown to be actually independent of Vƒ.
For S4, for instance, its value is 3� , while the Fubini-Study metric has 9�

2
. The

dependence on the trajectory, parametrized as k 7! �
g.0;1/

k ; 	
.0;1/
k

�
, is obtained by

evaluating a scalar function on theory space along this curve, namely Y W T ! R,�
g.0;1/; 	.0;1/

� 7! Y.g.0/; 	.0/; 	.1//. It is defined at all points of T where g.0/ ¤ 0

and 	.1/ ¤ 0, and turns out to be actually independent of g.1/.
We shall refer to Yk � Y.g.0/

k ; 	
.0/
k ; 	

.1/
k / � Ck=V.M; Vg/ and Y. � / � C. � /=

V.M; Vg/ as the reduced Ck and C. � / functions, respectively.

Numerical results In [25] the type IIIa trajectories on
�
g.0/; 	.0/; g.1/; 	.1/

�
-theory

space were analyzed in detail. In [28] representative examples were computed
numerically, and then Ck was evaluated along these trajectories. Concerning the
monotonicity of Ck, the results can be summarized as follows.

The set of RG trajectories that are asymptotically safe, i.e. originate in the
UV at (or, more precisely, infinitesimally close to) the NGFP consists of two
fundamentally different classes, namely those that are ‘physical’ and restore split-
symmetry at their end point k D 0, and those which do not. (Within the present
truncation, and according to the lowest order of the WISS, Eq. (17), intact split-
symmetry amounts to g.0/

k D g.1/
k and 	

.0/
k D 	

.1/
k .) Along all trajectories that do

restore split-symmetry, Ck was found to be perfectly monotone, and stationary both
at the NGFP and in the classical regime. Unphysical trajectories, not restoring split-
symmetry in the IR, on the other hand, can give rise to a non-monotone behavior of
Ck.

A similar analysis was performed on the basis of the single-metric version of
the Einstein-Hilbert truncation with a 2 dimensional theory space. It is less precise
than its bi-metric counterpart as it hypothesizes perfect split-symmetry on all scales,
something that can be true at best approximately because of the various unavoidable
sources of symmetry breaking in the EAA (cutoff action �Sk, gauge fixing term).
Regarding the monotonicity of Ck, we found that Ck fails to be monotone for
any of the single-metric type IIIa trajectories. The detailed analysis revealed that
this failure is due to the (not quite unexpected) insufficiency of the single-metric
approximation, rather than to a structural defect of the candidate Ck D �kŒ0I N̂ sc

k �.
For a typical RG trajectory, both the single- and bi-metric Ck-functions are depicted
in Fig. 2.

The numerical results [28] lend strong support to the following

Conjecture: In the full theory, QEG in 4 dimensions, or in a sufficiently general
truncation thereof, the proposed candidate for a ‘C-like’ function is a monotonically
increasing function of k along all RG trajectories that restore split-symmetry in the
IR and thus comply with the fundamental requirement of Background Independence.

Crossover trajectories and entropy of de Sitter space The function Ck for
truncated QEG is stationary at fixed points as well as in classical regimes. This
is obvious from the following two alternative representations of the reduced
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Fig. 2 The function 1=Yk computed from the bi-metric (left diagram) and the single-metric trun-
cation (right diagram), respectively, along a representative type IIIa trajectory. The monotonicity
of Ck is violated if the scale derivative of 1=Yk, shown in the two insets, assumes positive values

Ck-function:

Yk D �2	
.1/
k � 	

.0/
k

g.0/
k

�
	

.1/
k

�2
D �2ƒ

.1/
k � ƒ

.0/
k

G.0/
k

�
ƒ

.1/
k

�2
(46)

We see that Yk, and hence Ck becomes stationary when the dimensionless couplings
are at a fixed point of the flow, and also when the dimensionful ones become scale
independent; this is the case in a classical regime (‘CR’) where, by definition,
no physical RG effects occur. If ƒI

CR and GI
CR denote the constant values of

the cosmological and Newton constants there, this regime amounts to the trivial
canonical scaling 	I

k D k�2ƒI
CR and gI

k D kd�2GI
CR.

As a result, there exists the possibility of generalized crossover transitions, not
in the standard way from one fixed point to another, but rather from a fixed point
to a classical regime or vice versa. Thereby Ck will always approach well defined
stationary values C� and CCR in the respective fixed point or classical regime.
In quantum gravity, the investigations of such generalized crossover transitions
is particularly important since one of its main tasks consists in explaining the
emergence of a classical spacetime from the quantum regime.

Specializing again for an asymptotically safe type IIIa trajectory, the initial point
in the UV is a non-Gaussian fixed point. For the limit CUV � limk!1 Ck the bi-
metric calculation yields CUV D C�, with

C� D �2	
.1/
� � 	

.0/
�

g.0/
�

�
	

.1/
�

�2
V.M; Vg/ (47)

According to the Einstein-Hilbert results for the NGFP, �C�=V.M; Vg/ is a positive
number of order unity, presumably between about 4 and 8. Concerning the opposite
limit C IR D limk!0 Ck, the trajectory describes a generalized crossover, enters a
classical regime, and restores split-symmetry for k ! 0. This entails C IR D CCR



38 D. Becker and M. Reuter

where

CCR D �V.M; Vg/

GCRƒCR
(48)

Here we exploited that split-symmetry implies the values of GCR and ƒCR to be
level independent.

We may conclude that in an asymptotically safe theory of quantum gravity
which is built upon a generalized crossover trajectory from criticality (the NGFP)
to classicality the Ck-function candidate implies the ‘integrated C-theorem’ N �
N0;1 D CUV � C IR with finite numbers CUV, C IR, and N .

This finiteness is in marked contrast to what standard perturbative field theory
would predict. Clearly, the Asymptotic Safety of QEG is the essential prerequisite
for this property since it is the non-Gaussian fixed point that assigns a well defined,
computable value to CUV.

The quantity N can be interpreted as a measure for the ‘number of modes’ which
are integrated out while the cutoff is lowered from infinity to k D 0. The notion
of ‘counting’ and the precise meaning of a ‘number of field modes’ is defined by
the EAA itself, namely via the identification Ck D �kŒ N̂ sc

k ; N̂ sc
k �. We saw in the

previous section that, under special conditions, Ck is literally counting the �
.2/
k -

eigenvalues in a given interval. However, generically we are dealing with a non-
trivial generalization thereof which, strictly speaking, amounts to a definition of
‘counting’. As such it is probably the most natural one from the perspective of the
EAA and the geometry of theory space.

Let us consider a simple caricature of the real Universe, namely a family of
de Sitter spaces along a type IIIa trajectory, whose classical regime in the IR has
ƒCR > 0. Assuming it represents the real final state of the evolution, we have
C IR D �3�=GCRƒCR < 0. Note that jC IRj equals precisely the well known semi-
classical Bekenstein-Hawking entropy of de Sitter space.

If in particular GCRƒCR � 1, corresponding to a very ‘large’ classical Universe,
we have jC IRj 	 1, while jCUVj D O.1/ is invariably determined by the NGFP
coordinates. As a consequence, the number N is completely dominated by the IR
part of the trajectory:

N D CUV � C IR � �C IR � C 3�

GCRƒCR
	 1 (49)

Identifying ƒCR and GCR with the corresponding values measured in the real
Universe we would find N � 10120.

Thus, in the sense explained above, the familiar Bekenstein-Hawking entropy of
de Sitter space acquires a rather concrete interpretation, namely as the number of
metric and ghost fluctuation modes that are integrated out between the NGFP in the
UV and the classical regime in the IR. It plays a role analogous to the central charge
of the IR conformal field theory in Zamolodchikov’s case.
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Beside monotonicity and stationarity, Ck has another essential property in com-
mon with a C-function: The limiting value C� has a genuine inherent interpretation
at the fixed point itself. It is a number characteristic of the NGFP which does not
depend on the direction it is approached, and in this role it is analogous to the central
charge. The interpretation of C� is best known for the single-metric approximation
.g.0/ � g.1/; 	.0/ � 	.1// where, apart from inessential constants, it is precisely
the inverse of the dimensionless combination g�	� D Gk!1ƒk!1. Its physical
interpretation is that of an ‘intrinsic’ measure for the size of the cosmological
constant at the fixed point, namely the limit of the running cosmological constant
in units of the running Planck mass (G�1=2

k ). In numerous single-metric studies the
product g�	� has been investigated, and it was always found that g�	� is a universal
quantity, i.e. it is independent of the cutoff scheme and the gauge fixing, within
the accuracy permitted by the approximation. In fact, typically the universality
properties of g�	� were even much better than those of the critical exponents.
Completely analogous remarks apply to the bi-metric generalization.

Concerning the finiteness of N , the situation changes fundamentally if we try
to define the function k 7! Ck along trajectories of the type Ia, those heading for a
negative cosmological constant 	Dyn after leaving the NGFP regime, and of type IIa,
the single trajectory which crosses over from the NGFP to the Gaussian fixed point.
For all type Ia trajectories, Ck becomes singular at some nonzero scale ksing > 0

when they pass 	Dyn D 0: As Eq. (45) shows, Y. � / and C. � / have a pole there so
that Ck diverges in the limit k & ksing. The number Nksing;1 is infinite then, even
though not all modes are integrated out yet. There is a non-trivial RG evolution also
between ksing and k D 0. The tadpole equation has qualitatively different solutions
for k > ksing, k D ksing, and k < ksing, namely spherical, flat, and hyperbolic spaces,
respectively (Sd, Rd, and Hd, say). This topology change prevents us from smoothly
continuing the mode count across the 	Dyn D 0 plane. This is the reason why we
mostly focused on type IIIa trajectories here.

4 Summary

The effective average action is a variant of the standard effective action which has
an IR cutoff built in at a sliding scale k. At least for systems without fermions it
possesses a natural mode counting and (‘pointwise’) monotonicity property which
is strongly reminiscent of, but actually not equivalent to, Zamolodchikov’s C-
function in 2 dimensions. Motivated by this observation, and taking advantage of the
structures and tools that are naturally provided by the manifestly non-perturbative
EAA framework, we tried to find a map from the functional �kŒˆ; N̂ � to a single
real valued function Ck that shares two main properties with the C-function in 2
dimensions, namely monotonicity along RG trajectories and stationarity at RG fixed
points. Such a map is unlikely to exist in full generality. In fact, an essential part
of the research program we are proposing consists in finding suitable restrictions
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on, or specializations of the admissible trajectories (restoring split-, or other
symmetries, etc.), the theory space (with respect to field contents and symmetries),
the underlying space of fields (boundary conditions, regularity requirements, etc.),
and the coarse graining methodology (choice of cutoff, treatment of gauge modes,
etc.) that will guarantee its existence. We motivated a specific candidate for a map
of this kind, namely Ck D �kŒ N̂ sc

k ; N̂ sc
k � where N̂ sc

k is a running self-consistent
background, a solution to the tadpole equation implied by �k. This function Ck is
stationary at fixed points, and a non-decreasing function of k provided the breaking
of the split-symmetry which relates fluctuation fields and backgrounds is sufficiently
weak. Thus, for a concrete system the task is to identify the precise conditions under
which the split-symmetry violation does not destroy the monotonicity property of
Ck, and to give a corresponding proof then.

By means of a particularly relevant example, asymptotically safe QEG in 4
dimensions, we demonstrated that this strategy is viable in principle and can indeed
lead to interesting candidates for ‘C-like’ functions under conditions which are not
covered by the known c- and a-theorems. Within a sufficiently precise truncation of
QEG, on a 4 dimensional theory space, we showed that Ck has exactly the desired
properties of monotonicity and stationarity, provided it is based upon a physically
meaningful RG trajectory, that is, one which leads to a restoration of Background-
Independence once all field modes are integrated out.
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