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Abstract In this review an overview on some recent developments in deformation
quantization is given. After a general historical overview we motivate the basic
definitions of star products and their equivalences both from a mathematical and
a physical point of view. Then we focus on two topics: the Morita classification of
star product algebras and convergence issues which lead to the nuclear Weyl algebra.
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1 Introduction: A Historical Tour d’Horizon

In the last decades, deformation quantization evolved into a widely accepted
quantization scheme which, on one hand, provides deep conceptual insights into the
question of quantization and, on the other hand, proved to be a reliably technique
leading to explicit understanding of many examples. It will be the aim of this review
to give some overview on the developments of deformation quantization starting
from the beginnings but also including some more recent ideas.

The original formulations of deformation quantization by Bayen et. al. aimed
mainly at finite-dimensional classical mechanical systems described by symplectic
or Poisson manifolds [5] and axiomatized the heuristic quantization formulas found
earlier by Weyl, Groenewold and Moyal [56, 73, 89]. Berezin considered the more
particular case of bounded domains and Kähler manifolds [7–9]. Shortly after it
proved to be a valuable tool to approach also problems in quantum field theories,
see e.g. the early works of Dito [41–43].

Meanwhile, the question of existence and classification of deformation quanti-
zations, i.e. of star products, on symplectic manifolds was settled: first DeWilde
and Lecomte showed the existence of star products on symplectic manifolds [39]
in 1983 after more particular classes [38, 40] had been considered. Remarkably,
also in 1983 the first genuine class of Poisson structures was shown to admit star
products, the linear Poisson structures on the dual of a Lie algebra, by Gutt [57]
and Drinfel’d [47]. In 1986 Fedosov gave a very explicit and constructive way to
obtain star products on a symplectic manifold by means of a symplectic connection
[53], see also [54, 55] for a more detailed version. His construction is still one of the
cornerstones in deformation quantization as it provides not only a particularly nice
construction allowing to adjust many special features of star products depending
on the underlying manifold like e.g. separation of variables (Wick type) on Kähler
manifolds [14, 61, 62, 79] or star products on cotangent bundles [19–21]. Even
beyond the symplectic world, Fedosov’s construction was used to globalize the
existence proofs of star products on Poisson manifolds [36, 44].

Even though the symplectic case was understood well, the question of existence
on Poisson manifolds kept its secrets till the advent of Kontsevich’s formality
theorem, solving his formality conjecture [63, 64, 67]. To give an adequate overview
on Kontsevich’s formality theorem would clearly go beyond the scope of this short
review. Here one can rely on various other publications like e.g. [35, 52]. In a
nutshell, the formality theorem proves a very general fact about smooth functions on
a manifold from which it follows that every (formal series of) Poisson structures can
be quantized into a star product, including a classification of star products. Parallel to
Kontsevich’s groundbreaking result, the classification of star products on symplectic
manifolds was achieved and compared by several groups [10, 37, 58, 77, 78]. Shortly
after Kontsevich, Tamarkin gave yet another approach to the quantization problem
on Poisson manifolds [84], see also [65, 68], based on the language of operads
and the usage of Drinfel’d associators. Starting with these formulations, formality
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theory has evolved and entered large areas of contemporary mathematics, see e.g.
[1–3, 45, 46, 65, 66] to name just a few.

While deformation quantization undoubtedly gave many important contribution
to pure mathematics over the last decades, it is now increasingly used in contem-
porary quantum physics as well: perhaps starting with the works of Dütsch and
Fredenhagen on the perturbative formulations of algebraic quantum field theory
[49–51] it became clear that star products provide the right tool to formulate
quantum field theories in a semiclassical way, i.e. as formal power series in „. Now
this has been done in increasing generalities for various scenarios including field
theories on general globally hyperbolic spacetimes, see e.g. [4, 22, 23, 59].

Of course, from a physical point of view, deformation quantization can not yet
be the final answer as one always deals with formal power series in the deformation
parameter „. A physically reasonable quantum theory, however, requires of course
convergence. Again, in the very early works [5] some special cases were treated,
namely the Weyl-Moyal product for which an integral formula exists which allows
for a reasonable analysis based on the Schwartz space. The aims here are at least
two-fold. On one hand one wants to establish a reasonable spectral calculus for
particular elements in the star product algebra which allows to compute spectra in
a physically sensitive way. This can be done with the star exponential formalism,
which works in particular examples but lacks a general framework. On the other
hand, one can try to establish form the formal star product a convergent version
such that in the end one obtains a C�-algebra of quantum observables being a
deformation, now in a continuous way, of the classical functions on the phase
space. This is the point of view taken by strict deformation quantization, most
notably advocated by Rieffel [81, 82] and Landsman [70], see also [16, 30–33]
for the particular case of quantizable Kähler manifolds and [74–76] for more
general symplectic manifolds. Bieliavsky and coworkers found a generalization of
Rieffel’s approach by passing from actions of the abelian group R

d to more general
Lie group actions [11–13]. Having a C�-algebra one has then the full power of
C�-algebra techniques at hands which easily allows to get a reasonable spectral
calculus. However, constructing C�-algebraic quantizations is still very much in
development: here one has not yet a clear picture on the existence and classification
of the quantizations. In fact, one even has several competing definitions of what
one is looking for. It is one of the ongoing research projects by several groups to
understand the transition between formal and strict quantizations in more detail.

Needless to say, in the above historical survey we can barely scratch on the
surface of this vast topic: many aspects have not been mentioned like the role played
of symmetries and reduction, the applications to concrete physical systems, various
generalizations of deformation quantization to other geometric brackets, relations
to noncommutative geometry, and many more. In the remaining part of this review
we will focus on two aspects of the theory: first, we discuss the role of classification
results beyond the notion of equivalence, i.e. isomorphism. Here we are particularly
interested in the classification of star products up to Morita equivalence. Second,
we give a short outlook on star products in infinite dimensions and problems arising
there by investigating one particular example: the Weyl algebra of a vector space
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with a (quite arbitrary) bilinear form. Beside the purely algebraic construction we
obtain a locally convex algebraic deformation once we start in this category.

2 From Poisson Manifolds to Star Products

In this section we give a more detailed but still non-technical motivation of the
definition of star products and list some first examples.

The set-up will be a finite-dimensional phase space which we model by a
symplectic or, more generally, a Poisson manifold .M; �/ where � 2 �1.ƒ2TM/
is a bivector field satisfying

��; �� D 0: (1)

Here � � ; � � is the Schouten bracket and the condition is equivalent to the Jacobi
identity for the Poisson bracket

f f ; gg D � �� f ; �� ; g� D �.d f ; d g/ (2)

determined by � for functions f ; g 2 C1.M/. One can then formulate classical
Hamiltonian mechanics using � and f � ; � g. For a gentle introduction to Poisson
geometry see [87] as well as [34, 48, 71, 85]. There are several important examples
of Poisson manifolds:

• Every symplectic manifold .M; !/, where ! 2 �1.ƒ2T�M/ is a closed
non-degenerate two-form, is a Poisson manifold with � D !�1. The Jacobi
identity (1) corresponds then directly to d! D 0.

• Every cotangent bundle T�Q is a symplectic manifold in a canonical way with
an exact symplectic form ! D d � where � 2 �1.T�.T�Q// is the canonical (or
tautological) one-form on T�Q.

• Kähler manifolds are particularly nice examples of symplectic manifolds as they
possess a compatible Riemannian metric and a compatible complex structure.

• The dual g� of a Lie algebra g is always a Poisson manifold with a linear Poisson
structure: the coefficient functions of the tensor field � are linear functions on
g�, explicitly given by

f f ; gg.x/ D xic
i
k`

@f

@xk

@g

@x`
; (3)

where x1; : : : ; xn are the linear coordinates on g� and ci
k` are the corresponding

structure constants of g. Since (3) vanishes at the origin, this is never symplectic.
• Remarkably and slightly less trivial is the observation that on every manifold M,

for every p 2 M there is a Poisson structure � with compact support where �
ˇ
ˇ
p

has maximal rank.
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To motivate the definition of a star product we consider the most easy example
of the classical phase space R

2 with canonical coordinates .q; p/. Canonical
quantization says that we have to map the spacial coordinate q to the position
operator Q acting on a suitable domain in L2.R; d x/ as multiplication operator.
Moreover, we have to assign the momentum coordinate p to the momentum operator
P D �i„ @

@q , again defined on a suitable domain. Since we want to ignore functional-
analytic questions at the moment, we simply chose C1

0 .R/ as common domain for
both operators. In a next step we want to quantize polynomials in q and p as well.
Here we face the ordering problem as pq D qp but PQ ¤ QP. One simple choice is
the standard ordering

qnpm 7! %Std.q
npm/ D QnPm D .�i„/mqn @

m

@qm
(4)

for monomials and its linear extension to all polynomials. More explicitly, this gives

%Std. f / D
1X

rD0

1

rŠ

�„
i

�r
@rf

@pr

ˇ
ˇ
ˇ
pD0

@r

@qr
: (5)

Now this formula still makes sense for smooth functions f which are polynomial
only in p, i.e. for f 2 C1.R/Œp�. The main idea of deformation quantization is
now to pull-back the operator product: this is possible since the image of %Std is
the space of all differential operators with smooth coefficients which therefore is a
(noncommutative) algebra. We define the standard-ordered star product by

f ?Std g D %Std
�1.%Std. f /%Std.g// D

1X

rD0

1

rŠ

�„
i

�r
@rf

@pr

@rg

@qr
(6)

for f ; g 2 C1.R/Œ p�. While it is clear that ?Std is an associative product the
behaviour with respect to the complex conjugation is bad: we do not get a
�-involution f ?Std g ¤ g ?Std f since

%Std. f /� D %Std.N
2f / with N D exp

� „
2�

@2

@q@p

�

; (7)

as a simple integration by parts shows. We can repair this unpleasant feature by
defining the Weyl ordering and the Weyl product by

%Weyl. f / D %Std.Nf / and f ?Weyl g D N�1.Nf ?Std Ng/: (8)

Note that N is indeed an invertible operator on C1.R/Œp�. Again, ?Weyl is associative.
Then we get

f ?Weyl g D g ?Weyl f and %Weyl. f ?Weyl g/ D %Weyl. f /%Weyl.g/: (9)
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For both products we can collect the terms of order „r which gives

f ? g D
1X

rD0
„rCr. f ; g/ (10)

with bidifferential operators Cr of order r in each argument. The explicit formula for
?Weyl is slightly more complicated than the one for ?Std in (6) and easily computed.
We have

f ? g D fg C � � � and f ? g � g ? f D i„f f ; gg C � � � ; (11)

where C � � � means higher orders in „. Also f ? 1 D f D 1 ? f . Note also that
the seemingly infinite series in (10) is always finite as long as we take functions in
C1.R/Œp�.

The idea is now to axiomatize these features for ? in such a way that it makes
sense to speak of a star product on a general Poisson manifold. The first obstacle is
that on a generic manifold M there is nothing like functions which are polynomial
in certain coordinates. This is a chart-dependent characterization which one does
not want to use. But then already for ?Weyl and ?Std one encounters the problem that
for general f ; g 2 C1.R2/ the formulas (6) and (9) will not make any sense: the
series are indeed infinite and since we can adjust the Taylor coefficients of a smooth
function in a rather nasty way, there is no hope for convergence. The way out is to
consider formal star product in a first step, i.e. formal power series in „. This yields
the definition of star products [5]:

Definition 2.1 A formal star product ? on a Poisson manifold .M; �/ is an
associative CŒŒ„��-bilinear associative product for C1.M/ŒŒ„�� such that

f ? g D
1X

rD0
„rCr. f ; g/ (12)

with

1. C0. f ; g/ D fg,
2. C1. f ; g/� C1.g; f / D if f ; gg,
3. Cr.1; f / D 0 D Cr. f ; 1/ for r � 1,
4. Cr is a bidifferential operator.

Already in the trivial example above we have seen that there might be more
than one star product. The operator N interpolates between them and is invisible in
classical physics: for „ D 0 the operator N becomes the identity. As a formal series
of differential operators it is invertible and implements an algebra isomorphism.
This is now taken as definition for equivalence of star products: given two star
products ? and ?0 on a manifold, a formal power series T D P1

rD0 „rTr of
differential operators Tr with T1 D 1 is called an equivalence between ? and ?0
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if

f ?0 g D T�1.Tf ? Tg/: (13)

Note that T is indeed invertible as a formal power series. Hence this is an
equivalence relation. Conversely, given such a T and ? we get a new star product ?0
by (13).

We list now some basic examples of star products:

• The explicit formulas for ?Std and ?Weyl immediately generalize to higher dimen-
sions yielding equivalent star products on R

2n and hence also on every open
subset of R2n. Since by the Darboux Theorem every symplectic manifold looks
like an open subset of R2n locally, the question of existence of star products on
symplectic manifolds is a global problem.

• For the linear Poisson structure (3) on the dual g� of a Lie algebra g one gets
a star product as follows [57]: First, we note that the symmetric algebra S�.g/
over g can be canonically identified with the polynomials Pol�.g�/ on the dual
g�. Then the PBW isomorphism

S�.g/ 3 �1 _ � � � _ �k 7! .i„/k
kŠ

X

�2Sk

��.1/ � � � ��.k/ 2 U.g/ (14)

from the symmetric algebra over g into the universal enveloping algebra allows
to pull the product of U.g/ back to S�.g/ and hence to polynomials on g�. One
can now show that after interpreting „ as a formal parameter one indeed obtains a
star product quantizing the linear Poisson bracket. This star product is completely
characterized by the feature that

exp.„�/ ? exp.„	/ D exp.BCH.„�;„	// (15)

for �; 	 2 g with the Baker-Campbell-Hausdorff series BCH, see [19, 57].
• The next interesting example is perhaps the complex projective space CP

n and
its non-compact dual, the Poincaré disc Dn with their canonical Kähler structures
of constant holomorphic sectional curvature. For these, star products were
considered by Moreno and Ortega-Navarro [72] who gave recursive formulas
using local coordinates. Cahen, Gutt, and Rawnsley [30–33] discussed this in
their series of papers of quantization of Kähler manifolds as one of the examples.
The first explicit (non-recursive) formula was found in [17, 18] by a quantization
of phase space reduction and extended to complex Grassmannians in [83]. Ever
since these star products have been re-discovered by various authors.

We briefly comment on the general existence results: as already mentioned, the
symplectic case was settled in the early 1980s. The Poisson case follows from
Kontsevich’s formality theorem.

Theorem 2.2 (Kontsevich) On every Poisson manifold there exist star products.
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The classification is slightly more difficult to describe: we consider formal
Poisson structures

� D „�1 C „2�2 C � � � 2 „�1.ƒ2TM/ŒŒ„�� with ��; �� D 0: (16)

Moreover, let X D „X1 C „2X2 C � � � 2 „�1.TM/ŒŒ„�� be a formal vector field,
starting in first order of „. Then one calls exp.LX/ a formal diffeomorphism which
defines an action

exp.LX/W�1.ƒ2TM/ŒŒ„�� 3 
 7! 
 C LX
 C 1

2
L2

X
 C � � � 2 �1.ƒ2TM/ŒŒ„��:
(17)

Via the Baker-Campbell-Hausdorff series, the set of formal diffeomorphisms be-
comes a group and (17) is a group action. Since LX is a derivation of the Schouten
bracket, it follows that the action of exp.LX/ preserves formal Poisson structures.
The space of orbits of formal Poisson structures modulo this group action gives now
the classification:

Theorem 2.3 (Kontsevich) The set of equivalence classes of formal star products
is in bijection to the set of equivalence classes of formal Poisson structures modulo
formal diffeomorphisms.

In general, both moduli spaces are extremely difficult to describe. However, if
the first order term �1 in � is symplectic, then we have a much easier description
which is in fact entirely topological:

Theorem 2.4 (Bertelson, Cahen, Gutt, Nest, Tsygan, Deligne, . . . ) On a sym-
plectic manifold .M; !/ the equivalence classes of star products are in bijection to
the formal series in the second deRham cohomology. In fact, one has a canonical
surjective map

cW? 7! c.?/ 2 Œ!�

i„ C H2
dR.M;C/ŒŒ„�� (18)

such that ? and ?0 are equivalent iff c.?/ D c.?0/.

This map is now called the characteristic class of the symplectic star product.
In a sense which can be made very precise [29], the inverse of c.?/ corresponds to
Kontsevich’s classification by formal Poisson tensors.

3 Morita Classification

We come now to some more particular topics in deformation quantization. In this
section we discuss a coarser classification result than the above classification up to
equivalence.
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The physical motivation to look for Morita theory is rather simple and obvious: in
quantum theory we can not solely rely on the observable algebra as the only object
of interest. Instead we also need to have a reasonable notion of states. While for C�-
algebras there is a simple definition of a state as a normalized positive functional,
in deformation quantization we do not have C�-algebras in a first step. Surprisingly,
the notion of positive functionals still makes sense if interpreted in the sense of the
ring-ordering of RŒŒ„�� and produces a physically reasonable definition of states, see
[15]. However, the requirements from quantum theory do not stop here: we also need
a super-position principle for states. Since positive functionals can only be added
convexly, we need to realize the positive functionals as expectation value functionals
for a �-representation of the observable algebra on some (pre-) Hilbert space. Then
we can take complex linear combination of the corresponding vectors to implement
the super-position principle. This leads to the need to understand the representation
theory of the star product algebras, a program which was investigated in great detail
[24, 25, 27–29, 60], see also [86] for a review. The main point is that replacing the
ring of scalars from R to RŒŒ„�� and thus from C to CŒŒ„�� works surprisingly well as
long as we do not try to implement analytic concepts: the non-archimedean order of
RŒŒ„�� forbids a reasonable analysis. However, the concept of positivity is entirely
algebraic and hence can be used and employed in this framework as well.

In fact, one does not need to stop here: any ordered ring R instead of R will do the
job and one can study �-algebras over C D R.i/ and their �-representation theory
on pre Hilbert modules over C. For many reasons it will also be advantageous to
consider representation spaces where the inner product is not taking values in the
scalars but in some auxiliary �-algebra D.

Example Let E �! M be a complex vector bundle over a smooth manifold M.
Then �1.E/ is a C1.M/-module in the usual way. A Hermitian fiber metric h now
gives a sesquilinear map

h � ; � i W�1.E/ � �1.E/ �! C1.M/ (19)

which is also C1.M/-linear in the second argument, i.e. we have hs; tf i D hs; ti f
for all s; t 2 �1.E/ and f 2 C1.M/. Moreover, the pointwise positivity of hp on Ep

implies that the map

h � ; � i.n/ W�1.E/n � �1.E/n �! Mn.C
1.M// D C1.M;Mn.C// (20)

is positive for all n in the sense that the matrix-valued function hS; Si.n/ 2
C1.M;Mn.C// yields a positive matrix at all points of M for all S D .s1; : : : ; sn/ 2
�1.E/n.

Using this kind of complete positivity for an inner product yields the definition of
a pre Hilbert right module over a �-algebra D, where the inner product takes values
in D. Then again, we can formulate what are �-representations of a �-algebra A
on such a pre Hilbert right module over D. Without further difficulties this gives
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various categories of �-representations of �-algebras on inner product modules or
pre Hilbert modules over auxiliary �-algebras.

Having a good notion of �-representations of �-algebras it is a major talks to
understand the resulting categories for those �-algebras occurring in deformation
quantization. From C�-algebra theory we anticipate that already with the full power
of functional-analytic techniques it will in general be impossible to “understand”
the category of �-representations completely, beside rather trivial examples. The
reason is that there will simply be too many inequivalent such �-representations and
a decomposition theory into irreducible ones is typically an extremely hard problem.
In a purely algebraic situation like for formal star product algebras, things are even
worse: here we expect even more inequivalent ones which are just artifacts of the
algebraic formulation. There are many examples of inequivalent �-representations
which, after one implements mild notions of convergence and hence of analytic
aspects, become equivalent. From a physical point of view such inequivalences
would then be negligible. However, it seems to be quite difficult to decide this before
convergence is implemented, i.e. on the algebraic side.

Is the whole program now useless, hopeless? The surprising news is that one
can indeed say something non-trivial about the �-representation theories of the star
product algebras from deformation quantization, and for �-algebras in general. The
idea is that even if the �-representation of a given �-algebra is horribly complicated
and contains maybe unwanted �-representations, we can still compare the whole
�-representation theory of one �-algebra to another �-algebra and ask whether they
are equivalent as categories.

This is now the basic task of Morita theory. To get a first impression we
neglect the additional structure of ordered rings, �-involutions, and positivity and
consider just associative algebras over a common ring of scalars. For two such
algebras A and B we want to know whether their categories of left modules are
equivalent categories. Now there might be many very strange functors implementing
an equivalence and hence one requires them to be compatible with direct sums of
modules, which is clearly a reasonable assumption. The prototype of such a functor
is then given by the tensor product with a .B;A/-bimodule. Since the tensor product
with A itself is (for unital algebras) naturally isomorphic to the identity functor and
since the tensor product of bimodules is associative up to a natural isomorphism,
the question of equivalence of categories via such tensor product functors becomes
equivalent to the question of invertible bimodules: Here a .B;A/-bimodule BEA is
called invertible if there is an .A;B/-bimodule AE 0

B such that the tensor product

BEA ˝A AE 0

B is isomorphic to B and AE 0

B ˝B BEA is isomorphic to A, always as
bimodules.

The classical theorem of Morita now gives a complete and fairly easy description
of the possible bimodules with this property: BEA has to be a finitely generated
projective and full right A-module and B is isomorphic to EndA. EA/ via the left
module structure, see e.g. [69].

Now the question is how such bimodules look like for star product algebras.
Classically, the finitely generated projective modules over C1.M/ are, up to
isomorphism, just sections �1.E/ of a vector bundle E �! M. This is the



Recent Developments in Deformation Quantization 431

famous Serre-Swan theorem in its incarnation for differential geometry. As soon
as the fiber dimension is non-zero, the fullness condition is trivially satisfied. Hence
the only Morita equivalent algebras to C1.M/ are, again up to isomorphism, the
sections �1.End.E// of endomorphism bundles. The corresponding bimodule is
then �1.E/ on which both algebras act in the usual way. It now requires a little
argument to see that for star products, an equivalence bimodule gives an equivalence
bimodule in the classical limit „ D 0, i.e. a vector bundle. Conversely, the sections
of every vector bundle can be deformed into a right module over the star product
algebra in a unique way up to isomorphism. Thus for star products, we have to look
for the corresponding module endomorphisms of such deformed sections of vector
bundles. Finally, in order to get again a star product algebra, the endomorphisms of
the deformed sections have to be, in the classical limit, isomorphic to the functions
on a manifold again. This can only happen if the vector bundle was actually a line
bundle over the same manifold. Hence the remaining task is to actually compute the
star product of the algebra acting from the left side when the star product for the
algebra on the right side is known. Here one has the following results:

Theorem 3.1 (Bursztyn, W. [26]) Let .M; !/ and .M0; !0/ be a symplectic mani-
folds and let ?, ?0 be two star products on M and M0, respectively. Then ? and ?0
are Morita equivalent iff there exists a symplectomorphism  W M �! M0

 �c.?0/ � c.?/ 2 2�iH2
dR.M;Z/: (21)

The difference of the above classes defines then a line bundle which implements the
Morita equivalence bimodule by deforming its sections.

This theorem already has an important physical interpretation: for cotangent
bundles T�Q the characteristic classes c.?/ can be interpreted as the classes of
magnetic fields B on the configuration space Q. Then a quantization of a charged
particle in the background field of such a B requires a star product with characteristic
class c.?/. Compared to the trivial characteristic class, c.?/ D 0, the above theorem
then tells that quantization with magnetic field has the same representation theory
iff the magnetic field satisfies the integrality condition for a Dirac monopole. Thus
we get a Morita theoretic interpretation of the charge quantization for magnetic
monopoles which is now extremely robust against details of the quantization
procedure: the statement holds for all cotangent bundles and for all equivalent star
products with the given characteristic class.

Also in the more general Poisson case the full classification is known. Here the
actual statement is slightly more technical as it requires the Kontsevich class of
the star products and a canonically given action of the deRham cohomology on
equivalence classes of formal Poisson structures by gauge transformations. Then
one obtains the following statement:

Theorem 3.2 (Bursztyn, Dolgushev, W. [29]) Star products on Poisson manifolds
are Morita equivalent iff their Kontsevich classes of formal Poisson tensors are
gauge equivalent by a 2�i-integral deRham class.
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4 Beyond Formal Star Products

Since formal star products are clearly not sufficient for physical purposes, one has to
go beyond formal power series. Here several options are available: on one hand one
can replace the formal series in the star products by integral formulas. The formal
series can then be seen as the asymptotic expansions of the integral formulas in the
sense of Taylor series of smooth functions of „, which are typically not analytic:
hence we cannot expect convergence. Nevertheless, the integral formulas allow for
a good analytic framework.

However, if one moves to field theories and hence to infinite-dimensional sys-
tems, quantization becomes much more complicated. Surprisingly, series formulas
for star products can still make sense in certain examples, quite unlike the integral
formulas: such integrals would consist of integrations over a infinite-dimensional
phase space. Hence we know that such things can hardly exist in a mathematically
sound way.

This motivates the second alternative, namely to investigate the formal series in
the star products directly without integral formulas in the back. This might also be
possible in infinite dimensions and yield reasonable quantizations there. While this
is a program far from being understood, we now present a class of examples with a
particular physical relevance: the Weyl algebra.

Here we consider a real vector space V with a bilinear map ƒW V � V �! C.
Then we consider the complexified symmetric algebra S�

C
.V/ of V and interpret this

as the polynomials on the dual V�. In finite dimensions this is correct, in infinite
dimensions the symmetric algebra is better to be interpreted as the polynomials
on the (not necessarily existing) pre-dual. On V�, there are simply much more
polynomials than the ones arising from S�

C
.V/. Now we can extend ƒ to a

biderivation

PƒW S�
C
.V/˝ S�

C
.V/ �! S�

C
.V/˝ S�

C
.V/ (22)

in a unique way by enforcing the Leibniz rule in both tensor factors. If we denote
by �W S�

C
.V/˝ S�

C
.V/ �! S�

C
.V/ the symmetric tensor product, then

fa; bgƒ D � ı .Pƒ.a ˝ b/� Pƒ.b ˝ a// (23)

is a Poisson bracket. In fact, this is the unique constant Poisson bracket with the
property that for linear elements v;w 2 V we have fv;wg D ƒ.v;w/ � ƒ.w; v/.
Hence the antisymmetric part of ƒ determines the bracket. However, we will use
the symmetric part for defining the star product. This will allow to include also
standard-orderings or other orderings like Wick ordering from the beginning.

A star product quantizing this constant Poisson structure can then be found easily.
We set

a ? b D � ı exp.zPƒ/.a ˝ b/ (24)
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where z 2 C is the deformation parameter. For physical applications we will have
to set z D i„

2
later on. Note that ? is indeed well-defined since on elements in the

symmetric algebra, the operator Pƒ lowers the degree by one in each tensor factor.
In a next step we want to extend this product to more interesting functions than

the polynomial-like ones. The strategy is to look for a topology which makes the
product continuous and which allows for a large completion of S�

C
.V/. To start with,

one has to assume that V is endowed with a topology itself. Hence let V be a locally
convex Hausdorff space. In typical examples from quantum mechanics, V is the
(dual of the) phase space and hence finite dimensional, which makes the topology
unique. In quantum field theory, V would be something like test function spaces, i.e.
either the Schwartz space S.Rd/ or C1

0 .M/ for a manifold M, etc. In this case V
would be a Fréchet or LF space.

We use now the continuous seminorms of V to extend them to tensor powers
V˝k for all k 2 N by taking their tensor powers: we equip V˝k with the �-topology
inherited from V. This means that for a continuous seminorm p on V we consider p˝k

on V˝k and take all such seminorms to define a locally convex topology on V˝k.
Viewing the symmetric tensor powers as a subspace, this induces the �-topology
also for S�

C
.V/, simply by restricting the seminorms p˝k. For the whole symmetric

algebra we need to extend the seminorms we have on each symmetric degree. This
can be done in many inequivalent ways. Useful for our purposes is the following
construction. We fix a parameter R � 1

2
and define

pR.a/ D
1X

kD0
kŠRp˝k.ak/ (25)

for every a D P1
kD0 ak with ak 2 Sk

C
.V/. Note that the sum is finite as long as

we take a in the symmetric algebra. Now taking all those seminorms pR for all
continuous seminorms p of V induces a locally convex topology on V. Clearly, this
is again Hausdorff. Moreover, all Sk

C
.V/ are closed embedded subspaces in S�

C
.V/

with respect to this topology.
The remarkable property of this topology is now that a continuousƒ will induce

a continuous star product [88]:

Theorem 4.1 Let ƒW V � V �! C be a continuous bilinear form on V. Then ? is a
continuous associative product on S�

C
.V/ with respect to the locally convex topology

induced by all the seminorms pR with p being a continuous seminorm on V, as long
as R � 1

2
.

The proof consists in an explicit estimate for a ? b. Note that the topology can
not be locally multiplicatively convex since in the Weyl algebra we have elements
satisfying canonical commutation relations, thereby forbidding a submultiplicative
seminorm.

Definition 4.2 (Locally convex Weyl algebra) Let ƒW V � V �! C be a contin-
uous bilinear form on V. Then the completion of S�

C
.V/ with respect to the above
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locally convex topology and with the canonical extension of ? is called the locally
convex Weyl algebra WR.V; ?/.

Thus we have found a framework where the Weyl star product actually converges.
Without proofs we list a few properties of this Weyl algebra:

• The locally convex Weyl algebra WR.V; ?/ is a locally convex unital associative
algebra. The product a ? b can be written as the absolutely convergent series

a ? b D � ı exp.zPƒ/.a ˝ b/: (26)

• The product ? depends holomorphically on z 2 C.
• For 1

2
� R < 1 the locally convex Weyl algebra WR.V; ?/ contains the

exponential functions e˛v for all v 2 V and all ˛ 2 C. They satisfy the usual Weyl
relations. Note that not only the unitary ones, i.e. for ˛ imaginary, are contained
in the Weyl algebra, but all exponentials.

• The locally convex Weyl algebra is nuclear iff V is nuclear. In all relevant
examples in quantum theory this will be the case. In this case we refer to the
nuclear Weyl algebra.

• If V admits an absolute Schauder basis, then the symmetrized tensor products of
the basis vectors constitute an absolute Schauder basis for the Weyl algebra, too.
Again, in many situations V has such a basis.

• The Weyl algebras for differentƒ on V are isomorphic if the antisymmetric parts
of the bilinear forms coincide.

• Evaluations at points in the topological dual V 0 are continuous linear functionals
on WR.V; ?/. Hence we still can view the elements of the completion as
particular functions on V 0.

• The translations by elements in V 0 still act on WR.V; ?/ by continuous auto-
morphisms. If R < 1 these translations are inner automorphism as soon as the
element ' 2 V 0 is in the image of the musical map induced by ƒ.

We now conclude this section with a few comments on examples. First it is clear
that in finite dimensions we can take V D R

2n with the canonical Poisson bracket
on the symmetric algebra. Then many types of orderings can be incorporated in
fixing the symmetric part ofƒ, while the antisymmetric part is given by the Poisson
bracket. Thus all the resulting star products allow for this analytic framework. This
includes examples known earlier in the literature, see e.g. [6, 80]. In this case we get
a nuclear Weyl algebra with an absolute Schauder basis.

More interesting is of course the infinite dimensional case. Here we have to
specify the space V and the bilinear formƒmore carefully. In fact, the continuity of
ƒ becomes now a strong conditions since bilinear maps in locally convex analysis
tend to be only separately continuous without being continuous. However, there
are several situations where we can either conclude the continuity of a bilinear
separately continuous map by abstract arguments, like for Fréchet spaces. Or one
can show directly that the particular bilinear form one is interested in is continuous.
We give one of the most relevant examples for (quantum) field theory:
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Example Let M be a globally hyperbolic spacetime and let D be a normally
hyperbolic differential operator acting on a real vector bundle E with fiber metric h.
Moreover, we assume that D is a connection Laplacian for a metric connection with
respect to h plus some symmetric operator B of order zero. In all relevant examples
this is easy to obtain. Then one has advanced and retarded Green operators leading
to the propagator FM acting on test sections �1

0 .E
�/. We take V D �1

0 .E
�/ with

its usual LF topology. Then

ƒ.'; / D
Z

M
h�1.FM.'/;  /�g (27)

is the bilinear form leading to the Peierls bracket on the symmetric algebra S�.V/.
Here �g is the metric density as usual. The kernel theorem then guarantees that
ƒ is continuous as needed. Thus we obtain a locally convex and in fact nuclear
Weyl algebra from this. Nowƒ is highly degenerated. It follows that in the Poisson
algebra there are many Casimir elements. The kernel of FM generates a Poisson
ideal and also an ideal in the Weyl algebra, which coincides with the vanishing ideal
of the solution space. Hence dividing by this (Poisson) ideal gives a Poisson algebra
or Weyl algebra which can be interpreted as the observables of the (quantum) field
theory determined by the wave equation Du D 0. It can then be shown that for every
Cauchy surface† in M there is a canonical algebra isomorphism to the Weyl algebra
build from the symplectic Poisson algebra on the initial conditions on †. Details of
this construction can be found in [88], see also [4] for the background information
on the wave equation.
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