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Preface

The present volume is based on the international conference Quantum Mathematical
Physics — A Bridge between Mathematics and Physics that was held at the
University of Regensburg (Germany) from September 29 to October 2, 2014. This
conference was a successor of similar international conferences which took place
at the Heinrich-Fabri Institute (Blaubeuren) in 2003 and 2005, at the Max Planck
Institute for Mathematics in the Sciences (Leipzig) in 2007 and at the University
of Regensburg in 2010. The basic intention of this series of conferences is to bring
together mathematicians and physicists to discuss profound questions in quantum
field theory and gravity. More specifically, the series aims at discussing concepts
which underpin different mathematical and physical approaches to quantum field
theory and gravity.

Since the invention of general relativity and quantum mechanics at the beginning
of the twentieth century, physicists made an enormous effort to incorporate gravity
and quantum physics into a unified framework. In doing so, many approaches have
been developed to overcome the basic conceptual and mathematical differences
between quantum theory and general relativity. Moreover, both quantum theory and
general relativity have their own problems and shortcomings. It turns out that many
of these problems are related to each other and to the problem of the unification of
quantum theory and gravity. The aim of the conference was to shed light on these
problems and to indicate possible solutions.

On one hand, general relativity describes systems on large scales (like the solar
system, galaxies, and cosmological phenomena). This is reflected in the fact that
in general relativity, space-time has locally the simple structure of Minkowski
space, whereas gravitational effects usually show up in the large-scale geometry.
Under generic assumptions, there are phenomena like black holes and cosmological
singularities which are not yet understood in a physically satisfying way. Quantum
theory, on the other hand, usually describes systems on small scales (like atoms,
nuclei, or elementary particles). Indeed, on small scales the Heisenberg uncertainty
principle becomes relevant and quantum effects come into play. One of the open
problems is that there is no satisfying mathematical description of interacting
quantum fields.

vii



viii Preface

One of the fundamental difficulties in combining gravity with quantum physics
lies in the fact that general relativity is a theory on the dynamics of space-time
itself, whereas quantum theory usually aims to describe the dynamics of matter
within a given space-time background (in the simplest case by Minkowski space).
Moreover, the geometric description of general relativity makes it necessary to
describe objects locally in an arbitrary small neighborhood of a point. But localizing
quantum mechanical wave functions to such a small neighborhood, the Heisenberg
uncertainty principle gives rise to large energy fluctuations. Considering these
energy fluctuations as a gravitational source, one obtains a contradiction to the
above picture that gravity comes into play only on large scales. Thus, although both
theories are experimentally well confirmed, they seem to conceptually contradict
each other. This incompatibility also becomes apparent in the mathematical formu-
lation: From a mathematical perspective, general relativity is usually regarded as a
purely geometric theory. However, quantum physics is described mathematically in
an algebraic and functional analytic language.

There are various approaches to overcome these issues. For instance, in string
theory one replaces point-like particles by one-dimensional objects. Other ap-
proaches, like loop quantum gravity, causal fermion systems, or noncommutative
geometry, rely on the assumption that the macroscopic smooth space-time structure
should emerge from more fundamental structures on the microscopic scale. Alter-
natively, one tries to treat interacting theories as “effective theories” or considers
quantum theory from an axiomatic and categorical view point in a way that allows
to incorporate the concept of local observers. Most of these modern mathematical
approaches to unify quantum physics with general relativity have the advantage to
combine geometric structures with algebraic and functional analytic methods. Some
of these “quantum mathematical concepts” are discussed in the present conference
volume.

The carefully selected and refereed articles in this volume either give a survey
or focus on specific issues. They explain the state of the art of various rigorous
approaches to quantum field theory and gravity. Most of the articles are based on
talks at the abovementioned conference. All talks of the conference were recorded,
and most are available online at

http://www.ur.de/qft2014.
For the first time, the conference included two evening talks devoted to new
experimental developments (dark matter/energy and the Higgs particle). It was again
a main purpose of the conference to set the stage for stimulating discussions. To this
end, extra time slots were reserved for panel and plenary discussions. Here is a list
of some of the questions raised in the discussions:

1. Quantum gravity: What should a physically convincing theory of quantum
gravity accomplish? Which are the most promising directions to find such a
theory of quantum gravity? Why does one need to “quantize” gravity — is it not
sufficient to describe it classically? How important is mathematical consistency?

2. Quantization: Do quantum field theories necessarily arise by quantizing a
classical field theory? Is such a quantization procedure necessary in order to


http://www.ur.de/qft2014
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have a physical interpretation of the resulting quantum field theory? Does it make
physical sense to quantize pure gravity without matter?

3. Future perspectives: Which directions in mathematical physics seem most
promising for young researchers to work on? Is it recommendable for young
researchers to study new topics or should they rather work on well-established
problems? Which are the big challenges for mathematical physics in the next
years?

4. Axiomatic frameworks: Do the various axiomatic frameworks (such as alge-
braic quantum field theory, causal fermion systems, noncommutative geometry,
etc.) offer a suitable framework for unifying gravity and quantum theory? Can
causality be expected to hold?

5. Dark energy and dark matter: Is dark energy related to quantum field theoretic
effects like vacuum fluctuations? Or do the explanations of dark energy and dark
matter require new physical concepts? Should dark matter and dark energy be
considered as some kind of “matter” or “field” in space-time?

6. Mathematics of future theories: Which contemporary mathematical develop-
ments might play an important role in the formulation of new physical theories?

We are grateful to Klaus Fredenhagen (Hamburg), Jos¢ Maria Gracia-Bondia
(Madrid), Gerhard Borner (Miinchen), and Harald Grosse (Wien) for contributing
to the discussions as members of the panel. The discussions were moderated by
Johannes Kleiner.

Regensburg, Germany Felix Finster
Johannes Kleiner

Christian Roken

Leipzig, Germany Jiirgen Tolksdorf

July 2015
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Abstract The connection between spin and statistics is examined in the context of
locally covariant quantum field theory. A generalization is proposed in which locally
covariant theories are defined as functors from a category of framed spacetimes to
a category of x-algebras. This allows for a more operational description of theories
with spin, and for the derivation of a more general version of the spin-statistics
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2 C.J. Fewster

1 Introduction

In conclusion we wish to state, that according to our opinion the connection between spin
and statistics is one of the most important applications of the special relativity theory.
W. Pauli, in [33].

It is an empirical fact that observed elementary particles are either bosons
of integer spin, or fermions of half-integer spin. Explanations of this connection
between spin and statistics have been sought since the early days of quantum field
theory. Fierz [19] and Pauli [33] investigated the issue in free field theories, setting
in train a number of progressively more general results. The rigorous proof of a
connection between spin and statistics was an early and major achievement of the
axiomatic Wightman framework; see [5, 30] and the classic presentation in [38].
Similarly, general results have been proved in the Haag—Kastler framework [23],
for example, [8, 9, 22]. In these more algebraic settings, statistics is not tied
to the properties of particular fields, but is understood in terms of the graded
commutativity of local algebras corresponding to spacelike-separated regions [9],
or the properties of super-selection sectors [8, 22].

Nonetheless, the theoretical account of the spin-statistics connection is subtle
and even fragile. Nonrelativistic models of quantum field theory are not bound by
it, and as Pauli observed [33], one may impose bosonic statistics on a Dirac field
at the cost of sacrificing positivity of the Hamiltonian. Ghost fields introduced in
gauge theories violate the connection, but also involve indefinite inner products.
The rigorous proofs therefore rely on Hilbert space positivity and energy positivity.
Moreover, they make essential use of the Poincaré symmetry group and its complex
extension together with analyticity properties of the vacuum n-point functions. The
spin-statistics connection observed in nature, however, occurs in a spacetime which
is not Minkowski space and indeed has no geometrical symmetries. There is neither
a global notion of energy positivity (or, more properly, the spectrum condition) nor
do we expect n-point functions in typical states of interest on generic spacetimes to
have analytic extensions. Thus the general proofs mentioned have no traction and
it is far from clear how they can be generalized: a priori it is quite conceivable that
the theoretical spin-statistics connection is an accident of special relativity that is
broken in passing to the curved spacetimes of general relativity. Indeed, for many
years, work on the spin-statistics connection in curved spacetimes was restricted
to demonstrations that free models become inconsistent on general spacetimes if
equipped with the wrong statistics (e.g., imposing anticommutation relations on
a scalar field) [32, 41] unless some other important property such as positivity is
sacrificed [24].

The breakthrough was made by Verch [39], who established a general spin-
statistics theorem for theories defined on each spacetime by a single field which,
in particular, obeys Wightman axioms in Minkowski space. Together with [27],
this paper was responsible for laying down many of the foundations of what has
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become the locally covariant framework for QFT in curved spacetimes [2]. Verch’s
assumptions allow certain properties of the theory on one spacetime to be deduced
from its properties on another, provided the spacetimes are suitably related by
restrictions or deformations of the metric. In particular, the spin-statistics connection
is proved by noting that if it were violated in any one spacetime, it would be violated
in Minkowski space, contradicting the classic spin-statistics theorem.

Nonetheless, there are good reasons to revisit the spin-statistics connection in
curved spacetime. First, as a matter of principle, one would like to gain a better
understanding of why spin is the correct concept to investigate in curved spacetime,
given the lack of the rotational symmetries that are so closely bound up with
the description of spin in Minkowski space. A second, related, point is that [39]
describes spinor fields as sections of various bundles associated to the spin bundle.
While this is conventional wisdom in QFT in CST, it has the effect of basing the
discussion on geometric structures that are, in part, unobservable. This is not a great
hindrance if the aim is to discuss a particular model such as the Dirac field. However,
we wish to understand the spin-statistics connection for general theories, without
necessarily basing the description on fields at all. With that goal in mind, one needs a
more fundamental starting point that avoids the insertion of spin by hand. Third, the
result proved in [39] is confined to theories in which the algebra in each spacetime
is generated by a single field, and the argument is indirect in parts. The purpose of
this contribution is to sketch a new and operationally well-motivated perspective on
the spin-statistics connection in which spin emerges as a natural concept in curved
spacetimes, and which leads to a more general and direct proof of the connection.
In particular, there is no longer any need to describe the theory in terms of one or
more fields. Full details will appear shortly [10].

The key ideas are (a) a formalisation of the reasoning underlying [39] as a ‘rigid-
ity argument’, and (b) a generalization of locally covariant QFT based on a category
of spacetimes with global coframes (i.e., a ‘rods and clocks’ account of spacetime
measurements). As in [39] the goal is to prove that a spin-statistics connection in
curved spacetime is implied by the standard results holding in Minkowski space;
however, the proof becomes quite streamlined in the new formulation. We begin
by describing the standard version of locally covariant QFT, describing the rigidity
argument and some of its other applications in that context, before moving to the
discussion of framed spacetimes and the spin-statistics theorem.

2 Locally Covariant QFT

Locally covariant QFT is a general framework for QFT in curved spacetimes,
due to Brunetti, Fredenhagen and Verch (BFV) [2], which comprises three main
assumptions. The first is the assertion that any quantum field theory respecting
locality and covariance can be described by a covariant functor <7 : Loc — Alg
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from the category of globally hyperbolic spacetimes Loc to a category Alg of unital
x-algebras.!

This assumption already contains a lot of information and we shall unpack it in
stages, beginning with the spacetimes. Objects of Loc are oriented and time-oriented
globally hyperbolic spacetimes (of fixed dimension n) and with finitely many
components.> Morphisms between spacetimes in Loc are hyperbolic embeddings,
i.e., isometric embeddings preserving time and space orientations with causally
convex image.

The category Alg has objects that are unital x-algebras, with morphisms that are
injective, unit-preserving x-homomorphisms. The functoriality condition requires
that the theory assigns an object @AM) of Alg to each spacetime M of Loc, and,
furthermore, that each hyperbolic embedding of spacetimes ¥ : M — N is mirrored
by an embedding of the corresponding algebras <Av) : AM) — </N), such that

ANidy) = idoary and Ay o) = HAgp) o AY) D

for all composable embeddings ¢ and .

Despite its somewhat formal expression, this assumption is well-motivated from
an operational viewpoint® and provides a natural generalization of the Haag—
Kastler—Araki axiomatic description of quantum field theory in Minkowski space.
Indeed, as emphasized by BFV, this single assumption already contains several
distinct assumptions of the Minkowski framework.

The next ingredient in the BFV framework is the kinematic net indexed by O(M),
the set of all open causally convex subsets of M with finitely many connected
components. Each nonempty O € O(M) can be regarded as a spacetime M|o in
its own right, by restricting the causal and metric structures of M to O, whereupon
the inclusion map of O into the underlying manifold M induces a Loc morphism
to : M|p — M (see Fig. 1). The theory .o/ therefore assigns an algebra «/(M|) and
an embedding of this algebra into @/ M), and we define the kinematic subalgebra to
be the image

N (M; 0) = o) (AM|o)). 2

As mentioned above, the net O — &7*"(M; O) is the appropriate generalization of
the net of local observables studied in Minkowski space AQFT. Some properties are

Other target categories are often used, e.g., the unital C*-algebra category C*-Alg, and other
types of physical theory can be accommodated by making yet other choices.

21t is convenient to describe the orientation by means of a connected component of the set of
nonvanishing n-forms, and likewise to describe the time-orientation by means of a connected
component of the set of nonvanishing timelike 1-form fields. Our signature convention throughout

is 4 — o

3For a discussion of how the framework can be motivated on operational grounds (and as an
expression of ‘ignorance principles’) see [13, 15].
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Fig. 1 Schematic illustration of the kinematic net

Fig. 2 Schematic representation of spacetime deformation

automatic. For instance, the kinematic algebras are covariantly defined, in the sense
that

F"(N; Y (0)) = AY) (" (M 0)) A3)

for all morphisms ¢ : M — N and all nonempty O € O(M). This is an immediate
consequence of the definitions above and functoriality of <7 Similarly spacetime
symmetries of M are realised as automorphisms of the kinematic net in a natural
way.

It is usual to assume two additional properties. First, the theory obeys Einstein
causality if, for all causally disjoint O;,0, € O(M) (i.e., no causal curve joins
O; to 0,), the corresponding kinematic algebras commute elementwise. Second,
27 is said to have the timeslice property if it maps every Cauchy morphism, i.e.,
a morphism whose image contains a Cauchy surface of the ambient spacetime, to
an isomorphism in Alg. This assumption encodes the dynamics of the theory and
plays an important role in allowing the instantiations of <7 on different spacetimes
to be related. In fact, two spacetimes M and N in Loc can be linked by a chain of
Cauchy morphisms if and only if their Cauchy surfaces are related by an orientation-
preserving diffeomorphism (see [17, Prop. 2.4], which builds on an older argument
of Fulling, Narcowich and Wald [21]). The construction used is shown schematically
in Fig.2: the main point is the construction of the interpolating spacetime I that
‘looks like” NV in its past and M in its future. The assumption that <7has the timeslice
property entails the existence of an isomorphism between <A M) and </(N); indeed,
there are many such isomorphisms, because there is considerable freedom in the
choice of interpolating spacetime, none of which can be regarded as canonical.

The assumptions just stated are satisfied by simple models, such as the free
Klein—Gordon field [2], and, importantly, by perturbatively constructed models of a
scalar field with self-interaction [1, 26, 27]. In order to be self-contained, we briefly
describe the free theory corresponding to the minimally coupled Klein—-Gordon
theory, with field equation (Cy + m?)¢ = 0: in each spacetime M € Loc, one



6 C.J. Fewster

defines a unital *x-algebra /M) with generators ®ps(f) (‘smeared fields’) labelled
by test functions f € C§°(M) and subject to the following relations:

e > Dy(f) is linear

* Pyu(f)* = Pulf)

o Oy ((Oy +mHf) =0

o [Du(f), Pu(f)] = iEm(f ) eaany

where
Ew(f.f) = /M F0) (Ey — EDF) (0)dvolu(p) 4

is constructed from the advanced (—) and retarded (4) Green operators (which
obey supp (Enilf) C Jail(supp f)). This defines the objects of the theory; for the
morphisms, any hyperbolic embedding ¢ : M — N determines a unique morphism
V) 1 AM) — </(N) with the property

AY)Pu(f) = On(Ysf)  (f € CT°(M)), ®)

where /. is the push-forward. The proof that @/yr) is well-defined as a morphism
of Alg relies on the properties of globally hyperbolic spacetimes, the definition
of hyperbolic embeddings, and some algebraic properties of the algebras .o/(M)
[notably, that they are simple].

Our discussion will use two more features of the general structure. First, let
2 be the functor assigning test function spaces to spacetimes, Z(M) = C3°(M),
and the push-forward to morphisms Z(y) = v.. Then (5) precisely asserts the
existence of a natural transformation ® between the functors & and 2/ (modulo a
forgetful functor from Alg to the category of vector spaces) [2]. We take this as the
prototype of what a field should be in the locally covariant setting, allowing for fields
depending nonlinearly on the test function by using a forgetful functor from Alg to
the category of sets, and for other tensorial types by suitable alternative choices of
2. As will be discussed later, spinorial fields require a modification of the category

Loc.

Second, natural transformations may also be used to compare locally covariant
theories. A natural ) : &/ — 4 is interpreted as an embedding of < as a subtheory
of %, while a natural isomorphism indicates that the theories are physically
equivalent [2, 17]. Naturality requires that to each M € Loc there is a morphism
nu : AM) — BM)

o AY) = B(Y) o m (6)

for each morphism  : M — N. The interpretation of n as a subtheory embedding
can be justified on several grounds — see [17].
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The equivalences of .o/ with itself form the group Aut(«?) of automorphisms of
the functor. This has a nice physical interpretation: it is the global gauge group [14].

Locally covariant QFT is not merely an elegant formalism for rephrasing known
results and models, but has also led to new departures in the description of QFT
in curved spacetimes. These can be divided into those that are model-independent
and those that are specific to particular theories. Those of the former type include
the spin-statistics connection [39]; the introduction of the relative Cauchy evolution
and intrinsic understanding of the stress-energy tensor [2]; an analogue of the
Reeh-Schlieder theorem [11, 34] and the split property [11]; new approaches to
superselection theory [3, 4] and the understanding of global gauge transforma-
tions [14]; a no-go theorem for preferred states [17], and a discussion of how one
can capture the idea that a theory describes ‘the same physics in all spacetimes’
[17]. Model-specific applications include, above all, the perturbative construction
of interacting models [1, 26, 27], including those with gauge symmetries [20, 25].
However, there are also applications to the theory of Quantum Energy Inequalities
[12, 16, 31] and cosmology [6, 7, 40].

3 A Rigidity Argument

The framework of local covariance appears quite loose, but in fact the descriptions of
the theory in different spacetimes are surprisingly tightly related. There are various
interesting properties which, if they hold in Minkowski space, must also hold in
general spacetimes. This will apply in particular to the spin—statistics connection;
as a warm-up, let us see how such arguments can be used in the context of Einstein
causality, temporarily relaxing our assertion of this property as an axiom.

For M < Loc, let O® (M) be the set of ordered pairs of spacelike separated
open globally hyperbolic subsets of M. For any such pair (O1,0,) € O® (M),
let Py (01, 0,) be true if o7N"(M; 0)) and o7*"(M:; O,) commute elementwise and
false otherwise. We might say that o7 satisfies Einstein causality for (O}, O;). It is
easily seen that there are relationships between these propositions:

R1 forall (01,0,) € O® M),
Py(01,0;) <= Py(Dmu(01),Du(07)),

where Dy denotes the Cauchy development;
R2 given ¢ : M — N then, for all (O;, 0,) € O® (M),

Py(01,02) <= Pn(Y(01),¥(02));
R3 forall (01, 0,) € OP (M) and all O; € O(M) with O; C 0; (i = 1,2)

Pu(01,0,) = Py(0y,0).
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R3 is an immediate consequence of isotony, and R1 follows from the timeslice
property. Property R2 follows from the covariance property (3) of the kinematic
net, which gives

[AN:¥(01)), AN ¥ (02))] = AY)([AM; O1), AAM: 0)]) (7

and the required property holds because /() is injective. In general, we will
describe any collection of boolean-valued functions Py : O® (M) — {true, false}
obeying R1-R3 (with M varying over Loc) as rigid.

Theorem 3.1 Suppose (PM)MELoc is_rigid, and that PM(OI, 0,) holds for some
(01,07) € O(Z)(M) Then P~(01,02) for every (01,02) € O(Z)(M) in every
spacetime M € Loc for which either (a) the Cauchy surfaces of 0; _are oriented
diffeomorphic to those of O; for i = 1,2; or (b) each component of 0, U O, has
Cauchy surface topology R4

Proof The strategy for (a) is illustrated by Fig. 3, in which the wavy line indicates a
sequence of spacetimes forming a deformation chain (cf. Fig.2)

~ ~

vV o~ ¢ 4 14
M|’0‘1u'52<_L—>I<—L—>M|01u02, (8)

where ¥, J @, ¢ are Cauchy morphisms. By property R2, Py(O1, 02) is equivalent
0 Pjo, o, (01, 03), and likewise P’A;(Ol,Oz) is equivalent to Pﬁh _ (01,02)

01U0p
Writing L; and I; for the components of L and I corresponding to O, and 0, and

applying R1 and R2 repeatedly,

Phloy o, (01 02) <=5 Pagiy oy (W (L1, ¥ (L2)) ©)

o) o) RI
T Pr(Ly, L) ? Pr(p(L1), ¢(L)) < Pi(l1, 1)

Fig. 3 Schematic M| 0,00,
representation of the rigidity
argument QO 0O
01 O3 ANNN- @ (@
M AN — AN
M| 5.UG, M

“For example, these components might be Cauchy developments of sets that are diffeomorphic to
a (n — 1)-ball and which lie in a spacelike Cauchy surface.
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and in the same way, Py(I1, I;) is also equivalent to Pﬁ|~ —_ (51 , 52). Together with
01uo
the equivalences noted already, this completes the proofl. ’

For (b), we choose, for each i = 1,2, a globally hyperbolic set D; contained in
O; and with the same number of components as 0;, and so that all its components
have Cauchy surface topology R"~!. Using R3, Py(D1, D5), and the result follows
by part (a).

As a consequence, we see that the hypothesis that Einstein causality holds in
one spacetime is not independent of it holding in another. This is a prototype for the
spin—statistics connection that will be described later, and is similar to the arguments
used in [39]. Related arguments apply to properties such as extended locality (see
[29, 37] for the original definition) and the Schlieder property (see, likewise [36])
as described in [18].

4 Framed Spacetimes

The conventional account of theories with spin is phrased in terms of spin structures.
Four dimensional globally hyperbolic spacetimes support a unique spin bundle (up
to equivalence) namely the trivial right-principal bundle SM = M x SL(2, C) [28]
and for simplicity we restrict to this situation. A spin structure o is a double cover
from SM to the frame bundle FM over M that intertwines the right-actions on SM
and FM:i.e., 0 o Rs = Ry o o, where w : SL(2,C) — Ll is the usual double
cover. Pairs (M, o) form the objects of a category SpinLoc, in <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>