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Chapter 21
Smart Textile Supercapacitors Coated 
with Conducting Polymers for Energy Storage 
Applications

Nedal Y. Abu-Thabit and Abdel Salam Hamdy Makhlouf

Abstract  Over the last few years, the development of nanotechnology has resulted 
in generation of new materials and innovation for a wide range of applications and 
products. Among these applications, textile industry is expected to hold a consider-
able potential for the development of advanced nano-based materials. For example, 
nanotechnology enabled the production of novel smart “multifunctional” textiles 
with combined properties in one fabric. Conductive textiles represent a key class of 
smart textiles with promising future’s applications in areas such as electronic tex-
tiles, display devices, health monitoring devices, thermal and moisture manage-
ment, flexible energy storage, and power generation devices. Recently, a remarkable 
attention has been devoted to the development of textile supercapacitor for energy 
storage and wearable electronics applications. Supercapacitor textiles offer advan-
tages such as lightweight, flexibility, stretchability, and ease of integration with 
electronic textiles. Different approaches have been investigated for fabrication of 
smart conductive textiles for supercapacitor applications. Among these approaches, 
textiles coated with electrically conducting polymers (ECPs) are one of the most 
promising and facile approaches for fabrication of textile supercapacitors. ECP-
coated textiles are characterized with high specific capacitance through fast redox 
reaction ease of integration into planar, flexible, and stretchable textile substrates 
with various shapes and large areas, thin film fabrication with controlled nanostruc-
tured morphology, and applicability for fabrication of composite and asymmetric 
textile supercapacitors. This chapter highlights the recent advances and develop-
ments in the fabrication of ECP-based textile supercapacitors, including different 
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types of pure ECPs and their composites with other conducting materials for 
preparation of hybrid supercapacitors with superior performance for textile super-
capacitor applications.

Keywords Supercapacitor textiles • Supercapacitor fibers • Smart textile •
Conducting polymers • Conductive textiles

21.1  �Introduction

21.1.1  �Smart Textiles

Smart textiles are defined as textile products such as fibers, filaments, and yarns 
together with woven, knitted, or nonwoven structures, which can interact with the 
environment/user [1]. Smart textiles are attracting a great interest due to their versa-
tile functionalities and capabilities of sensing, actuating, responding to external 
stimuli, communicating, power generation, and storage, whereby health monitor-
ing, safety, and protection can be endorsed. Indeed, increasing competition in the 
textile industry has been observed after the introduction of the concepts “smart tex-
tiles” and “ultrasmart textiles.” During the period between 1995 and 2011, the 
global growth of technical textiles market was estimated to be 133 billion USD [2]. 
This extraordinary growth is attributed to the recent development and integrated 
expertise on nanotechnologies, material science, electronics, and manufacturing 
processes. As depicted in Fig. 21.1, smart textiles have been utilized for a wide 
range of applications including stimuli-responsive textiles [3, 4], antibacterial tex-
tiles [5, 6], flame retardant textiles [7–10], shape-memory textiles [11–13], textiles 
for engineered membranes [14], personal thermal management textiles [15], mois-
ture management textiles [16–18], self-cleaning textiles [19–22], and smart conduc-
tive textiles [23, 24].

21.1.2  �Smart Conductive Textiles

As can be inferred from Fig. 21.1, smart conductive textiles represent an important 
class of smart functional textiles due to their wide range of possible applications and 
technologies including luminescent textiles [25–27], photovoltaic devices and dye-
sensitized solar cells [28–31], Li-ion batteries [32–37], supercapacitors [38–45], 
transistors [46–49], sensors [50–53], biosensor [54–56], display devices [57–59], 
water purification [60–65], and personal thermal management [66, 67]. The key 
requirement for successful use of smart conductive textiles in each of the above-
listed applications depends on their electrical conductivity.
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According to their electrical conductivity, textiles can be classified into conduc-
tive and nonconductive categories. Conductive textiles are those textiles which 
exhibit inherent electrical conductivity such as metal-based textiles (mainly knitted 
wire meshes) and carbon-based textiles, whereas the nonconductive textiles include 
natural and synthetic polymeric fibers and textiles. Metal textiles have high electri-
cal conductivities and lack important features such as flexibility, stretchability, 
lightweight per unit area, and resistance to atmospheric oxidation. The aforemen-
tioned missing features are inconsistent with the materials and geometries that are 
required for conductive textiles, because the incorporation of metal wires within 
textiles increases stiffness and reduces elasticity [1]. Therefore, metal-based textiles 
are expected to have limited applications and uses in areas such as wearable elec-
tronic textiles (“e-textiles”) and flexible textiles for energy and environmental 
applications.

The most used and commercialized carbon-based textiles are made from gra-
phitic carbon and are known as carbon cloth (CC) [68, 69]. Compared to metals, 
carbon-based conductive textiles offer features such as flexibility and stability with 
respect to atmospheric oxidation.

Textiles made from natural or synthetic polymer fibers are prepared by using 
different technologies such as gel spinning, melt spinning, wet spinning, dry spin-
ning, and electrospinning techniques. Natural and synthetic polymeric fibers offer 

Fig. 21.1  Applications of smart textiles
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advantages such as a wide range of selection, low cost, flexibility, stretchability, 
durability, lightweight, porosity, good tensile and elastic properties, good moisture 
management, and thermal management properties. However, natural and synthetic 
fibers/textiles are nonconductive and do not allow for the flow of electricity through 
their structure. The insulation feature of these textiles can be recognized from the 
electrical properties of the corresponding neat polymers that exhibit high electrical 
resistivity values and low dielectric constants [70, 71]. The inability of nonconduc-
tive textiles to transport electrical current is accompanied by their ability to gener-
ate static electricity that allows electrical charges to remain fixed on the textiles’ 
surface. The stored static electricity can cause problems during textile processing 
and end-user applications due to the electrostatic discharge. The introduction of 
conductive textile materials provides a solution to the aforementioned problem 
through transport and dissipation of the electrical charges.

Conductive textile can be made directly by converting a nonconductive woven/
nonwoven textile into a conductive one or indirectly by using different conductive 
fibers and converting them into conductive textiles through a knitting or weaving 
process. A general overview for various direct and indirect techniques used for 
preparation of conductive textiles will be highlighted in Sect. 21.2.

21.1.3  �Smart Conductive Textiles for Energy Applications

Recently, the interest in smart electronic textiles for medical, sports, military, and 
energy applications has increased markedly [1, 72]. Electronic textiles offer 
advantages such as low cost, lightweight, stretchability, and flexibility to be inte-
grated into variously shaped structures that would otherwise be impossible with 
traditional electronics technology. Currently, most wearable e-textiles are made 
by the attachment of electronic devices onto the textile surface [1]. However, such 
detachable devices still need to be flexible. This limitation can be overcome by 
the direct fabrication of devices into the textile/fabric. The rough surface of tex-
tiles makes this task extremely challenging for fabrication of many electronic 
devices [73]. Regardless, the large surface roughness property of textiles is pre-
ferred by other energy devices such as supercapacitors and Li-ion batteries [73]. 
In such devices, the surface roughness and porosity of the conductive textile elec-
trodes provide an ideal situation for manipulation of ion movements between two 
sides of the fabricated device.

This chapter provides a brief description of various methods for preparation 
of conductive textiles (Sect. 21.2), including the use of metals, carbons, electri-
cally conducting polymers (ECPs), and other recent proposed technologies for 
preparation of functional conductive textiles. Section 21.3 provides a general 
background on electrochemical supercapacitors as an emerging technology for 
energy storage devices. Section 21.4 highlights the recent advances in the utili-
zation of ECPs for preparation and fabrication of flexible supercapacitor textiles 
for various applications.
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21.2  �Preparation of Conductive Textiles

21.2.1  �Coated Conductive Fibers and Textiles

Electrically conductive fibers and textiles can be produced by coating the fibers with 
conductive materials such as metals, metallic salts, metal oxides, or ECPs. Coatings 
can be applied to the surface of fibers, yarns, or even fabrics to create electrically 
conductive textiles. The main textile coating methods include electroless plating, 
chemical vapor deposition (CVD), atomic layer deposition (ALD), and sputtering 
as well as coating with ECPs and conductive inks.

21.2.1.1  �Sputtering

Sputtering is an established technique that enables the use of a variety of metals, 
polymers, metal oxides, or mixtures thereof. However, the sputtering process for 
functionalization of textiles is expensive and usually performed on the side facing 
the target which prevents the deposition of the functional coating onto the inner lay-
ers of thick textile materials [74]. In sputtering process, a good adhesion between 
the sputter-coated layer and the fibers can be obtained by increasing the thickness of 
the deposited layers which may be critical for the final use and application in cases 
such as that of wearable electronic textiles [74].

21.2.1.2  �Evaporative Deposition Techniques

Evaporative deposition techniques, such as CVD and ALD, offer a practical way for 
preparation of textiles with conductive functionality [74]. However, these tech-
niques are expensive when scaling-up the technology and require the use of rela-
tively high temperatures which may not be suitable for the commodity textiles used 
in daily life applications [74]. The thickness of the deposited film is very critical for 
the adhesion of the deposited conductive film. Higher thicknesses are susceptible to 
cracking and lower thicknesses may not provide uniform conductivity [75]. One of 
the challenges in case of the ALD technique is the chemistry and requirements of 
the employed precursors. For example, the precursors must chemisorb onto the sub-
strate to be coated, and they must have a reasonably high vapor pressure to allow 
saturation of the chamber volume upon dosing [76]. The precursors must have a 
good thermal stability so as to avoid decomposition in the subsequent steps [76].

21.2.1.3  �Electroless Plating Technique

Electroless plating technique is the simplest one and does not require electrical 
energy. However, the electroless plating process is carried out under high- or low-pH 
conditions which impose a deterioration effect on the treated fibers and textiles [74]. 
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The presence of impurities during the electroless plating process can cause pitting 
and reduced ductility, adhesion, and roughness [74]. The adhesion of the metal par-
ticles exhibits a moderate strength on the surface of the fabric which may be peeled 
off when the plated metal is exposed to the air. The whole process of electroless 
plating is a multistage process which requires the use of complex chemicals and 
generates a lot of chemical waste.

21.2.1.4  �Electrically Conducting Polymer Coatings

Coatings offer advantages such as their suitability for different synthetic and natural 
fibers as well as good electrical conductivity without significantly altering existing key 
substrate properties such as density, flexibility, and handling. However, in case of metal 
coatings discussed above, the adhesion between the metal and the coated fibers/textiles 
as well as corrosion resistance are challenging for the final use and application.

ECPs offer an alternative approach for coating various types of textiles, fibers, 
and fabrics. The coating process is simple and fast and does not require complicated 
or long procedures. The coating of ECPs is cost-effective; does not have restrictions 
related to substrate shape, type, surface chemistry (i.e., hydrophobic/hydrophilic), 
and fiber type (i.e., woven/nonwoven); and can be done at temperatures less than or 
equal to room temperature. Compared to the evaporative deposition techniques, the 
coating process of ECPs covers all the internal microfibrils of the coated fibers/
textile. This advantage ensures the homogeneity of the whole coating and provides 
a more uniform coating which is critical for its performance during the end-use 
applications. The mechanical properties and physical appearance of the ECP-coated 
fibers and textiles are not affected, and they are not susceptible to cracking like 
metal and metal oxide coatings. Hence, the flexibility and integrity of the coated 
fibers and textiles are not affected by physical forces such as bending and stretching. 
Although the conductivity of the ECP coatings is much less than that of metal coat-
ings, the conductivity of the ECP-coated textiles can be controlled and tailored by 
controlling parameters such as concentrations of monomers, temperature, doping 
agents, and the nanostructured morphology of the ECPs (e.g., arrays of nanowires) 
[77]. All the abovementioned advantages of ECP coatings make them suitable can-
didates for the preparation of functional smart conductive textiles for various appli-
cations and device fabrication.

ECPs can be prepared mainly by two methods, electrochemical polymerization 
and oxidative chemical polymerization (OCP) [78]. However, electrochemical 
polymerization can be used only for coating conductive substrates such as carbon-
based materials and metals [79, 80]. Also, electrochemical polymerization is not 
suitable for the bulk production of conductive polymers and is not suitable for con-
trolled preparation of films with thicknesses above 100 μm. However, the electro-
chemical polymerization methodology can be employed using different scan rates 
for obtaining ECPs with different nanostructured morphologies [81, 82]. On the 
other hand, the OCP, which is often called redox polymerization, is more versatile 
and can be used for both conductive and nonconductive substrates, which makes it 
a good choice for the preparation of a wide range of conductive textiles. OCP offers 
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the advantage of controlling the morphology of the nanostructured conductive coat-
ing by adjusting the nucleation and growth chemistry during the chemical polymer-
ization process [77, 83]. Since the ECPs are polyelectrolytes, textiles can be coated 
with ECP polyelectrolytes through the layer-by-layer coating methodology [84, 85]. 
In addition, ECPs can be prepared by using an interfacial polymerization technique 
which is very useful for deposition of thin film coatings with controlled nanofiber 
morphology [86–88]. ECPs with a nanofiber morphology can be obtained by 
approaches such as the use of template polymerization [82, 89–92], templateless 
polymerization [93], seeding polymerization [94], oligomer-assisted polymeriza-
tion [95], dilute polymerization [96, 97], and surfactant-assisted polymerization 
[98] and using different oxidants such as vanadic acid [99] and silver nitrate [61]. 
Similarly, ECPs with nanowire morphology can be obtained by using template or 
templateless polymerization methods [77]. In addition to chemical and electro-
chemical polymerization, ECPs can be incorporated into various textiles by the 
vapor phase polymerization (VPP) technique [40, 100–102].

21.2.2  �Conductive Ink Coatings

Compared to metal coatings, the use of conductive Nanoink, such as carbon nano-
tubes and graphene, allows for retaining the porous structure of the textile without 
blocking the external surface of treated textiles [73]. Conductive inks can be used 
for preparation of conductive textiles and fibers by one the following methods.

21.2.2.1  �Dip-Dry Coating

Dip-dry coating is a very simple and quick method that can be applied to different 
types of textiles and fibers. The target textile must possess a good porosity to absorb 
the maximum amount of the ink solution. Cotton-based conductive textiles, which 
are highly porous and hydrophobic, are easily prepared by the dipping-drying pro-
cedure. The ink is prepared from a dispersion containing the conductive ingredient 
(e.g., carbon nanotubes, graphene oxide, graphene, graphite, or carbon black) with 
dispersing agent or surfactant and the usual solvent used is water. The conductivity 
of the textile substrate depends on the number of dipping cycles. The final step 
requires washing out the employed dispersing surfactant to maintain the maximum 
conductivity and to clean up the coated substrate.

21.2.2.2  �Inkjet Printing

Direct printing with an inkjet printer is a material-saving, high-speed, and low-cost 
process. The inkjet printing process is more challenging than simple conformal coat-
ing with dispersible ink. Different types of conductive inks can be used including 
colloidal suspensions of nanoparticles [103], organometallic compounds in solution 
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[104], conductive polymer dispersions [105–107], carbon nanotube dispersions 
[108–110], graphene [107, 111–113], and graphene oxide [114] dispersions. 
Regardless of the type of ink employed, the inks should satisfy the following require-
ments to be used for conductive inkjet printing [1, 113, 115, 116]:

• High electrical conductivity.
• Stability toward oxidation in air (e.g., silver and gold are stable; copper and 

nickel are easily oxidized in air).
• Dry out without clogging the nozzle during printing.
• Good adhesion to the substrate.
• Ink shall not agglomerate and clog the nozzles (stable dispersion).
• Solvent properties (nontoxic solvent, solvent with reasonable viscosity at room 

temperature).
• Solvent must readily evaporate once deposited but not so fast that it dries out at 

the nozzle when idle, causing nozzle clogging.
• Fluid properties of the formulated ink such as viscosity, density, and surface 

tension.

21.2.2.3  �Reactive Inkjet Printing

An alternative way to fabricate conductive textiles and fibers using inkjet printing 
involves the deposition of two inks, which react to form the conductive material 
[115]. The main advantage of this reactive inkjet printing technique is that it allows 
different materials to be selectively produced or removed [115]. For example, Li 
et al. [117] have utilized the reactive inkjet printing methodology for the preparation 
of copper conductive ink. The reactive ink solution was prepared from a copper 
citrate solution acting as a metal precursor and a sodium borohydride solution act-
ing as a reducing agent. Recently, Walker and Lewis employed the reactive ink 
technique for the preparation of silver ink with high conductivity similar to that of 
bulk silver [116]. The preparation procedure was simple and based on the modified 
Tollens’ process [116].

21.2.2.4  �Screen Printing

Screen printing is useful for fabricating electrics and electronics due to its ability to 
produce patterned, thick layers from paste-like conducting materials. The screen 
printing technique, a stencil process, includes the printing of a viscous paste through 
a patterned fabric screen which is then followed by a drying step. However, screen 
printing using thick conductive ink pastes for the production of conductive textiles 
has not been thoroughly investigated or employed due to it being both labor and 
capital intensive and may cause production delays when designs are modified or 
changed over [118]. Recently, Kazani et  al. [119] employed silver ink paste for 
screen printing on different conductive woven textile substrates including cotton, 
polyester, polyamide, and viscose. It was found that the square resistance of the 
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printed samples remained high enough even after the washing process. After 20 
washes, the printed conductive layer that was covered by a protective polyurethane 
(PU) thin layer was stable compared with the uncovered samples which showed 
cracks and peeling of the printed conductive layer.

21.2.3  �Conductive Textiles from Conductive Fibers

An alternative approach for preparation of conductive textiles is by the knitting and 
weaving of conductive fibers. Various conductive fibers can be used such as carbon-
based conductive fibers, ECP-based conductive fibers, and metal fibers. The main 
factor that limits the applicability of certain conductive fibers for the fabrication of 
conductive textiles is their ability to withstand the weaving/knitting processes with-
out being broken apart. This means that the conductive fibers should have enough 
tensile strength without being brittle when contorted through the knitting machine.

21.2.3.1  �Carbon-Based Conductive Fibers

Due to the recent advances in nanotechnologies, different types of carbon-based 
fibers have been fabricated such as carbon nanotube fibers (CNFs) [120–122], gra-
phene fibers (GFs) [123, 124], graphene oxide fibers (GOFs) [125], graphene-
carbon nanotube composite fibers [126, 127], and silver-doped graphene fibers 
[128]. The former processes are expensive, complicated, and not yet scaled up to a 
commercial level. A detailed description and discussion for the preparation of 
carbon-based conductive fibers can be found in literature [129].

21.2.3.2  �ECP-Based Conductive Fibers

ECPs are a class of polymers with a fully conjugated aromatic backbone structure. 
The full delocalization of π electrons provides the unique feature of electrical con-
ductivity for this class of polymers. However, due to the high aromaticity of ECPs, 
they possess a rigid backbone structure, which makes them available in relatively 
low molecular weight forms, so much so that the elasticity of their solutions is gen-
erally insufficient for the direct spinning or electrospinning of their fibers. However, 
there are some reports describing the preparation of ECP fibers by spinning, coaxial 
spinning, and electrospinning [130–136].

21.2.3.3  �Twisted Conductive Fibers

Conductive textiles can be made by the integration of conductive yarns in a textile 
structure [1]. This was achieved by twisting metal wires into a fabric textile. 
However, the integration of conductive yarns in a fabric structure is a complex 
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process, and the resulting conductive fabrics were hard, rigid, and uncomfortable 
for electronic textiles and wearing applications [1].

21.2.3.4  �Biscrolled Conductive Fibers

A new technology was recently developed for preparation of smart functional fibers 
based on the biscrolling technique by incorporating functional guests into yarns 
[137, 138]. The fabrication process of biscrolled yarns involves the twist-based 
spinning of CNT sheets (the host) that are overlaid with a layer of up to 99 wt% of 
one or other functional materials (the guest). The guest-host bilayers were scrolled 
into biscrolled yarn in such a way that the minor CNT sheet concentration confined 
guest powders down to nanometer-scale proximity in the scroll galleries. The guest 
material can be deposited into the host CNT sheets by electron beam evaporation, 
sputtering, exposure to an aerosol formed by gas-phase reaction, or simple filtration-
based guest deposition. The main advantage of this technology relies on its ability 
to incorporation versatile functional guest materials in different applications [137]. 
The biscrolled yarns can be knotted and sewn with potential applications in various 
smart textiles.

21.2.3.5  Welded Conductive Fibers

Recently, Jost et  al. [139] employed a technology called “natural fiber welding” 
[140] (NFW) for the preparation of conductive yarns in knittable textile superca-
pacitor applications. As illustrated in Fig. 21.2, the NFW process employs activated 
carbon as the conductive material embedded into cellulose yarns (cotton, linen, 
bamboo, or viscose) being swelled in an ionic liquid (IL) solution. This step is fol-
lowed by removal of the IL by washing it in water as anti-solvent and, finally, twist-
ing the activated carbon-NWFs with a highly conductive stainless steel yarn. The 
prepared conductive cotton yarns were too brittle and broke apart during the knit-
ting process. In contrast, conductive yarns made from linen, bamboo, and viscose 
were knitted successfully into fabric textiles and utilized for making a knitted 
stretchable supercapacitor device as shown in Fig. 21.3.

21.3  �Capacitors for Energy Storage Devices

21.3.1  �Conventional Capacitors

Conventional capacitors consist of two conducting electrodes separated by an insu-
lating dielectric material. When a voltage is applied to a capacitor, opposite charges 
accumulate separately on the surfaces of each electrode, which results in the 
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Fig. 21.2  Schematic illustration of the natural fiber welding process for preparation of conductive 
fibers. Reproduced with permission from [139]

Fig. 21.3  Photographs of knitted samples: (a) photograph of a flat knitted supercapacitor, (b) 
photograph of knitted supercapacitor while stretched. Reproduced with permission from [139]
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generation an electric field that allows the capacitor to store energy. The ratio of the 
stored (positive) charge (Q) to the applied voltage (V) is called capacitance (C):

	
C =

Q
V 	

(21.1)

For conventional capacitors, C is directly proportional to the surface area (A) of 
the electrodes and inversely proportional to the distance (D) between the 
electrodes:

	
C

D
= e e0 r

A

	
(21.2)

where
ε0 = dielectric constant “permittivity” of the space and
εr = dielectric constant of the separating “dielectric” material.
The main attributes of the capacitor are “energy density (E)” and “power density 

(P).” For both (E) and (P), the density can be calculated as quantity per unit mass or 
unit volume. The stored energy (E) is defined as:

	
E CV=

1

2
2

	
(21.3)

where P is the energy consumed per unit time. In order to determine the power, one 
has to consider that the capacitor is represented as a circuit in series, with an external 
load/resistance (R). Also, there is a contribution from the internal components of the 
capacitor (e.g., current collectors, electrodes, and dielectric materials), which is mea-
sured in aggregate by a quantity known as the equivalent series resistance (ESR). 
The voltage during discharge is determined by these resistances. When measured at 
matched impedance (R = ESR), the maximum power for the capacitor Pmax is

	
P

V

xESRmax =
2

4 	
(21.4)

From Eq. (21.4), it is clear that as resistance increases, the capacitor becomes 
less efficient providing lower power densities.

Compared with electrochemical batteries and fuel cells, conventional electro-
static capacitors exhibit relatively high power densities but relatively low energy 
densities (Fig. 21.4). Hence, a battery can store more total energy than a capacitor, 
but it cannot deliver it very quickly, which means its power density is low. On the 
other hand, capacitors store relatively less energy per unit mass or volume, but the 

N.Y. Abu-Thabit and A.S.H. Makhlouf



449

stored energy can be discharged rapidly to produce a lot of power, so their power 
density is usually high.

21.3.2  �Supercapacitors

Supercapacitors, often called electrochemical capacitors (ECs), are governed by the 
same basic principles as conventional electrostatic capacitors. However, they incor-
porate electrodes with much higher surface areas (A) and much thinner dielectrics 
that decrease the distance (D) between the electrodes. Thus, from Eqs. (21.2) and 
(21.3), it can be inferred that supercapacitors are able to reach higher values for both 
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capacitance and energy. In addition, supercapacitors can reach comparable power 
densities to those of the conventional capacitors by maintaining low values of 
ESR. Supercapacitors have several advantages over electrochemical batteries and 
fuel cells, including higher power density, shorter charging times, and longer cycle 
and shelf lives [142].

The electrochemical performance of supercapacitors can be described by 
specific capacitance, which can be considered the most important characteristic 
of a supercapacitor indicating its capability of storing charges. The specific 
capacitance (Csp) is calculated from the charge–discharge curve according to the 
following equation:

	
C

i

m V tsp =
2

D D/ 	
(21.5)

where m is the mass, which is usually specified to active materials, one electrode 
or entire device; i is the charge and discharge current and usually fixed during 
the tests; and ΔV is the applied voltage window during tests. The upper limit of 
voltage depends on the type of the employed electrolyte. Generally, a water-
based electrolyte has a voltage maximum of 1.2 V (and usually charged to 1.0 
V) which is the decomposition voltage of water. However, organic electrolytes 
allow for higher charge voltages. The capacitance is impervious to voltage win-
dow but dictated by the scanning rate, ΔV/Δt, which is the slope of the charge–
discharge curve.

21.3.3  �Electrochemical Capacitors

Different than conventional electrostatic capacitors (sometimes called film capaci-
tors or film dielectric capacitors) which store charges in an electric field imposed 
across a thin layer of dielectric material, ECs store charges at the electrochemical 
interfaces between the high surface area, porous electrode material, and the electro-
lyte. The effective capacitance of ECs is typically a few orders of magnitude higher 
than those resulting from electrostatic capacitors which is attributed to the large 
specific surface area of the porous electrodes (≈500–2000 m2 g−1 for ECs) and the 
shorter path length between the electrode and the electrolyte ions (in order of nano-
meter) [143]. According to the used energy storage mechanism, ECs can be classi-
fied into the following three categories.

21.3.3.1  Electrochemical Double-Layer Capacitors

In case of electrochemical double-layer capacitors (EDLCs), charges are stored 
electrostatically via ion absorption at the electrode/electrolyte interface. Carbon-
based materials with high surface areas are the most commonly used electrode 
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materials for EDLCs [73, 144–146]. Due to their fast and near-surface electro-
chemical process, EDLCs have the ability to provide very high power and pos-
sess an excellent cycle life. However, the energy stored in EDLCs is often limited 
by the finite electrical charge separation at the interface of electrode/electrolyte 
and by the working voltages that is primarily determined by the stable potential 
window of the used electrolyte.

21.3.3.2  Pseudocapacitors

In contrast to EDLC, pseudocapacitors employ fast and reversible faradic processes 
(redox reactions) at the surface of electroactive materials for charge storage. Faradic 
electrodes provide higher specific pseudocapacitance values (≈300–1000 F g−1) that 
exceed the specific capacitance of double-layer charge storage devices using carbon-
based materials (100–259 F g−1). Typical active pseudocapacitive materials are tran-
sition metal oxides [147–150] and ECPs such as polyaniline (PANI), polypyrrole 
(PPY), and polythiophene (PTH) [77, 151, 152].

21.3.3.3  Hybrid Capacitors

Hybrid capacitors try to exploit the advantages and mitigate the disadvantages of 
EDCs and pseudocapacitors to achieve better performance characteristics. 
Utilizing both Faradaic and non-Faradaic processes for charge storage, hybrid 
capacitors have achieved greater energy and power densities than EDCs without 
affecting the cycling stability and affordability that have limited the success of 
pseudocapacitors. Depending on the used electrode configuration, three different 
types of hybrid capacitors can be recognized which are composite, asymmetric, 
and battery type, respectively.

Composite ECs

Composite electrodes utilize a combination of two or more different materials of 
the following main categories: ECPs, metal oxides, and carbon-based materials. 
The hybrid composite materials integrate both physical and chemical charge stor-
age mechanisms in a single electrode. The carbon-based materials provide a 
capacitive double layer of charge with an accessible high surface area that 
increases the contact between the deposited pseudocapacitive materials and elec-
trolyte. The pseudocapacitive materials provide increases in the capacitance 
through Faradaic reactions.
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Asymmetric ECs

Asymmetric hybrids combine Faradaic and non-Faradaic processes by coupling an 
EDC electrode with a pseudocapacitor electrode. In this case, the negative electrode 
will use carbon-based materials and the second positive electrode will use ECPs or 
metal oxides. The lack of an efficient, negatively charged, conducting polymer 
material has limited the success of conductive polymer pseudocapacitors. The 
implementation of a negatively charged, activated carbon electrode attempts to 
avoid this problem. Asymmetric hybrid capacitors that couple these two electrodes 
are expected to achieve higher energy and power densities than comparable EDCs 
along with better cycling stability than comparable pseudocapacitors.

Battery-Type ECs

Battery-type hybrids couple two different electrodes, a supercapacitor electrode 
with a battery electrode. This specialized configuration addresses the need for 
higher-energy supercapacitors and higher-power batteries, combining the energy 
characteristics of batteries with the power, cycle life, and recharging times of 
supercapacitors.

21.4  �Materials for Textile Supercapacitors

As discussed previously (Sect. 21.3.3), the research efforts for making supercapaci-
tors were directed into utilizing three categories of materials: highly conductive 
carbon-based materials with a large surface area, transition metal oxides, and ECPs. 
Various methods for preparation of conductive textiles utilizing different carbon-
based material and ECPs were also discussed earlier (Sect. 21.2). The use of nano-
materials, such as CNTs and graphene, is expected to improve energy storage 
devices because the size reduction of materials will increase the contact surface 
area between the electrode and the electrolyte and decrease the length of the trans-
port path for both electrons and ions [77]. Recently, several smart conductive tex-
tiles based on carbon materials have been investigated as flexible supercapacitors 
including spun carbon nanotube (CNT) yarns [44], CNT-based smart textiles [73, 
153], CNF-based flexible supercapacitors [154], and CNT-based composite textile 
supercapacitors [155–157]. However, the performance of these ECs is limited by 
their inherently low specific capacitance [158]. On the other hand, pseudocapaci-
tors based on transition metal oxides and ECPs showed very high capacitance 
behavior (Fig. 21.5). This section discusses the recent advances in utilizing ECP-
based textiles for the preparation of flexible and lightweight high-performance 
supercapacitors.
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21.4.1  �ECP-Based Textile Supercapacitors

Electrically conducting polymers (ECPs) were discovered in 1976 by Heeger, 
MacDiarmid, and Shirakawa, for which they were awarded the Nobel Prize in 
chemistry in 2000 [160]. ECPs belong to the class of polymers which have π conju-
gation along the polymer backbone such as polyaniline (PANI), polypyrrole (PPY), 
and polythiophene (PTH). One of the unique characteristics of ECPs is their ability 
to undergo oxidation–reduction reactions by gaining or losing electrons from the 
surrounding environment. This feature enables the application of ECPs in different 
areas such as in smart self-healing coatings for corrosion protection [78], chromatic 
display devices [58, 59], electrochemical mechanical actuators, electrochemical 
batteries [161, 162], and electrochemical supercapacitors [142]. As ECPs can be 
doped and dedoped rapidly to high charge density, they can be applied as active 
materials for pseudocapacitors. The most commonly used conducting polymers for 
supercapacitor applications include polyaniline (PANI), polypyrrole (PPY), 
poly[3,4-ethylenedioxythiophene] (PEDOT), and their derivatives [163]. High 
charge densities can be achieved as the charge–discharge process occurs through the 
volume of the ECP and not on the external surface area (Fig. 21.6). ECP-based 
pseudocapacitors with advantages such as high-redox active capacitance, high con-
ductivity, and, essentially, high intrinsic flexibility have promised the most for high-
performance portable, planar, and flexible supercapacitor applications [158].

One of the attractive features for utilizing ECP-based textiles for supercapacitor 
applications is the simple and diverse approaches for their preparation and 

Fig. 21.5  Capacitive performance of various electrode materials reported in the literature [159] 
(reproduced with permission of The Electrochemical Society)
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incorporation in the flexible textile devices, with an ability to control their nano-
structured morphology. The following section discusses briefly the preparation of 
pseudocapacitor textiles based on pure ECPs.

21.4.1.1  Polyaniline-Based Textile Supercapacitors

Among the ECPs, PANI has attracted much interest due to its low cost, good 
mechanical and environmental stability, and adjustable conductivity. PANI can be 
synthesized chemically by oxidative polymerization or electrochemically by 
employing a cyclic voltammetry technique. PANI can be represented in three dif-
ferent convertible forms: the oxidized form (leucoemeraldine), the reduced form 
(pernigraniline), and the emeraldine base (EB). The most useful structure is the 
nonconducting EB which can be converted into the conducting emeraldine salt 
(ES) by acid treatment through a process known as “doping.” The associated ionic 
materials/electrolytes are called “dopants.” Although the protonated form of poly-
aniline (ES) is reported to have poor conductivity, PANI is one of the most studied 
ECPs for EC applications due its environmental stability and the high doping 
level of 0.5 (i.e., two monomer units per dopant). Theoretically, PANI has a maxi-
mum specific capacitance of up to 2000 (F g−1) [164]. However, the reported 
specific capacitance in literature varies significantly according to parameters such 
as the nanostructured morphology, polymerization process, dopant type, dopant 
concentration, and the ionic diffusion length of the electroactive material. The 
essential requirements for achieving high capacitance using PANI-based 

Fig. 21.6  Schematic illustration for charging–discharging of ECP-based pseudocapacitor through 
the doping/dedoping process
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pseudocapacitive electrodes are high surface area, controlled nanostructured mor-
phology, and optimized type as well as concentration of the doping electrolyte 
[77, 165]. Table 21.1 shows the effect of various PANI morphologies on the 
obtained specific capacitance. The capacitance of polyaniline nanowire arrays is 
much larger than both compact film and disordered nanowire networks as elec-
trodes for supercapacitors which is attributed to both a reduced path for ion diffu-
sion and a lower ion diffusion resistance [77].

Kim et al. [173] fabricated a highly stable flexible supercapacitor electrode by 
coating PANI nanofibers on gold-coated polyvinylidene fluoride-co-
hexafluoropropylene (PVDF-co-HFP) membranes. PANI nanofibers were prepared 
by rapid mixing of aniline monomer and APS initiator, with a 4:1 ratio, in 1 M 
sulfuric acid solution. A symmetric capacitor cell was prepared by sandwiching the 
two identical PVDF electrodes between Nafion membrane soaked with 0.5 M sul-
furic acid. The assembled cell showed the performance of a practical flexible pseu-
docapacitor of the composite planar and bent electrode.

21.4.1.2  Polypyrrole-Based Textile Supercapacitors

Polypyrrole (PPY) is one of the most promising ECPs for pseudocapacitor applica-
tions due to its distinctive features such as high conductivity, fast charge–discharge 
mechanism, good thermal stability, low cost, and high energy density [81, 174–176]. 
Similar to PANI, PPY nanostructured morphology affects the performance of the 
fabricated supercapacitor. Compared with the specific capacitance obtained from 
PPY with nanobelt (296 F g−1) and nanobrick (357 F g−1) morphologies, PPY with a 
nanosheet morphology provided the highest specific capacitance (586 F g−1) for a 
PPY-coated stainless steel pseudocapacitor [81]. The high capacitance of PPY 
nanosheets was attributed to the porous structure and high BET surface area of the 

Table 21.1  Typical morphologies of pure PANI and their capacitance performance [77]

PANI 
morphologies Capacitance [F g−1] Electrolytes Configuration

Energy densi 
ties [Wh kg−1]

Film [166] 150 Et4NBF4-
actonitrile

Two-electrode 3.50a

Microsphere [167] 421 H2SO4 aqueous Three-electrode N/A
Micro-tube [168] 522 HCl aqueous Three-electrode N/A
Particle [169] 408 H2SO4 aqueous Two-electrode 6.35a

Coral-like [170] 776 H2SO4 aqueous Three-electrode 64
Nanowire 
networks [171]

742 H2SO4 aqueous Three-electrode 110

Nanowire arrays 
[172]

950 HClO4 aqueous Three-electrode 130

aThe energy is calculated based on the total weight of two electrodes. The others are only based on 
the weight of a single electrode
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nanosheets being 37.1 m2 g−1 as compared with nanobricks and nanobelts with BET 
surface areas of 26.4 m2 g−1 and 22.6 m2 g−1, respectively.

Yuan et al. [177] have fabricated PPY-coated paper through a simple “soak and 
polymerization” methodology. The PPY-coated paper flexible electrodes showed a 
capacitance of 0.42 F cm−2 with high energy density of 1 mW h cm−3 at a power 
density of 0.27 W cm−3. The conductance of the PPY-coated paper remained almost 
constant after 100 cycles of bending. This approach provides a practical and low-
cost method for large-scale production of conductive paper-based electrodes for 
energy storage devices and flexible electronics.

Yue et al. [39] prepared a stretchable electrode for supercapacitor application by 
coating nylon lycra fabric with polypyrrole ECP. PPY was coated on the fabric by a 
simple oxidative polymerization employing ammonium persulfate (APS) as a redox 
initiator and naphthalene-2, 6-disulfonic acid disodium salt (Na2NDS), at 4 °C for 2 
h. The surface resistance of the PPY-coated fabric was 149 Ω/Sq. The electrical 
resistance decreased during stretching of the fabric and increased during fabric 
relaxation. This behavior was attributed to the better surface–surface contact within 
the yarns upon stretching, which improved the conductivity by penetration of the 
polymer into the fabric yarns. The electrochemical properties of the electrode were 
evaluated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy 
(EIS) employing 1.0 M NaCl as the electrolyte solution. At scan rate of 10 mV s−1, 
the PPY-coated electrode exhibited a nearly rectangular CV behavior which indi-
cated that the charge–discharge responses of the electric double layer were highly 
reversible and kinetically facile. However, the rectangular CV shape became dis-
torted when applying scan rates of ≥25 mV s−1. This was attributed to the slow dif-
fusion of the counter ions during the insertion/ejection process compared to the 
faster electron transfer process at high scan rates. Using the three-electrode system, 
the specific capacitance (Csp) of the PPY-coated nylon lycra fabric was calculated 
using the following equation:

	
C

A

f v msp =
/ 2

x x 	
(21.6)

where Csp is the specific capacitance, A is the integral area of the cyclic voltammo-
gram loop, f  is the scan rate, v  is the voltage window, and m  is the mass of elec-
troactive material (PPY). The delivered specific capacitance was found to be 123.3, 
100.7, 69.7, and 39.4 F g−1 at a scan rate of 10, 25, 50, and 100 mV s−1, respectively. 
When the two-electrode system was used, the discharge capacitance (Cm) was cal-
culated using the following equation:
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where Cm, I, t, ΔV, and m are the discharge capacitance per electrode, the current of 
charge–discharge, time of discharge, charge/discharge potential windows, and the 
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amount of active materials on one electrode, respectively. The specific capacitance 
obtained from PPY-coated fabric without strain applied was 108.5 F g−1, with an 
energy density of 6.7 Wh kg−1 and power density of 753.4 W kg−1. The capacitance 
increased to 117.6, 119.6, and 125.1 F g−1 with an elongation of 20 %, 40 %, and 60 
%, respectively. It was found that the PPY-coated nylon lycra preserved its electro-
chemical properties with less than 10 % specific capacitance loss after being 
stretched to 100 % for 1000 times.

In a later study, Yue et al. [178] reported the fabrication of a PPY-coated fabric 
electrode for a supercapacitor application through the electrochemical polymeriza-
tion method. PPY was polymerized electrochemically on the conductive gold-
coated fabric substrate. Acetonitrile was employed as the polymerization solvent, 
and p-toluenesulfonic (p-TS) acid was used as the organic acid dopant. The conduc-
tive textile electrode sustained up to 140 % strain without electric failure. Using 
1.0 M NaCl as the electrolyte, the flexible electrode delivered a high specific capaci-
tance of 254.9 F g−1 at a scan rate of 10 mV s−1 and maintained this almost unchanged 
up to 50 % applied strain, accompanied with improved cycling stability.

Recently, super-high-rate stretchable polypyrrole-based supercapacitors with 
excellent cycling stability were reported [179]. The pseudocapacitor device was 
fabricated using electrochemical polymerization of purified pyrrole monomers 
on smartly tailored stretchable stainless steel meshes (Fig. 21.7). The capaci-
tance of the fabricated supercapacitors increased from the initial 170 F g−1 at a 

Fig. 21.7  Schematic illustration: (a) preparation of a stretchable steel mesh by cutting along the 
dashed black lines; (b) stretch the mesh biaxially; (c) PPY electrode position on the stretchable 
steel mesh; (d) supercapacitor device assembly by coating the H3PO4/PVA electrolyte [179] 
(reproduced with permission, copyright 2015, Elsevier)
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relaxed state to 214 F g−1 at a 20 % strain at a specific current of 0.5 A g−1. 
Surprisingly, it was found that the solid-state supercapacitors can be operated at 
super high rates of up to 10 Vs−1, being 1–2 orders of magnitude higher than 
most scan rates for PPY electrodes measured, even in aqueous electrolytes. The 
fabricated PPY pseudocapacitors achieved capacitance retention of 98 % under 
0 % strain and 87 % under a strain of 20 % applied after 10,000 cycles at a very 
high specific current of 10 A g−1.

Babu et al. [180] investigated the capacitance of different PPY-coated tex-
tiles including cotton, viscose, linen, and polyester fabrics. A unit cell was fab-
ricated to investigate the capacitive behavior by assembling two symmetric 
textile electrodes separated by a solid polymer electrolyte membrane (PVA/1 M 
H2SO4 gel). The textile electrodes prepared with PPY-cotton and PPY-viscose 
exhibited the highest specific capacitance values of 268 F g−1 and 244 F g−1, 
respectively, at a scan rate of 5 mV s−1. This was attributed to the strong ionic 
cross-linking through hydrogen bonding in case of PPY coating with cellulosic 
fabrics, providing uniform adsorption of pyrrole monomers and homogeneous 
polymer coating for the entire fabric.

21.4.1.3  Polythiophene-Based Textile Supercapacitors

Unlike PANI and PPY, which are p-type ECPs, polythiophene (PTH) and its 
derivatives can be both p-type and n-type ECPs. Compared with PANI and PPY, 
polythiophene exhibits much lower electrical conductivities and lower capaci-
tance. However, the p-doped PTHs have advantages such as higher stability in air 
and humidified environments as well as their electrodes can be operated in a com-
paratively higher potential window (≈1.2 V), which enables the fabrication of 
asymmetric supercapacitors with one ECP-based electrode. Among all PTH 
derivatives, poly (3, 4-ethylenedioxythiophene) (PEDOT), with high environ-
mental stability, has been investigated thoroughly for supercapacitor and pseudo-
capacitor applications [181–184].

Laforgue reported the fabrication of an all-textile flexible supercapacitor using 
electrospun PEDOT nanofibers [38]. The nanofiber mats with diameters around 
350 nm demonstrated good electrochemical properties due to their ultraporous 
structure and very high electrical conductivity (60 ± 10 S cm−1). The mats were 
incorporated into an all-textile flexible supercapacitor, by using carbon cloths as 
current collectors and the electrospun PAN nanofibrous membranes as a separa-
tor. The supercapacitor device was fabricated by stacking and embedding the 
textile layers in a solid electrolyte containing an ionic liquid and PVDF-co-HFP 
as the host polymer. The pseudocapacitor showed a specific capacitance of 20 F 
g−1, with limited cycling stability. This was attributed to the increased cell resis-
tance caused by the turning of the identical electrodes into its nonconductive 
(undoped) state when the cell is at its maximum voltage. This drawback of using 
ECP-based electrodes can be circumvented by designing composite supercapacitor 
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electrodes using another type of active materials such as carbon nanotubes, car-
bon nanofibers, graphene nanosheets, and metal oxides.

21.4.2  �Hybrid Textile Supercapacitors

The main shortcomings for utilizing pure ECPs in supercapacitors are discussed 
as follows: (1) The obtained practical specific capacitance is lower than theo-
retical prediction because the inner layer of the thick electrode cannot be fully 
used. (2) ECPs usually possess poor cyclic stability in long-term charge–dis-
charge processes. The poor cyclic stability of conducting polymer electrodes 
could be attributed to the following three reasons [77]: (a) Poor mechanical 
stability due to reversible swelling/shrinkage caused by volumetric changes 
during the doping–dedoping process as a result of repeated insertion/de-inser-
tion of ions during charging and discharging (Fig. 21.6) (b) Loss of the active 
material as a result of conducting polymers peeling off from the current collec-
tor or dissolving into the electrolyte (c) Over-oxidative degradation due to the 
limited working potential range

The above challenges of using pure ECP pseudocapacitive materials can be miti-
gated by fabrication of hybrid composite electrodes containing other types of mate-
rials with different capacitive performances and mechanisms. The following section 
highlights the recent progress in the fabrication of composite supercapacitor textiles 
using ECPs with carbon nanotubes, carbon cloths, graphene, and metal oxides.

21.4.2.1  Textile Supercapacitors Based on ECPs/CC Composites

Compared to textiles and fibers based on CNTs and GNSs, CC offers an alternative 
material as a current collector for supercapacitor devices due to their lower cost, 
porous 3D structure, high surface area, chemical oxidative stability, good electrical 
conductivity, and flexibility. Hence, a combination of CC as a conductive porous 
current collector with pseudocapacitive ECPs is expected to provide a supercapaci-
tor with superior performance compared to a device with either CC or ECP alone.

Horng et al. [79] prepared a flexible supercapacitor based on conductive carbon 
cloth (CC)/PANI nanowires (PANI-NWs) composite electrodes. PANI-NWs were 
deposited on the CC by electrochemical polymerization using HCl as dopant ion. A 
symmetric supercapacitor device was fabricated by sandwiching two CC/PANI-
NWs composite electrodes between a cellulose film separator and 1 M H2SO4 as the 
electrolyte. The textile supercapacitor demonstrated high flexibility, with only 0.05 
% capacitance loss during the bending test. At 1.73 A g−1 discharge current, the 
gravimetric capacitance of 1079 F g−1 was obtained at a specific energy of 100.9 W 
kg−1 and a specific power of 12.1 kW kg−1. The cycling performance of the PANI-
NWs/CC electrode was studied at a current density of 8.65 A g−1 in 1 M H2SO4 
aqueous electrolyte. After 2100 cycles, the initial gravimetric capacitance was 
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reduced by a factor of 14 %, which indicated the long-life electrochemical stability 
of the PANI-NWs/CC composite electrode.

Cheng et al. [80] investigated an electro-etched carbon fiber cloth coated with 
PANI-NWs as an alternative material for supercapacitor electrodes. It was found 
that the surface of carbon fibers becomes more hydrophilic after the etching process, 
which provided a more uniform and thin polyaniline coating around the carbon 
fibers, allowing them to be more accessible while also facilitating electrolyte trans-
port among PANI-NWs and through various carbon fibers. The obtained mass-
normalized specific capacitance was 1026.8 and 265.9 F g−1 at the PANI coating 
density of 1.8 and 9 mg cm−2, respectively. The reduction in capacitance at a higher 
PANI coating density was attributed to the fact that only the PANI on or near the 
surface could participate to the redox reactions. Hence, it was concluded that some 
of the PANI was not utilized when the PANI coating layer was thick. Achieving 
both high mass-normalized capacitance and area-normalized capacitance for elec-
trodes is crucial for practical applications. At the optimized conditions of 30 min 
coating time and 5.4 mg cm−2 PANI coating density, the mass-normalized specific 
capacitance and area-normalized specific capacitance were 673 F g−1 and 3.5 F 
cm−2, respectively.

21.4.2.2  Textile Supercapacitors Based on ECPs/Graphene Composites

Graphene is a 2D single-atom-thick carbon allotrope tightly arranged in honey-
comb lattices and has inspired an enormous amount of research [185, 186]. Due 
to its unique structure, graphene possesses ultrahigh theoretical specific surface 
area (SSA ≈ 2630 m2 g−1) and extraordinary electronic, mechanical, thermal, and 
optical properties. Hence, graphene is proposed as novel future material with 
great promise for potential applications in high-performance supercapacitors 
[142, 146, 187]. However, the serious aggregation and restacking of graphene is 
considered to be one of the major obstacles significantly inhibiting the commer-
cial application of graphene in supercapacitors [142]. This problem can be over-
come by incorporating pseudocapacitive materials such as ECPs into graphene 
as spacers to form composites, which can effectively prevent graphene agglom-
eration [142]. When ECPs are used as spacers, they can provide effective sup-
pression for the irreversible restacking and, hence, maintain the intrinsic high 
SSA and provide more active sites to form EDLs. In addition, the use of ECPs/
graphene composite electrodes provides accessibility for the pseudocapacitance 
mechanism (Faradic reactions) which may contribute to the overall specific 
capacitance. More importantly, the presence of highly conductive graphene with 
high SSA increases the contact between the deposited pseudocapacitive ECP 
material and the electrolyte, which alleviates the cycling stability drawback of 
the ECP-based electrodes. Yan et al. [188] synthesized a graphene/PANI com-
posite using in situ polymerization which provided a maximum specific capaci-
tance of 1046 F g−1 compared to 115 F g−1 for pure PANI. The large improvement 
of specific capacitance was attributed to the synergetic scenario between PANI 
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and graphene nanosheets. PANI nanoparticles prevented the agglomeration of 
graphene nanosheets as well as reduced the ion diffusion path during charge/
discharge processes. The cycling stability was enhanced remarkably by the addi-
tion of 1 % CNTs into the graphene/PANI composite which provided 94 % reten-
tion after 1000 cycles, compared with 48 % for graphene/PANI composite due to 
the improved mechanical properties and presence of a highly conductive path 
during the doping/dedoping processes [189].

Xu et al. [190] employed a screen printing methodology for the fabrication of a 
screen-printable thin film supercapacitor device utilizing graphene/PANI ink. 
Flexible conductive carbon fabrics were used as substrates for screen printing which 
can function as electrodes for direct assembly of the supercapacitor. After 1000 
cycles, the flexible textile supercapacitor provided a maximum specific capacitance 
ratio of 352 F g−1 at discharge rate of 1 A g−1. The improved electrochemical stability 
was attributed to the combination of high graphene conductivity along with PANI 
reversible redox properties which is regarded as necessary to achieve supercapaci-
tors with long cycle life. In a later study, Xu et al. [107] reported the utilization of 
graphene/PANI ink for preparation supercapacitors through an inkjet printing meth-
odology. Electrochemical measurements with a 1  M H2SO4 electrolyte yielded a 
maximum specific capacitance of 82 F g−1, power density of 124 kW kg−1, and energy 
density of 2.4 Wh kg−1 when a scan rate of 20 mV s−1 was applied. The fabricated 
supercapacitors were flexible and showed a long cycle life over 1000 cycles.

Fan et al. [191] reported the use of self-assembling sulfonated graphene (SG)/PANI 
nanocomposite paper for high-performance supercapacitors. Sulfonated graphene was 
found to act as a dopant for PANI. The SG/PANI nanocomposite papers had thin, 
lightweight, and flexible characteristics, and its supercapacitor devices showed excel-
lent electrochemical performance with a ratio capacitance of 478 F g−1 at a discharge 
rate of 0.5 A g−1 and its capacitance retention rate maintained 88 % of its original 
capacitance after 2000 cycles.

21.4.2.3  Textile Supercapacitors Based on ECP/CNT Composites

Pan et al. [192] prepared a flexible and transparent wearable supercapacitor device 
based on aligned CNT fiber textiles and polyaniline (CNTFT/PANI) (Fig. 21.8). 
PANI was deposited on the CNTFT using an electrochemical polymerization 
method. The weight percentage of PANI was determined by the electron transfer 
numbers and controlled by the electrodepositing time during synthesis.

The deposited PANI filled the voids among aligned CNTs with the critical 
weight of 50 %, above which the PANI started to aggregate into bulk particle 
material. The CNTFT/PANI composite was coated with PVA-H3PO4 gel electro-
lyte and two textile electrodes were stacked into a supercapacitor. It was found 
that the threshold weight percentage of PANI that provided the maximum capaci-
tance is 50 % with observation of capacitance reduction above this value due to 
the pseudocapacitance property of PANI at high loads. The specific capacitance of 
the bare CNTFT was 7.7 F g−1, whereas the specific capacitances of the CNTFT/
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PANI composites were 108.5, 152.8, and 201.8–272.7 F g−1 corresponding to 15 
%, 30 %, 40 %, and 50 % PANI in the composite, respectively. When the PANI 
weight percentage reaches 60 %, the specific capacitance was slightly reduced to 
240.6 F g−1. The increased specific capacitance below 60 % was ascribed to the 
pseudocapacitive nature of PANI.  However, beyond the critical point (60 %), 
PANI aggregates into particles which decrease the contact with aligned CNTs and, 
consequently, a reduction in charge transport. There was no obvious reduction in 
the capacitance of supercapacitor textiles when the current densities were 
increased, and hence, the supercapacitor can effectively work at a wide range of 
current density. The supercapacitor provided over 90 % retention of its capacity 
after 2000 charge/discharge cycles, which was attributed to the remarkable 
mechanical and electronic properties from aligned CNTs.

Furthermore, the supercapacitor textile was integrated to create a new energy 
textile that can convert solar energy to electrical energy instead of storing it, and a 
high entire photoelectric conversion and storage efficiency of 2.1 % was achieved. 
A combination of both photoelectric conversion (PC) and electrochemical storage 
was utilized for the fabrication of a wearable energy textile by stacking the PC part 
with the supercapacitor textile as illustrated in Fig. 21.9.

Fig. 21.8  Schematic illustration of the fabrication of a supercapacitor textile based on CNT/PANI 
composite fiber. Reproduced with permission from [192]
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21.4.3  �Supercapacitor Textiles from Supercapacitor Fibers

Supercapacitors can be fabricated using fiber-shaped devices or textile devices. 
Compared to fiber-shaped devices, textiles provide the feasibility of making pla-
nar devices such as planar flexible supercapacitor textiles. Planar textile devices 
can provide specific mass capacitance of ≈3000 F g−1, while the fiber-shaped 
counterpart achieves ≈300 F g−1, 10 times lower than planar textile device [193]. 
For practical applications, planar textile supercapacitor devices provide enhanced 
performance in terms of stability, durability, and lifetime [193]. For example, a 
uniform layer of gel electrolyte is critical for fiber-shaped ECs. If the layer is too 
thick or not uniform, the two electrodes will make contact with each other, and 
hence, the fiber-shaped device cannot be operated normally. Regardless, as men-
tioned previously (Sect. 21.2), conductive textiles can be made by weaving or 
knitting supercapacitor fibers.

Wang et  al. [194] reported the fabrication of high-performance two-ply yarn 
supercapacitor based on a CNT/PANI-NW array [194]. A CNT yarn was coated 
with PANI-NWs by dilute polymerization, which was followed by coating it with 
PVA gel electrolyte. In the last step, two CNT@PANI@PVA yarns were twisted 
together to form a two-ply yarn, the final threadlike supercapacitor. The two-ply 
yarn is a solid-state supercapacitor that retains the characteristics of pure CNT 
yarn for conventional textile processing, such as weaving and knitting. As shown 
in Fig. 21.10a, a plain weave model fabric was manually constructed from six two-
ply yarn supercapacitors. Figure 21.10b shows the co-woven two-ply yarn super-
capacitor with conventional textile yarns. The model fabric is composed of four 
conventional two-ply cotton yarns and four two-ply CNT@PANI@PVA yarn 
supercapacitors. The performance of the composite flexible supercapacitor was 

Fig. 21.9  (a) Photograph of multilayered clothes; (b) schematic illustration of the integrated 
energy textile. The enlarged view shows the working mechanism. Reproduced with permission 
from [192]
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almost constant at different bending cycles. At the current density of 0.01 mA 
cm−2, the CNT@PANI yarn-based supercapacitor showed a capacitance of 38 mF 
cm−2, while the areal capacitance of the pure CNT yarn-based supercapacitor was 
only ≈2.3 mF cm−2. Due to improved capacitance, flexibility, and feasibility of 
integration with textiles, the two-ply yarn supercapacitor might be used for power 
storage in electronic textiles for applications that require conventional fabric-like 
breathability and durability.

ECPs have been proposed for electrochromic applications due to its properties 
such as low operational voltage, ease in the fabrication of large area, the use of flex-
ible substrates, high quality, optically transparent thin films, and excellent color-
ation contrast with matching rapid coloration rates [195]. Among the stated 
advantages, the possibility of using ECPs for the preparation of flexible electro-
chemical devices is very attractive for applications such as display devices and, 
particularly, flexible textile display devices [196].

Kelly et al. [58] reported the employment of PANI as solid-state electrochromic 
material in the application of flexible textile display. Nonwoven PET and viscose 
textiles were coated with PANI by in situ oxidative chemical polymerization using 
p-dodecylbenzenesulfonate as a doping agent. The electrochromic flexible display 
device was constructed by using four-layered sandwiched structure without the 
need for extra liquid electrolyte layers. The use of a solid electrochromic material 
offers a practical solution by preventing the leakage of liquid-phase electrochromic 
materials that require sufficient sealing for the fabricated device.

Recently, Chen et al. [197] reported the fabrication of a flexible electrochromic 
fiber-shaped supercapacitor. The fabrication process is illustrated in Fig. 21.11. 
Initially, the CNT sheet was wound onto an elastic rubber fiber. After that, PANI 
was electrochemically deposited onto the CNT sheet. The maximum specific capac-
itance based on the weight of CNTs and PANI was obtained at 70 % weight PANI 
(255 F g−1 at charge/discharge rate of 1 A g−1). At higher weight percentage of PANI 

Fig. 21.10  Optical microphotographs: (a) a model woven energy storage device consisting of six 
two-ply yarn supercapacitors (reflection mode); (b) yarn supercapacitors are co-woven with con-
ventional cotton yarns to form a flexible electronic fabric with self-sufficient power source. 
Reproduced with permission [194]
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(e.g., 90 %), the excess PANI was found coated on the outer surface of the CNT/
PANI composite fiber electrode and could not effectively make contact with the 
aligned CNTs, which eventually led to slower and less effective ion diffusion. 
Figure 21.12 shows the utilization of the wire-shaped electrochromic supercapaci-
tors for the fabrication of a woven textile that can act as displayer.

Lee et al. [40] reported the utilization of a biscrolling technique for the fabrica-
tion of PEDOT/CNT composite supercapacitors for textiles and microdevice appli-
cations. The fabricated PEDOT/CNT redox supercapacitor yarn electrodes were 
made by a process called biscrolling (Sect. 21.2.3.4), which involves inserting a 
twist in a host sheet that is overlaid with the guest (Fig. 21.13). The biscrolled yarns 
were prepared by twist insertion in hundred-nanometer-thick ECP infiltrated 

Fig. 21.11  Schematic illustration of the structure and display function of the electrochromic, 
wearable fiber‐shaped supercapacitor. Reproduced with permission from [197]

Fig. 21.12  Chromatic transitions during the charge–discharge process. (a) An energy storage tex-
tile woven from electrochromic fiber‐shaped supercapacitors during the charge–discharge process; 
(b and c) electrochromic fiber‐shaped supercapacitors that have been designed and woven to dis-
play the signs “+” and “F,” respectively. Reproduced with permission from [197]
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Fig. 21.13  (a) Schematic illustration showing the fabrication of a biscrolled PEDOT/MWNT 
yarn. (b) Optical microscope image of the spinning wedge, which shows the wedge edges being 
twisted to form a dual-Archimedean scroll yarn, which is schematically illustrated in the inset. 
Scale bar, 200 mm [40]. Copyright 2013, Nature Publishing Group

Fig. 21.14  Cyclic life and 
stability of solid-
electrolyte biscrolled yarn 
supercapacitors when 
weaved into a glove (the 
yarn supercapacitor was 
5 cm long). Reprinted with 
permission from [40]. 
Copyright 2013, Nature 
Publishing Group

MWNT sheets. The ECP yarn guest was deposited on MWNT sheets by vapor 
phase polymerization (VPP), which is a well-known technique for providing uni-
form coatings of highly ECP layers on substrates. The volumetric capacitance of the 
plied biscrolled yarn/Pt wire device was up to 179 F cm−3. The complete 
supercapacitor could be wound or sewn for 10,000 cycles with over 90 % perfor-
mance retention rate (Fig. 21.14).

Recently, Huang et al. [198] reported a novel method for the fabrication of large 
wearable energy storage textiles from industrially weavable and knittable highly 
conductive yarns. The highly conductive yarns were made from 316 L stainless steel 
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thin fibers by the twist-bundle drawing technique (Fig. 21.15a). Stainless steel 316 L 
was selected due to its anticorrosion capability and thermal stability and flexibility 
of its micrometer-sized fibers compared to other types of stainless steel such as the 
brittle 304 stainless steel microfibers. The twisted long yarns have a small diameter 
of 180–250 μm and were found to be very soft and flexible as well, comparable to 
those conventional cotton yarns with higher tensile strength (>700 MPa), which 
facilitated the weaving and knitting process. The main advantage behind using 
metal-based conductive textiles is the ability of metal-based wires/yarns to provide 
effective long-distance electron transport [199]. As illustrated in Fig. 21.15b, the 
highly conductive yarns were prepared through a three-stage fabrication process. 
Initially, reduced graphene oxide (rGO) was introduced, which was followed by the 
electrodeposition of pseudocapacitive MnO2 and PPY conductive layers in the sub-
sequent steps, respectively. The PPY layer is expected to serve as a stress buffer 
during the various deformations that are usually faced by textiles [179]. A freestand-
ing all solid-state yarn supercapacitor was made from two such parallel yarn elec-
trodes using a PVA/H3PO4 gel electrolyte that exhibited a long cycle life (>92 % 
device capacitance retention over 4950 cycles). The possibility of the practical use 
of the hierarchically structured conductive yarns for preparation of energy storage 
textiles through weaving (Fig. 21.15c) and knitting (Fig. 21.15d) processes was suc-
cessfully demonstrated.

21.5  �Conclusion

Among the different approaches for the preparation of smart conductive textiles, 
ECPs have been proposed as a promising material for the preparation of conduc-
tive textiles without affecting their original properties such as flexibility, stretch-
ability, and tensile strength. ECP-based textiles can be utilized for different 
applications (Fig. 21.1) including flexible textile electrodes for supercapacitors 
and energy storage applications. In the case of ECP-based textile supercapacitors, 
the energy storage is provided by a pseudocapacitive mechanism through revers-
ible Faradic redox reactions during fast doping–dedoping processes (Fig. 21.6). In 
general, ECP-based textiles can be prepared directly by a simple coating onto vari-
ous shaped textile substrates or indirectly by knitting or weaving ECP-based com-
posite fibers. In the latter case, the limiting factors for fabrication of conductive 
textile are the tensile strength and flexibility of the conductive composite fibers 
that reflect the ability of fibers to withstand during the knitting/weaving process 
without being broken apart.

Like other material, the use of ECPs for textile supercapacitors has both advan-
tages and challenges. The main characteristics of ECP-based textile supercapacitors 
are (1) their inherent flexibility, (2) ease of coating into various types and shapes of 
textiles, (3) diverse methods for polymerization and embedding into various con-
ductive/nonconductive textile substrates, (4) possibility of controlling their nano-
structured morphology with nanoscale dimensions, (5) possibility of use without 
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electrolyte, (6) high theoretical specific capacitance, (7) relatively low cost for 
industrial scale-up process, (8) possibility for a wide range of working potential 
window based on the employed electrolyte, (9) possibility for integration into high-
performance composite/asymmetric hybrid supercapacitors, and (10) the possibility 
of use in flexible textile display devices.

Fig. 21.15  (a) Schematics of yarn fabrication; (b) illustration of the three-stage fabrication pro-
cess of the hierarchically structured conductive yarn; (c and d) photographs of the energy storage 
textiles made of yarns (the 15 cm × 10 cm woven clothes can light 30 LEDs) (c), and a wristband 
knitted with a pattern (inset shows the pattern powering a LED) (d). Reproduced with permission 
from [198]
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The main challenges for utilization of ECP-based textile supercapacitors are (1) 
their limited cycling stability due to the swelling/shrinkage during charging/dis-
charging process (Fig. 21.6), (2) lower conductivity when compared to metals and 
metal nanoparticle, and (3) lower capacitance when employed with gel electrolytes 
compared to liquid electrolytes.

21.6  �Future Outlook

The above limitations of using ECP-based textile supercapacitors can be resolved 
by: (1) Increasing the specific capacitance of pure ECP-based textile supercapaci-
tors by designing nanostructured polymer coatings with controlled nanoscale 
dimensions, porous structure, and high surface area for achieving both reduced path 
for ion diffusion and lower ion diffusion resistance. (2) Improving the limited 
cycling stability by using composite materials such as ECP/CC, ECP/graphene, 
ECP/CNTs, and ECP/metal oxides. (3) Preparation of ECP-based textile superca-
pacitors indirectly from ECP-coated fibers. This approach is expected to provide 
conductive fibers without affecting their flexibility and tensile properties, and hence, 
it offers an alternative choice for preparation of textile supercapacitors through 
weaving and knitting process. Various fibers can be explored including natural and 
synthetic fibers, metal fibers, and carbon-based fibers. (4) Preparation of ECP-based 
textile supercapacitors through different technologies such as inkjet/screen printing 
or preparation of ECP-based conductive fibers through fiber welding and biscrolling 
methodologies. The latter two approaches allow for incorporation of ECPs with a 
wide range of guest materials for enhancing conductivity, redox properties, or other 
essential properties that might enhance the performance of the target textile 
supercapacitor.
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