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Abstract Recent advancements in the fields of embedded systems, communication
technologies and computer science, have laid the foundations for new kinds of
applications in which a plethora of physical devices are interconnected and
immersed in an environment together with human beings. These so-called
Cyber-Physical Systems (CPS) issue a design challenge for new architecture in
order to cope with problems such as the heterogeneity of devices, the intrinsically
distributed nature of these systems, the lack of reliability in communications, etc. In
this paper we introduce Rainbow, an architecture designed to address CPS issues.
Rainbow hides heterogeneity by providing a Virtual Object (VO) concept, and
addresses the distributed nature of CPS introducing a distributed multi-agent system
on top of the physical part. Rainbow aims to get the computation close to the
sources of information (i.e., the physical devices) and addresses the dynamic
adaptivity requirements of CPS by using Swarm Intelligence algorithms.

1 Introduction

The increasing use of smart devices and appliances opens up new ways to build
applications that integrate the physical and virtual world into consumer-oriented
context-sensitive Cyber-Physical Systems (CPS) [1–3] enabling novel forms of
interaction between people and computers. CPS are combinations of physical
entities controlled by software systems to accomplish specified tasks under stringent
real-time and physical constraints.
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The emerging cyber-physical world interconnects a vast variety of static and
mobile resources, including computing/medical/engineering devices, sensor/
actuator networks, swarm of robots etc. Examples of CPS applications include
[4] traffic control, power grid, smart structures, environmental control, critical
infrastructure control, water resources and so on. These systems could be perva-
sively instrumented with sensors, actuators and computational elements to monitor
and control the whole system. Furthermore, these devices should be interconnected
so as to communicate and interact with each others and with people.

This scenario is supported by recent technology advancement in the fields of
communication, embedded systems and computer science.

The networked cyber-physical world has a great potential for achieving tasks
that are far beyond the capabilities of existing systems. However, the problem of
effectively composing the services provided by cyber and physical entities to
achieve specific goals remains a challenge [2, 3, 5]. Advanced models and archi-
tectures, autonomous resource management mechanisms, and intelligent techniques
are needed for just-in-time assembly of resources into desired capabilities.

The complexity of a CPS, and the large number of elements involved, makes
data analysis and operation planning a very difficult task. A currently used approach
involves two layers: a physical layer and a remote (cloud) cyber layer. The physical
layer sends sensed data to a remote server, which processes them and computes a
suitable operation plan. Afterwards, the remote server sends the sequence of
operations it must execute to each device on the physical layer. The reasoning is
performed in the remote layer. This solution cannot be applied when there are
constraints on responsivity time, that is, when a system needs to react fast to critical
events that may overwhelm its integrity and functionality. Communication lag and
remote processing can cause delays that a system simply cannot bear.

A wide variety of applications means a wide variety of devices. Currently, there
is a plethora of different devices, each with its own particular functionalities and
capabilities. There are simple devices without any computational unit as well as
“smarter” devices with high computation power inside. There are devices with no
operating systems and devices with simple or complex operating systems, such as
tinyOS or Android. Our framework is designed to cope with this inherent
heterogeneity.

To address the issues described above, our proposal moves on these main lines:

• Hiding the heterogeneity of CPS by introducing a virtual object layer.
• Moving the computation as close as possible to the physical resources in order

to foster good performance and scalability.
• Introducing a distributed intelligence layer between the physical world and

remote servers (cloud), which can execute complex tasks and horizontally/
vertically coordinate the devices;

• Switching from a cloud-based model to a cloud-assisted one, where the intel-
ligent intermediate level carries out almost all the real-time control tasks,
whereas the remote cloud level remains in charge of non-real-time tasks such as
offline data analysis or presentation. The information provided by the data
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analysis executed by the remote server are used by the intermediate level to
optimize its operations and behaviour.

In this paper we propose a three-tier architecture (Rainbow) that uses
single-board computers such as the Raspberry PI to connect massive-scale networks
of sensors. This architecture is composed by the Cloud layer, the Intermediate layer
and the Physical layer. Sensors are partitioned into groups, each of which is
managed by a single computing node. These computing nodes host multi-agent
applications designed to monitor multiple conditions or activities within a specific
environment.

We present a new integrated vision that allows the designing of a large-scale
networked CPS based on the decentralization of control functions and the assistance
of cloud services to optimize their behaviour. Decentralization will be obtained
using a distributed multi-agent system in which the execution of a CPS application
is carried out through agents’ cooperation [6–9]. The distributed multi-agent system
lays the foundations for properly exploiting swarm intelligence concepts. Swarm
intelligence [10, 11] systems are typically multi-agent systems made up of a pop-
ulation of simple agents interacting locally with one another and with their envi-
ronment. The agents follow very simple rules, and although there is no central
control structure dictating how individual agents should behave, local and to a
certain degree random, interactions among such agents lead to the emergence of
“intelligent” global behaviour, unknown to the individual agents. Natural examples
of swarm intelligence include ant colonies, bird flocking, animal herding, bacterial
growth, and digital infochemicals. Agents interacting with cloud services can
exploit the analysis, predicting, optimization and mining scalable capabilities on
historical data allowing applications to adjust their behaviour to best optimize their
performance.

The remainder of this paper is structured as follows: Sect. 2 summarizes the
current literature about cyber physical systems and the approaches to cope with its
issues; Sect. 3 is devoted to a description of the proposed Rainbow Architecture;
Sect. 4 describes two example of use; finally, we draw conclusions and the future
works.

2 Related Work

In the recent years, the world has witnessed a real revolution about people habit in
terms of ability of exploiting high technology solution in everyday life. This new
scenario opens up new challenges regarding how the physical stuff can be used and
integrated with the preexisting digital world. In these so called Cyber-Physical
systems, many physical components collaborate each other by means of network
communications in order to sense and act upon the physical world. These physical
components are enhanced by using computational resources which supplies them
the “smartness” needed to cope with complex tasks as controlling the physical
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environment and supporting most of the everyday human activities [12]. This
scenario is supported by recent technology advancement in the fields of commu-
nication technologies, embedded systems and computer science. On the commu-
nication technologies side, new protocols like EPC TDS and IPv6 ensure unique
addressability for all the elements involved in a CPS, while connectivity tech-
nologies like IEEE 802.11, ZigBee, Umts and ZTE, ensure light and fast connection
both among the devices and between the devices and the Internet. On the embedded
systems side, the miniaturization and the constant improvement of energy efficiency
of electronic components enables the environment to be easily instrumented with
sensors, actuators and computing devices, while the presence on the market of
cheap and general purpose single-board computers, like Raspberry PI [13] and
BeagleBoard opens up to new approaches and application scenarios. Finally, on the
computer science side, the development of new techniques to analyse a massive
volume of data, together with the advances in the fields of artificial and swarm
intelligence, allows us to properly deal with even a large number of devices.

The inherent complexity of these kinds of systems is highlighted in [4], where
cyber-physical issues are summarized in the following topics

• integrate the physical components in the digital world;
• supply each physical component of its own computational capabilities;
• communication and networking issues;
• dynamic reconfiguration;
• human interactions;
• security and reliability.

In the current literature these kinds of issues are addressed by two parallel
research communities, the first concerning the Cyber-Physical Systems and the
second related to the Internet of Things (IoT) vision [1]. Both research fields focus
on the integration between physical and digital world but with different approaches
and visions. The first research community, mainly from USA, comes from the
control theory and control systems engineering fields and focuses on how the
physical components can be interconnected each other and exploited using complex
software entities. The second, the IoT community, is mainly driven from computer
science field and Internet technologies and focuses mainly on heterogeneity and
interoperability issues which comes from the integration of the physical compo-
nents in the pre-existing Internet.

Formal distinction between CPS and IoT is yet to come [1], indeed, both share
similar visions and are often used in the current literature to identify the same
topics.

In order to deal with architectural issues posed by CPS, and well highlighted in
[2], several frameworks and architectures have been proposed. Dilon et al. [14]
proposes Web of Things based framework for CPS where physical sensors and
actuators are universally identified (through URIs) and modelled as WoT resources.
The resources can be accessed by means of remote RESTful invocations. The
architecture is built using two key components, CPS Node and CPS Fabric. CPS
nodes are directly connected with physical devices and interconnected each other
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using the CPS fabric, which consists of a set of network system functions (i.e.
routing, admission control, and so on). An Intelligent Vehicle System is shown as a
case of study.

In [15–17] some middlewares are proposed which implement the pervasive
computing paradigm in the CPS context. Each one presents a different framework
which allows programmers to design and develop applications by coding in an high
level of abstraction. The code is automatically compiled and deployed to the
suitable computing nodes where sensors and actuators are managed through a
wireless network. In [16], the framework provides an object oriented model and a
rule-based mechanism. The framework also introduces the concept of item which
consists in physical entities dynamically detected by the system on the basis of the
values measured by the sensors. Every time a physical item is identified by a
specific set of rules, an associated software object is properly instanced. Hnat et al.
[15] proposes a similar approach but exploiting Matlab.

Several works deal with CPS issues adopting multi-agent paradigms. In [18] a
multi-agent system is used together with an event-based mechanism. In [9], a
framework is described which lies on the semantic agent concept while in [8] the
multi-agent systems is integrated with a service-oriented architecture (SOA). This
work also suggests how well-known and proven swarm intelligence techniques can
be properly adopted for industrial purposes. At last, in [7], an agent-based mid-
dleware for cooperating smart-objects is proposed. An implementation using JADE
is also provided where a topic-based publish/subscribe protocol is exploited for
permitting cooperation among agents.

3 Rainbow Architecture

Rainbow is a three-layer architecture designed in order to bring the computation
(i.e. the controlling part) as close as possible to the physical part. Since CPS
foresees that physical entities are spread across a large (even geographic) area, the
previous assumption implies the controlling part to be intrinsically distributed.

Our proposal foresees the use of a distributed agent-based layer in order to
address the aforementioned issues. The agent paradigm has several important
characteristics:

Autonomy. Each agent is self-aware and has a self-behaviour. It perceives the
environment, interacts with others and plans its execution autonomously.

Local views. No agent has a full global view of the whole environment but it
behaves solely on the basis of local information.

Decentralization. There is no “master” agent controlling the others, but the
system is made up of interacting “peer” agents.

Through these basic features, multi-agent systems make it possible to obtain
complex emergent behaviours based on the interactions among agents that have a
simple behaviour. Examples of emergent behaviour could refer to the properties of
adaptivity, fault tolerance, self-reconfiguration, etc. In general, we could talk about
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swarm-intelligence when an “intelligent” behaviour emerges from interactions
among simple entities. There is a plethora of bio-inspired swarm intelligence
approaches in the literature that could be properly adopted in the context of CPS. In
Sect. 4.2 we show an example where Swarm Intelligence is used to map noise
pollution inside a city area.

Rainbow architecture is shown in Fig. 1. As it can be seen, the architecture could
be divided into three layers. The bottom layer is the one that is devoted to the
physical part. It encloses sensors and actuators, together with their relative com-
putational capabilities, which are directly immersed in the physical environment.

In the Intermediate layer, sensors and actuators of the physical layer are repre-
sented as virtual objects (VOs). VOs offer to the agents a transparent and ubiquitous
access to the physical part due to a well-established interface exposed as API. VO
allows agents to connect directly to devices without care about proprietary drivers
or addressing some kind of fine-grained technological issues. Each VO comprises
“functionalities” directly provided by the physical part. Essentially, a VO exposes
an abstract representation (i.e. machine readable-description) of the features and
capabilities of physical objects spread in the environment. Functionalities exposed
by different types of VOs can be combined in a more sophisticated way on the basis
of event-driven rules which affect high-level applications and end-users.

In summary, as detailed in Sect. 3.1, all the devices are properly wrapped in VOs
which, in turn, are enclosed in distributed gateway containers. The computational
nodes that host the gateways represent the middle layer of the Rainbow architecture.
Each node also contains an agent server that permits agents to be executed properly.
Gateways and agent servers are co-located in the same computing nodes in order to
guarantee that agents exploit directly the physical part through VO abstraction.

Cloud

Physical

Distributed
Middleware

VOVO VO

A
A

AA

A
A

Gateway

Agent Server
Computing Node

Fig. 1 Rainbow architecture
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Instead of transferring data to a central processing unit, we actually transfer the
process (i.e. fine-grain agent’s execution) toward the data sources. As a conse-
quence, less data needs to be transferred over a long distance (i.e. toward remote
hosts) and local access and computation will be fostered in order to achieve good
performance and scalability.

The upper layer of Rainbow architecture concerns the cloud part. This layer
addresses all the activities that cannot be properly executed in the middle layer like,
for instance, algorithms needing complete knowledge, tasks that require high
computational resources or when a historical data storage is mandatory. On the
contrary, all tasks where real time access to the physical part is required could be
suitably executed in the middle layer.

3.1 Virtual Objects

We address issues about heterogeneity in CPS by introducing the Virtual Object
(VO) concept. VO aims to hide heterogeneity by supplying a well-established
interface permitting the physical parts to be suitably integrated with the rest of the
system.

VO could be defined as a collection of physical entities like sensors and actu-
ators, together with their computational abilities.

It can be composed of just a simple sensor or it can be a more complex object
that includes many sensors, many actuators, computational resources like CPU or
memory and so on.

In general, VO outputs can be represented by punctual values (e.g. the tem-
perature at a given point of a room) or aggregate values (e.g. the average of
moisture during the last 8 h). Also, the values returned by VOs could be just
the measurement of sensors or could be the result of complex computations (e.g. the
temperature of a given point of space computed by means of interpolation of
the values given by sensors spread across the environment).

Furthermore, a VO could supply actuation functionality by changing the envi-
ronment on the basis of external triggers or internal calculus.

These different kinds of behaviour that VO can expose must be taken into
account. VO is therefore conceived as a complex object that can read and write
upon many simple physical resources. More in detail, we consider that each VO
exposes different functionalities. Each functionality can be either sensing or actu-
ating and can be refined by further parameters that dynamically configure it.

The previous assumption leads to the definition of resource as the following
triplet:

½VOId;VOFunctionId;Params�

A Smart Platform for Large-Scale Cyber-Physical Systems 121



where VOId uniquely identifies the VO, VOFunctionId identifies the specific
functionality and Params is an ordered set of parameter values that configure the
functionality.

For example let’s consider a Virtual Room made of sensors for measuring dif-
ferent physical quantities inside a room such as temperature, moisture, brightness
and so on. Suppose now you want to read from Smart Room the temperature in a
given spatial point of the room. In that case the triplet could be:

½VirtualRoom; temperature; ½x; y; z��

where x, y and z are the cartesian coordinate of the point of interest.
Using object oriented terminology, a Resource could be seen as a particular

“instance” of a functionality of a given VO.
Besides read and write operations (i.e. sensing and actuation), it is provided for

VOs to be able to manage events that occur in the physical part. To that scope, our
proposed middleware includes a publish/subscribe component for managing events
in each computing node. Each event is defined by a logical rule where one or more
VOs could be involved.

Each rule is a logical proposition in which the atomic predicates can be of the
following kinds:

– resource < threshold (e.g. temperature <300)
– resource > threshold
– boolean_resource (e.g. the_door_was_unlocked)

Just an example of rule:

ðtemperature\100 and brightness[ 500Þ or people [ 3 or door unlocked

The publish/subscribe manager component is in charge to parse the logical rule
and generate a binary tree made as explained below: each node N of the tree
corresponds to a logical proposition NðÞ. Given L and R, the child nodes of N, their
associated logical propositions are respectively LðÞ and RðÞ so that it results either
N() = L() or R() or N() = L() and R(). The radix of the tree corresponds to the entire
rule while the leaves contain the atomic propositions that is passed to the suitable
VOs. A binary tree representation example of a composed rule is shown in Fig. 2.

A VO is in charge to establish each time when the assigned atomic propositions
are true or false. The logical proposition of a given node is computed on the basis of
the value of its child nodes. The root of the tree is recursively involved by this
bottom–up computation. As soon as the value of the root node (i.e. the value of the
entire rule) changes all the subscriber will be notified.

All the physical things linked to a computing node together with relative VOs is
enclosed in the Gateway container. The Gateway exposes an interface to interact
directly with the VOs.

Each gateway represents the “entry point” that agents can use to exploit VOs of
the relative computing node.
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In the following is described the interface of Gateway that will be used by the
overlying layer:

The method resourceNaming assigns an identification name to a given
resource supplied by a given VO. A resource is a specific instance of a functionality
of a VO refined by some parameters. In other word, a resource is the
above-mentioned triplet: ½VOId;VOFunctionId;Params�. The name assigned to a
resource via resourceNaming can be used in the other methods in order to
simply identify the resource. Furthermore, the identification name of a resource is
useful to compose the rules in a more human-readable fashion.

The method check reads the current value of the resource identified by name
whereas acting triggers the actuation operation upon the resource identified by
name. Both check and acting methods are of two kinds: the first take only
name as parameter and refers to the resource as it is previously defined in
resourceNaming; the second kind, instead, permits the parameters of the
referred resource to be refined dynamically.

The method setRule permits a complex rule to be published (e.g. (tempera-
ture <100 and brightness >500) or number_of_ person >3 or door_unlocked) and
to assigns an id (i.e. idRule) useful for subscribing the rule afterwards.

Fig. 2 Example of binary tree of a rule
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The method subscribe permits a previously published rule (identified by
idRule) to be subscribed. The occurrence of the event identified by idRulewill
be notified to the handler passed as a parameter to the method.

3.2 Rainbow Multi-agent System

The Multi Agent component of the rainbow architecture is made up of the following
entities: Agents, Messages, the Agent Server and the Deployer. Figure 3 shows
these entities and how they interact among themselves and with the Gateway.

The Agent Server is the container for the execution of agents. It offers func-
tionalities concerning the life cycle of the agents as well as functionalities for
agents’ communication. Agent servers are arranged in a peer-to-peer fashion where
each agent server hosts a certain number of agents and permits them to execute and
interact transparently among themselves. In other words, when an agent requests
the execution of a functionality, its host agent server is in charge of redirecting
transparently the request to the suitable agent server. In the following are listed the
main functionalities each agent server exposes:

SEND_MSG. Through this functionality, the communication between agents is
performed. The Agent Server is responsible for correctly delivering messages from
the sender agent to the receiver one. If the sender and the receiver do not belong to
the same agent server, the message is forwarded to the suitable “peer” agent server
which is, in turn, engaged finally to deliver the message. The latter mechanism is
showed in Fig. 4a.
ADD_AGENT. It instances an agent to an agent server. Rainbow Multi Agent
system is designed to permit agents to be dynamically loaded to the agent server
they have to belong to. As in SEND_MSG operation, agent servers are in charge for
exchanging information among themselves in order to guarantee the ADD_AGENT
request to be delivered to the correct agent server. This mechanism is shown in
Fig. 4b. The latter figure also shows how the code is dynamically loaded exploiting
class repository server. More in detail, when an ADD_AGENT request reaches the
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suitable agent server, if the agent code is not already available, the agent server
automatically downloads it from a class repository.
REMOVE_AGENT. It removes an instance of an agent hosted by an agent server.
This operation also exploits the “forwarding” mechanism described above.

A Message is the atomic element of communication between agents. It carries an
application specific content together with information about the sender agent and
the receiver one.

Our architecture provides for specific kinds of message, that are the acquain-
tance messages. Those messages are used for establishing an acquaintance rela-
tionship among agents. The acquaintance message carries information about the
location of a given agent (i.e. location of hosting agent server). The agent who
receives the acquaintance message will use this information when it needs to send
messages toward that destination. This kind of mechanism ensures agent behaviour
to be completely independent w.r.t. the locations of agents it has to collaborate with.

For instance, let’s consider that an agent is a computing node interconnected
with others by means of a ring network. Each agent, therefore, can only interact
with its previous agent nodes and its next one. Whenever further nodes must be
connected to the ring network, only the acquaintance relationships have to be
updated. In other words, a third entity can establish dynamically those acquaintance
relationships without resorting to modifying, re-building or restarting any agent.

In rainbow architecture the entity which is in charge of sending acquaintance
messages in order to establish the acquaintance network is called Deployer.
Deployer could be an external process as well as an agent, it can run during the
configuration phase as well as during application execution. The Deployer concept
will be described in details in Sect. 3.2.1.

An Agent is an autonomous entity which executes its own behaviour interacting
with other agents via Agent Server. In addition, each agent can interact with the
physical part exploiting functionalities exposed by the Gateway (i.e. using the
Virtual Object abstraction).

The functionalities of an agent are exposed to its own Agent Server and
Gateway. As said before, Agent Servers are in charge of the “forwarding” mech-
anism that eventually ends with the calling of these functionalities, while the
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Fig. 4 Forwarding mechanism. a [SEND_MSG], b [ADD_AGENT]
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Gateway is in charge of notifying the events that occur in the physical part. In the
following are listed the main functionalities of an agent:

RECEIVE_MESSAGE. It is called when there is a Message to be delivered for the
agent.
HANDLE_EVENT. It is called by the Gateway to notify that an event is occurred in
the physical part.
ADD_ACQUAINTANCE. It is called when there is an acquaintance message to be
delivered to the agent. The implementation of this functionality concerns the store
of the acquaintance relationship between the agent itself and the agent identified
inside the message.
REMOVE_ACQUAINTANCE. It is called for removing a previously stored
acquaintance relationship.

The specific behaviour of an Agent is realized through the implementation of
RECEIVE_MESSAGE and HANDLE_EVENT functionalities.

3.2.1 Dynamic Deployment and Roles

The deployment of the agents as well as the configuration of the acquaintance
relationships and the start-up of the application are all actions performed by the
so-called Deployer. An external process or even an agent can act as a Deployer. The
deployment phase is typically executed just before the application can start properly;
however, it is possible to act as Deployer even during application execution in order
to update the configuration dynamically for hosting new features or adapting to
foreseen and unforeseen changes in the environment. Deployer can be implemented
centrally or in a distributed way. Basically, who acts as a Deployer operates using the
ADD_AGENT functionality for deploying a new instance of an agent into an agent
server, REMOVE_AGENT for removing a running agent from an agent server.
Furthermore, Deployer is responsible for sending acquaintance messages that
eventually end with calls to ADD_ACQUAINTANCE or REMOVE_ACQUAINTANCE
on the specific agents. Finally, Deployer is also in charge of sending suitable “start”
messages using SEND_MSG in order to start the application properly.

The acquaintance relationship is formally defined by a triplet: [A, B, R] where A
and B are the agents involved in the relationship and R is a Role label. The triplet
above means that agent A knows agent B and that B has the role R as acquaintance
of A. During the execution, an agent exploits the Roles of its acquaintances to
discriminate about how to interact with them.

As an instance, let’s consider that each agent represents a physical person in a
town. The relationship between two agents could have roles of neighbourhood
and/or friendship. A deployer is in charge of configuring those relationships during
the initial phase. In addition, as soon as a person changes home or starts a new
friendship, the deployer has to re-arrange relationships dynamically among agents
through sending acquaintance messages. During the execution of that system, each

126 A. Giordano et al.



agent will use roles of neighbourhood and friendship to discriminate how to interact
with other agents. For instance he/it can exchange information about its district with
its neighbours while it invites its friends to a party.

4 Application Examples

In this section we introduced two examples of use the Rainbow architecture. The
first one aims to show our architecture from a practical perspective in order to
understand and better figure out all the system details. The second example is useful
to understand how Rainbow can host suitable swarm intelligence strategies in order
to realize CPS applications owning properties such as adaptivity, fault tolerance,
self-reconfiguration, etc.

4.1 Floor Control Example

In this example we show an application for monitoring and controlling a floor of a
building hosting offices. Each floor contains a certain number of rooms.

Figure 5 shows how a generic floor could be. In general, each room contains:
doors, desks, chairs and adjustable brightness lights.

Each room is instrumented by some sensors and actuators listed below.

Sensors:

• sensors that detect the opening and closing of doors;
• sensors that detect when a person enters or leaves a room;

Fig. 5 Floor topology
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• proximity sensors detecting presence of the people in each zone of a room;
• a weight sensor for each chair in order to detect if the chair is currently used.

Actuators:

• adjustable brightness lights for all zones of a room;
• a display on each desk.

The use of the above described devices, for example, permits adjusting lights on
the basis of people movements, writing informational messages on displays and so
on.

4.1.1 Integration in Rainbow Using Virtual Objects

In order to develop the controlling part in a object-oriented fashion, it is required to
integrate the above described physical things with Rainbow middleware defining
the suitable Virtual Object (VO). Each VO abstracts and wraps a certain number of
sensors as well as actuators. For the sake of simplicity, in this example we chose to
design VOs in a human-readable fashion: virtual desk, virtual chair, virtual door
and virtual wall.

The functionalities exposed by these VOs are listed in Tables 1, 2, 3 and 4. It is
worth to note that each functionality of the virtual wall is parametric: the zone
parameter specifies which area of the room is referred.

Table 1 Virtual door

Functionality Type Description

Lock Sensing Boolean, true if the door is closed

Unlock Sensing Boolean, true if the door is open

Entry Sensing Boolean, true when a person enter the room through the door

Exit Sensing Boolean, true when a person exit the room through the door

Table 2 Virtual chair

Functionality Type Description

Proximity Sensing Detects people near the chair

Sitting Sensing Boolean: true when someone sits on the chair

Table 3 Virtual wall

Functionality Type Description

Near people Sensing Number of people in the zone (supplied by parameter)

Add light Acting Increase light brightness in the zone (supplied by parameter)

Less_light Acting Decrease light brightness in the zone (supplied by parameter)

Light_off Acting Set off light in the zone (supplied by parameter)
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Each VO is located on the same computing node where the sensors and actuators
that VO encloses are connected to. A computational node can generally host VOs
that may refer to more than one room. Assuming than we have only three com-
putational nodes available to monitor and control the whole floor, we can assign
rooms to nodes as in Fig. 6.

4.1.2 Multi-agent Floor Application

The application is designed for managing the floor and its rooms. For each room a
energy-saving light-management is developed which considers people presence for
suitably adjusting the brightness of the various zones of a room. This control
management will also consider if the chairs are utilized or not in order to better
adjust the lights. In addition, it permits a message to be displayed on a certain desk
when needed. All those features are implemented in the RoomAgent. The code
inside the RoomAgent is a typical object-oriented code where VOs are exploited as
simple objects. The code is omitted in this paper for sake of brevity.

Table 4 Virtual desk

Functionality Type Description

Proximity Sensing Detects people near the desk

Display Acting Show a message supplied by parameter on the display

Fig. 6 Rooms assignment to
computational node. Each
different color identify a
different node
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Besides this room-wise features, the application is also designed for addressing
issues concerning the entire floor (i.e. where more than one room is involved). For
instance, it could be useful to know how many people are in the floor at a given
time in order to properly manage the locking of the main door of the floor as well as
to shut down all the lights where the floor is empty. In this example, instead, the
knowledge of the number of people is used to notify a person when he is alone in
the floor writing a message on the display of his desk.

The FloorAgent is designed for addressing the above mentioned issues.
Summarizing, there is a RoomAgent per room and a unique FloorAgent as it is
shown in Fig. 7.

4.1.3 Deployment of the Application

As mentioned before the Deployer is in charge to load the agents upon the agent
servers, to establish acquaintance relationships among them and to start the
application.

In our application, each RoomAgent must be located in the computing node
where the VOs of the relative room belong to.

Conversely, the FloorAgent can be located everywhere in the system (it has not
connection with any physical part), even in a remote cloud node. The process made
by the Deployer is summarized in Fig. 8.
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Fig. 7 Logical distribution of
agents in the floor

130 A. Giordano et al.



4.1.4 Agent Interaction and Acquaintance Relationships

After loading each agent in the proper location, the Deployer sends acquaintance
messages to each RoomAgent in order to let them know the FloorAgent.
Afterwards, each agent sends an acquaintance message to the FloorAgent in order
to be known by it. This is an example of an agent that acts as Deployer. Once the
deployment phase is completed, the application execution can start. When a person
leaves a room, RoomAgent will be notified by the gateway and, consequently, will
send a message carrying the number of people currently inside the room to the
FloorAgent. The latter will update its people counter on receiving such a message.
When it verifies that there is only one person in the floor, it will send a message to
the relative RoomAgent that, in turn, will write a message on the desk display.

4.2 Noise Pollution Mapping

Many environments, such as airports, road works, factories, construction sites, and
other environments producing loud noises, require effective noise pollution moni-
toring systems. Noise pollution is a common environmental problem that affects
people’s health by increasing the risk of hypertension, ischemic heart disease,
hearing loss, and sleep disorders, which also influence human productivity and
behavior [19]. For this reason the European Community passed the directive
2002/49/EC [20], which declares noise protection as one necessary objective to
achieve a high level of health and environmental conservation. The directive
imposes several actions to be made upon member states, including the mapping of
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Fig. 8 Deployment of the agents and their physical distribution on the computing nodes
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noise in larger cities via noise maps. On the basis of these maps, the countries can
formulate plans to counter the threat that is noise pollution.

Noise maps are mostly based on numerical calculations that have shown to give
good estimates of long term averaged noise levels. However, such maps does not
take into account the real-time variation of the noise levels.

Using the rainbow platform we designed an agent-based, self-organizing system
for the real-time construction of noise maps and identification of the sources of
noise.

Noise sensors are spread into the environment, linked to the computational
nodes, and suitably wrapped inside the VOs. Each agent is directly associated with
a VO representing a noise sensor. During the deployment phase, each agent is
supplied by the knowledge of its neighbours (i.e. agent associated with a spatially
near sensor).

We use a simple self-organizing algorithm, proposed by [21], to let sensor
network to self-organize itself in a region partitioning based on similar sensing
patterns (noise levels). Regions can grow or shrink according to the dynamic
variation of noise levels. Organization in regions occurs by creating an overlay
network made by agents connected by virtual weighted links. Agents belonging to
the same region will have strong links, while agents belonging to different regions
will have weak (or null) links.

In the following the details of the algorithm. Let si and sj be two neighbour
sensor agents. Let nðsiÞ and nðsjÞ the values of noise sensed by si and sj, respec-
tively. Let us assume that a distance function D can be defined for couples of v
values. Region formation is then based on iteratively computing the value of a
logical link lðsi; sjÞ for each and every agent of the system as in following upda-
te_link procedure:

Update_link:

if ðDðnðsiÞ; nðsjÞÞ\Tf
lðsi; sjÞ ¼ minðlðsi; sjÞþD; 1Þ

gelsef
lðsi; sjÞ ¼ maxðlðsi; sjÞ � D; 0Þ

g

where T is a threshold that determines whether the measured values are close
enough for lðsi; sjÞ to be re-enforced or, otherwise, weakened; and D is a value
affecting the reactivity of the algorithm in updating link. Based on the above
algorithm, it is rather clear that if DðnðsiÞ; nðsjÞÞ is lower than threshold T , lðsi; sjÞ
will rapidly converge to 1. Otherwise it will move towards 0. Transitively, two
nodes sh and sk are defined in the same region if and only if there is a chain of
agents such that each pair of neighbours in the chain are in the same region. From
the Rainbow perspective, region information is stored adding/removing new
acquaintance relationships among agents.
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In order to properly map the noise pollution, it is necessary that each and every
agent within a region is locally provided with information related to the overall
status of the region. To this end, it is possible to integrate forms of diffusive
gossip-based aggregation [22] within the described general scheme. The algorithm
requires that the agents periodically exchange information with their neighbors
about some local value, locally aggregate the value according to some aggregation
function (e.g., maximum, minimum, average, etc.), and further exchange in the
subsequent step the aggregated value.

5 Conclusions

In this paper we introduced Rainbow, an architecture that permits an easy devel-
opment of large-scale cyber-physical applications. The novelty of Rainbow is that it
relies on the adoption of a distributed multi-agent layer on top of the physical part
that is, in turn, wrapped in suitable Virtual Objects. Rainbow aims to hide
heterogeneity, cope with complexity and real-time issues. In the future, new
intelligent, adaptive and decentralized algorithms will be explored for developing
large-scale cyber-physical applications using Rainbow, such as those related to
smart cities, power grid, water networks and so on. Furthermore, a well-established
interface for the cloud part of the architecture will be defined.
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