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Abstract The search ability of an Evolutionary Algorithm (EA) depends on the vari-
ation among the individuals in the population [1–3]. Maintaining an optimal level of
diversity in the EA population is imperative to ensure that progress of the EA search is
unhindered by premature convergence to suboptimal solutions. Clearer understand-
ing of the concept of population diversity, in the context of evolutionary search and
premature convergence in particular, is the key to designing efficient EAs. To this end,
this paper first presents a brief analysis of the EA population diversity issues. Next
we present an investigation on a counter-niching EA technique [2] that introduces
and maintains constructive diversity in the population. The proposed approach uses
informed genetic operations to reach promising, but unexplored or under-explored
areas of the search space, while discouraging premature local convergence. Simu-
lation runs on a suite of standard benchmark test functions with Genetic Algorithm
(GA) implementation shows promising results.

1 Introduction

Implementation of evolutionary algorithm (EA) requires preserving a population
that maintains a degree of population diversity, while converging to a solution [3–
10] in order to avoid premature convergence to sub-optimal solutions. It is difficult
to precisely characterize the possible extent of premature convergence as it may
occur in EA due to various reasons. The primary causes are algorithmic features
like high selection pressure and very high gene flow among population members.
Selection pressure pushes the evolutionary process to focus more and more on the
already discovered better performing regions or “peaks” in the search space and as
a result population diversity declines, gradually reaching a homogeneous state. On
the other hand, unrestricted recombination results in high gene flow which spreads
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genetic material across the population, pushing it to a homogeneous state. Variation
introduced through mutation is unlikely to be adequate to escape local optimum or
optima [11]. While premature convergence [11] may be defined as the phenomenon
of convergence to sub-optimal solutions, gene-convergence means loss of diversity in
the process of evolution. Though, the convergence to a local or to the global optimum
cannot necessarily be concluded from gene convergence, maintaining a certain degree
of diversity is widely believed to help avoid entrapment in non-optimal solutions
[1, 2].

In this paper we present an analysis on population diversity in the context of effi-
ciency of evolutionary search. We then present an investigation on a counter niching-
based EA that aims at combating gene-convergence (and premature convergence in
turn) by employing intelligent introduction of constructive diversity [2].

The rest of the paper is organized as follows: Sect. 2 presents an analysis of
diversity issues and the EA search process; Sect. 3 introduces the problem space
for our proposed algorithm. Sections 4–6 present the proposed algorithm, simulation
details and discussions on the results respectively. Finally, Sect. 7 presents some
concluding remarks.

2 Population Diversity and Evolutionary Search

The EA search process depends on the variation among the individuals or candidate
solutions in the population. In case of genetic algorithm and similar EAs, the varia-
tion is introduced by the recombination operator combining existing solutions, and
the mutation operator introducing noise by applying random variation to the indi-
vidual’s genome. However, as the algorithm progresses, loss of diversity or loss of
genetic variation in the population results in low exploration, pushing the algorithm
to converge prematurely to a local optimum or non-optimal solution. Exploration in
this context means searching new regions in the solution space; whereas, exploitation
means performing searchs in the neighbourhoods which have been already visited.
Success of the EA search process requires an optimal balance between exploitation
and exploration.

In the context of EA, diversity may be described as the variation in the genetic
material among individuals or candidate solutions in the EA population. This in turn
may also mean variation in the fitness value of the individuals in the population. Two
major roles played by population diversity in EA are as follows:

Firstly, diversity promotes exploration of the solution space to locate a single
good solution by delaying convergence.

Secondly, diversity helps to locate multiple optima when more than one solution
is present [3, 9, 10].

Besides the role of diversity regarding premature convergence in static optimiza-
tion problems, diversity also seems to be beneficial in non-stationary environments.
If the genetic material in the population is too similar, i.e., has converged towards
single points in the search space, all future individuals will be trapped at that single
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point even though the optimal solution has moved on to another location in the fitness
landscape. However, if the population is diverse, the mechanism of recombination
will continue to generate new candidate solutions making it possible for the EA to
discover new optima.

The following sub-section presents an analysis of the impact of population diver-
sity on premature convergence, based on the concepts presented in [7].

2.1 Effect of Population Diversity on Premature Convergence

Let �X = (
X1,...,X N

) ∈ SN be a population of individuals Y in the solution space SN ,
where the population size is N ; let �X (0) be the initial population; H is a schema,
i.e., a hyperplane of the solution space S. H may be represented by its defining
components (defining alleles) and their corresponding values as H (ai1, . . . , aik),
where K (1 ≤ K ≤ chromosome length). Leung et al. in [7] have proposed the
following measures related to population diversity in canonical genetic algorithm.

Degree of population diversity, δ
( �X

)
: Defined as the number of distinct compo-

nents in the vector
∑N

i=1 Xi ; and Degree of population maturity, μ
( �X

)
: Described

as μ
( �X

)
= l − δ

( �X
)

or the number of lost alleles.

With probability of mutation, p (m) = 0 and �X (0) = �X0, according to Leung et al.

[7] the following postulates hold true: For each solution, Y ∈ H
(

ai1, . . . , aiμ( �X0) ;

�X0

)
, there exists a n ≥ 0 such that Probability

{
Y ∈ �X (n) / �X (0) = �X0

}
> 0. Con-

versely, for each solution, Y /∈ H
(

ai1, . . . , aiμ( �X0); �X0

)
, and every n ≥ 0 such that

Probability
{

Y ∈ �X (n) / �X (0) = �X0

}
= 0.

It is obvious from the above postulates that the search ability of a canonical genetic
algorithm is confined to the minimum schema with 2δ( �X) different individuals. Hence,

the greater the degree of population diversity, δ
( �X

)
, the greater is the search ability

of the genetic algorithm. Conversely, a small degree of population diversity will mean

limited search ability, reducing to zero search ability with δ
( �X

)
= 0.

2.2 Enhanced EAs to Combat Diversity Issues

No mechanism in a standard EA guarantees that the population will remain diverse
throughout the run [11, 12]. Although there is a wide coverage of the fitness landscape
at initialization due to the random initialization of individuals’ genomes, selection
quickly eliminates the least fit solutions, which implies that the population will
converge towards similar points or even single points in the search space. Since the
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Fig. 1 Direct or indirect control of population diversity in EA

standard EA has limitations to maintain population diversity, several models have
been proposed by the EA community which either maintain or reintroduce diversity
in the EA population [2, 8, 13–19]. The key researches can be broadly categorized
as follows [9]:



Evolutionary Landscape and Management of Population Diversity 5

1. Complex population structures to control gene flow, e.g., the diffusion model, the
island model, the multinational EA and the religion model.

2. Specialized operators to control and assist the selection procedure, e.g., crowding,
deterministic crowding, and sharing are believed to maintain diversity in the
population.

3. Reintroduction of genetic material, e.g., random immigrants and mass extinction
models are aimed at reintroduction of diversity in the population.

4. Dynamic Parameter Encoding (DPE), which dynamically resizes the available
range of each parameter by expanding or reducing the search window.

5. Diversity guided or controlled genetic algorithms that use a diversity measure
to assess and control the survival probability of individuals and the process of
exploration and exploitation.

Figure 1 summarizes the major methods proposed to directly or indirectly control
EA population diversity.

The Counter-Niching based EA framework presented in this paper, employs a
synergistic hybrid mechanism that combines the benefits of specialized operator
and reintroduction of diversity.

3 Understanding the Problem Space

Before we present our proposed approach, which aims at achieving constructive
diversity, it is important to understand the problem space we are dealing with. For
optimization problems the main challenge is often posed by the topology of the
fitness landscape, in particular its ruggedness in terms of local optima. The target
optimization problems for our approach are primarily multimodal. Genetic diversity
of the population is particularly important in case of multimodal fitness landscape.
Evolutionary algorithms are required to avoid and escape local optima or basins of
attraction to reach the optimum in a multimodal fitness landscape.

Over the years, several new and enhanced EAs have been suggested to improve
performance [2, 8, 13–18, 20–24]. The objectives of much of this research are
twofold; firstly, to avoid stagnation in local optimum in order to find the global
optimum; secondly, to locate multiple good solutions if the application requires so.

In the second case, i.e., to locate multiple good solutions, alternative and different
solutions may have to be considered before accepting one final solution as the opti-
mum. An algorithm that can keep track of multiple optima simultaneously should be
able to find multiple optima in the same run by spreading out the search.

On the other hand, maintaining genetic diversity in the population can be particu-
larly beneficial in the first case; the problem of entrapment in local optima. Mutation
is not sufficient to escape local optima as selection traditionally favours the bet-
ter fit solutions entrapped in local optima. Genetic diversity is crucial as a diverse
population allows the recombination operators to find different and newer solutions.
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Remarks: The issue is—how much genetic diversity in the population is optimum?

Unfortunately, the answer to the above question is not a straightforward one
because of the complex interplay among the variation and the selection operators as
well as the characteristics of the problem itself. Recombination in a fully converged
population cannot produce solutions that are different from the parents; let alone
better than the parents. Interestingly, Ishibuchi et al. [25] used a NSGA-II imple-
mentation to demonstrate that similar parents actually improved diversity without
adversely influencing convergence. A very high diversity on the other hand, actu-
ally deteriorates performance of the recombination operator. Offspring generated
combining two parents approaching two different peaks is likely to be placed some-
where between the two peaks; hindering the search process from reaching either of
the peaks. This makes the recombination operator less efficient for fine-tuning the
solutions to converge at the end of the run. Hence, the optimal level of diversity is
somewhere between fully converged and highly diverse. Various diversity measures
(such as Euclidean distance among candidate solutions, fitness distance and so on)
may be used to analyze algorithms to evaluate their diversity maintaining capabilities.

In the following sections we investigate the functioning and performance of our
proposed Counter Niching-based Evolutionary Algorithm [2].

4 Counter Niching EA: The Operational Framework

To attain the objective of introducing constructive diversity in the population, the
proposed technique first extracts information about the population landscape before
deciding on introduction of diversity through informed mutation. The aim is to iden-
tify locally converging regions or donor communities in the landscape whose redun-
dant less fit members (or individuals) could be replaced by more promising members
sampled in un-explored or under-explored sections of the decision space. The exis-
tence of such communities is purely based on the position and spread of individuals in
the decision space at a given point in time. Once such regions are identified, random
sampling is done on yet to be explored sections of the landscape. Best representatives
found during such sampling, now replace the worst members of the identified donor
regions. Best representatives are the ones that are fitness wise the fittest and spatially
the farthest. Here, average Euclidean distance from representatives of all already
considered regions (stored in a “memory” array) is the measure for spatial distance.
Regular mutation and recombination takes place in the population as a whole. The
basic framework is as depicted in Fig. 2.

The task described in Fig. 2 is carried out by the following three procedures:

1. Procedure COUNTER NICHING EA: This is the main algorithm that calls
the procedures GRID_NICHING and INFORMED_OP. Basically, COUNTER_
NICHING_EA has a very similar construct to a canonical genetic algorithm
(see Fig. 3) except that the genetic operations (recombination and mutation) are
performed via procedures GRID_NICHING and INFORMED_OP. Procedure
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The Counter Niching based EA

Identify Donor Regions and perform 
informed operation

(Procedure INFORMED_OP)

Find Communities or
Clusters in population

(Procedure GRID_NICHING)

Fig. 2 The COUNTER NICHING based EA framework

Fig. 3 The COUNTER NICHING based EA framework

GRID_NICHING is used to identify the formation of clusters or locally geno-
typically converging regions in the solution space. Procedure INFORMED_OP,
on the other hand, uses this clustering information to identify tendency towards
fitness convergence, as this can be an early indication of premature convergence
of the search process and hence, introduces diversity if necessary by a pseudo-
mutation operator.

2. Procedure GRID NICHING: This function is called within COUNTER_
NICHING_EA and is used to identify local genotypic convergence. Here, we
have used the term niching simply to connote identification of environments of
individuals in the population, based on their genotypical information. In other
words, we try to identify roughly the individual clusters in the decision space
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based on their genotypic proximity. It may be noted that accuracy of the cluster
boundaries is not of importance here. Instead, rough identification of cluster for-
mation with reasonable amount of resources (runtime and memory space) is the
prime objective.
Thus the procedure GRID-NICHING, returns information about community or
cluster formation in the population, for the current generation.

3. Procedure INFORMED OP: The procedure INFORMED_OP is second in order
to be called by COUNTER_NICHING_EA. This function is used for performing
the genetic operations (recombination and mutation) along with an informed
mutation in appropriate cases. The INFORMED_OP algorithm searches for
locally converging communities with too many members of similar fitness. To
achieve this, the clusters or regions in the list of “identified regions with high den-
sity” returned by GRID_NICHING are analyzed for potential fitness convergence.
Redundant members of the high density clusters or regions with low fitness stan-
dard deviation (victim regions) are picked for replacement by promising members
from relatively un-explored or under-explored sections (virgin zones) of the solu-
tion space. The idea is to explore greater parts of the solution space at the expense
of these so-called redundant or extra members. We call this process informed
mutation. The potential replacements are generated by random sampling of the
solution space. A potential replacement thus generated is picked as actual replace-
ment if it has fitness higher than the average fitness of the victim region and if it
is furthest from all cluster centers compared to other candidates of similar fitness.
However, informed mutation as explained above, thus operates on selected regions
or communities only. Regular mutation and recombination is performed as usual
on the entire population.

Figure 3 presents the procedure COUNTER_NICHING_EA. For details on the
procedures GRID NICHING and INFORMED OP, we refer to our previous work
in [2].

5 Simulations

5.1 Test Functions

Following the standard practice in the evolutionary computation research community,
we have tested the proposed algorithm on a set of commonly used benchmark test
functions to validate its efficacy.

The benchmark test function set used in the simulation runs consists of min-
imization of seven analytical functions given in Table 1: Ackley’s Path Function
( fack (x)), Griewank’s Function fgri (x), Rastrigin’s Function frtg (x), General-
ized Rosenbrock’s function fros (x), Axis parallel Hyper-Ellipsoidal Function or
Weighted Sphere Model felp (x), Schwefel Function 1.2 fsch−1.2 (x) and a rotated
Rastrigin Function frrtg (x).
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Table 1 Description of test functions

Function Type Global minimum

fack (x) = 20 + e − 20exp

(

−0.2

√
1
n

n∑

i=1
x2

i

)

Multimodal fack (x = 0) = 0

−exp

(
1
n

n∑

i=1
cos (2π · xi )

)

where

−30 ≤ xi ≤ 30

fgri (x) = 1
4000

n∑

i=1
(xi − 100)2− Multimodal,

medium epistasis
fgri (x = 0) = 0

n∏

i=1
cos

(
xi −100√

i

)
+ 1

where

− 600 ≤ xi ≤ 600

fr tg (x) =
n∑

i=1

(
x2

i − 10 cos (2πxi ) + 10
)

where

Multimodal, no
epistasis

fr tg (x = 0) = 0

−5.12 ≤ xi ≤ 5.12

fros (x) =
n−1∑

i=1

(
100

(
xi+1 − x2

i

)2 + (xi − 1)2
)

where

Unimodal, high
epistasis

fros (x = 1) = 0

−100 ≤ xi ≤ 100

felp (x) =
M∑

i=1
i x2

i
where

− 5.12 ≤ xi ≤ 5.12 Unimodal felp (x = 0) = 0

fsch−1.2 (x) =
M∑

i=1

(
i∑

k=1
xk

)2

where

Unimodal, high
epistasis

fsch−1.2 (x = 0) = 0

−564 ≤ xi ≤ 64

frr tg (x) = 10M +
M∑

i=1

(
y2

i − 10 cos (2πyi )
)

where

Multimodal frr tg (x = 0) = 0

y = Axwith Ai,i = 4/5,

Ai,i+1 = 3/5(i odd),

Ai,i−1 = −3/5(i even),

(Ai,k = 0(the rest)

Schwefel’s function 1.2 and Rosenbrock’s function are unimodal functions, but
they have a strong epistasis among their variables. Griewank’s function has very
small but numerous minima around the global minimum, although it has a unimodal
shape on a large scale. Rastrigin’s function also has many local minima. However, it
has no epistasis among its variables.

5.2 Algorithms Considered for Comparison

The algorithms used in the comparison are as follows:

1. The “standard EA” (SEA)
2. The self organized criticality EA (SOCEA)
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3. The cellular EA (CEA), and
4. The diversity guided EA (DGEA)

The SEA uses Gaussian mutation with zero mean and variance σ 2 = 1 + √
t + 1.

The SOCEA is a standard EA with non-fixed and non-decreasing variance σ 2 =
POW (10), where POW (α) is the power-law distribution. The purpose of the SOC-
mutation operator is to introduce many small, some mid-sized, and a few large
mutations. The effect of this simple extension is quite outstanding considering the
effort to implement it in terms of lines of codes. The reader is referred to [9] for
additional information on the SOCEA. Further, the CEA uses a 20×20 grid with
wrapped edges. The grid size corresponds to the 400 individuals used in the other
algorithms. The CEA uses Gaussian mutation with variance σ 2 = POW(10), which
allows comparison between the SOCEA and this version of the CEA. Mating is
performed between the individual at a cell and a random neighbour from the four-
neighbourhood. The offspring replaces the center individual if it has a better fitness
than the center individual. Finally, the DGEA uses the Gaussian mutation operator
with varianceσ 2 = POW (1). The diversity boundaries were set to dlow = 5 × 10−6

and dhigh = 0.25, which proved to be good settings in preliminary experiments.

5.3 Experiment Set-Up

Simulations were carried out to apply the proposed COUNTER NICHING based EA
with real-valued encoding with parameters N (population size)=300, pm(mutation
probability) = 0.01 and pr (recombination probability)=0.9. In case of the algo-
rithms used for comparison as mentioned in Sect. 5.2, namely, (i) SEA (Standard
EA), (ii) SOCEA (Self-organized criticality EA), (iii) CEA (The Cellular EA), and
(iv) DGEA (Diversity guided EA), experiments were performed using real-valued
encoding, a population size of 400 individuals, and binary tournament selection.
Probability of mutating an entire genome was pm =0.75 and probability for crossover
was pr =0.9. As mentioned in Sect. 5.2, CEA uses a 20×20 grid with wrapped edges,
where the grid size corresponds to the population size of 400 individuals as used in the
other algorithms. The compared algorithms all use variants of the standard Gaussian
mutation operator. The algorithm uses an arithmetic crossover with one weight for
each variable. All weights except one are randomly assigned to either 0 or 1. The
remaining weight is set to a random value between 0 and 1.

All the test functions were considered in 20, 50 and 100 dimensions. Reported
results were averaged over 30 independent runs, maximum number of generations
in each run being only 500, as against 1000 generations in used [9] for the same set
of test cases for the 20 dimensional scenarios. The comparison algorithms use 50
times the dimensionality of the test problems as the terminating generation number
in general, while the COUNTER NICHING EA uses 500, 1000 and 2000 generations
for the 20, 50 and 100 dimensional problem variants respectively.

All the simulation processes were executed using a Pentium�4, 2.4 GHz CPU
processor.
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6 Results and Discussions

This section presents the empirical results obtained by the COUNTER NICHING
EA algorithm when tackling the seven test problems mentioned in Sect. 5.1 with
dimensions 20, 50 and 100.

6.1 General Performance of COUNTER NICHING EA

Table 2 presents the error values, ( f (x) − f (x)∗) where, f (x)∗ is the optimum.
Each column corresponds to a test function. The error values have been presented
for the three dimensions of the problems considered, namely 20, 50 and 100.

As each test problem was simulated over 30 independent runs, we have recorded
results from each run and sorted the results in ascending order. Table 2 presents results
from the representative runs: 1st (Best), 7th, 15th (Median), 22nd and 30th (Worst),
Mean and Standard Deviation (Std). The main performance measures used are the
following:

“A” Performance: Mean performance or average of the best-fitness function
found at the end of each run. (Represented as ‘Mean’ in Table 2).

“SD” Performance: Standard deviation performance. (Represented as ‘Std.’ in
Table 2).

“B” Performance: Best of the fitness values averaged as mean performance.
(Represented as ‘Best’ in Table 2).

As can be observed COUNTER NICHING EA has demonstrated descent perfor-
mance in majority of the test cases. However, as can be seen from the highlighted seg-
ment (highlighted in bold) of Table 2, the proposed algorithm was not very efficient
in handling the comparatively higher dimensional cases (50 and 100 dimensional
cases in this example) for the rotated Rastrigin Function frrtg (x). Keeping in mind
the concept of No Free Lunch Theorem, this is acceptable as no single algorithm can
be expected to perform favorably for all possible test cases. The chosen benchmark
test functions represent a wide variety of test cases.

An algorithm’s value can only be established if its performance is tested against
that of existing algorithms for similar purposes. In the next phase of our experi-
ments we have presented comparative performances of COUNTER NICHING EA
as against SEA, SOCEA, CEA, and DGEA.

6.2 Comparative Performance of COUNTER NICHING EA

Simulation results obtained with COUNTER NICHING EA in comparison to SEA,
SOCEA, CEA, and DGEA (see Sect. 5.2 for descriptions of these algorithms) are
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Table 3 Average fitness comparison for SEA, SOCEA, CEA, DGEA, and COUNTER NICHING
EA∗

Function SEA SOCEA CEA DGEA C_EA∗

fack (x)20D 2.494 0.633 0.239 3.36E-5 1.08E-61

fgri (x)20D 1.171 0.930 0.642 7.88E-8 4.6E-62

fr tg (x)20D 11.12 2.875 1.250 3.37E-8 1.21E-61

fros (x)20D 8292.32 406.490 149.056 8.127 1.0E-60

felp (x)20D – – – – 2.9E-60

fsch−1.2 (x)20D – – – – 2.7E-50

frr tg (x)20D – – – – 3.9E-6

fack (x)50D 2.870 1.525 0.651 2.52E-4 1.01E-29

fgri (x)50D 1.616 1.147 1.032 1.19E-3 1.01E-30

fr tg (x)50D 44.674 22.460 14.224 1.97E-6 2.01E-30

fros (x)50D 41425.674 4783.246 1160.078 59.789 1.91E-29

felp (x)50D – – – – 1.00E-30

fsch−1.2 (x)50D – – – – 2.9E-20

frr tg (x)50D – – – – 9.1

fack (x)100D 2.893 2.220 1.140 9.80E-4 1.00E-9

fgri (x)100D 2.250 1.629 1.179 3.24E-3 1.80E-9

fr tg (x)100D 106.212 86.364 58.380 6.56E-5 2.00E-9

fros (x)100D 91251.300 30427.63 6053.870 880.324 3.00E-9

felp (x)100D – – – – 2.99E-8

fsch−1.2 (x)100D – – – – 3.7E-5

frr tg (x)100D – – – – 11.51

Dimensions of each function considered are 20, 50 and 100. ‘–’ appears where the corresponding
data is not available

presented in Table 3. Results reported in this case, for COUNTER NICHING EA
were averaged over 50 independent runs.

These simulation results demonstrate COUNTER NICHING EA’s superior per-
formance as regards to solution precision in all the test cases, particularly for lower
dimensional instances. This may be attributed to COUNTER NICHING EA’s abil-
ity to strike a better balance between exploration and exploitation. However, the
proposed algorithm’s performance deteriorates with increasing dimensions. Also,
the algorithm could not handle the high dimensional versions of the high epistatis
rotated Rastrigin function to any satisfactory level. Table 4 depicts the runtimes for
the tested algorithms for the 100 dimensional scenarios of four test cases used in our
experiments. Considering the structures of the algorithms, a trade-off between solu-
tion accuracy and computational time can be expected for COUNTER NICHING
EA. On the other hand, DGEA, which is designed to skip certain genetic operations
depending on the level of population diversity, would be a clear winner in terms of
computation time if all the algorithms are executed for the same number of genera-
tions in each run.
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Table 4 Average runtime in milliseconds for SEA, SOCEA, CEA, DGEA and
COUNTER_NICHING_EA∗ for the 100 dimensional scenarios

Method fack (x)100D fgri (x)100D fr tg (x)100D fros (x)100D

SEA 1128405 1171301 1124925 1087615

SOCEA 1528864 1562931 1513691 1496164

CEA 2951963 3656724 2897793 2183283

DGEA 864316 969683 819691 883811

C_EA* 418489 521800 491411 510266

Average of 100 runs with 2000 generations for COUNTER_NICHING_EA∗ and 5000 generations
for other algorithms

For the reported results as shown in Table 3, the 100 dimensional scenarios of the
test problems used 5000 generations for each of the compared algorithm, namely,
SEA, SOCEA, CEA and DGEA. On the other hand, COUNTER NICHING EA used
only 2000 generations to reach the reported results. Hence, for comparison purposes
it is only fair to consider the computation time required by the different methods
to reach comparable results. As can be observed from Table 4, despite its relatively
complex algorithmic structure, COUNTER NICHING EA requires less computa-
tion time to reach better or comparable solution accuracy. We have also extended the
simulation runs beyond the fixed number of generations and to the stagnation point.
Here, stagnation point is defined by the generation with 500 successive generations
of no fitness improvement preceding it. Table 5 summarizes the results for DGEA
and COUNTER NICHING EA with fixed run and at stagnation. Both DGEA and
COUNTER NICHING EA show some improvement over the results obtained with
fixed number of generations in most cases. COUNTER NICHING EA still outper-

Table 5 Average fitness comparison for DGEA and COUNTER_NICHING_EA∗

Function DGEA
(Fixed run)

DGEA
(Stagnation)

C_EA∗
(Fixed run)

C_EA∗
(Stagnation)

fack (x)20D 8.05E-4 3.36e-5 1.08E-61 1.09E-62

fack (x)50D 4.61E-3 2.52E-4 1.01E-29 1.01E-30

fack (x)100D 0.01329 9.80E-4 1.00E-9 1.01E-10

fgri (x)20D 7.02E-4 7.88E-8 4.6E-62 4.01E-62

fgri (x)50D 4.40E-3 1.19E-3 1.01E-30 1.01E-31

fgri (x)100D 0.01238 3.24E-3 1.80E-9 1.52E-10

fr tg (x)20D 2.21E-5 3.37E-8 1.21E-61 1.00E-62

fr tg (x)50D 0.01664 1.97E-6 2.01E-30 2.01E-31

fr tg (x)100D 0.15665 6.56E-5 2.00E-9 2.00E-11

fros (x)20D 96.007 8.127 1.0E-60 1.0E-60

fros (x)50D 315.395 59.789 1.91E-29 1.90E-29

fros (x)100D 1161.550 880.324 3.00E-9 3.00E-9

Dimension of each function in this case is 100. Both algorithms were executed till stagnation
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forms DGEA. Also, COUNTER NICHING EA has arrived at these superior results
in much fewer generations. However, no significant improvement was observed in
case of all three different dimensional cases of the Rosenbrock function, in case of
COUNTER NICHING EA.

6.3 An Analysis of Population Diversity for COUNTER
NICHING EA

In the next phase of our experiments, we have investigated COUNTER NICHING
EA’s performance in terms of maintaining constructive diversity. There are various
measures of diversity available. The “distance-to-average-point” measure used in
[9] is relatively robust with respect to population size, dimensionality of problem
and the search range of each variable. Hence, we have used this measure of diversity
in our investigation. The “distance-to-average-point” measure for Ndimensional
numerical problems can be described as below [9].

diversity (P) = 1

|L| · |P| ·
|P|∑

i=1

√√√
√

N∑

j=1

(
si j − s̄ j

)2
(1)

where, |L| is the length of the diagonal or range in the search space S ⊆ 	N , P is
the population, |P| is the population size, N is the dimensionality of the problem,
si j is the j’th value of the i’th individual, and s̄ j is the j’th value of the average
point s̄. It is assumed that each search variable sk is in a finite range, sk_ min ≤ sk ≤
sk_ max. Table 6 depicts the average diversity for four test problems with COUNTER
NICHING EA simulation runs. The values reported in Table 6, averages the value of
the diversity measure in Eq. (1) calculated at each generation where there has been an
improvement in average fitness over 500, 1000 and 2000 generations for the 20, 50
and 100 dimensional cases respectively. Final values were averaged over 100 runs.
To eliminate the noise in the initial generations of a run, diversity calculation does not
start until the generation since which a relatively steady improvement in fitness has
been observed. Table 6 shows that the COUNTER NICHING EA does not necessarily
maintain very high average population diversity. However, EA’s requirement is not

Table 6 Average population diversity comparison for COUNTER NICHING EA (fixed run)

Function 20D 50D 100D

fack (x) 0.001350 0.001811 0.002001

fgri (x) 0.001290 0.001725 0.002099

fr tg (x) 0.003000 0.003550 0.004015

fros (x) 0.001718 0.002025 0.002989

An average of 100 runs have been reported in each case
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Table 7 The P-values of the t-test with 99 degrees of freedom

Function C_EA∗–SEA C_EA∗–SOCEA C_EA∗–CEA C_EA∗–DGEA

fack (x)20D 0.1144 0.4263 0.625 0.9954

fgri (x)20D 0.2793 0.3349 0.4231 0.9998

fr tg (x)20D 0.0009 0.0901 0.2636 0.9999

fros (x)20D 0 0 0 0.0044

fack (x)50D 0.0903 0.217 0.4198 0.9873

fgri (x)50D 0.2037 0.2843 0.3098 0.9725

fr tg (x)50D 0 0 0.0002 0.9989

fros (x)50D 0 0 0 0

fack (x)100D 0.0891 0.1363 0.2857 0.975

fgri (x)100D 0.1337 0.2019 0.2776 0.9546

fr tg (x)100D 0 0 0 0

fros (x)100D 0 0 0 0

Dimensions of each function considered are 20, 50 and 100. ‘–’ appears where the corresponding
data is not available

to maintain very high average population diversity but to maintain an optimal level of
population diversity. The high solution accuracy obtained by COUNTER NICHING
EA proves that the algorithm is successful in this respect.

6.4 Statistical Significance of Comparative Analysis

Finally, a t-test (at 0.05 level of significance; 95 % confidence) was applied in order to
ascertain if differences in the “A” performance for the best average fitness function are
statistically significant from the other techniques used for comparison. The P-values
of the two-tailed t-test are given in Table 7. As can be observed, the difference in
“A” performance of COUNTER NICHING EA is statistically significant compared
to the majority of the techniques across the test functions in their three different
dimensional versions.

7 Conclusions

In this paper we investigated the issues related to population diversity in the context
of the evolutionary search process. We established the association between popu-
lation diversity and the search ability of a typical evolutionary algorithm. Then we
presented an investigation on an intelligent mutation based EA that tries to achieve
optimal diversity in the search landscape. The framework basically incorporates two
key processes. Firstly, the population’s spatial information is obtained with a pseudo-
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niching algorithm. Secondly, the information is used to identify potential local con-
vergence and community formations. Then diversity is introduced with informed
genetic operations, aiming at two objectives: (a) Promising samples from unexplored
regions are introduced replacing redundant less fit members of over-populated com-
munities and (b) while local entrapment is discouraged, representative members are
still preserved to encourage exploitation. While the current focus of the research was
to introduce and maintain population diversity to avoid local entrapment, this Counter
Niching-based algorithm can also be adapted to serve as an inexpensive alternative
for niching genetic algorithm, to identify multiple solutions in multimodal problems
as well as to suit the diversity requirements in a dynamic environment.
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