
A Self-stabilizing PIF Algorithm for Educated
Unique Process Selection

Oday Jubran(B) and Oliver Theel

Carl von Ossietzky Universität Oldenburg, 26111 Oldenburg, Germany
{jubran,theel}@informatik.uni-oldenburg.de

Abstract. Many applications, methods, and models are based on under-
lying self-stabilizing mutual exclusion algorithms. The efficiency of such
applications is correlated to the efficiency of the algorithms, which reflects
a quick recovery from failures, and a fast service time. In this work, we
focus on a property correlated to this field, namely Educated Selection,
which indicates that the selection of processes to be granted unique privi-
lege is deterministic and based on evaluating the local states of processes,
or the global configuration. We present a self-stabilizing Propagation of
Information with Feedback (PIF) algorithm for trees using the shared
memory model. The algorithm exploits the PIF technique for achieving
fast educated unique process selection.

Keywords: Self-stabilization · Propagation of information with feed-
back (PIF) · Mutual exclusion · Educated selection

1 Introduction

Self-stabilization [1] ensures that a system’s desired behavior is eventually
obtained and never voluntarily violated regardless of the system’s initial behav-
ior. Self-stabilization was considered in distributed systems using the shared
memory model, where a process is enabled to execute an action if a condition
over the registers, visible to the process, is satisfied. Running an action changes
the registers’ values, potentially enabling other processes to run actions.

The mutual exclusion problem was considered in self-stabilization, e.g. [2].
Mutual exclusion comprises: (1) a safety property that at most one process is
granted a privilege in each state, and (2) a liveness property that each process
is privileged infinitely often. The second property is usually referred as fairness.

Mutual exclusion does not necessarily require the process selection for grant-
ing the privilege to be deterministic. However, for some systems, it is useful if the
process selection is based on local or global criteria, e.g. energy measurements or
QoS indicators, towards increasing the performance of the systems. We denote
such deterministic process selection as an educated selection.

This work was partially supported by the German Research Foundation (DFG) as
part of the Transregional Collaborative Research Center “Automatic Verification
and Analysis of Complex Systems” (SFB/TR 14 AVACS, http://www.avacs.org/).

c© Springer International Publishing Switzerland 2015
A. Bouajjani and H. Fauconnier (Eds.): NETYS 2015, LNCS 9466, pp. 485–489, 2015.
DOI: 10.1007/978-3-319-26850-7 36

http://www.avacs.org/


486 O. Jubran and O. Theel

The Propagation of Information with Feedback (PIF) [3] is a useful token-
passing approach for educated selection, in which a process sends a wave of
tokens, and receives a feedback. In this work, we apply a PIF approach for edu-
cated unique process selection by extending an earlier approach [4]. We present
a self-stabilizing PIF algorithm for trees using the shared memory model. The
algorithm performs reasonably fast educated unique process selection based on
local or global criteria in (a)synchronous environments.

Outline. Section 2 gives the basic notation. Section 3 presents our self-stabilizing
PIF algorithm. Section 4 draws a conclusion.

2 Notation

We consider a tree topology using the shared memory model. A tree T = (P,E)
is a set of processes P and edges E ⊆ P ×P . The parent of a process p is denoted
by θp, and the children of p are denoted by Cp. The root is denoted by root , and
the set of leaves (resp. inner processes) in P is denoted by Leaves (resp. Inner).
The number of all processes is n. Each process has variables, constants, and a
unique id in {0, ..., n−1}: A process p of id i is denoted by pi, and a variable v of
pi is referred by pi.v. A state σ is a valuation of the variables of some process
p. A configuration is a vector [σ0, ..., σn−1] of the states of all processes.

3 Algorithm

We present an algorithm, which is based on an extended scheme of the well-
known mutual exclusion algorithm of Dijkstra [2]. Section 3.1 presents the algo-
rithm for educated selection based on local states, and Sect. 3.2 extends the
algorithm for educated selection based on global configurations

3.1 Educated Selection Based on Local States

Algorithm 1 shows the algorithm. Each process owns the following variables: (1)
up ∈ B and x ∈ B. We assert that up = � for the root, and up = ⊥ for each
leaf. (2) � ∈ {0, ..., n−1}: this variable stores a process’s id to direct particular
tokens to selected processes. We say that a process p points to a process pi when
p.� = i. (3) We abstract the local criteria of each process pi by a variable mi ∈ R,
such that pi is selected only if the value of pi.m is the maximum among all other
processes. We assume that the value of pi.m is updated by pi independent of the
algorithm, and is returned by the function updatem().

We define the function choose : 2P ⇒ {0, ..., n−1} as follows: given a subset
P ′ ⊆ P , the function returns the id of a process that has the maximum value of
m among P ′. A process runs critSection(), if it is privileged.

The stable behavior of Algorithm 1 is an infinite repetition of two PIF cycles,
where in each cycle, the root propagates a token to all processes, and receives a
feedback from all processes, yielding four types of tokens.



A Self-stabilizing PIF Algorithm for Educated Unique Process Selection 487

Algorithm 1. Algorithm for a Process p in a Topology T = (P,E)
Constants: id ∈ {0, ..., n−1}
Variables: x ∈ B, up ∈ B, � ∈ {0, ..., n−1}, m ∈ R

Assertions: root .up = � ∧ ∀ q ∈ Leaves • q.up = ⊥
Tokens
token1 : θp.x �= x ∧ ¬x % Search Token
token2 : up ∧ x ∧ ∀ ch ∈ Cp • ch.x = x ∧ ¬ch.up % Feedback Token
token3 : θp.x �= x ∧ x % Execute Token
token4 : up ∧ ¬x ∧ ∀ ch ∈ Cp • ch.x = x ∧ ¬ch.up % Complete Token
Functions
updatem() := {v ∈ R | v is independent of the algorithm}
choose(P ′ ⊆ P ) := {i | pi ∈ P ′ ∧ ∀ q ∈ P ′ • pi.m = max(q.m)}
critSection() : Access Critical Section
Guarded Commands (ci : guard −→ action)
Root Sub-Algorithm

1 : token2 −→ � := choose({p} ∪ Cp); m := p�.m; x = ¬x;
2 : token4 ∧ � = id −→ critSection()critSection()critSection(); m := updatem(); x = ¬x; % Privileged
3 : token4 ∧ � �= id −→ m := updatem(); x = ¬x;

Inner Process Sub-Algorithm

4 : token1 −→ m := updatem(); up := �; x := ¬x;
5 : token2 ∧ ¬token3 −→ � := choose({p} ∪ Cp); m = p�.m; up := ⊥;
6 : token3 ∧ θp.� = id ∧ � = id −→ critSection()critSection()critSection(); up := �; x := ¬x; % Privileged

7 : token3 ∧ θp.� = id ∧ ∃ q ∈ Cp • p.� = q.id −→ up := �; x := ¬x;
8 : token3 ∧ ¬(θp.� = id ∨ ∃ q ∈ Cp • q.� = q.id) −→ � := id ; up := �; x := ¬x;
9 : token4 ∧ ¬token1 −→ up := ⊥;

Leaf Sub-Algorithm

10 : token1 −→ m := updatem(); � := id ; x := ¬x;
11 : token3 ∧ θp.� = id −→ critSection()critSection()critSection(); x := ¬x; % Privileged
12 : token3 ∧ θp.� �= id −→ x := ¬x;

Algorithm 2. Extending Algorithm 1
Additional Variables
snapShot = [k0, ..., kn−1], where ki ∈ R for 0 ≤ i ≤ n−1

Extended Functions
updatem([k0, ..., kn−1]) = {v ∈ R | v is dependent of [k0, ..., kn−1]}
Extended Guarded Commands (2, 3, 4, 6, 9, 10, 11)
2′ : ... −→ critSection()critSection()critSection(); snapShot .kid = k; m := updatem(snapShot); x = ¬x;
3′ : ... −→ snapShot = p�.snapShot ; m := updatem(snapShot); x := ¬x;
4′ : ... −→ snapShot = θp.snapShot ; m := updatem(snapShot); up := �; x := ¬x;
6′ : ... −→ critSection()critSection()critSection(); snapShot .kid := k; up := ⊥; x := ¬x;
9′ : ... −→ snapShot := p�.snapShot ; up := ⊥;
10′ : ... −→ snapShot = θp.snapShot ; m := updatem(snapShot); � := id ; x := ¬x;
11′ : ... −→ critSection()critSection()critSection(); snapShot .kid = k; m := updatem(snapShot); x := ¬x;



488 O. Jubran and O. Theel

First PIF Cycle
token1 ↓ : the root sends token1. When a process p receives token1, p updates
m, and forwards the token to its children (c4), until token1 reaches the leaves.
Each leaf li updates li.m, and sends token2 to its parent (c10).
token2 ↑ : when a process p receives token2, p points to a process q, where
q ∈ {p} ∪ Cp and q has the maximum value of m among p and its children (c5).
Then, p copies q.m, and switches the value of p.up(c5). With this action, each
process p eventually points to a path that leads to the process with the original
maximum value of m, after copying it. Eventually, token2 reaches the root, and
the root starts the second PIF cycle (c1).

Second PIF Cycle
token3 ↓ : the root sends token3. If a process p receives token3, one of three
possible cases exists:

– Case (1) represented by commands c6, c11: if θp points to p and p points to
itself, then p has a privilege. p runs critSection() and forwards the token.

– Case (2) represented by c7: if θp points to p and p points to one of its children
q, this implies that the selected process exists in the subtree rooted by q. p
passes token3, while keeping p.� = q.id .

– Case (3) represented by c8, c12: if θp is not pointing to p, or p is neither
pointing to itself nor to one of its children, then there is no selected process in
the maximal subtree rooted by p. p sets � to p.id , to prohibit any child from
running critSection() after forwarding token3.

Note that, if token3 is directed to a subtree T ′, in which there is no selected
process, then c8 is enabled in each process in T ′ in the current PIF cycle.
token4 ↑ : Next, token4 is forwarded to the root (c9). The root receives token4

which involves all its children. If the selected process is the root, then c2 is
enabled, the root runs critSection(), and sends token1 to its children. Otherwise
(c3), the root simply starts a new PIF cycle.

Regarding the time complexity: (1) The algorithm guarantees unique process
selection in d rounds, where d is the tree depth. (2) The algorithm guarantees
that after at most 3d rounds, each PIF cycle lasts 2d rounds, and within any
two subsequent PIF cycles, exactly one process is privileged.

3.2 Educated Selection Based on Global Configurations

We extend Algorithm 1 for educated selection based on configurations. We show
the extension in Algorithm 2. In Algorithm 1, the update value of m, returned by
updatem(), is based on the local state. In Algorithm2, the value of m is updated
according to the global configuration. This indicates that each process should
know the configuration. We abstract the configuration by the vector snapShot ,
owned by each process, and defined as follows: snapShot = [k0, ..., kn−1], where
ki ∈ R, for 0 ≤ i ≤ n − 1, is the relevant evaluation of the local state of pi. Now,
each process p updates p.m according to the value of p.snapShot .



A Self-stabilizing PIF Algorithm for Educated Unique Process Selection 489

The extended commands from Algorithm 1 are c2-c4, c6, c9-c11. With the
extension, the stable behavior is as follows: in the first PIF cycle, when a process
receives token1, it copies the parent’s snapshot, and updates m according to the
snapshot (c4′ , c10′). With this action, a copy of the snapshot reaches each process.
The remainder of the first PIF cycle continues normally. In the second PIF cycle,
the selected process runs critSection(), and modifies its snapshot based on the
new value of k (c6′ , c11′). Next, the parent of p copies the new snapshot, and
forwards it to the root (c9′). c2′ and c3′ concern extended root commands.

In the above behavior, it is assumed that the snapshot sent by the root
matches the values of k of all processes. If there is an incorrect value of some k,
the snapshot is said to be inconsistent. For inconsistent snapshots: we say that
a snapshot snap is highlighted iff it contains at least one null value of some k.
We also say that snap is empty if it contains only null values.

The snapshot inconsistency is corrected in the first PIF cycle: (1) When the
root propagates token1 with an inconsistent snapShot , there exists a process
pj such that pj .k is not equal to snapShot .kj . Eventually, pj receives token1.
(2) When pj copies the snapshot, pj checks if there is an inconsistency, or if
θp.snapShot is empty. In both cases, pj sets its snapshot empty. (3) Next, all
processes in the maximal subtree rooted by pj set their snapshots empty, anal-
ogous to step 2, since token1 reaches every process. (4) Now, starting from the
leaves, for each process p that receives token2, if p recognizes a highlighted snap-
shot in one of its children or itself, then p creates a new snapshot by merging
the snapshots of its children, and adding its value of k. Now, the snapshot of
p contains correct values of all processes in the subtree rooted by p, and null
values for the processes that are not in the subtree. (5) After the root receives a
feedback token (token2), it merges the new snapshots, yielding a correct one.

4 Conclusion

We presented a self-stabilizing PIF algorithm for educated unique process selec-
tion for trees using the shared memory model. The algorithm ensures that a
process is selected to execute an action only if it is distinguished from other
processes according to some criterion, and the criterion is based on the local
state of the selected process. We denote the criterion as whether or not a partic-
ular number value of a process is maximal among all processes. We extended the
algorithm for selecting processes based on a global configuration by propagating
a snapshot of the local states of all processes.

References

1. Dolev, S.: Self-Stabilization. The MIT Press, Cambridge (2000)
2. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun.

ACM 17(11), 643–644 (1974)
3. Segall, A.: Distributed network protocols. IEEE Trans. Inf. Theory 29(1), 23–34

(1983)
4. Jubran, O., Theel, O.: Exploiting synchronicity for immediate feedback in self-

stabilizing PIF algorithms. In: PRDC, pp. 106–115. IEEE (2014)


	A Self-stabilizing PIF Algorithm for Educated Unique Process Selection
	1 Introduction
	2 Notation
	3 Algorithm
	3.1 Educated Selection Based on Local States
	3.2 Educated Selection Based on Global Configurations

	4 Conclusion
	References


